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Abstract

Cells have evolved a highly tuned system for driving growth in response to the right cues.
Permissive signals initiate a cascade of events that send nutrient transporters to the membrane,
suppress apoptosis, boost protein synthesis, and adjust metabolic processes to fuel the cell's
energy demands. Increases in cell growth are often coordinated with cell division, though the two
programs can be decoupled. The TOR complexes, TORC1 and TORC2, are central regulators of
cell growth and share the serine/threonine TOR kinase as their catalytic domain. In mammals, the
TORC2 homolog mTORC2 is activated by growth factors through the lipid kinase PI3K, and is a
primary effector for many of its functions, including regulation of the proliferation and survival
kinase Akt/PKB. Activation of PI3K also leads to activation of mTORC1. Unlike mTORC2,
mTORC1 is equally dependent on nutrient availability, and connects to the protein translation
machinery through its substrates S6K and 4E-BP1. Additionally, S6K can suppress insulin
signaling, establishing a negative feedback loop to PI3K. Consistent with its role in cell growth,
derangements in mTOR signaling are increasingly associated with cancer and, more surprisingly,
metabolic diseases. In the work described here, we have investigated the mechanism through
which insulin activates mTORC1 and identified the protein PRAS40 as a growth factor-regulated
inhibitor and mTORC1 component. PRAS40 cooperates with rheb, an mTORC1 activator, to
regulate growth factor signaling through the pathway. We have also developed a potent and
selective mTORC1/2 small molecule inhibitor and used this to probe the role of mTOR signaling
in tumor cell growth and proliferation. Through this, we have identified common genetic
mutations that determine sensitivity to mTOR inhibition and suggest a novel therapeutic anti-
cancer strategy.

Thesis supervisor: David M. Sabatini
Title: Member, Whitehead Institute; Associate Professor of Biology
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Chapter 1

Introduction



I. Introduction

Proliferating cells have two difficult challenges: splitting one cell into two (cell

division) and synthesizing enough protein, lipids, and other molecules to satisfy demand

(cell growth). After decades in the spotlight, the processes that control cell division are

now understood in great detail. Comparatively, our understanding of cell growth is still

in its infancy. Cell growth collectively refers to many processes that include protein

translation, ribosome biogenesis, nutrient metabolism and nutrient uptake and exacts a

substantial energetic cost. Consequently, cells work hard to coordinate these processes

with fluctuating energy availability. The difficulty of this challenge is reflected in the

elaborate systems that have evolved to ensure a steady nutrient supply and adjust growth

and division to suit changing environments. In many organisms, including yeast, flies,

worms and mammals, the TOR signaling pathway is an essential coordinator of these

processes. A diverse collection of energy indicators, such as nutrient availability and

energetic stress, directly influence TOR activity. TOR integrates this information and, in

turn, wields broad control over growth related processes, coupling energy utilization with

energy availability and maintaining metabolic homeostasis.

The mammalian TOR homolog (mTOR) is a large serine/threonine kinase and

the principal and founding component of this pathway. It was originally discovered

as the target of the anti-fungal and immunosuppressive compound rapamycin, which

offered the first clues to the pathway's role in cell growth. In cells, mTOR serves as

the catalytic domain in two functionally distinct but complementary protein complexes

called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Insulin and

other growth factors stimulate both complexes, while nutrient signals, such as amino

acid and glucose availability, uniquely regulate mTORC 1. Under permissive conditions,

activating signals from both complexes converge on the machinery that regulates protein
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translation initiation. Additionally, mTORC 1 suppresses insulin signaling through a

negative feedback loop, establishing an upper limit on insulin's effects, while mTORC2

drives nutrient transporters to the plasma membrane and suppresses apoptosis. Starvation

conditions provoke an opposite response. In addition to stalling translation initiation, loss

of mTORC 1 activity initiates autophagy, a process that recycles the contents of the cell to

maintain a pool of basic nutrients.

Not surprisingly, deranged mTOR signaling is strongly associated with disease.

Mutations in PTEN, a tumor suppressor that normally opposes mTORC1/2 activity, are

one of the most common cancer-initiating events. Inactivation of TSC, an mTORC1

negative regulator, causes the formation of hamartomous tumors that can severely impair

neurologic function. There is also increasing support for the idea that excessively high

levels of nutrients, as might occur in obesity, leads to insulin insensitivity by overloading

the nutrient input to mTORC1. The implication of mTOR in each of these diseases has

spurred enthusiasm for the application and development of mTOR inhibitors. Rapamycin

is already in clinical trials for many of these disorders, but is limited in its utility because

it preferentially inhibits mTORC1. Hence, there is there is growing demand for a general

mTORC 1/2 or mTORC2-specific inhibitor. The following introduction summarizes the

history of TOR signaling, and outlines its role in normal cell physiology and disease.

II. The discovery of rapamycin and its mechanism of inhibition

A. A family of unusual immunosuppressant molecules

Interest in TOR originated in attempts to understand the molecular basis of

the anti-fungal and anti-tumor properties of the lipophilic macrohalide rapamycin.

Rapamycin had been isolated from the bacteria Streptomyces hygroscopicus out of soil

samples taken from Easter Island (Rapa nui) in the 1970s and later identified as an anti-

fungal compound in a screen at Ayerst Research Laboratories(Abraham and Wiederrecht,

12



1996). The drug had no obvious anti-bacterial activity, but caused a profound GI growth

arrest in yeast at even low nanomolar concentrations. Rapamycin also caused a similar

arrest in several NCI tumor cell lines, generating hope that it might be used as an anti-

cancer agent, though substantial toxicity in some animal models and problems with

solubility dampened early enthusiasm (Eng et al., 1984).

Rapamycin acts through an unusual mechanism that is similar to the compounds

FK506 and Cyclosporin A (CsA). All three compounds bind to a class of small

intracellular proteins called immunophilins. CsA binds to the 18 kDa cyclophilin

A (CyPA), while rapamycin and FK506 bind to the 12 kDa FK506 binding protein

(FKBP12). Both CyPA and FKBP12 are enzymes, termed prolyl-isomerases, that catalyze

cis-trans isomerization of peptidyl-prolyl bonds in peptides and proteins (Abraham and

Wiederrecht, 1996). However, it was quickly determined that inhibition of the isomerase

activity failed to explain the effects of all three of these drugs. Instead, the binding of

these molecules to their immunophilin partners potentiates their ability to inhibit a second

target. For FK506 and Cyclosporin A, that target is the Ca++-dependent serine-threonine

phosphatase calcineurin. The target for rapamycin was not identified at the time.

Although rapamycin was isolated first, it was ignored until discovery of the

FK506, nearly a decade later. FK506 was discovered in a screen for natural products

that inhibit IL-2 production at Fujisawa Pharmaceutical Laboratories and showed

exceptionally strong inhibitory activity in a variety of immune function assays(Abraham

and Wiederrecht, 1996). Most importantly, it was nearly 100-fold more potent than CsA,

which had become a standard therapy in preventing transplant rejection. The chemical

similarities between FK506 and rapamycin prompted the hope that rapamycin might be

similarly useful, and this turned out to be true(Abraham and Wiederrecht, 1996). Since

then, numerous variations, sometimes called rapalogs, have been clinically approved

for use in kidney transplant patients (1999), and are at various stages of testing for

autoimmune, chronic inflammatory and anti-cancer applications (Abraham, 2002).



Many of the solubility and stability problems that hindered early use of the drug have

been essentially resolved in the more recent analogues CCI-779 (Wyeth) and RAD001

(Novartis)(Easton and Houghton, 2006).

B. Identification of the cellular target of rapamycin

Many of the early insights into the molecular effects of rapamycin came from

work in yeast. In wild-type cells, rapamycin triggers a reversible growth arrest and

initiates a stress program that closely resembles the response to nutrient starvation. To

identify the molecular rapamycin targets, two groups conducted a screen for mutations

that conferred resistance to this arrest (Heitman et al., 1991; Koltin et al., 1991). The most

common mutations were found in FPR1, the homologue for the mammalian FKBP12,

though the observation that loss of FPR1 had no obvious consequences ruled it out as the

cytostatic target of rapamycin. Instead, just as FKBP12 is required for FK506 to inhibit

calcineurin, this confirmed that FPR1 is a requirement for rapamycin toxicity. The other

two classes of mutations were dominant gain-of-function defects in two similar genes,

which were named the target of rapamycin (TOR1 and TOR2). Both TOR1 and TOR2

genes produce large 280 kDa products and are highly homologous to each other (67%

identical). For both TOR proteins, single missense mutations (Serl972Arg in TOR1 and

Ser1975Ile in TOR2) conferred resistance to rapamycin by preventing the binding of the

rapamycin-FPR1 complex (Cafferkey et al., 1994).

These early genetic studies of TOR function also hinted at the complexity of the

pathway. For instance, deletion of the TOR proteins alone or together caused a phenotype

that was similar, but not identical, to rapamycin treatment. Loss of TOR1 severely

hindered cell growth, but it failed to recapitulate the G1 arrest caused by rapamycin

treatment. By contrast, TOR2 was essential and deletion caused a random cell cycle arrest

(Cafferkey et al., 1994). Strangely, the combined deletion of TOR1 and TOR2 caused
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a G1 arrest and was the most similar to rapamycin treatment (Kunz et al., 1993). The

conclusion at the time was that TOR1 and TOR2 were partly redundant, but that TOR2

also had other roles. Later work showing that rapamycin-resistant alleles of TOR1 could

support normal growth in the presence of rapamycin demonstrated that the essential

functionality of TOR2 was rapamycin-insensitive (Zheng et al., 1995).

Although work in yeast established a solid rationale for the TOR proteins as the

direct targets of rapamycin, that hypothesis wasn't proven until several years later. Using

a biochemical approach in mammalian cells, several groups identified a large protein with

homology to the yeast TORs as that binding target of the FKBP12-rapamycin complex

(Brown et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). This protein was christened

with several names upon its discovery, including FRAP and RAFT1, but is now referred

to simply as mammalian TOR, or mTOR. The high degree of sequence similarity between

the mammalian and yeast homologues indicated correctly that many of features of TOR

signaling were preserved between these highly diverged species.

C. TOR proteins belong to the PIKK family of kinases

The TOR proteins belong to a class of serine/threonine kinases that includes

ATM, ATR, DNA-PK and hSMG1. Each of these is giant by protein standards, ranging

from 289 kDa (TOR) to greater than 500 kDa (DNA-PK). The similarity between them

is concentrated in their C-terminal kinase domains, which is similar to the kinase domain

of phosphoinositide-3-kinase (PI3K), earning them the name PI3K-related kinases

(PIKKs). However, the kinase domain only represents a small fraction of the overall

protein, and the rest is composed of a series of N-terminal domains that are thought to

mediate protein-protein interactions (Figure 1). The N-terminus of TOR begins with at

least 20 tandemly-repeated HEAT domains, which are named based on their presence

in Huntingtin, Elongation factor 3, the A subunit of PP2A and TOR(Andrade and Bork,

1995). Each repeat is 40-50 amino acids long and are thought to form anti-parallel alpha-
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Figure 1. TOR domain structure

The TOR protein contains several conserved domains, including N-terminal HEAT repeats and

FAT (FRAP, ATM and TRRAP), FRB (FKBP12-rapamycin binding), KD (kinase domain), RD

(repressor domain) and FATC (FAT C-terminal) domains.

helices(Abraham, 2002; Abraham and Wiederrecht, 1996; Hemmings et al., 1990). TOR,

and several other PIKKs, also contain a FAT domain, named for its presence in FRAP

(mTOR), ATM and TRRAP, that immediately follows the HEAT repeats and is invariably

accompanied by a C-terminal domain called the FATC(Bosotti et al., 2000). Although

neither of these domains has a clear function, the FATC is required for kinase activity,

suggesting a possible structural role (Bosotti et al., 2000). The final domain, situated

between the FAT and kinase domains, is known as the FKBP12-rapamycin binding (FRB)

domain and contains the sites of both rapamycin-resistance mutations (Chen et al., 1995;

Stan et al., 1994). Interestingly, the only other occurrence of the FRB domain is found in

hSMG1(Yamashita et al., 2001).

A final point that distinguishes mTOR from other PIKKs is substrate specificity.

ATM, ATR, DNA-PK and SMG1 all show a strong preference for a serine/threonine

followed by a glutamine, and are thus often referred to as S/T-Q-directed kinases. These

kinases are also all involved in the response to DNA damage or the detection of aberrant

nucleotides. mTOR, on the other hand, is not known to respond to genotoxic stress and

additionally prefers a less-defined motif that consists of a serine/threonine followed by

a proline, or a serine/threonine surrounded by bulky hydrophobic residues(Brunn et al.,

IHEAT I I HEATI I __FATI ii



1997; Burnett et al., 1998; Isotani et al., 1999). It has been suggested that this may reflect

a functional evolutionary divergence between TOR and the rest of the PIKKs, which are

all involved in the response to genotoxic stress(Abraham, 2002).

D. The two sides of TOR signaling: TORC1 and TORC2

Understanding of TOR signaling has progressed at an accelerating pace since its

discovery over a decade ago. Since then, the most revealing finding has been that TOR

acts as the catalytic domain in two functionally distinct complexes, called TORC 1 and

TORC2 (mTORC1 and mTORC2 in mammalian systems). The early hints of rapamycin-

insensitive functionality had implied two distinct roles for TOR, and the biochemical

identification of TORC1- and TORC2-specific binding partners confirmed this suspicion.

Not surprisingly, only one complex, TORC1, is inhibited by rapamycin, and these two

complexes are often referred to as the rapamycin-sensitive and rapamycin-insensitive

pathways. Each complex responds to different upstream signals and are tied to different

downstream pathways. In particular, TORC1 is tightly regulated by the intracellular

availability of nutrients, such as amino acids, and is frequently called the nutrient-

sensitive pathway. TORC2 is insensitive to these signals, and, at least in mammalian

systems, appears to be entirely regulated by growth factor signaling. The following

sections describe their composition, downstream effectors and physiologic roles and are

summarized in Figure 2.

III. TORC1: a regulator of protein translation and cell growth

A. Discovery of the TORC1 complex

The TOR pathway has classically been considered a regulator of cell growth,

beginning with the finding that rapamycin treatment diminished cell size. Although

growth is often confused with proliferation, the two are functionally separable processes:
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translational inhibitor 4E-BP 1. Completing the loop, S6K inhibits insulin signaling by
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proliferation refers to cell division, while growth is the accumulation of mass. In both

mammals and yeast, TORC1 exerts influence by coupling the intracellular availability

of nutrients, such as amino acids and glucose, to regulation of protein translation and

ribosome biogenesis. As these two processes place substantial demand on cellular

resources, TOR activity can have a profound influence on cellular metabolism energy

requirements. In mammals, insulin signaling also influences mTORC1, ensuring

coordination between organismal nutrient availability and cellular demand.

The defining member of the TORC1 complex is kogl/mipl in yeast and raptor in

mammals. It was originally characterized in a screen for high-copy suppressors of ectopic

meiosis caused by expression of the meiotic regulator mei2 in Schizosacchromyces

pompe(Shinozaki-Yabana et al., 2000). Mei2p normally induces meiosis only in response

to starvation conditions, and loss of miplp interfered with this process. However, it was

not until the identification of the human homologue, raptor, by immunoprecipitation and

mass-spectrometry that this protein was associated with TOR signaling(Hara et al., 2002;

Kim et al., 2002). Soon after, the raptor homolog koglp was found to associate with both

TOR1 and TOR2, defining TORC1 in budding yeast (Loewith et al., 2002).

Raptor, like mTOR, is a large 150 kDa protein scattered with domains that reveal

little about its function. The N-terminus begins with the unique raptor-N-conservered

(RNC) domain, followed by a series of three HEAT repeats and seven WD domains,

all of which are thought to mediate protein-protein interactions (Kim et al., 2002). In

cells, raptor has a clear positive role in mTORC1 activity, and depletion of it by RNAi

leads to inhibition of downstream targets similarly to rapamycin treatment (Hara et al.,

2002; Kim et al., 2002). Interestingly, raptor is not required for TORC1 activity in vitro

and paradoxically seems to be inhibitory. Although a potential artifact, this observation

suggests that raptor activates mTOR in cells through a mechanism that doesn't directly

alter its kinase activity, such as localization or substrate recognition. Along these lines,

several groups have suggested that raptor is involved in recognizing a 5-amino acid



TOR-signaling (TOS) motif that appears in many TORC1 substrates (Schalm and Blenis,

2002).

The association between raptor and mTOR is a dynamic one that can be

influenced by nutrient availability. Under appropriate cell lysis conditions, amino acid

starvation or other kinds of metabolic stress increases the strength of the mTOR-raptor

interaction (Kim et al., 2002). Nutrient stimulation had the opposite effect, though

treatment with reversible cross-linkers showed that the two didn't dissociate completely.

Kim et al used this observation to develop a model where mTOR and raptor are in a

"weak-binding" state during nutrient stimulation and switch to a "tight-binding" state

under starvation conditions. Although the molecular basis of this change remains unclear,

these findings demonstrated that mTORC1 was the direct target of some sort of nutrient

signal. Interestingly, rapamycin also disrupts the association between mTOR and raptor,

and some have suggested that this is the mechanistic basis for mTORC 1 inhibition (Kim

et al., 2002; Oshiro et al., 2004).

mTORC1 also contains two other components: mLST8 (also known as Gbeta-

like, or Gbl), which binds directly to TOR, and PRAS40. mLST8/Gbl was first identified

as a TORC1 component in budding yeast(Loewith et al., 2002) and shortly after in

mammalian cells (Kim et al., 2003). It is a small 36 kDa protein consisting almost

entirely of 7 WD-40 repeats with high sequence similarity to those in the beta subunits of

heterotrimeric G-proteins, hence it's name (Rodgers et al., 2001). Ironically, mLST8 was

probably first identified as RAFT2 in the experiment that identified mTOR/RAFTl as the

binding target of FKBP12-rapamycin, though it wasn't further characterized at the time

(Sabatini et al., 1994). There is some debate concerning the function of mLST8. Although

it was originally considered a positive regulator of mTORC 1, recent analysis of cells

derived from an mLST8-/- mouse found that mTORC1 signaling remains intact (Guertin

et al., 2006; Kim et al., 2003). Unexpectedly, this same work showed that mLST8 is

instead required for mTORC2 signaling (Guertin et al., 2006).



PRAS40 is the final mTORC1 component. It was recently identified as a raptor-

binding protein and a negative regulator of the pathway (Sancak et al., 2007; Vander Haar

et al., 2007). PRAS40 will be discussed in a later chapter.

B. TORC1 controls the translational machinery and nutrient uptake

In both yeast and metazoans, TORC1 activation drives protein synthesis by

promoting ribosome biogenesis and translational initiation. Conversely, under starvation

conditions, TORC1 inhibition shifts the balance towards catabolic processes such as

autophagy and, at least in yeast, drives high-affinity nutrient transporters to the plasma

membrane. The important TORC 1 effectors are less conserved between yeast and

mammals than other components of the pathway, though this may reflect different

experimental approaches between the two systems. In yeast, TORC1 acts primarily by

controlling different transcriptional programs, while mTORC 1 drives cell growth almost

exclusively through post-translational signaling cascades. Nonetheless, the types of

processes that are regulated between the two organisms are still very similar, reflecting

the overall conservation of the pathway.

In budding yeast, TORC 1 controls a collection of nutrient-regulated processes

that can be loosely categorized as nitrogen scavenging transcriptional programs (Gln3,

Ncrl, MSN2/4, and RTGl/3), ribosomal biogenesis (RP genes), translation initiation

(eIF4E/G, eIF2) and autophagy (ATG) (reviewed in De Virgilio and Loewith, 2006;

Schmelzle and Hall, 2000). Of these processes, the best understood is the regulation of

the nitrogen scavenging response, which is mediated by TOR control of the SIT4 PP2A

phosphatase. Under nutrient-rich conditions, SIT4 is tightly bound to the protein TAP42

(Di Como and Arndt, 1996). Upon TORC 1 inactivation by rapamycin treatment or

starvation, TAP42 is dephosphorylated and dissociates from SIT4 (Di Como and Arndt,

1996; Jiang and Broach, 1999). Active SIT4 then initiates nitrogen scavenging and stress
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response programs by dephosphorylating Gln3, RTG1/3, GCN2 and NPR1 (reviewed in

De Virgilio and Loewith, 2006).

However, many consequences of TORC 1 signaling are independent of TAP42/

SIT4. For instance, TORC1 inhibition dramatically represses expression of both

ribosomal proteins (RP genes) and rRNA independently of SIT4 (Cardenas et al., 1999;

Powers and Walter, 1999). TORC 1 inhibition also stimulates the recycling of cellular

material through the process of macroautophagy, in which double-membraned vesicles,

called autophagosomes, engulf parts of the cytoplasm and various organelles (Kamada et

al., 2000). These vesicles then fuse with lysosomes and the contents are degraded to base

nutrients that can be reused. TORC 1 regulates this process by directly phosphorylating

components of the autophagic signaling pathway(Kamada et al., 2000). Finally, TORC1

can influence translation initiation by regulating the 5'-mRNA cap binding proteins eIF4E

and eIF4G, and eIF2 (De Virgilio and Loewith, 2006). Thus, by coordinating anabolic

and catabolic processes in response to nutrient availability, TORC1 plays a key role in

maintaining energy homeostasis.

One note of caution is that many of these connections to TORC 1 were inferred

from either rapamycin-treated or TOR-deficient cells, leaving the possibility that the

association is indirect. For instance, the AGC kinase Sch9 was recently identified as a

bona fide TORC 1 target that may mediate many of these effects (Urban et al., 2007). In

particular, Sch9 was required for control of ribosome biogenesis and translation initiation,

but not for the expression of any Gln3-dependent genes. As Sch9 is homologous to the

mammalian mTORC 1 target S6K (described in the next section), these findings suggest

that the molecular mechanisms of TORC 1 signaling might be more conserved than

previously appreciated.

C. Effectors of mammalian TORC1 signaling: S6K and 4E-BP1



The downstream effectors of mTORC1 appear to have diverged from those in

yeast more than other features of the pathay. For instance, there is no obvious mammalian

SIT4 homologue, perhaps reflecting the difference between metazoan and single-celled

nutrient requirements. Instead, the classical mTORC 1 substrates are the eIF4E inhibitor

4E-BP1/PHAS-1 and the ribosomal S6 kinases (S6K1/2). Before the discovery of mTOR,

both proteins had already been identified as downstream targets of a rapamycin sensitive

pathway (Beretta et al., 1996; Chung et al., 1992; Kuo et al., 1992; von Manteuffel et

al., 1996). Several groups later showed them to be direct mTOR substrates(Brunn et

al., 1997; Burnett et al., 1998; Hara et al., 1997; Isotani et al., 1999). Both substrates

associate with and, in varying capacities, regulate the formation of the translational

pre-initiation complex, which also includes eIF4E, eIF4G and eIF3 (Holz et al., 2005).

4E-BP1 interferes with the complex formation by binding to eIF4E, which is normally

bound to the 7-methylguanosine mRNA 5' cap, and preventing its association with the

larger eIF4G and inhibiting translation. Phosphorylation of 4E-BP1 by mTORC1 and

potentially other kinases diminishes its affinity for eIF4E, which is then able to assemble

into a competent initiation complex.

The S6 kinases have a more complicated role. S6K1 was identified first, and

is produced as two splice variants (70 and 85 kDa) that differ by the addition of 23

N-terminal amino acids containing a nuclear localization sequence(Reinhard et al.,

1992). They were originally discovered as the kinases responsible for phosphorylating

a collection of sites on the 40S ribosomal subunit protein S6, which was strongly

associated with activation of protein translation (Jeno et al., 1988; Sturgill and Wu, 1991).

Mechanistically, phosphorylation of these sites permits association with the pre-initiation

complex and subsequent translation(Holz et al., 2005). Recently, S6K was also implicated

in the phosphorylation of PDCD4, marking it for degradation and relieving its inhibition

of eIF4A (Dorrello et al., 2006). Other targets include SKAR, BAD, and mTOR itself,

though the significance of these events is still unclear(Dann and Thomas, 2006).



Deletion of the S6K homologue in Drosophila is semi-lethal and causes a

severe reduction in organismal size(Montagne et al., 1999). Mutant flies have the same

number of cells as their wild-type counterparts, but the size of each is severely reduced,

demonstrating a decoupling of growth and proliferation. Deletion of S6K1 from mice

also results in animals that are approximately 20% smaller than wild-type and are mildly

glucose intolerant, though the authors concluded that this might be explained by smaller

pancreatic beta-cell size and reduced insulin production (Shima et al., 1998). The S6K1-

knockout mouse also revealed the existence of a second highly similar and functionally

redundant isoform, called S6K2, that could compensate for the S6K1 deficiency(Pende et

al., 2004). Combined deletion of S6K1 and S6K2 showed a profound impact on viability,

underscoring the importance of these genes in normal physiology(Pende et al., 2004).

S6K1 also influences cell growth through a second, and perhaps more profound,

feedback mechanism that modulates insulin signaling. The binding of insulin to the

insulin receptor stimulates its tyrosine kinase activity, causing it to phosphorylate a

family of proteins called insulin receptor substrates (IRS). IRS proteins are normally

localized to the plasma membrane, and phosphorylation causes them to associate with

and activate the p85alpha subunit of PI3K, initiating the activation of many downstream

kinases that include S6K, Akt and PKC (Zick, 2005). However, sustained activation of

S6K1 eventually suppresses PI3K activation by phosphorylating key residues on IRS

with the following consequences: dissociation of IRS from the insulin receptor; mark IRS

for degradation; block Tyr phosphorylation sites on IRS; dissociate IRS from the plasma

membrane; or turn IRS proteins into inhibitors of the insulin receptor kinase (Zick, 2005).

The physiologic relevance of the role of S6K in this mechanism is further underscored by

work from Um et al, who showed that S6K1-/- mice were resistant to obesity, primarily

because they maintained abnormally high insulin sensitivity(Um et al., 2004).

There are some indications the S6K and/or mTORC1 can suppress growth factor

signaling through a more general mechanism. For instance, constitutive activation of



S6K leads to downregulation of the PDGF-receptor, though the mechanism is not entirely

clear (Zhang et al., 2003). Other groups have proposed that over-stimulation of protein

translation causes ER-stress, thereby clogging the conduit that leads growth factor

signaling components, such as PDGFR and IRS, to the plasma membrane (Ozcan et al.,

2008). The strength of this negative feedback signaling has been a surprise, and it will

be interesting to better understand its physiologic relevance, particularly in metabolic

diseases.

D. Upstream regulators: many roads lead to mTORC1

mTORC 1 is controlled by a constellation of signals that reflect the overall

metabolic state of the cell. In yeast, TORC1 acts as a sensor of nitrogen and carbon

availability and is activated by amino acid and glucose sufficiency. In metazoans, the

pathway has many other inputs, including oxygen availability, ATP levels, growth factor

signals and other indicators of energy status. These metabolic cues signal to mTORC 1

either directly, or through two primary avenues. The best characterized of these involves

the small GTPase rheb and the large heterodimeric TSC complex, which integrates

most of these signals. A notable exception is the amino acid signal, which is transmitted

through a parallel pathway that involves a family of small GTPases known in yeast as

Gtrl/2 and in mammals as Rag proteins.

The TSC complex is a heterodimer of the proteins tuberin (TSC1) and

hamartin (TSC2). Before their association with TOR signaling, they had already

been characterized as tumor suppressor genes, and inactivation of either causes a

familial autosomal dominant disorder tuberous sclerosis complex (TSC) that affects

approximately 1:6000 individuals (Montagne et al., 2001). A defining feature of TSC is

the development of hamartomous tumors in multiple tissues that can be severely disrupt

tissue function but are rarely metastatic. Loss of TSC2 is also strongly associated with

lymphangioleiomyomatosis (LAM), a rare multi-systemic disease that causes cystic
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destruction of the lung parenchyma and abdominal tumors(Chorianopoulos and Stratakos,

2008). LAM occurs almost exclusively in young women, and the mechanistic connection

to TSC is still not well understood.

The TSC proteins were first associated with cell growth in drosophila, where

selective deletion in the eye and wing led to the formation of giant cells (Montagne et

al., 2001). They were not connected to the TOR pathway, however, until it was identified

as the GTPase activating protein (GAP) for the small G-protein rheb (ras homolog

enriched in brain)(Manning and Cantley, 2003). Rheb binds only weakly to mTORC1,

but can profoundly activate its kinase activity both in vivo and in vitro (Manning and

Cantley, 2003; Sancak et al., 2007). Only the TSC2 protein contains a GAP domain, but

its activity is dependent on its association with TSC1. Generally, upstream signals that act

through the TSC complex do so by disrupting the association between the two subunits

and inhibiting TSC2 GAP activity. A putative GTP-exchange-factor (GEF) for rheb has

also been identified in drosophila, though the knock-out mouse has no mTOR related

phenotype(Hsu et al., 2007).

Kinases from many signaling pathways phosphorylate a collection of sites on

TSC, presumably either stabilizing or disrupting its integrity. Erk, a downstream effector

of the Ras/MAPK pathway phosphorylates many sites, promoting destabilization of

TSC(Ballif et al., 2005; Ma et al., 2005; Roux et al., 2004). Akt, which is activated upon

insulin stimulation, also phosphorylates and destabilizes TSC(Inoki et al., 2002; Manning

et al., 2002). AMPK, which is activated by rising intracellular AMP and energetic stress,

phosphorylates and stabilizes TSC(Inoki et al., 2006). The Drosophila hypoxia-induced

proteins Scylla and charybdis and their mammlian homolog Reddl also stabilize TSC to

inhibit mTORCl1.(Brugarolas et al., 2004; Reiling and Hafen, 2004). The assumption has

been that the sum effect of these phosphorylations determines the final stability of the

TSC1/TSC2 interaction, and hence its activity.

An interesting and final note concerns the effect of TSC inactivation on the S6K-



mediated regulation of insulin signaling. Loss of TSC1/2 function in mouse embryonic

fibroblasts constitutively induces S6K phosphorylation, but, by engaging the negative

feedback loop and suppressing insulin signaling, also suppresses Akt activation (Zhang

et al., 2003). Thus it has been hypothesized that TSC tumors are less aggressive because

of impaired PI3K/Akt signaling. The finding that other growth factor receptors, such

as PDGFR, are similarly inactivated further supports this hypothesis. Recent work

suggests that TSC can also influence insulin signaling independently of its effect on S6K,

indicating that the coordination between these two pathways is more complicated than

previously appreciated (Huang et al., 2008).

E. TORC1 and amino acid metabolism

The connection between TORC 1 signaling and amino acid availability has

historically been a fascinating and poorly understood feature of the pathway. In

yeast, rapamycin treatment and amino acid deprivation elicit remarkably similar

responses, including induction of macroautophagy and expression of TOR-regulated

starvation response genes. Indeed, TORC1 may be the primary mediator of the amino

acid starvation response. In mammalian cells, both S6K and 4E-BP1 are rapidly

dephosphorylated by amino acid starvation, indicating that the amino acid sensing

machinery has been evolutionarily conserved (Dann and Thomas, 2006). Re-addition of

amino acids reverses these effects in a rapamycin-sensitive manner. Despite considerable

effort by many groups, there is still little understanding of the underlying mechanics.

Specifically, it is unknown which particular metabolite is actually sensed, and it is

unknown how this signal is relayed to TORC 1.

It is widely believed that the amino acid signal originates from an intracellular

receptor. The best evidence for this is that inhibition of protein synthesis (ie.

Cycloheximide treatment) can activate mTORC1 even the absence of extracellular amino
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acids, presumably by creating a surplus of unused intracellular amino acids(Beugnet et

al., 2003). Secondly, leucine and glutamine appear to play a privileged role in TORC1

activation and together can nearly compensate for the lack of all other amino acids (Xu

et al., 2001). Leucine is also known to stimulate protein synthesis in animals, and many

have argued that this is partly due to activation of mTORC 1 (Kimball and Jefferson,

2006).

Leucine influences cells in three ways: as a translational building block

for protein synthesis; as a catabolic energy source; and as an allosteric activator of

glutamate dehydrogenase (GDH), an important enzyme that converts glutamine to alpha-

ketoglutarate for use in the TCA cycle. Many groups have probed each of these branches

in an attempt to identify the one that leads mTORC1. Iiboshi et al proposed early on that

mTORC 1 might by inhibited by the accumulation of uncharged tRNAs, though other

groups have shown that inhibition of leucyl-tRNA synthetases using leucine alcohol

analogues had no effect on mTOR activity(Dennis et al., 2001; Gao et al., 2002; liboshi et

al., 1999).

Other groups have proposed that leucine itself or a catabolic product is

responsible for activating mTORC 1. Leucine is primarily degraded in the mitochondria,

beginning with an initial reversible deamination by Branched chain amino acid

transferase (BCAT) to produce keto-isocaproate (KIC). KIC is then irreversibly

dehydrogenated by the rate-limiting branched chain alpha-keto acid dehydrogenase

(BCKDH) complex and further oxidized. KIC alone is a potent activator of mTORC1,

and rapidly induces 4EBP1 and S6K phosphorylation in cell culture(Fox et al., 1998).

However, this effect is prevented by the addition of (aminooxy)acetic acid, a general

inhibitor of amino acid transferases, suggesting that the effect of KIC depends on

its conversion back to leucine and not it catabolic degradation. In mouse embryonic

fibroblasts where the predominant mitochondrial BCAT variant (BCATm) has been

deleted, TORC1 is also no longer stimulated by KIC, supporting the conclusion that



catabolism of leucine does not influence mTORC1 (She et al., 2007). Leucine-mediated

activation of GDH is also an unlikely mechanism, as BCH, a non-metabolizable leucine

analog that is still capable of activating GDH, has no effect on mTORC 1 signaling

(Kanazawa et al., 2004; Lynch et al., 2000).

The only clear conclusion from this work is that the effects of leucine are not

due to its use in any of these well-characterized pathways. A second possibility is that

intracellular leucine is sensed directly. Several groups have proposed that high-affinity

low-capacity amino acid transporters might serve as amino acid sensors in additional

to their transport roles. In particular, Goberdhan et al have proposed that the proton-

assisted transporter PATH is essential for TORC1 activity while Columbani et al have

identified an important role for the transporter slimfast in regulating drosophila body

size(Colombani et al., 2003; Goberdhan et al., 2005). However, it is not clear whether

either of these transporters signal directly to TORC1 or simply alter the intracellular

leucine availability. It has also been suggested that L-amino acid transporters, which

also have a particularly high affinity for leucine and are transcriptionally regulated by

mTORC 1, might play a role in amino acid sensing, though this hypothesis has not yet

been explored (Dann and Thomas, 2006).

The role of glutamine in mTORC 1 activation has been received more attention

in yeast. Unlike leucine, glutamine is known to be a fundamental building block for

many pathways and can be rapidly converted into TCA cycle intermediates, precursors

for other amino acids, nucleotides and is generally considered a key indicator of the

cell's overall nitrogen status (De Virgilio and Loewith, 2006). Starvation for glutamine

causes a response that closely resembles rapamycin treatment or TOR deficiency, as

does treatment with the glutamine synthetase inhibitor methionine-sulfoximine (MSX),

though this molecule is known to have many non-specific effects(Crespo et al., 2002). In

yeast, TOR is also known to negatively regulate the expression of many genes involved

in glutamine synthesis through its control of Gln3, potentially indicating a homeostatic



negative feedback loop that maintains intracellular glutamine levels (Crespo et al., 2002).

Regardless, there is no clear connection to TORC1, and the identity of the relevant

metabolite remains an open question.

F. Mechanisms that connect mTORC1 to amino acid availability

Despite many attempts to connect amino acids to TORC1 through known

upstream regulators, none have been convincing. For instance, some groups had proposed

that loss of Tscl and Tsc2 in mammalian and drosophila cells rendered TORC1 signaling

resistant to amino acid deprivation (Gao et al., 2002). However, it is now widely believed

that, although loss of TSC hyperactivates TORC1 signaling and can overcome the effects

of growth factor withdrawal, it cannot overcome the effects of amino acid deprivation

(Nobukuni et al., 2005; Smith et al., 2005). Other groups have shown that overexpression

of rheb in cell culture can overcome the effects of amino acid starvation on mTORC 1

signaling and that overexpression in drosophila embryonic tissue causes overgrowth

regardless of amino acid availability (Saucedo et al., 2003). However, these results

are complicated by the possibility that ectopic overexpression of rheb overwhelms the

endogenous regulatory machinery and overcomes the effects of amino acid deprivation

artificially. It also is worth noting that TORC1 signaling is robustly regulated by amino

acids in budding yeast despite the lack of TSC homologs, further suggesting that this

conserved sensory mechanism works through other pathways.

A model that as been recently proposed is that amino acids signal to TORC1

through the class III PI3K hVps34 (vacuolar protein sorting 34). Unlike its well-known

class I PI3K relative, which produces PI(3,4,5)P in response to growth factor signaling,

hVps34 only generates the monophosphorylated PI(3)P. Vps34 was originally implicated

in endosmal/lysosomal vesicular trafficking and the recruitment of proteins containing

PI(3)P binding domains in yeast, and shown to have a similar role in mammalian
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cells (Backer, 2008). Vps34 is also required for macroautophagy and has been shown

to interact directly with regulators of autophagy in both yeast and mammalian cells,

suggesting that it may have a more general role in vescicular trafficking (Backer, 2008).

The hypothesis that hVps34 participates in amino acid regulation of TORC1

signaling is primarily based on three observations from Nobunki et al. The first is that

wortmannin, an irreversible potent pan-PI3K inhibitor, blocks mTORC1 signaling in

tsc2-/- cells (Nobukuni et al., 2005). Although wortmannin is known to inhibit class I

PI3K-mediated growth factor signaling to mTORC1, tsc2-null cells are insensitive to

this input, suggesting that wortmannin also suppresses a second PI3K-mediated TSC-

independent signal. Secondly, hVps34 activity is regulated by amino acid availability.

Finally, RNAi-mediated depletion of hVps34 suppresses mTORC 1 activation despite of

amino acid or growth factor sufficiency. Together, these findings support the argument

that hVps34 activity is required for mTORC1 signaling. However, it has not yet been

shown that overexpression or ectopic activation of hVps34 can overcome the effects

of amino acid starvation on mTORC 1 activity. In the absence of this data, it remains

possible that hVps34 might be required for mTORC1 function without direct involvement

in relaying the amino acid signal. Additionallyl, recent work in Drosophila supports the

hypothesis that vps34 functions downstream of TORC1 (Juhasz et al., 2008).

Regardless, the finding that deregulation of vesicular trafficking might influence

TORC1 signaling is an interesting one that is also supported by work from other groups.

Dubouloz et al identified a vacuolar membrane-associated protein complex (EGO),

composed of EGO1, EGO3 and the GTPases Gtrl and Gtr2, which was required for the

resumption of growth following a rapamycin-induced GI arrest (Dubouloz et al., 2005).

Gtrl and Gtr2, in particular, are believed to have a role in the intracellular sorting of the

general amnio acid permease Gap lp(Gao and Kaiser, 2006). Two observations suggested

that the EGO proteins might act somewhere in the TORC1 pathway: deletion of EGO

components elicited a response that resembled TOR deficiency or rapamycin treatment



and overexpression of some EGO components confered rapamycin resistance (Dubouloz

et al., 2005). Furthermore, a molecule that was identified in a screen for compounds

that confer rapamycin resistance targets the Ego3 protein, apparently causing a gain of

function (Huang et al., 2004). The interpretation of these results was that EGO proteins

acted primarily downstream of TORC1, though that it might influence upstream signaling

as well.

The Gtrl/2 proteins are highly homologous to four mammlian small GTPases

called Rags (RagA, B, C and D). Work from our lab has recently shown that Rag proteins

can bind directly to raptor in a manner that is regulated by amino acids (Sancak et al.,

2008). Moreover, expression of a constitutively GTP-bound mutant of RagB activates

mTORC 1 and renders it insensitive to amino acid starvation, while RNAi-mediated

depletion suppresses the pathway. Wild-type RagB GTP loading is regulated by amino

acid availability. Sancak et al also showed that re-addition of amino acids to starved

cells caused a dramatic rapamycin-insensitive re-localization of mTOR from diffuse

cytoplasmic structures to much larger Rab7-positive vesicles regardless of the presence

of absence of growth factors. Expression of the RagB-GTP mutant causes the same

change in localization. Although it is not yet clear how amino acids affect Rag activity,

the evidence strongly supports their role as a key amino acid regulated input to mTORC 1.

Interestingly, rheb has also been shown to localize to endosomal membranes (Buerger et

al., 2006; Saito et al., 2005; Takahashi et al., 2005). An attractive though still hypothetical

model is that Rag proteins mediate a nutrient-dependent mTORC1 translocation to a

cellular compartment that also contains rheb, which can then activate mTORC1 directly

(Figure 3).

IV. TORC2: connections to proliferation, survival and cytoskeletal structure

A. The rapamycin-insensitive complex
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Figure 3. mTORC1 regulation by amino acids

mTORC1 is normally distributed throughout the cytoplasm where it is likely bound to small

endosomal membranes. In the presence of amino acids, the Rag proteins drive mTORC1 to larger

rab7+ vesicles. Rheb is also localized to these vesicles and, when activated by growth factors,
energy, and oxygen availability, stimulates mTORC 1.
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An early mystery in the TOR field was that TOR2, but not TOR1, had some

functionality that was sensitive to rapamycin and some that wasn't. The discovery of two

distinct TOR-containing complexes, first described in a landmark paper by Loewith et

al, resolved many of these questions (Loewith et al., 2002). Using immunopurification

of epitope-tagged TOR1 and TOR2 and mass-spectrometry, these authors showed that

all TORi-interacting proteins also associated TOR2. These included the proteins LST8

and KOG1, which, together with TOR1 or TOR2, defined the rapamycin-sensitive

TORC 1. As described above, KOG1 is homologous to mammalian raptor and LST8

is homologous to mammalian GbL/mLST8. TOR2 additionally associated with the

proteins AVO1 (homologous to human SIN 1), AVO2 and AVO3, defining the rapamycin-

insensitive TORC2. TORC2 also contains LST8, but not KOG1. Deletion of TORC2

components caused a defect in actin cytoskeleton assembly that was attributed to

inhibition of ROM2, RHO1 and PKC1 signaling. Loewith et al also noted that Avol and

Avo3 were orthologous to the Dictyostelium RIP3 and pianissimo, both of which had

been implicated, albeit weakly, in mediating RAS signaling.

The discovery and characterization of mammalian TORC2 (mTORC2) came

soon after with the identification of rictor as an mTOR-interacting protein (Sarbassov dos

et al., 2004). Rictor is a 200 kDa protein that shows weak but definite homology to the

budding yeast Avo3 and Dictyostelium pianissimo and, together with mTOR and mLST8,

define mTORC2. Like yeast TORC2, disruption of mTORC2 using rictor-targeted RNAi

caused a defect in actin cytoskeleton assembly that appeared to involve PKC. More

recent work has since identified SIN 1, the mammalian Avol ortholog, and protor/PRRL5

as additional mTORC2 components (Frias et al., 2006; Jacinto et al., 2006; Pearce et

al., 2007; Thedieck et al., 2007). Although protor has no apparent function, mSIN1, like

Avo 1, is necessary for mTORC2 integrity. Interestingly, mSINI is expressed as three

different isoforms that can all associate with mTORC2 and define three distinct mTORC2

complexes(Frias et al., 2006). Two of these contain a divergent, putative PH domain



at their C-terminus, suggesting that they may play a role in connecting mTORC2 to

PI3K activity(Schroder et al., 2007). The third isoform lacks this domain and defines an

mTORC2 that remains active in the absence of PI3K signaling, suggesting that it might

have a unique function (Frias et al., 2006).

B. mTORC2 regulates the proliferation and survival kinase Akt/PKB

Aside from its connection to actin cytoskeleton assembly, very little was known

about the role of mTORC2. This changed with the discovery that the serine/threonine

kinase Akt/PKB was an mTORC2 substrate (Sarbassov et al., 2005). Akt/PKB is best

known as the primary downstream effector of the PI3K/PTEN pathway, and mediates

many of the consequences of insulin signaling. It is also hyper-activated in a wide variety

of cancers, most commonly by loss of PTEN or mutational activation of PI3K, and has

consequently been a protein of intense interest for many cancer researchers. Like S6K,

Akt belongs to the AGC family of kinases and is expressed as three highly similar and

functionally redundant isoforms. Aktl and Akt2 are expressed ubiquitously, while Akt3 is

preferentially expressed in the brain and testis (Hanada et al., 2004). S6K and Akt share

several structural similarities and are both regulated by mTOR by phosphorylation of C-

terminal site known as the hydrophobic motif (T389 for S6K and S473 for Akt) (Figure

4). An additional C-terminal domain in S6K ensures that each mTOR complex only

phosphorylates the proper substrate; deletion of this domain permits phosphorylation of

S6K by both complexes (Ali and Sabatini, 2005).

Like most other AGC kinases, Akt activity is controlled through a two-part

mechanism that requires phosphorylation of the hydrophobic motif, followed by

phosphorylation of an internal "activation loop" site (T308) by the kinase PDK1. In the

AGC kinases S6K, Rsk, SGK and typical PKCs, phosphorylation of the hydrophobic site

is a prerequisite for phosphorylation of the activation loop site (Biondi et al., 2001). The



Autoinhibitory

S6K T229

Catalytic Domain

T308 S473
Akt Io

PH Catalytic Domain

t t
PDK1 sites mTOR sites

Figure 4. Structural homology between the mTOR substrates S6K and Akt

S6K and Akt are both members of the AGC family of kinases and substrates of the mTORC 1

and mTORC2 complexes, respectively. mTOR phosphorylates these kinases at a C-terminal site

known as the hydrophobic motif (T389 for S6K and S473 for Akt), while PDK1 phosphorylates

the T-loop site within the catalytic domain. S6K contains an additional C-terminal domain that is

thought to be an important determinant of its substrate selectivity for mTORC 1.

situation is less clear in Akt: although S473 phosphorylation is required for full kinase

activity and is generally co-regulated with T308, phosphorylation of either site appears to

occur independently of the other (Alessi et al., 1996; Biondi et al., 2001). The physiologic

consequence of this relationship is unclear.

The existence of three redundant Akt isoforms has complicated efforts to

unravel its particular physiologic role. Generally, the evidence supports a diverse role

in mediating the effects of PI3K activation by influencing metabolic regulation, cell

survival and cell growth (Greer and Brunet, 2005). Akt accomplishes this primarily

by phosphorylating and inhibiting several key targets, including the kinase GSK3,

the pro-apoptotic protein BAD, the mTORC1 negative regulator TSC2 and the FoxO



transcription factors (Greer and Brunet, 2005). The FoxO proteins, in particular, are

responsible for many of the phenotypes associated with suppressed PI3K signaling, and

promote transcription of genes regulating cell cycle progression, apoptosis, metabolism

and angiogenesis. Moreover, combined deletion of foxO 1, foxO3 and foxO4 in mice

leads to the development of lymphomas and hemangiomas, underscoring the role of this

pathway in tumorigenesis (Paik et al., 2007; Tothova et al., 2007). However, the tumor

spectrum is more constrained than what is caused by loss of PTEN, suggesting that Akt

and/or mTORC2 can drive cancers through other downstream pathways as well (Guertin

and Sabatini, 2007).

How mTORC2 is activated by PI3K remains an entirely open question. When

mTORC2 is purified from insulin-stimulated cells, it retains increased activity in vitro

towards Akt, suggesting a regulatory mechanism that involves a stable modification

(Sarbassov et al., 2005). One hypothesis is that mSIN1, which contains a putative

divergent C-terminal PH domain, binds to PIP3 following growth factor stimulation and

coordinates activation of mTORC2 by another membrane-bound protein (Frias et al.,

2006). However, there is currently no evidence that such a change in localization occurs.

RIP3, the Dictyosetlium SIN1 ortholog, has also been shown to interact with RAS and

contains a RAS-binding domain, though this remains to be shown whether this feature

can influence mTORC2 activity (Lee et al., 2005; Lee et al., 1999; Schroder et al., 2007).

Clarifying this connection between PI3K and mTORC2 is undoubtedly of great interest to

those hoping to understand how growth factor signaling regulates cell processes, and may

also present a new target for anti-cancer intervention.

C. The physiologic relationship between Akt/PKB and mTORC2

The physiologic role of mTORC2 is currently being explored using mice where

various mTORC2 components have been knocked out. While deletion of mTOR or raptor
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causes early embryonic lethality around the time of implantation, embryos lacking a

functional rictor or mLST8 survive until mid-gestation, reflecting different developmental

requirements for mTORC1 and mTORC2 (Guertin et al., 2006). Consistent with the

connection between mTORC2 and angiogenesis, both rictor- and mLST8-null embryos

appear to suffer from a severe vascular defect (Guertin et al., 2006). As expected,

in mouse embryonic fibroblasts (MEFs) derived from these embryos, Akt S473

phosphorylation was completely ablated and its in vitro kinase activity was reduced

to levels seen in wild-type serum-starved cells (Guertin et al., 2006). However, T308

remained phosphorylated at normal levels, suggesting that Akt might maintain a basal

level activity. Indeed, while phosphorylation of some verified Akt targets such as FoxO

was suppressed, others, such as TSC2 and GSK3, were unaffected.

The finding that loss of mTORC2 doesn't suppress many Akt-regulated pathways

indicates a much more complicated relationship between these PI3K effectors than was

previously understood. There are two probable explanations, neither of which is mutually

exclusive. The first is that Akt might maintain a basal level of activity in the absence of

S473 phosphorylation that allows it to phosphorylate some targets, but not others. The

observation that Akt, but not TORC2, is required for viability in drosophila supports this

idea insofar as it confirms a role for Akt that is independent of S473 phosphorylation

(Hietakangas and Cohen, 2007; Staveley et al., 1998). Moreover, although drosophila

TORC2 isn't required for viability, it can completely block the tissue overgrowth caused

by a concomitant deletion of PTEN (Hietakangas and Cohen, 2007). Thus it is possible

that mTORC2, and implicitly S473 phosphorylation, is only required for maximal Akt

activation, and that PI3K and PDK1 alone are capable for maintaining a basal level of

regulation.

A second possibility is that other AGC kinases that are stimulated by serum

factors but don't depend on mTORC2 can redundantly activate many of the same

pathways. For instance, Rsk, which is activated through an Erk-dependent mechanism



that is independent of PI3K, and S6K can both phosphorylate GSK3 at the S9 Akt site

(Sutherland et al., 1993; Zhang et al., 2006). Likewise, SGK phosphorylates the same

sites on FOXO that are also regulated by Akt(Greer and Brunet, 2005). The physiologic

consequence of these redundant pathways isn't entirely clear, and it is puzzling that cells

appear to compensate for mTORC2 inhibition in so many ways.

V. mTOR signaling in cancer

A. mTOR is a core member of the PI3K/PTEN signaling pathway

The mTOR complexes are at the crossroads of many classical oncogenic signaling

pathways. The most prominent connection is to the PTEN/PI3K pathway, which is

activated by growth factor signaling and is mutationally deregulated in a wide spectrum

of cancers. PTEN alone is disrupted in 50-80% of sporadic cancers, which includes

endometrial carcinoma, glioblastoma and prostate, and 30-50% of breast, colon and lung

cancers (Salmena et al., 2008). Both mTOR complexes are hyper-activated by PTEN

inactivation and are increasingly blamed for many of the subsequent signaling defects,

such as dysregulation of Akt/PKB. Consequently, there has been much interest in mTOR

inhibition as an anti-cancer strategy. Indeed, loss of PTEN has been associated with an

increased sensitivity to mTORC 1 inhibition (Neshat et al., 2001). Much of our current

understanding of the anti-cancer efficacy of mTOR inhibition has come from use of

rapamycin. Although rapamycin preferentially acts an mTORC1-specific inhibitor, a

discussion of its successes and failures offers valuable insight into the effectiveness of

mTOR inhibition as a more general strategy.

The best rationale for therapeutic inhibition of mTOR is in hamartoma syndromes

such as tuberous sclerosis complex (TSC). A defining feature of TSC is the development

of cerebral cortical tubers that are characterized by a disorganized structure and the

presence of large astrocytes and a unique type of cell known as a giant cell (Crino et al.,
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2006). These tubers are considered benign, but can nonetheless cause severe neurological

dysfunction. Linkage analysis of multigenerational families established a connection to

the TSC 1 and TSC2 genes, which, as described above, are key repressors of mTORC1

signaling (Crino et al., 2006). The constitutive activation of mTORC1 that results from

loss of TSC1/TSC2 function is thought to drive many of the pathological features of TSC,

thus establishing a compelling argument for the therapeutic use of rapamycin. Clinical

trials are currently underway and early results have been encouraging (Franz et al., 2006).

Other pathologically similar syndromes (Cowden, Peutz-Jeghers, Neurofibromatosis,

and Birt-Hogg-Dube synrome) are also characterized by the inactivation of genes that

suppress mTORC1 signaling (pten, lkbl, nfl and flcn, respectively) and might also

respond well to treatments that target mTOR (Guertin and Sabatini, 2007).

A second class of cancers that offer a good molecular rationale for targeting

mTORC 1 are those characterized by overexpression of the eukaryotic initiation factor

4E (eIF4E). eIF4E coordinates the translation of a subset of mRNAs with extensive

secondary structure in the 5' untranslated region and is frequently amplified in a diverse

variety of cancers (Bjornsti and Houghton, 2004). Mild overexpression is sufficient to

transform cells in culture, but, curiously, only in the presence of functional RAS signaling

(Lazaris-Karatzas et al., 1992). Moreover, transgenic overexpression in mice causes a

wide-spectrum of tumors, including lymphomas, angiosarcomas, lung adenocarcinomas,

and hepatocellular adenomas (Ruggero et al., 2004). mTORC1, along with ERKl/2 and

possibly other kinases, regulates eIF4E-dependant translation by phosphorylating and

inactivating the eIF4E repressor, 4EBP1. Clinically, 4EBP1 phosphorylation negatively

correlates with survival rates (Armengol et al., 2007).

eIF4E drives cancer growth by promoting the translation of several oncogenes,

including cyclin Dl and c-myc. Interestingly, two cancers that are already known to

respond well to rapamycin treatment, mantle cell lymphoma (MCL) and the familial

cancer syndrome neurofibromatosis type-1(NF1), are characterized by overproduction



of cyclin D1(Johannessen et al., 2008; Williams and Densmore, 2005). MCL is a

particularly aggressive non-Hodgkins lymphoma with the poorest prognosis among its

subtypes (Williams and Densmore, 2005). Rapamycin causes a cell-cycle arrest in many

MCL cell lines that appears to be mediated by nuclear accumulation of p27(Kipl) and,

in some but not all cases, suppression of cyclin D (Dal Col et al., 2008). NFl, which

is caused by mutations in the RasGAP NF1 gene, is characterized by the development

of highly metastatic malignant peripheral nerve sheath tumors (MPNSTs). Like MCL,

rapamycin induces a nearly complete cell-cycle arrest in NF 1 tumor cells that is

accompanied by a suppression in cyclin Dl levels(Johannessen et al., 2008).

mTORC1 can also contribute to tumor growth by promoting angiogenesis.

Activation of mTORC1 increases levels of the transcription factor hypoxia-induciple

factor 1 alpha (HIFlalpha) by driving its expression and suppressing its degradation

(Bernardi et al., 2006; Hudson et al., 2002). As HIFla accumulates, it drives

angiogenesis through expression of the vascular endothelial growth factor (VEGF).

Rapamycin can reverse these effects, and has been shown to interfere with angiogenesis

in mouse tumor models (Guba et al., 2002). This relationship predicts that rapamycin

should be particularly effective in highly vascularized cancers, which appears to be true

in several situations. Kaposi's sarcoma and certain sporadic kidney cancers, which show

elevated VEGF signaling and increased HIF 1 a levels, respectively, are both responsive to

rapamycin therapy (Guertin and Sabatini, 2007).

B. Shortcomings of rapamycin therapy and future hopes

Despite these successes, the most surprising conclusion from rapamycin clinical

trials is that it has not been more effective. There are no clear explanations, but several

hypotheses have been put forward. The first is that rapamycin might paradoxically drive

tumor growth by disengaging the negative feedback loop that normally squelches insulin



signaling (Manning et al., 2005). The resulting hyper-activation of PI3K and mTORC2

could potentially overcome the suppressive effects of mTORC1 inhibition and, in the

worst-case scenario, enhance tumor growth. A second possibility is that mTORC1

inhibition doesn't lead to apoptosis, and instead causes a cytostatic growth arrest that

is more easily overcome by compensatory signaling pathways. In NF1 cells and tumor

models, rapamycin causes a profound growth arrest, but cells rapidly re-enter the cell

cycle when rapamycin is removed (Johannessen et al., 2008). It isn't a stretch to believe

that other tumor types might resist mTORC 1 inhibition by activating other pathways that

overcome this arrest.

A second hypothesis was prompted by the finding that rapamycin can inhibit

mTORC2 in certain situations, and that this might be the true explanation for its success

against some cancers and not others. Although acute rapamycin treatment is selective

for mTORC1, prolonged treatment can also inhibit mTORC2 in some, but not all, cell

types (Sarbassov et al., 2006). The mechanism of inhibition appears to involve disruption

of mTORC2 assembly. In sensitive cell lines, prolonged rapamycin treatment causes a

complete depletion of functional mTORC2 and a total loss of Akt phosphorylation at

S473. Insensitive cell lines also suffer a substantial reduction in functional mTORC2, but

retain a small amount of complex that, surprisingly, is capable of maintaining wild-type

levels of pathway activity. Two important unanswered questions are why does rapamycin

completely inhibit mTORC2 in only some cell lines and why is such a small amount of

mTORC2 able to maintain normal levels of activity in insensitive cell lines?

Additional insight has come from the recent discovery that CCI-779, a rapamycin

analog, can inhibit both complexes directly in an FKBP12-independent manner at high

but clinically relevant concentrations (Shor et al., 2008). This high concentration had

remarkably enhanced anti-proliferative activity against a broad panel of tumor cell lines,

including cell lines that were resistant to low dose rapamycin treatment. Like low dose

rapamycin treatment, high-doses were generally cytostatic, although pten-null tumor



cell lines showed a small but significant increase in apoptosis. Interestingly, the authors

observed a profound global reduction in protein synthesis that correlated with inactivation

of elongation factor eEF2 and reasoned that the combined effect of this and inhibition of

S6K and eIF4E might explain the enhanced anti-proliferative effect.

Together, these clues suggest that mTORC2 might be the more effective clinical

target. In many respects, there is a clearer molecular rationale for targeting mTORC2

because of its role as a primary effector of PTEN/PI3K signaling and a regulator of

Akt/PKB. Pharmacologically, the easiest approach to inhibiting both complexes is with

a general mTOR ATP-competitive kinase inhibitor. A caveat is that, as with rapamycin,

mTORC1 inhibition disengages the feedback loop and results in hyper-activation of

PI3K, which may interfere with inhibition of mTORC2. A more ideal solution would

be to create an mTORC2-specific inhibitor, though this is a much more difficult

task. Possible strategies include identifying and targeting the function of mTORC2

components and inhibiting mTORC2 assembly. It is also possible that dual inhibition

of mTOR and PI3K can further blunt the effects of feedback inhibition, and such

inhibitors are already in clinical trials. Given the high levels of cross-talk between the

mTOR pathways and the RAS/MAPK pathway, it will also be interesting to see whether

combined inhibition can elicit a synergistic response.

VI. Conclusions

For an evolutionarily conserved regulator of cell growth, the role of mTOR

signaling in normal physiology is a surprisingly subtle one. In mice, both complexes

are clearly essential during development. However, the mild side effects of rapamycin

treatment in both mice and humans and the viability of rictor-null drosophila suggest that

mTOR inhibition might be well tolerated in adult tissues. There is some data to suggest

that drosophila TORC2 is only required for transmitting amplified PI3K signaling, and



that, in its absence, Akt maintains a limited but sufficient basal activity (Hietakangas and

Cohen, 2007). Obviously, flies and mammals are not the same thing, but the observation

that many Akt substrates remain phosphorylated in rictor-null MEFs supports this model

(Guertin et al., 2006). The implication is that mTOR signaling would be essential during

periods of rapid growth, such as development and hematopoeitic expansion, but less

important in most relatively quiescent adult tissues.

In contrast with this role in normal tissue, deranged amplification of mTORC 1 or

mTORC2 signaling has clear pathological consequences. Activation of mTORC1 by loss

of TSC proteins and activation of mTORC2 by loss of PTEN are fundamental initiating

events in many cancers. As the defining feature of tumors cells is unmitigated growth

and proliferation, it is not surprising that hyper-activation of pathways that drive nutrient

uptake, increases in translational capacity and angiogenesis would confer a substantial

advantage. Moreover, the proposition that excessive levels of nutrients cause insulin

insensitivity by activating mTORC1 and engaging the S6K-dependent feedback loop

suggests a role in metabolic diseases as well. From a therapeutic perspective, a pathway

that is normally dispensable but essential for aberrant growth is a promising target.

As the molecular composition and regulation ofmTORC1 and mTORC2 are

understood more completely, the challenge is shifting to discovering the physiologic

roles of these pathways. What are the important downstream effectors and what processes

do they regulate? In animals, is this a tissue specific arrangement? What metabolites

does mTOR actually sense, and do unnaturally high concentrations sufficiently alter

mTOR signaling to cause disease? If mTOR mediates the balance between nutrient

availability and nutrient demand, how does it cooperate with pathways that regulate

cell proliferation, like Ras/MAPK? In cancers, can these relationships be exploited to

identify inhibitors that synergistically cause apoptosis? Creative use of new tools, such as

conditional knockout mice and mTORC1/2 and mTORC2-specific inhibitors, will be key

to answering these questions.
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Summary

The heterotrimeric mTORC 1 protein kinase nucleates a signaling network that

promotes cell growth in response to insulin and becomes constitutively active in cells

missing the TSC 1 or TSC2 tumor suppressors. Insulin stimulates the phosphorylation

of S6K1, an mTORC1 substrate, but it is not known how mTORC I1 kinase activity is

regulated. We identify PRAS40 as a raptor-interacting protein that binds to mTORC1

in insulin-deprived cells and whose in vitro interaction with mTORC 1 is disrupted by

high salt concentrations. PRAS40 inhibits cell growth, S6K1 phosphorylation, and rheb-

induced activation of the mTORC 1 pathway, and in vitro prevents the great increase in

mTORC 1 kinase activity induced by rhebl-GTP. Insulin stimulates Akt/PKB-mediated

phosphorylation of PRAS40, which prevents its inhibition of mTORC 1 in cells and in

vitro. We propose that the relative strengths of the rheb- and PRAS40-mediated inputs

to mTORC 1 set overall pathway activity and that insulin activates mTORC 1 through the

coordinated regulation of both.



Introduction

The evolutionarily conserved TOR pathway is a critical controller of growth

in eukaryotes, regulating cell as well as organ and body size in a variety of organisms

(reviewed in (Sarbassov et al., 2005; Wullschleger et al., 2006)). The pathway was

discovered in studies into the mechanism of action of rapamycin, an immunosuppressive

and anti-restenosis drug that is also in clinical trials as a cancer therapy. The mammalian

TOR (mTOR) pathway integrates signals from growth factors, nutrients, and stresses to

regulate many growth-related processes, including mRNA translation, small molecule

metabolism, cell survival, and autophagy. Emerging evidence indicates that deregulation

of the mTOR pathway occurs in common diseases, including cancer and diabetes,

underscoring the importance of identifying and understanding the function of the

components of the mTOR signaling network.

The central component of the pathway, the large protein kinase mTOR, nucleates

two distinct multi-protein complexes called mTOR Complex 1 (mTORC1) and 2

(mTORC2) (reviewed in (Sabatini, 2006)). mTORC1 is a heterotrimer consisting of

the mTOR catalytic subunit and two associated proteins, raptor and mLST8/GPL.

mTORC2 also contains mTOR and mLST8/GPL, but, instead of raptor, the rictor and

mSinl proteins. The molecular functions of most mTOR-associated proteins are not

understood, but raptor has been proposed to be a docking site for substrates on mTORC 1

and to regulate mTOR kinase activity (Hara et al., 2002; Kim et al., 2002; Nojima et al.,

2003; Schalm et al., 2003). The best-characterized downstream effectors of mTORC1

are S6 Kinase 1 (S6K1) and 4E-BP1, two translational regulators that mTORC1 directly

phosphorylates (Brunn et al., 1997; Burnett et al., 1998; Gingras et al., 2001).

As judged by the phosphorylation state of S6K1 or 4E-BP1, the mTORC1

pathway senses many upstream signals, including growth factors like insulin as well

as environmental nutrient levels. The mechanisms underlying mTORC1 regulation are



not well understood but a key upstream player is clearly the GTP-binding protein rheb,

which is negatively regulated by the dimeric TSC1-TSC2 GTPase Activating Protein

(GAP) (Castro et al., 2003; Garami et al., 2003; Inoki et al., 2003a; Saucedo et al.,

2003; Stocker et al., 2003; Tee et al., 2002; Tee et al., 2003b; Zhang et al., 2003).

When TSC1 or TSC2 is lost, such as in the cancer-prone syndrome Tuberous Sclerosis

Complex (TSC), rheb becomes constitutively loaded with GTP, rendering the mTORC1

pathway active and insensitive to insulin. It is now appreciated that several pathways in

addition to the insulin-stimulated PI3K/Akt pathway signal to mTORC1 by modulating

TSC1-TSC2 activity towards rheb. For example, energy deprivation sensed by AMPK

(Inoki et al., 2003b), MAPK signaling (Ma et al., 2005; Roux et al., 2004; Tee et al.,

2003a), and hypoxia and stress sensing (Brugarolas et al., 2004; Corradetti et al., 2005;

Reiling and Hafen, 2004) all regulate TSC1-TSC2 activity and the GTP-loading of

rheb. Within cells rheb overexpression strongly activates the mTORC1 pathway and the

overexpressed protein binds to the mTOR kinase domain (Long et al., 2005). However, it

is still not clear if endogenous rheb acts by binding directly to mTORC1 or if it requires

an unknown intermediate.

Here, we identify PRAS40 as a raptor-binding protein that potently inhibits

mTORC1 kinase activity in vitro and mTORC 1 signaling within cells. Insulin-stimulated

phosphorylation of PRAS40 by Akt/PKB suppresses its mTORC1 inhibitory activity.

Thus, we propose that insulin activates mTORC 1 through the coordinated regulation of

rheb, an mTORC1 activator, and PRAS40, an mTORC1 inhibitor.

Results

A salt-sensitive factor inhibits the kinase activity of mTORC1

We previously developed protocols for immunopurifying intact mTORC 1

and an in vitro assay for measuring its kinase activity towards full length S6K1 (Guertin

et al., 2006). Surprisingly, this assay does not detect any difference between the activity

of mTORC1 from serum-deprived and insulin-stimulated HEK-293E cells, even
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though insulin robustly increases S6K1 phosphorylation in these cells (Figure lA). We

speculated that an unknown factor important for conferring insulin sensitivity is lost

from mTORC1 during the washing of immunoprecipitates with buffers containing high

salt concentrations. Indeed, when washed with buffers containing 150 but not 300 or

400 mM NaCl, mTORC1 from insulin-stimulated cells has much higher activity than

that from serum-deprived cells (Figure 1B). By avoiding high salt buffers we showed

that insulin also activates endogenous mTORC1 from HeLa cells and mouse embryonic

fibroblasts (MEFs) (Figure 1C), as well as mTORC1 containing recombinant HA-raptor

stably expressed in HEK-293E cells (Figure ID). High salt washing eliminates the

insulin-induced difference in mTORC1 activity by increasing the activity of mTORC1

from serum-deprived cells (Figure 1B). This indicates that a salt-sensitive factor inhibits

mTORC1 during insulin deprivation and suggests that loss or repression of this factor

participates in activating mTORC 1 in response to insulin.

Inactivation of the TSC or TSC2 tumor suppressor leads to insulin-

insensitive and constitutively high S6K1 phosphorylation (Garami et al., 2003; Inoki

et al., 2002; Manning et al., 2002; Zhang et al., 2003). Paradoxically, however, we

find that the in vitro kinase activity of mTORC1 from TSC2-null MEFs treated with or

without insulin is very repressed, being similar in magnitude to that of mTORC1 from

wild-type MEFs deprived of insulin (Figure lE). Substantial evidence (Harrington et al.,

2004; Shah et al., 2004) indicates that hyperactive mTORC1 signaling down-regulates

the insulin/PI3K pathway so that TSC2-null MEFs are in a state equivalent to insulin-

deprivation. Consistent with this, high salt washes activate mTORC1 from TSC2-null

MEFs (Figure lE), just as they do mTORC1 from insulin-deprived wild-type MEFs

(Figure 1E) or HEK-293E cells (Figure 1B). Thus, in TSC2-null MEFs an mTORC1

activator must exist that overcomes repression of mTORC 1 by the salt-sensitive inhibitor

and leads to the hyperactive mTORC1 signaling characteristic of these cells. Such an

activator is likely lost from mTORC1 during its purification, explaining the low in vitro



activity of mTORC1 from TSC2-null cells.

An obvious candidate for such an mTORC 1 activator is rheb-the small GTPase

that becomes constitutively loaded with GTP in the absence of TSC1 or TSC2. Previous

studies show that overexpressed rheb 1 strongly activates the mTORC 1 pathway and

binds to the mTOR kinase domain (Long et al., 2005). We confirmed these studies

(data not shown) but, despite considerable effort, we were unable to detect endogenous

rheb bound to immunopurified mTORC1 (data not shown), probably because the

rheb-mTORC 1 interaction is transient and too weak to survive even the gentlest

immunopurifications. Thus, to determine if rheb can activate mTORC1 in vitro, we

added GTP-loaded rhebl or control proteins to mTORC1 immunopurified under low

salt conditions and measured its kinase activity towards S6K1. Rheb 1-GTP, but not

rheb 1-GDP, rap2a-GTP, or rap2a-GDP, dramatically activated endogenous (Figure 2A)

or recombinant (Figure 2B) mTORC1 from serum-deprived HEK-293E cells and also

boosted the activity of mTORC 1 from insulin-stimulated cells (Figure 2C). Rhebl-GTP

also strongly activated mTORC1 from TSC2-null MEFs (Figure 2D). Lastly, rhebl-GTP

also activated mTORC1 kinase activity towards 4E-BP1 (Figure 2E). To our knowledge

these are the first demonstrations that soluble GTP-loaded rhebl directly activates

mTORC1 in vitro. We conclude that rhebl-GTP can overcome, like high salt washes,

the suppression of in vitro mTORC 1 activity caused by insulin-deprivation or TSC2-null

status, suggesting that rhebl-GTP can counter the actions of the salt-sensitive inhibitor.

PRAS40 is a raptor-binding protein that interacts with mTORC1

To identify the salt-sensitive inhibitor of mTORC1 we searched for proteins that

co-purify with mTORC1 when raptor or mTOR immunoprecipitates are washed with

buffers containing low but not high salt concentrations. This led to the identification by

mass spectrometry of PRAS40, a 28 kDa proline-rich protein lacking named domains but

which is known to be phosphorylated near its C-terminus by Akt/PKB (Kovacina et al.,
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2003) and potentially other kinases (Huang and Porter, 2005) (Figure 3A). Interestingly,

the gene for PRAS40 (called AKT1S1) is located at chromosome 19q13.33, a region

thought to contain an unknown tumor suppressor associated with gliomas (Hartmann

et al., 2002). PRAS40 is not conserved in budding or fission yeast but has a putative

Drosophila orthologue named Lobe (Chem and Choi, 2002).

Using immunoblot analyses of raptor immunoprecipitates we confirmed that

PRAS40 co-purifies with endogenous mTORC1, but not a control protein, when it is

isolated under low salt conditions and that high salt washes greatly reduce the amount of

PRAS40 bound to mTORC1 (Figure 3B). In HEK-293E cells, acute insulin stimulation

of serum-deprived cells decreases the amount of PRAS40 bound to mTORC1 without

affecting its expression level (Figure 3B). mTOR is part of two distinct complexes within

cells, mTORC1 and mTORC2, but PRAS40 only interacts with mTORC1 (Figure 3C).

Endogenous PRAS40 interacts, in an insulin-sensitive fashion, with mTORC 1

containing recombinant raptor (Figure 3D), suggesting that recombinant proteins can be

used to identify the PRAS40 binding site on mTORC1. To do so, we co-expressed flag-

PRAS40 with HA-raptor and/or myc-mTOR and isolated mTORC 1 using anti-HA or

anti-myc immunoprecipitations (Figure 3E). PRAS40 robustly co-immunoprecipititates

with HA-raptor and the co-expression of myc-mTOR did not significantly increase

the amount of PRAS40 recovered with HA-raptor. While relatively small amounts

of PRAS40 co-immunoprecipitate with myc-mTOR, the co-expression of HA-raptor

significantly increases the amount of PRAS40 recovered with myc-mTOR. These

results indicate that PRAS40 preferentially binds the raptor component of mTORC 1 and

are consistent with PRAS40 not binding to mTORC2, which does not contain raptor.

PRAS40 binds better to the N- than C-terminal half of raptor but the degree of binding

obtained to all raptor fragments tested is much less than that to full-length raptor (data not

shown). Consistent with PRAS40 binding to raptor, in cells with RNAi-induced partial

decreases in raptor or mTOR expression, the amount of PRAS40 recovered in raptor or



mTOR immunoprecipitates correlates with the amount of raptor but not mTOR in the

immunoprecipitates (Figure 3F).

Because previous work (Kovacina et al., 2003) indicates that PRAS40 is

phosphorylated on T246 in an Akt/PKB-dependent fashion we asked how insulin

affects the phosphorylation status of PRAS40 bound to mTORC1 (Figure 3G). As

expected, lysates of HEK-293E and HeLa cells treated with insulin had much greater

levels of phosphorylated PRAS40 than lysates of serum-deprived cells. Despite the fact

that insulin decreases the amount of PRAS40 bound to mTORC1 in HEK-293E and

HeLa cells, the PRAS40 that remains bound is highly phosphorylated. Thus, PRAS40

phosphorylation does not preclude the binding of PRAS40 to mTORC 1 although it may

weaken the interaction. This is consistent with the results of similar experiments in wild-

type MEFs, where insulin causes a large increase in the phosphorylation of the PRAS40

that is bound to mTORC 1 but only a modest decrease in the amount of total PRAS40

bound to mTORC1 (Figure 3G). In TSC2 null MEFs insulin does not increase PRAS40

phosphorylation, as expected from the profound inhibition of insulin signaling and Akt/

PKB activity in these cells (Figure 3G). The fact that PRAS40 phosphorylation on T246

positively correlates with the in vitro activation of mTORC1 by insulin suggests that this

phosphorylation event may promote mTORC1 activation.

Phosphorylation of PRAS40 at T246 is unlikely to be a major component of

the mechanism through which amino acids signal to mTORC 1. Leucine stimulation

of wild-type and TSC2 null MEFs and HEK-293E cells only had small effects on the

phosphorylation of PRAS40 at T246 and the amount of PRAS40 bound to mTORC1

(Supplemental Figure Sl).

PRAS40 is an inhibitor of mTORC1 in vitro

To begin to investigate potential roles for PRAS40 in the regulation of the

mTORC 1 pathway we asked if it affects mTORC 1 kinase activity in vitro. We



have described three ways of obtaining active mTORC 1: (1) by washing mTORC 1

from serum-deprived cells with buffers containing high salt concentrations; (2) by

immunopurifying mTORC1 from cells stimulated with insulin; or (3) by adding rheb 1-

GTP to mTORC1 from serum-deprived cells. In the experiments described below we

tested the in vitro effect of PRAS40 on mTORC1 activity using recombinant PRAS40

overexpressed in and purified from HEK-293T cells. In a dose sensitive fashion PRAS40,

but not a control protein, inhibited the in vitro kinase activity of mTORC 1 activated with

high salt washes (Figure 4A) or insulin stimulation (Figures 4B and 4F). PRAS40 is a

potent inhibitor, with half maximal inhibition occurring at or below 20 nM. PRAS40 also

blocks the massive activation of mTORC1 caused by 100 nM GTP-loaded rhebl (Figure

4C), and, as is the case with activation caused by high salt washes or insulin stimulation,

half maximal inhibition occurred at around 20 nM PRAS40 (Figure 4D). Thus, PRAS40

is a potent inhibitor of mTORC 1 and accounts for the salt-sensitive inhibition of

mTORC 1 we observe.

It is clear that PRAS40 can inhibit rheb 1-GTP activation of mTORC 1, but several

of the findings we have presented also strongly suggest that at high concentrations rhebl-

GTP can overcome PRAS40-mediated inhibition of mTORC 1. For example, the addition

of rheb 1-GTP to mTORC1 from serum-deprived (Figures 3ABC) or TSC2 null (Figure

3D) cells-two situations where PRAS40 is bound to mTORC 1--stimulates mTORC1

activity. To formally prove that rhebl-GTP can reverse PRAS40-mediated inhibition

of mTORC1, we incubated mTORC1 with a constant amount of PRAS40 (40 nM) and

increasing amounts of rheb 1-GTP and measured mTORC 1 kinase activity. Indeed, in

a dose sensitive fashion rhebl-GTP re-activates PRAS40-inhibited mTORC 1 (Figure

4E). 40 nM PRAS40 completely inhibits mTORC1 obtained from insulin-stimulated

cells and a 9-fold higher concentration (360 nM) of rhebl-GTP is required to restore

mTORC1 activity. These results indicate that at elevated levels of rhebl -GTP-as would

be expected in TSC2 null cells-the molar ratio of rhebl-GTP to PRAS40 is sufficiently



high to overcome inhibition of mTORC1 by PRAS40.

PRAS40 is an inhibitor of the mTORC1 pathway in mammalian cells

To determine if the in vivo correlates of our in vitro findings are true, we began

by using overexpression to test the effects of PRAS40 on the mTORC 1 pathway within

cells. In HEK-293E cells transient overexpression of PRAS40, but not a control protein,

blocks the insulin-induced phosphorylation ofT389 on co-expressed S6K1 (Figure 5A).

Furthermore, co-expression of PRAS40 with rhebl eliminates the very large increase in

S6K1 phosphorylation that is normally caused by the overexpression of rhebl in HEK-

293E and HEK-293T cells (Figure 5B). When stably overexpressed using retroviral

transduction, PRAS40 reduces cell size in HEK-293E cells (Figure 5C). Moreover, stable

overexpression of PRAS40 in TSC2 null MEFs reduces the enlarged cell phenotype of

these cells (Figure 5C). Thus, as in vitro, PRAS40 overexpression within cells strongly

inhibits the mTORC 1 pathway.

Because PRAS40 overexpression is sufficient to inhibit the mTORC1 pathway,

we asked if endogenous PRAS40 normally has an inhibitory function within cells.

Our expectation was that if PRAS40 plays a role in the mTORC1 pathway inhibition

that occurs in insulin-deprived cells, a loss of PRAS40 expression should boost

the phosphorylation state of S6K1 even in the absence of insulin. Indeed, using

two independent PRAS40-directed lentivirally expressed shRNAs, knockdowns of

PRAS40 in wild-type MEFs and in human HT-29 colon cancer cells increased the

phosphorylation of S6K1 in serum-deprived cells (Figures 5D and 5E). The increase in

S6K1 phosphorylation caused by the PRAS40 knockdown was not as great as that caused

by insulin stimulation, but this is not surprising because in the absence of insulin cells are

missing the mTORC1-activating input coming from rheb. In addition, the mTORC1 and

S6K1 activation caused by the PRAS40 knockdown should trigger feedback inhibition

of PI3K/Akt signaling, which will suppress rheb and thus limit mTORC1 activation. A



knockdown of PRAS40 expression only slightly increased the phosphorylation of S6K1

in cells growing in the presence of insulin (Figure 5E), suggesting that insulin represses

the inhibitory properties of PRAS40.

Lobe is an inhibitor of the dTORC1 pathway in Drosophila cells

The inhibitory function of PRAS40 on the mTORC 1 pathway is conserved in

Drosophila tissue culture cells. Transfection into S2 cells of two distinct non-overlapping

RNAi-inducing dsRNAs against Lobe, the PRAS40 orthologue, increased dS6K

phosphorylation and cell diameter, although not to as large of an extent as a dsRNA

targeting dTSC2 (Figures 6AB). In Kc 167 cells, the sequential knockdown of dTOR and

then Lobe blocks the increase in dS6K phosphorylation caused by the solo knockdown

of Lobe, consistent with Lobe being upstream of dTOR (Figure 6C). In contrast, Lobe

function does not depend on dRheb, as the sequential knockdown of Lobe and then

dRheb partially restores the levels of dS6K phosphorylation compared to cells having

a knockdown of dRheb alone. Using cell size as a phenotype, we next used the most

active Lobe dsRNA to place within the dTOR pathway Lobe with respect to dRheb

and dTOR (Figure 6D). The sequential knockdown of dRheb and then Lobe did not

alter the approximately 10% increase in mean cell volume caused by the knockdown

of Lobe alone, which is consistent with Lobe function not depending on dRheb. On the

other hand, the sequential knockdown of dRheb and then dTSC2 completely blocked

the increase in cell size caused by the knockdown of dTSC2 alone, in accord with the

established placement of dRheb downstream of dTSC2 (Gao et al., 2002; Saucedo et al.,

2003; Stocker et al., 2003; Zhang et al., 2003). The sequential knockdown of dTOR and

then either Lobe or dTSC2 eliminated the increase in cell size caused by the knockdown

of Lobe or dTSC2 alone (Figure 6D). This is consistent with dTOR being downstream

of both Lobe and dTSC2 and required for the cell size increases caused by the Lobe and

dTSC2 knockdowns. We conclude that in mammalian and Drosophila cells PRAS40



negatively regulates the TORC1 pathway.

Akt/PKB-mediated phosphorylation of PRAS40 blocks its inhibitory activity
towards mTORC1

Insulin-stimulated activation of the in vitro kinase activity of mTORC 1 correlates

with an increase in the T246 phosphorylation of the PRAS40 bound to mTORC 1,

suggesting that this phosphorylation event may relieve the inhibitory action of PRAS40

on mTORC1 (Figures 1 and 3G). As Akt/PKB is an insulin-stimulated kinase that

phosphorylates PRAS40 on T246 (Kovacina et al., 2003), we hypothesized that Akt/PKB

activates mTORC1 by phosphorylating and suppressing PRAS40. The in vitro addition

of active T308D Akt/PKB and ATP to mTORC1 obtained from serum-deprived cells

substantially increases mTORC1 kinase activity (Figure 7A). Consistent with a key

role for PRAS40 in this activation, Akt/PKB does not activate mTORC1 that has been

washed with buffers containing high salt concentrations, conditions that strip off PRAS40

(Figure 3B). To directly test the role of PRAS40 phosphorylation on mTORC1 activity,

we generated phosphorylated PRAS40 by incubating it with active Akt/PKB and ATP.

As a control we mock phosphorylated PRAS40 by incubating it with active Akt/PKB in

the absence of ATP. As before (Figure 4A), the addition of 40 nM non-phosphorylated

PRAS40 strongly inhibited the activity of mTORC 1 washed with buffers containing high

salt concentrations while, in contrast, the equivalent amount of phosphorylated PRAS40

had a much reduced inhibitory effect (Figure 7B). These results suggest that although 14-

3-3 proteins interact with phosphorylated PRAS40 (Kovacina et al., 2003), the binding

of 14-3-3 to PRAS40 is not necessary to repress the inhibitory function of PRAS40 on

the in vitro kinase activity of mTORC1. Of course, it is possible that 14-3-3 does have a

necessary role within cells that we do not detect in vitro.

To confirm the role of PRAS40 phosphorylation in regulating mTORC1 within

cells, we co-expressed in HEK-293E cells an HA-GST-S6K1 reporter together with low



amounts of wild-type or T246A mutant PRAS40 and stimulated the cells with insulin

(Figure 7C). As expected, insulin strongly boosted the T389 phosphorylation of the S6K1

reporter and the low amounts of co-expressed wild-type PRAS40 only weakly diminished

this phosphorylation. On the other hand, the expression of the T246A mutant of PRAS40,

completely blocked insulin stimulated phosphorylation of T389 of S6K1 (Figure 7C).

We obtained equivalent results in a conceptually similar experiment in which we used

the expression of constitutively active Akt/PKB (myr-Akt) instead of insulin to promote

S6K1 phosphorylation (Figure 7D). As with insulin, the expression of low amounts of

T246A, but not wild-type, PRAS40 mutant blocked the increase in T389 phosphorylation

caused by the expression of constitutively active Akt/PKB. Thus, both in vitro and within

cells, Akt/PKB mediated phosphorylation of PRAS40 represses its inhibitory function.

Discussion

A frustrating aspect of studying mTORC 1 has been the difficulty of preserving

its regulation in vitro. Even when isolated from cells with vastly different levels of

mTORC1 signaling (like serum deprived and insulin stimulated cells), the mTORC1

obtained through most purification protocols exhibits at best modest differences in

mTORC 1 kinase activity. Using a newly developed purification protocol and mTORC 1

kinase assay, we provide two findings that help explain this discrepancy. First, the in

vitro addition of soluble rheb 1-GTP to mTORC 1 dramatically activates mTORC 1

kinase activity, but even the gentlest purification schemes do not preserve the interaction

between endogenous mTORC1 and rheb. Therefore, in cellular states where rheb plays

a major role in activating the mTORC1 pathway-like in insulin stimulated cells--the

in vitro kinase activity of mTORC 1 will be artificially low and not reflect true mTORC 1

activity within cells. Second, we identify PRAS40 as a raptor-binding protein that inhibits

mTORC1 activity in vitro and mTORC1 signaling within cells. PRAS40 is largely lost

from mTORC1 under purification conditions in which its core, evolutionarily-conserved

components-mTOR, raptor, and mLST8/Gl3L-remain together. Thus, as PRAS40
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negatively regulates the mTORC 1 kinase, its loss artifactually increases the in vitro

activity of mTORC1 from insulin-deprived cells.

The fact that both PRAS40 and rheb-GTP strongly regulate mTORC 1 activity

raises the question of which protein is the predominant regulator of mTORC 1 in

cells. Our overexpression and in vitro work shows that either regulator is capable of

overcoming the effects of the other. However, in normal cells insulin-stimulated Akt/PKB

signaling aligns the activities of PRAS40 and rheb so that both push mTORC 1 activity in

the same direction (Figure 7E). That is, in insulin treated cells, phosphorylated PRAS40

does not repress mTORC1 while GTP-loaded rheb activates it. In serum-deprived

cells, dephosphorylated PRAS40 represses mTORC 1 while GDP-loaded rheb does not

activate it. So far, we know of only one signaling state, that of TSC2 null MEFs, in which

PRAS40 and rheb push mTORC1 activity in opposite directions (Figure 7E). In these

cells, rheb is constitutively loaded with GTP while PRAS40 is in its dephosphorylated

inhibitory state because of suppressed insulin signaling. The high and constitutive activity

of mTORC1 within TSC2 null MEFs indicates that hyperactive rheb can overcome

PRAS40-mediated inhibition of mTORC 1. Interestingly, the battle between PRAS40 and

rhebl-GTP can be observed in vitro. The kinase activity of mTORC 1 purified from TSC2

null MEFs under conditions that preserve the PRAS40 interaction is very low, but can be

activated by the in vitro addition of rheb 1-GTP or removal of PRAS40.

The relative strengths of the rheb and PRAS40 inputs to the mTORC1 pathway

may vary in different cell types depending on the activity and abundance of each protein.

In the serum-deprived cells we have examined, partial depletion of PRAS40 has modest

activating effects on the mTORC 1 pathway, presumably because in the absence of insulin

the positive signal from rheb to mTORC1 is missing. Although our work has focused on

the coordinated regulation of rheb and PRAS40 by insulin, it is likely that pathways exist

that can signal to PRAS40 and rheb independently, allowing cells to fine tune mTORC1

activity to specific environmental conditions.



A recent parallel study also identifies PRAS40 as an mTORC1 interacting

protein (Haar et al., 2007) and focuses on its role in modulating the feedback loop

between mTORC1 and the IRS/PI3K pathway. While this study shows that PRAS40

suppresses mTORC1 signaling within cells, our in vitro data reveals that PRAS40 is a

direct inhibitor of the mTORC1 kinase and that it antagonizes the activation of mTORC 1

caused by rheb 1-GTP. We also come to differing conclusions on a number of important

points. First, a key question is whether PRAS40 or rhebl plays the dominant role in

establishing mTORC1 activity within cells. Haar et al. conclude from experiments based

on tissue culture cells that PRAS40 has dominant effects over the TSC1/TSC2-rheb axis.

However, our results with TSC2-null MEFs and in vitro kinase assays suggest that the

situation is more complicated, and that either component can overcome the effects of the

other when sufficiently activated. Second, our in vitro data suggests that 14-3-3 binding

is not required for the Akt/PKB mediated repression of PRAS40, though we acknowledge

that 14-3-3 may play a role in insulin stimulation of mTORC1 within cells. Third,

Haar et al. describe PRAS40 as an mTOR-binding protein, but we find clear evidence

for preferential binding to raptor, a result that is more consistent with the finding that

PRAS40 binds only to mTORC1. Fourth, we have been unable to observe any effect of

amino acid signaling on the mTORC 1-PRAS40 interaction, and suspect that different

cell lysis conditions between our two studies accounts for this discrepancy. In contrast to

our previous work (Kim et al., 2002), we have now developed mild lysis and purification

conditions under which the integrity of the mTOR-raptor interaction is not affected by

changes in environmental leucine levels. Haar et al. do not examine the effects of leucine

on PRAS40 phosphorylation and we believe that the leucine-induced decrease in the

amount of PRAS40 recovered in mTOR immunoprecipitates correlates with a similar

decrease in the amount of raptor bound to mTOR.

Given the complexity of the mTORC pathway and the presence of feedback

loops between components, it is likely that a full understanding of the physiologic



consequences of altering the rheb-PRAS40 balance will require the development of

animal models overexpressing or missing these proteins.

Experimental Procedures

Materials

Reagents were obtained from the following sources: antibodies to raptor,

human PRAS40, and multi species phospho-T246 PRAS40, as well as GTPyS, GDP

and T308D Akt/PKB from Upstate/Millipore; an antibody to mouse PRAS40 from

Biosource; antibodies to mTOR, 13-catenin, and S6K1 as well as HRP-labeled anti-

mouse, anti-goat, and anti-rabbit secondary antibodies from Santa Cruz Biotechnology;

antibodies to phospho-T389 S6K1, phospho-T37/T46 4E-BP1, phospho-S473 Akt/PKB,

phospho-T398-dS6K, phospho-S505 dAkt, Akt (pan), 4E-BP1, and the myc epitope

from Cell Signaling Technology; an antibody to HA from Bethyl laboratories; FLAG

M2 affinity gel, FLAG M2 antibody, ATP, and human recombinant insulin from Sigma

Aldrich; protein G-sepharose and immobilized glutathione from Pierce; DMEM from

SAFC Biosciences; LY294002 from Calbiochem; PreScission protease from Amersham

Biosciences; FuGENE 6 and Complete Protease Cocktail from Roche; 4E-BP1 from A.G.

Scientific; and SimplyBlue Coomassie G, Schneider's medium, Drosophila-SFM, and

Inactivated Fetal Calf Serum (IFS) from Invitrogen. The dS6K antibody was a generous

gift from Mary Stewart (North Dakota State University).

Cell Lines and Tissue Culture

The HEK-293E cell line was kindly provided by John Blenis (Harvard Medical

School). p53'/TSC2-' as well as p53-/TSC2÷/ mouse embryonic fibroblasts (MEFs)

were kindly provided by David Kwiatkowski (Harvard Medical School). Cell lines

were cultured in the following media: HEK-293E, HEK-293T, HeLa, and HT-29 cells

and MEFs in DMEM with 10% IFS. HEK-293E and HEK-293T cells express Ela and

SV40 large T antigen, respectively. In HEK-293E, but not HEK-293T, cells the mTORC1



pathway is strongly regulated by serum and insulin.

Cell Lysis and Immunoprecipitations

Cells rinsed once with ice-cold PBS were lysed in ice-cold lysis buffer (40 mM

HEPES [pH 7.4], 2 mM EDTA, 10 mM pyrophosphate, 10 mM glycerophosphate, 0.3%

CHAPS, and one tablet of EDTA-free protease inhibitors (Roche) per 25 ml). The

soluble fractions of cell lysates were isolated by centrifugation at 13,000 rpm for 10

min in a microcentrifuge. For immunoprecipitations, primary antibodies were added

to the lysates and incubated with rotation for 1.5 hours at 40C. 60 tl of a 50% slurry of

protein G-sepharose was then added and the incubation continued for an additional 1

hour. Immunoprecipitates were washed three times each with low salt wash buffer (40

mM HEPES [pH 7.4], 150 mM NaC1, 2 mM EDTA, 10 mM pyrophosphate, 10 mM

glycerophosphate, 0.3% CHAPS). When specified, wash buffers contained the indicated

increased concentrations of NaC1. Immunoprecipitated proteins were denatured by the

addition of 20 pl of sample buffer and boiling for 5 minutes, resolved by 8%-16% SDS-

PAGE, and analyzed by immunoblotting as described (Kim et al., 2002).

In Vitro Kinase Assay for mTORC1 Activity

For kinases assays, immunoprecipitates were washed 3 times in low salt wash

buffer, or once in low salt wash buffer followed by two additional washes in buffers

containing the NaCl concentrations indicated in the figures. Immunoprecipates were

then washed twice in 25 mM HEPES [pH 7.4], 20 mM potassium chloride. Kinase assays

were performed for 20 min at 300C in a final volume of 15 pl consisting of mTORC 1

kinase buffer (25 mM Hepes [pH 7.4], 50 mM KC1, 10 mM MgC12, 250 CiM ATP)

and 150 ng inactive S6K1 or 4E-BP1 as the substrate. Reactions were stopped by the

addition of 30 pl of sample buffer and boiling for 5 min and analyzed by SDS-PAGE

and immunoblotting. Note: the kinase assay buffer used in this work does not contain



manganese, which is present in buffers we have used previously (Kim et al., 2002).

PRAS40, tubulin, rhebl, or rap2a were added to mTORC1 for 5-20 minutes before the

addition of ATP to the kinase assay.

Preparation of S6K1, PRAS40, phosphorylated PRAS40, rhebl, rap2a, and a-tubulin for
Use in mTORC1 Kinase Assays

Full-length rat p70 S6K1 was cloned into an HA-GST pRK5 vector modified so

as to contain a PreScission protease site between the GST tag and the initiator codon of

S6K1. The expression construct was transfected into HEK-293T cells using Fugene6

and, after 48 hours, the cells were treated with 20 [LM LY294002 for 1 hour prior to cell

harvesting and lysis. HA-GST-PreSciss-S6K1 was purified as described (Burnett et al.,

1998), and the affinity tag removed with the PreScission protease. S6K1 was separated

from free GST by gel filtration on a HiLoad 16/60 Superdex 200 column (Amersham)

and the purified protein stored at -800 C in 20% glycerol.

Rhebl or rap2a cDNAs in HA-GST-prk5 were transfected as above into HEK-

293T cells. Cell were lysed with rheb lysis buffer (the lysis buffer used above but without

EDTA and containing 5 mM MgCl2) and cleared lysates were incubated with immobilized

glutathione for 2 hours at 40 C. Beads were washed twice with rheb lysis buffer and once

with rheb storage buffer (20 mM Hepes [pH 8.0], 200 mM NaC1, and 5 mM MgCl2).

GST-rheb1 and rap2a were eluted from the beads with 10 mM glutathione in rheb storage

buffer. Eluted proteins were incubated with 10 mM EDTA and 1 mM GDP or 0.1 mM

GTPyS at 300 C for 10 min. 20 mM MgCl2 was then added and the proteins kept on ice

until use. PRAS40 or a-tubulin cDNAs in flag-prk5 were transfected into HEK-293T

cells, the cells treated with 20 iM LY294002 for 15 min prior to lysis, and the proteins

purified using immobilized FLAG-antibody resin. Proteins were eluted from the resin

with rheb storage buffer containing 50 [tg/[tl flag peptide, and stored on ice until use. In

the experiments using PRAS40 phosphorylated by Akt/PKB, flag-PRAS40 still bound to

the FLAG-antibody resin was incubated for 30 minutes at 300 C in mTORC1 kinase assay
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buffer containing 400 ng of T308D Akt/PKB in the presence or absence of 500 [tM ATP.

The resin-bound flag-PRAS40 was then washed three times with mTORC1 kinase assay

buffer and eluted as above and stored on ice until use.

Mass Spectrometric Analysis

mTOR and raptor immunoprecipitates prepared from 30 million HEK-293E cells

were resolved by SDS-PAGE and the Coomassie stained 40 kDa band corresponding

to PRAS40 was excised and digested with trypsin overnight. The resulting peptides

were separated by liquid chromatography (NanoAcquity UPLC, Waters) using a self-

packed Jupiter 3 micron C 18 column. The eluting peptides were mass analyzed prior

to collisionally induced dissociation (CID) using a ThermoFisher LTQ linear ion trap

mass spectrometer equiped with a nanospray source. Selected mass values from the

MS/MS spectra were used to search the human segment of the NCBI non-redundant

protein database using Xcalibur Mass Spectrometry software (Thermo Fischer Scientific).

Depending on the purification, 2-6 distinct PRAS40-derived peptides were identified.

Cell Size Determinations

To measure cell size, cells were grown to confluence in 6 cm culture dishes,

harvested, diluted 1:10, and re-plated into fresh media. 12 hours later the cells were

harvested by trypsinization in a 1 ml volume, diluted 1:20 with counting solution (Isoton

II Diluent, Beckman Coulter), and cell diameters and volumes determined using a particle

size counter (Coulter Z2, Beckman Coulter) with Coulter Z2 AccuComp software.

cDNA Manipulations, Mutagenesis, and Sequence Alignments as well as Drosophila and
Mammalian RNAi and Analysis

See Supplemental Experimental Procedures.
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Figure legends

Figure 1. A salt-sensitive factor inhibits the kinase activity of mTORC1.

(A) When mTORC1 is washed with buffers containing high salt concentrations, there is no

difference in the kinase activity of mTORC 1 isolated from serum-deprived or insulin treated

cells. HEK-293E cells were deprived of serum for 14 hours or serum-deprived and treated with

150 nM insulin for 15 minutes. mTOR immunoprecipitates were prepared from cell lysates (1

mg total protein), washed with buffers containing 500 mM NaC1, and analyzed for mTORC1

kinase activity towards S6K1 and levels of mTOR and raptor. Lysates were analyzed by

immunoblotting for indicated proteins and phosphorylation states. (B) An insulin-stimulated

difference in mTORC1 activity is detected only when mTORC1 is washed with low salt buffers.

mTOR immunoprecipitates from HEK-293E cells treated as in (A) were washed with buffers

containing 400, 300, or 150 mM NaCl and analyzed for mTORC1 kinase activity. (C) Raptor

immunoprecipitates were prepared from indicated cell types that had been serum deprived and

treated with insulin as in (A), washed with buffers containing 150 mM NaC1, and analyzed for

mTORC 1 activity. Cell lysates were analyzed by immunoblotting for levels of indicated proteins.

(D) HA-immunoprecipitates from HEK-293E cells stably expressing HA-raptor were prepared

and analyzed for mTORC1 activity as in (C). (E) Raptor-immunoprecipitates from TSC2-'- or

TSC2 /+' MEFs treated as in (A) were washed with buffers containing 150 mM or 500 mM NaCl

and analyzed for mTORC1 activity. Cell lysates were analyzed by immunoblotting for levels of

indicated proteins and phosphorylation states.

Figure 2. In vitro soluble rhebl-GTP strongly stimulates mTORC1 kinase activity towards
S6K1 and 4E-BP1.

(A) Rhebl, rap2a, or material obtained in mock purifications were loaded with GDP or

the non-hydrolyzable GTP-mimetic GTPgS and added to mTORC1 immunopurified from

serum-deprived HEK-293E cells. mTORC1 kinase assays were performed and analyzed

by immunoblotting for indicated proteins and phosphorylation states. (B) Experiment was

performed as in (A) using mTORC1 from both serum-deprived and insulin-treated cells. (C)

Experiment was performed as in (A) using mTORC1 containing HA-raptor. (D) Experiment

was performed as in (A) using mTORC1 obtained from TSC2- MEFs. (E) Experiment was

performed as in (B) using 4E-BP1 as a substrate.



Figure 3. PRAS40 is an mTORC1 interacting protein.

(A) Schematic of PRAS40 indicating the C-terminal domain conserved with the Drosophila

Lobe protein (LCD) and the proline-rich regions (P). Below the PRAS40 schematic is an

amino acid sequence alignment of the LCD of PRAS40 orthologues from indicated species

showing that the T246 Akt/PKB phosphoryation site is conserved. (B) In HEK-293E cells the

interaction of PRAS40 with mTORC1 is regulated by insulin and disrupted in vitro by high

salt containing buffers. Raptor or p53 immunoprecipitates were prepared from HEK-293E

cells deprived of serum for 14 hours or serum-deprived and treated with 150 nM insulin for 15

minutes. Immunoprecipitates were washed with buffers containing 400 or 150 mM NaC1, and
analyzed by immunoblotting for indicated proteins. In cell lysates levels of PRAS40 do not

change upon insulin stimulation. (C) PRAS40 binds to mTORC1 and not mTORC2. Raptor

and rictor immunoprecipitates were prepared from HEK-293E cells treated with insulin as in

(B), washed with buffers containing 150 mM NaCl, and analyzed by immunoblotting for the
indicated proteins. (D) Endogenous PRAS40 binds to mTORC1 containing recombinant epitope-
tagged raptor. Flag-immunoprecipitates from HEK-293E cells expressing flag-raptor or a control
vector and treated as in (C) were prepared and washed with buffers containing 150 mM NaCl
and analyzed by immunoblotting for the indicated proteins. (E) PRAS40 preferentially binds
the raptor component of mTORC 1. Indicated cDNAs in expression vectors were co-transfected
in HEK-293E cells and cell lysates prepared. Half of each cell lysate was used to prepare HA-
immunoprecipitates and the other half for myc-immunoprecipitates. Both were analyzed by
immunoblotting for the indicated proteins. Cell lysates contain equal levels of flag-PRAS40.
Samples in which cDNAs for raptor and mTOR were co-transfected were performed in duplicate.
(F) PRAS40 association with mTORC1 requires raptor. HEK-293E cells were infected with
the specified lentiviral shRNAs and mTOR and raptor immunoprecipitates were analyzed by
immunoblotting for the levels of the indicated proteins. (G) In HEK-293E and HeLa cells and
wild-type, but not TSC2 null MEFs, insulin stimulates the phosphorylation of the PRAS40 bound
to mTORC1. Cells were treated with and without insulin as in (B). Raptor immunoprecipitates
and cell lysates were analyzed for the levels of the indicated proteins and phosphorylation states.

Figure 4. In vitro PRAS40 potently inhibits mTORC1 kinase activity induced by insulin or
GTP-loaded rhebl.

(A) PRAS40 inhibits mTORC 1 activated by washing in high salt-containing buffers. HA-raptor
immunoprecipitates were prepared from HEK-293E cells stably expressing HA-raptor deprived
of serum for 14 hours or serum-deprived and treated with 150 nM insulin for 20 minutes.
Immunoprecipitates were washed with buffers containing 150, or where indicated, 500 mM



NaC1. mTORC1 kinase assays containing the specified concentrations of PRAS40 or tubulin

were performed and analyzed by immunoblotting for the indicated proteins and phosphorylation

states. (B) PRAS40 inhibits active mTORC1 isolated from insulin-stimulated HEK-293E

cells. Experiment was performed and analyzed as in (A) except that all immunoprecipitates

were washed with buffers containing 150 mM NaCl. (C) PRAS40 blocks mTORC1 activation

induced by GTP-loaded rhebl. Experiment was performed and analyzed as in (A) except that

all immunoprecipitates were from serum-deprived cells and washed with buffers containing

150 mM NaC1. Kinase assays contained 100 nM rhebl or rap2a loaded with GDP or GTP. (D)

PRAS40 blocks, in a dose sensitive fashion, mTORC1 activation induced by GTP-loaded rhebl.

Experiment was performed and analyzed as in (C) using indicated concentrations of rhebl-GTP

and PRAS40. (E) At high ratios of rheb 1-GTP to PRAS40, rhebl-GTP can overcome PRAS40-

mediated suppression of mTORC1. Experiment was performed and analyzed as in (D). (F)

PRAS40 inhibits mTORC1 activity towards 4E-BP1. Experiment was performed as in (B) using

mTORC1 obtained from insulin-stimulated cells and 4E-BP1 as the substrate.



Figure 5. In mammalian cells PRAS40 inhibits mTORC1 signaling and cell growth.

(A) Overexpression of PRAS40 inhibits insulin-mediated phosphorylation of S6K1. HEK-293E

cells were co-transfected with expression plasmids for HA-GST-S6K1 (500 ng) as well as myc-

tubulin or myc-PRAS40 (2 mg), serum deprived for 14 hours or serum deprived and treated with

150 nM insulin for 15 minutes. Cell lysates were analyzed by immunoblotting for the levels of

the indicated proteins and phosphorylation states. (B) Overexpression of PRAS40 inhibits the

large increase in S6K1 phosphorylation caused by the overexpression of rhebl. HEK-293E cells
were co-transfected with expression plasmids for HA-GST-S6K1 (500 ng) and 2 mg of the other

specified plasmids. In HEK-293T cells 50 ng was used of the HA-GST-S6K1 expression plasmid
and 1 mg of the other plasmids. Cell lysates were prepared and analyzed by immunoblotting
for the levels of the indicated proteins and phosphorylation states. (C) Stable overexpression of
PRAS40 inhibits cell size. HEK-293E cells or TSC2 null MEFs were infected with retroviruses
expressing PRAS40 or tubulin and, 48 hours later, cell size was measured using a Coulter
counter. (D) Validation of shRNAs directed against human or mouse PRAS40. HT-29 cells or
wild-type MEFs were infected with lentiviruses expressing shRNAs targeting mouse or human
PRAS40, respectively, and cell lysates analyzed by western blotting for the indicated proteins.
Control shRNAs targeted raptor or luciferase. (E) Knockdown of endogenous PRAS40 activates
the mTORC1 pathway. Wild-type MEFs or HT-29 cells infected with lentiviruses expressing
shRNAs targeting the indicated genes were incubated in the presence or absence of serum for 3
hours. Cell lysates were analyzed by immunoblotting for the levels of the indicated proteins and
phosphorylation states.



Figure 6. In Drosophila cells Lobe inhibits dTORC1 signaling and cell growth.

(A) A knockdown of Lobe using two distinct dsRNAs increases dS6K phosphorylation. S2 cells

were transfected with the indicated dsRNAs as described in the Experimental Procedures. (B)

A knockdown of Lobe increases the mean size of S2 cells. Cells were transfected as in (A) with

the GFP, Lobe #1, Lobe #2, or dTSC2 dsRNAs and cell size measured with a Coulter counter.

Mean cells diameters + standard error for n = 3 are: GFP dsRNA, 10.71 ± 0.02 mm; Lobe #1

dsRNA, 10.98 ± 0.03 mm; Lobe #2 dsRNA, 10.95 ± 0.04 mm; dTSC2 dsRNA, 11.26 ± 0.02 mm.

The differences in cell diameter between cells transfected with the GFP dsRNA and the Lobe or

dTSC2 dsRNAs is significant to at least p < 0.05. For clarity, histogram shows data for only one

of the Lobe dsRNAs. (C) A Lobe knockdown suppresses the decrease in dS6K-phosphorylation

caused by a knockdown of dRheb but not of dTOR. Kc167 cells were transfected as described

in the Experimental Procedures. Cell lysates were analyzed with immunoblotting for the levels

and phosphorylation states of the indicated proteins. (D) A knockdown of Lobe increases S2

cell size in a dTOR-dependent but dRheb-independent fashion. Cells were transfected as in (C)

with the indicated dsRNAs and cell sizes were measured 24 hours after the final transfection.

Cell volumes were normalized within each group of three in order to compare the cell volume

changes that occur when Lobe or dTSC2 is knocked down alone or together with dRheb or

dTOR. Error bars indicate standard deviations for n = 3.



Figure 7. Akt/PKB-mediated phosphorylation of PRAS40 blocks its inhibition of mTORC1.

(A) The addition of active T308D Akt/PKB stimulates the kinase activity of mTORC 1 washed
with low but not high salt buffers. Raptor immunoprecipitates from serum-deprived cells
were washed with buffers containing 150 or 500 mM NaCl as described in the Experimental
Procedures. mTORC 1 kinase activity in the immunoprecipitates was assayed in the presence or
absence of 400 ng active Akt/PKB and levels and phosphorylation state of S6K1 was analyzed
by immunoblotting. (B) PRAS40 phosphorylated by Akt/PKB has a reduced capacity to inhibit
mTORC 1. 40 nM of non-phosphorylated or phosphorylated PRAS40 was added to mTORC 1
immunoprecipitates washed with high salt. Kinase assays were performed and analyzed
by immunoblotting for the levels of the indicated proteins and phosphorylation states. (C)
Expression of T246A PRAS40 blocks insulin-stimulated phosphorylation of S6K1. HEK-293E
were co-transfected with expression plasmids for HA-GST-S6K1 (500 ng) as well as low (25
ng) or high (250 ng) amounts of expression plasmids for wild-type or T246A myc-PRAS40.
250 ng was used of the plasmid encoding myc-tubulin. Cells were deprived of serum or serum-
deprived and stimulated with 150 nM insulin for 20 minutes. Cell lysates were analyzed
by immunoblotting for the levels of the indicated proteins and phosphorylation states. (D)
Expression of T246A PRAS40 blocks phosphorylation of S6K1 induced by the expression of
constitutively active myristoylated Akt/PKB (myr-Akt). HEK-293E cells were co-transfected
and analyzed as above except that 2 mg of the expression plasmid for myr-Akt was included
were indicated. The increasing amounts of PRAS40 expression vectors used were: 3, 10, 30,
100, and 300 ng. (E) Models depicting regulation of mTORC 1 signaling by rheb and PRAS40
in insulin treated (+Insulin), serum deprived (-Insulin), and TSC2 null (TSC2 --) cells. Green and
red colors indicate active and inactive components and signaling events, respectively. In insulin
treated cells, GTP-loaded rheb stimulates mTORC1 while phosphorylated PRAS40 does not
repress mTORC 1. In serum-deprived cells, GDP-loaded rheb is inactive while dephosphorylated
PRAS40 represses mTORC1. In TSC2 null cells GTP-loaded rheb overcomes the mTORC1
inhibition mediated by dephosphorylated PRAS40.
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Summary

Mutations in the PI3K/PTEN signaling pathway are implicated in many cancers

and drive tumorigenesis by promoting proliferation, cell survival and increased protein

synthesis. The mTORC1 and mTORC2 complexes, which contain the mTOR kinase,

are important effectors of PI3K signaling and control many of these processes by

regulating the AGC kinases S6K and AKT, respectively. In the laboratory, inhibition of

mTORC1 with the FDA-approved drug rapamycin has shown remarkable efficacy against

tumors with hyper-activated PI3K signaling. Unfortunately, rapamycin has had only

limited success in the clinic. Recent work has shown that, under certain circumstances,

rapamycin inhibits both complexes and this dual inhibition is more strongly anti-

proliferative than inhibition of mTORC1 alone. This variable effect may account for

cases where rapamycin is effective, and argues that inhibitors of both complexes may

have more consistent anti-cancer efficacy. Towards this end, we developed a small

molecule that potently and specifically inhibits both complexes by directly targeting

mTOR. This molecule exhibits strong anti-proliferative effects against many tumor cell

lines, but, surprisingly, not against those carrying mutations in the RAS pathway. These

results suggest that PI3K/mTOR and RAS signaling engage a common mechanism

to drive tumorigenesis, and that combined inhibition might be a particularly effective

therapy for a broad range of cancers.



Introduction

Mutations in PI3K occur in approximately 30% of all solid tumors, earning

it the distinction, along with K-RAS, as one of the two most frequently activated

oncogenes. PI3K drives growth and proliferation by catalyzing the conversion of

phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphoate

(PIP3). The accumulation of PIP3 leads to the activation of 3-phosphoinositide-dependent

kinase (PDK1), the mTORC1/2 complexes, and the proto-oncogene AKT/PKB kinases,

AKT1, AKT2 and AKT3(Engelman et al., 2006). Other members of the PI3K signaling

pathway are also frequently mutated in cancer. Monoallelic mutations in the tumor

suppressor PTEN (phosphatase and tensin homolog), which counters the activity of

PI3K by converting PIP3 to PIP2, are found in 50-80% of sporadic tumors and 30-50%

of breast, colon and lung tumors (Salmena et al., 2008). Moreover, germline PTEN

heterozygosity is the cause of the familial Cowden Syndrome, which is characterized

by benign tumors and a high risk of cancer. Overexpression of AKT2 has also been

implicated in tumorigenesis, confirming its role as a key downstream effector (Engelman

et al., 2006). The transforming ability of PTEN loss, P13K activation and overexpression

of AKT have all been established in both cell culture and mouse tumor models (Engelman

et al., 2006).

The large multi-protein complex mTORC2 is integral in transmitting signals

from PI3K to AKT and may mediate many of PI3Ks downstream effects. AKT activity

is regulated by a two-step mechanism where full activation requires phosphorylation

at a site located in the activation loop (T308) and a site at the C-terminus known as the

hydrophobic motif (S473) (Alessi et al., 1996). Accumulation of PIP3 targets AKT to

the plasma membrane where PDK1 phosphorylates T308 and mTORC2 phosphorlyates

S473 (Alessi et al., 1996). Although phosphorylation of both sites generally occurs in a
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coordinated fashion, there is no absolute dependency between them (Collins et al., 2003).

Deletion of mTORC2 components ablates phosphorylation at S473 and blunts the effects

of PTEN loss, but, importantly, does not completely inhibit AKT activity, suggesting that

S473 might primarily be required for transmitting spikes in PI3K activity (Guertin et al.,

2006; Hietakangas and Cohen, 2007).

The connection between deranged PI3K signaling and cancer has driven the

search for pharmacological inhibitors of various pathway components. Several AKT

inhibitors exist, though the therapeutic value of these is complicated by the existence of

the three highly similar, partially redundant but also physiologically distinct isoforms

(LoPiccolo et al., 2007). Furthermore, the similarity between AKT and other AGC

kinases, such as serum-glucocorticoid kinase (SGK) and the S6-ribosomal kinase (S6K),

has made target specificity a challenge. The most potent inhibitors to date are reasonably

efficacious against mouse xenograft tumor models, but also cause acute metabolic

toxicity, which has dampened enthusiasm for their prospects in humans (Luo et al., 2005).

A second strategy has been to develop molecules that inhibit PI3K directly, though these

are also complicated by the existence of multiple p110 isoforms and similar toxicity

concerns because of the broad range of downstream processes (Fan et al., 2006).

The mTORC1 complex, which acts downstream of AKT, is also considered a

therapeutic target. AKT activates mTORC1 by phosphorylating and inactivating TSC2,

a component of the heterodimeric tuberous sclerosis complex (TSC) that negatively

regulates mTORCl(Inoki et al., 2002; Potter et al., 2002). Upon activation, mTORC1

phosphorylates and regulates the S6-ribosomal kinase (S6K) and the eIF4E inhibitor 4E-

BP1, and contributes to tumorigenesis by promoting cap-dependent translation through

elF4E (Guertin and Sabatini, 2007). mTORC 1 is potently and specifically inhibited by the

FDA-approved drug rapamycin, and several studies have demonstrated that rapamycin is,

experimentally, highly effective against neoplastic phenotypes induced by PTEN deletion

or transgenic activation ofAKT (Majumder et al., 2004; Neshat et al., 2001; Podsypanina



et al., 2001; Wendel et al., 2004).

Unfortunately, rapamycin has had far less clinical success as an anti-cancer

treatment than had been hoped for. One hypothesis is that selective inhibition of

mTORC1 paradoxically activates PI3K signaling. mTORC1 controls a powerful negative

feedback loop that normally suppresses insulin signaling by targeting the adaptor protein

IRS 1 for degradation(Guertin and Sabatini, 2007). Rapamycin treatment disables this

feedback loop, thereby hyper-activating PI3K and AKT to an extent that might overcome

the growth-inhibitory effects of mTORC 1 inhibition.

A second hypothesis is based on the observation that rapamycin, despite its

historical classification as a specific mTORC 1 inhibitor, can also inhibit mTORC2 during

prolonged treatment (Sarbassov et al., 2006). Strangely, this effect only occurs in certain

cell types, and we have proposed that the variation in tumor response might reflect

whether or not both mTOR complexes are inhibited (Sarbassov et al., 2006). Shor et al

recently showed that high but clinically relevant concentrations of rapamycin are also to

inhibit both mTOR complexes(Shor et al., 2008). In support of a key role for mTORC2

in tumor growth, they further showed that high doses of rapamycin dramatically inhibited

proliferation of many tumor cell lines that were unaffected by low doses, and caused a

severe repression of global protein synthesis. Together, these observations suggest that

mTORC2 inhibition may account for rapamycin's successes and provide rationale for

developing a small molecule capable of inhibiting both mTORC1 and mTORC2. To this

end, we developed a screening platform to identify promising small molecule candidates

and then refined these to produce a highly potent and specific mTORCl/mTORC2

inhibitor.

Results



Automated screen for mTOR-specific inhibitors

To identify candidate mTOR inhibitors, we developed an in vitro kinase assay that

was compatible with automated screening methods. We chose this approach over a cell-

based one because mTORC1 and mTORC2 are downstream of many signaling pathways,

and we believed that off-target effects in cells would generate an unacceptably high

false-positive rate. Although we were interested in molecules that inhibit mTOR directly,

we based our assay on mTORC 1 with the reasoning that most hits would also be active

against mTORC2 because mTOR is the catalytic domain for both complexes.

We designed our assay to maintain as many regulatory features as possible with

the belief that some molecules might act by engaging these mechanisms. To this end,

we developed a method for purifying intact soluble mTORC1, which contains other

mTORC1 components raptor, mLST8 and PRAS40 that are important for regulation of

kinase activity(Guertin and Sabatini, 2007). In the absence of raptor, purified monomeric

mTOR is no longer regulated in vitro by insulin and cannot be activated in vitro by rheb

(data not shown). For similar reasons, we chose to use full-length p70S6K as a substrate.

We have shown previously that mTORC2 can phosphorylate a C-terminal truncation of

S6K1, but not the full-length protein, suggesting that full-length substrates are subject to

regulatory mechanisms that don't affect shorter fragments (Ali and Sabatini, 2005).

To purify intact mTORC1, we stably infected HEK293T cells with an MSCV

vector expressing N-terminal FLAG-tagged raptor. The mTORC 1 complex is sensitive

to the stoichiometry of components, and transiently expressing high levels of a single

component can disrupt complex integrity (data not shown). By generating cell lines that

stably expressed low levels of tagged raptors, we were able to purify large amounts of

complex that maintained all of its constituent pieces (data not shown). After purification

by FLAG antibody, mTORC 1 was eluted with FLAG peptide and stored at -80C. We

then used this kinase in combination with full-length p70S6K to perform kinase assays in
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96-well plates.

Our initial screening panel contained 200 compounds, many of which were

ATP-competitive inhibitors of PI3K. mTOR belongs to the PI3K-like kinase (PIKK)

family of kinases, which is defined by sequence similarity between the PIKK and PI3K

kinase domains(Abraham, 2004). Because many structurally unrelated PI3K inhibitors,

such as wortmannin, LY294002, and PI-103, also inhibit mTOR and other PIKKs, we

hoped to find a compound with similar cross-selectivity that was more amenable to

further modification. To this end, we determined mTORC1 IC50s for each compound

by measuring their effect on mTOR activity at 8 different concentrations. As a positive

control, we included PI-103, which yielded the expected IC50 of approximately

100nM(Knight et al., 2006). We also determined mTOR IC50s in cells for top hits by

treating mouse embryonic fibroblasts (MEFs) with varying concentrations for 30 min

or lh and monitoring phosphorylation of p70S6K T389 and pAkt S473, which are

established targets of mTORC1 and mTORC2, respectively (Figure 1A) (Burnett et al.,

1998; Sarbassov et al., 2005).

Increasing selectivity for mTOR over PI3K and other PIKK kinases

Our next step was to determine which of our top hits was more selective for

mTOR versus PI3K and other PIKK kinases. Assessing PI3K activity in cells is difficult,

and generally involves measuring incorporation of 32P into PIP3 or indirect FRET-

based detection systems. Instead, we made use of the observation that phosphorylation

of AKT at T308 depends on two processes that directly reflect PI3K activity: PIP3-

dependent targeting of AKT to the plasma membrane and activation of PDK1. In wild-

type cells, phosphorylation ofT308 is also influenced by phosphorylation at S473

(Sarbassov et al., 2005). To remove this variable, we tested compounds in MEFs where

mLST8, an essential mTORC2 component, is deleted and AKT S473 is constitutively
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dephosphorylated, or in PC3 cells that express an S473D AKT phospho-mimetic mutant.

Because S473 is fixed in a single state in these cell lines, phosphorylation at T308 only

reflects PI3K activity. Using these two systems, we determined cellular PI3K IC50s for

each compound (Figure IB). We also determined in vitro IC50s for PI3Kalpha using

well-established methods that are described elsewhere (Figure 2) (Knight et al., 2006).

Compounds that inhibit PI3K and mTOR are also likely to inhibit other PIKK

kinases, including the DNA-damage response kinases ATM, ATR and DNA-PK. Like

mTOR, these kinases are unusually large and difficult to screen in a high-throughput

format, and so we relied on in vitro and in vivo assays to determine selectivity. For

DNA-PK, ATM and ATR, we measured IC50s using in vitro assays (Figure 2). We

also measured inhibition of ATM in cells by monitoring phosphorylation of Chk2 T68

following a 2h treatment with the DNA-damage inducing compound doxorubicin. We

also measured inhibition of the Class III P13K hVps34. Some reports have proposed that

hVps34 acts upstream of mTORC I, and we wanted to be sure that cross-reactivity with

this kinase was not influencing mTORC1 activity in cells (Nobukuni et al., 2005). Finally,

we screened top candidates at 10uM against a panel of 353 serine/threonine kinases using

Ambit Biosciences scanMAX screening platform (Table 1).

Guided by selectivity information from the assays described above, we generated

a series of derivatives of top candidates from our original screen that eventually produced

JW-7-52-1, a potent and selective inhibitor of mTORC 1 and mTORC2. The IC50 is

2nM for mTORC1 and 8nM for mTORC2 (Figure lA). This compound is nearly 1000-

fold selective for mTOR over PI3K (IC50 = 1.8uM), and at least 400-fold selective over

other PIKK kinases and hVps34 (Figure 2). Of the 353 serine/threonine kinases screened

using the Ambit panel, only the poorly characterized myotonic dystrophy kinase-related

cdc42 binding kinase alpha (MRCKa) showed any substantial inhibition (Table 1). The

slight difference in IC50 between mTORC1 and mTORC2 was puzzling at first, as both

complexes share the same catalytic domain. However, inhibition of mTORC 1 should
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disengage the negative feedback loop that normally dampens insulin signaling in growing

cells (Manning, 2004). This could sensitize PI3K and thus increase mTORC2 activation,

countering the inhibitory effect of JW-7-52-1.

Effects of mTOR inhibition on tumor cell proliferation

Using JW-7-52-1, we next asked whether some tumor cell lines were more

dependent on mTOR activity that others. To test this, we assembled a panel of 30 cell

lines that represented a broad range of cancer types and mutational backgrounds (Table

2). Previous studies have established a relationship between activation of PI3K/PTEN

signaling and sensitivity to rapamycin, and so we included cell lines that carry known

lesions in PI3K (MDA-MB-435, MCF7, BT-20) and PTEN (U-87-MG, PC3, 786-0). We

also included cell lines derived from tumors that are frequently clinically responsive to

rapamycin, such as mantle cell lymphoma (MCLs) and NF1 malignant peripheral nerve

sheath tumors (MPNST), which are characterized by loss of the NF1 tumor suppressor

(Drakos et al., 2008,Johannessen, 2008 #189). Additional tumor cell lines were chosen to

cover a broad range of cancers.

To measure inhibition, we seeded cell lines in 96-well plates, treated them with

vehicle, 50nM rapamycin or increasing concentrations of JW-7-52-1 (Table 2). Cell

proliferation was measured using a luminescent reagent that reflects the ATP content of

the well, and measurements were taken at the time of drug addition on Day 1 and again

at Day 6. The seeding density for each cell line was chosen to ensure exponential growth

throughout the duration of the experiment. To measure the degree of growth inhibition,

we calculated the number of cell doublings per day under each condition. Many groups

measure inhibition by comparing the final difference in cell number between treated and

untreated wells (McDermott et al., 2007). However, we found that this measurement is

confounded by differences in growth rates between cell lines such that, for a given degree

of inhibition, cells that divide more rapidly will seem more affected than cells that divide
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slowly.

Overall, JW-7-52-1 treatment substantially slowed the growth of some cell

lines and had little effect on others (Figure 3A). For instance, Hela cells continued

to proliferate under even the highest concentrations of JW-7-52-1, while the breast

cancer cell line MCF7 declined below what was initially seeded. In cell lines where

mTOR inhibition reduced cell numbers, there was no evidence of substantial apoptosis,

suggesting that the anti-proliferative effects are primarily due to cell-cycle arrest (data not

shown). This is consistent with a recent report showing that inhibition of both complexes

using high concentrations of rapamycin caused a similar arrest (Shor et al., 2008). Low

doses of rapamycin are also known to cause a Gl/S cell-cycle arrest in tumors where it is

an effective anti-proliferative agent (Johannessen et al., 2008). However, our finding that

JW-7-52-1 is more potently anti-proliferative than rapamycin in more cell lines argues

that its effects cannot be explained by mTORC1 inhibition alone (Figure 3B).

Previous studies have described a relationship between increased sensitivity to

rapamycin and activation of PI3K signaling, either through mutations in PI3K or loss

of PTEN (Neshat et al., 2001; Wendel et al., 2004). There is good theoretical rationale

for this expectation as both mTOR complexes are downstream of PI3K and may by

its primary effectors. Accordingly, we had expected tumor cell lines with PI3K/PTEN

mutations to be more sensitive to mTOR inhibition with JW-7-52-1. However, we failed

to detect a clear relationship between the two (Table 2). Although some PTEN-null cell

lines were particularly sensitive, such as U87-MG and MCF7, others, such as HCT-116

and HT-29 cell lines were much less affected. Moreover, some of the most sensitive cell

lines lacked obvious activating mutations in the PI3K/PTEN signaling pathway. MCL

lines (ie. Rec-1, JVM-2) and MPNST lines (90-8T, S462) are all strongly inhibited by

JW-7-52-1 but are mostly characterized by amplified Cyclin Dl expression (Table 2).

Conversely, we found a strong and unexpected relationship between mutations

in the RAS/MAPK signaling pathway and resistance to JW-7-52-1 (Table 2). The RAS
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proteins are family of small GTPases that are activated by growth factor signaling

through RTKs such as the EGF-receptor (EGFR). Oncogenic mutations have been

identified in three isoforms, KRAS, NRAS and HRAS, and are implicated in a wide

variety of cancers (Rosen and She, 2006). Upon activation, RAS signals through a

complicated cascade of downstream effectors that involves activation of the RAF kinases,

the MEK1/2 kinases and the ERKl/2 kinases (Rosen and She, 2006). RAS can also

activate PI3K directly (Rodriguez-Viciana et al., 1994). Our panel included 10 cell lines

with canonical mutations in RAS pathway components, including KRAS, BRAF, and

EGFR. Under 250nM JW-7-52-1 treatment, none of these cell lines declined in number

and all were among the 14 least-inhibited cancer cell lines tested (excluding both MEF

cell lines, which are non-transformed). Interestingly, some of these cell lines also carried

PI3K or PTEN mutations, suggesting that RAS mutations can overcome whatever

sensitivity to mTOR inhibition that PI3K or PTEN mutations might confer. The only

exceptions to this pattern were the MPNST cell lines, which are defined by mutations in

the complicated tumor suppressor NF 1. NF I contains a RAS-GAP domain that normally

suppresses RAS signaling (Dasgupta and Gutmann, 2003). However, re-addition of the

NF 1 RAS-GAP domain to NF l-null cells does not suppress their transformed phenotype,

indicating that loss of NF1 might drive tumor growth through other mechanisms

(Dasgupta and Gutmann, 2003).

We also included two non-transformed MEF cell lines in our panel (Table 2).

Both contained mutations in p53, which is necessary for immortalization, and one carried

a mutation in the mTORC2 component mLST8 (listed as MEF and mLST8-null MEF).

Treatment with JW-7-52-1 only mildly affected both cell lines. Rapamycin treatment,

which should mimic general mTOR inhibition in mLST8-null cells because they already

lack a functional mTORC2, also had little effect in both lines (Table 2). It is tempting

to conclude that non-transformed cells are less sensitive to mTOR inhibition, an ideal

therapeutic situation, though this will require further investigation.
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Discussion

We have developed an mTOR inhibitor, JW-7-52-1, which potently suppresses

the mTORC1 and mTORC2 complexes and thereby inhibits two key effectors of PI3K

signaling. This inhibitor is strongly anti-proliferative against tumor cell lines representing

a variety of cancers and mutational defects. However, we have made the surprising

discovery that cell lines carrying mutations in RAS pathway components, including

KRAS and BRAF, are largely resistant to mTOR inhibition. Interestingly, a similar

phenomenon exists in yeast, where activation of RAS signaling can cause resistance to

rapamycin (Schmelzle et al., 2004). These findings suggest that deregulated RAS and

PI3K pathways converge on a common mechanism to drive tumor growth and fulfill

partly redundant functions. Clinical evidence that PI3K and RAS pathway mutations are

mutually exclusive in some cancers supports this theory by suggesting that there is little

selective advantage for mutations in both pathways (Hollestelle et al., 2007; Velasco et

al., 2006).

There is already known to be extensive cross talk between these two pathways

in both normal and transformed cells. Activation of RAS promotes activation of PI3K

signaling, both by direct interaction as well as through downstream components. Erkl/2,

a downstream RAS effector, activates mTORC 1 by phosphorylating and inhibiting the

TSC complex(Ma et al., 2005). Rsk, which is a direct substrate of Erkl/2, can inhibit

TSC through a similar mechanism, and also phosphorlyates a subset of sites on S6 that

are targets of mTORC1 effector p70S6K (Roux et al., 2007). Conversely, activation of

PI3K signaling suppresses RAS/MAPK pathway components. Both AKT and SGK can

phosphorylate and inactivate the RAF kinases (Zhang et al., 2001; Zimmermann and

Moelling, 1999). There are also indications that rheb can interact with and inhibit C-Raf

(Karbowniczek et al., 2006). The sum of these observations suggest a negative feedback

relationship between these two pathways, where RAS activates PI3K signaling, and PI3K
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dampens RAS signaling by inhibiting downstream effectors.

Our results suggest that hyper-activation of RAS signaling can overcome the

anti-proliferative effects of mTOR inhibition. Although hyperactive RAS signaling may

accomplish this through mechanisms that are independent of mTOR status, several lines

of evidence suggest that these two pathways converge on many common targets and may

redundantly drive key growth- and proliferation-promoting processes. One example of

this convergence is the eIF4F translation initiation complex, which promotes translation

by coordinating the eIF4E mRNA cap binding -protein, the eIF3 translation factor, and

the S6 ribosomal subunit. eIF4E is the limiting component, and preferentially promotes

the translation of mRNAs with extensive secondary structure in the 5'-UTR, including

the proto-oncogenes c-myc and cyclin Dl and the antiapoptotic gene MCL 1 (Silva and

Wendel, 2008). Partly through this relationship, eIF4E can drive tumorigenesis and

transgenic overexpression in mice leads to the development of multiple cancers (Ruggero

et al., 2004; Wendel et al., 2004). Effectors of both the RAS and mTOR pathways

impinge upon eIF4F activity by phosphorylating several key regulatory factors. The

mTORC 1 complex phosphorylates and inactivates 4E-BP1, which otherwise binds to and

suppresses eIF4E, and activates S6K, which phosphorylates a series of sites on S6 that

promote its assembly into the pre-initiation complex (Guertin and Sabatini, 2007). The

RAS/ERK regulated kinase Rsk phosphorylates overlapping sites on S6 to similar effect

(Roux et al., 2007). Both Rsk and S6K have also been shown to regulate eIF4B, which

mediates the association between S6 and eIF4F (Shahbazian et al., 2006). Additionally,

ERKl/2 is the primary activator of the MNK1/2 kinases, which associate with and

phosphorylate a critical regulatory site on elF4E that is required for its oncogenic activity

(Waskiewicz et al., 1999; Wendel et al., 2007). Through these mechanisms, activation of

RAS or PI3K/mTOR pathways leads to increased translation of eIF4E-dependent proteins

(Aktas et al., 1997; Albers et al., 1993).

Several studies have further demonstrated that the transforming ability of
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PI3K/mTOR and RAS pathways depends on eIF4E activity. For instance, a mouse

lymphoma model driven by overexpression of AKT1 is normally sensitive to rapamycin

treatment(Wendel et al., 2004). Overexpression of eIF4E recapitulates the effects of

AKT1, but generates tumors that are no longer sensitive to rapamycin, implying that

AKT1 drives tumor growth through mTORC 1-dependent control of eIF4E (Wendel et

al., 2004). RAS-induced transformation has also been shown to depend on cyclin D1

expression, implying a similar requirement for eIF4E activity (Robles et al., 1998; Yu et

al., 2001). Thus, it may be that activation of PI3K/mTOR signaling drives tumorigenesis

in part by activating eIF4E-dependent processes, and that a hyperactive RAS pathway

can overcome mTOR inhibition by activating some of the same processes (Figure 4).

This model predicts that combined inhibition of RAS and mTOR pathways may be a

particularly effective therapeutic strategy. Current evidence demonstrating the increased

efficacy of combined EGFR and mTOR inhibition in some lung cancers supports this

hypotheses, though there is clearly more work to be done (Li et al., 2007).

There are some discrepancies between our work and previous reports. In

particular, Skeen et al showed that transformation by HRAS in mice is dependent on

functional AKT1 signaling and is inhibited by rapamycin, contradicting our hypothesis

that RAS activation can compensate for mTORC1 inhibition(Skeen et al., 2006).

However, these differences might reflect differential requirements for RAS and PI3K/

mTOR signaling at early stages of tumor development. Another explanation is that Skeen

et al used HRAS, while KRAS, NRAS and BRAF are more common defects in human

cancers. Mutations in these components might have different dependencies on PI3K/

mTOR signaling for transformation.

Mutations in the PI3K/mTOR and RAS/MAPK pathways are implicated in many

human cancers and are sufficient to initiate and maintain tumorigenesis in experimental

systems. A key goal in cancer research is to understand how these pathways promote
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unregulated cell growth and proliferation while evading the many cellular safeguards

that normally prevent it. Both pathways are connected to many growth related processes,

such as metabolism, survival, proliferation, protein synthesis, though it is unclear which

of these is relevant to tumor growth. Our finding that mutational activation of RAS

signaling correlates with insensitivity to mTORC1/2 inhibition in many tumor cell lines

indicates that a common fundamental oncogenic mechanism may be under redundant

control of both pathways. We have proposed that there is good rationale to suspect that

this mechanism is eIF4E-dependent translation, though others, such as the NF-kappaB

survival pathway and eEF2 translation control, are also downstream of both pathways

(Ghosh et al., 2006; Wang et al., 2001). Answering this question should help to identify

the most effective therapeutic targets.

Experimental procedures

Materials

Reagents were obtained from the following sources: purified active PI3K p110/

p85 alpha, P81 phosphocellulose, and antibodies to raptor from Upstate/Millipore;

antibodies to mTOR and S6K1 as well as HRP-labeled anti-mouse, anti-goat, and anti-

rabbit secondary antibodies from Santa Cruz Biotechnology; antibodies to phospho-T389

S6K1, phospho-S473 Akt/PKB, phospho-T308 Akt/PKB, Akt (pan), phospho-T68 Chk2

from Cell Signaling Technology; FLAG M2 affinity gel, FLAG M2 antibody, ATP, and

human recombinant insulin from Sigma Aldrich; protein G-sepharose and immobilized

glutathione from Pierce; DMEM from SAFC Biosciences; LY294002, wortmannin and

PI-103 from Calbiochem; PreScission protease from Amersham Biosciences; FuGENE 6

and Complete Protease Cocktail from Roche; Inactivated Fetal Calf Serum (IFS) and fetal

bovine serum (FBS) from Invitrogen; CellTiter Glo, DNA-PK, and DNA-PK peptide

from Promega; phosphatidylinositol and phosphatidylserine from Avanti Polar Lipids;
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EasyTide 32P-gamma-ATP from PerkinElmer.

Cell Lines and Tissue Culture

p53 -- mouse embryonic fibroblasts (MEFs) were kindly provided by David

Kwiatkowski (Harvard Medical School). p531-/mLST8-'- MEFs and AKT473D PC3 cells

have been described elsewhere (Guertin et al., 2006; Sarbassov et al., 2006). 90-8T and

S462 MPNST cells were provided by Karen Cichowski (Harvard Medical School). MCL

cell lines (Rec- 1, JVM-2, JVM- 13, Jeko- 11, NCEB- 1, and Mino) were provided by Mark

Raffeld (NCI). Other cell lines were obtained from ATCC. HEK-293T, HeLa, and MEFs

were cultured in DMEM with 10% IFS. All others were cultured in DMEM with 10%

FBS.

mTORC1 purification

To produce soluble mTORC1 we generated HEK-293T cell lines that stably

express N-terminally FLAG-tagged Raptor using VSVG-pseudotyped MSCV retrovirus.

mTORC 1 was purified by lysing cells in 50mM Hepes pH 7.4, 10mM NaPyrophosphate,

10mM NaBetaglycerophosphate, 100mM NaCl, 2mM EDTA, 0.3% CHAPS. Cells were

lysed at 4C for 30min, and the insoluble fraction was removed by microcentrifugation

at 13,000RPM for 10min. Supernatants were incubated with FLAG-M2 mAb agarose

(Sigma) for lh, and then washed 3 times with lysis buffer and once with lysis buffer

containing a final concentration of 0.5M NaC1. Purified mTORC1 was eluted with

100ug/ml 3X FLAG peptide (Sigma) in 50mM Hepes pH 7.4, 100mM NaCl. Eluate can

be aliquoted and stored at -80C. Substrate p70S6K was purified as described previously

(Sancak et al., 2007).

High-throughput mTORC1 kinase assay
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Purified soluble mTORC1 kinase activity was assayed in standard 96-well

format as follows: purified mTORC1 was combined with purified p70S6K in reaction

buffer (25mM Hepes pH 7.4, 50mM KCl, 10mM MgC12) and aliquoted into individual

wells. 100uM ATP and test compound are added to each well, and reactions were

allowed to proceed at 25C for 30min. Reactions were stopped by the addition of cold

PBS and EDTA to a final concentration of 15mM. Reaction mixture is then transferred

to MaxiSorp (NUNC) 96-well high-protein binding plates and incubated for lh at 25C

with gentle shaking. Wells are then aspirated and blocked with 5%BSA/PBST for lh

at 25C. Block is then aspirated and wells are incubated with primary antibody specific

for phospho-S6K T389 in 5% BSA/PBST for lh at 25C. Antibody mix is aspirated, and

plates are washed 4X with PBST. Goat anti-rabbit IgG HRP-conjugated antibody (Pierce)

in 5% BSA/PBST is added and plates are incubated for lh at 25C. Antibody mix is

aspirated again and wells are washed 4X PBST and 2X PBS. Chemiluminescense reagent

(Perkin Elmer, Western Lightning) is added and luminescence is read using a standard

luminescence reader.

Cellular and in vitro kinase assays

mTOR IC50s for top hits were validated in cell culture and in vitro according to

previously published protocols (Sancak et al., 2007). Briefly, p53-/- MEFs were incubated

with vehicle, 2, 10, 50 or 250nM compound for lh and then lysed. Phosphorylation of

p70S6K at T389 and phosphorylation of AKT at S473 were assessed by western blot and

used as indicators for mTORC1 and mTORC2, respectively. For in vitro measurements

of mTOR IC50s, mTORC1 or mTORC2 were immunoprecipitated from HEK-293T

cells using antibody specific for raptor or rictor, respectively. Immunoprecipitates

were washed and then combined with vehicle, 10, 50 or 250nM compound, full-length

p70S6K or Aktl, and 500uM ATP in reaction buffer and allowed to proceed for 20min.

Phosphorylation of substrates was assessed by western blot using phospho-specific
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antibodies.

PI3K and hVps34

Cellular IC50s for P13K were determined using mLST8-/- MEFs and PC3

that were engineered to express a phospho-mimetic 473D Aktl mutant. Cells were

treated with vehicle or increasing concentrations of compound for lh and then lysed.

Phosphorylation of Akt T308 was monitored by western blot using phospho-specific

antibody. In vitro PI3K IC50s were determined as described previously (Knight et al.,

2006). Briefly, chloroform stocks of phosphatidylinositol (PI) and phosphatidylserine

(PS) were combined in equimolar ratios, dried under nitrogen gas, resuspended in 50mM

Hepes pH 7.4, 100mM KC1, sonicated to clarity using a bath sonicator, and aliquoted

and stored at -80C. For kinase assays, purified PI3Kalpha was combined with 100uM

PS/PI, compound and 10uCi 32P-gamma-ATP (100uM final concentration) in kinase

buffer, and incubated at 37C for 20min. Reactions were stopped with IN HC1. Lipid was

extracted with a 1:1 mixture of chloroform:methanol and separated on silica TLC plates.

32-P labeled PIP was quantitated by phosphorimager. hVps34 was GST-purified from

HEK293T cells and assayed using the same procedure.

ATM, ATR and DNA-PK

For DNA-PK kinase assays, purified DNA-PK (Promega) was combined with

DNA-PK peptide substrate (derived from the N-terminal sequence of p53), compound

and 10uCi/rxn 32P-gamma-ATP (100uM final concentration) in kinase buffer, and

incubated for 10min at 37C. Reactions were stopped with IN HCI and spotted onto P81

phosphocellulose squares. P81 squares were washed 3X5min in 0.75% phosphoric acid,

and 1X5min in acetone, dried and measured by scintillation counter. ATM and ATR in

vitro kinase assays were performed according to previously published protocols (Knight
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et al., 2006).

ATM activity was also measured in cells. Hela cells were treated with vehicle or

compound for 30min, and then treated with luM doxorubicin for an additional 2h. Cells

were lysed and phospho-T68 of Chk2 was assessed by western blot.

Cell proliferation

To determine optimal cell density, cell lines were seeded in 96-well plates at

500, 1000, 2000, 4000 and 8000 cells/well on Day 0. Cell density was quantitated at

Day 1, Day 3 and Day 6 using CellTiter Glo (Promega). Seeding densities that permitted

exponential growth through Day 6 were used for later experiments. For growth curves,

cells were seeded in duplicate at Day 0 and treated with vehicle, 50nM rapamycin, or 2,

10, 50, or 1250nM JW-7-52-1 on Day 1. Cell density was measured using CellTiter Glo

(CTG) on Day 1, Day 3, and Day 6. For measurements, CTG and cells were allowed

to equilibrate at room temperature for at least 2h. 50ul of CTG was added to each well,

plates were incubated on a shaker at RT for 12min, and then incubated at RT for an

addition 8min. Luminescence was measured using a standard luminometer. Growth was

measured as doublings/day and was calculated as 5/log 2(Day6/Dayl).
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Figures

Figure 1. JW-7-52-1 potently inhibits mTOR but not PI3K

A. In wild-type (p53-/-) MEFs, JW-52-1 inhibits the phosphorylation of mTOR targets S6K and

Akt. MEFs were treated with vehicle, JW-7-52-1 (2, 10, 50 and 250nM) or PI-103 (500nM)

for 30min, lysed and analyzed by immunoblot using phospho-specific antibodies to detect

phosphorylation of Akt on S473 and S6K on T389. S6K and pan-Akt antibodies were used to

detect total S6K and total Akt, respectively.

B. JW-7-52-1 does not inhibit PI3K in mLST8-/-, p53-/- MEFs. MEFs were treated with

vehicle, JW-7-52-1 (2, 10, 50 and 250nM) or PI-103 (500nM) for 30min, lysed and analyzed by

immunoblot using phospho-specific antibodies to detect phosphorylation of Akt on T308. JW-7-

52-1 has no effect on T308 phosphorylation up to 250nM, indicating that it does not inhibit PI3K

activity in cells at concentrations where mTOR is potently inhibited.

Figure 2. JW-7-52-1 is highly selective for mTOR over related kinases

JW-7-52-1 IC50s were determined for mTORC1, PI3Kalpha, DNA-PK, hVps34, ATM and ATR

using in vitro kinase assays. 500uM ATP was used in mTORC1 assays, while 100uM ATP was

used for all other assays. Some IC50 values for PI-103 have been reported earlier (Knight et al.,

2006).

Figure 3. JW-7-52-1 selectively inhibits growth of some tumor cells but not others

A. Response to 250nM JW-7-52-1 defines a sensitive and insensitive group of tumor cell lines.
Cells were seeded in 96-well plates at Day 0 at densities that ensure exponential growth for the
duration of the experiment. At Day 1, cells were treated with vehicle (DMSO), 50nM rapamycin
or JW-7-52-1 (50, 250 or 1250nM). At Day 6 cells were lysed and wells were analyzed for
ATP content, which is a proxy for cell number. Number of cell divisions/day was calculated as
described in Experimental Procedures and used to determine relative rates of growth for each
condition compared to vehicle control. Relative growth rates for cells treated with 250nM JW-7-
52-1 are shown as a histogram.
B. JW-7-52-1 has greater anti-proliferative effects than rapamycin. Relative growth rates were
calculated for cells treated with rapamycin or JW-7-52-1 at approximately 50-fold IC50s (50nM
and 250nM, respectively) as in A. Growth rates were than plotted as points where the X-axis
value is the growth rate under 50nM rapamycin and the Y-axis is the growth rate under 250nM
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JW-7-52-1. The diagonal line delineates where the response to 50nM rapamycin is equal to

250nM JW-7-52-1. Points above this line identify cell lines that were inhibited more by JW-7-

52-1 than by rapamycin.

C. Both sensitive and insensitive cell lines show incomplete inhibition of known Akt substrates.

HeLa cells (insensitive) and MCF7 cells (sensitive) were treated for 30 or 60 minutes with 50nM

JW-7-52-1. Lysates were analyzed by immunoblot using phospho-specific antibodies to detect

phosphorylation of Akt on S473, PRAS40 on T246 and FoxO 1 on T24.

Figure 4. RAS/ERK and PI3K/mTOR pathways converge on the translational apparatus to
drive tumorigenesis

RAS/ERK and PI3K/mTOR converge on the eIF4F, eIF3, and S6 translational complex. The

RAS pathway drives cap-dependent translation by activating eIF4E (via MNK1/2, not shown)

and S6 (through Rsk). Furthermore, RAS/ERK signaling can activate the mTORCl pathway

by ERK-dependent inactivation of TSC. PI3K/mTOR signaling similarly drives cap-dependent

translation by phosphorylation of S6 (through S6K), inactivation of the translational inhibitor

(4E-BP1) and phosphorylation of other sites within the eFI4E complex. Activation of eIF4E is

sufficient to drive tumorigenesis in some systems, and may be a mechanism that both RAS and

PI3K/mTOR-driven cancers engage. Because of the overlapping functionality, inhibition of only

one or the other pathway in established tumors may be insufficient to halt tumor growth.

Table 1. JW-7-52-1 shows very few off-target effects in a panel of 353 kinases

JW-7-52-1 was tested at 10uM against a panel of 353 kinases by Ambit Biosystems. The relative

binding score reflects the affinity of the indicated kinase for JW-7-52-1 and is proportional

though not equivalent to the Kd. For kinases where no number is listed there was no measurable

binding. As an indication for how these numbers translate to IC50s, the binding score for

PI3Kalpha is 1.5 and the IC50 is 1.8uM.

Table 2. mTOR inhibition selectively inhibits the growth of a subset of tumor cell lines

Cells were seeded in 96-well plates at Day 0 at densities that ensure exponential growth for the

duration of the experiment. At Day 1, cells were treated with vehicle (DMSO), 50nM rapamycin

or 250nM JW-7-52-1 (approximately 50-fold greater than mTOR IC50s for each compound).

At Day 6 cells were lysed and wells were analyzed for ATP content, which is a proxy for cell

number. Number of cell divisions/day was calculated as described in Experimental Procedures

and used to determine relative rates of growth for each condition compared to vehicle control.

Cell lines are listed in ascending order by relative growth rate under 250nM JW-7-52-1. For
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each cell line, the table lists: doubling time (days), relative growth under each condition,
mutational background according to the Sanger Centre Cancer Cell Genome project (http:/

www.sanger.ac.uk/genetics/CGP/), and tissue origin.
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Table 1
Kinase ID

AAKI
ABLI
ABL1(E255K)
ABL1(F3171)
ABLI(F317L)
ABLI(H396P)
ABLl(M351T)
ABLl(0252H)
ABLI(T315I)
ABLI(Y253F)
ABL2
ACVRI
ACVRIB
ACVR2A
ACVR2B
ACVRLI
ADCK3
ADCK4
AKTI
AKT2
AKT3
ALK
AMPK-alphal
AMPK-aloha2
ANKKI
ARK5
AURKA
AURKB
AURKC
AXL
BIKE
BLK
BMPRIA
BMPRIB
BMPR2
BMX
BRAF
BRAF(V600E)
BRSKI
BRSK2
BTK
CAMKI
CAMKID
CAMKIG
CAMK2A
CAMK2B
CAMK2D
CAMK2G
CAMK4
CAMKK1
CAMKK2
CDC2L1
CDC2L2
CDKll
CDK2
CDK3
CDK5
CDK7
CDK8
CDK9
CDKL2
CHEKI
CHEK2
CIT
CLKI
CLK2
CLK3
CLK4
CSFIR
CSK
CSNKIA1L
CSNKID
CSNKIE
CSNKIG1
CSNKIG2
CSNKIG3
CSNK2AI
CSNK2A2
DAPKI
DAPK2
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Table 2
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Rel. Proliferation Rel. Proliferation
Cell line (50nM Rapa) (250nM JW) Mutations Tissue Origin

Rec-1 -0.62 -1.47 CYLD MCL
JVM-2 -1.50 -1.45 CYLD MCL
DU 145 -0.10 -0.89 TP53, STK11, RB1, CDKN2A Prostate
90-8T 0.14 -0.55 NF1 Peripheral nerve
MDA-MB-453 0.02 -0.46 P13K, CDH1 Breast
MCF7 0.47 -0.29 P13K, CDKN2A Breast
BT-20 0.35 0.02 TP53, P13K, CDKN2A Breast
S462 0.32 0.02 NF1 Peripheral nerve
U-87-MG 0.57 0.05 PTEN Brain
A431 0.36 0.08 TP53 Skin
JVM-13 0.39 0.14 CYLD MCL
Jeko-1 0.26 0.17 CYLD MCL
NCEB-1 0.30 0.23 CYLD MCL
Mino 0.66 0.29 CYLD MCL
SK-MEL-28 0.71 0.33 TP53, EGFR, BRAF Skin
A549 0.75 0.35 KRAS, STK11, CDKN2A Lung
DLD-1 0.73 0.40 P13K, KRAS Colorectal
A2058 0.79 0.40 TP53, PTEN, BRAF Skin
786-0 0.80 0.46 TP53, PTEN, VHL, CDKN2A Kidney
MDA-MB-231 0.84 0.57 TP53, NF2, KRAS, CDKN2A, BRAF Breast
PC-3 0.68 0.58 TP53, PTEN Prostate
HT-29 0.85 0.62 TP53, P13K, APC, SMAD4, BRAF Colorectal
293E 0.80 0.63 ElA <idney, embryonic
mLST8-null MEF 0.70 0.69 TP53, mLST8 Embryonic
SW620 0.86 0.71 TP53, KRAS, APC Colorectal
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Chapter 4

mTORC2 is necessary for Akt/PKB turn motif phosphorylation

Carson C. Thoreen, David A. Guertin, Andrew L. Markhard, and David M. Sabatini

Experiments in Figure 1 were performed by D.A.G.
Experiments in Figure 2 and Figure 3 were performed by C.C.T.
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Summary

The Akt/PKB kinase is hyperactive in a large fraction of human cancers and its

regulation is an area of intense study. Growth factor-induced stimulation of PI3K leads

to the phosphorylation of Akt/PKB at two sites, T308 and S473, which are necessary for

its activity. PDK1 is the kinase for T308 while mTORC2, a multi-component protein

kinase containing mTOR as its catalytic subunit, appears to be the principal kinase for

S473. In addition to these regulated phosphorylation sites, Akt/PKB is phosphorylated

at T450, also known as the turn motif site. This phosphorylation is largely constitutive

and is not stimulated by growth factors. Here, we demonstrate that two core mTORC2

components, rictor and mLST8/G3L, are required for the phosphorylation of T450 within

cells. However, while in vitro mTORC2 readily phosphorylates wild-type or kinase-dead

Akt/PKB on S473, it does not phosphorylate Akt/PKB on T450. In addition, treatment of

cells with a small molecule inhibitor of mTORC2 that directly inhibits the mTOR kinase

domain eliminates S473 phosphorylation of Akt/PKB but has no acute effect on T450

phosphorylation. However, longer durations of mTOR inhibition decrease total levels of

Akt/PKB as well as T450 phosphorylation. We conclude that mTORC2 likely regulates

an unidentified kinase that phosphorylates the T450 site on newly translated Akt/PKB,

thereby stabilizing the active conformation of the protein.
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Introduction

The Akt/PKB kinase becomes hyperactive in tumors with deregulated PI3K

signaling (reviewed in (Manning and Cantley, 2007)). Because of the connection of

Akt/PKB to human disease there is much interest in understanding how it is regulated.

In response to the production of phosphatidylinositol 3,4,5-trisphosphate, Akt/PKB is

recruited to the plasma membrane through its pleckstrin homology (PH) domain. At the

membrane it is phosphorylated on two sites, T308 in the activation loop, and S473 in the

hydrophobic motif of the C-terminal tail (Alessi et al., 1996). Phosphorylation at both

sites is needed for full Akt/PKB activation and is greatly stimulated by many growth

factors, such as insulin. Substantial evidence suggests that the kinases that phosphorylate

these sites are PDK1 and mTORC2, respectively (reviewed in (Guertin and Sabatini,

2007)).

In addition to phosphorylation at T308 and S473, Akt/PKB is also phosphorylated

on T450 (Alessi et al., 1996), although in this case the phosphorylation is constitutive

and not regulated by growth factors (Alessi et al., 1996; Bellacosa et al., 1998; Hauge et

al., 2007). T450 is within a motif present in other members of the AGC kinase that has

been called the turn motif (Toker and Newton, 2000), and, more recently the zipper motif

(Hauge et al., 2007). Elegant recent work (Hauge et al., 2007) suggests that the function

of the phosphorylated turn motif is to bind to the catalytic domain and stabilize an active

conformation. This interaction may also help protect against dephosphorylation of the

hydrophobic motif in some AGC kinases, such as S6K1 (Hauge et al., 2007), although

this is unlikely to be the case for Akt/PKB because mutants of Akt/PKB that cannot be

phosphorylated on T450 show normal levels of S473 phosphorylation. The identity of the

Akt/PKB turn motif kinase remains unknown. We show that mTORC2 serves an essential

role in the phosphorylation of the Akt/PKB turn motif site, but that it is unlikely to be the

129



direct T450 kinase.

Experimental procedures

Materials

Reagents were obtained from the following sources: protein G-sepharose and

glutathione sepharose from Pierce; HRP-labeled anti-mouse, anti-goat, and anti-rabbit

secondary antibodies from Santa Cruz Biotechnology; Rictor antibodies from Bethyl

Laboratories; phospho-473 Akt, phospho-T308 Akt, and phospho-T450 Akt, and mTOR

antibodies from Cell Signaling Technologies; HA monoclonal antibody from Covance;

DMEM, from Life Technologies; and rapamycin and PI-103 from Calbiochem.

Cell Lines

Murine embryonic fibroblasts (MEFs) null for rictor or mLST8/G3L were

obtained from mice, cultured, and analyzed by immunoblotting as described (Guertin et

al., 2006). PC3, HeLa, and HEK-293T cells were cultured as described (Sarbassov et al.,

2006).

In Vitro Kinase Substrates

cDNAs for full-length wild-type and K179M kinase dead Aktl/PKB1 (from

D. Kaplan) were sub-cloned into HA-GST PRK5 (Burnett et al., 1998). Plasmids were

transfected into HEK-293T cells and HA-GST fusion proteins were purified as described

(Burnett et al., 1998). Prior to purification cells were treated with 1 tM PI-103 for 1h

to eliminate S473 phosphorylation. To dephosphorylate Aktl/PKB 1 in vitro, HA-GST-

Akt still bound to glutathione agarose was treated with 200 U lambda phosphatase (New

England Biolabs) for 15 min at 300 C. After washing 3 x 1 ml with lysis buffer and 1 x 1

ml with wash buffer as described (Burnett et al., 1998), proteins were eluted as described

(Sancak et al., 2007).
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Immunoblots, Immunoprecipitations, and Kinase Assays

mTORC2 immunopurifications and assays of its kinase activity were performed

as described (Sarbassov et al., 2005) as were all immunoblots (Sarbassov et al., 2004).

Lentiviral shRNAs

Lentiviral vectors expressing shRNAs targeting mouse mTOR or rictor were

obtained from the TRC (Moffat et al., 2006) and used as described (Sarbassov et al.,

2005).

Results and Discussion

To ask if mTORC2 is necessary for the phosphorylation of T450 of Akt/PKB, we

analyzed by immunoblotting murine embryonic fibroblasts (MEFs) isolated from wild-

type and rictor-null mouse embryos. Rictor is a component of mTORC2 (Jacinto et al.,

2004; Sarbassov et al., 2004) and, as previously reported (Guertin et al., 2006; Shiota et

al., 2006), is required for S473 but not T308 phosphorylation of Akt/PKB in these cells.

Consistent with previous reports showing that Akt/PKB turn motif phosphorylation is

constitutive (Bellacosa et al., 1998; Hauge et al., 2007), T450 phosphorylation was high

in both serum-deprived and insulin-stimulated wild-type MEFs, while phosphorylation

of S473 and T308 was dependent on insulin (Fig. 1A). In contrast, T450 phosphorylation

was absent in MEFs lacking rictor, indicating that mTORC2 is necessary for the

phosphorylation of Akt/PKB on the turn motif site (Fig. IB). To expand upon these

results we analyzed MEFs lacking mLST8/GPL, a component of mTORC2 that, like

rictor, is essential for it to phosphorylate S473 within cells and in vitro (Guertin et al.,

2006). As with the rictor-null MEFs, loss of mLST8/GPL eliminates phosphorylation

of both S473 and T450 of Akt/PKB (Fig. IC). Thus, these data indicate that mTORC2

components are necessary within cells for the phosphorylation of Akt/PKB on both its

hydrophobic (S473) and turn motif (T450) sites.
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Because mTORC2 is known to directly phosphorylate Akt/PKB on S473

(Sarbassov et al., 2005), we hypothesized that it may also be the direct kinase for

T450. To test this hypothesis we used a rictor antibody to immunopurify mTORC2

and incubated it in a kinase reaction with recombinant wild-type (WT) or kinase-

dead (KD) Aktl/PKB 1 purified from HEK-293T cells under conditions where S473

is dephosphorylated. As expected, mTORC2 readily phosphorylated both forms of

Akt/PKB on S473 (Fig. 2). It is worth noting that this finding is consistent with the

proposal that mTORC2 directly phosphorylates Akt/PKB (Sarbassov et al., 2005) and

inconsistent with a potential alternative model in which mTORC2 binds Akt/PKB

and stimulates it to autophosphorylate itself on S473. In contrast, mTORC2 failed

to increase the phosphorylation of T450 of either wild-type or kinase-dead Akt/PKB

(Fig. 2). We reasoned that T450 might already be fully phosphorylated in our purified

recombinant Akt/PKB, precluding the possibility of additional phosphorylation in

vitro. To test this, we dephosphorylated Akt/PKB in vitro with lambda phosphatase to

eliminate all phosphorylation and repeated the experiment. As before, mTORC2 readily

phosphorylated S473 but had no effect on T450 (Fig. 2). Accordingly, we conclude that

mTORC2 is unable to phosphosphorylate T450 under in vitro conditions in which it

robustly phosphorylates S473, and is therefore unlikely to be the direct kinase in cell.

It remains formally possible that mTORC2 directly phosphorylates T450 of newly

synthesized and incompletely folded Akt in cells, but not the mature version of the

protein used in vitro, though we consider this unlikely.

A second hypothesis to explain the absence of T450 phosphorylation in rictor or

mLST8/GP3L null MEFs is that a downstream target of the mTORC2 signaling pathway,

but not mTORC2 itself, is responsible for phosphorylating the Akt/PKB turn motif

site. To test this model, we used PI-103, a recently described dual mTORC2 and PI3K

ATP-competitive inhibitor (Knight et al., 2006), to pharmacologically inhibit mTORC2
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in MEFs. As expected, PI-103 eliminated the phosphorylation of Akt/PKB at S473.

Surprisingly, it had no effect on the phosphorylation of T450, even after two days of

treatment (Fig. 3A). We confirmed these results in two cancer cell lines, HeLa and PC3

cells. In both cell types, PI-103 had no effect on T450 phosphorylation even after 48

hours of treatment despite eliminating phosphorylation on T308 and S473 (Fig. 3B).

However, recent work has suggested that T450 phosphorylation serves a structural role

and might be inaccessible to mTOR in folded protein {Hauge, 2007 #2971}. To ask

whether mTORC2 activity was required for T450 phosphorylation of newly synthesized

protein, we transiently expressed Akt/PKB in cells that were already treated with PI-

103. Under these conditions, the T450 site of recombinant Akt/PKB was completely

dephosphorylated (Fig. 3C). Total levels of Akt/PKB were also suppressed, supporting a

structural role for T450 phosphorylation (Fig. 3C).

mTORC2 is a large protein complex with many components, including mTOR,

rictor, mSinl, mLST8/GP3L, and the recently identified protor (Pearce et al., 2007;

Thedieck et al., 2007; Woo et al., 2007). Given its apparent structural complexity, it is

reasonable to believe that it senses many diverse signals and is capable of performing

multiple functions. So far, the only molecular function ascribed to it is the direct

phosphorylation of Akt/PKB on S473. Here we present evidence that mTORC2 has

an indirect role in the phosphorylation of T450 of the turn motif of Akt/PKB as well.

In support of this we find that loss of essential mTORC2 components inhibits T450

phosphorylation, but that purified mTORC2 is unable to phosphorylate this site in

vitro. Moreover, pharmacological inhibition of mTORC2 kinase activity in cells only

suppresses T450 phosphorylation of newly synthesized protein. Although it remains

possible that mTORC2 phosphorylates this site directly in cells but not in vitro, we

consider it more likely that mTORC2 regulates an unidentified kinase that phosphorylates

T450 of Akt/PKB as it is translated, potentially reflecting a mechanism for adjusting total
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levels of competent Akt/PKB.
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Figures

FIG. 1. mTORC2 is required for phosphorylation of Akt/PKB at T450.

A. Insulin stimulates the phosphorylation of the hydrophobic motif (S473) and activation loop
(T308), but not the turn motif (T450) of Akt/PKB. Wild-type MEFs were serum-starved for 8
hours or serum-starved and then stimulated with 500 nM insulin for 15 minutes, and analyzed by
immunoblotting for the indicated proteins.

B. Rictor is required for phosphorylation of Akt/PKB at S473 and T450. Lysates from wild-type
and rictor-null MEFs under normal growth conditions were analyzed by immunoblotting for the
indicated proteins.

C. mLST8/G3L is also required for phosphorylation of Akt/PKB at T450. Lysates from wild-type
and mLST8-null MEFs under normal growth conditions were analyzed by immunoblotting for
the indicated proteins.

D. RNAi-mediated knockdown of mTOR shows that it too is required to maintain normal levels
of T450 phosphorylation of Akt/PKB. Lysates from wild-type MEFs infected with the indicated

shRNAs and growing under normal conditions were analyzed by immunoblotting for the
specified proteins.

FIG. 2. In vitro mTORC2 phosphorylates wild-type and kinase-dead Akt/PKB on S473 but
not T450.

Immunoblot analysis of in vitro kinase assays using rictor immunoprecipitates from HEK-293T

cells as the source of mTORC2 and recombinant wild-type (WT) or kinase-dead (KD) HA-

GST-Aktl/PKB1 as the substrates. Kinase assays were performed as described in the presence

or absence of 1 itM PI-103. Where indicated Aktl/PKB1 that had been de-phosphorylated with

lambda protein phosphatase was used. Kinase assays were analyzed by immunoblotting for the

phosphorylation of Akt/PKB at T450 and S473 using phospho-specific antibodies and for total

levels of Akt/PKB using an HA-specific antibody.

FIG. 3. Short and long-term pharmacological inhibition of mTOR kinase activity does not
affect the phosphorylation of Akt/PKB on T450.

A. In wild-type MEFs inhibition of mTORC2 with PI-103 prevents the phosphorylation of

Akt/PKB on S473, but not T450. Wild-type MEFs were treated with 250 nM PI-103 or DMSO

vehicle for 1 or 48 hours as indicated. Lysates were analyzed by immunoblotting using phospho-

specific antibodies to detect the phosphorylation of Akt/PKB S473 and T450 and pan-Akt

antibodies to detect total Akt/PKB.

B. In HeLa and PC3 cells inhibition of mTORC2 with PI-103 prevents the phosphorylation of
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Akt/PKB on S473, but not T450. HeLa and PC3 cells were treated and analyzed as described in

A and in addition samples were analyzed for total levels of mTOR and rictor.

C. In wild-type MEFs inhibition of mTORC2 with PI-103 prevents phosphorylation of newly
translated Akt/PKB on T450. Wild-type MEFs were treated with 500nM PI-103, 50nM
rapamycin or DMSO vehicle for lh. Cells were then transfected with 500ng HA-GST-tagged
Akt/PKB and incubated for 20h. Lysates were analyzed for phosphorylation of Akt/PKB T450 as
described in A.
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Figure 3
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Chapter 5

Future Directions
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Summary

The mTORC1 and mTORC2 complexes are conserved central regulators that

coordinate protein translation, nutrient uptake, metabolism and cell growth in response

to growth factor and nutrient cues. In the work described here, we have explored the

biochemical mechanisms that connect the mTOR complexes to upstream signals and

developed novel tools to probe their function in normal and diseased physiology.

In particular, the discovery of negative regulator PRAS40 has clarified how insulin

regulates mTORC1 activity. In the absence of insulin, PRAS40 ensures that mTORC1

is inactivated, and thereby limits the energy expensive process of protein synthesis, and

maintains cell's sensitivity to insulin signaling. We have also developed a novel, specific

and potent inhibitor of mTOR, JW-7-52-1. Against a panel of tumor cell lines, JW-7-

52-1 treatment elicited remarkable anti-proliferative effects that were far greater than

those caused by inhibition of mTORC1 alone. We also made the surprising discovery

that tumor cell lines with mutationally activated RAS signaling were largely resistant to

mTOR inhibition, suggesting that the RAS and PI3K signaling pathways might converge

on a common mechanism to drive tumorigenesis. We hope that this compound will

eventually be therapeutically useful, but also believe that it provides a unique research

tool. The following section explores some of the new questions that have emerged from

this work.

What mTORC2 substrates are important for tumorigenesis?

Inhibition of mTOR with JW-7-52-1 prevents the phosphorylation of AKT at

Ser473 and suppresses the proliferation of many tumor cell lines. Ser473 phosphorylation

is required for full AKT activity, and so we were surprised to find that many established
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substrates of AKT, such as GSK3, TSC2 and FoxO remained phosphorylated even when

mTORC2 is inhibited. A similar phenomenon occurs in MEFs and Drosophila where

TORC2 has been genetically inactivated by deletion of rictor (Guertin et al., 2006;

Hietakangas and Cohen, 2007). Both observations suggest that AKT maintains a basal

activity that doesn't depend on Ser473 phosphorylation or that a TORC2-independent

kinase can compensate for AKT inhibition. The former hypothesis seems more likely

because deletion of AKT in drosophila is lethal, while deletion of mTORC2 components

is not(Hietakangas and Cohen, 2007). Moreover, unlike many AGC kinases, AKT can

be phosphorylated at its activation loop site T308 in the absence of phosphorylation

at Ser473, allowing it to bypass the mTORC2 input under certain circumstances. The

mystery then becomes how does mTORC2 inhibition suppress the proliferation of so

many tumor cell lines without fully inhibiting its only known downstream target?

One hypothesis is that mTORC2 activity is dispensable for normal cell growth

and only required to mediate the kind of hyperactive PI3K signaling that occurs during

tumor cell proliferation or tissue development (Guertin et al., 2006; Hietakangas and

Cohen, 2007). This would imply that tumor cells in culture are adapted, or "addicted," to

hyperactive AKT, and arrest when the kinase is forced to function at basal levels. To test

this, we are generating cell lines that are normally sensitive to JW-7-52-1, but express

the phospho-mimetic AKT1 or AKT2 S473D mutant (AKT3 is only expressed in a few

tissues). If expression of these mutants renders cells insensitive to JW-7-52-1, or at least

equally sensitive to mTORC1 inhibition with rapamycin, it indicates that mTORC2 drives

tumor cell growth predominantly by activating AKT (at least in cell culture).

If these cells remain equally sensitive to mTOR inhibition, the interpretation is

more complicated. One possibility is that a second, unidentified mTORC2 target that

is completely inhibited by mTOR inhibition plays a more important role in tumor cell

proliferation. An obvious candidate is the serum-glucocorticoid induced kinase (SGK).

SGK, which exists as three isoforms, is also a member of the AGC kinase family and
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shares many structural similarities to AKT, including phosphorylation sites that are

equivalent to Thr308 and Ser473 (Biondi et al., 2001). Expression of SGK1, but not

SGK2 or SGK3, is induced by glucocorticoids and all isoforms are thought to play a role

in osmotic homeostasis (Lang and Cohen, 2001). Unlike AKT, activation of SGK requires

phosphorylation at its hydrophobic site before it can be phosphorylated at the activation

loop site (Biondi et al., 2001). Interestingly, there is increasing evidence that SGK can

phosphorylate many of the substrates that were previously thought to be exclusive

AKT targets, such as FOXO and GSK3, indicating that these two kinases may have

overlapping functions in driving cell proliferation and survival (Brunet et al., 2001; Dai et

al., 2002).

There is currently no indication of whether or not mTORC2 regulates SGK, partly

because SGK reagents are stuck in the dark ages of forgotten kinases. Whether mTORC2

phosphorylates SGK is easy to answer using standard radio-labeling techniques. The

stickier question is whether mTORC2 inhibition leads to inhibition of SGK activity in

cells. The lack of well-established SGK substrates makes this difficult to test, but can

probably be accomplished by immuno-precipitating recombinant SGK from treated cells,

and convincing it to phosphorylate a FoxO-derived peptide. A more functional question,

as with AKT, is to ask whether expression of the phospho-mimetic SGK mutant can

overcome the growth suppressive effects of mTOR inhibition. Given that these are purely

speculative predictions, it may be that SGK has no role at all, and that mTORC2 mediates

its effects through other downstream targets. Identifying these, either through phospho-

proteomic analysis or substrate motif mapping, will bring many years of research

excitement to the field.

Do RAS and mTOR cooperate to drive tumorigenesis?

Another one of our more surprising findings is that RAS pathway mutations in
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tumor cell lines predict resistance to mTOR inhibition. If a causal relationship exists,

it would suggest that RAS and PI3K pathways redundantly converge on one or several

mechanisms that drive tumor cell growth. Currently, our work only establishes a

correlation, but provides a hypothesis that can be tested in several ways. Our first goal is

to ask whether introducing an activated RAS mutant can convert a sensitive cell line into

an insensitive one. We plan to do this by introducing the canonical KRasV12 GTPase-

deficient mutant into MCF7 and U87MG cells, which carry PI3K and PTEN mutations,

respectively, and asking whether they retain their sensitivity to JW-7-52-1 treatment.

Ectopic expression of RAS mutants is sometimes problematic, and so we may also try

expression of the BRAFV600E mutant, which is also represented in our screening panel.

The converse experiment is to convert insensitive cell line into sensitive ones

by inactivating RAS pathway components. One approach is to knock-down RAS or

BRAF using RNAi and another is to use small-molecule inhibitors. There are currently

no inhibitors available for any of the RAS isoforms, but inhibitors for MEK (U0126)

and BRAF (SB590885) are both readily available and reasonably specific (King et al.,

2006). Our prediction is that combinations of these inhibitors with JW-7-52-1 will have

an additive effect on tumor cell growth inhibition. There are currently many reports of

synergism between PI3K/mTOR pathway and EGFR inhibition, which would support

this theory, as EGFR is a potent RAS activator (Fan et al., 2007; Wang et al., 2006).

Moreover, in glioblastoma with EGFR mutations, mutations in PTEN cause resistance

to the EGFR-inhibitor erlotinib, suggesting that activation of the PI3K pathway can

compensate for EGFR/Ras inhibition as well (Wang et al., 2006).

What process downstream of mTORC1 and mTORC2 drives tumorigenesis?

Another take on understanding how mTOR drives tumorigenesis is to identify

the downstream processes that are most responsible. Both mTOR complexes are linked
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to many fundamental cell programs, including protein translation, proliferation, nutrient

uptake and cell survival, but it is unclear which of these is the most important in normal

and tumor cell physiology. Many clues point to translational control. mTORC1 has

had a long relationship with the translational machinery through its substrates, S6K

and 4E-BP 1, both of which participate in assembling the translational pre-initiation

complex (Holz et al., 2005). Recent work has also indicated a role for mTORC2 (Shor

et al., 2008). Shor et al found that high concentrations of rapamycin, like JW-7-52-1,

inhibit both mTORC1 and mTORC2 and that this causes a profound suppression of

global protein synthesis that greatly exceeds the effects of mTORC 1 inhibition. They

also provide some evidence that these effects are mediated through inactivation of two

translational components, eIF2 and eEF2.

eEF2, which participates in translational elongation, has been connected to mTOR

before (Wang et al., 2001). eEF2 is phosphorylated and inhibited by the eEF2-kinase

(eEF2K), and Wang et al showed that eEF2K is phosphorylated and inhibited by S6K

and the Erk-regulated kinase Rsk (Wang et al., 2001). Clearly this is at odds with a claim

for mTORC2 involvement, as neither S6K nor Rsk is directly affected by mTORC2.

Additionally, rictor-null MEFs have no obvious defect in protein synthesis and proliferate

at rates comparable to wild-type cells, though mTORC1, Erk/Rsk or other pathways

might compensate and maintain eEF2 activity. Regardless, Shor et al convincingly show

that combined mTORC1/2 inhibition causes a dramatic increase in eEF2 phosphorylation,

warranting further investigation. Furthermore, eEF2 is a target of both mTOR and RAS

pathways, supporting its role as a common mechanism in both kinds of cancers.

mTOR and the MNK kinases

Another possible convergence point that was discussed in an earlier chapter

is the translational pre-initiation complex and, in particular, the mRNA cap-binding
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ERK1/2rictor

SMNK1/2

elF4F complex

Figure 1. RAS/ERK and PI3K/mTOR pathways may converge on MNK kinases

The MNK1/2 kinases promote 5'-cap-dependent translation by phosphorylating a key site

(Ser209) on the 5'-cap-binding protein eIF4E. MNK1/2 are known substrates of the ERK1/2

RAS pathway kinases. Indirect evidence suggests they may also be downstream of PI3K/

mTORC2 signaling, indicating a possible convergence point for these two pathways and

suggesting a potential mechanism for their coordinate regulation of cell growth and proliferation.

protein eIF4E. eIF4E is itself oncogenic and overexpression drives tumorigenesis in a

similar fashion to AKT1 overexpression (Wendel et al., 2004). eIF4E is inhibited by

the small protein 4E-BP 1, which is a substrate of mTORC 1 and possibly other kinases

(Bjornsti and Houghton, 2004). However, 4E-BP1 isn't directly affected by mTORC2,

and therefore can't explain why dual mTORC1/2 inhibition would have a greater anti-

proliferative effect than mTORC1 inhibition alone.

Instead, mTORC2 may act through the MNK1/2 kinases (Figure 1). These
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kinases are not well understood, but can phosphorylate eIF4E at a site (Ser209) that is

important for its activity and is its only known post-translational modification (Ueda et

al., 2004). Surprisingly, deletion of both MNK kinases, and consequently loss of eIF4E

phosphorylation, has no overt effect on mice (Ueda et al., 2004). However, eIF4E loses

its transforming and tumorigenic ability in this context (Wendel et al., 2007). MNK

activity is associated with the TOR pathway in two non-obvious ways. The first is that

rapamycin treatment causes an increase in eIF4E phosphorylation that is MNK-dependent

and sensitive to PI3K inhibitors, suggesting involvement of feedback activation of PI3K

and possibly mTORC2 (Sun et al., 2005; Wang et al., 2007). Erk can also phosphorylate

MNK, but has no role in this rapamycin-mediated activation (Wang et al., 2007).

A second observation connecting mTOR to MNK comes from Drosophila.

Reiling et al showed that deletion of the Drosophila MNK homologue, Lk6, has no

effect under normal growth conditions, but causes a severe growth defect when flies are

fed a low protein diet (Reiling et al., 2005). These results suggest that mTORC 1, which

is suppressed by starvation conditions, and MNK might cooperate to control protein

synthesis. It is possible that mTORC2 maintains basal eIF4E activity through MNK in

wild-type cells, and loss of this input sensitizes flies to starvation. It would be interesting

to see whether rictor-null flies are similarly sensitive. In summary, both studies indicate

that eIF4E and MNK are, to some degree, under the joint regulation of the PI3K/mTOR

and RAS/ERK signaling pathways. The mechanistic details are far from clear, but suggest

many testable hypotheses.

mTOR inhibition and apoptosis

A reason that is often cited for the limited success of clinical rapamycin treatment

is the failure to cause apoptosis in cancer cells. In many situations rapamycin only causes
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a cell cycle arrest (Bjomsti and Houghton, 2004). The most common molecular rationale

is that rapamycin-mediated mTORC1 inhibition suppresses cap-dependent translation by

inhibiting eIF4E activity, and this prevents translation of transcripts such as cyclin D1

that are required for proliferation. The fact that many cancers that are highly responsive

to rapamycin treatment show elevated cyclin Dl expression, such as NFl-null malignant

peripheral nerve sheath tumors (MPNST) and mantle cell lymphomas (MCL) is often

used to support this theory. From a therapeutic perspective, cell cycle arrest is less than

ideal because it leaves open the opportunity for cells to acquire mutations that circumvent

mTORC 1 inhibition and continue growing. This is what appears to happen in the clinic,

as well as in some laboratory cancer models (Yilmaz et al., 2006). There are some tumor

cell lines where rapamycin does induce apoptosis, especially when PTEN is lost and in

combination with other chemotherapy, but the underlying mechanism that differentiate

these from other PTEN cancers are not clear (Guertin and Sabatini, 2007).

We had hoped that dual mTORC1/2 inhibition would further sensitize cells

towards apoptosis because of a greater effect on AKT. AKT is often characterized as

a survival-promoting kinase because it can phosphorylate and inhibit the proapoptotic

factors BAD and FoxO, and is also thought to promote the activity of the prosurvival

transcription factor NF-kappaB (Manning and Cantley, 2007). However, this does not

seem to occur as early indications suggest that cells treated with JW-7-52-1 are more

likely to arrest that become apoptotic. Nonetheless, it seems likely that mTOR inhibition,

and consequently AKT inhibition, should increase sensitivity to other apoptotic stimuli,

just as rapamycin treatment sensitizes some cancers to other therapeutic interventions.

Identifying other signaling pathways, using both small molecules and RNAi, that

synergize with mTOR inhibition to cause apoptosis is a future priority.

Does mTOR inhibition prevent tumor growth in animals?
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We are currently preparing to test the effectiveness of mTOR inhibition

in preventing tumor growth in animals. Our first step will be to ask whether daily

treatment with JW-7-52-1 can stop the growth of MCF7, U87MG, or PC3 xenografts.

We have already shown that reasonable does of JW-7-52-1 can inhibit S6 and AKT

phosphorylation in tissue, and so we are hopeful that these tumor cell lines will

respond in vivo as well as they do in culture. A better test of the therapeutic value of

mTOR inhibition is to ask whether it can prevent or cause remission of an endogenous

genetic cancer model. As has been mentioned, there are many examples showing that

cancers with activated PI3K/PTEN signaling are more responsive to mTOR inhibition,

particularly with rapamycin (Guertin and Sabatini, 2007). A good model is PTEN-driven

prostate cancer, which can be initiated in mice by conditional deletion of PTEN in the

prostate (Wang et al., 2003). The tumors that result progress through stereotypical stages

that closely mimic the progression of the disease in humans, and are thus considered

particularly realistic.

Another useful study would be to compare the effectiveness of mTOR inhibition

against cancers caused by PTEN deletion to those caused by KRAS activation.

Expression of the KRAS V12 mutant in hematopoetic stem cells initiates an aggressive

myeloproliferative disorder (MPD) that causes significant disease within a few weeks

(Braun et al., 2004). Both NRAS and KRAS mutations are frequently found in leukemias,

including MPDs, supporting the belief that these cancers develop through representative

mechanisms (Bos, 1989). PTEN mutations are much less common in human leukemia,

but can nonetheless initiate these types of cancers in laboratory settings (Salmena et al.,

2008; Yilmaz et al., 2006). This would be a useful test of our prediction that KRAS-

driven tumors, but not those caused by PTEN, are refractory to mTOR inhibition, and that

combination therapy with RAS pathway inhibitors should be more effective.
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Strategies for identifying mTORC2-specific inhibitors

There are obvious drawbacks of dual-mTORCl/mTORC2 inhibition as an anti-

cancer therapy. Inhibition of mTORC 1 with either JW-7-52-1 or rapamycin causes

PI3K activation by disengaging the negative feedback loop. Concurrent inhibition of

mTORC2 can blunt some of these effects, but PI3K has mTOR-independent functions

that might promote tumor growth through other means. Dual PI3K/mTOR inhibition is

another possible strategy, though potent suppression of PI3K may cause an unacceptable

degree of toxicity. We have shown that genetic deletion of mTORC2 components doesn't

cause feedback activation of PI3K, indicating that specific inhibition of mTORC2 might

be a more promising therapeutic strategy (Guertin et al., 2006). However, identifying

mTORC2-specific inhibitors is a challenging task. Small-molecule inhibitors that

are specific for mTORC2 will need to act through an allosteric mechanism - ATP-

competitive molecules, which constitute the overwhelming majority of kinase inhibitors,

are guaranteed to inhibit mTORC1 as well.

To identify molecules that act outside of the kinase domain, we will need screen

a much larger library, which is not easily compatible with our current setup. Currently,

our biggest limitation is the quality of our detection system, as it is currently too slow

and lacks the dynamic range required for testing millions of molecules. A more attractive

strategy is to adapt it to use a lanthanide-based reporter system (Robers et al., 2008).

LanthaScreen was developed by Invitrogen and leverages several useful fluorescent

properties of terbium (Tb) and EGFP to compose a robust reporter system. Terbium is an

element belonging to the "rare earth" lanthanide series, and absorbs light at 335nM and,

after a short time delay, emits at peaks centered at 490nM, 550nM, 580nM and 630nM.

EGFP absorbs at 488nM and emits at 509, making it an ideal partner for fluorescence

resonance energy transfer (FRET) with Tb. Thus, when a Tb-labeling a phospho-
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specific antibody is mixed with an EGFP-labeled substrate, binding of the antibody to

the phosphorylated residue brings the Tb and EGFP close enough for FRET to occur,

permitting efficient detection of phosphorylation in a single-well system. We are currently

working on adapting this system to S6K and Akt substrates.

A second strategy is to develop a cell-based assay, which are routinely used to

screen large compound libraries. We have avoided cell-based assays in the past because

an enormous number of signaling pathways influence mTORC1/2 activity, leading

such screens to generate an unacceptably high false-positive rate. However, many

secondary pathways signal through PI3K, and conducting the screen in cell lines with a

constitutively active PI3K pathway might limit their effect on mTORC2. Additionally, we

could independently measure PI3K activity by expressing a GFP tagged with a pleckstrin-

homology (PH) domain. The PH domain specifically binds PIP3, and would localize

PIP3 to the plasma membrane in response to PI3K activation. By combining this assay

with an immunofluorescent readout of AKT S473 phosphorylation, we could identify

small molecules that inhibit mTORC2 without affecting PI3K signaling. These kinds of

assays would have the unique advantage over their in vitro counterparts by additionally

identifying molecules that disrupt mTORC2 assembly or thwart associations with other

cellular proteins or structures that promote activation.

Conclusions

Many of the original questions in the mTOR field have been answered over the

last few years. We know that mTOR acts in two functionally distinct but complementary

complexes, and that only one is acutely inhibited by rapamycin. We have a reasonable

understanding of how both nutrients and growth factors regulate mTORC 1. We have

identified many of the key substrates for both complexes that mediate their downstream

effects. There are, of course, important regulatory features that we don't understand.
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For instance, what metabolite does mTORC1 actually sense, and what mechanism

connects P13K to mTORC2? There are also many more questions about the cellular and

organismal physiologic role of mTOR signaling. Rapamycin treatment has limited effects

on humans and mice, and mTORC2 components are dispensable in adult flies. Is mTOR

signaling only required for processes that demand rapid proliferation and growth such as

development, immune response and tumorigenesis? Hyperactive mTORC1 undoubtedly

suppresses insulin signaling, but is this the mechanism of insulin insensitivity caused by

a high-fat diet? How does fat activate mTORC 1? Do cancer cells some cancers have a

unique dependency on mTOR signaling, and, if so, what genetic markers determine this

sensitivity? Does the mTOR pathway cooperate with other signaling pathways in cancer?

Our next step should be to apply our biochemical understanding to answering

these kinds of questions. Small molecule inhibitors are a powerful way to probe the

role of mTOR signaling because they allow acute and reversible inhibition that isn't

possible with any other approach. Rapamycin and JW-7-52-1 have already opened many

new windows into mTOR physiology, and mTORC2-specific inhibitors, if they can be

developed, will surely do the same. Conditional-knockouts for many mTORC-related

genes are also now available and offer a complimentary genetic approach. Together,

these tools will help to answer the questions described above and clarify the role that this

fundamental cellular signaling pathway plays in normal and disease physiology.

References

Biondi, R. M., Kieloch, A., Currie, R. A., Deak, M., and Alessi, D. R. (2001). The PIF-binding
pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. Embo J 20, 4380-

4390.

Bjornsti, M. A., and Houghton, P. J. (2004). The TOR pathway: a target for cancer therapy. Nat

Rev Cancer 4, 335-348.

Bos, J. L. (1989). ras oncogenes in human cancer: a review. Cancer Res 49, 4682-4689.

154



Braun, B. S., Tuveson, D. A., Kong, N., Le, D. T., Kogan, S. C., Rozmus, J., Le Beau, M. M.,
Jacks, T. E., and Shannon, K. M. (2004). Somatic activation of oncogenic Kras in hematopoietic
cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci U S A 101, 597-602.

Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., and Greenberg, M. E. (2001). Protein
kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor
FKHRL1 (FOXO3a). Mol Cell Biol 21, 952-965.

Dai, F., Yu, L., He, H., Chen, Y., Yu, J., Yang, Y., Xu, Y., Ling, W., and Zhao, S. (2002). Human
serum and glucocorticoid-inducible kinase-like kinase (SGKL) phosphorylates glycogen
syntheses kinase 3 beta (GSK-3beta) at serine-9 through direct interaction. Biochem Biophys
Res Commun 293, 1191-1196.

Fan, Q. W., Cheng, C. K., Nicolaides, T. P., Hackett, C. S., Knight, Z. A., Shokat, K. M., and
Weiss, W. A. (2007). A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with
blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67, 7960-
7965.

Guertin, D. A., and Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell 12,
9-22.

Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown,
M., Fitzgerald, K. J., and Sabatini, D. M. (2006). Ablation in mice of the mTORC components
raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and
PKCalpha, but not S6K1. Dev Cell 11, 859-871.

Hietakangas, V., and Cohen, S. M. (2007). Re-evaluating AKT regulation: role of TOR complex
2 in tissue growth. Genes Dev 21, 632-637.

Holz, M. K., Ballif, B. A., Gygi, S. P., and Blenis, J. (2005). mTOR and S6K1 mediate assembly
of the translation preinitiation complex through dynamic protein interchange and ordered
phosphorylation events. Cell 123, 569-580.

King, A. J., Patrick, D. R., Batorsky, R. S., Ho, M. L., Do, H. T., Zhang, S. Y., Kumar, R.,
Rusnak, D. W., Takle, A. K., Wilson, D. M., et al. (2006). Demonstration of a genetic therapeutic
index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res
66, 11100-11105.

Lang, F., and Cohen, P. (2001). Regulation and physiological roles of serum- and glucocorticoid-
induced protein kinase isoforms. Sci STKE 2001, RE17.

Manning, B. D., and Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell
129, 1261-1274.

Reiling, J. H., Doepfner, K. T., Hafen, E., and Stocker, H. (2005). Diet-dependent effects of the
Drosophila Mnkl/Mnk2 homolog Lk6 on growth via eIF4E. Curr Biol 15, 24-30.

155



Robers, M. B., Horton, R. A., Bercher, M. R., Vogel, K. W., and Machleidt, T. (2008). High-
throughput cellular assays for regulated posttranslational modifications. Anal Biochem 372, 189-
197.

Salmena, L., Carracedo, A., and Pandolfi, P. P. (2008). Tenets of PTEN tumor suppression. Cell
133, 403-414.

Shor, B., Zhang, W. G., Toral-Barza, L., Lucas, J., Abraham, R. T., Gibbons, J. J., and Yu, K.
(2008). A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of
mTOR kinase activity and profound repression of global protein synthesis. Cancer Res 68, 2934-
2943.

Sun, S. Y., Rosenberg, L. M., Wang, X., Zhou, Z., Yue, P., Fu, H., and Khuri, F. R. (2005).
Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of
rapamycin inhibition. Cancer Res 65, 7052-7058.

Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S., and Fukunaga, R. (2004). Mnk2
and Mnkl are essential for constitutive and inducible phosphorylation of eukaryotic initiation
factor 4E but not for cell growth or development. Mol Cell Biol 24, 6539-6549.

Wang, M. Y., Lu, K. V., Zhu, S., Dia, E. Q., Vivanco, I., Shackleford, G. M., Cavenee, W. K.,
Mellinghoff, I. K., Cloughesy, T. F., Sawyers, C. L., and Mischel, P. S. (2006). Mammalian target
of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors
in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66, 7864-7869.

Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., Thomas, G. V., Li, G., Roy-
Burman, P., Nelson, P. S., et al. (2003). Prostate-specific deletion of the murine Pten tumor
suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209-221.

Wang, X., Li, W., Williams, M., Terada, N., Alessi, D. R., and Proud, C. G. (2001). Regulation of
elongation factor 2 kinase by p90(RSK1) and p7 0 S6 kinase. Embo J 20, 4370-4379.

Wang, X., Yue, P., Chan, C. B., Ye, K., Ueda, T., Watanabe-Fukunaga, R., Fukunaga, R., Fu,
H., Khuri, F. R., and Sun, S. Y. (2007). Inhibition of mammalian target of rapamycin induces
phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation
factor 4E phosphorylation. Mol Cell Biol 27, 7405-7413.

Wendel, H. G., De Stanchina, E., Fridman, J. S., Malina, A., Ray, S., Kogan, S., Cordon-Cardo,
C., Pelletier, J., and Lowe, S. W. (2004). Survival signalling by Akt and elF4E in oncogenesis

and cancer therapy. Nature 428, 332-337.

Wendel, H. G., Silva, R. L., Malina, A., Mills, J. R., Zhu, H., Ueda, T., Watanabe-Fukunaga, R.,
Fukunaga, R., Teruya-Feldstein, J., Pelletier, J., and Lowe, S. W. (2007). Dissecting eIF4E action

in tumorigenesis. Genes Dev 21, 3232-3237.

Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., and Morrison, S. J.

(2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells.

156



Nature 441, 475-482.

157



158



Appendix A

mTOR in vitro kinase assays

Carson C. Thoreen, Yasemin Sancak, David M. Sabatini

Experiments in Figure 1A were performed by Y.S.
Experiments in Figure lB were performed by C.C.T.
Experiments in Figure 2 were performed by C.C.T.
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Introduction

In vitro kinase assays are a powerful approach to studying the function and

regulation of complex kinases. Their most common use is to corroborate genetic data

and prove that kinase X phosphorylates Y, but this is only the most basic application. We

have used in vitro kinase assays extensively to understand the mechanisms that regulate

the mTORC1 complex. Both mTOR complexes are fragile machines, and certain amount

of care. The following summarizes our technical knowledge about using them in vitro.

Most of the information was developed for mTORC1 kinase assays, though the findings

are likely applicable to mTORC2 as well. In general, our primary goal has been to find

purification conditions that maintain whatever regulatory features exist in cells.

Detergents for mTOR purification

One of the earliest technical observations in the mammalian TOR field was that

the stability of the complex was highly sensitive to the choice detergents (Hara et al.,

2002; Kim et al., 2002). Original purifications used Triton-X100 or the related NP-40

to lyse cells, both of which are common "gentle" non-ionic detergents. Indeed, mTOR

can be immuno-purified using these detergents and is highly active towards endogenous

substrates S6K and 4E-BP1 (Burnett et al., 1998). However, under these conditions,

the complex fails to reflect its cellular regulatory state. For instance, in cells, nutrient

availability and growth factor signaling are potent mTOR regulators, but none of these

changes in activity were preserved once mTOR was purified from lysates. Soon after, our

lab showed that mTOR partners with another protein, raptor, and that this interaction can

only be maintained by using CHAPS, another non-ionic detergent (Hara et al., 2002; Kim

et al., 2002). Use of CHAPS is also necessary to maintain the interaction between mTOR
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and its mTORC2 partner Rictor, which is required for its ability to phosphorylate AKT.

Another approach that avoids these troubles is to lyse cells using sonication rather than

detergent. The drawback of sonication is that it fails to solubilize membranes as well as

detergents do, and so proteins that are strongly associated with membranes are often lost

in the insoluble fraction of the lysate. See the section below for more information about

the lysis buffer we currently use.

Effects of pyrophosphate

An observation following the identification of Raptor was that nutrient availability

altered the stability of the mTOR/Raptor interaction (Kim et al., 2002). However,

another group found that the integrity of the complex was unchanged(Hara et al., 2002).

In the end, it was realized that the different results were due to the presence or absence

of sodium pyrophosphate in the buffer. We had included it because it acts as a general

phosphatase inhibitor, while Hara et al did not. It isn't clear why pyrophosphate causes

this effect, but we have speculated in the past that the Raptor/mTOR interaction might

involve binding to phosphorylated residues and that pyrophosphate can compete for

these binding sites. There is, of course, no evidence to support this theory. A final note

on pyrophosphate is that, although it has no effect on kinase activity when present in the

lysis buffer, it is inhibitory when added to kinase reactions (data not shown). This may be

because pyrophosphate can bind metal ions, which are required for kinase activity.

Ionic strength of the lysis buffer

It is common practice to wash immuno-purified proteins with high-salt buffers to

remove impurities. We found that washing mTOR immuno-purifications with 0.5M NaCl

caused a dramatic increase kinase activity. Although high-salt washes partly disrupted

the binding between mTOR and Raptor, we found that similarly washing raptor immuno-

161



purifications caused the same increase in kinase activity, indicating that this phenomenon

was not caused by the loss of raptor. Instead, we suspected that high-salt caused the

dissociation of a normally inhibitory component of the mTORC 1 complex, which led to

the identification of PRAS40 (Sancak et al., 2007). We also believed that other important

regulatory components of mTORC 1 might be affected by the ionic strength of the lysis

buffer. To this end, we lysed cells that had been starved or stimulated with leucine in

a buffer containing a minimal concentration of salt, and then immuno-purified mTOR

or Raptor to ask if the in vitro activity remained regulated (Figure 2A). It was, and

we further showed that increasing salt concentrations in the lysis buffer obscured this

regulation (Figure 2B). We have recently proposed that amino acids regulate mTORC1

activity by causing it to translocate to membranous structures that contain rheb, so it

is unclear what part of that activating mechanism remains intact when the complex is

purified(Sancak et al., 2008). Although a small amount of activating rheb may remain

bound to raptor, we were never able to detect it in mTOR immunoprecipitates. However,

other groups have made the claim that the interaction is maintained (Long et al., 2005a;

Long et al., 2005b).

Kinase reaction conditions

The previous discussions have all referred to the lysis buffer composition. The

contents of the kinase reaction buffer also affect mTOR regulation. Divalent metal ions

are required in kinase reactions to help coordinate ATP in the catalytic pocket. Mg++ is

the physiologic ion, but Mn++ is commonly used in the laboratory because it results in

greater kinase activity. We found that Mn++ was indeed activating for mTORC1, but that

it overcame whatever mechanisms normally regulate the kinase activity in response to

leucine (Figure 2). Thus, it is important to use Mg++ in the kinase reaction buffer.

Substrates for in vitro kinase assays
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An interesting story about mTORC1 substrates concerns the "rapamycin-

insensitive" S6K. This protein, which differed from wild-type S6K by the removal of

a C-terminal fragment known as the auto-inhibitory domain, was phosphorylated by

mTOR in a rapamycin-insensitive fashion. A popular theory was that the C-terminal

domain in wild-type S6K coordinated a rapamycin-activated phosphatase, and that loss

of this domain rendered the kinase insensitive to rapamycin. Despite years of searching,

no one has found a rapamycin-activated phosphatase. Instead, Ali et al found that the

"rapamycin-insensitive" S6K was phosphorylated by the rapamycin-insensitive mTOR

complex, which we now call mTORC2 and which normally phosphorylates AKT (Ali and

Sabatini, 2005). S6K and AKT share a very similar structure, and we now know that the

S6K C-terminal domain normally restricts it to mTORC 1. Partly because of this story,

we try to use full-length substrates for our kinase assays, because the structure of the

substrate is often important for the kinase's regulatory mechanism. To purify p70 S6K

for use in kinase reactions, we express it with an N-terminal GST tag and a PreScission

protease cleavage site in HEK293T cells, precipitate with glutathione-coated agarose,

cleave with PreScission protease, and separate the protein on a HiLoad 16/60 Superdex

200 column (Amersham). The substrate can be stored at -80C.

Rheb purification and use in kinase assays

Rheb is a small GTPase that is a key activator of mTORC1 in response to insulin

stimulation. We showed that purified rheb activates mTORC 1 directly in in vitro kinase

assays(Sancak et al., 2007). The following describes the protocol for purification. Rhebl

in HA-GST-pRK5 is transfected into HEK293T cells. Cells are then lysed with rheb lysis

buffer (the lysis buffer used for mTOR immunoprecipitations, but without EDTA and

containing 5 mM MgCl2), and cleared lysates are incubated with immobilized glutathione

for 2 hr at 4°C. Beads are then washed twice with rheb lysis buffer and once with rheb

storage buffer (20 mM HEPES [pH 8.0], 200 mM NaC1, and 5 mM MgCl2). GST-rhebl
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can be eluted from the beads with 10 mM glutathione in rheb storage buffer. Eluted

rheb can be GTP loaded by incubating it with 10 mM EDTA and 1 mM GDP or 0.1 mM

GTP S at 300 C for 10 min, though this step is not necessary. MgC12 (20 mM) is then

added to permit stable GTP binding and the proteins kept on ice until use.

Procedure for mTORC1 kinase assays

Cells are lysed in 50mM Hepes pH 7.4, 10mM NaPyrophosphate, 10mM

NaBetaglycerophosphate, 2mM EDTA, 0.3% CHAPS. Complex is immunoprecipitated

with raptor, rictor or mTOR-specific antibody for lh, followed by incubation with

protein-G agarose beads for lh. Immunoprecipitates are then washed once in lysis buffer

followed by two additional washes in lysis buffer containing a final concentration of

150mM NaC1. Immunoprecipates are then washed twice in 25 mM HEPES (pH 7.4),

20 mM potassium chloride. Kinase assays are performed for 20 min at 300 C in a final

volume of 15 ul consisting of mTORC1 kinase buffer (25 mM HEPES [pH 7.4], 50 mM

KC1, 10 mM MgCl 2, 250 uM ATP) and 150 ng inactive S6K1 or 4E-BP1 as the substrate.

Reactions are stopped by the addition of 30 ul of sample buffer and boiling for 5 min and

analyzed by SDS-PAGE and immunoblotting.
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Figures

Figure 1. Leucine stimulation of cells causes an activation of mTORC1 that is preserved in
vitro.

A. mTORC1 immunopreciptated from leucine stimulated cells remains active in vitro. HEK293T

cells we grown in leucine-free RPMI for lh and then stimulated with 52ug/ml leucine for the

indicated times. Cells were lysed and mTORC1 was immunoprecipitated using raptor-specific

antibody and analyzed in in vitro kinase assays as described in Experimental Procedures.

Cell lysates and kinase reactions were both analyzed by immunoblot using phospho-specific
antibodies to detect phosphorylation of S6K at T389 and phosphorylation of PRAS40 at T246.
Antibodies specific for mTOR and raptor were used to determine total levels of those proteins.
B. In vitro leucine regulation of mTORC1 is sensitive to high-salt. mTORC1 was
immunoprecipitated from leucine starved and stimulated cells as described in A. However,
immunoprecipitates were washed three times in buffer containing 50mM Hepes pH 7.4 and
indicated amounts of NaC1. Immunoprecipitates were then subjected to kinase assays and
analyzed as in A.

Figure 2. Use of manganese instead of magnesium in kinase reactions disables mTORC1
regulatory mechanisms.

HEK293T cells were grown in leucine-free RPMI for lh, and then stimulated as indicated with
52ug/ml leucine for 10min. mTORC 1 was immunoprecipitated from cell lysates using raptor-
specific antibody. Immunoprecipitates were prepared as described in Experimental Procedures
and washed one additional time with 0.5M NaCl where indicated. Immunoprecipitates were then
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subjected to in vitro kinase assays, except that 5mM MnC12 was used in place of MgC12 where

indicated.
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Appendix B

Lipid activation of mTORC1

Carson C. Thoreen and David M. Sabatini

All experiments were performed by C.C.T.
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Introduction

The mTORC 1 serine/threonine kinase complex is the founding member of a

signaling pathway that senses nutrients and growth factors, and exerts powerful influence

over the cell's translational machinery. Through one of its substrates, S6K1, mTORC1

can also affect insulin sensitivity (Shah et al., 2004). S6K1 phosphorylates the insulin

receptor substrate (IRS 1), which couples the insulin receptor to the lipid kinase PI3K,

marking it for degradation and dampening the effects of insulin stimulation (Shah et al.,

2004). Because of its sensitivity to nutrients and feedback effect on insulin signaling,

several groups have proposed that excessive nutrients, a situation called "nutrient

overload," might constitutively activate mTORC 1 and lead to insulin insensitivity (Um et

al., 2006).

Despite fervent interest, controversy remains over the nature of the nutrient input

to mTORC 1. Many signals upstream of mTORC1 are channeled through the tuberous

sclerosis complex (TSC), which is a heterodimeric complex composed of tuberin (TSC 1)

and hamartin (TSC2) (Kwiatkowski and Manning, 2005). TSC negatively regulates

mTORC1 through its role as a GTPase-activating protein for the small GTPase rheb

(ras homolog enriched in brain), which directly stimulates mTORC1 (Kwiatkowski

and Manning, 2005). Many signaling pathways are thought to activate mTORC1 by

altering the activity of TSC. For instance, AKT and Erk phosphorylate and inactive TSC

in response to growth factor signals (Kwiatkowski and Manning, 2005). Alternatively,

the AMP-activated kinase (AMPK) phosphorylates and stabilizes TSC in response to

rising cellular AMP and other forms of energetic stress. The gene Reddl activates TSC

in response to hypoxia (Brugarolas et al., 2004; Reiling and Hafen, 2004). Amino acid

availability regulates mTORC 1 through a separate mechanism that involves the Rag

family of small GTPases (Sancak et al., 2008). Glucose availability may be signaled
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through AMPK and TSC or through another route.

Within cells, nutrients are rapidly broken down into more basic molecules that

can be utilized for energy or other biosynthetic pathways, such nucleotide or fatty

acid synthesis. We wanted to ask whether the mTORC1 pathway senses glucose or

amino acids directly, or whether it responds to one of these downstream intermediates.

Identifying this molecule will shed light on the relationship between nutrient metabolism

and mTORC1 activity.

Results and Discussion

RNAi directed screen of metabolic genes in Drosophila cells

To identify metabolic pathways that are required for TORC1 activity, we

conducted a broad RNAi-based silencing screen in Drosophila KC 167 cells of metabolic

genes that are rate-limiting and/or cannot be bypassed. The advantage of doing this work

in a Drosophila system is that RNAi-mediated gene silencing is particularly efficient

(Clemens et al., 2000). Although a significant evolutionary gap separates insect and

mammalian lineages, the considerable conservation of TORC1 pathway components,

such as TOR, raptor, rheb, TSC1/2 and S6K, leads us to believe that products of this

screen will be good candidates for further characterization in mammalian systems.

Our initial screen targeted components of the following metabolic pathways:

glycolysis, glucosamine synthesis, pentose phosphate shunt, branched chain amino acid

catabolism, and fatty acid synthesis and oxidation. Surprisingly, dTOR activity was

affected most significantly by silencing of genes involved in fatty acid synthesis (Figure

1A). These included acetyl-CoA carboxylase (ACC), the rate limiting and regulated step

in fatty acid synthesis, and fatty acid synthase (FAS), the primary endogenous producer

of intracellular fatty acids (Figure 1A). ACC causes the irreversible carboxylation

of acetyl-CoA, a TCA cycle intermediate that is exported from the mitochondira, to
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malonyl-CoA. FAS then uses malonyl-CoA as the building block for free-fatty acid

synthesis (FFAs).

Unsaturated fatty acids are required for TOR activity

Fatty acids are further modified either by elongation or desaturation of their

acyl chain. We were unable to identify homologues of human fatty acid elongation

enzymes, but did identify several fatty acids desaturases. Of these, knock-down of several

enzymes with significant homology to the human stearoyl-CoA desaturases (SCD)

caused suppression of S6K phosphorylation (Figure 1B). SCD catalyzes the synthesis

of monounsaturated fatty acids, such as oleate, from the saturated products of FAS and

is the primary source of these molecules in cells (Ntambi and Miyazaki, 2003). We also

tested the effect of inhibiting fatty acid synthesis more broadly by knocking down the

transcription factor and lipid sensor SREBP (Seegmiller et al., 2002). Unfortunately,

depletion of SREBP was lethal to cells, though phosphorylation of S6K was decreased

(data not shown). Despite many attempts, using this system, we were unable to identify a

more specific lipid species that was required for TORC 1 activity.

Fatty acids are also required for mTORC1 signaling

Mammalian cells synthesize fatty acids through a similar mechanism. To test

whether fatty acid synthesis was required for mTOR signaling, we treated cells with the

fatty acid synthase inhibitor C75. C75 is a derivative of the small molecule cerulenin,

which has been shown to inhibit FAS and has attracted interest as an anti-cancer drug

(Kuhajda, 2000). Like knockdown of FAS, ACC and SCD in Drosophila cells, C75

treatment rapidly caused dephosphorylation of S6K in HEK293T cells (Figure 1C).

mTORC1 may sense lipids directly
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Cellular ipids are incorporated into many molecules, including triglycerides,

proteins, phospholipids and many other lipid species. We thought that mTORC1 might

sense a particular lipid species directly. In fact, earlier reports had indicated that mTOR

binds phosphatidic acid (PA), and suggested that this increases kinase activity (Fang

et al., 2001). We first ask whether certain phospholipids can stimulate mTOR activity

when added exogenously, and found that phosphatidic acid and phosphatidylserine

(PS) were both stimulatory (Figure 2A). We tested this hypothesis directly by adding

PA liposomes to immunoprecipitated mTOR and showed substantial activation (Figure

2B). However, this effect is highly variable, and frequently PA does not change mTOR

kinase activity, possibly indicating a requirement for a component that does not always

co-immunoprecipitate with mTOR. Moreover, it is unclear what concentrations of PA

exist in cells, and so we are unsure if our in vitro conditions are within a reasonably

physiologic range.

Conclusions

We have provided evidence that mTORC 1 kinase activity depends on fatty acid

synthesis in both Drosophila and mammalian systems. We have further suggested that

mTORC1 might be directly activated by certain phospholipids, though this remains to

be confirmed more rigorously. The finding that mTORC1 signaling is sensitive to lipid

biosynthesis identifies a new class of nutrients that can influence this pathway, and also

adds a new twist on the idea that "nutrient overload" can lead to insulin insensitivity.

"Nutrient overload" generally refers to the consequences of consuming a high-fat diet.

We show here that high levels of certain intracellular lipids might activate mTORC 1

directly, thus bypassing the normal requirement for other signals such as growth factors

and amino acids and potentially desensitizing cells to insulin.
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Figures

Figure 1. Fatty acid synthesis is required for mTORC1 activity

A. RNAi-mediated knock-down of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)
in Drosophila cells inhibits mTORC1. Kc 167 cells were transfected with dsRNA specific for

either FAS or ACC and grown for 4 days. Cell lysates were then analyzed by immunoblot using
phospho-specific antibody to detect phosphorylation of S6K on T389.

B. RNAi-mediated inhibition of monounsaturated fatty acid synthesis inhibits mTORC1. Kc

167 cells were transfected with dsRNA specific for putative Drosophila homologues of the

mammalian stearoyl-CoA desaturases and analyzed as in A. Knockdown of SCD B strongly

affected cell viability, and sufficient protein could not be extracted from cell lysates. Thus, this
lane cannot be directly compared with other lanes in the gel.

C. Pharmacological inhibition of FAS causes inhibition of mTORC 1 in mammalian cells.
HEK293T cells were treated with 50ug/ml C75 for increasing amount of time, lysed, and
analyzed as in A.

Figure 2. Phospholids can activate mTORC1

A. Exogenous phospholipids can activate mTORC1. Hela cells were serum-starved in DMEM
for 4h and then stimulated with 100uM of the indicated phospholipids for 30 minutes.
Phospholipids had been dried from chloroform stocks under nitrogen gas and resuspended in
DMSO. Cell lystates were analyzed by immunoblot using phospho-specific antibodies to detect
phosphorylation of S6K at T389.

B. Phosphatidic acid can activate mTORC1 directly. Phosphatidic acid (PA) was dried from
chloroform stocks under nitrogen gas, resuspended in 50mM Hepes pH 7.4, 150mM KC1,
and then sonicated to clarity in a bath sonicator. PA liposomes were than added to mTOR
immunoprecipitates at the indicated concentrations, and in vitro kinase assays were conducted as
described in the Experimental Procedures. Kinase assays were analyzed by immunoblot, using
phospho-specific antibody to detect phosphorylation of S6K at T389.
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Experimental procedures

Materials

Reagents were obtained from the following sources: antibodies to raptor from

Upstate/Millipore; antibodies to mTOR and S6K1 as well as HRP-labeled anti-mouse,

anti-goat, and anti-rabbit secondary antibodies from Santa Cruz Biotechnology;

antibodies to phospho-T389 S6K1 from Cell Signaling Technology; ATP from Sigma

Aldrich; protein G-sepharose from Pierce; DMEM from SAFC Biosciences; FuGENE 6

and Complete Protease Cocktail from Roche; Schneider's insect cell media, Inactivated

Fetal Calf Serum (IFS) and fetal bovine serum (FBS) from Invitrogen; phospholipids

from Avanti Polar Lipids; C75 from Calbiochem.

In vitro mTORC1 kinase assays

mTORC1 in vitro kinase assays were conducted as described earlier (Sancak

et al., 2007). Briefly, mTORC1 was immunoprecipitated from HEK-293T cells using

antibody specific for raptor or mTOR. Immunoprecipitates were washed and then

combined with full-length p70S6K, 500uM ATP in reaction buffer and allowed to proceed

for 20min. Phosphorylation of substrates was assessed by western blot using phospho-

specific antibodies. Phospholipids were dried from chloroform stocks under nitrogen

gas and resuspended in 50mM Hepes pH 7.4, 150mM KC1. Lipid mixtures were then

sonicated to clarity using a bath sonicator.

Drosophila RNAi

Drosophila RNAi experiments were conducted as earlier described (Guertin et

al., 2006). Briefly, dsRNAs targeting Drosophila metabolic enzymes were synthesized

by in vitro transcription in 20 ul reactions using a T7 MEGAscriptTM kit (Ambion).
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DNA templates for IVT were generated by RT-PCR from total Drosophila cellular RNA

using the OneStep RT-PCR kit (Qiagen). Drosophila KC167 cells were seeded in 6-

well culture dishes. dsRNAs were administered to cells using FuGENE 6 transfection

reagent (Roche). After 4 days total of incubation to allow turnover of the target mRNAs,

cell lysates were prepared as described (Guertin et al., 2006). Cellular protein was

loaded onto 8% SDS-PAGE gels, separated, transferred to nitrocellulose membranes and

analyzed by immunoblotting.
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