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Abstract

The ground state for a one dimensional spin 1/2 Heisenberg chain coupled to phonons
is a dimerized singlet state known as a "spin-Peierls" state. Currently, the spin-Peierls
state is realized in only a handful of known compounds. Even after decades of scientific
scrutiny, there is an absence of direct measurements of the lattice dynamics associated
with the transition.

In this work we present an extensive study of a new one dimensional spin-Peierls
compound, TiOC1. The magnetic susceptibility strongly indicates a singlet ground
state, with two apparent anomalies observed at T, ,=65 K and Tc2=92 K. Specific heat
measurements have been performed and the associated entropy changes quantified.
The 65 K transition exhibits a thermal hysteresis, indicative of a first order phase
transition. A detailed synchrotron x-ray study of the structure reveals the appearance
of superlattice peaks at (H,K+I/2,L) below 65 K. The intensity of the peaks drop
very sharply above T,,, and a thermal hysteresis is observed which is consistent
with a first order phase transition at 65 K. We find that the temperature region
between 65 K and 92 K is characterized by a novel incommensurate state. The
incommensurate reflections appear at (±AH, K + 1/2 ± AK, L). The temperature
dependence of the intensity of the incommensurate peaks shows a more gradual onset,
with no thermal hysteresis. The incommensurate wavevectors change continuously
as a function of temperature and can be analyzed in terms of a mean field theory of
phase shifted discommensurations. The observation of the third harmonics enabled a
careful characterization of the underlying real space superstructure. We find that all
of the observed scattering can be reproduced by a one dimensional long-wavelength
modulation of a locally dimerized structure.

The lattice dynamics above T 2were characterized by inelastic x-ray scattering
measurements. By analyzing the data in terms of a damped harmonic oscillator
response function, we are able to extract the phonon frequency and damping for
all observed modes. We find a longitudinal acoustic phonon branch whose damping
increases for q-vectors close to the zone boundary, which is also associated with an
apparent softening of the frequency. Both of these anharmonic effects increase as TC2is



approached, and are consistent with a soft phonon description of the dimerization.
The anomalous phonon damping and softening are then analyzed using the Cross &
Fisher theory of spin-phonon interaction leading to a spin-Peierls transition. We find
that the theory succeeds in describing the data for a narrow temperature range about
Tc2, for q near the zone boundary. It does not account for the anharmonic effects
observed at high temperatures. Our experimental analysis represents one of the most
in-depth quantitative tests of the Cross & Fisher theory to date. In addition our
results suggest that TiOCl is a particularly ideal realization of a spin-Peierls system.

Thesis Supervisor: Young S. Lee
Title: Associate Professor
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1 Introduction and Motivation

While the study of spin interactions in solid state materials is a well established sci-

ence, real interest in understanding microscopic origins of collective spin behavior

took a major upturn in recent decades in an attempt to better understand magnetic

properties of high temperature superconductors. An area of real interest which re-

mains speculative are the lower dimensional spin-1/2 lattice structures, where the

effects of quantum fluctuations on static long range order for T=O is an open theo-

retical question[7]. To gain a little insight into the origin of this uncertainty, we can

perform a few simple calculations. A Hamiltonian which accounts for the spin degrees

of freedom is the Heisenberg Hamiltonian

H = J S , (1.1)

where the sum is over nearest neighbor pairs, labelled by i, j. As a first step to finding

the ground state, it is useful to first calculate the ground state energy. This is most

easily done by rewriting Si Sj in terms of the total nearest neighbor spin,

s = 1 - (1.2)
(ilj)

If Si, and Sj each have spin s, with total spin S, then the energy of 1.1 is

Eij = J [S(S + 1) - s (s + 1) . (1.3)

Starting with expression 1.3, we can clearly see two different cases for magnetic

ground states, for different signs of J. If J < 0, or J = -IJj, then the minimum

occurs when the two spins are parallel making the total spin S = 2s, and E = -IJIs 2.
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Figure 1-1: Cubic lattice with ferromagnetic (a) and antiferromagnetic (b) spin order.

If we now generalize this to N spins on a lattice, we see that the ground state is one

in which all spins are aligned parallel to each other. Such a state is known as a

ferromagnetic state (figure 1-la). Of course, this state can only be allowed if it is an

eigenstate of the Hamiltonian, so to check, it is convenient to expand the dot product,

and rewrite the the operators Sx, S, in terms of raising and lowering operators

1 = - + S =1 (-
2 2i

Then equation 1.1 becomes

H=J SS ( + 2 S +S t ) . (1.4)
(i,j)

Recalling that S+I I) = 0, and applying H to the state I TT ...),

0I. = S lTT .1.) ITT ...) ± 7 I IT
(i,j)

- 8J S l ITT) ..(ij)

- ·• s21 TTT ...>.

It can therefore be concluded that the the ferromagnetic ground state is indeed an

eigenstate of H, with ground state energy JNS2 .

L/It
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The case for J > 0 turns out to be a bit more elusive. Following along the same

lines as for the ferromagnet, we begin by minimizing the energy. In this case, the

minimum energy occurs when Si is anti-parallel to Sj for a total spin of 0, or singlet

state, with an energy of Eij = -JS(S + 1). Because the spins are anti-aligned, this

state is known as an antiferromagnet.

One proposed ground state for the antiferromagnetic Heiesenberg Hamiltonian is

a periodic arrangement of oppositely aligned spins. Such a state can be constructed

out of inter-penetrating anti-parallel ferromagnetic sub-lattices (figure 1-1b). Just

as with the ferromagnet, we can apply the Heisenberg Hamiltonian to calculate the

ground state energy.

HI~... u = 1%5Z ... J (j I... liL ... ) + i .. +.

(i,j) >)-
(i,j)

therefore the Neal energy is E = -JNs2 . It turns out that a better estimate for the

ground state energy can be obtained by considering a state of non-interacting singlets.

For N spins, there will be N/2 singlets, each having energy -Js(s + 1), resulting in

a total energy of

N 2 N
Esinglet 2= NJs(s + 1) = -JNs 2 + (Js2 - J) (1.5)

2 2

From this we can see that the singlet energy is only lower for s < 1.

Going back to the Ne61 state, we see that the Sz term gives an energy of -JNs 2,

but the S+S T operators change the state, therefore the Neel state is not an eigenstate

of the Heisenberg Hamiltonian. If we compare this energy with the -JNs(s + 1),

we see that the Ne6l energy only differs from the ground state energy by an amount

-JNs, which must come from the raising and lowering operators. From this it can

be concluded that the ground state is primarily Neil ordered with fluctuations of the



spin direction. An estimate for the influence of fluctuations on the ordered Neil state

can be obtained by comparing the ratio of the ground state energy correction term

(Js) to the Ne'l energy (-Js 2 ),

dE Js 1
(1.6)ENeel Js 2  S

So for large s, the Neil state very nearly estimates the ground state, but for small s,

the energy correction due to fluctuations becomes significant. This makes the s = 1/2

case especially interesting, since it has the largest deviation from Neil order. In a

more rigorous derivation of equation 1.6, we would have considered the number of

nearest neighbors as well. For a spin with coordination number, n, the result in 1.6

becomes
dE 1

(1.7)
ENeIl ns

which implies that the influence of fluctuations becomes increasingly important with

decreased coordination number. From this we would then expect that the system

where fluctuations play the most significant role is the one dimensional s = 1/2

system, where s = 1/2 and n = 1 both maximize . This has some very interesting

consequences, which combined with its attractive theoretical simplicity makes one

dimensional magnetism a rich field for the study of quantum magnetism.

The exact ground state for the I-D s = 1/2 Heisenberg chain was derived exactly

by Hans Bethe in 1931[8]. He found that the 1D ground state is a complicated

superposition state, which does not order down to T = OK. Later, in 1938, Lamek

Hulthen found the ground state energy to be E = -. 43JN[9]. Earlier we found

that the uniform Neil energy could be lowered by deforming it into a system of non-

interacting singlets. In an analogous manner, one must therefore wonder if a lower

energy state exists for a deformeable Bethe state. It turns out that a uniform 1-D

chain can lower its energy by pairing up into dimers creating a chain of alternating

bonds. For spins on a lattice this leads to a deformation of the chain at some finite

temperature. The transition from the uniform chain to dimerized chain driven by

nearest neighbor spin interaction is known as a spin-Peierls transistion.
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b) Dimerized 1-D lattice

Figure 1-2: Spins on a lattice can lower their energy by pairing up into singlets. This
results in a chain of dimerized atoms.

1.1 Spin-Peierls basics

The name for the spin-Peierls state is derived from the regular Peierls state for a

1-D metal with a half-filled band. A small lattice distortion results in a splitting of

the band about the Fermi energy thus lowering the electron energy. If the gain in

electron energy is greater than the cost in lattice energy, the lattice dimerizes. In

a sense the spin-Peierls transition shares a lot of similar concepts with the metallic

peierls system. Basically the driving force behind the distortion is the tendency for

neighboring spins to form singlet pairs. If the energy gained by forming a singlet

is greater than the energy lost due to distorting the lattice, a spin-Peierls transition

occurs. For the case of the metallic Peierls transition, this energy gain could be

understood by a gap formation about the Fermi level. An analogous gap occurs in a

spin-Peierls transition, but to understand this gap requires a little background in 1D

Heisenberg chains.



1.1.1 1D Spin Chains

In one dimension the Heisenberg Hamiltonian (eq. 1.1) simplifies to

1 SI (1.8)
if= JS41 = J+ SSi+2 + SiS+1+ (1.+

i i

In 1, we explored the FM and AFM ground states of the Heisenberg Hamiltonian.

To understand the spin-Peierls state, we have to discuss the excitation spectrum in

the 1D Heisenberg chain. As one would expect, the easy case is the FM, where the

elementary excitation is a AS = 1 spin flip,

Ground State Excited State

I TITT ...) -+ I TIT ...,

known as a magnon. It can be shown that a magnon disperses as 1-cos(q) 1, where q is

the Brillouin Zone momentum transfer. Not surprisingly, the AFM picture isn't quite

as simple, since there is no static long range order due to quantum fluctuations. Like

the magnon, the first excited state for a 1D AFM chain is a AS = 1 excitation, which

is visualized for a 1-D Neel lattice in figure 1-3. The red lines in indicate a domain

1See for example reference [10]
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Figure 1-3: a) A 1-D AF chain with a AS = 1 excitation. The red lines indicate
domain walls, which can be separated by any arbitrary distance with no energy cost.
b) Numerically calculated spinon continuum with 256 k-points following the numerical
recipe in [1][2]. c) Spinon continuum observed in SrCuO3 with neutrons [3].
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wall between otherwise ordered segments of chain. Each domain wall corresponds to

has a total spin AS = 1/2 associated with it. Therefore, in order to have a AS = 1

excitation the domain walls always come in pairs. Since the energy is the same for

any arbitrary separation of domain wall, they are decoupled and can be effectively

treated as independent spin-1/2 quasi-particles, known as spinons. The spinon is

regarded as the elementary excitation of the 1D AF Heisenberg chain, which is only

excited in pairs non-interacting pairs. In 1962 Cloizeaux and Pearson in 1962 worked

out the energy dispersion for a single spinon excitation and found[11].

xJ
Ecp(q) = I sin(irq) , (1.9)

where q is the momentum transfer reduced to the first BZ in reciprocal lattice units.

Note the argument 7rq corresponds to a two unitcell periodicity in real space, which

reflects the presence of Neil order even though the ground state is known to be

disordered[12]. Since spinons are excited in pairs, the energy of both spinons must be

accounted for. The value of interest is the total energy E(q) of a two spinon excitation,

with q = ql + q2 being the sum of the individual spinon momentum transfers ql, q2.

The absolute lowest energy mode is when both spinons are long-wavelength modes

at q = 0. For q away from zero, the lowest energy can be obtained by lifting the

energy of only one spinon (i.e. give the spinon a small q), keeping keeping the other

at at zero, therefore we would expect a lower bound on the energy throughout the

Brillouin zone to have the form of a single spinon dispersion, given by 1.9. The same

procedure can be performed keeping one spinon fixed at a small ql giving Ecp(q1),

then at 26E, and so forth. The maximum energy configuration is when both spinons

have wavevector q' = w/2 (2 unitcell wavelength), for a total q = 2q' = 7r. We

therefore expect that the value of the maximum will occur at q = ir, and be equal

to Etot = 2Ecp(qi = q2 = 7r/2) = irJ, Generally speaking, for any q, we would

expect that the maximum energy occurs when both spinons have equal values of



ql = q2 = q/2. Therefore the upper bound of excitations as a function of q should be

Euppe,(q) = 2Ecp(qi = q2 = q/2) = 7rJ| sin(7rq/2)j. (1.10)

This in fact is the exact form for the upper bound for the two spinon excitation de-

termined first approximately by [13], then exactly by [14]. In between equations 1.10

and 1.9 is a continuum of two spinon excitation states. This has been experimentally

verified by neutron scattering. A recent example of a neutron scattering spectrum

from the nearly ideal ID Heisenberg system SrSuO 2 is shown in figure 1-3c. Unlike

the lowest excited state, the highest excited state has the periodicity of the lattice,

reflecting the deviation from the Neil ordered state due to fluctuations.

1.1.2 Spin-Peierls Gap

In the beginning of this section, the spin-Peierls instability was motivated by drawing

an analogy to the metallic Peierls instability. At the time, we lacked the background

to draw the connection, but with the introduction of the spinon continuum, we can

now discuss the spin-Peierls transition in a parallel manner to the Peierls instability.

From equation 1.9, the lower bound of the continuum extents to E=0 at the zone

boundary (q=1/2). Therefore, analogous to the Peierls instability, the system can

gain energy by dimerizing, resulting in the formation of a gap to short wavelength

excitations at the zone boundary.

On the one hand the spin energy favors dimerizing the lattice, but the lattice

energy tries to maintain a uniform spacing. In order for a spin-Peierls transition to

occur, the gain in spin energy has to exceed the cost in lattice energy. For a distortion

of magnitude 6, mean field theory predicts the gain in spin energy to be proportional

to 64/3[15]. In the harmonic approximation the dimerization requires an energy 62.

Therefore the total change in energy is

E , 6-2 _ 4/3, (1.11)



which for 6 << 1 favors the spin-Peierls transition. Therefore we expect the T = 0

state for any 1D s = 1/2 Heisenberg system to be a dimerized chain. In the next

section, the experimental realization of spin-Peierls transitions will be discussed.

1.2 Experimental Realization of the Spin-Peierls

State

In the previous section the physics of a 1D spin-1/2 Heisenberg chain was discussed,

and we saw that the lowest energy state is a dimerized lattice, or spin-Peierls state. In

practice, there are maybe a dozen spin-Peierls systems, even though about a hundred

materials have been labelled as "ID". So roughly 10% of "ID" systems have a spin-

Peierls ground state, which means that the other 90% are not strictly 1D. Typically

in these cases some inter-chain interaction induces higher dimensional order at a finite

temperature. Two examples where a nice spinon continuum is observed are KCuF 3,

which becomes a 3D AFM at 39 K[16], and SrCuO 2 which orders at T=3 K[17].

The spin Peierls transition was first observed in 1977 in the organic compound

TTF-CuS 4C 4(CF 3)4 (or TTF-CuBDT) by Dave Moncton and his collaborators[18].

The transition temperature was 11 K with pretransitional fluctuations up to 225 K, as

measured by diffuse x-ray scattering. The magnetic dimensionality of the system was

previously determined by fitting the susceptibility to the Bonner-Fisher theory for a

1D s = 1/2 Heisenberg chain [19]. Moncton et. al. observed a lattice dimerization at

the temperature at which the susceptibility deviated from the Bonner-Fisher curve.

Following this spin-Peierls transitions were observed in a handful of additional organic

compounds. Due to the crystal size, the experiments which could be performed was

limited, therefore many predicted spin-Peierls properties were left to speculation.

The lattice dimerization due to electron singlet pairing was first predicted by H.

McConnell and R. Lynden-Bell in 1961[20]. The first systematic theory of spin-Peierls

was presented by E. Pytte in 1974. The theory tried to parallel the Peierls theory

for a lattice instability in 1D metals. Pytte treated the phonons and spin (fermion)



system in a mean-field approximation. For the phonons, this can be physical for low

energy modes, but the mean-field treatment of the spin system is expected to be

a poor approximation in 1D, which is known to be a fluctuating ground state[21].

Despite this the Pytte theory did yield an estimate for the transition temperature

(Tp), the spin-Peierls gap (A) and the dimerization amplitude (6).

The results on TTFCuBDT by Moncton et. al. prompted an improvement upon

the Pytte theory by M. C. Cross and D. Fisher where the linear response of the spin

system was calculated using time-dependent second order perturbation theory[22].

As a result, Cross and Fisher (CF) were able to make predictions about the lattice

dynamics leading up to the spin-Peierls transition. They predicted a mode softening

induced by the spin-phonon coupling. Unfortunately, quantitative measurements of

this proved challenging, since the spin-Peierls materials at time were too small for

neutron scattering studies, and the information provided by diffuse x-ray scattering

was difficult to interpret.

Spin-Peierls physics experienced a revitalized interest in the early nineties when

an apparent spin-Peierls transition was observed in the inorganic compound CuGeO a.

Since it was possible to grow large single crystals, for the first time detailed neutron

studies were available. In the next section some of the the key experimental findings

of CuGeO will be summarized, and the "spin-Peierls" transition discussed.

1.3 CuGeO 3 As a Spin-Peierls System

The spin-Peierls transition in CuGeO3 was first observed in the magnetic suscepti-

bility by M. Hase et. al. in 1993[23]. They found a nearly isotropic drop to almost

zero at T = 14K, which they concluded was due to a spin-Peierls transition. How-

ever, in contrast to the organic compounds the high temperature susceptibility for

CuGeO 3 did not fit well to the Bonner-Fisher theory, which was attributed to either

next nearest neighbor interaction or weak inter-chain coupling.

Later, neutron studies verified the lattice dimerization, and well as a gap of 2.3

meV below 14 K[24] [25]. The spin coupling constant, J was measured to be 10.4 meV

34



in the chain and about 1meV and 0.1 meV perpendicular to the chain. Initial neutron

exhaustive neutron studies found no sign of a soft phonon mode above T,p[25][26][27].

In a later study two modes were found which harden as the transition temperature is

approached[28].

This inconsistency with the theory of Cross and Fisher, lead to speculation as to

the its validity[29]. Then in 1998, a more detailed theoretical study of the CF response

function revealed an energy regime where the spin-Peierls phonon increased upon

approaching the transition[15]. This lead to a classification of spin-Peierls transition

types into adiabatic and anti-adiabatic. The anti-adiabatic regime was defined by the

ratio

> 2.2, (1.12)
Tsp

where to is the bare harmonic phonon frequency. The two phonons in CuGeO3

believed to be driving the transition have energies 151 K and 317 K[28]. The spin-

Peierls transition temperature is 14.1 K making Qo/TSP 10.7 and 22.5, which accord-

ing to relation 1.12 are well in the anti-adiabatic regime. This was really the first

indication that relative energy scales of the frequency and the spin-Peierls tempera-

ture had significance. Subsequent theoretical spin-Peierls work seems to substantiate

this [30] [31] [29] [32].

The lack of a phonon softening, the slight anisotropy of the susceptibility, the

significant inter-chain coupling, the next-nearest neighbor interaction all lead one to

wonder how ideal CuGeO3 is as a realization of a spin-Peierls state. As a result, in the

3 decades since its formulation, the CF theory of a soft-mode spin-Peierls transition

has not directly been put to the test.

Due to the small crystal size of the organic compounds and the non-ideality of

CuGeO3 , the theory of spin-Peierls transition is anything but an open-and-shut case.

Fortunately, a new compound has been recently discovered, which exhibits nearly

ideal 1D characteristics, and has a magnetic susceptibility signature which bares

a striking resemblance to that of the organic spin-Peierls compounds. This work

summarizes a detailed, systematic study of the 1-D physics in the compound TiOC1.



1.4 TiOC1, A Promising New Spin-Peierls Candi-

date

TiOCI crystallizes into a structure with an orthorhombic unit cell having Pmmn

symmetry. The Ti3+ and 0 2 - ions bind strongly to form Ti-O planes which are

separated by weakly bound Cl-, creating a quasi 2-dimensional structure (figure 1-

4a). The atomic electronic configuration for Ti is [Ar] 3d24s 2, which ionizes to Ti3+

in TiOCl resulting in the new 3d' configuration. In other words,, the 3d orbital

contains a single electron, which in the scope of magnetism means that the Ti3+ ions

form a spin 1/2 quasi-2D lattice (figure 1-4c). Recall from chemistry that there are

five d-orbitals, the electronic density distributions of which are shown in figure 1-5.

The energy levels of all five orbitals are degenerate for a free ion, but in a crystal,

this degeneracy is lifted depending on the ligand bonding geometry. In TiOCI, Ti3+

forms a distorted octahedron with the neighboring Cl- and 0 2- ions (figure 1-4b).

In a perfect octahedron molecule, like TiCl 6, shown in the upper left corner of figure

1-5, the d2_ -2 and dz2 point directly toward each of the six ligands, whereas the

dxy,dyz, and dxý orbitals are rotated 450 with respect to the octahedral axes, so they

point away from the ligands. This results in a splitting of the d-orbital energy into

the higher energy eg (dx2_y2 and dz2), and the lower energy t2g (dxy, dyz, dzz) orbitals

(figure 1-5, right side). For the 3d' electronic configuration the electron occupies one

of the triply degenerate t2g orbitals.

The above description in terms of the energy levels of free atoms is complicated

slightly in a crystal. The energy level are smeared out into dispersive bands, the

occupation of which is given by the chemical potential, or Fermi level, which is the

energy of the highest occupied band. For an octahedron embedded in a crystal, the

bands associated with the d-orbitals split into the t2g and eg bands. In the case of

d', the Fermi level intersects the t2gbands. Therefore a band structure calculation

is required to determine the orbital occupancy. In 2003, Seidel, et. al. performed a

Density Functional Theory (DFT) band structure calculation using the Local Density

Approximation (LDA) for exchange model for TiOCl [4]. They found that indeed the
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Figure 1-5: Illustration of the d-orbital electron density distribution, shown along
with an octahedral TiCl 6 molecule for orientation reference. The energy diagram on
the right shows the splitting of the degenerate d-levels in an octahedral environment
into t2g and e,.

octahedral environment resulted in the expected band splitting into eg and t2g, and

that the t2g bands are right at the Fermi level. This is problematic, however, since the

having a partially filled band would imply that TiOCl is metallic, when experimentally

TiOCl was believed to be an insulator, therefore additional interactions were necessary

to get the correct band structure. This required modifying the LDA exchange to

account for the on-site repulsion which favors one electron (spin) per site. In other

words, double occupation of a site costs energy, therefore each spin is localized by the

presence of the neighboring spins. This is accounted for by adding an extra potential

U, known as the LDA+U exchange correlation. Seidel et. al. LDA+U predicts

a splitting of the t2g orbitals about the Fermi level. They then hypothesized that

the most likely occupied orbital after the splitting was the d.,, which in TiOC1 forms

linear chains along the b-direction (see figure 1-4c). This hypothesis was later verified

by Angle Resolved PhotoEmission Spectroscopy (ARPES) [33], thus confirming the

one dimensionality of TiOC1.

With new understanding of TiOCl as a quasi-ID system, Seidel et. al. turned

to the magnetic susceptibility to test whether or not the system exhibited spin-1/2

Heisenberg chain magnetization, by comparing the measured susceptibility to the the-

ory of Bonner and Fisher[34]. Indeed the agreement of the fit at higher temperatures,

°



with only J as an adjustable parameter, was striking. The J determined from the

Bonner-Fisher fit was J = 660K. On the low temperature end, the susceptibility

dropped below the Bonner-Fisher curve at about T = 150 K, followed by a kink at

T = 92 K then finally a sharp drop to zero at T = 65 K. The hypothesis was that

the initial drop from the Bonner-Fisher susceptibility was due to the opening of a

spin-gap, followed by a spin-Peierls transition at T = 65 K. No explanation was

given for the 92 K kink.

1.5 Thesis Overview

The thesis begins with a discussion of the process used to grow single crystals of

TiOCl used in all of the measurements presented in this study. It then proceeds to

answer the questions raised by Seidel et. al.:

1. Is the drop in susceptibility isotropic (i.e. S=0 state)?

2. Is the transition at Tc,=65 K a spin-Peierls transition?

3. What is the origin of the transition at Tc2=92 K?

To answer the first question, the magnetic susceptibility as well as specific heat are

characterized in detail. A thermal hysteresis at T 1, strongly suggests a first order

transition. To test question 2, the TiOCl samples were taken to a synchrotron x-ray

source, where a lattice dimerization was observed at Te1 , with a hysteresis similar

to that observed in the susceptibility. We also discovered that a precursor to the

dimerized lattice below 65 K, is an incommensurate modulation of dimers which

first appears at 92 K, thus providing insight as to the nature of the Tc2 transition.

Finally, we use the latest technological advances in x-ray instrumentation to measure

the phonons in TiOCl with 2.2 meV resolution, and find that the longitudinal acoustic

mode along the chain direction softens continuously becoming zero at T,2. However

before discussing the data, I will give some general background on x-ray sources and

scattering in order to facilitate a more in-depth understanding of our results.





2 Experimental Details

2.1 X-ray Sources

2.1.1 History Of X-ray Sources

The first x-ray diffraction pattern from a crystalline solid was observed in 1912 by

Max von Laue et. al. for which von Laue won the Nobel Prize in 1914. In the days of

von Laue, x-rays were generated by applying a voltage to a cathode causing it to emit

electrons which were then accelerated toward an anode, resulting in Brehmsstrahlung

x-ray radiation. However, the intensity was limited by the heat load in the metal.

To improve on this, the metal was formed into a cylinder which was then rotated at

high speeds, thus distributing the head load over a larger area. This form of x-ray

generator, known appropriately as the rotating anode generator, remains a competi-

tive compact source of x-rays for many modern applications, including fundamental

scientific research. However, as the demands of research began approaching the limits

of what a rotating anode could deliver, scientists began looking into different tech-

nologies to generate x-ray radiation.

The answer came to them from high energy physics, a field which requires the ac-

celeration of charged particles to near speed of light velocities. One method employed

was the use of synchrotrons, where particles were accelerated in a circular path. The

electromagnetic radiation emitted by the accelerated charges had a spectrum which

spanned the x-ray regime, with a brilliance far greater than the best rotating an-

ode sources. 1 Unfortunately, synchrotrons used in high energy experiments weren't

1Brilliance is used to measure the merit of an x-ray source. It is defined as:

photons/sec.
(beam collimation) . (source area) - (0.1% bandwidth)



optimized to generate x-ray radiation, thus prompting the construction of the first

dedicated synchrotron x-ray sources. The main idea behind a synchrotron used as

an x-ray source is to maintain a constant electron current which is confined to the

ring by periodically spaced magnets, known as "bending magnets". As the electron

beam passes through the magnetic field of the bending magnet, it changes direction,

and emits radiation. The synchrotron is optimized so that the peak of the radiation

spectrum is in the x-ray regime. The details of the radiation from a bending magnet

will be discussed in detail in section 2.1.3.

With the construction of synchrotron storage rings using a bending magnet for an

x-ray source resulted in orders of magnitude better brilliance than the best rotating

anode sources. Just as laboratory source technology improved, so has synchrotron

source technology. Modern synchrotrons generate almost 1012 times better brilliance

than x-ray sources in the days of von Laue[35]. Such high intensity sources have

spawned the innovation of countless quantitative techniques involving x-ray radiation.

All of the data presented in section 3.3 were measured using synchrotron x-rays. Of

these, the data presented in section 3.4.5 were measured using a technique which

has only become possible in the last decade or so with the construction of the latest

generation of synchrotron sources. Because of this I find it worth while to take a little

time to understand the physics behind modern high brilliance x-ray sources.

2.1.2 Classical Theory of Synchrotron Radiation

The underlying concept to synchrotron x-ray generation is the physics of the power

radiated from an electron accelerated by a central force, or a force perpendicular to the

direction of travel. In this section I will cover the highlights of the derivation without

going into too much mathematical detail. For a more rigorous treatment, the reader

is advised to look in any book on advanced electrodynamics, such as [36]. Perhaps

the best place to start is with the Li6nard-Wiechert Potentials, which describe the



Figure 2-1: Geometry for potential of a charge moving along arbitrary trajectory at
velocity v.

vector and scalar potentials of a point charge moving along an arbitrary path.

V (,t) = 1 q(2.2)
4rco R ( - ) (2.2)

(, t) =, qv (2.3)4r R 1 -

The geometry and vector definitions are shown in figure 2-1. The basic idea is to

calculate the scalar and vector potentials due to a point charge located at r' moving

with velocity v, measured by an observer at point P. For simplicity, we will first

consider the radiation in the rest frame of the charge. The information about the

position of the charge propagates at the speed of light, c, so if the observer located

at F measures the position of the charge R, at time t, in reality this was the position

of the charge at time t - R/c, when the charge was at position w13(t, - t - R/c).

Using E = -VV - and B = V x A, the electric and magnetic fields, E and

B can be calculated from equations 2.2 and 2.3. The derivation is quite involved and

will not be covered here. Again, the reader is directed to reference [36]. The result



E (R t) (c2( - V2)+ x (ux )] (2.4)

1
M( t =- x E, (2.5)

c

where the variable u' = cR - if has been introduced to simplify the expression. The

acceleration a' enters in as a result of taking the gradient of R = c(t - t,). It can be

shown that VR = -cVt,, which is then applied to the quantity (t. if), resulting in

the time derivative of the velocity. Quite a few steps have been skipped to bring us

to the subject of interest, and that is the radiated power from the moving charge.

The power can be obtained in the usual way by calculating the Poynting vector using

equations 2.4 and 2.5

1 -- 1 1
S= (Ex B)= (2.6)

Po Poc Po

where the so-called BAC-CAB vector multiplication identity has been used to trans-

form the triple cross-product in the second term. The total radiated power is then

the integral of S over the surface of a sphere with radius R in the limit R - oc. The

area of the sphere is proportional to R 2, thus only terms in S of order 1/R", n < 2

will survive in the infinite R limit. Since S is proportional to E 2 , only terms of 1/R in

E will survive. From equation 2.4, it is clear that only the second term satisfies this.

The implication is that acceleration of the point charge is necessary for electromag-

netic radiation. The acceleration term in E can be rewritten using the BAC-CAB

multiplication identity, giving

Eif x x = 4 0
2 R . (2.7)

Using this result along with the fact that radiation fields are perpendicular to the
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Figure 2-2: Angular distribution of power radiated from a charge moving perpendic-
ular to the acceleration in the rest frame (a) and in the moving frame (b).

propagation direction, or E R = 0, equation 2.6 reduces to

Sinf= E inf R 2 4 o R( ) (2.8)
ioc poc 47c 2  R2

If we define 0 as the angle between R and a', then it's easy to see that the angular

distribution of S is
q a2sin2 29

S=4 0c2 R- R (2.9)

The power is radiated in a donut, with no power being emitted in the acceleration di-

rection (see figure 2-2a). The total emitted power is obtained by integrating equation

2.9 over all angles. The result is:

1 2 e2a2
P= c3 (2.10)47xco 3 c3

Up to now we have only dealt with the electron rest frame, which is moving

at velocity v, relative to the laboratory frame. Without any calculation one would

expect a "build-up" of electromagnetic radiation in the direction of travel resulting

in a Doppler effect. It is possible to re-derive equation 2.9 taking into account the

effects of Doppler shifts to obtain the fraction of power, dP, radiated into the solid



angle dQ [36]:

dP 1 e2a2 [(1 - cos )2 -(1 -_ 2) sin2 cos 2  (2.11)
d - 47reo 4rc3  (1 - p cos) 5

where 3 = v/c, a and v point along the x and z axes respectively, 0 is the angle between

R and a, and 4 is the azimuthal angle. Figure 2-2b shows the angular distribution in

the moving reference frame. There is still no power radiated along the acceleration

direction, but the radiation donut has been stretched out so that it is sharply peaked

in the forward direction. For a synchrotron, the radiation sweeps around much like

a locomotive headlight. The peak radiation, (9 = 0) is proportional to - -y6, and the

angular spread (which is calculated by finding the angles at which the radiated power

is zero) in the limit /3 1, is - 1/'y where 7 = 1/ l -- /32 is the Lorentz factor.

The total radiated power, which can either be obtained by integrating equation 2.11

over all angles (not so easy), or by Lorentz-transforming equation 2.10, which is done

by replacing the acceleration, a, by the relativistic centripetal acceleration, -y2v2 /rc,

where r, is radius of the electron path through the bending magnet. After this

substitution, the relativistic expression for the total radiated power is

1 2e 2v4  1 2e 2c 4 4
P = 4 = 4.61 x 10-20 [W 2] -. (2.12)

4r0eo 3 c3r27  47rEo 3 r2 r2

Another important property is the energy spectrum of the radiated photons.

While a derivation of the synchrotron radiation spectrum is quite lengthy and be-

yond the scope of this thesis, a good intuitive understanding can be obtained by first

examining the non-relativistic case. For an observer in the plane of orbit at a distance

much greater than the orbit radius, the particle will simply appear to oscillate back

and forth with a frequency
eB

w eB (2.13)
me

where e is the electron charge, B is the applied magnetic field strength and me is

the electron rest mass. In the plane of the orbit, the particle appears to be oscillat-

ing along a straight line with a sinusoidal acceleration. Since the radiated power is



proportional to the acceleration, we can obtain the frequency spectrum by Fourier

transforming the time dependent acceleration. The Fourier transform of a harmonic

function is simply a delta function centered about the oscillation frequency, therefore

the radiation spectrum from a non-relativistic orbit is simply wc/21r. To obtain the

relativistic expression, we first calculate the radiated frequency in the rest frame of

the electron. Since the field lines are in the lab frame, length contraction will have the

effect of increasing the field line density by a factor of 7, therefore, the radiated fre-

quency will be -yeB/27rme. If we now transform to the laboratory frame, the Doppler

effect will increase the frequency by an additional factor of y, therefore the expression

for the frequency from an electron moving in a synchrotron orbit is

3 eB
w 3e = 2  (2.14)c 22m,

The factor of 3/2 is a factor which comes in as a result of a more rigorous derivation,

which will be discussed in the next paragraph. It is more convenient to group the

fundamental constants in equation 2.14 and write it in terms of the electron energy

via Ee = ymec2 . In this form, the synchrotron frequency is [35]

hwc = 0.665Ee2[GeV]B[T] (2.15)

It turns out that equations 2.14 and 2.15 do not correctly describe the synchrotron

radiation spectrum. Because a cyclotron is accelerated at a single frequency, the ra-

diation spectrum is a delta function at that centered at the cyclotron frequency.

However, the picture for a highly relativistic particle isn't quite as simple. A good

way to understand is to visualize being an observer in the orbit plane tangent to the

electron path. Because of the beaming effect of the relativistic electron, the radi-

ation will appear as a very short pulse as the "head light" passes by the observer.

In order to construct a pulse from Fourier components requires a large sum over

many frequencies, thus the cyclotron radiation is spread out and creates a frequency

dependent distribution. The exact form of the synchrotron radiation spectrum re-
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Figure 2-3: Shape of x-ray brilliance as a function of the frequency scaled by the
characteristic synchrotron frequency we. The exact numerical expression is [35] 1.327x
1013X2K2 3(x/2), where K/3 is a modified Bessel Function of the second kind.

quires calculating the Poynting flux using the Fourier transform of equation 2.7 in the

relativistic limit. This is not an easy calculation, and doesn't help our intuition of

synchrotron radiation much. An important result of this rigorous derivation is that

the distribution is peaked around the characteristic synchrotron frequency w, given

in equation 2.15. The spectrum is therefore often plotted as a function of x = w/w,

shown in figure 2-3. In terms of x, the spectrum of figure 2-3 is a universal property

of synchrotron radiation.

2.1.3 Bending Magnets

As mentioned earlier, the electron orbit is defined by a series of bending magnets

placed around the storage ring. In the previous section we discussed how to calculate

the angular distribution (equations 2.12, 2.11) and energy spectrum (equation 2.15)

of the radiation emitted from the electrons as they pass through the bending magnet.

These expressions can be used to to optimize a storage ring to emit photons in the x-

ray regime with maximal brilliance. The important factor to maximize is -y, since both



the peak intensity and angular divergence are optimal when 7 is large. Therefore,

a good synchrotron source is one in which the electron velocity is nearly the speed

of light. To illustrate, we can insert some numbers from a real synchrotron into

the expressions for the total power, angular distribution, and power spectrum to

compare with the actual operating parameters. The National Synchrotron Light

Source (NSLS), is a second generation synchrotron, with the bending magnet as the

primary x-ray source. The operating parameters of the NSLS are freely available on

the world wide web [37]. Each bending magnet is 2.7 m long, with a bending radius of

6.875 m. The electron energy is 2.8 GeV, which using E -ymoc 2 for the relativistic

energy 2, with moc2 = 0.511 MeV for an electron, we get y = 2800/.511 = 5480.

Using equation 2.11 the expected beam divergence would be dO = 2/7 = 365 Prad

which is within the published range, 324 - 476 prad.

The radiated power is a little trickier, since equation 2.12 gives the radiated power

2The quoted energy is actually the electron kinetic energy. The total relativistic energy is E =
kinetic energy + rest energy, but since the electron rest energy is only 0.511 MeV, which is small
compared to the 2.8 GeV, the total energy is approximately equal to the kinetic energy.

Figure 2-4: Schematic of a storage ring bending magnet. The "ring" actually consists
of straight sections connected by bent sections where the bending magnets are located.
The tangential tubes guide the radiated x-rays to the experimental setup.



per electron, which, using y from above and r, = 6.875 m, is 8.798 x 10- 7 W/electron.

To calculate the total power radiated per bending magnet we need to find out the

number of electrons which pass through the bending magnet in 1 second. This is

simply the ring current times the time it takes for an electron to move the length of

the bending magnet divided by the electron charge,

Ne I drT = 0.25 [A] 2.7 [m] 5.672 x 10- 7 [s] = 1.407 x 1011electronse r. 1.6 x 10-19 [C] 170.1 [m]
(2.16)

where dr is the length of the bending magnet, r, is the synchrotron radius, and

T is the electron orbital period. Multiplying this result with the radiated power per

electron yields 12.376 kW per bending magnet which compares to the published value

of 12.375 kW.

Figure 2-4 shows a schematic drawing of a typical bending magnet light source

setup. In this picture, the bending magnets are grouped in sets of three, which are

separated by long, straight sections. The beam tubes stemming off tangentially at

each magnet group serve to direct the radiation onto the beam optics which leading

to the experimental setup. Various beamline components will be discussed in section

2.2.

Figure 2-5: Schematic of the electron path and radiated power in a wiggler (a) and an
undulator (b). In an undulator the oscillations are smaller thus more of the radiation
cones overlap resulting in a narrower divergence of the forward radiation. The arrows
indicate the magnet polarity.
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2.1.4 Insertion Devices

The intensity from a bending magnet can be improved upon by placing several mag-

nets of alternating polarity at equally spaced intervals along the electron path causing

the electron to oscillate in a series of circular arcs, emitting radiation in a 1/y cone

as it passes around each arc (see figure 2-5). These so-called "insertion devices", are

placed in the straight sections of the storage ring separating the bending magnets.

The general type of insertion device, known as a wiggler, has a 2N enhancement of

the emitted intensity, where N is the number of magnet poles. For a typical wiggler

N is about 50, resulting in a factor of 100 enhancement of the intensity. To fully

characterize the radiation from a wiggler, we need two additional parameters, the

periodic spacing of the magnets, A. and the angular divergence of the radiation K/y,

where

K = AeBo/2irmc. (2.17)

For a typical wiggler, K is about 20, so while there is a 2N intensity enhancement the

angular divergence of the radiation is 20x that of a bending magnet. The K/7y diver-

gence only applies to the oscillation plane. Perpendicular to the plane the divergence

is still - 1/y. This typically produces a long narrow beam at the sample position.

This may or may not be optimal depending on the type of experiment and sample

geometry. Typically, a small point like beam is desired, which can be achieved by

focusing the beam in the oscillation plane.

The beam divergence in a wiggler is a result of superposing the 1/y divergence

cones from each bending magnet in the wiggler over a large divergence angle (figure

2-5a). If, however, the the magnets are spaced so that the electron undergoes small

oscillations (on the scale of 1/-), that are in phase with the radiated photons, then

there is a coherent addition of the electric field amplitudes, the square of which is

proportional to the intensity. Because the oscillation amplitude is small, the radiation

overlap from each magnet is much greater than for a general wiggler, resulting in a

more collimated beam (figure 2-5b). These special types of wigglers form the class of

insertion devices known as undulators. The angular divergence, a, of an undulator



can be shown to be [35],

Tundulator SM - ~ bendingmagnet. (2.18)

Combining this with the additional N 2 gain in intensity results in a total N 5/ 2 gain

in brilliance over bending magnet radiation. For an N of 50, the gain in brilliance is

- 1.7 x 104. Figure 2-6 compares the brilliance curves from different types of sources

(taken from [38]). The undulator sources are labeled by UA,. Comparing the APS

U3.3cm with an APS bending magnet, we see a factor of - 104 better brilliance

for the undulator, which is consistent with the estimate stated above. Because the

coherent summing only works for one frequency determined by A., undulators emit

only a narrow band about the undulator frequency. This frequency can easily be

estimated. For an observer on the undulator axis in a frame moving at the electron

(http://www.aps.anl.govAboutfAPS_Oveviewlnsertio Deviceshnsertionxdevice2htmd

Photon Energy (keV)

Figure 2-6: Plot comparing the brilliance curves from various sources. Bending mag-
nets are clearly labeled, and undulator sources are labeled with UA, (taken from
[38]).



velocity, - c, the electron appears to oscillate back and forth like a dipole. Since in

this frame the undulator spacing, A, is length contracted, the oscillation frequency is

ccy/A. Just as in the example of the bending magnet, we gain an additional factor of

-yl1 + v/c f 2- due to the Doppler effect when we transform to the laboratory frame.

Therefore the emitted photons have wavelength A,/2y72. To first order this is the

correct wavelength, but a more detailed analysis will show that there are corrections

[35]. The full expression for the emitted wavelength at small excursion angles 0 and

V' on and off axis respectively is [39]

A = [1 + + 2 (e2 '2) (2.19)

Since K is proportional to Bo (equation 2.17), A can be continuously varied by chang-

ing the gap between the poles (see figure 2-5).

Undulator physics is a stand-alone subject, with numerous capabilities for x-ray

generation. In this work only the important details have been covered. For additional

undulator applications, see reference [35], or search the web for "insertion devices"

to access the many articles available. Currently the undulator is the most advanced

source of hard x-rays available. While undulator radiation is spatially coherent, tem-

porally, it is still incoherent. The next step in x-ray generation is the so-called Free

Electron Laser (FEL), which are predicted to generate fully space and time coherent

x-rays with a brilliance orders of magnitude greater than current undulator sources.

Currently Stanford has a FEL operating in the far infrared. The reader is directed

to http://www.stanford.edu/group/FEL/ for further details.

2.2 Beam Line Components

In section 2.1.2 the details of how to generate x-ray radiation from a synchrotron

storage ring were discussed. Typically between the x-ray source and the sample being

measured is about 30m or so of beamline filled with various components to optimize

the beam at the sample position for the experiment at hand. Figure 2-7 highlights the



Figure 2-7: Schematic diagram showing the important components of a typical syn-
chrotron single crystal x-ray diffraction experiment.
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important components making up a beamline optimized for single crystal diffraction.

2.2.1 Monochromator

The bandwidth of radiation from a bending magnet or insertion device is quite broad,

from the point of view of diffraction, where, in the ideal case, a single wavelength is

desired. To achieve this requires the use of a monochromator. Typically in optics,

diffraction gratings are used to monochromate beams. So too is the case for x-rays,

but because of the wavelength, the best diffraction grating is a high quality single

crystal. The type of material used in a monochromator depends on the applica-

tion, but materials widely used due to their abundance and high quality are silicon,

germanium, and diamond.

The energy resolution of a monochromator can be calculated by differentiating

Bragg's Law (see section 2.3)

JA = 2( dsin 0 + d cos 060). (2.20)

Dividing both sides by A = 2d sin 0,

- c -- = - + ± 0 cot O, (2.21)

where E is the incident energy, JE is the energy resolution, bd is the deviation of the

Bragg plane spacing about the average value d, 0 is the scattering angle, and JO is the

angular acceptance. Since the manufacture of nearly perfect single crystal monochro-

mators is possible (Sd/d < 10-'), the term which defines the energy resolution is

the angular term 60 cot 0. The angular acceptance 50 is typically that of the beam

divergence, which for a bending magnet is -1 mrad, and for an undulator is - 1prad.

The function cot(O - 0) -4 oc, and cot(O = 900) = 0, thus higher Bragg angles will

achieve greater energy resolution. Typical values for E for a synchrotron monochro-

mator are 10- 4 - 10- 4 . meaning typical monochromatic beams have a bandwidth on

the order of e 1 eV. Monochromator design will be discussed in more detail in section



2.6, when we see how to achieve meV resolution.

2.2.2 Beam Focusing

The high intensity and fine Q-resolution of synchrotron x-rays requires as well high

quality samples, as any imperfections will be detected. Because homogeneity is easier

to maintain on small length scales, often the best x-ray crystals are tens of microns in

dimension. Since the beam is between 1 - 2 mm, a lot of photons will not participate

in scattering unless the beam is focused to nearly the sample size. In the visible

regime this is done with lenses and parabolic mirrors. The same could be done with

x-rays, but it isn't as straight forward. To understand why, we can examine the

response of a metal to a rapidly oscillating electric field, like an incident light beam.

From classical electrodynamics in matter, metals should have high reflectivity,

because they are good conductors. However, the basic assumption for this derivation

is that the free charge dissipates "quickly", so that the divergence of the electric field

has V E = 0. For an electric field oscillating with frequency w, this means that the

time scale, r, for the free charge to dissipate is less than 1/w. What happens however,

when 1/w < T? If this is the case, then the free electrons are "fixed" relative to the

electric field, and the light will penetrate the metal with a certain refractive index, just

as for non-conducting media. In a free electron gas, which is a good approximation

for metals, the frequency characterizing the time scale for electron relaxation is the

plasma frequency, wp, which is defined as [10]

ne2p = ne, (2.22)come

where n is the number of free electrons per unit volume, e is the electron charge, Eo is

the permittivity of free space, and me is the electron mass. Most metals have plasma

frequencies on the order of hwp = 20 eV [10]. Visible light has an energy of about 1

eV, which explains why most metals are good reflectors. X-rays have an energy on

the order of keV, which is much greater than the plasma frequency, so they definitely

fall in the "refractive regime". In this regime, the index of refraction n(w) is given



n=l

Figure 2-8: Diagram showing the refraction of x-rays passing from air with refractive
index, n = 1, into a metal with n < 1.

by [361

n(w) = 1i - 2 (2.23)
It is important to note that for w > w,, n(w), is less than 1. It is now possible to

estimate the refraction in a typical metal for x-rays. In Aluminum, equation 2.22

gives, hw, = 15.78 eV. Typically the x-ray energy used for single crystal diffraction

is 4-40 keV, so we can take wp/w = .001, which means n(w) = .9999995. Using Snell's

law,

ni cos 01 = n2 cos 02, (2.24)

with 0 as the angle from the interface, and refractive indices nl = 1 and n2 = n(w)

for air and the metal respectively, we find that the light is only refracted by - 10- 5

degrees. Although it is possible to construct a lens which would focus x-rays, the

focal length is too long to be feasible for use in a synchrotron beamline. Since the

plasma frequency is proportional to the number of free electrons, it is possible to use

a different metal like gold or lead, but these then attenuate the beam quite strongly.

A better method for focusing is to construct toroidal mirrors (to focus both verti-

cally and horizontally) which use the less than unity refractive index to have almost

100% reflectance. This works because air has a refractive index of 1, thus the x-rays

actually travel slower in air than in metal, meaning the refracted angle is less than



the incident angle (see figure 2-8). When this happens it is possible to have an inci-

dent angle below which there are no longer any transmitted x-rays, resulting in total

reflection. This is completely analogous to visible light passing from water or glass

into air. This critical angle, ~, can be calculated by setting 02 = 0 in equation 2.24.

Since we know the refraction is small for x-rays, we also know that the 0w, will

also be small, therefore we can Taylor expand cos 0, to get n2 1 1 - 0~/2. If we also

expand the right hand side of 2.23, we get n . 1 - (wP/w)2/2. Substituting this in

for the approximate n2, we get that

,- ýP = -37.132 [eV -A3/2] /  (2.25)w hw

For our aluminum example, Ocr turns out to be - .060. To focus a 1 mm beam would

require a mirror of about 1 m. Because of cost, it is desirable to have 0cr as large as

possible allowing shorter mirrors. Therefore focusing mirrors are most often coated

in lead or gold to increase the index of refraction.

Typically the last component upstream of the diffractometer is a set of adjustable

slits, which because of their position, are referred to as the "incident slits". The

incident slits not only serve to cut out stray and divergent photons from the incoming

beam, but also provide a reference for the beam position relative to the diffractometer.

If any of the upstream optics moves, it is necessary only to steer the beam back

through the incident slits to regain the proper alignment.

2.2.3 Single Crystal Diffractometer

As mentioned in the previous paragraph, the experimental apparatus typically follows

immediately after the incident slits. Since we are discussing a beamline optimized for

single crystal diffraction, it seems appropriate to discuss the basic design a nd oper-

ation of a single crystal diffractometer. A typical synchrotron x-ray diffractometer

is shown in figure 2-9. There are four angles which can be controlled the scatter-

ing angle (20), two orthogonal tilting angles (O,X), and an additional rotation of the

sample on top of the x-axis, q. These rotations are illustrated in figure 2-9. Diffrac-



tometers which have the capability of moving these four angles are called 4-circle

diffractometers. The definitions of 20, 6, X, and 0 are somewhat arbitrary, but the

convention used at most beamlines is that of Busing and Levy [40], whose published

methods to calculate reciprocal space positions from the Eulerian angles listed above

are standard in modern x-ray diffraction. The so-called "circles" of a diffractometer

are controlled by precision stepping motors, with microradian resolution. The motors

are then interfaced with a central computer which has some sort of software which

interfaces with the motor controllers. The software used in this work, the use of which

is widespread in the synchrotron x-ray community, is SPEC a product of Certif Sci-

entific Software. In SPEC, it is possible to associate a set of Eulerian angles with two

different reciprocal lattice points. From these two orientation vectors, the software

can then calculated the angles required to reach any arbitrary point in reciprocal

space. This is ideal for doing solid state physics experiments where all of the relevant

theory is discussed in terms of reciprocal space. SPEC allows the operator to think

Figure 2-9: Typical synchrotron x-ray scattering diffractometer.



in reciprocal space, thus greatly simplifying the experiment.

The next important component in figures 2-7 and 2-9 is the analyzer. Like the

monochromator, an analyzer uses a fundamental Bragg reflection from a high quality

Si or Ge single crystal to select out the final energy. An analyzer is not necessary,

but desirable for high Q-resolution and low background. If no analyzer is used, then

the detector is placed at the analyzer position, and the Q-resolution and background

are defined by the detector aperture, which is usually varied by a set of adjustable

slits place just upstream of the detector, appropriately named the "detector slits".

2.2.4 X-ray Detectors

For x-rays, two different types of detectors are typically used, ionization or ion cham-

bers and scintillation counters. An ion chamber consists of an anode and a cathode

separated by a chamber of air. When the incident x-rays ionize the gas, the ions are

collected by the electrodes, resulting in a current, which can then be measured and

scaled to the proper units. Ion chambers are not very sensitive detectors, but do have

the advantage that they can withstand arbitrarily high beam flux. For this reason

they are used as a monitor, which is a detector placed in the main beam just after

the incident slits to monitor the incident intensity. This allows all of the data to be

placed on the same intensity scale by normalizing to the incident flux. The use of a

monitor is especially important at the NSLS where the storage ring current decays

over a 12 hour period, resulting in a change in beam intensity by several factors.

At the APS, the storage ring runs in top-off mode, maintaining a relatively stable,

constant current for weeks at a time.

Detecting the beam scattered from the sample requires more sensitive detection.

A commonly used detector is the scintillation counter. In a scintillation counter ion-

izing radiation, like x-rays, strike a phosphorescent medium, which fluoresces when

ionized, emitting visible/UV photons. These photons are then amplified by a photo-

multiplier tube connected to an electronic amplifier which sends a signal to various

electronics to transform the signal into meaningful units. Scintillation counters have

the advantage that they are sensitive to a small number of incident photons, but the



response of these counters is only linear for a limited range on the low intensity end.

Above this threshold, the detector becomes "saturated", and the signal output may

not be an accurate indication of the incident intensity. In the extreme intensity limit,

these detectors can burn out. Because of the limited linearity range for scintillation

counters, often a tunable attenuation is required just before the entrance to the de-

tector. The attenuator is usually a series of metal foils with thicknesses on the order

of the x-ray attenuation length.

2.3 Single Crystal Diffraction

Bragg's Law

Just one year after Laue and his collaborators received the Nobel prize for their

work on x-ray single crystal diffraction, Sir William Henry and William Lawrence

Bragg received the Nobel prize for developing a quantitative understanding of x-ray

diffraction known as Bragg's Law:

A = 2dsin 0, (2.26)

where 0, d, and A are defined in figure 2-10. The easiest way to understand Bragg's

law is to examine a monochromatic phase coherent beam incident on a periodic array

of atoms. For certain crystal orientations, the atoms form planes spaced a distance d

(I 0

0

0
Figure 2-10: Schematic of Bragg scattering in a periodic array of atoms.



apart. For simplicity we can simplify to two photons incident on two planes. Photon

1 will scatter off of plane 1, and photon 2 will scatter from plane 2, a distance d

away from plane 1. The geometry of this example is shown in figure 2-10. Since the

beam is phase coherent, the photons will remain in phase until they are scattered.

If we now examine the phases of the scattered photons we will see that the phase of

photon2 lags that of photon 1 by an amount 2d sin 0. The observed intensity from

the two photons will be the coherent sum of the amplitudes. The expectation is that

the scattered intensity should be maximal if both scattered photons are in phase, and

0 if they are completely out of phase. This leads to the criterium 2d sin 0 = A for

constructive interference.

If we now expand this example to - 1023 photons on 1023 planes, then the coherent

sum will select only those photons which are exactly in phase. given by the Bragg

condition. The crux of our argument for this example was a phase coherent incident

beam. The idea here is that for any real beam, some fraction of the photons will be

in phase, and will therefore diffract. Despite its simplicity, equation 2.26 remains the

fundamental equation used in diffraction experiments.

2.3.1 Reciprocal Space

There is an alternative formulation of Bragg's law based on the coherent summing

of x-rays scattered from individual atoms. Let's assume an x-ray with electric field

given 0i(( = E, exp(iki -r) is incident on atoms 1 and 2 located at lattice points f 1

and R2, shown in figure 2-11. For this case, the phase differences will be given by the

Figure 2-11: Diagram showing x-rays incident on two atoms separated by R.



projection of the wavevector on the difference in atomic spacing, R =-2- R 1. In

the example illustrated by figure 2-11 the phase of the radiation incident on atom 1

will lead that incident on atom 2 by ki -R. The phase of the scattered radiation from

1 will lag the scattered radiation from 2 by an amount kf -R leading to a total phase

difference of (fki - kf)• -Q -R. The vector Q is the momentum transfer. From the

relative directions of of kk and kf it is not difficult to see that Q points perpendicular

to the scattering planes. Putting this phase shift into wave form, we have

Eoei R (2.27)

If we now sum this over N atoms in a periodic crystal,

F oc eiZ Q, (2.28)
R

which mathematically, is simply the Fourier transform of the atomic lattice. In general

Q -R can be anything, but it's not hard to imagine that the special case of Q -R = 27rn

will dominate, since the sum will be of the order N ' 1023, whereas when summing

all of the other phases should result in some cancellation resulting in a much smaller

sum over 1023 terms. This, then gives the scattering criterium:

eiQR = 1. (2.29)

This is true for any arbitrarily spaced atoms. If we now expand this example to an N

atom periodic lattice, then R will only take on discrete values consistent with integer

multiples of the lattice. If we define the smallest periodic unit within the cell by the

vectors a, b, and ý, then ft will be a given by

R = ni&l + n 2a2  n3 a 3 , (2.30)

where ni, n2 , and n3 are integers. A lattice consisting of identical atoms located at

positions given by R is known as a Bravais lattice. Equation 2.29 together with 2.30



requires that Q be of the form[41]

Q = hbi + kb2 + lb3, (2.31)

which, like R has the form of a periodic lattice. In fact it can be shown that if R is a

Bravais lattice then Q is also a Bravais lattice[41]. Following the procedure we used to

get to equation 2.31, we see that each point in Q corresponds to the Fourier transform

of a plane wave having the periodicity of the real space lattice. For this reason the

lattice made up of all possible Q points is referred to as the reciprocal lattice. The

reciprocal lattice unit vectors bi are related to the real lattice unit vectors 'i by the

cyclic permutations of the following

a x a2bl = 27r X (2.32)
a, (d2 X a3

If the crystal structure is known, then the reciprocal lattice vectors can be calculated

using equation 2.32. To simplify notation, Q is truncated to the indices, Q = (h, k, 1),

which implies equation 2.31. In this notation, the unit are is the reciprocal lattice

unit.

2.3.2 Atomic Form Factor

Up to this point the electron has been treated as a point charge which has an isotropic

interaction with incident x-rays. However, in a solid consisting of atoms, the electrons

are distributed into orbitals, which are also arranged about the nucleus. This results

in a non-uniform electron density, which has to be taken into account for an accurate

measure of the scattered intensity. The way to obtain this information is analogous

to the scattering intensity from a periodic array of atoms, as discussed in section

2.3.1. Let's consider a charge distribution p(ri. From equation 2.40, we know that

the scattered intensity is proportional to the charge, which in this case is a small

element p(ldr'd, located at j. From section 2.3.1 we know that the phase picked up

is ei'' . So the intensity scattered from this small charge element is _ p(r)eid.'dF,



Summing over all ' we get

f 0((-) dip(f)ei' (2.33)

Because p(?) is a complicated function the f 0 is non-trivial to calculate. However, it

is clear that for Q = 0 the phase factor is 1 (i.e. all scattering is in-phase), therefore

equation 2.33 becomes

fo(Q= 0) = dp(r) = Z (2.34)

where Z is the number of electrons. As Q increases the phase factor becomes non-zero,

and therefore phase cancellation will decrease the scattered intensity. The exact form

of this behavior is quite involved and has been the topic of many published articles.

The calculation usually involves performing some iterative self consistent method on

a numerical potential model. The results for various models have been tabulated.

One of the more widely accepted models, based on a relativistic Hartree-Fock inter-

action, was developed by D. Cromer and J. Mann in 1968[42]. They summarized

their tabulation by fitting the numerical results to the equation

4

fo (Q) = a=e-b(-)2 + c. (2.35)
i=1

where the values ai, bi, c were then tabulated for all elements up to Lr. Figure 2-12

shows plots of equation 2.35 for the elements Ti, 0, and Cl. All of the above equations

depend on the assumption of the scattering center being a perfect oscillating dipole

with no damping, i.e., the charge is allowed to follow the oscillating field exactly. In

general the primary interaction is with the electrons in the outer shells, so this is a

good approximation. However, if the incident x-ray energy approaches the resonant

energy levels of one of the core electrons, then those electrons are excited and take

part in the scattering. They are more tightly bound than the outer electrons, and

therefore do not obey the free oscillating dipole model. So called anomalous dispersion

corrections must be added to take into account the dispersion(f') and dissipation (f").
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Figure 2-12: Cromer-Mann atomic form factor fo(Q) for Ti, 0, and Cl.

The full atomic form factor is then

f (Q, w) = f (Q) + f'(w) + f"(w), (2.36)

where hw is the incident x-ray energy. Most x-ray experiments are performed away

from the electron energy levels, (signified by absorption edges), therefore fo is suf-

ficient to describe the atomic form factor. There are experiments where scattering

near an absorption edge is desirable, then the anomalous dispersion corrections are

necessary. In this work all scattering was performed away from the absorption edge,

so we are only concerned with fo, which from this point on will be written simply as

f.

2.3.3 Bravais and General Lattice

In section 2.3.1, scattering from a Bravais lattice defined by equation 2.30 was dis-

cussed. While there are 14 different types of Bravais lattice, only a handful of materi-

als crystallize into one of these 14 special lattice types. However, it is still possible to



calculated the scattering intensity from a general lattice by breaking it into a Bravais

lattice with a basis (see figure 2-13). Now we can use equation 2.30 to define the

lattice, but we add the basis:

I
a2

Ad

I

kA?,
- w

Figure 2-13: A general lattice consisting of a Bravais lattice with
a basis with unit vectors Ti.

unit vectors ai and

(2.37)

To find the reciprocal lattice of, we can follow the same procedure as in section 2.3.1,

using R, = R + i

()e R ( =f e sQR)fi((Q)2Q . (2.38)
i Ri R i

Where we define the structure factor

S(Q) = E f~(4) (2.39)

Whereas the scattered intensity is the same for each Q in a Bravais lattice (neglecting

all other intensity dependent effects), the structure factor introduces a Qý dependence

for the general lattice. In some crystals, at certain Q-points, the phases exactly

cancel, resulting in a structure factor S(Q) = 0. The set of Bragg reflections with

a non-zero structure factor form a set of allowed reflections, which aid in defining

the crystal structure. While in general the atoms forming the basis can be located

I
B m



at random positions within the unit cell, there is usually some sort of symmetry to

the atomic arrangement. General lattices can then be grouped by the Bravais lattice

and symmetry operations of the basis, known as the space group. Characterizing and

categorizing of the crystal structures for almost all known compounds has been the

work of crystallographers over the 20th century, so that now it is possible to find the

tabulated structural characterization of a wide variety of compounds.

2.4 X-ray Scattering Intensity

While having knowledge of the Bravais lattice and structure factor in principle allows

one to completely solve an unknown crystal structure, there are other non-structure

related factors affecting the x-ray scattering intensity which must be taken into ac-

count. While it is impossible to exactly calculate all of these contributions, there

are only a handful of dominant effects, which when accounted for can provide a

nearly ideal situation for structural refinement. Some of these effects are quite in-

volved mathematically. So that we don't lose sight of the underlying physics, these

corrections will be motivated through intuitive examples, rather than mathematical

procedure. For a good overview of the mathematics involved, the reader is directed

to [43].

2.4.1 Polarization Factor

The first contribution comes from the fact that in the scattering process electrons are

being excited by the oscillating electric field. The electrons in turn oscillate and emit

radiation in the typical dipole pattern. If the incident beam is polarized, as we saw

was the case for an undulator source in section 2.1.4, then the scattered beam will

also be polarized. From electrodynamics, the power radiated from a dipole is (SI)

(bopw 4  COS 2 ?p
P( 3272c j r 2  r, (2.40)

68



where po = es is the magnitude of the dipole moment, Lo is the permeability of free

space, w is the oscillation frequency and ¢ and V) are the scattering angles out of

and in the polarization plane respectively (see figure 2-14). It is important to point

out that equation 2.40 is independent of ¢, and equals zero when ? = 900. This is

because the scattered beam cannot have any component of the oscillating field in the

propagation direction. For scattering out of the polarization plane the oscillating field

is perpendicular to the propagation direction for all angles, therefore the polarization

factor is simply P(4) = 1. For unpolarized sources, such as a rotating anode, it is

necessary to take a statistical average over all angles 0, b. The result is (1 + cos2 4)/2.

This illustrates further the advantage of an undulator source over a rotating anode.

For scattering out of the polarization plane, one can scatter at any 0 with no effect

on the intensity. In summary, the polarization factor is:

I - P (0,0) oc

Cos2

1
1+cos

2 •
2

in polarization plane

out of polarization plane

unpolarized

Figure 2-14: Polarized x-rays incident on a single electron. The electron oscillates
with the electric field and as a result emits light polarized parallel to the incident
beam.

(2.41)
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2.4.2 Lorentz Factor

There is additional attenuation due to the facts that the beam is not completely

monochromatic, and that crystals have a finite size. To illustrate these effects it

is convenient to introduce a different scattering geometry representation, the Ewald

construction, named for its innovator, Paul P. Ewald.

Ewald conceived a construction, shown in figure 2-15, where the incident and

reflected wavevectors are plotted along with the possible reciprocal lattice points.

For elastic scattering, the incident and final wavevector magnitudes are fixed, but

there is a solid angle of 47r accessible to the two vectors. These angles of possible

scattering geometries for a given incident energy make up the Ewald Sphere. In the

2-d drawing of figure 2-15, the Ewald Sphere is the circle drawn with the incident

and final wave vectors as radii. Figure 2-15 shows the ideal case where the beam is

perfectly monochromatic and the Bragg reflections are infinitesimally small points.

S S S 0 S 0 0 0

* 0 0 0 0 0

b "

0 0 0 0* k,f
0 QO 0 0

*0 0 0 0 0 00 0 k, 0 QO 0 0

0 0 0 0 0 0

- 0
a

00 0 0 0

a) b)

Figure 2-15: The scattering vectors ki, kf, and Q form the scattering triangle. For
a given energy, there is a solid angle of 47r into which the scattering can occur, as
illustrated by the 2D projection of the Ewald sphere in figure a). Figure b) illustrates
the smearing effect of the finite crystal size on the reciprocal lattice points, as well as
the broadening of the Ewald sphere due to slight non-monochromicity of the beam.
Also illustrated is the difference in path length for a reciprocal lattice point through
the Ewald sphere for scans along two different Q directions.



Real x-ray beams are slightly non-monochromatic by an amount dE, therefore the

sphere in figure 2-15 should be replaced by a shell of width dE. The Bragg points

will also be smeared out by the finite crystal size effect.3

The finite shell width and point size are directly responsible for the Q-dependent

intensity variation. This can be understood by examining how the Ewald sphere

changes during when scanning one of the four angles defined in section 2.2.3. A

transparent example is a scan along the scattering vector, Q, which in real space

corresponds to scanning theta and two theta in such a way to keep the same set of

Bragg planes in the scattering condition. Figures 2-15a,b illustrate the scattering

geometry of two different Q-points. For the one in 2-15a, the Q-point is almost

tangent to the sphere, therefore would continue to satisfy the scattering condition

for a greater range in the Q-scan. On the other hand the Q-point in 2-15b will

intersect the sphere almost normal to the surface therefore less time will be spent in

the scattering condition. Experimentally, a peak is observed, the integrated intensity

of which is the desired value. The peak width of the first Q-point will be broader

than for the second resulting in a greater integrated intensity, for no other reason

than the different scattering geometries. The first order correction for this effect is

the so-called Lorentz Factor, which for a single crystal is 1/ sin20, which tends to

reduce the intensity of small Q reflections and do nothing to reflections at larger Q.

Intuitively, this is what one would expect based on the simple example given above.

2.4.3 Debye Waller Factor

All of the formalism thus far is for T=O, where the atoms are frozen into a minimum

energy configuration. For TO, thermal energy causes the atoms vibrate about the

equilibrium position. Statistically, for a single measurement, the probability of finding

an atom away from equilibrium is essentially 1, meaning that the atoms are randomly

distributed in space. One must wonder, therefore, if any of the formalism based on

3It can be shown that the width of a Bragg peak described by equation 2.28 is proportional
to 1/N, where N is the number of unit cells. If N = inf, then the Bragg peak is a perfect delta
function[35].



a periodic lattice applies to real systems. It turns out that while for any given

measurement the probability of finding the atom at the equilibrium position. xo is

zero, the time averaged position is a distribution of width a, peaked about x - x0 . As

the temperature is decreased, a decreased, until at T = 0, a = 0, and the probability

of finding the atom at xo is 1. This example illustrates that there is some temperature

dependent factor influencing the scattered intensity, based on the thermal population

of vibrational states. With detailed knowledge of the lattice dynamics, it is possible

to calculate this factor, known as the Debye-Waller factor. For a rough idea of the

functional form of this correction, we can assume a unit cell with a basis -i, displaced

by uj , j = x, y, z indicates the direction of the vibrational displacement. The structure

factor will have the form

f(Q)e (Ti) (2.42)

From the above discussion, we know that at finite temperature, the instantaneous

positions aren't so useful, but rather the thermal average,

(S f(Q)e iQ(r•+ )) = S(Q)(eid&Q), (2.43)

The term, (ei0 r) -) e- w , is known as the the Debye-Waller factor, which quantifies

the effect of thermal vibrations on the scattering intensity. The thermal average is

worked out explicitly in [41]. The result is

hG2

W = 2M (2.44)2Mw'

where M is the atomic mass, G is a reciprocal lattice vector and w is the vibration

frequency. Usually the Debye-Waller factor is very near one, especially for low tem-

peratures, therefore it is usually neglected. For lighter atoms, especially Hydrogen,

the Debye-Waller factor can change significantly, therefore, it must be accounted for

when comparing high and low temperature scattering intensities.



2.4.4 Crystal Mosaic

Quite often a single crystal isn't easily realizable for all compounds. Instead The single

crystals consist of tiny crystallites which are slightly misaligned with respect to each

other. For a single crystal, once the scattering condition is satisfied by 20, rotating

the sample about the 20 axis (rocking curve) will result in a sharp peak observed at

the detector. If we now take several single crystals and misalign them slightly, 20

will still select the proper Bragg plane spacing, but rocking the sample will bring the

Bragg planes for different crystallites into illumination resulting in several observed

peaks over the rocking curve. If we now consider a large number of slightly misaligned

crystallites, The peaks will merge together forming one broad peak in the angle scan.

In crystals where the mosaic spread is greater than the spectrometer resolution, the

Bragg peak will have a structure consisting of multiple small peaks, centered about

the Bragg position. To obtain the total integrated intensity from such a crystal

mosaic requires coarsening the resolution to capture the entire angular divergence of

the scattered beam, then repeating the rocking curve. While it is possible to obtain

reasonable intensity measurements from a crystal with a bad mosaic, it is optimal to

have a crystal with a mosaic spread less than the resolution of the instrument.

2.4.5 Absorption

As discussed in section 2.2, X-rays are absorbed by materials as they pass through

them. The attenuation of the beam intensity is exponential, having the form

I(x) = Ioe 4 , (2.45)

where 1 is the attenuation length. Since the electrons are primarily responsible for

x-ray absorption, the attenuation length depends on the atomic number, and density

of the atoms in the material. The attenuation length can be calculated as a function

of incident energy with knowledge of these parameters, which can then be used to

estimate the attenuation for different scattering angles (i.e. the path length through

the sample as a function of scattering angle).



2.4.6 Multiple Scattering

In our discussion of Bragg scattering, we assumed that every photon entering the

detector is scattered once. In actuality, photons incident on an atom will be scattered

in all directions, but only those which satisfy 2.26 will be detected. However, it is also

possible that a photon is scattered once in a specific direction where it can scatter

a second time into the detector. Since each scattering event is elastic, the detector

cannot quantify the number of time s photon has been scattered. While extremely

unlike, multiple scattering events are a real consideration with modern high flux x-ray

beams. Multiple scattering can be predicted, however, which can be illustrated using

the Ewald construction introduced earlier to discuss the Lorenz factor (figure 2-16b.

If two allowed reciprocal lattice points coincide with the Ewald sphere simultaneously,

and if the two points are separated by an allowed Q-vectors, then a multiple scattering

event occurs.

To measure a multiple scattering peak, one can either scan the incident energy,

a)
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Figure 2-16: Visualization of multiple scattering using Bragg planes (a), and the
Ewald construction (b). The vectors k•, and k1 are the incident and final vectors
which satisfy the scattering condition Q. However, photons can also be scattered into
k' with momentum transfer Q' which also satisfies the scattering condition, since Q'
falls on the Ewald sphere. This process will be detected at kI if Q' and Q" Q- Q- '
are allowed reflections.
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Figure 2-17: Renniger plot in a small range of Energy and Azimuth for LSCO at the
forbidden (0 3 0) reflection. The plot in the lower panel corresponds to a measurement
of the scattering intensity along the red line drawn on the Renniger plot. The small
energy difference is due to slightly different lattice parameters used in the calculation
and experiment.



which is equivalent to scanning the radius of the Ewald sphere, or one can rotate the

sample about the Q-vector, which is equivalent to rotating the Ewald sphere about

Q. From figure 2-16b it should be clear that either scan passes different reciprocal

lattice points through the surface of the Ewald sphere. Since for different energies (i.e.

sphere radii), a given reciprocal lattice point will intersect the sphere at a different

azimuthal angle, it is possible to calculate the trajectory in energy-azimuth space of

each allowed reciprocal lattice point. Such plots, known as Renniger plots, can be

calculated and used to know where multiple scattering can be expected.

For an illustration of the usefulness of Renniger plots, I will use show where this

was used to understand some of our measurements. The objective was to measure a

weak modulation in LaCuSrO 2-x, which was predicted to give a small peak at the

otherwise forbidden (0,3,0) position in reciprocal space. We were surprised to find

rather intense peaks for certain incident energies. To understand this, a Renniger

plot was calculated to ascertain whether or not these were multiple scattering peaks.

Figure 2-17 shows the calculated Renniger plot for relevant region in energy and

azimuth space for Q = (0, 3, 0) LaCuSrO 2-x. In general if multiple scattering is a

concern, then a Renniger plot can be used to find energy (E), and azimuth (A) values

which have no nearby multiple scattering trajectories. In figure 2-17, the region

around E = 8800 eV and A = 91.5 is a such a location.

2.4.7 Summary

This section provided a brief overview of the various non-structure related factors

contributing to the x-ray intensity. Some of them can be well accounted for mathe-

matically, therefore providing a good comparison between calculated and experimen-

tal scattering intensities. To summarize we can write down an expression for the total

scattered intensity, taking into account the various corrections. For scattering out of

the polarization plane with a polarized source from a single crystal

Lorentz-Polarization Factor Bragg Condition Structure Factor Debye-Waller

1 (2.46)I(Q) E e4I1ý12 IS( )12 e-2W (2.46)



where 20 is the scattering angle, from which Q can be calculated using an alternative

form of the Bragg equation Q = 2k sin 0. Equation 2.46 contains all of the important

fundamental corrections considered for the scattered x-ray intensity analysis in this

work.

2.5 X-ray Powder Diffraction

There are many cases in the study of solid state materials where scattering from a

single crystal is not practical. Characterizing a new material about which little is

known is a non-trivial task with single crystals. An alternative, widespread technique

is powder diffraction, which is the diffraction from a collection of thousands of tiny

single crystals having random orientations. If an x-ray beam illuminates N single

crystallites, and the scattering angle corresponds to that of a primary reflection, then

a small fraction dN of the total crystal mass will be aligned within the resolution d20

a)
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Figure 2-18: a) Reciprocal space map of scattering due to 3 misaligned single crys-
tals. b) Simulated Debye-Scherrer rings for TiOC1. c) Scattering geometry schematic
showing the fraction of crystals aligned within a range d20 of the scattering angle.
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of the Bragg condition. The total integrated intensity can therefore be estimated by

calculating the total fraction of illuminated crystals which will diffract.

The scattering condition for an array of crystals is best visualized in the Ewald

picture from section 2.4.2. Figure 2-18a shows the reciprocal space map of the scat-

tering from three crystals which are slightly misaligned. By changing the direction of

Q, the reflections from the crystal twins can be brought into the scattering condition.

Here the scattering from only 3 crystals is illustrated. Generalizing this to 1000's of

randomly oriented crystals one can imagine that the Bragg spots from each single

crystal will fill in the entire 21r angle forming a ring of scattering. This is only two

dimensions. To get the third, we then have to rotate this circle out of the plane to

form a full 47r shell of scattering angles which satisfy the Bragg condition.

Placing a 2D position sensitive detector (image plate) behind the sample will

result in a series of concentric rings centered on the incident beam direction, known as

Debye-Scherrer rings (figure 2-18b). The radius of each Debye-Scherrer ring provides

the scattering angle 20. The fraction of crystals which satisfy the scattering condition

is given by the number of crystals whose Bragg planes are within do of 0. In reciprocal

space, this condition carves out a shell of width d< from the 47r angles of possible Q

directions (figure 2-18c). If the angle between Q and ki is 0, then the solid angle, dQ

will be 2ird4 sin 4. The angle 0 is nothing more than one of the base angle of the

isosceles triangle formed by ki, kf, and Q. Since the apex angle is 20, we instantly

arrive at the result 2,0 = r - 20, or 0 = 7r/2 - 0. Therefore d2 is given by

dQ = 2ird2O sin(ir/2 - 9) = 2ird29cos(O).

If the intensity scattered from a single crystal is I, then the total intensity scat-

tering from N crystals is NI. However, one needs to take into account that there

may be multiple reflections having the same Q value. For example in a cubic system

with lattice parameter a, all permutations of the reflections (l1, +1, ±1) have a Q

of 2v3. The reflection (+1, +1,0) has 12 different permutations, therefore making

it 1.5 times more likely to align with the Bragg angle than the (1,1,1) peaks. This



multiplicity, mhkl, must also be accounted for. With these considerations, the to-

tal number of crystals having Q vectors which will fall within an angle 4 + do is

mhkld 207r cos ONI/47r. After the sample the x-rays will be scattered into the solid

angle d20 sin 20. For a detector with angular resolution d( 4, the fraction of the x-rays

scattered into the detector will be

d~d20 cos OmhklNI _ dmhklNIcosO _ mhkldjd20NI 1
2 sin 20 2 cos 0 sin 0 2 2 sin 0

Powder diffraction requires the consideration of an additional scattering angle depen-

dent term in the intensity. Dropping the angle independent prefactors and combining

this with the correction terms from equation 2.46 the total integrated intensity is,

I = S(Q) 2 - 2W (2.48)sin 0 sin 20 (2.48)

The last term in equation 2.48 is the Lorentz polarization factor for scattering out

of the polarization plane of the beam (see section 2.4.1). Equation 2.48 assumes an

isotropic distribution of sample orientations, but often times, the crystallites have

a preferred orientation. This complicates the task of interpreting powder patterns

immensely. Corrections are possible, but involved. This effect can be reduced by

integrating over the entire Debye-Scherrer ring.

Powder diffraction is a very widespread and useful technique. Generally powders

are easier to grow in larger quantities, making them attractive from an experimental

point of view. However, one purpose of including this section was to illustrate the

limits of scattering from powder samples. The obvious drawback is that all directional

information in reciprocal space is lost to the integration over all angles. Secondly,

from equation 2.48 powder scattering introduces an additional attenuation factor for

scattering from large Q (high 20) reflections. Even this isn't so bad if scattering from

small angles. The real drawback to powder diffraction comes from the small fraction

of crystals that satisfy the Bragg condition. This can be shown by considering the

factor NI from equation 2.47, which is the factor that counts the number of properly
4dý for an image plate is 27r



aligned Bragg planes. For a properly aligned single crystal all N of the planes will

scatter into a detector having resolution d xd20. By comparison a powder of the

same mass scattering into the same detector will have a fraction d~d20 of the NI

intensity. In section 2.1.2 we saw for a synchrotron the beam divergence is typically

- 1 x 10- 3 degrees. The magnitude of ( is determined by the detector slits. For a

very coarse resolution of 0.1 - 10, the fractional intensity is 10-4 - 10-i . If a small

structural change causes an observed peak with - 1000cts/sec, 20 at small scattering

angle, then it may be detectable in a powder experiment through increased counting

time. In general, however, resolving small structural changes with powder scattering

is impractical, making single crystal samples a necessity.

2.6 Inelastic X-ray Scattering

In recent decades, with the improvement of synchrotron sources, the technique of

inelastic x-ray scattering has been developed. In an inelastic experiment, the incident

and final scattering energies are different. By keeping one of the energies fixed and

scanning the other, the energy transfer spectrum can be measured. Such information

is valuable for probing microscopic interactions through the vibrational spectrum of

- I

Ge-11 crystal

Detector

Sample In-line High Resolution
Monochrometer

High Heat Load
Monochrometer> N From Undulator

Focusing Analyzer
(backscattering geometry)

Figure 2-19: Inelastic x-ray scattering diffractometer at sector 3 of the Advanced
Light Source at Argonne National Laboratory. The angles and distances are not to
scale. Unique features of this instrument are the in-line monochromator and focusing
analyzer. The inset shows a Ge-1ll crystal deflecting the beam to lower 20 angles
allowing access to higher Bragg angles. Without the crystal the maximum 20 is - 18'.
The crystal allows a maximum of - 300.
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a unit cell, discussed in section 3.4.1.

The vibrational modes have typical energies on the scale of meV, requiring meV

resolution from a - 10 keV x-ray beam. From equation 2.21, this requires a L

10- 7. Still the M term is negligible, since it is possible to manufacture sufficiently

perfect monochromator crystals, so the issue still lies in the J6 cot 0 term. An undu-

lator beam with divergence of - 1prad, requires a scattering angle > 840 to reach

meV resolution, which is in the near backscattering limit.

Inelastic beamline design has a multitude of challenges. The first is simply be-

cause near backscattering geometry requires beam tubes to be sufficiently long to

provide room for the experimental setup, which must be placed nearly at the beam

source. The earliest inelastic x-ray scattering beamlines are designed in this man-

ner. The second is having the ability to change the energy with meV precision. In a

backscattering geometry, scanning the monochromator angle isn't very feasible, since

this would require precision movement of the entire spectrometer. Instead, the fine

energy control is obtained through changing the monochromator temperature, and

letting thermal expansion change the energy by altering the Bragg plane spacing.

Such a beamline are in operation at the European Synchrotron Radiation Facility

(ESRF) in Grenoble, France. This spectrometer achieves an energy resolution of

~ 3meV [44].
A more recent development in inelastic x-ray spectrometer design has been imple-

mented sector 3 of the Advanced Light Source (APS) at Argonne National Laboratory

(ANL). A schematic of the beamline is shown in figure 2-19. The remarkable break-

through is the in-line monochromator, which not only can be easily integrated into

normal beamlines, but it also has been optimized for maximal intensity and energy

resolution [45]. At 21.5 keV, this monochromator has an energy width of 1.3 meV [44],

which is nearly 3 times better than the backscattering monochromator at the ESRF.

The monochromator, described in detail in reference [45], consists of two nested chan-

nel cut monochromators, the angle of which is precisely controlled to prad precision.

The temperature of the monochromator is maintained by cryo-cooling with liquid

nitrogen for maximal stability.



After the high resolution monochromized beam the sample is mounted on a triple

axis spectrometer, similar that illustrated in section 2.2.3. However, care must be

taken in designing the two-theta arm with a meV resolution analyzer, due to the

backscattering geometry. For example, sector 3 uses the silicon (18 6 0) reflection,

with a Bragg angle of 89.980. Such a small angle between the beam incident on and

scattered from the analyzer required its placement 6 m from the spectrometer center

of rotation, with the detector near the sample (see figure 2-19). This results in a

- 2 mm separation between incident and scattered beams, allowing sufficient room

for the detector.

Having the analyzer at such a distance from the center of rotation presents ad-

ditional design challenges. First of all, the angular divergence of the beam scattered

from imperfect crystals is far greater than that of the monochromized beam. In order

to increase the solid scattering angle, a focusing analyzer with a diameter of 100 mm

was used. Of course this coarsens the Q-resolution of the spectrometer, so masks with

various hole sizes were available for placement over the face of the analyzer.

The combination of having a heavy analyzer assembly on a 6 m long two theta arm

required scattering in the horizontal plane for precise stable control of the scattering

angle. Unfortunately this is also in the polarization plane of the undulator beam,

therefore, the Q-dependent Polarization factor must be taken into account (see section

2.4.2). This also had the disadvantage that the x-ray hutch size limited the maximum

scattering angle to ' 180. For a time at sector 3, this limitation was overcome by

placing a Ge-1ll single crystal just before the sample to deflect the beam in the

negative 0 direction, then the spectrometer was translated to bring the beam back

through the center of rotation (see inset in figure 2-19). Doing this changed the

effective 0o, allowing angles up to - 300. Recently this capability has been removed,

however.

The overall spectrometer resolution is 2.2 meV as determined by placing PlexiglasTM

at the sample position, then scanning the monochromator. For practical purposes, the

PlexiglasTM scatters elastic x-rays into the full 47 solid angle, with an energy width

much smaller than the spectrometer resolution (i.e. negligible convolution effects) [44].



In the beginning of this section it was stated that inelastic x-ray scattering with

meV resolution has only matured in recent decades. While in principle the technology

existed to build these beamlines has been in existence for quite some time, the main

issue is one of intensity. First of all, taking a meV bandwidth requires eliminating

, 106 photons from the keV white beam. Recall as well that in order to achieve such

high resolution requires near backscattering Bragg angles, which according to section

2.3.2 has a very small atomic form factor, and is therefore a very inefficient scatterer.

Not only are the photons backscattered once, at the monochromator, but again at

the analyzer, resulting in an additional intensity loss. These factors are fundamental,

meaning they are not due to lack of technology, or poor design, but are a result of

the laws of physics. The only optimization possible is to choose materials for the

monochromator and analyzer which have a larger atomic form factor at high angles.

Otherwise, this is a limit defined by the laws of physics. For an idea how significant

these factors are, at sector 3, the flux before and after the monochromator are - 1014,

and - 108 photons/sec. respectively. For comparison, the flux at the sample position

of bending magnet beamline X22C at the NSLS (second generation light source) is

- 109 photons/sec. Typical phonon peak intensities measured at sector 3 are tens of

counts per minute, therefore a second generation light source simply cannot provide

the photon flux necessary to detect phonon scattering. In this work data measured

on the sector 3 beamline therefore represent a state of the art measurement which 30

years ago was simply not feasible.

2.7 SQUID Magnetometer

In the study of magnetic materials, it is essential to have the capability to character-

ize the bulk magnetism. While this can be done through various means, by far the

most sensitive technique is Superconducting QUantum Interference Device (SQUID).

SQUID theory is quite involved requiring extensive background in superconductivity.

The scope of this work is to provide the essential concepts behind SQUID functional-

ity. A nice overview of SQUID physics, practical design concepts, and a comprehensive



list of references, the reader is directed to reference [46].

The essential component of a SQUID is the Josephson junction, which is a pair of

superconductors separated by an insulator. In a superconductor, the charge carrier

is a coupled pair of electrons. These so-called Cooper Pairs have total spin S = 0,

and therefore obey Bose statistics. The Cooper pairs form a sort of Bose-Einstein

condensate, and the cooper-pair wavefunctions become phase coherent. Therefore in

the superconducting state, the electrons can be characterized by a single macroscopic

wavefunction, V = 40oei . In the Josephson junction the wavefunction tunnels through

the insulator from one superconductor to the other with some interesting effects.

If there is a phase difference between 6 = 1 - 0 2 between the wavefunctions on

either side of the junction (see figure 2-20a), then a current, 1(6) will flow even in the

absence of an applied voltage. If a DC voltage is applied to the junction, then the

current will oscillate with a frequency w = 2eV/h. These effects are summarized by

the following fundamental Josephson junction equations

I =Io sin 6 Zero Applied Voltage (2.49)

I =Io sin [6(0) - 2eVt Applied DC Voltage (2.50)

where Io is the critical current of the junction, and e is the electron charge. The heart

of a SQUID magnetometer is a superconducting ring, with two Josephson junctions

encircling a magnetic flux 4I (see figure 2-20b). The fundamental property of the

super-current in the ring critical to the sensitivity of a squid, is that the supercon-

ducting current will adjust itself to maintain an integer multiple of the flux quantum

h/2e passing through the ring. If a constant current is applied across the ring, then

current will split and flow into junctions A and B, each with its own phase. For 4 = 0,

the phases will be equal, and the voltage V will be zero. When ( is turned on, the

superconducting current will fluctuate to maintain the integer multiple of h/2e in the

ring, causing the phases at A and B to be different. This will cause V to oscillate

between values Vmin and Vmax with a period T = (o = hc/e. This summarizes the

essential physics behind a SQUID. The remaining considerations have to do with con-
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Figure 2-20: a)Schematic of a Josephson junction. The macroscopic wavefunction
tunnels from one superconductor to the other through the insulator with a phase
shift, 6 = 02- 01. b) A Meissner loop with two Josephson junctions with a flux
4 passing through the middle. A constant bias current I is applied through each
junction. If (I = 0, then the phases through each branch of the loop are equal and
V = 0. As D is increased, the voltage at V will oscillate as a a function of applied
flux with a period 40 = hc/e.

verting the oscillatory voltage response to a linear output proportional to the applied

field. It turns out that a sinusoidal modulation of the applied field with frequency w

will cause V to oscillate at w or 2w depending on whether V is at or midway between

extrema on the V - 4 curve. By feeding the oscillatory response of V into a lock-in
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Figure 2-21: Quantum Design MPMS magnetic moment measurement. Sample is
translated through the solenoid pickup coil which is connected to the SQUID circuit.
Plotted is a measured response to the translation (filled circles) with its theoretical
fit (line).



amplifier reference to a fixed oscillation, it is possible to bias the flux D to maintain

the voltage V at an extremum. The output of the lock-in amplifier is then sent to an

integrator, which tallies the number and direction of the flux correction resulting in

a total response which is linearly proportional to the applied DC flux.

All of the magnetic susceptibility data in this work were measured on a Quantum

Design Magnetic Properties Measurement System, which uses SQUID technology to

measure magnetic moments. The sample is mounted on the end of a long thin rod,

which is placed in the middle of a coil which is inductively coupled to the squid coil.

To measure the magnetic moment of a sample the MPMS translates the sample out

of the coil, then point-wise translates the sample through the coil, measuring the

SQUID response as a function of translation. The software then fits this response to

an appropriate theoretical model (predetermined by Quantum Design), and extracts

the total magnetic moment.

2.8 Heat Capacity

A useful quantity to supplement the magnetic susceptibility is the specific heat. From

thermodynamics, the specific heat is defined as the amount of heat required to change

Figure 2-22: Quantum Design heat capacity puck. The sample is attached to the
white platform using a thermally conducting grease. Under the platform are the
heater and thermometer for the calorimeter. The puck is then inserted into a socket
of the PPMS which connects it to the system circuitry and temperature control.



the temperature of a system by an amount dT,

c = dQ , dQ i, (2.51)
dT PdT

where the subscripts v,p indicate constant volume and pressure respectively. Typi-

cally the experimentally measured quantity is cp. Conceptually measuring cp is rela-

tively straight forward. By quantifying the amount of heat applied to a system while

monitoring the systems temperature, it is possible to extract dQ/dT. In practice

making detailed measurements of c, with fine temperature resolution is a technical

challenge. In this work specific heat data are presented which were measured us-

ing the specific heat option of a Quantum Design Physical Properties Measurement

System (PPMS). Using a thermally conducting grease, the sample is mounted to a

heat capacity "puck", which contains all of the elements of the calorimeter (figure

2-22. The PPMS uses a heating coil to heat the sample, therefore the sample heating

is simply proportional to the coil current. The current is pulsed, and the thermal

response of the system is monitored.

The heat capacity of the heating platform and grease are accounted for by first

making a calibration or "addendum" measurement, which is simply a measurement

over the desired temperature and/or magnetic field range with everything but the

sample. This is then compared to the response with the sample to extract the sample

specific heat using the differential equation

Ctotal = -K(T - Tb) + P(t), (2.52)

where Ctotal is the combined specific heat of the sample and platform, K~ is the ther-

mal conductance of the wires supporting the platform, P(t) is the power applied by

the heater, T is the platform temperature, and Tb is the temperature of the puck[47].

The solution is an exponential function with decay constant Ctotat/K. This is in the

limit of "good" thermal coupling, which is determined "on the fly" by the instrument.

If the thermal coupling is determined to be less than a given threshold, then a differ-



ent "two-tauTM" 5 model is implemented. The effectiveness of this model isn't readily

clear, and since the data in this work were taken in the "good" thermal conductivity

limit, we will limit the discussion to equation 2.52.

A primary reason for measuring the specific heat is to extract the entropy, S,

which is related to the specific heat by the relation

dS
dT

(2.53)

The entropy is a useful quantity for characterizing phase transitions, which we will

see in section 3.2.

5The two tau model is a Quantum Design trademark



3 Spin-Peierls in TiOCi

3.1 Sample Growth and Characterization

The first reported growth of TiOCi was by Schifer et. al. in 1958 [48]. The article

discusses various chemical reactions which lead to the formation of TiOC1. For our

purposes, the most convenient reaction was

2TiC13 + TiO 2 -- 2TiOC1 + TiC14 (3.1)

At room temperature TiC13 and TiO2 are powders. The basic procedure is to seal a

stoichiometric mixture of the two reactants, then vaporizing them at about 6500 C,

which upon cooling form either a fine powder or single crystals of TiOC1. This section

is dedicated to describing the procedure used to implement this procedure as well as

the various techniques used to optimize the growth.

3.1.1 Powder Samples

Both TiC13 and TiO2 are hydroscopic, so care had to be taken when handling them.

When not in use, the powders were stored in an argon environment. To mix the

powders the molar fraction had to be converted to mass. The mass ratio of TiC13:TiO 2

in the above reaction is 3.86:1 . Through multiple trials, however, we determined that

a mass ratio of 6:1 resulted in a more complete reaction. The powders were weighed,

mixed and packed into a cleaned iron high pressure bomb. The chamber was then

sealed in the glovebox, then transfered to the furnace for sintering. The furnace was

then ramped to 600 OC at a rate of 10C per minute. After 12 hours at 600 OC the

furnace was then ramped back down to room temperature at the same rate (10 per

minute). The bomb was then open in air, at which point a yellow-green gas would



emerge. We assume this to be the TiCl4 reacting with water vapor in the air. The

powder was then repeatedly washed with acetone then dried. The powders were

stored in a dessicator to keep them dry. The structure and composition were verified

using x-ray powder diffraction (see section ...). Figure 3-1 shows a powder diffraction

pattern measured on one of our better powders on a rotating anode source, compared

to the calculated diffraction pattern. All of the peaks in the calculated pattern have

corresponding measured peaks, meaning the crystal symmetry and lattice parameters

are correct. The relative intensities are also consistent, with only slight deviation.

This indicates that the chemical composition is basically correct. To make stronger

claims requires a measurement with better statistics out to higher two theta angles.

Generally, detailed structural analysis is performed on powder diffraction patterns
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Figure 3-1: TiOCI powder diffraction pattern measured on a rotating anode diffrac-
tometer. The sloping background in a) is an experimental artifact, and has therefore
been subtracted in b) for better comparison with the calculated diffraction. The
arrows indicate measured peaks which do not occur in the calculated pattern.
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measured either at a synchrotron or neutron source. Examples of each of these can

be found in sections (...) and (...).

Even with the best powder diffraction data available, the detection of small impu-

rity concentrations isn't feasible. It becomes necessary to rely on other experimental

techniques, depending on what effect impurities will have on the material properties.

In the case of TiOC1, the 1-D magnetic properties are of interest, therefore knowing

the magnetic impurity content becomes important. Fortunately this is straightfor-

ward to characterize using a SQUID magnetometer (see section 2.7. The magnetic

susceptibility was measured using a Quantum Design MPMS (see section 2.7). A

typical curve for TiOCl is shown in figure 3-2. The various magnetic signatures high-

lighted by Seidel et. al. [4] are labelled. At this point, the region of interest is

T < 50K, labelled "Curie tail". The "gap", T,,, T 2,, are all intrinsic signatures. The

curie tail and the broad "bump" around 300 K are indicators of impurity content.

The origin of the 300 K bump remains a bit of a mystery, but we're quite sure it's

Xx
.5
E

Co
EO
X

T (K)

Figure 3-2: Plot of DC susceptibility measured on - 50mg of TiOCI powder with
highlighted characteristic magnetic signatures (according to Seidel et. al. [4]). The
applied field, H, and sample mass have been divided out to convert measured magnetic
moment to magnetic susceptibility.



related to some impurity, since its magnitude fluctuated from batch to batch.

The Curie tail arises from a small concentration of paramagnetic impurities within

the sample. As the label implies, a paramagnet follows Curie's law, namely

c
X(T) = T + Xo. (3.2)

For our purposes, Tc is 0, and Xo is a temperature independent offset. It turns out

that it is possible to quantitatively determine the impurity concentration from the

magnitude of the Curie tail. The curie constant, c, can be extracted from a fit of the

T < 50K region to equation 3.2. The expression for c derived using a microcanonical

ensemble of spins is
c = 2 (3.3)

kB

where No is the number of magnetic atoms per volume, p is the magnetic moment

which in our case is PB, the electron magnetic moment, and kB is Boltzmann's con-

stant.

The only challenge to extracting a meaningful number from the fit, is to express

c in the proper units. The MPMS measures the total magnetic moment, P, using the

cgs unit EMU. To extract the susceptibility from p requires the expression, M = xH,

where M = p/V is the magnetic moment per volume, and H is the applied field. In

cgs, M and H have the same units, therefore X is unitless. For example,

1 emu/cm" = 1 erg/gauss/cm3 = 47r Oersted.

Therefore it is possible to change from p in emu to a unitless X by the following

transformation:
M p 47_p_-_d

X , (3.4)H Hoersted V Hemu/cm/3 m

where d and m are the density and mass of the sample respectively. To calculate the

impurity concentration, equation 3.3 needs to solved for No,

No = (3.5)
P- B



The final step is to substitute the fitted value for c into equation 3.5:

No

[No] =

( 1.615x10-3)(.0862) = 4.1 x 1020 cm - 3 = 2.064 x 10-4A 3
(5.788x 10- 6)(9.274x 10-21)

[K[meV/K] = cm-3].
[meV/Oersted] [Oersted-cm3]

This corresponds to about .02 per unit cell, or 1 paramagnetic moment every 47

unit cells. Compared to the interaction of neighboring spins, any perturbation due

to the paramagnetic impurities is likely too small to have an effect. In summary,

we can safely proceed with confidence that we are measuring the intrinsic magnetic

properties of TiOCl. This assumes, of course, that the powder is pure-phase TiOC1,

which from the x-ray powder diffraction (fig. 3-1) there is clearly a small impurity

phase concentration. The only way to determine the origin of the paramagnetic signal

is to measure the susceptibility of a known phase pure sample. The batch on which

tol
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Figure 3-3: DC Susceptibility with low temperature (T < 50 K) region fitted to curie
law, x(T) = • + Xo.



3.1.2 Single Crystal Samples

Powders are convenient, in that it is generally easy to grow large quantities in a

short amount of time. For many bulk property measurements, but because a powder

consists of a large number of randomly oriented single crystals, directional information

is lost. For scattering measurements, this means integrating the Brillouin zone in

all directions, losing much valuable information. Such information requires a single

crystal sample.

The preparation of TiOCl single crystals is similar to the powder growth. The

handling and stoichiometry of the reactant powders is identical. However, unlike the

powder growth, single crystal growth works by vapor transport. In vapor transport,

the growth chamber has a built-in temperature gradient, with the constituent powders

on the hot side. The powders vaporize, and travel across the gradient condensing

on the cool side of the chamber. To achieve the necessary temperature gradient, the

prepared powders were loaded into long quartz tubes which were sealed by melting off

the ends in a propane glass blowers torch. First one end would be sealed, the tube then

transferred into the argon-glove-box for filling. Because it was not possible to heat the

quartz tubes in the glove box, the end would be sealed by ParafilmTM after the tube

was loaded. The tube would then be quickly removed from the glove box, hooked

up to a vacuum pump which evacuated the tube to - 10-2 torr. The tube would

then be sealed under vacuum and allowed to cool submersed in insulated packing

material (to slow the cooling). The optimal growth tubes had a 2mm thickness, 2cm

outer diameter, and were about 40 cm long. The tube was then placed in a two-

Figure 3-4: Sealed quartz tube with TiOCl single crystals on one side and powder
residue on the other. This was one of the more successful growths in terms of crystal
quality and size.



Figure 3-5: TiOCi single crystal viewed under an optical microscope with back-
lighting. This was the biggest crystal from all of the growth attempts (extracted
from the tube pictured in figure 3-4). It is - 100 x 50mm across, and - 50m thick.
On average the crystals were rectangular having dimensions - 30mm x 40mm x 40,/m
along a,b,c respectively.

zone tube furnace, and the whole tube was heated up uniformly to 650 0C, at a rate

of 1 oC/minute. After several 12 hours at 660 oC the temperature on one side of

the furnace was lowered to 55000C. After about 12 hours under gradient, the tube

would begin to form small seed crystals on the cool side. We would let these seed

crystals grow for about 3-5 days...until the powder on the hot side was gone. When

the growth was complete, the tubes would contain many thin single crystals stuck to

the cool side of the tube, with only a small amount of powder residue remaining on

the hot side. One of the more successful growth tubes in terms of crystal size and

quality is shown in figure 3-4. The tubes were then cut open, and the crystals washed

repeatedly in acetone. The resultant crystals are small brownish colored translucent

rectangular flakes with average dimensions - 30mm x 40mm x 40[Lm along a,b,c

respectively. One of the larger crystals obtained is shown in figure 3-5. The crystals

were very fragile and tended to self cleave along the c-direction. To check the single

crystal structure and composition, x-ray powder diffraction was performed on a few

pulverized crystals. Rotating anode results indicated very high purity, and as part of

another experiment, we even measured the powder diffraction at the NSLS powder



diffraction beamline, X7A. This beamline is a wiggler source which from section 2.1.4

we know to have a broad divergence in the oscillation plane. However, this was

utilized to acquire more intensity by loading the powder into a tube having roughly

the same dimensions as the beam. Since only 20 matters, the large sample dimension

parallel to the 20-axis doesn't affect the resolution. In addition a position sensitive

detector was used to integrate over a larger range of 20, greatly reducing the counting

time, and the sample was continuously rotated for better powder averaging. Figure

3-6 shows the powder diffraction pattern from the synchrotron. The measurement

T = 300 K
X = 0.713677 A

0 5 10 15 20 25 30 35
20 (degrees)

Figure 3-6: Powder diffraction measured at the NSLS beamline X7A. The inset shows
the raw data which has a weakly 20 dependent baseline which has been subtracted for
better comparison with the calculated pattern. The arrow highlights a small impurity
peak. Compared to the diffraction pattern in figure 3-1, this diffraction pattern has far
better signal to background, and a larger range in Q. Taking these into consideration,
one can concluded that the single crystal structure and stoichiometry are nearly ideal.
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time is comparable to that of figure 3-1. The synchrotron data is better for structural

refinement not only because the signal to background ratio is significantly better,

but also because of the high energy used (E - 17keV) the number of accessible

peaks is greater for better comparison with the theory. In principle this data was

good enough for a full Rietveld refinement. This we did not do, however, rather we

simply verified by inspection. The calculated and measured diffraction patterns agree

perfectly with respect to peak positions, meaning the lattice parameters and unitcell

symmetry are correct. The relative intensities vary, which could be due to the absence

of a Debye-Waller correction in the calculation.

Again, to verify the magnetic properties of the crystal, we measured the suscep-

tibility on a single crystal and compared it to the power susceptibility. All of the

expected signatures indicated in figure 3-2 were present. There was a small curie

tail which by following the same procedure as in section 3.1.1 was determined to

be about 0.0033/unitcell or about 1 impurity every 300 unitcells. Because of the

high single crystal purity, this helps to pin down the intrinsic paramagnetic impurity

content. This also indicates that the powder is probably contaminated with a small

concentration of another paramagnetic phase.

3.1.3 Optimization of Vapor Transport Growth

Glass Lathe

The previous section described in general the process by which we grew our TiOCl

single crystals. The crystals grown by the method described were sufficient for most of

our measurements. However, increasing interest in doing neutron scattering on single

crystals, lead to a demand for larger crystals. From trial and error, we had determined

that larger amounts of reactant powders resulted in larger crystals in general. The

limiting factor to the amount of powder we could load into a quartz tube was the

structural integrity of the tube itself. Because we were essentially vaporizing all of

the powder, often times the resulting pressure would cause the tube to explode inside

the furnace. The situation was worsened by the fact that sealing the tubes required



melting and stretching the glass from the original diameter to zero, thus introducing

strain, and lowering the pressure threshold. This is the reason for the small diameter,

yet thick glass tubes. The only way to contain more powder was to make the tube

longer, which also had it's limitations, since a good gradient could only be maintained

over about 30-40cm. It was therefore of great interest to increase the diameter of the

tube in order to achieve higher chamber volume. To do this, however, would require

a very gradual decrease in diameter down to the point where it is sealed off. Doing

this by hand was difficult enough with just a plain glass tube, let along when the

tube was under vacuum. The problem was further complicated by the requirement

to use quartz rather than Pyrex glass, because of the high baking temperature. To

overcome these difficulties would require the tube to be constantly turned while being

heated, then gradually drawn out while turning until it eventually separated. In the

glass industry this is commonly facilitated through the used of a glass lathe. Glass

Figure 3-7: Glass lathe for making TiOCI single crystal growth chambers. The chucks
of the lathe are hollow stainless steel tubes which also serve as the pulleys. Both
chucks are coupled to the motor by bands which turn around a long rod. This design
allows the translation of one of the chucks while keeping both turning at the same
rate. The glass tube can be any arbitrary length and the hollow chuck design allows
for a vacuum tube to be connected through a swivel joint to the end of the tube.



lathes are commercially available, but expensive, so we set out to build a low budget

lathe optimized for the purpose of making TiOCl growth chambers.

To serve our purposes, the glass lathe had to consist of two chucks which would

hold the glass in place, since when the glass melts it has no structural integrity. The

chucks had to turn at the same speed or else the glass would break when it is still

solid. In additional to these considerations one of the chucks needed to translate

while turning, in order to draw the molten glass out. These considerations were all

taken into account with the design in figure 3-7. The lathe chucks were two stainless

steel tubes mounted in a set of pillow blocks which were mounted on freely moving

aluminum blocks. One set of pillow blocks was anchored to the table while the other

was left free to translate. the stainless steel chucks also had a belt around them and

therefore served as pulleys which were coupled to a long rod connected to a motor.

This kept the two chucks rotating at the same speed. The effectively wide pulley

allowed for free movement of the free chuck while still being coupled to the motor.

While designs for mounting the torch and translating the chuck by some hydraulic

device were in the design phase, this was never implemented. Rather the lathe re-

quired two operators, one to hold the torch and the other to translate the sample.

The lathe was successfully used to manufacture a handful of growth chambers, but

unfortunately, the resultant crystal size was about the same. Given more time, a me-

thodical approach to sample chamber design would surely have lead to larger crystals.

However, as is usually the case, there were time constraints, so other means to obtain

larger crystals had to be explored.

3.1.4 Crystal Growth the "Hard Way"

While work was underway to optimize the crystal growth to obtain larger single

crystals, it was obvious that -gram sized crystal necessary for neutron scattering

wouldn't be attainable for quite some time. Motivated by the work of work of He et.

al [49], we therefore decided to make a co-aligned array of the -mg sized crystals.

The goal was to have ig of single crystal co-aligned within 20. The average crystal

mass at the time was nominally - 1 mg, requiring - a 1000 crystal array.



Figure 3-8: Apparatus to aid in assembling ~1000 co-aligned single crystals for neu-
tron scattering experiment. The alignment procedure is discussed in detail in the
text. Below is a wiring diagram for the electronics. The sole purpose of the circuit is
to provide the proper voltage to the source of the diode, and as well provide a variable
voltage to the laser, which was a pen laser modified to be plugged into a DC power
source.
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The essential step to co-aligning single crystals is to first determine the crystal

orientation. This is a straight-forward task using x-rays, but x-rays can be time

consuming. Once the orientation is known, it must then be fixed to a well-defined

reference direction. The 20 mosaic spread requires that each crystal on average be

within 10 either direction of the reference, or within +0.2%. This proved to be the

real challenge in the construction of the crystal array.

It turns out that TiOCl has a couple of properties which we were able to utilize

in the co-alignment. First of all, the crystals grow in thin flakes with c perpendic-

ular to the crystal face, reducing the problem to finding the orientation of the a-b

plane. Secondly, TiOC1 is an insulator, and therefore transmits light. Due to the

orthorhombic crystal structure, the transmitted light is polarized. Finally, because

the crystals are quite thin as grown, the transmitted intensity is significant. These

properties enabled us to orient the a-b plane by detecting the transmitted intensity

of polarized light through the crystal as a function of rotation about the c-axis. This

still leaves the problem gluing the crystals within 10 of a fixed reference. To facilitate

the alignment in this procedure, I designed the apparatus in figure 3-8.

The sample was fixed to the underside of a rotating cylinder by suction through a

small pinhole leading to a vacuum pump. The cylinder had a concentric hole which

allowed light from a pen laser to pass through the sample and onto a photo diode. The

pen laser proved an ideal light source as it provided a very intense, highly collimated,

polarized beam, which was refined by aligning its polarization with that of a polarizing

polymer. Upon rotation a minimum in the measured intensity occurred every 1800.

This would uniquely define the crystal orientation. The angular resolution was then

improved by placing a second polarizer aligned perpendicular to the first one under

the sample, therefore reducing the period between minima by a factor of 2, effectively

doubling our angular resolution. Once the minimum was found orientation would be

locked in using a set screw. The lower polarizer and detector would be removed, and

the entire cylinder translated down to the sample plate where a small drop of GETM

Varnish held the crystal in place. The pump was then turned off, and the cylinder

raised. Since the crystals cleave easily along the c-direction, stacking the crystals was

101



C

0 (degrees)

Figure 3-9: Assembled crystal mosaic along with a characteristic rocking curve mea-
sured on a triple axis neutron spectrometer showing an angular spread of 30, slightly
larger than the 20 desired.

not possible. Instead, the crystals were aligned side by side, filling up the face of

2cmx3cm aluminum plates which were then stacked as shown in figure 3-8.

This process greatly simplified the co-alignment, reducing the time for one single

crystal to about 5 minutes. In total we co-aligned 1200 crystals for a mass totalling

813 mg. The assembled crystal along with a rocking curve from a triple axis neutron

spectrometer are shown in figure 3-9. The FWHM of the rocking curve is a direct

measure of the crystal mosaic spread, which we measured to be about 30, slightly

larger than our goal.

This method of crystal growth can be quite advantageous, in that one has very

good control over the crystal quality(as was the case in reference [49]), since the

crystallites to be glued must be hand selected. Unlike natural crystal growth where

unexpected delays are common, this technique has the additional advantage that

the end result depends primarily on time invested: more time=larger crystal. The

problem is the sample plates and glue introduce a significant background. Whether

or not this is problematic depends on the experiment.

3.2 Thermodynamic Characterization

Once high quality single crystals were obtained, it was possible to explore the physics

of TiOCI to determine whether or not it was a novel inorganic spin-Peierls system.

The first challenge was to further characterize the "gap" as well as the magnetic
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transitions highlighted by Seidel et. al. [4] (see section 1 and figure 3-2). Throughout

this work the variables Te1, Tc2 , and Tgap, as defined in figure 3-2 will be referenced.

The first set of measurements was meant to supplement the susceptibility mea-

surements already published. The idea was to characterize the so-called gap. If the

gap is due to singlet pairing, as required for a spin-Peierls transition, then the spin

in the gapped state is S = 0, and therefore there is no preferred orientation. In an

ordered magnetic state, there will be some anisotropy in the magnetic response, so

one simply needs to compare the susceptibility along all three crystallographic direc-

tions. In preparation for the susceptibility measurement, six crystals were co-aligned

to increase the sample size, and thus improve the signal to background ratio. The

crystal orientation was determined using a triple axis spectrometer on a rotating an-

ode source. Once the orientation was known, the crystal was cut along the b-direction,

to provide a straight reference line. The six crystals were then stacked and squeezed
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Drinking Straw1!
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Figure 3-10: a) Sample mount configuration for anisotropy measurements. The stack
of co-aligned samples is squeezed between two thin strips cut from a plastic drinking
straw. The strips are then spot welded on either side of the crystal stack to hold
them in place. The entire assembly is then spot-welded to the inside of a drinking
straw. This allowed for a small-uniform background. b) The susceptibility measured
along the a,b,c directions. The curie tail has been fitted and then the temperature
dependent part subtracted out. Clearly, the data look practically identical, with only
a small temperature independent offset, most likely due to crystal field anisotropy.
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between two long-thin plastic strips cut from a plastic drinking straw. The two strips

were then melted together on either side of the crystal stack to hold them in place

(figure 3-10). This configuration provided a low, position independent(see section

2.7) background. While it was difficult to quantify, the co-alignment was estimated

to be within at least 4 degrees.

The total assembled sample mass was 5.1 mg, which was measured under an ap-

plied field of H = 200000e. After each direction was measured, the sample was

removed from the MPMS, realigned in a different orientation, then placed back into

the instrument for measuring. The magnetic susceptibility was measured along all

three crystallographic directions. After the subtraction of a small Curie tail, the

curves are identical, except for a small temperature independent offset, most likely

due to anisotropic crystal field contributions (figure 3-10b). This isotropic drop in

susceptibility implies spin-singlet formation, as expected. In the process of measur-

ing the isotropy, data was taken upon warming and cooling, and to our surprise, the

susceptibility exhibited a thermal hysteresis at Te1, but not TC2(figure 3-11a. Hys-

teresis is typically associated with a first order phase transition, which is a surpris-

ing result, since spin-Peierls transitions observed in past materials have been second

order[23][50]. This novel observation sparked a more detailed investigation as to the

nature of the transitions at T,l and Tc2.

An important tool to characterize phase transitions is the heat capacity measure-

ment. If sensitive enough, the heat capacity measurement can quantify the latent

heat required to facilitate the phase transition, and from this the total entropy can

be estimated. Figure 3-11b,c compares the heat capacity, CP with d(x(T) -T)/dT,

a quantity proportional to the magnetic specific heat [51]. Clear peaks in CP at TC1
and T, 2 correspond to peaks in d(x(T) -T)/dT leading to the conclusion that these

anomalies have some magnetic contribution. A rough estimate of this contribution,

can be obtained by integrating the specific heat in order to calculate the total change

in entropy over the transition region. However, at these temperatures, the heat capac-

ity is dominated by phonons, so before integrating, a background must be subtracted.

Without knowing a priori what the intrinsic specific heat should be, we simply fit the
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Figure 3-11: a) Magnetic susceptibility upon warming and cooling after the subtrac-
tion of a small curie tail. The signature sharp drops at Tc2=92 K and T,, = 66 K
(cooling) are clearly present. The quantity d(xT)/dT (b) which is proportional to
C,/T, which has peaks corresponding to Cp (c), indicating a magnetic contribution
to the total change in entropy at these temperatures.
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background in the vicinity of the transition region to a fourth order polynomial. In-

tegrating the region enclosed by the C/T data over temperatures between 65 K and

100 K yields .04±.02/NKB for the total change in entropy. We note that the primary

source of error for this value comes from the estimation of the lattice contribution to

the specific heat. Using the expression S/NkB • (2/3)(kBT/J) for the entropy of a

S=1/2 uniform chain at temperature T [51], with J/kB = 660K from reference [4],

and taking T to be an average of T,, and TC2 we estimate the maximum available

magnetic entropy to be S/NkB = .08, about a factor of two greater than the measured

value. In a similar study, Hemberger et. al. measured a value of .12 ± .02 for S/Nkb.

Our observations are consistent with most of the entropy change for the transition

being magnetic in origin.

The specific heat and magnetic susceptibility results provide some insight into the

nature of the two transitions. It is known that the entropy change at T,, and T 2,, are

both primarily magnetic and that there is hysteresis at T,, but not at T 2,,. With this

information, it is tempting to assume that the spin-Peierls transition is actually at 92

K, rather than 65 K, since as of yet there is no published mechanism for hysteresis

in spin-Peierls theory. Assuming that T=92 K is the spin-Peierls transition, then

all of the data thus far is consistent with the spin-Peierls story. However, it is not

conclusive. Singlet formation alone is not enough for spin-Peierls. There must also be

a lattice dimerization along the chain direction associated with the transition. The

ideal probe to measure such a lattice distortion is a four circle diffractometer on a

synchrotron x-ray beamline.

3.3 Study of Low Temperature Distortions using

Elastic X-ray Scattering

All of the elastic scattering data presented in this work were measured at the NSLS,

at beamlines X20 and X22, both of which are hard x-ray (5 < E < 30keV) bending

magnet beamlines, and are equipped with four circle spectrometers like the one in
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section 2.2.3. The various rotational angles referred to in this section are as defined

in section 2.2.3. The sample was glued to a custom made sample holder using GE

varnish TM

which was then screwed to the end of a closed-cycle cryostat for cooling. The tem-

perature was controlled by a Lakeshore temperature controller, which was precise to

within 0.2 K. All measurements were taken in transmission geometry which provided

access to a greater range in reciprocal space. The chain dimerization is a unit-cell

doubling lattice distortion, resulted in new reciprocal lattice points forming at half

integer positions along the dimerization direction. This was the starting point for our

x-ray exploration.

3.3.1 Lattice Distortions and Superstructures

Single Unit Cell Distortions

Generally speaking the lattice measured at room temperature is different from the

T=2K lattice. This is because at room temperature, there are lattice vibrations which

1.00o
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T (K)

300

Figure 3-12: Plot of the thermal expansion for each lattice constant in TiOC1. The
structural details are discussed in section 1.4.
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tend to smear out weak interactions, resulting in a time averaged potential leading to

the room temperature lattice. Cooling the material reduces these vibrations until at

T=0 K, they are effectively zero. This leaves room for other interactions to affect the

atomic arrangement. In the simplest case, the crystal symmetry is maintained, but

interatomic spacing changes, resulting in a unit cell of different size. High resolution

x-ray scattering is the ideal probe to measure this effect. Changing the atomic spacing

correlates to changing d in Bragg's law (equation 2.26)

A = 2d sin O,

resulting in a change in the measured value of 0. If 0 is measured along a principal

crystal axis, then d is a multiple of that lattice constant. Therefore by measuring

the scattering angle as a function of temperature along each of the principal axes the

thermal expansion of the lattice can be calculated. Figure 3-12 shows the measured

lattice expansion as a function of temperature for the compound TiOCl (see section

1.4).

In other types of structural changes, atoms will change position within the unit

cell as a function of temperature. If an atom is displaced from a high symmetry po-

sition, this can change the crystal symmetry, resulting in an observable change in the

diffraction pattern. If the atomic movement does not change the crystal symmetry,

then it is more complicated to detect, since this will only change that atom's contri-

bution to the structure factor, an can therefore only be detected through a careful

measurement of the scattered intensity.

To best illustrate these concepts, we can examine the the shifting of atomic posi-

tions within a simple 2D lattice, shown in figure 3-13. The undistorted lattice shown

in a) has rhomboidal symmetry. The unit vectors point from one atom to each of

its nearest neighbors. The rectangular unit cell drawn is not the primitive cell, but

it is a periodic unit of the lattice. The distortion in b) changes the symmetry from

rhomboidal to rectangular, making the rectangle the new primitive cell. In reciprocal

space the triangular reciprocal lattice is still observable, but lower intensity points
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have appeared at 1/2 integer locations changing the reciprocal lattice to rectangular

symmetry. Note, however, if we take had taken the rectangular unit cell to be the

primitive cell in a), then the distortion in b) does not change the symmetry, just the

relative intensity of the observed peaks. Further movement of the atoms along the

same direction will not result in any new reflections, it will only change the relative

intensities of the existing ones. In the final example, we examine the distortion in

c), for which the rectangular unit cell in a),b) is no longer a periodic unit of the

lattice. The new primitive cell is the primitive cell from b) with the a-lattice param-

Real Lattice

b

Sk

W

0

h i

0

h i

0
I- 1h

Reciprocal Lattice

0

b*
a 0 0

b
0 )

A
W a v

Ic-l4
w)(

IF

Figure 3-13: Comparison of various real space monatomic lattices with corresponding
reciprocal lattices. The size of the reciprocal lattice point is proportional to the
relative intensity (as calculated using equation 2.39). a) A 2D rectangular lattice
with a 2 atom basis, R1=(0,0), R2=(0.5,0.5). In this case the unit cell is bi-layered
in both a,b directions, therefore only h,k with h+k=2n are allowed. b) Unit cell
preserving lattice distortion, R1=(0,0), R2=(0.6,0.5). The main allowed Bragg peaks
remain but in addition, some of the forbidden peaks become allowed, albeit with much
smaller intensity. c)Unit cell doubling distortion. The doubled unit cell now has a 4
atom basis: R1= (0,0),R 2=(0.5,0), R3=(0.2,0.5),R 4=(0.8,0.5). The allowed peaks in
the undistorted lattice are the most intense for the doubled unit cell reciprocal lattice.
However, new sets of points have filled in the h+1/2 positions, consistent with the
doubling along h in real space.
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eter doubled. We see that the diffraction pattern is similar to that in b), but with

extra reciprocal lattice points at the h+1/2 positions, consistent with the doubling

of the unit cell along this direction. There are many examples of unitcell doubling

distortions in nature. Section 3.3 discusses such a lattice distortion in TiOC1.

Incommensurate Structures

The last distortion of the previous section (figure 3-13c) is a special example of a

much more general type of distortion. Unlike the previous distortions, it could not

be described by a single unit cell, rather it extended over two unitcells. We can

generalize this to a distortion which involves N unit cells, where N doesn't even

have to be a rational number. When the amplitude of a distortion is modulated

over N unit cells, this is known as an incommensurate distortion. The analysis of

incommensurate structures, can be quite involved. In this section, a few simple

examples of incommensurate modulations will be presented along with techniques

used to identify them.

Sinusoidal Modulation

We begin with a distortion of the form

u(x) = 6cos(rla/A), (3.6)

where I labels a lattice site, A is the number of unit cells spanned by one period of the

displacement and a is the lattice parameter. The periodicity of the lattice is being

modulated by an additional displacement which may or may not be in phase with the

lattice. If the modulation is a multiple period of the lattice, it is called a commensu-

rate modulation. The example in figure 3-13 represents a commensurate modulation

with A = 2 unit cells. There are also modulations which have a wavelength which is

not an integer multiple of the lattice, for instance av/17. Such modulations are called

incommensurate modulations. While it may seem elusive, it is actually straight for-

ward to calculate the scattering intensity from an incommensurate modulation along
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a single chain of atoms by substituting xi + u(x) into R, of equation 2.39.

S(Q) = 7 eiQ·(Xi+u(X))

i

-= " eiQ(xi+
6 cos(lrla/A))

= eiQxi eiQj cos(irla/A)

Generally the magnitude of such displacements are small, so the exponential can be

expanded for 6Q << 1,

eiQgcos( la/A) ,1 + iQS cos(irla/A)

=1 +i [eiQ r a/ + e- i la/

Substituting this expansion back into the structure factor, using q = 2ir/A, and

xi = la,

S(Q) = • , [ei(Q+q)xi ei(Q-q)xi] , (3.7)
i

we see that the incommensurate modulation results in peaks appearing at Q + q and

Q - q in reciprocal space. A computer generated numerical simulation of the structure

factor for a sinusoidal modulation (not using approximation 3.7)of the atomic spacing

along a linear chain of 2000 atoms is shown in figure 3-14.

Square Wave Modulations

Not all modulations are smoothly varying functions like the sine function. One exam-

ple is the case where a system spontaneously forms ordered domains which are out of

phase with one another. In our linear chain example constructing such a modulation

would require shifting A/2 atoms by +6, then shifting the next A/2 atoms by -6,

creating a modulation which is essentially a square wave, of wavelength A. While

analytical forms for a square wave exist[52], they aren't straight forward to apply to
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Figure 3-14: Schematic representations of various lattice modulations, along with the
corresponding exact numerical diffraction pattern (direct structure factor calculation,
i.e. no expansions). In the atomic chains, the atomic color is representative of the
displacement magnitude, red=6, blue=-6. In the third displacement pattern the
stationary atom separating the domains is known as a soliton [5]. The upper plots for
the sine and square waves show the diffraction from a modulation which is an integer
multiple of the unit cell and is therefore commensurate. Note that the intensities
are plotted on the same scale but the modulation amplitude for the square wave is
nearly a factor of ten less than that of the sine wave. In the lower frame of the sine
modulation, the wavelength is simply an incommensurate multiple of the unit cell.
For the square wave, an incommensurate modulation is difficult to interpret, since by
definition a square wave is discrete, and therefore must always be commensurate. By
choosing an odd number the wavelength, A = 9, the modulation is a mixture of 4,5
for A/2 lengths.
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this analysis. However using the Fourier expansion for the square wave [52],

4 1 2nirx\
f (x)= - sin  , (3.8)

n=1,3,5,...

a relatively straight forward solution presents itself. Now instead of a single sine

function the modulation is a sum of sine functions, which can be treated in a man-

ner identical to the derivation of equation 3.6. The scattering from a square wave

modulation is therefore

S(Q) = e' [i(Q+qu)z - ei(Q-)z] 1 (3.9)
i n=1,3,5,...

where q, = 2nr/A. The diffraction pattern from two different wavelength square

wave modulations is shown in figure 3-14 along with comparable sine wave modulation

diffraction patterns. The clear differences are that the square wave modulation results

in much more intense satellite peaks relative to the main Bragg peak (the amplitude

of the modulation used is almost ten times less for the square wave modulation). In

addition, the sine wave contains all harmonics, whereas the square wave clearly has

only odd ones. In addition the ration of the intensities of the higher harmonics to the

first one is larger for a square wave. These differences are more pronounced for the

commensurate modulations in the upper panels. The incommensurate modulation

isn't well defined for a square wave, since by definition a square-wave is a discrete

modulation. By setting A = 9, the modulation contains a mixture of A/2 = 4, 5

domain sizes, which is the closest approximation to an incommensurate square-wave

modulation.

The Soliton

In a sense the square wave modulation is an intellectual construction, since in real

systems changes tend to be more gradual. The final atomic arrangement in figure

3-14 shows domains of displaced atoms separated by one which remains station-

ary. The stationary atoms, called solitons[5], form a sub-lattice for which thermo-
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dynamic properties[53], waveforms, and diffraction patterns can be calculated[54].

Solitons have been experimentally observed in many systems, Polyacetylene [55],

TTF-CuBDT[56], and CuGeO 3 [54] to name a few. Because of this, it is worth

discussing the soliton modulation in addition to the sine and square waves.

The analytical form for a soliton is given by[57],

la
u(l) = 6sn( ), (3.10)

where sn(x) is the Jacobi elliptic function of the first kind, 1 labels a lattice site,

with spacing a. The parameters F and k are soliton specific properties, requiring a

brief discussion of the Jacobi Elliptic function. Here only enough will be discussed to

understand how it applies to scattering. If interested the reader is directed to [58] [59].

To understand sn(q), we first need to define the function

u(0, k)=dt (3.11)
) V1 - k2 sin 2 ,

which formally is the incomplete elliptic integral of the first kind. The Jacobi elliptic

function is the inverse of u(0, k),

sn(u, k) = sin(o, k).

The variable k is a parameter known as the elliptic modulus, and it has a value

0 < k < 1. From equation 3.11, if k = 0, then the u(Q, 0) = 4, therefore, sn(u) =

sn(O) = sin(O), and the Jacobi Elliptic Function becomes a sine curve. In the limit

k -* 0, it is less clear what happens. The integrand of u(0, 1) becomes singular for

0 = n7r/2, meaning that sn(oo, 1) = 1. It is also easy to deduce u(0, 1) = 0. Beyond

this it is difficult to get a feel for the function, therefore it is convenient to turn to

numerics. Conveniently, Wolfram's Mathematica Software has an sn(x, k) function,

and while it blows up for k = 1, for k = 1 - 10-9, sn(x, k -- 1) resembles a long

wavelength square-wave. This tells us that roughly speaking sn(x, k), is a function

which can be continuously tuned from sine wave to square wave using the parameter
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Figure 3-15: Red curve is a sinusoidal modulation along with a soliton modulation.
The soliton width F is defined along with the soliton separation given by r/q, where
q is the position of the observed satellite peak in reciprocal space.

k. This defines k in equation 3.10.

How does this apply to solitons? Figure 3-15 compares a rapid oscillation modu-

lated by sine and soliton functions. From this plot we can now define F from equation

3.10 as the soliton width. What we also get from figure 3-15 is the value A/2 = rw/q

is the inter-soliton distance. The relationship between A and F is[54]

-= 2kK(k)F (3.12)
q

where K(k) u(ir/2, k) is the complete elliptic integral of the first kind.

Harmonic Analysis of Incommensurate Scattering Peaks

In figure 3-14 we saw that the relative intensities of the harmonics due to scattering

from a sinusoidal and square-wave modulation vary significantly. It turns out that

a quantitative measurement of the harmonic ratios can be used to deduce the wave

form of the modulation. In section 3.3.1, an analytical expression for the diffraction
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pattern from a square wave modulation was derived using the Fourier expansion.

This approach can be applied to any function if the Fourier expansion is known. The

general form for the scattered intensity from a a periodic modulation u(x) is [54]

In dO sin (nO) sin [Q u (x) , (3.13)

where 0 = qx, and q = 2pi/a is the reciprocal lattice vector of the harmonic peak

position relative to the nearest Bragg peak. The displacement modulation, u(x) can

be expanded into it's Fourier components u(x) = Em am sin (mO) . The m = 1 term

corresponds to a simple sine wave modulation. The expected ratio of the 3rd to 1st

harmonics can then be calculated by making the substitution u(x) = 6sin(qx) into

equation 3.13, then calculation In for n = 1 and n = 3. value for 13/1, can be

calculated,

3 _ (fo' sin 30 sin [Q6 sin 0]

Il \ f0 sin 0 sin [Q sin O] ]

(fo sin 30 [Q5 sin 0 - (Q6)3 sin 3 0/6 + ...]
7o sin 0 [Q6 sin 0 + (Q6)3 sin" 9/6...]

(fo sin O(Q6) 3 sin3 0/6 2 4
fo sin OQ6 sin 0 576 '

where the second sine function has been Taylor expanded for Q6 << 1. For 11, the

(Q6) 3 term has been dropped since (Q6)3 << Q6. For 13 the 3rd term was necessary

since

sin m sin nO= 0 n (3.14)
7o- m= n

The factor of 576 results from the integration. From this exercise we expect the ratio

13/I1 for a sinusoidal modulation to go like

I3 (Q6)4
(3.15)11 576
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For the example in figure 3-14, 6 = 0.03 and Q = 2, therefore, (Q6) 4 = 2.25 x 10- s ,

which is consistent with the 13/11 ratio for a similar value for Q6 from reference [54].

Comparing the ratio of the intensities of the third and first harmonics for the plots

in figure 3-14 we see that the ratio is - 10-6, which is due to the finite chain size

used. By repeating the simulation for 105 atoms, I was able to recover the proper

13/11 ratio.

Now that the sinusoidal ratio has been calculated, the square wave ratio is rela-

tively straight forward. As usual we expand the second term in powers of (Q6). In

section 3.3.1, we already expanded the square wave in terms of its harmonics. Be-

cause of equation 3.14, the square wave expansion is truncated to the 3rd and 1st

order terms for the numerator and denominator respectively. This is the major dif-

ference from the sine function, since the (Q6) 3 in the Taylor expansion was necessary

for the numerator to be non-zero. In the square wave case the integrals as well as

the Q6 terms cancel, making 13/I11 proportional to the ratio of the a3 and al Fourier

coefficients of the square wave, (1/3), leaving

13 a 2= 1/9 10 - 1 .  
(3.16)II a3

Indeed this is consistent with figure 3-14, even for a chain of 10' atoms.

The harmonic ratio of the soliton modulation is a little trickier, but follows the

same procedure. To get the Fourier coefficients, sn(x, k) must be expanded in the

nome[59], Y, defined by
K(vI 1- k2)

Y = e-" K(k)

where K(k) is the complete elliptic integral of the first kind defined in section 3.3.1.

The coefficients of the expansion are

y(2m+l)/2
a2m+1 (1 - y 2m+1)

Following the same procedure for the sine and square waves, to find the ratio 13/11,
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requires finding the ratio a3/a [54].

13= ( + 1 )2 (3.17)

With this we have the tools to evaluate the relative intensities of the most common

periodic oscillations. In section 3.3.5 this technique will applied to characterize an

incommensurate modulation in the compound TiOC1.

3.3.2 Commensurate Superlattice Peaks

Upon cooling the sample to base, we found a superlattice peak at the (0 2.5 0)

position. Scans along and perpendicular to the chain are shown in figures 3-17(a)

and (b) respectively. A comparison of the fitted peak width to that of the (0 2 0)

Bragg peak showed the (0 2.5 0) to be resolution limited in both directions, meaning

the dimerization is long range over a length scale comparable to the beam size (-
1mm). The weak shoulder in the transverse scan (b), is due to crystal mosaic which,
depending on the sample used, ranged from 0.2-1.5 degrees (in 0). We also explored

other reciprocal lattice positions and found that the new reciprocal lattice to be

essential the same as the undimerized reciprocal lattice, but with new reciprocal

lattice points at (h k+1/2 1). So the change in symmetry is similar to the example

illustrated in figure 3-13.

To estimate the degree of dimerization, our initial inclination was to compare the
(0 2 0) and (0 2.5 0) integrated intensities. This proved meaningless, however, since

a. . . . A
b B

a) b)

Figure 3-16: Schematic drawing of the model lattice used to fit the measured peak
intensities. The supercell has dimensions (A,B,C)=(a,2b,c). The adjustable fitting
parameters were the dimerization magnitude, 6, and a relative translation of neigh-
boring chains, -r.
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the (0 1.5 0) superlattice peak was an order of magnitude more intense than (0 2.5 0).

We therefore measured the integrated intensities of about 45 Bragg and superlattice

peaks, and fitted them to the x-ray structure factor (equation 2.39 of an orthorhombic

unit cell with lattice parameters, A=a,B=2b,C=c, where a,b,c are the undimerized

lattice parameters (figure 3-16). The adjustable parameters illustrated in figure 3-16b

were the dimerization distance (6) and a relative shift of one chain with respect to the

other (r). The parameter 7 was necessary since it isn't clear how one chain dimerizes

with respect to its neighbor (see discussion of figure 3-26 in section 3.3.3). The fit

converged on values 6 = 0.1 ±0.07A, and 7 = 0.17±0.1A. In principle 45 peaks should

yield better certainty than this. The most likely cause for this uncertainty is the non-

uniformity of the crystal. This introduces an orientation dependent intensity which

cannot be accounted for theoretically. Our model was also reduced to the movement

of only Ti3+. In reality the 0 2- and Cl- ions are also most likely displaced but our

poor sample quality made resolving these movements impractical. Because Ti3+ is

both the magnetic ion and strongest scatterer of x-rays, it is reasonable to assume

that the observed structure factor is dominated by Ti3+ movement. Subsequent to

our measurement, Shaz et. al.[60]. performed a single crystal refinement of the

low temperature structure, and found changes in the O,Cl positions comparable to

the change in Ti positions. They report a 6 of 0.18Adimerization. While they don't

report it explicitly, it is possible to extract 7 from the structural information provided.

We estimate their value of 7 to be about 0.1A. The temperature dependence of the

integrated intensity of the (0 2.5 0) peak is shown in figure 3-17c. There is clear,

sharp drop to zero at about T=65 K. which corresponds to T,, in our thermodynamic

measurements. In the language of phase transition physics, the peak intensity serves

as an order parameter, or some characteristic which is quantifiably different on either

side of the transition. In a water to ice transition the order parameter would be

the density, for instance. The order parameter for the transition at T,1 in TiOC1 is

unlike that of spin-Peierls systems observed in the past, which had more classic mean-

field power law type behaviors. In addition, the peak intensity exhibited a thermal

hysteresis, with a width comparable to that observed in the magnetic susceptibility.
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Figure 3-17: Longitudinal (a) and transverse (b) scans through (0 2.5 0) the commen-
surate position along with the temperature dependence of the integrated intensity (c),
which exhibits a thermal hysteresis with a width comparable to that of the magnetic
susceptibility (c inset). The line through the data in c) is a guide to the eye.
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In our initial measurements we found no evidence for any structural change at T, 2.

The conclusion was then that the lattice dimerization at Te1 was spin-Peierls-like, but

it wasn't safe to label the transition spin-Peierls until we sorted out the origin of the

first order behavior of the transition.

3.3.3 Incommensurate Superlattice Peaks

In one experiment we were trying to acquire a detailed characterization of the order

parameter upon warming. We followed the peak intensity through T,,, and found

that at about T=70 K, well above T,I, the superlattice peak was still present, and

with significant intensity. Our initial thought was that something was wrong with

the temperature sensor, but we later noticed that the values of H,K were several

resolution widths away from the (0 2.5 0) position. Thinking we had lost alignment,

we drove the instrument back to the (0 2 0) Bragg peak, to find that it was still

perfectly aligned. We went back to the superlattice peak and warmed the sample a

little more, which caused the peak to move. We then tried tried a long H scan which

revealed another peak a symmetric position about the H-axis. At this point we real-

ized that we had discovered a novel set of superlattice peaks which were at positions

incommensurate with the lattice. Figure 3-18 shows a series of scans along the H

1 5UUU

o
U 5C

C 5000

A

-0.05 0 0.05
H (r.I.u.)

Figure 3-18: Long scans along H showing the incommensurate and commensurate
peaks present at different temperatures. The commensurate scan has been offset
from zero for clarity. The incommensurate scan is at a K of 2.492.
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direction through the commensurate and incommensurate positions. The peaks are

well separated at T=66.5 K. Upon cooling the separation decreases until at T=63 K

(T,, for cooling), they seem to have merged into the commensurate position. A more

quantitative study of the temperature dependence of all of the fitted peak parameters

is summarized in figure 3-19. Upon cooling through T 2,,, peaks appear at positions

(H++0.08,K=.012,0) (figure 3-20, bottom frame). As the system is cooled further,

the peaks continuously move toward the commensurate superlattice position where

they merge at T,,.

In section 3.3.1 several different lattice modulations were presented along with

their respective diffraction patterns. The commensurate peak observed below T,1 can

be considered to be due to a two unit cell (A = 2) modulation. If we now consider the

diffraction pattern due to a harmonic modulation with a wavelength slightly larger

or smaller than 2 by an amount 6, the peak at q=0.5 position will split into two new

peaks with positions given by

2-r 27r 1 r ) 6q =;:- (1 - -) = q - qrSa(2 +6) a 2(1+) a 2 2'

where q is the wavevector of the incommensurate peak reduced to the Brillouin Zone,

and qc is the commensurate q-vector. From this the incommensurate peak positions

relative to the q, = 0.5 will be q,6/2 = 6/4. Along the H direction the peak splitting

is about the Brillouin zone center, therefore the corresponding modulation will have

a wavelength given by 1/6H, where 6H is the incommensurate peak position in re-

ciprocal space. From figure 3-19, just below T~2the incommensurate wavevectors are

Ab = 2.06, and Aa = 12.5 for the b and a directions respectively.

The inset in the AH plot shows the exact theory for the temperature dependence

of AQ = (,a*)2 + (Ab*) 2

6 (t) = 4.62/[4.61 + In(1/t)], (3.18)

where t = (T -Tcl)/(Tc2 -Tel) is the reduced temperature, 6(t) = AQ(t)/AQ(t = 1).

This expression was derived by W.L. McMillan using a mean field expansion of the
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lattice free energy to help understand the incommensurate to commensurate lock-in

transition in charge density wave modulations. The basic assumption of McMillan was

that the energy due to small deviations from the locked in commensurate wavelength

can best be minimized by creating a long-wavelength phase (rather than amplitude)

distortion[6].

Unlike the commensurate superlattice peak order parameter, the incommensurate

order parameter has a gradual onset, with no thermal hysteresis. A second order phase

transition characteristic is the power law order parameter behavior, the exponent of

which determines the universality class. The red line in figure 3-19a is a power law

fit of the integrated intensity

I(T) = a(T - Tc)O. (3.19)

The value of 3 converged on = 0.3 + 0.1. After the onset of the incommensurate

peak, the intensity continues to increase, leveling off at its maximum value at about

T=75 K. The intensity remains constant as the sample is cooled toward Tcx. Just

below T=70 K (indicated by the vertical dashed lines in figure 3-19) the systems

enters a region in which it was difficult to distinguish between commensurate and in-

commensurate peaks. In fact, it was unclear whether or not there was a coexistence

of incommensurate and commensurate phases. To clarify this H,K mesh scans were

taken around the incommensurate/commensurate regions at temperatures approach-

ing T,1.

Figure 3-20 contains intensity maps over the scanned regions, showing the evo-

lution from incommensurate to commensurate upon cooling. A log scale is used to

make all of the peaks clearly visible, but this also has the unfortunate side effect of

enhancing the diffuse scattering in the peak tails. The important aspect to focus on

is the most intense core of each peak, which shifts continuously toward the commen-

surate position as T -- 65K. Figure 3-21 shows a mesh scan over a large area which

reveals higher harmonics of the reflection. These harmonics give us a possibility to

model the incommensurate modulation, which will be discussed over the next two
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Figure 3-19: Temperature dependence of fitted peak parameters for commensurate
and incommensurate temperature regions. The incommensurate intensity in figure a
is fit to a power law (T - T,)3 . The FWHM quoted in figure b, is that along the
H direction. Along K, the peak remained resolution limited. The inset of figure c
shows the parameter 6, which is the change in wavelength of the incommensurate
modulation along with the exact theoretical model of McMillan ([6]).
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Figure 3-20: Mesh scans showing the temperature evolution from incommensurate to
commensurate. The scale is a log scale, so much of the width is most likely due to
low intensity diffuse scattering.
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sections.

3.3.4 Modelling of the Incommensurate Modulation

In section 3.3.1 three different modulation wave forms were investigated, a sine wave,

a square wave and a soliton. Each of this results in a pattern of equally spaced

satellites, with the difference in each modulation type manifesting itself in the ratio

of the intensities of the higher harmonics to the first harmonics. The procedure for

modelling the incommensurate modulation will be to first find the simplest model

to reproduce the observed diffraction, for which all modulation forms are equivalent.

The waveform can then be refined by analyzing the ratio of the observed harmonics.

Conceptually, the simplest modulation is a square wave, which corresponds to an

arrangement of anti-phase domains, where the domain wall spacing gives the incom-

mensurate wavevector. In the case of a dimerized lattice two anti-phase domains are

always separated by a single undimerized atom (see figure 3-22). The incommensu-

rate wave vector is then given by the soliton spacing. In the case of TiOC1, we observe

satellites in both the H and K directions, therefore implying a 2D soliton lattice. If we

consider the solitons like atoms, and compare the diffraction patterns of the atomic

u, -

Peak H (r.l.u.) K (r.l.u.) Rel. Intensity
1 -0.0653(1) 1.50778(4) 3665 ± 15
2 0.0682(1) 1.50768(8) 3665 ± 12
3 -0.067(3) 1.4908(2) 9 ± 1
4 0.0670(7) 1.4910(2) 22±2
5 -0.188(4) 1.4750(5) 1.0 ± 0.7
6 0.1982(4) 1.4740(1) 32+2

'-e_
@nC

0

0

-0.2 -0.1 0 0.1 0.2
H (r.I.u.)

Figure 3-21: Mesh scan showing the first and third harmonics on the -AK side of
the commensurate position. No third harmonics were observed on the +AK side (see
text). The table contains the positions and relative intensities of each of the observed
peaks. The peaks are numbered from right to left and top to bottom.
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arrangements in figure 3-13, we can see that in order to get diffraction along the diag-

onal the soliton lattice symmetry has to be rhomboidal, rather than rectangular. This

can be done by shifting the solitons on neighboring chains with respect to eachother.

This is a nice model conceptually, however, as discussed in section 3.3.1, a square-

wave modulation can never be truly incommensurate. The temperature dependence

of the incommensurate wavevector in figures 3-19c,d requires that the modulation

be incommensurate, meaning this simple soliton picture cannot apply. We therefore

turn to the sine function to model the incommensurate modulation, which has no

restriction on the choice of incommensurate wavevectors. The modelling of the in-

commensurate structure with the sine wave is shown in figure 3-23. The core of the

model is the sinusoidal shape of the commensurate state, where the atom sits at an

extremum of the sine wave with wavelength A = 2. The incommensuration along

K can then be obtained by making the wavelength slightly larger than 2. In figure

3-23, A = 2.04 is used. The reflections in figure 3-21 are also asymmetrically weighted

about the K = 1.5 axis which can be reproduced by phase-shifting one chain with

Normal Dimerized Anti-Phase Domain

* 6

Figure 3-22: Cartoon showing that the boundary between two anti-phase domains
in a dimerized lattice is a single undimerized atom, known as a soliton. The soliton
spacing gives the incommensurate wavevector.
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Figure 3-23: The commensurate state can be modelled by a sine wave with the ex-
trema centered on the atomic positions (a). To get a splitting about the commensurate
position along the b-direction, the wavelength of the sine wave can be made slightly
different from 2 (b). The asymmetry results from phase shifting the modulation of
one chain with respect to its neighbor (c). Finally, one diagonal of the incommensu-
rate diffraction pattern in 3-21 can be obtained by phase shifting the modulation of
each unit cell along the a direction. The overall phase shift increases with increasing
a. Here the atomic positions are defined as (x,y) = (ma,nb).
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respect to its neighbor by an amount q. In figure 3-23c, q = 0.3r. The value of q

which best describes the data is q = r/2 corresponding to neighboring chains being

perfectly out of phase with eachother. This q also makes the most intuitive sense.

Finally we need to make make incommensuration run along the diagonal, which from

our soliton discussion we learned can be done by a shift of the solitons as a function

of a. In our sinusoidal model, the corresponding parameter is a phase shift ( of the

modulation of each unit cell with respect to its neighbor. This results in a total

phase shift of nr of the nth unit cell with respect to the first. Figure 3-23 shows the

diffraction corresponding to a shift of ý = 0.45.

The pattern in figure 3-21 has satellites running along both diagonals. We've

only constructed one. The other can be obtained by changing the sign on xi, which

corresponds to a domain twinning. Figure 3-24 shows the fully modelled modulation

of the diffraction pattern in figure 3-21. The parameter values which best describe

T= 79 K
1.52

1.5
K

1.48

1.46
1.52

1.5
K

1.48

1.46

b

-0.2 0 0.2
H

Figure 3-24: Fully modelled incommensurate diffraction along with a schematic of the
atomic positions which generate the pattern. The solitons are highlighted in yellow,
and the shading highlights the anti-phase domains which occur across the diagonal
boundary. The atomic shifts have been exaggerated for illustration purposes. The
parameters which give this pattern are discussed in the text.
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the data are
7r"A= 2.041, = - = 0.45 (3.20)
2'

and the twinning fraction of +(/ - ( is 60/40. This model successfully reproduces

both the peak pattern and the peak intensity asymmetry, of the first harmonics about

the K = 1.5 axis, which we see from the table in figure 3-21 is about 1/100. However,

we also see that the third harmonic intensity should be about the 1/200 times the

strongest peak, but in our model it has an intensity - 10- 4 that of the strongest first

harmonic. Recall from section 3.3.1, that the sinusoidal modulation has very weak

third harmonics for small S. It turns out that we can attain the correct intensity

ratio by making 6 unphysically large. Therefore we can expect to improve on this by

changing the waveform. Since the square wave modulation has already been ruled

out, the next viable possibility is the Jacobi elliptic function which was also discussed

in section 3.3.1.

3.3.5 Harmonics

Now we have a good understanding of the basic structure of the incommensurate

state. The final refinement to be made is to find the exact form of the modulation

from the ratio 13/I1, following the procedure outlined in section 3.3.1. Figure 3-25a

shows scans along H and K through the first and third incommensurate harmonics,

along with corresponding scans through the commensurate peak at 10 K. The first

harmonics are resolution limited, whereas the third harmonics show a clear broad-

ening, implying a difference in characteristic lengths scales for each harmonic. This

broadening from first to third harmonics was also observed by Christianson et. al. in

the magnetic field induced incommensurate state in CuGeO 3 [61]. While they could

provide no quantitative treatment of the broadening, they did state that a finite width

of the third harmonic requires a non-zero width of the first harmonic. Any broadening

of the third harmonic is most likely due to imperfections in the crystal lattice. This

broadening will effectively increase 13/I1, so corrections must be made assuming the

harmonic should be resolution limited. By summing over all third harmonics then
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dividing this by the sum over all first harmonics in 3-25, we get a ratio 13/I1 = 1/110.

In section 3.3.1, we saw that 13/11 was - 0.1 for a square wave, which is not

consistent with our 13/1 ratio. The next easy guess is a sinusoidal modulation, which

from equation 3.15 should be - (Q6)4/576, for distortion amplitude J. In section 3.3.2

we found the commensurate atomic displacement to be about 3%. The sum of the

integrated intensities of all six incommensurate peaks plus third harmonics is about

ten times less than the integrated intensity of the commensurate peak, so e is roughly

.003b. Using this for Q = 1.5, we find an expected sinusoidal 13/I1 of , 10-10, which

differs significantly from the measured value 1/110. Since the measured ratio was

only a factor of 10 different from that for a square wave, (compared to 10-8 for the

sine wave), it is reasonable to assume that the modulation is a smeared square wave.

We therefore turn to the soliton. Recall from section 3.3.1 that the soliton function

u(la/Fk, k) depends on both xi =- la and the parameter, k, which from 3-15 we saw

defines the soliton width F. The value of k can be determined from 13/11 measured

for one value of the incommensurate wavevector 6q using equation 3.17. This value of

k can then be used in equation 3.12: - = 2kK(k)F to determine the soliton width.

As 6q changes with temperature, k will change which effectively changes the soliton

spacing. Therefore, once F is known, the 6q dependence of k, and thus the 13/1, ratio

is determined. For TiOCi, we determined k = 0.97 at q = 0.11, which corresponds

to F - 8A. For a nearest neighbor Heisenberg model, Nakano and Fukuyama predict

[5].
_ Jb

S= 2A (3.21)2Ao
where J is the intra-chain coupling and Ao is the excitation gap. Using J = 660K

from Seidel et al. [4], and A, = 430K from Imai [62], the theoretical soliton length

for TiOC1 is F = 8.1A, which is in very good agreement with the measured value.

The soliton spacing 7ra/0.11 = 108Ais much larger than the soliton width, so the

solitons are widely spaced, and the modulation resembles a smeared square wave, as

we guessed by comparison of 13/11 with that of the square wave. Once F is determined

the entire I3/I1 (6q) can be calculated. This calculation along with the measured 13/I,
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Figure 3-25: Comparison of the commensurate peak with first and third incommen-
surate harmonics (figures a,b), and (figure c) the ratio 13/11 as a function of the
incommensuration, AQ, with a fit line to the expected behavior for a soliton with
width F = 8A.

132

I I I I

C) * Data
r=8A

I , I , I * I



ratios are shown in in figure 3-25b.

We now have valuable insight into the nature of the incommensurate state, and

can therefore make some predictions as to its origin. It appears that at Tc2=92 K,

the spin interactions want to make the lattice dimerize. If the atoms formed a perfect

rectangular lattice, then the only competition is between the spin energy and the

7
Figure 3-26: Cartoon illustrating that a simple rectangular lattice has no problem
dimerizing, whereas a staggered lattice, like TiOCI, cannot satisfy equal atomic spac-
ing for every atom for a given dimer length. This gives rise to a frustration of the
lattice energy.
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lattice energy along the chain (recall equation 1.11). However, in TiOCl neighboring

chains are shifted by a b/2 with respect to eachother, therefore the lattice energy

of the neighboring chains will also be a competing factor. The lattice energy along

the chain is still the dominant energy, since it corresponds to nearest neighbor Ti-Ti

pairs, but at high enough temperatures the next nearest neighbor lattice energy will

frustrate the dimerization (see figure 3-26). The lattice relieves this frustration by

inserting periodic defects, or solitons. From the Jacobi elliptic function model of the

solitons, we can see that at 92 K, when the incommensurate peaks first appear, the

solitons are spaced closely together, and the modulation is nearly sinusoidal. This

is the temperature where the next nearest neighbor lattice energy has its strongest

influence. As the temperature is decreased the soliton spacing increases gradually

(as given by the inverse of the incommensurate wavevectors). This is reflected in

the q-dependence of I3/I1 compared to the expected soliton behavior in figure 3-25.

The solitons are separated by regions of nearly perfect dimerized lattice. The first

order phase transition can be understood in terms of the domains (delineated by

shading in figure 3-24) which are dimerized out of phase with respect to eachother.

In order for the lattice to become fully dimerized, the sign of the dimerization has to

change in half of the domains, corresponding to an instantaneous change in entropy,

consistent with a first order transition. Buried in the middle of this understanding

is the implication that the lattice dimerizes wants to dimerize at 92 K, meaning Tsp

is actually at TC2, rather than Tx1. So we can now label T, 2= 92 K as the transition

into an incommensurate spin-Peierls state, and T,• =65 K as the incommensurate to

commensurate transition temperature. So far we have been labelling this as a spin-

Peierls transition, but in the next section, we will examine the phonon dynamics above

the transition temperature to see if there is any evidence of spin-phonon coupling

leading up to T,2.
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3.4 Inelastic X-ray Study of the Lattice Dynamics

Our understanding of the incommensurate modulation of the Ti atoms has illumi-

nated some possible interactions present in the dimerized state. To further elucidate

the nature of the phase transition at TC2, we can raise the temperature above the

transition and investigate the lattice dynamics leading up to the distortion. In sec-

tion 3.4.3 we will see that the typical scenario for a structural phase transition is

the softening of a zone boundary phonon having a vibrational pattern resembling the

static distortion. As the transition temperature is approached, the mode vibrates

slower and slower until at the critical temperature, it becomes frozen into the low

temperature distortion.

3.4.1 Basic Concepts of Lattice Vibrations

A Coupled Harmonic Oscillator

In the simplest approximation, atoms in a lattice can be modelled as being held

together by a series of interconnected springs. Therefore, characterizing lattice vi-

brations reduces to finding the interatomic "spring constants". A simple model to

understand how this can be done is the coupled harmonic oscillator shown in figure

3-27a. Two masses are connected to each other by a spring, then each mass is con-

nected to a wall by additional springs. For simplicity we will assume all both masses

have mass, m, and the springs labelled i = 1, 2, 3 have spring constant ki. We will

only consider the ID problem, meaning the masses are confined to move only along

the x-direction, as indicated in the diagram. If we balance the forces using Newton's

law

F1 =mlTix + klXz - k2 (x2 - xl) (3.22)

F 2 =m 2x 2 + k 3x 2 + k2(x2 - xl), (3.23)
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which we can write in matrix form:

mix1

m2x;2

( ki + k2

k3 k2 + k3

X1,

X2

(3.24)

which can be written

MX = KX (3.25)

If we compare equation 3.27 with the analogous expression for a single mass on a

spring

mx = kx, (3.26)

we see that the matrix, K, contains the force constant information about the system.

If we assume harmonic solutions xi = eiwt, then equation 3.27 becomes

m2I2 X2

m2W 2 X2

k, + k 2

-k3

-k2)
k2 + k3

X1

X2

(3.27)

Bringing all terms together and dividing by the mass,

kl+k 2  0 2
ml

k3g
m2

k2

k2 +k 3  2
M2

From this we see that the frequency is the eigenvalue of the force constant matrix.

Therefore, we need to take the determinant of the find the energy eigenvalues. For

simplicity, let's consider that all spring constants are k and both masses are m, then

equation 3.28 becomes

- 02 k

k 2k 0 2

m m

X1

X2

Which after taking the determinant, we find that

2k k
w=m - -

m m
(3.29)
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The associated eigenvectors are:

Wo0
1

1)
wo = --"

m

1

-iJ (3.30)

Figures 3-27b),c) show the vibrations associated with the eigenvectors in 3.30. In

this example, only modes confined along x have been considered, or the so called

"longitudinal" modes. We could have just as easily followed the same procedure for

I- a -

a)
k, k2 k3

mi m2

rk
m

(0 3kMm

(= rk
am

a m3kam

Figure 3-27: a) Example of a coupled harmonic oscillator: mass 1, is connected to a
wall by spring 1, and to mass 2 by spring 2. Mass 2 is connected to a wall by spring
3, and to mass 1 by spring 2. The masses of are ml and m2 respectively. In b)-e),
the masses and spring constants have been set to be equal. Figures b),c) show the
longitudinal normal modes, and d),e) show the transverse normal modes.
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a displacement along y or z, or "transverse" modes. However, since the atom in a

transverse mode is displaced perpendicular to the chain direction, a displacement y

will only stretch the spring out by an amount ay/ V/y2 +a2 which for y << a is y/a.

So if we scale the spring constant k by a giving k1 = k 1/a, then the derivation is iden-

tical to that of the longitudinal modes. The transverse frequencies and eigenvectors

are

WI = , ; = (3.31)
am L am -1

Since the system is isotropic about the chain axis, the two orthogonal transverse

normal modes will have the same energy. It turns out that these are the only normal

modes for the system. There are two atoms with three vibrational directions, for a

total of 6 normal modes. In a sense we "cheated" by guessing the good directions,

but any arbitrary displacement fi can be broken down into ull + ul, then we see that

the components can be derived independently, as we have just done.

Linear Chain Model

If we now consider that m, and m2 are neighboring masses in a periodic chain with in-

dices mi = mi, m2=mi+l, and displacements u", then for nearest neighbor interaction,

equation 3.22 generalizes to

mii4 = -- kl(u - ) - k2 ( -- u+ 1 ) (3.32)

- (k- + k2 )u + k+1u + k2Uz2+1  (3.33)

mi+i•+l = - k2 (U"+ - u") - ki(uc 1 - uit+2) (3.34)

= -(kl + k2)+ 1 + k2u + ki 2  (3.35)

Unlike the coupled oscillator problem, solutions to equation 3.32 will have the form

u"(xr) = ii(qxi-"t), which is the equation for a wave having deformation (i travelling

with wave vector q and frequency w. For a periodic chain with atomic spacing a,
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xi = na, therefore substituting u,(xi) into equation 3.32 gives

-miniw 2  - i(k + k 2) + (ki e - i 2qa + k2 )i+ 1  (3.36)

-mi+iýi+iw2 =(k 2 + klei2 qa)(i - (ki + k 2 ) i+e i qa. (3.37)

where the common factors eiwt have been divided out, and the periodicity, mi+2 = mi

results in (i+2 = gieýi2qa. As before, we can write this in matrix form. For simplicity,

we can denote the two non-equivalent sites i, i + 1 with 1, 2.

2 ( lrn1  ki + k 2  -(kle-i 2qa + k2) (338)

Sm22 -(klei 2qa + k2) ki + k2  2) (

Again, if we let both masses be m and both spring constants be k, then both equations

in 3.36 simplify to the following energy equation

w= 2 sin(2 . (3.39)

The energy is now a function of q, which disperses linearly at q = 0, with the slope

gradually decreasing as q --+ r. This is quite intuitively understood if we think of

q in terms of the wavelength A = 2air/q. So q = 0 corresponds to a A = oo, which

is essentially a uniform translation of the entire block of material. For very long

wavelengths, it isn't surprising that the energy required to change A by 6A is just

proportional to SA. At q = 7r, A = 2a, which is corresponds to a 2 atom wavelength.

There can be no shorter wavelength excitation than this, therefore it requires more

energy to change the wavelength by the same amount dA, if A = 2a-6A. Modes which

disperse linearly at q = 0 are known as acoustic modes. If instead we consider the

more general solution of equation 3.38, where either the masses or spring constants

aren't equal (both are equivalent since w oc N-/m), then we find for the eigenvalues

(after a little algebra)[41]:

2= k + k2 + k + k2 + 2kik 2 cos2qa (3.40)
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There are now two energy eigenvalues. This is a fundamental property of normal

modes. For N atoms with d degrees of freedom, there will be dN normal modes. In

this case, the motion is constrained along one direction, so d = 1, and there are 2N

atoms, meaning there should be 2N normal modes. However, recall that for every

M unitcells, there are M q-points, therefore, at each q, we expect N/M=2 (M=N/2)

branches. So the number of atoms in the unitcell determine the number of branches,

The plots of the two calculated phonon branches as a function of q are shown

in figure 3-28c. One of the dispersion curves resembles the acoustic mode for the

monatomic chain in figure 3-28b, but the other does not disperse to zero at q = 0,

a) a

ki k2 kl

ml m2

-5

2

1

0

.5

2

1

0
a

Figure 3-28: a) Example in figure 3-27 extended to a linear chain of N atoms. b)
Energy dispersion for equal masses and spring constants. This "acoustic" dispersion
is characterized by a linear slope at q = 0. c) Energy dispersion curves from equation
3.40, with k2 = 1.5kl. There are now two branches, one acoustic and one which does
not disperse to w = 0 for q = 0. This upper mode is known as the "optical" mode.
Notice that the periodicity of the dispersion has changed by a factor of 2, due to the
doubling of the periodic unit on the chain ( as indicated by a').
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rather it levels off at some finite value. While we do not show it here, the eigenvector

ýj for this mode indicates that the atoms are vibrating against each other, much

like the zone boundary acoustic mode for the monatomic case. We also see that the

period of the dispersion is half that for the monatomic chain. This is because we used

the interatomic spacing as a reference distance, where the minimum periodic unit is

actually a' = 2a, as indicated in the cartoon of figure 3-28c. This doubling of the unit

cell, results in half the periodicity in reciprocal space.

Phonons in Higher Dimensions

Returning to the general coupled oscillator in Figure la, we can write down the total

potential energy of the system

1  2 1 1)2 + k
U= 2 klx + k2(2 - 1)2 +3 32. (3.41)

If we differentiate once with respect to each variable

OU
= =klzl - k2(x2 - zl)1Xl

OU92 =k3x2 + k2(x2 - x1)
aX2

(3.42)

(3.43)

(3.44)

we recover the two force equations 3.22. If we differentiate again

02U
O 2 =(ki + k2)

2 =(k2 + k3)

82U
= -k 2

02U

aX2aX1

(3.45)

(3.46)

(3.47)
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only the force constants remain, and they are identical to the matrix elements in

equation 3.27. This leads to a more general formulation of equation 3.27

ml 2a2  02 Xl X

m( ( a2U = D ,X (3.48)
2X2 axlx2 1X

2  X2 X2

where Dxx2(x) is the force constant matrix. It may seem that we made simple

expression, like 3.27, more complicated. However, If we compare equation 3.27 with

equation 3.38, then we see that this method for calculating the force constants will

carry over into the chain of atoms. In fact, even into three dimensions this the force

constant matrix DO(R1) is generally applicable to calculate the force constant due

due to displacing atoms M and v along directions a and 3 respectively. It turns out

that the 3D analog to equation 3.32 using DL(OR) is[63][64]

M (R) = ~ D,(R)(u - uD) (3.49)

Equation 3.49 is solved in much the manner as equation 3.32, by assuming wave

solutions
1 Mu(R, t) = (s(k)ei , (3.50)

where •(Q() is now tensor indicating the displacement of all of the atoms in mode s

at wave-vector k. Not surprisingly, there is no closed form analytical solution, but in

principle, this solutions to this differential equation will be of the form[41]

w2(s = - (P(s

where
D2 U

Dep (43 = (3.51)
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is known as the dynamical matrix[65]. Using the dynamical matrix, the expression

for the phonon eigenvalues w(q) is

det vMiM - 2( = 0. (3.52)

3.4.2 Lattice Dynamical Calculations in the Harmonic Ap-

proximation

As mentioned, it is not generally possible to calculate the dynamical matrix for most

real crystalline systems analytically. However, calculation of the dynamical and/or

force constant matrices lend themselves to numerical techniques, especially with the

advancement of computer technologies in recent decades.

Shell Model

The start of any dynamical matrix calculation is a means to calculate the total en-

ergy of a system of atoms brought together into a lattice. One of the simpler energy

calculation schemes is the so-called shell model. The shell model treats each atom

as a positively charged core attached to a negatively charged shell by a spring with

constant ks,. To model the interatomic forces, an empirical potential model is used,

which is then optimized to fit the system at hand. While there are dozens of im-

plementations of this technique, the one used in this work was the General Utility

Lattice Program (GULP), available free of charge for academic use from [66].

Two common potentials used for short-range interactions are the Lennard-Jones

and Buckingham potentials [671. Both potentials are plotted in figure 3-29. The

Buckingham force tends to be more widely applicable to real systems, and it is more

justifiable theoretically due to the exponential decay of short-range interactions[67].

However, it becomes non-physical V(r) -0 oc for r -+ 0. Values of A, p, and C

are tabulated for numerous atomic pairs', which can then be used either as is, or

as the starting point for a potential optimization in a shell model calculation. The

1See for example reference [68].
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Lennard-Jones potential is also widespread due to its ease of use in computation[69].

As mentioned earlier, these are only two commonly used potentials. In general, any

potential model can be used as long as it is appropriate to the system.

Once a suitable set of potentials is found, they must be optimized and tested.

In GULP, it is possible to perform a least squared type of fitting of the potential

parameters for the various atomic pairs placed in a unit cell. Once the parameters have

been optimized, it is necessary to test the quality of the cell potential by calculating

the equilibrium structure (relaxing the cell). This is also done through a steepest

descent approach. Usually the high symmetry positions are held fixed, and everything

else is adjusted to minimized the forces. Once the forces have been minimized, then it

is possible to use this energy model to calculated the phonon modes. Since the models

being used in this case are real space models, the force constants can be calculated

directly using 3.49. As we have seen in the previous section, the phonon modes are

just the eigenvalues of the force constant matrix.

r (A)

Figure 3-29: Buckingham V(r) = Ael - T, and Lennard-Jones (6-12): V(r)
A B The various curves show different ratios of A/C (p = 0.1) for Buckingham,r 6  

r 1 2 •
and A/B for Lennard-Jones. As each of these ratios increases, the potential becomes
more repulsive.
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Density Functional Theory and Linear Response Perturbation Theory

In section 3.4.2, we saw that it was possible to calculate the phonons based on the

second derivatives of an empirically determined potential model of the lattice. This

can be very useful to reproduce experimentally observed dispersion curves, and even

estimate some material properties (like elastic constants), but one must alway ques-

tion the validity of these results since they are in essence based on a fictitious model

of the lattice. The ideal model would be to take the exact atomic potentials, calcu-

late how these potentials change upon placing them in a periodic lattice with other

atomic potentials, then from this calculate the phonons. While this solution isn't

yet a possibility with current computing capacities, a few concepts from solid state

theory greatly aid in reducing computation time.

The first simplification allows for the use of the orthogonal plane wave (OPW)

basis set, which is convenient for computation. For metals this basis set works fine as

is, but for systems with tightly bound electrons, the high plane-wave cut-off energy

would make computation cumbersome. However, if we realize that the bonding is

mostly between valence electrons, then a potential which includes detailed information

0

2

Figure 3-30: The Pseudopotential approximates the high energy, quickly oscillating
core wavefunction with a slowly varying wavefunction, which is orthogonal to the
core states, resulting in a weak enough potential to allow calculation using nearly free
electron states. The cut-off radius, is a distance above which the pseudopotential and
real potential match.
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about the rapidly oscillating core wavefunctions is unnecessary so it is possible to

replace these with a weaker potential, which is sufficient to provide the net potential

influence of the core, yet weak enough to allow a nearly free electron calculation with

reasonable cut-off energies[41].

Now that we have justified the use of pseudopotentials, we need to know how to

calculated the ground state. This turns out to be non-trivial, but a recent theory,

known as Density Functional Theory has made the numerical calculation of ground

state energies from input pseudopotentials a reality. It is well beyond the scope of

this work to discuss the details of Density functional theory. The theory is based

on a theorem which states that the ground state charge density is unique, in the

sense that two different potentials cannot yield the same ground state charge density.

Essentially it is a variational technique, which minimizes the energy by finding the

electron density corresponding to the potential V(r)[65]. The advantage of this is

that the charge density is given by only 3 variables, in contrast to the 3Neectros

variables required to characterize the wavefunction. For our purpose of this work,

it is a tool used by a piece of software used to extract the energy from the input

pseudopotentials. The interested reader is directed to the works of Hohenberg and

Kohn[70],Parr and Yang[71], and Dreizler and Gross [72] for the theoretical details.

In this work density functional theory was used to numerically calculate the

phonon eigenvalues and eigenvectors. The code used was the open source Plane

Wave Self Consistent Field (PWSCF), part of the Quantum Espresso package, avail-

able on-line at [73]. While there are numerous techniques to calculate phonons once

a total energy calculation is available [64] [63], PWSCF calculates the dynamical ma-

trix D, (q~ over a suitable q-point grid in reciprocal space. From that point it is

possible to Fourier transform Dyf(q- to get the force constant matrix Db(!R), which

can then be used to calculate the phonons at any arbitrary q-vector. The method

utilized by PWSCF to calculate the dynamical matrix is known as Density Functional

Perturbation Theory. The main idea is to solve the equation[65]

a2E(R) nR(r) OVR(r) + 2 VR(r) 2 E(Rdr (3.53)
SdR r +  nR(r) dr + (3.53)

RIR aR RI 9RR RRaR146
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where Rj are nuclear coordinates, VR(r) is the electron-nucleus interaction nR(r) is

the electron charge density, and EN(R) is the energy of the nuclear configuration.

Equation 3.53 results from a combination of the Hellmann Feyman theorem with

the Born-Oppenheimer Hamiltonian[65]. The important features of this result are

that first of all, the force constant calculation requires calculating the electron charge

density n(R), as well as the first derivative of n(R) with respect to changes in the

nuclear configuration. This first derivative is the linear response from which the

technique gets its name. Equation 3.53 is solved in the scope of DFT, the details of

which will not be discussed. The interested reader is directed to a nice Review of

Modern Physics article by Baroni et. al.[65] as well as reference [74].

In section 3.4.5 we will see an example of a shell model calculation applied to

TiOC1, which is then compared to measured phonon dispersion curves. Then chapter

() will explore DFPT in an attempt to improve upon the shell model calculated

dispersion curves. That discussion will include examples and details about running

PWSCF.

3.4.3 Structural Phase Transitions

The Damped Harmonic Oscillator Response Function

An inelastic x-ray experiment measures directly the dynamical structure factor, S(Q, w),

which, from the fluctuation-dissipation theorem, is given by

S(Q, w) = [n(w) + 1] x"(Q,w). (3.54)

In general x"(Q, w) quantifies the linear response of a system to an external pertur-

bation. In the case of x-ray scattering from a lattice of atoms, this perturbation is

the oscillating field of an incident photon, triggering an oscillatory response from the

atomic lattice. The frequency and direction of each atomic oscillation is dependent

on the curvature of the potential surface in the vicinity of the atom. From a detailed

lattice vibration study, it is therefore possible to infer the the forces acting on the

atoms in a lattice.
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The exact calculation of the change in potential due to the displacement from

equilibrium of a single atom is overwhelming, so to simplify, the lattice potential can

be expanded in terms of the atomic displacements. Since at equilibrium, the linear

term must be zero, the lowest order approximation is the quadratic term, leaving

d2UU,~p U0 + Z dud (iu, - Uv)2 + O(ia - 0) 3 , (3.55)
a,/34Ly adU0

where M, v label atoms, and a, 3 are Cartesian coordinates. The starting point for

modelling lattice dynamics is to neglect terms higher than 2nd order in (iýL-u00). This

is known as the harmonic approximation. In this approximation, the atomic response

to an incident phonon with frequency w is simply a damped harmonic oscillator given

by

X A (3.56)X =(W2 - W2)2 + p2W2, (3.56)

where I is the damping constant, and w, is the harmonic frequency. Plots of equation

3.56 for different relative values of F, wo are shown in figure 3-31. For the case of

small damping (figure 3-31a), i.e. F << wo, equation 3.56 is sharply peaked with a

FWHM, F, centered on +wo. For strong damping, the peak is no longer at wo. The

position of the peak is w1, defined by

F22 = W2 - (3.57)

which is shifted down from wo as in figure 3-31b. Equation 3.57 only has a real

solution for F < 2wo. In the so-called over-damped region where F > 2wo, W1 is

purely imaginary, and X" is peaked at w = 0 (figure 3-31c). Of course what is

measured is S(Q, w), which according to equation 3.54 is related to x"(Q, w) the Bose

factor n(w) + 1. Since both x"(Q,w) and n(w) + 1 are odd, the product, S(Q,w), is

even, with different weighting on the positive and negative energy sides to take into

account the increased probability of creating a phonon (w > 0) versus destroying one

(w < 0).

If a phonon mode is under-damped, then equation 3.56 can be used directly to fit
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Figure 3-31: Plot of damped harmonic oscillator response function for a) under-
damped, b) strongly damped, and c) over-damped cases

the lineshape. However, when the phonon becomes over-damped wl (the peak center)

is purely imaginary, and the two well defined peaks at +wl become a single peak

centered about w = 0. Because of this, F, wo are no longer well defined quantities.

Useful information can be extracted, however, by expanding S(Q, w) for 2wo << F.

In this limit equation 3.56 becomes [75]

kBT Ay
S(Q, w) e. w2  2

,  (3.58)TiW 2 W2 + Y2

where y = w2/p, and the high temperature limit of n(w) + 1 (kBT >> hwo) has been

used. The latter approximation is justified by the argument that usually wo 0 for

an over-damped mode, but in general this need not be the case. For our purposes,

however, this approximation is sufficient.

Spectral Correlation Function

Equation 3.56 is a very general and widely applicable response function for many

different types of excitations. A fit to this equation provides valuable information

about the energy, width and amplitude of an excitation. In the case of a phonon,

In the harmonic approximation, these fitted parameters are well defined, and can be

calculated for a given lattice. When the the fitted values from an observed phonon

deviate significantly from the calculated values based on harmonic lattice potential,

then anharmonic corrections must be taken into account.
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Generally, anharmonicity is introduced by some weak interaction, which can be

treated quantum mechanically using time dependent second order perturbation the-

ory. This will add an additional term to the (undamped) harmonic phonon correlation

function 1/(w 2 - •).

A(w) = -9 _ 2 (3.59)7r -w -H(q,w)

where Zo is the harmonic or bare phonon frequency, and H(q, w) is the polarizability,

or self-energy. As was the case for the response function in equation. 3.56, for a given

phonon mode, one obtains S(Q, w) from A(w), by

S(Q, w) = IF(q)12 [1 + n(w)] A(w), (3.60)

where F(q) is the atomic form factor. It was our purpose at the offset of this section

to derive a "better" description of the scattering process from a phonon, so in some

limit of equation 3.59 we should recover equation. 3.56. First we can see that by

setting H(q, w) = 0, equation 3.59 is identical to equation 3.56 for P = 0, indicating

that I(q, w) must contain information about the damping. Since II(w) is the only

term which is complex, it can be broken into real and imaginary parts,

11(q, w) = R [H(q, w)] + it [I(q, w)]. (3.61)

Using this in equation 3.59,

1 M [II(q, w)] (3.62)
A,(w) ( 2 - - [(q,)])2  [(q, )](3.62)

If we then make the substitutions

R [II(q, w)] = wo(q, )2 - Q(q)2 (3.63)

Q [I1(q,w)] = wIr(q,w), (3.64)
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We recover the damped harmonic oscillator response, equation 3.56. At this point

it is appropriate to point out that what in equation 3.59, wo = + RII. So

this illustrates that it is still possible to use equation 3.56 to model the response of a

system with anharmonic contributions, however, wo now takes on the role of a "quasi-

harmonic" frequency, and quantifies the deviation from the true harmonic frequency

due to anharmonic interactions.

Soft-Mode Picture of Structural Phase Transitions

The study of the lattice dynamics of structural phase transitions is quite unified in

that most fit into what is known as the "soft-mode" picture. In this picture the

frequency, wo of a phonon mode softens toward zero as the transition temperature

is approached until the mode becomes frozen into the new structure. Some famous

materials which exhibit nearly textbook soft-mode behavior are SrTiO3, KMnF 3 ,

KTaO 2 [76][77][78].

The real question at hand is what drives the structural phase transition? The

driving force in the soft mode picture can clearly be seen from equations 3.59 and

3.63. From equation 3.63, it is evident that turning on H(q, w), will cause a shift in wo

toward w = 0. Turning on II(q, w) can also cause a change in the phonon damping,

but it isn't necessary. Even if H is completely real (recall from 3.63 that the damping

comes from the imaginary part), wo can still soften to zero.

Because in a real system, there are interactions which damp the lattice vibrations,

if wo softens to zero, then it will pass into the over-damped regime, where wo < r/2,
where F is the damping constant defined in section 3.4.3. Recall in the damped

regime, it is no longer possible to independently determine F from w0. However,

integrating equation 3.58 over w gives a value proportional to the integrated intensity

of our experimental peak,
kBTI = A wk (3.65)

where A is a proportionality constant. If we plot T/I vs. T, from equation 3.65 we

can see that it should be linear, with the slope proportional to w2. In other words
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[78],

(hw ) = A(T - Tc), (3.66)

where Tc is the critical temperature at which the structural phase transition occurs.

This was the scenario predicted by Cross and Fisher for the lattice dimerization

in TTFCuBDT[22]. Through detailed studies of diffuse x-ray scattering on this and

other materials, many characteristics about the phonons driving the phase transition

were deduced[29]. It wasn't until the discovery of the inorganic spin-Peierls com-

pound was discovered that detailed, systematic studies of the phonon dynamics and

symmetries via neutron scattering were possible[28].

3.4.4 Cross-Fisher Polarizability

One of the most often cited theoretical study of the spin-Peierls transition was that

of Cross and Fisher (CF) in 1979. The theories up to that point were static theories

which treated both the phonons and the spin-system adiabatically, using mean field

theory. For the phonons this is reasonable, but for the spin system in ID, fluctuations

make this a poor approximation[22]. Cross and Fisher improved on this by calculating

the spin correlations weakly coupled to a lattice distortion, while still treating the

phonons adiabatically with mean-field. From the spin-lattice correlation function,

they calculated a polarizability or self-energy II(q, w) for the weak coupling limit.

For the purpose of this work, it a phenomenological discussion of their end result is

sufficient. The reader is directed to the original work of CF in reference [22] for the

theoretical details.

The CF approach starts with the Heisenberg Hamiltonian for non-interacting

chains with nearest neighbor antiferromagnetic coupling

HS = J(1, I + 1)S . S1+1. (3.67)

The idea is to derive how the spin-coupling constant, J, changes with small lattice
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distortions, i.e. phonons. To first order in atomic displacement, J is given by

J(l,l + 1)= J + 1 g(q)Q(q)e q (1- eiql) , (3.68)
q

where Q(q) is the phonon normal mode coordinate, and g(q) is a weakly q-dependent

coupling of the spin to the lattice distortion. The spin-phonon interaction generates

the phonon self-energy, HI(q, w) given by

IIF(q,w) = Ig(q)(1 - eiq 2 dteitE e- iql x -ie(t)([S . SL+ 1,SO S S]). (3.69)

The final step is to calculate the dimer-dimer correlation, which CF do using bosoniza-

tion. It is also possible to calculate the dimer-dimer correlation by conformal field

theory[79], which yields an identical result in the long wavelength limit. After working

out the details of the dimer-dimer correlation, the CF self energy becomes

HcF(q, w) = -0.37 1(1 - eiqs)g(q)12

1 (w + c(q - 2kf)) I w - c(q - 2kf) 1 (3.70)
27rT 2rT T'

where
1 1 FQ + lik)

I,(k) eikx (sinh x)-1/ 2dx 4= Vr 2+ ik)(3.71)

2kf = 7/s is the zone center (for the half-filled band), and c is the spin-wave velocity,

which, from the Bethe Ansatz for a linear spin-1/2 chain, is c = rJs/2, where s is the

atomic spacing. Figure 3-39 in section 3.4.5 shows plots of equation 3.70 as a function

of w, evaluated at different values of q. The details of these various lineshapes will be

discussed in detail with special relevance to the implications on fitting real phonon

data.

By rewriting the definition of R[H(q, w)] in equation 3.63, CF defines the spin-

Peierls phase transition temperature, T,,

w2 = Q2 IIcF(q = 2kf, w -- 0, T = Tc) = 0. (3.72)
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At w = 0, IICF is completely real, so equation 3.72 is identical to setting wo = 0 in

equation 3.63, with I = LIcF(q, w). Solving equation 3.72 for g we get,

S= 5 , (3.73)

making Tc the temperature at which wo -- 0.

The self energy in equation 3.70 can be used together with equation 3.59 to esti-

mate the anharmonic correction to the frequency of the phonon mode which modu-

lates the lattice dimerization. In section 3.4.5 this analysis will be applied to a soft

phonon observed in TiOCl using inelastic x-ray scattering.

3.4.5 Lattice Dynamics in TiOCI

The starting point for our study of the lattice dynamics in TiOCl is first to identify

a phonon which changes upon approaching Tsp. If such a phonon is found, then the

temperature dependence can be tested against the CF theory in order to ascertain

whether or not this is a reasonable theoretical model for this system. Thus far the

only work on the lattice dynamics for TiOCl has been Raman and IR measurements

of the zone center optical modes [80] [81]. No evidence for a soft mode was indicated.

These techniques are only sensitive to modes having specific symmetries, and the

wavelength used is much greater than the interatomic spacing, limiting the accessible

range in reciprocal space to a small region near the zone center. Due to the small

sample size inelastic neutron scattering is problematic, hence the optimal tool to

probe phonons away from the zone center is meV resolution inelastic x-ray scattering

(IXS).
This section summarizes our experiments at SRI-3IC of the Advanced Photon

Source at Argonne National Lab. The setup of the beamline was identical to that

described in section 2.6. The only difference has to do with the temperature stability

of the monochromator. Section 2.6 states that the monochromator temperature is

maintained constant by cryo-cooling. This wasn't the case for our experiment. The

temperature was left to float which resulted in a 2-3 meV fluctuation in the zero of
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energy over the course of several hours. This was corrected by a Fortran script which

compared the relative temperatures measured at various points in the monochroma-

tor and analyzer from which the energy shift was calculated. This shift was then

subtracted from the measured energy values. All of the "raw" data shown in this

section have been corrected for temperature drifts and normalized to the monitor.

The position of the quasi-elastic peak (r 0) is evidence for the effectiveness of the

correction.

Two different samples, Sample 1 and Sample 2 consisting of co-aligned crystals

with total thickness of 20 ym and 40 /um respectively, and a mosaic spread of about 2-

3 degrees, were mounted in transmission geometry with an incident photon energy of

21.3 keV. In transmission, the number of scattering planes and absorption length are

competing factors in the scattered intensity, the maximum being about 1 attenuation

length, which for 21.3 keV, was r 400pm. Our sample thickness was well below

the scattering length where the scattering intensity roughly scales with the thickness,

therefore, the scattering intensity from sample 2 was approximately twice that of

sample 1.

Since the the soft phonon is expected to be polarized in a manner similar to the

commensurate distortion, we began the investigation on the longitudinal phonons

along the (0 K 0) direction (where the commensurate peak was observed). The data

were measured on different runs using different samples. The samples used in the

first and second runs were samples 1 & 2 respectively (see above). There were a few

modifications to the beamline between the two runs. One of the modifications which

affected our measurement significantly was the removal of a Ge-111 crystal used to

deflect the beam in order to enable access to higher scattering angles. This crystal

is illustrated schematically in 2-19, and described in the text of section 2.6. The end

result of this modification was that for a large portion of our data, we were only

able to scan a fraction of the Brillouin Zone (BZ), namely from 1.5 to 1.78 in r.l.u.

along K, where 1 to 2 represents 1 full BZ. We did try reaching the zone center at

near 1 (i.e. 0 1 0), but this is not an allowed Bragg reflection, therefore the phonon

scattering intensity is effectively zero. When the Ge crystal was available, we were

155



able to access a range in K from about 1 to 2.8 r.l.u, which crosses the BZ center at

2.

Figure 3-32a shows energy scans for different values of reduced momentum trans-

fer, measured q = 2 - K, at T = 100K and T = 300K, with a constant offset added

for clarity. In addition the datasets for T = 100K, q = 0.05, 0.1 have been scaled for

better comparison with the other lower intensity datasets. To quantify the phonon

behavior, the data were fit to the harmonic oscillator response function, which was

discussed in 3.4.3 In order to extract information about the intrinsic peak width, we

convoluted our fitting function with the instrumental resolution function [44]

2q (W2) 2 In2 1/2

R(w) = Io 1 +4 + (1 - 9)

x exp -4 In 2 2

where -y is the FWHM, Io is the integrated intensity, w is the energy, and r is a

mixing parameter. The parameters 9 = 0.46 and 7y = 2.29(3) were determined by

fitting the resolution function to an energy transfer scan from a Plexiglas sample which

isotropically scatters within a bandwidth of zero energy transfer much less than the

spectrometer resolution (see section 2.6). Another source of instrumental broadening

comes from scanning a finite resolution width in q through a sloped dispersion curve

(figure 3-33). If the energy width is a delta function then the width due to a finite

SQ passing through a slope dE/dq will be SE = dE/dqSQ. The Q-resolution of the

spectrometer is primarily determined by a slit cut in the mask placed over the face

of the analyzer. Since the beam is 10 0pm width 1prad divergence, and the slit is 4

cm wide, the resolution function in Q is simply a rectangle of width SQ. To estimate

bQ, we need need to calculate the angle of the slit opening. The analyzer is at a

distance of 5.8 m from the sample, therefore the angle is a = arctan(.02/5.8) =

0.1980 = 0.0035rad. The Q resolution can be calculated by differentiating Bragg's
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Figure 3-32: Raw IXS data measured along the (0 K 0) direction as a function of
q = (02 - ý0) for T = 80 K, T = 100 K, T=300 K. The 100 K datasets at q=0.05
and q=0.1 have been scaled by the indicated factors, and a constant offset has been
added to the data for clarity. The lines are fits to equation 3.56 convoluted with the
resolution function (see text).
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law, Q = 2k sin 0.

6Q =2dk sin 0 + 2k cos 060

2•E 4w
= E sin 0 + E cos 060

he he

= 2E ( sin 0 + 2 cos 069

where h and c are Planck's constant and the velocity of light respectively. The ratio

6E/E ~ meV/keV - 10-6 much smaller than 60 so the first term can be neglected,

leaving
4rE

6Q h cos06 9 • 1.013E60, (3.74)
he

where the approximation cos 0 1 has been used since the maximum scattering angle

attainable is 20 = 180 corresponding to cos(90) = .98. The prefactor 1.013 is 47r/hc

in (keVA) - 1. Using E = 21.3keV and dO = 0.0035 we find 6Q ? .075A - 1 = .04

r.l.u along K. Convoluting the dispersion curve with the energy width corresponds to

scanning along the diagonal of the resolution rectangle (see figure 3-33), with length

JE' = /SE 2 + (dE/dQ)26Q 2. (3.75)

Intensity Q

Figure 3-33: Illustration of how passing a resolution function with finite width in Q
through a sloped dispersion curve will broaden the observed peak in energy. For the
sector 3 beamline the rectangular resolution function shown is a good estimate (see
text).
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The slope of the dispersion curve dE/dQ(q) was estimated from non-convoluted fits

to the peak positions. The calculated 6E'(q) was then substituted into y of the

resolution function. Putting everything together, the function used to fit the data

was

( #peaks Ai7iw'
S(Q, w) = AoR((w', q)+R(w)* y[n(w') + 11 S ( _2 - )2 + FP2A l)2 W W-W,

i0i Z

(3.76)
where * is the convolution operator, and wc is a fitted parameter to correct any

systematic energy shifts.

The fitted peak positions are plotted in figure 3-34 along with calculated disper-

sion curves for phonons having vibrational symmetries compatible with our scattering

geometry. The phonon curves were calculated using the GULP[66] lattice dynamics

software (see section 3.4.1). The main idea behind the shell model calculation is to

find a phenomenological potential which models the strong short-range interactions

resulting from the overlap of neighboring electron clouds in close proximity[69]. The

validity of a potential model can be tested by letting the program calculate the result-

ing equilibrium structure. With no potentials defined (i.e. only coulomb interactions)

the atoms were too tightly bound, resulting small lattice parameters, especially along

the c-direction. The four Buckingham potential interactions served to add a repulsive

force to spread the atoms out. The additional interaction is a three-body interaction

between neighboring Ti and Cl atoms. It is simply a harmonic expression which pe-

nalizes deviation from a defined angle. This interaction was used with an angle of

900 for Ti - C1 - Ti bonding to favor the octahedral coordination shown in figure

1-4b. It turned out that these were the only potentials required to settle the system

into an equilibrium structure nearly identical to the experimental unit cell of ref[48].

(see table 3.1). The final test for having the proper atomic environment is to perform

the lattice dynamical calculation. If the atoms have settled into a saddle point, then

this will manifest itself as a negative eigenvalue of one or more of the normal modes.

The potential environment in table 3.1 yielded all positive eigenvalues for all q values.

While there are other parameters which go into the calculation, they are not given
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Figure 3-34: Fitted peak center and width for the data in figure 3-32. The solid lines
are phonon dispersions with the allowed vibrational symmetry for scattering in the (0
K 0) direction calculated using a shell model (see 3.4.1). The dashed line is a guide
to the eye.
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rC
Buckingham Ae-c

Bond Pair A (eV) p (A) C(ev A6)

Ti-O 2524.38 0.29 0
Ti-CI 2541.81 0.29 0
CI-CI 8029.88 0.33 237.7
CI-O 8286.91 0.26 62.2

Three Body 1 k2 o)2+ k3(1-_o)3+
2

Atorrs kl(ev/rad2) 80 (k3=k4=0)

Cl-Ti-CI 20.4 90

Lattice Parameters

Lattice par. Experirrental Calculated

a(A) 3.786 3.784
b(A) 3.361 3.368
c(A) 8.045 8.045

Atomic Positions

Atorrs Experirrental Calculated

S k,(8-eo)4

24

Ti (core)
O (core)
Cl (core)
Ti (shell)
O (shell)
Cl (shell)

0.8807
0.9446
0.6680
0.8807
0.9446
0.6680

0.8814
0.9586
0.6661
0.8794
0.9600
0.7041

Table 3.1: Parameters used in shell model calculation of the phonon dispersion curves
in figure 3-32

here, since the tabulated values were used. These include the core-shell spring con-

stants for each of the atoms, and the effective charge. The values for these were taken

from reference [68] 2. The shell model succeeds at predicting the nearly dispersionless

optical modes at 28 meV and 40 meV. However, there is some inconsistency with

the two lower energy modes. Since both modes disperse away from E=0 as q --+ 0,

they are acoustic modes. Following standard phonon dispersion properties, the lower

and higher energy modes are transverse and acoustic modes respectively. However,

observing a transverse mode shouldn't be possible in out scattering geometry which

only selects modes polarized along the (0 K 0) direction, that is, we are only mea-

suring longitudinal modes. Some light can be shed on the problem by looking at the

calculated eigenvectors for the two phonons. The normal mode eigenvector compo-

nents are shown in figure 3-35 along a picture of the unit cell with arrows indicating

the approximate relative direction and magnitude of the vibrations. The observation

is that while the polarizations are primarily parallel to b and c for the 11.3 meV and

3.2 meV modes respectively, there is a small component in the orthogonal direction.

Since the -j . term in the inelastic cross-section selects out only those components

parallel to the b-axis. For the 3.2 meV mode these point in opposite directions, and

2The meanings of these parameters are discussed in section 3.4.1
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will therefore cancel when the coherent sum is invoked. We can therefore predict the

observed modes by explicitly performing the dynamical structure calculation for the

eigenvalues and eigenvectors given by the shell model calculation. Figure 3-36 models

all of the 100 K and 300 K scans shown in figure 3-32. From this we can clearly see

only the three modes associated with the calculated dispersion curves in figure 3-32.

In addition to the q-dependence at 80 K, 100 K, 300 K, the temperature dependence

of the phonon spectrum at (0 1.5 0) (q = 0.5) was measured. Figure 3-37a contains

energy scans as at different temperatures offset from each other for clarity. It appears

from these data that the acoustic mode which broadens for q- > 0.5 (figure 3-34b)

softens upon cooling. Fits to the data revealed that at T=200 K, the mode becomes

overdamped, meaning F and wo could no longer be uniquely determined. However,

in section 3.4.3, the damped oscillator model was expanded in the overdamped limit,

and we saw that while it isn't possible to fit wo directly, the integrated intensity is

Al
Til: 0.25 0.75
01: 0.25 0.25

CII: 0.25 0.25

q = 0.1
w=11.3 meV

4·

Til 0.000 -0.483 -0.031
Ti2 0.000 -0.483 0.031
01 0.000 -0.287 -0.006
02 0.000 -0.287 0.006
CI1 0.000 -0.411 -0.118
C12 0.000-0.411 0.118

tomic Coordinates
0.61932 Ti2: 0.75 0.25 0.38968
0.44460 02: 0.75 0.75 0.54440
0.83196 C12: 0.75 0.75 0.16804

b

N•nrmrl Mnrlo

q=0.1
t=3A2 ma/

Sl
Coordinates Til 0.000 -0.063 0.485

Ti2 0.000 0.063 0.485
01 0.000 -0.017 0.278
02 0.000 0.017 0.278
CI 0.000 -0.159 0.397
CI2 0.000 0.159 0.397

Figure 3-35: Diagram showing the atomic motions associated with the two acoustic
mode vibrations calculated to be present along the (0 K 0) direction.
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K=1.78

K=1.7

K=1.6

K=0.5

K=1.95

K=1.9

K=1.8

K=1.7

K=1.6

K=1.5
-40 -20 0 20 40

Energy (meV)
Figure 3-36: Plot of the dynamic structure factor for all of the observed modes. The
peak positions and intensities were extracted from the shell model calculation.
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proportional to T/wo. Therefore a plot of T/I should be proportional to w . Mean

field theory predicts that
w - A(T - T,), (3.77)

where T, is the temperature of the structural transition, and A is a temperature

independent proportionality constant. Figure 3-37b shows a line joining T/I for 100

K, 150 K extended to higher and lower temperatures. I would like to emphasize

that this is not a fit. We didn't find a least squares fit justified in this case for two

reasons. First of all, from the error bars, we know the 100 K, and 150 K values for

T/I better than for 200 K and 300 K. In addition to this, since F is only slightly

greater than 2wo, at these temperatures, it is not clear if those data points are in

the correct limit for the expansion 3.58. For 300 K, the mode is underdamped, so

clearly it equation 3.58 does not apply, as indicated by its large deviation from the

linear behavior. With these considerations in mind we can see at the x-intercept of

the line is near T, 2. The exact value is 88.5 K, is within error of 92 K. The final

temperature dependence wo/F is a value which results from fitting to equation 3.58.

The temperature dependence of this is shown in figure 3-37c. While the significance of

this value isn't obvious, it is remarkable to note that it also tends toward zero around

TC2. The important conclusion to be made from the temperature dependence of two

independent peak parameters point to a transition temperature of TC2, not Tl,. This

observation substantiates our model of the incommensurate structure as being a small

modulation of dimer pairs, since as far as the phonons are concerned the structural

transition occurs at T, 2. If this is true then the phonon which is softening should

have a vibration pattern consistent with the dimerized structure. The shell model

calculation indicates that at q = 0.5, the longitudinal mode becomes degenerate with

the transverse mode polarized along c. There exists, therefore, an infinite number

linear combinations of b and c polarizations which will have the same energy[69].

This is illustrated in figure 3-38 by showing half of the atoms vibrating along b, and

half along c. Since we are only measuring the b-component, we can ignore the c-

vibrations. If we do this, then all eigenvectors will point along the same direction in
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Figure 3-37: a)Energy scans measured at Q=(0,1.5,0) for different temperatures. The
acoustic mode shows a clear softening, and as a result becomes overdamped. The plot
in b) is the temperature dependence of T/I, a value proportional to wO for the over-
damped mode with a line draw through the 100 K, 150 K points indicating a Tc of 88.5
K (see text). The temperature dependence of wI/F, a parameter independent of T/I
which also tends to zero around 100 K. This implies that the spin-Peierls transition
occurs at 92 K, rather than 65 K, consistent with our model of the incommensurately
modulated dimer pairs.
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b. It isn't obvious from one unitcell that this has the form of the lattice distortion.

However, we need to take into account that this is a zone boundary phonon, which

corresponds to a vibration with wavelength 2b. In other words, atoms in neighboring

unit cells vibrate out of phase with each other. This out of phase vibration is visualized

in figure 3-38. Based on the arrows drawn, the zone boundary acoustic mode frozen

at its maximum distortion is a dimerized lattice along b. Therefore, based on the

vibrational symmetry, treating this mode as the soft mode driving the transition is

justified.

Atomic Coordinates
T1l: 0.25 0.75 0.61932
Ti2: 0.75 0.25 0.38968
01: 0.25 0.25 0.44460
02: 0.75 0.75 0.54440
Cl1: 0.25 0.25 0.83196
C12: 0.75 0.75 0.16804

Normal
Til
Ti2
01
02
Cli
C12

Mode Coordinates
0.000 0.000 -0.635
0.000 -0.215 0.000
0.000 0.000 -0.217
0.000 -0.118 0.000
0.000 0.697 0.000

-0.961 0.000 0.057

Figure 3-38: Eigenvector of the zone boundary acoustic mode. At the zone boundary,
the b and c acoustic modes are degenerate, meaning there is an infinite number of
linear combinations of the b and c polarizations. This is illustrated by showing half of
the atoms with one polarization and half with the orthogonal polarization. However
since it is a zone boundary mode, the center of mass of the vibration has to be the
shared edge of two neighboring unit cells. Therefore, the atom in one unit cell must
vibrate completely out of phase with its counterpart in the neighboring unit cell.
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3.4.6 Spin-Phonon Coupling in TiOCi

Our fits to the damped harmonic oscillator seem to suggest that the longitudinal

acoustic mode along the (0 K 0) is strongly damped, and perhaps even softened at

T=300 K. The temperature dependence of the fitted peak parameters also imply that

w -+ 0 at T 2,. Section 3.4.3 discussed how information about microscopic interactions

driving a structural phase transition can be acquired by inserting an anharmonic

correction term to the harmonic oscillator response function. This correction comes

in as the polarizability, II(q, w). In section 3.4.4 an explicit H(q, w) for the coupling

of a phonon to the electron spin was presented. The next round of fitting was then

performed to test the validity of the Cross & Fisher model for our system, and if

applicable, extract a value for the spin-phonon coupling. The energy range was

truncated to the range -20meV<Ele20meV, so that only the acoustic mode was fitted.

The function used to fit the data was

S(q, ) = [n(w) + 1] - 2n (3.78)

where HCF is defined in section 3.4.4, and A is a scaling factors related to the peak

amplitude. Since it doesn't affect the physics of Cross & Fisher it be omitted from the

remaining discussion. Note, however, that all fits have A as an adjustable parameter.

At the zone boundary, IIcF(q, w) reduces to

II(q, w) = -0.74g2 I • ( T) , (3.79)

therefor the only adjustable parameters are the spin-phonon coupling, g, the bare

phonon frequency, to. From equation 3.79 we can see that g quantifies the magnitude

of the CF anharmonicity. Since g is real, it will scale both real and imaginary parts

of IcF(q, w), which from equations 3.63 means it will affect both the peak width

and the shift of wo from 0o. Figure 3-39 contains the CF function for various input

parameters and independent variables. Panels a,b show the real and imaginary parts

of HI(w) at the zone boundary, and T = 300K. For this g = 80, 160 meV3/2 the
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Figure 3-39: Survey of the dependence of cIcF(q, w) on the various parameters. All
panels are comparing V-R[I] with [IIH]/w, which from equation 3.63 is equivalent
to comparing the width with the shift from o20. Panel a),b) contain the real and
imaginary parts of IicF(w) at different g values, for q=0.5, and T=300K. Panels c),d)
compare the temperature dependence for two different values of g. Finally, e),f) show
the dependence of HI(q) on J.
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ratio of the shift to the broadening is - 2. Panels c),d) show how ICF varies with

temperature for two different values of g. Both parts vary slowly at high T, gradually

increasing for decreasing temperature. The damping (~[[H]/w) fraction only becomes

significant for low temperature, the exact range of which depends on g. The final

set of plots shown in panels e),f) show the q-dependent of HCF for different values of

J. For large J, HcF(q) is sharply peaked about q = 0.5, but as J decreases, HcF(q)

broadens. This means that for a given q value, lowering J, will effectively increase

HICFe Since g also affects the magnitude of HCF, J,g are not independent parameters,

which is problematic for fitting. However, since HcF(q = 0.5, w) is independent of J,

and g is roughly q-independent, g can be determined at q = 0.5, then fixed for the

q # 0.5 fits.

In our initial analysis, we wanted to let the fits determine the values for all of

the adjustable parameters, which we could then compare to known values giving us a

measure of the validity of the theory for this system. However, this required special

care in order that all parameters were uniquely determined. In the previous para-

graph, we concluded that g must be fitted at the zone boundary so that it doesn't

interfere with J. From figure 3-32, there are 4 datasets at q = 0.5 with T >T 2,,. How-

ever, only one of those is underdamped, which we learned in section 3.4.3 is necessary

to uniquely determine Qo,g which are related to (wo,P) through equation 3.63. So

the 300 K dataset was fitted first to determine g and Qo. However, both of these

are expected to be temperature independent, therefore, they should be determined

for the remaining temperatures at q = 0.5. However, we found that the 300K value

for g resulted in very poor fits. Rather than one broad peak at w = 0, we had two

well defined peaks well away from zero. Since we know that HcF(q,w) affects the

position more than the broadening, we can conclude from this that g from 300 K is

too large. Good fits were recovered allowing g to vary, width Q0 fixed as a function

of temperature. Once g was determined for a given temperature, the q dependence

could then be fitted letting 20, J, vary with g fixed at the q = 0.5 value. From figure

3-32, there are two datasets as a function of q, with T >T 2,,, namely 100 K and 300

K. The q-dependent fits for both temperatures yielded the same value of J = 200K.
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Since the q-dependence of J was very subtle, we were able to fix this parameter as

well, leaving only Qo(q) to fit. Figure 3-41 summarizes the results of this fitting pro-

cedure. The fitted values Qo(q) shown in figure 3-41a agree better with the calculated

harmonic dispersion, than the fitted values for wo if figure 3-34a. Therefore one might

conclude that our system is well described by the theory of Cross & Fisher. However,

the dispersion of Q0 is only part of the story. In order to obtain good fits at all

temperatures, g was allowed to vary with Q0o fixed. This resulted in a temperature

dependent g. Equation 3.73 gives an explicit form for g in terms of Qo(q = 0.5) and

T,. Using our fitted value of 27 meV for Q0 gives gcross-Fisher = 75 meV3/2. Figure

3-41b shows the ratio of the fitted value for g to the one just calculated using equa-

tion 3.73. A noteworthy observation is that no information about T, was explicitly

or implicitly provided during the fitting procedure, and g/gcross-Fisher- > 1 around

Tc2

From equation 3.63it is also possible to calculate wo from Q0 , which according

to 3.72 should go to zero at the transition temperature. Using the fitted values for

R[II(q = 0.5,w)], along with the fitted value for Qo(q = 0.5), we see in figure 3-41c

that the transition temperature according to CF is - 98 K. An additional check which

can be made is to fix g at gcross-Fisher, then calculate the temperature dependence

Cn

."

v,

CZ

C

Energy (meV)

Figure 3-40: Raw data and fits to eq. at different temperatures. An offset has been
added for clarity.
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Figure 3-41: a) Fitted values for the harmonic frequency of the longitudinal acoustic
mode as a function of q at T = 100K and T = 300K, along with the harmonic
dispersion expected from the shell model calculation. b) The ratio of the fitted g
to g calculated using equation 3.73 (see text). The value of Q0 used was the 300 K,
q=0.5 value from panel a). c) Plot of wo values deduced from Qo using equation 3.72),
along with the expected wo using g fixed at the value given by equation 3.73. The
line through the deduced wo points is a fit to AVT - T, help quantify T,. The fitted
result is Tc = 98K.
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of wo, shown by the dashed line in figure 3-41c. The line through the data in figure

3-41c is A/T- To, which was used to extract our estimate of T,.

In addition to having a temperature dependent g, the fits for q Z 0.5 yielded a J of

200 K, which is a factor of 3 lower than that reported by reference [4]. By comparing

the dependence of IICF on g, and J, we can see that both affect the broadening of

the peak. The fitted values for g, J are consistent with increasing the broadening for

q 5 0.5 and T --+ 300K. If we constrain J to be 600 K (nearly the value from [4]), then

the fits for q # 0.5 significantly deviate from the measured lineshape. Essentially the

peaks are delta functions centered about ±wo, which isn't well defined since the fit

didn't converge. At q=0.5, IIF is independent of J, but g defines the broadening. If

we constrain g to be gCross-Fisher then again, two nearly delta function peaks appear

at ±wo. A good fit is recovered for T=150 K, and of course T = 100 K. In a sense, this

gives a range of applicability for HCF. Apparently it only contributes significantly for

q • 0.5, which we may have guessed from figures3-39e,f, and for T --+ T,, which is also

suggested in figures 3-39c,d. This leads us to conclude that there is some additional

interaction which is causing significant broadening and perhaps even a softening at

T=300 K.

If we use Q0 (0.5) = 23meV from the shell model calculation, then good fits are

obtained using g = gCross-Fisher = 64meV 3/2 , but only for 100 K and 150 K. For 200

K, and 300 K, the peaks are at the right position, but they are about a factor of 2

too narrow. From this we can conclude that while CF predicts the correct softening

(since the peak positions were correct), the broadening of our observed peak is not

completely accounted for by CF.

The final conclusion from this analysis, is that the Cross & Fisher theory is appli-

cable to the 150 K and 100 K datasets. However, assuming no value for T, IIcF(q, w)

converged on a value close to T~2 for the transition temperature. In the scope of the

spin-Peierls systems, it seems that TiOC1 is the first inorganic spin-Peierls system to

exhibit classic Cross & Fisher type phonon softening. Since we determined that 300

K is outside of the realm of applicability of the theory to TiOC1, the fitted value of

Do at that temperature must be questioned. The predicted harmonic frequency (from
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the shell model) is slightly lower than this, and since it yielded good fits for 100 K

and 150 K, using g = gCrossFisher, it is reasonable to assume Q0 is close to this value.

Using this in 1.12, we see that Qo/Tc = 2.9, which is greater than 2.2, so according

to [82] TiOCI should be anti-adiabatic, like CuGeOa. However, a more recent theory

by Dobry et. al. takes into account the dynamics of the transverse phonons due

to inter-chain interactions, and they predict that for certain values of wz/Tsp, the

cut-off between adiabatic and anti-adiabatic can be raised to as high as 3[32]. The

transverse phonon corresponding to the inter-chain interaction could either be the

one polarized along a or c, since the chains are offset in both directions. In any case,

we didn't measure the transverse phonons, but from the shell model calculation we

predict that E for the a-transverse mode is ' 6.5meV, and the c-transverse mode is

of course degenerate with the longitudinal. Of these two the larger w1 /Tsp value is

obtained for the c-transverse mode, which we already know is 2.9. This corresponds

to 2.7 for the adiabatic anti-adiabatic cut-off for the longitudinal mode. This is an

upper bound, and the lower a-transverse mode energy will could likely raise this value

as high as 3. In any case, these numbers are based on a shell model of the phonons

which works well for the observed optical phonons, but does not for the acoustic

phonons. At this point, we have no way to determine if the shell model is wrong

or if the what we measure is a renormalized phonon frequency due to anharmonic

corrections.

To conclude the discussion of the spin-phonon coupling, I present a section of a

table from reference [29] which summarizes spin-phonon coupling constants for various

spin-Peierls materials. I have added the newly measure value for TiOC1.

3.5 Conclusions

We have taken a long experimental journey from speculation of a spin-Peierls tran-

sition through the various experimental techniques used to piece together the story

behind the transitions reported in the susceptibility by Seidel et. al. [4]. The story

started with two unknown apparent phase transitions in the susceptibility, at T,, =65
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K and TC2=92 K. From the earliest susceptibility measurements, we observed a hys-

teresis at Te, thought at the time to be the spin-Peierls transition temperature. This

already set TiOCl apart from its spin-Peierls counterparts. We later found a su-

perlattice peak consistent with the doubling of the unitcell along b. The integrated

intensity of the peak exhibited a hysteresis comparable to that of the susceptibility.

So Tc, had proven to be a very interesting transition temperature, but it wasn't until

the discovery of an incommensurate state, with an onset at 92 K that we realized

the origin of T, 2. However it wasn't until we found a suitable model for the incom-

mensurate modulation, which was a modulation of dimer pairs, that we realized that

the dimerization, and therefore the spin-Peierls transition temperature occurred at

Tc2, not , Then a detailed study of the lattice dynamics above TC2 showed the soft-

ening of the zone boundary longitudinal acoustic phonon at (0 1.5 0). The phonon

was already soft, and very strongly damped at room temperature. Upon cooling the

damping increased, and the phonon softened further, until reaching 0 at around 90

K. We had at this point an independent verification that the structural phase tran-

sition associated with the zone boundary LA mode along b (the vibrational pattern

of which is a dimerization), occurs at T, 2. We then turned to the theory of Cross &

Fisher to find an origin of the phonon softening in the spin-phonon coupling. Our fits

to this theory show good agreement over a narrow temperature and q regime. From

this we could conclude that the Cross & Fisher theory only had limited applicabil-

ity to our system, but additional interactions need to be considered to account for

the significant broadening well above TC2. Comparing to past systems we find that

Material Tc (K) TM 'F  J/kB (K) a/kB (K)
TiOCI 92 K 150 660 226

CuGeO 3  14.3 60 160 190
(BCPTTF)2PF 6  36 100 330 100-125
(TMTTF) 2PF6 19 80 420 90-110
MEM(TCNQ) 2  18 40 106 60-90

Table 3.2: Spin-Peierls critical temperature Tc, J, and spin-phonon coupling a for
various spin-Peierls materials (from reference [29]) along with the new values for
TiOCl
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TiOCI is the first inorganic compound to exhibit a soft-mode spin-Peierls transition,

similar to those believed to occur in the organic compounds. We concluded with a

comparison of the ratio of the bare phonon frequency to the spin peierls transition

temperature, to determine whether the spin-Peierls transition in TiOC1 falls into the

so-called adiabatic or anti-adiabatic regime, characterized by the presence or absence

of phonon softening leading up to the spin Peierls transition. The important ratio is

that of the bare phonon frequency to the spin-Peierls transition temperature, which

for TiOC1 we found is near the cut-off, but on the anti-adiabatic side, meaning no

phonon softening is expected. However, a novel theory which considers the effects of

inter-chain coupling on the spin-Peierls transition temperature, it was found that low

energy modes perpendicular to the chain can facilitate mode softening of the spin-

Peierls mode. Taking this into account places TiOC1 into the adiabatic regime, which

is both a tribute to the new theory and it makes TiOCI an interesting playground for

future studies of the phonons associated with the spin-Peierls transition.
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