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ABSTRACT
Indoor air pollution is a serious health risk in developing countries, and is the leading cause of death
for children under five. By replacing traditional cooking fuels with charcoal, one can significantly
reduce a user's exposure to the particulate matter responsible for the detrimental health effects. The
MIT D-Lab has have developed a method of creating charcoal using agriculture wastes such as
bagasse and corncobs. However, it has been found that corncob charcoal produces dangerously high
levels of carbon monoxide and as a result is unable to be burned directly and must be briquetted. In
conjunction with this, an organization in Lima, Peru called Enlace Solidario makes coal briquettes in
a configuration that optimizes the burning performance. They have entered in a partnership with the
nearby orphanage of Segrada Familia to produce cooking fuel at no cost. However, Segrada Familia
must supply their own ground charcoal to be briquetted. Thus, there is a clear need for a charcoal
grinding machine. This thesis developed a successful grinding mechanism based on a peanut sheller
design developed by the Full Belly Project. Though it needs to be scaled up to achieve the required
throughput, this mechanism successfully limits the user's exposure to charcoal dust created during
the grinding process and provides a means to produce corn cob powder necessary to briquette
charcoal.

Thesis Supervisor: Amy Smith
Title: Senior Lecturer in Mechanical Engineering
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1. Introduction

Charcoal made from agricultural waste has been recognized as a solution to many issues in

the developing world. First, it is made from waste, such as corn cobs, and replaces charcoal made

from wood, thus reducing deforestation. Second, it produces lower particulate emissions during

burning than wood. Lastly, charcoal made from corncobs is less expensive than many other fuels,

providing an economic incentive for users.

Enlace Solidario is an organization in Lima, Peru that creates a briquette with a

configuration that improves burning characteristics. An example of this type of charcoal briquette

can be seen in Figure 1.

Figure 1: Charcoal produced by Enlace Solidario

Crushed coal arrives at the Enlace Solidario from mines in the northern region. The coal is

then mixed with dry clay, lime and water to form a briquette mixture. Finally, the mixture is formed

into briquettes with a hydraulic press. Figures 2-4 illustrate this process.



tigure 2: Kaw coal Detore briquetting

r igure 3: ivllxer

Figure 4: Hydraulic Press



Recently, Enlace Solidario developed a partnership with Segrada Familia, an orphanage in

Lima, to make briquettes from corncob charcoal to power the cooking fires of the orphanage. In

January, a D-lab trip to Peru visited Segrada Familia and instructed the older children in the corn cob

charcoal making process. This provides opportunities for the youths upon graduating from the

orphanage. However, to use the charcoal equipment of Enlace Solidario, the carbonized corncobs

must first be ground into a powder. Moreover, crushing the carbonized corn cobs and forming them

into briquettes mitigates one of the major health issues related to charcoal-based cooking fuels--

carbon monoxide. When burned directly, corn cob charcoal produces extremely high levels of CO,

but produce much less when briquetted before burned. Figure 5 illustrates the CO emissions of corn

cob charcoal under in both configurations correlated with the health effects of exposure.

CO emissions for Different Configurations
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Figure 5: Plot of Carbon Monoxide Emissions from Corn Cob Briquettes and Corn Cob Charcoal with
exposure notes

Although both fuels produce very high levels of carbon monoxide, the corn cob charcoal

briquette barely reaches half of a lethal dose, where unbriquetted charcoal surpasses the lethal dose.
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These levels of carbon monoxide emissions are similar to other types of charcoal and for this reason

it is crucial to burn charcoal in an outdoor cooking area or in well ventilated areas. Thus, it is equally

important to briquette the cobs for the health of the user as well as providing access to cooking fuels

for Segrada Familia.

The goal of this thesis will be to create a corncob charcoal grinder with the following

technical requirements:

1. Costs less than $50 with a goal of $30

2. Can be produced in Lima, Peru

3. Is human-powered

4. Grinds a variety of corncob sizes

5. Produces a powder with a particle size of smaller than 5mm

6. Grinds at least 0.5kg per minute

7. Limits the user's exposure to charcoal dust

These seven requirements will be the basis for evaluating the prototypes developed in this thesis.

2. Background

2.1 Global Health Concern:

Indoor air pollution is one of the most pressing health issues facing the world's poor.

Nearly half of the world's population, 3 billion people, uses biomass fuels for cooking and

heating. These fuels release toxic emissions during combustion and are responsible for the deaths

of 1.5 milli people annually

'. Women and children are particularly vulnerable to indoor air pollution due to the large

amount of time spent cooking, and it is the number one killer for children under five2.

According to the Evironmental Protection Agency's Partnership for Clean Indoor Air,

indoor air pollution is the fourth leading health risk in developing countries3 . Moreover, the

World Health Organization (WHO) has concluded that the particulate inhalation leads to a
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myriad of health issues including doubling a child's chance of contracting a respiratory infection

and increasing a woman's risk of miscarriage.

A person's exposure to smoke is dependent on the concentration of toxins within the air

and the duration of exposure. In a study done by the EPA4, women typically spend between 3

and 7 hours per day near a fire. Moreover, in many parts of the world small children are carried

on the mother's chest or back, and are thus exposed to an equal amount of smoke from a very

early age. There are six major toxins present in smoke:

1. Particulate matter
2. Carbon monoxide
3. Nitrous oxides
4. Sulphur oxides
5. Formaldehyde
6. Carcinogens

Although all are very damaging to health, studies have shown that particulate matter

smaller than 10 microns (PMlo) can penetrate deep into the respiratory tract and are the most

detrimental to one's health.5 In a normal 24 hour period, a woman cooking with a biomass

(wood, dung, etc.) can inhale on average 10,000 gg/m3, more than ten times the safe limit set by

the United States Environmental Protection Agency. This sustained exposure to PM1o causes

acute respiratory infections (ARI), broadly categorized into two groups, Acute Lower

Respiratory Infections (ALRI) and Acute Upper Respiratory Infections (AURI).

It has been found that charcoal produces less than a quarter of the particulate matter

produced by wood6. This striking difference in emissions results from the wood carbonization

process. Raw wood contains volatile organic compounds that evaporate when heated, and are the

source of PM10o particles7. However, during the carbonization process to create charcoal, the

volatile compounds are consumed in the burn. Thus, the resultant product, charcoal, produces

very few particulates when it is burned as fuel.



2.3 Charcoal Production Process

Charcoal is simply carbonized organic matter, and is created when such matter is burned at

high temperatures in a low-oxygen environment. As mentioned earlier, this thesis deals

specifically with the issue of charcoal made from corn cobs, and thus documents the corn cob

charcoal production process.

After harvesting the ears of corn, the majority of the harvest is left to sun-dry. After drying,

the kernels are removed to produce a corn flour, and the dried cob remains. In the case where

the corn was eaten without being dried, the cobs would need to be dried for several days to

ensure proper carbonization.

When heated to a temperature greater than 2700 C, a chemical reaction occurs to convert the

organic matter into carbon. A kiln is required to create a low-oxygen environment in which to

carbonize the cobs. Illustrations of a simple kiln and a more thorough description of the charcoal

production procedure can be found in Appendix 1.

2.4 Carbon Monoxide Emissions

Although charcoal produces significantly less PM10 when burned, it produces significantly

more carbon monoxide, especially when burning corn cob charcoal. Exposure to CO can range

from subtle flu-like symptoms in chronic low-dose exposure to asphyxiation in high levels.

Carbon monoxide can easily pass from the lungs into the blood stream forming a complex with

hemoglobin known as carboxyhemoglobin (COHb). COHb in the blood stream prevents oxygen

from binding to the hemoglobin and causes hypoxia. The amount of COHb that is formed is



largely dependent on concentration and duration of carbon monoxide exposure. Factors such as

physical activity during exposure, ambient pressure, and the health and metabolism of the

individual play a lesser, but important roleS. The concentration of COHb in the blood stream is a

critical measurement when evaluating health effects, but impractical to measure in the field.

Thus, a mathematical model was developed 9 to estimate percent COHb from measured carbon

monoxide values. Figure 6 depicts the Coburn-Foster-Kane equation that models this trend

SI 8 h, 20 •min
I a h, k0 Utnin

1 t•, 10 4kin

S 20 40 7 Igo

Figure 6: Relationship between CO exposure and COHb levels in the blood. Predicted COHB levels resulting
from 1 and 8 h exposures to CO at rest (alveolar ventilation rate of 10 1/min) and with light exercise (20 I/min)

are based on the Coburn- Forester- Kane equation"0

Based on the above graph, nonsmoking adults exposed to 25-50 ppm for 8 hours with light

exercise would experience between 4 and 7% COHb. Similarly, an exposure of 100 ppm during

the same period would result in 12-13 percent COHb. Table 1 illustrates the health effects of

COHb percentages.



COHb % Clinical Symptoms
Healthy Adults

Developing Fetuses

0-10% Normal, shortness of breath with vigorous exercise"

10-20% Headache, flushed skin, shortness of breath with moderate
exercise, decrements in hand-eye coordination, inattention

20-30% Headache, throbbing temples, irritability, emotional instability,
impaired judgment, memory impairment, rapid fatigue

30-40% Dizziness, weakness, nausea and vomiting severe headache,
visual disturbances, confusion

40-50% Intensified symptoms, hallucinations sever ataxia, tachypnea

> 50% syncope, coma, tachycardia with weak pulse, incontinence of
urine and feces, confusions, loss of reflexes, cyanosis,
respiratory paralysis, death

5-10% reductions in birth weight

15-25% cardiomegaly, delays in behavioral development, disruption of
cognitive function, increased occurrence of SIDS

Table 1: COMb % and health effects in different populations

According to a study performed by researchers at the University of California at Berkeley,

the average exposure for women and children burning charcoal in an unvented cook stove for

one hour was approximately 528 ppm which converts to 20% COH. According to the American

Conference of Governmental Industrial Hygienists (ACGIH), the threshold limit value for CO in

the work environment is 9.66 ppm or under 1% COHb. This huge difference between the

Population



recommended safe limit and the actual exposure of women in developing countries is a serious

cause for concern when using charcoal as a fuel.

3. Design process:

3.1 Design Requirements and Constraints:

Table 2 summarizes the design criteria motivating this thesis. Of particular concern was the

ground charcoal's ability to form the briquettes, the throughput, and the health of the user. Other

design criteria are common constraints of design for developing countries.

Attribute

Ground charcoal is
able to be briquetted
with current amount
of clay

Limits Exposure to
Charcoal PM, is equal
to or better to the bag
method

Affordable for average
wage in Peru

Able to be
manufactured and
repaired in Peru

Throughput

Metric

Does a solid brkiquett come
outof prvss?

Particulate Matter Levels

ýCost

Made of materials and
processes commonly
available

Rate

Unit

PPM

Yes/No

Kg/mi

Value

<7.71 peak PPM

x

Table 2: Design Requirements

The critical requirement of the ground charcoal is that it must be able to be formed into

briquettes. The forming of briquettes involves mixing the ground charcoal with a clay binder and

compressing it in a press. To maximize profits from the sale of the briquettes, the minimum

possible amount of clay binder must be used. This design requirement limits the particle size of



the ground charcoal, the finer the particle size, the less clay is needed to bind. Moreover, there

has to be a minimum percentage of finely ground particles to ensure that briquettes can be

formed. It has been found that the briquette performance does not decrease as particle size

increases up until about a quarter inch, and thus as long as the minimum percentage of finely

ground particles is achieved, the fineness of the particles is not critical.

The effects of long-term inhalation of coal is well documented due to the pandemic of

black lung disease among minersl2. Similarly, the inhalation of charcoal has equally seriously

health effects. Thus, it is critical to limit exposure to charcoal dust. Moreover, one must account

for children within the vicinity of charcoal production. Thus, the product must not only be

designed for the user's exposure, but also incidental exposure.

3.2 Idea Generation and Sketch Models:

Because there are many well established methods of grinding, there was no need to create a

revolutionary grinding method. Instead, several existing grinding mechanisms were tested with

corncob charcoal and the resulting products were compared. Five methods were compared to the

original bag method, described later in the document, over a series of four tests.

1. Percent loss: How much of the material was lost in the grinding process

2. Percent of product finely ground: This measures the percentage of ground charcoal that is

smaller than 2mm and can mix with the clay to bind the briquette.

3. Time to grind 50g: This measures grinding rate

4. Max/Average PM: This measures both the maximum and average exposure to PM10

during the grinding process. The sensor was worn around the operator's neck to gauge

the user's exposure to PM10.

These four tests were performed on five different grinding methods to compare strengths

and weaknesses of each design. Details of each tested grinding mechanism appears in Table 3.

14
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* Current Technique

* Load a set amount of charcoal into a

Bag Method plastic trash bag or a double-layered
rice bag

* Crush with cinderblock or with body
weight

* Traditional grain mill that grinds the
Victoria Mill charcoal between a pair of grinding

plates

Mortar and
Pestle

A traditional Ghanian wooden mortar
and pestle were used to crush the
charcoal between two hard surfaces.

1~f
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Peanut Sheller

Inverted cone

* Developed by the Full Belly Project to
shell peanuts

* Grinds due to friction between the cob
and the concrete surfaces as the gap
between the rotor and stator decreases

Vertical, hollow cone with a rotating pa
rotor grinders against the surface objects

The same process as the bag method but
using a rolling cylinder instead of a
cinderblock

Table 3: Grinding Methods

Rolling Pin

~

____I___ __ _ _



These results were laid out in a Pugh chart to select the best grinding method. The Pugh chart

appears in Table 4.

Bag

Victoria Mill

Mortar and
Pestle

Peanut
Sheller

Vertical Cone

Rolling Pin

Table 4: Pugh Chart Selection Criteria

Based on the Pugh Chart, it was decided that be best approaches were the peanut sheller

and the rolling pin design.

3.3 Prototyping

Prototypes were constructed to further test the peanut sheller design. The peanut sheller is a

well tested and established technology and thus improvements in the component design was not

necessary. However, constructing a peanut sheller in the developing world requires the purchase

of expensive fiberglass molds, which are not only difficult to obtain but also too costly for the

average person to afford. Thus, a bulk of this thesis was dedicated to designing a method for

manufacturing peanut sheller style molds from locally available materials. Moreover, the peanut

sheller was designed for peanut-sized output. The design had to be optimized for a corncob-sized
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input and powder output. Figures 7 and 8: Identify the components of the entire mechanism

(Figure 7) and the Rotor (Figure 8)

I Hand Crank

Top Support Bracket

Dust Shield

Collection Bucket

pper

e Tire Gaskets

Figure 7: Full Assembly of rotor and stator mechanism

Top Support Bolt K

Feeding Groove

3tator Outer Surface

K- Stator Inner Surface

Rotor

Figure 8: Inside view of stator

nk Nut

ftI

.1

• g

Shaft I-



4. Manufacturing

4.1 Stator:

4.1.1 Design:

There are two critical features of the stator. First, it must be strong enough to support the

weight of the rotor, prevent breaking or cracking during general use and assembly, and

withstand the torque applied during operation. Secondly, it must have a very round inner

surface that is concentric with the rotor.

To maximize the strength of the concrete walls, this project uses fiber reinforced

concrete. The aggregate particles should not exceed a quarter inch in diameter, and should

consist mostly of smaller gravel. Lastly, all walls must be at least a quarter inch thick. Because

the metal support pieces are inserted into the walls of the concrete when cast there must be at

least a quarter of an inch between each side of the support piece and the closest wall, as

illustrated below.

Y" M inimum

Figure 9: Illustration of minimum wall thickness



The stator's inside surface was created using a ceramic mold. Because ceramic pots are

thrown on a potter's wheel, they are generally very circular around their central axis.

Moreover, ceramic work is a common process in many developing countries, and thus is

appropriate for this application. Ceramic pots also have an advantage over plastic buckets,

which were used in early iterations of this design, because they are not flexible and do not

deform with the weight of the concrete.

What is notable in these design criteria is the fact that the outer surface shape is not

critical, and that it can be any shape as long as it meets the minimum wall thickness. A

similarly shaped cylinder was selected to minimize the concrete usage. A picture of the mold

assembly appears below in Figure 10.

Figure 10: Illustration of stator mold

4.1.2 Manufacturing:

This manufacturing plan is based on the design of a cylindrical outer wall and an inner

wall mold made from a ceramic pot tapered from 6" to 8" in diameter. These can be modified

to accommodate other wall geometries. A step-by step manufacturing plan appears in Table 5.



Parts Needed:

1. Enough concrete mix to fill mold

2. 14" diameter plywood circle at least '/2" thick

3. 8" diameter plywood circle at least '/2" thick, tapered to approx. 150

4. 8" top diameter tapered ceramic pot

5. 4 x 4" Lengths of ¼"-20 threaded Rod

6. 2 x 3" Lengths of ¼"-20 threaded Rod

7. 12 x Hex Nuts ( ¼"-20)

8. 6 x ¼" Flat Washers

9. 5 gallon plastic bucket for outer wall mold with bottom 6" removed

10. Plastic Sheeting

11. Viscous grease

. Cut a 14" Plywood circle

* Draw concentric 8", 9", and 10" circles

* Divide the disk into 4 quadrants and draw
dividing lines

* Cut a 8" diameter plywood circle
* Sand the edges to a roughly 150 taper

rrcle

rant



* Attach tapered 8" piece to center of 14"
piece

Drill si 'UR" hole throiw1h hoth nieces in the
exact center of the assembly

. I

* Bolt Legs into each of the four holes

* Attach outer wall mold to the rest of the
mold using the 10" circle as a locating line

* Use small wood screws to bolt the bucket to
the bottom wood circle

_ 111~_ 
~
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* If using a purchased ceramic pot, it might be
necessary to cut off a lip to result in a
smoothly tapered cylinder

* Cover the cylinder with a tightly fitted sheet
of plastic

* Put the wrapped ceramic mold on top of the
wooden tapered support disk

Y4"dia

* Cut a 7"x 2" piece of plywood

* Drill ¼" holes a half inch from each side

* Drill a 3/8" hole in the center

3 '/2"

%"dia Y4"dia
I _

I-

r



* Bolt the two 3" pieces of threaded rod into
the holes in the piece.

* The rods should extend equally on either
side of the wood.

* Place on top of ceramic pot in mold and use
a 3/8" rod to keep piece in center

* Mix cement according to manufacturer's
snecifications

* Pour concrete while taking precautions to
remove all air bubbles before setting.

Table 5: Manufacturing of the stator

4.2 Rotor:

4.2.1 Design:

There are three critical features of the rotor. First, the central axis of the rotor must be

perfectly aligned with the shaft both. This ensures that when the shaft rotates, the rotor spins

about its center and is not lopsided. However, the top and bottom faces do not necessarily need

to be perpendicular to the shaft or parallel with each other (though it is easiest to manufacture

when they are). Secondly, the shaft must have wings that engage with the concrete so that

when the shaft is rotated, it rotates the rotor instead of spinning freely inside the concrete.



4.2.2 Manufacturing:

Parts Needed:
1. Ceramic mold with same geometry as the stator inner surface mold- though it is not

necessary to remove the "lip" if the part is bought. (8" top diameter tapered pot)

2. Epoxy or ceramic glue (not necessary if using ceramic molds without a bottom hole

3. Plastic sheeting

4. 3/8" diameter steel rod

5. 3/8" tap

6. 2 pieces of 2" x 1" x 1/8" pieces of mild steel

7. 8" diameter plywood circle

8. (top of rotor)" diameter plywood circle

9. 2 x 3" long 3/8" ID piping

Rotor Shaft

* Weld two pieces of mild steel with 2in
dimensions of 2"x l"x 1/8" to the 3/8"
rod.

* 2 2in
* Thread the top 2"

* The top of the top wing should be 5
inches from the bottom of the bottom
wing

14in

Rotor Mold

* Fill drainage hole with epoxy (if using
a purchased ceramic pot)

* Locate exact center
* Drill a 3/8" hole in the center of the

top surface

~

I4i



* Cut a 6" and 8" plywood circle
* Drill a 1/2" hole in the center of each

* Put 6" disk inside ceramic mold

* Line top surface of 6" disk and inside of
the ceramic mold with a liberal amount
of grease

* Slide the shaft in place- it will rest on
the bottom wood piece

* Mix concrete and pour into mold

* Replace 8" disk and check alignment
between disks

* Cure the concrete according to
manufacturer's directions

Rotor Finishing

i-

* After curing, taper the top surface of
the rotor to roughly a 150 angle

* Cut 6 feeding grooves evenly spaced
along rotor.

o Grooves should be about ¾" wide
at top to V" wide at bottom

o Should extend from 2" away from
outside top of rotor to halfway
down the side of rotor

o Should curve to left at the bottom

Feeding
Groove

Table 6: Manufacturing of Rotor

I



4.3 Other Components:

The metal components are all components used by the Full Belly Project with some slight

modifications.

Parts needed:
1. 3 x 3" long 3/8" ID steel pipe

2. 2 x 10" long of 1" angle iron

3. 2 x 3.8" U-bolt

4. 3" piece of ¼" steel bar

5. 5" piece of ¼" thick 3/4" wide angle iron

6. 2x3/8" nut

7. 3 x /4" nut

8. 2 large, flat washers

9. 5" of ¼" ID steel tube

10. 4" long '/4-20 hex bolt

Support Bracket:

* Cut a V2" clearance hole in the exact
center of a 10" long piece of angle iron

* On the adjacent side, dill two clearance
holes for a u-bolt to hold the piping in
place

* Measure the distance from the central
shaft to each of the top support bolts

Location dependent
on support bolts

5"

* Drill holes in the angle iron to fit the
support bolts

iP



* Fit pipe into /2" hole and secure with U-
bolt

Handle:

* Drill a hole horizontally centered and
roughly 1/2" from the end

* Weld a 3/8" nut onto the ½A"piece so the
hole is concentric to the threads in the
nut

* Slide a washer, one of the metal tubes,
second washer, and nut onto the bolt.

Length
dependent
of bolt

D 72

Crank Nut :

* Weld the 3" piece of steel onto the side
of a 3/8 hex nut.

3"

* Repeat this process for the bottom
support bracket

* Align brackets so they are perpendicular
when viewed from above



Dust Shield

* Cut a piece of 1/8" thick sheet metal to
the shape of the outside of the stator

* Cut a 5" diameter hole in the center of
the dust shield

* Cut two /4" holes at the location of each
of the support bolts on the top of the
stator

* Cut 1/8" slits in the side of the pipe
reducer so that it can slip over the angle
iron

* Place the dust plate onto the top of the
stator

* Put support bracket on top of the dust
plate

* Slide the slotted galvanized reducer
onto support bracket

* Glue the galvanized reducer to the dust
plate to minimize exposure to charcoal
dust

-::; :··~~: l A..

_ 
___ ___
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* Cut out two circles out of 1/8"
Aluminum

* Drill a V2" clearance hole in the center
of each circle

* Remove the top 1/3 of each circle

* Rivet a small tab onto one of the
moving plates

Table 7: Other Components Manufacturing

~~ ___ _____



4.4 Assembly:
Parts Needed:

1. Rotor

2. Stator

3. Top and bottom support brackets

4. Dust shield and hopper

5. Bicycle innertube cut to the circumference of outer wall

6. 8 x 1/4 - 20 Hex nuts and washers

7. 2 x 1" spacer

* Insert rotor into stator

* Place bottom support bracket onto the
stator legs/ support bots

Center bracket and loosely tighten bolts

ercS w on handle and crank nut f

* Put stator right-side up

* Slide washer onto each support bolt

* Place the dust guard, top support
bracket and hopper assembly in place

* Place a bike inner tube between the
stator and the dust screen. The pressure
of the bolts will be enough to hold it in
place

shaft



* Place the sliding cover plates onto the
shaft.

* Attach the handle and washer by
threading them onto the shaft

* Align top and bottom brackets so that
the rotor is perfectly centered

o Measure the distance between
support bolts on either side and
move top and bottom brackets to
the center

o Check alignment by spinning
rotor

o Slide the top bracket until
perfectly aligned

o Once aligned, carefully tighten all
bolts

* Place on top of a bucket to collect
ground charcoal

Table 8 :Assembly



5. Results:

A summary of the averages of the data collected during experiments using both the bag and rotor and

stator methods appears below in Table 9.

%Fine Average CostMethods kg/min articles P Max PM CostParticles PM
Bag 1.63 44.61 0.28 7.71 $1
Rotor and Stator 0.27 88.11 0.15 0.41 $15

Table 9: Comparison of grinding methods

Experiments with using the rotor and stator machine to grind corn cob charcoal resulted in

lower PM emissions than any other grinding mechanism and comparable to the bag method. The

rotor and stator method also has a significantly smaller maximum PM value. The effectiveness of the

dust shield and the sliding plates can be seen in Figure 11.

Effectiveness of Dust Shield and Sliding
Doors
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Figure 11: Effectiveness of dust shielding mechanismsAs can be seen in the figure, the particulate matter peaks when the doors are opened. During the rest
of the test, particulate levels stay below 0.5 ppm.
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Conversely, the rotor and stator method is much slower than the bag method. Where one can

grind 1.63 Kg/min using the bag method, one can only grind 0.27 Kg in the same time using the

rotor and stator. However, the bag method only produced 45% fine particles which means that the

user did not spend enough time grinding. Because the bag method has no concrete way of

determining sufficient grinding time, it is easy to grind for an insufficient length and produce lower

quality ground charcoal. Moreover, the rotor and stator used for these tests was a prototype built to

determine grinding performance. To achieve maximum grinding rate it should be scaled so that more

carbonized cobs can be loaded into the hopper and also so that it can grind more cobs

simultaneously. This design was a prototype based on the "Mini Nut Sheller" produced by The Full

Belly Project. If scaled to the normally-sized sheller, one can expect drastic improvements in

grinding rate.

6. Conclusion:

This thesis has successfully developed a corncob charcoal crushing mechanism which allows

carbonized corncobs to be briquetted into a low particulate and reduced carbon monoxide emitting

fuel. Moreover, it provides a mechanism by which the youth at Segrada Familia can earn an income

while supplying the rest of the orphanage a cleaner burning fuel. Although the prototype developed

in this thesis must be scaled-up to match the required grinding rate, the alpha prototyped served as a

successful proof-of concept and justifies further development of a full scale model. Charcoal

provides a source of income for the producers, a health benefit to the users, and a means to stall

deforestation. This is a unique situation where social, environmental, and economic goals align to a

common solution which is enabled by this device.
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Appendix I :Corn Cob Charcoal Production

The custom kiln is made from a modified oil drum as pictured in Figure A-1.

Figure A-1: Creating the kiln

The top of the kiln has a large hole removed to allow it to be loaded. The bottom has a

number of smaller holes to allow air to enter during the initial part of the burn. A 2x4" piece of

wood is placed into the center of the kiln and removed after the kiln is fully loaded. This creates

a gap for air flow. Rest the kiln on three bricks equally spaced across the bottom. This allows for

air to flow into the drum. Load the kiln with quick-lighting materials such as corn husks, so that

the burn can catch quickly.

Figure A-2: Loading the kiln



After three-inch layer of husks, the kiln can be filled with any organic material to be

carbonized. We have found that the best burns occur when layered in alternating layers of cons

and husks. Once the kiln is full, carefully remove the 2"x4" to preserve the space in the center.

Place some cornhusks or other quickly lighting material into the holes on the bottom of the kiln,

these will act like fuses to start the burn. Light the husks and ensure that the flame travels into

the kiln.

During this initial burn period, the fire will produce a lot of smoke but the flames should be

contained within the drum. For the first few minutes the smoke will mostly consist of steam

evaporating from the corn cobs (or other organic matter). However, after the temperature raises

high enough, volatile gases will begin to evaporate, which is sometimes viewable by a change in

color of the smoke.

Figure A-3 Evaporating Volatile Gases

At this point it is necessary to ignite the evaporating gases. This serves to raise the

temperature of the kiln, creates more complete combustion and also prevents the toxic gases



from being inhaled. As can be seen in Figure XX, the

be taken during this stage

flames can be quite high so caution must

Figure A-4: Igniting the Gases

After the smoke is ignited, it should be left to burn for a few minutes. The kiln must reach an

adequate temperature to ensure that the material is fully carbonized. However, if it is left to burn

for too long, the material will combust and there will be little left to carbonize. (add more here)

Once the kiln has reached the appropriate temperature, the kiln must be sealed so that the rest of

the combustion can take place in a low oxygen environment.

Figure A-5: Stifling the flame and sealing the kiln



First, a lid is slid onto the top of the drum. This should stifle most of the flames. Next, the kiln

must be taken off the bricks. This is done using a 2"x4" to support the kiln as another person

kicks away the bricks one at a time

Figure A-6: Removing the stones from under the kiln

The drum must be sealed completely, so sand should be poured around the edges of the lid and

around the base of the drum to create the seal.

Figure A-7: Sealing the kiln

The kiln should then be left for a few hours until completely cool. After it has cooled, the lid can

be removed and the material should be carbonized.

Once the matter has finished burning, the corn cobs can be directly burned as fuel.
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