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Abstract

A generalized viscoelastic model is used to describe the rheological properties of mud
and is fitted to the available experimental data, so that its constitutive coefficients
are just material properties independent of the frequency of the external forcing. We
integrate this model into a perturbation analysis to solve the interaction between a
thin layer of viscoelastic mud and sinusoidal waves propagating on top of a water layer
of intermediate depth. In contrast with the previous studies the analysis is done for
decaying water waves and a rheological model with frequency independent coefficients.
The leading order motion and the mean second order motion inside the mud layer
is determined analytically together with the first two orders motion in water. The
analysis is done in a fixed Eulerian frame and it is shown that both a mean horizontal
displacement and a Eulerian mean horizontal velocity exists inside the mud layer at
the second order. The effect of elasticity and viscosity on the damping of water waves
and on the mean motion of the mud is studied. It is shown that a light mud with
a high proportion of elasticity will significantly modify the leading order movement
through damping. The results are applied to solve analytically the problem of the
evolution of the narrow-banded waves propagating on top of a semi-infinite mud layer.
It is shown that the presence of the mud layer gives rise to a negative mean current in
water layer and to free waves generated at the edge of the mud layer and propagating
at the dimensional velocity VgR.
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Introduction

The behavior of the cohesive sediments under ocean waves is a vast topic that has

long been studied by various authors. The major goals of such studies are the under-

standing of the transport by the water waves toward the beaches of the potentially

contaminated sediments and the modeling of a significant water waves' damping that

occurs when the waves propagate over coastal seabeds loaded with cohesive sediments.

The major difficulties arise in these studies because of a highly complex rheological

behavior of cohesive sediments that renders their modeling challenging. Moreover,

any analytical work is possible only for simple rheological models of the mud. This

is why the mud was often modeled as a Newtonian viscous fluid (e.g., [10] and [7]).

The results of such modeling do not predict large values of damping for shallow mud

layers and hence are inconsistent with the experimental data. The mud was also

modeled as a linear elastic solid (e.g., [11]) and as a poro-elastic medium (e.g., [12]).

A more accurate way is to model the mud as a viscoelastic material, that combines

at the same time the properties of a fluid and of a solid. This approach was taken

by a number of authors: MacPherson [13] in 1980, Maa and Mehta [14] in 1990, Ng

and Zhang [6], [5] in 2006 and 2007 and by others. It was shown that the the elastic

properties of the mud can produce resonant motion of the layer and significantly en-

hance the energy dissipation.

In all the previous studies the models used were similar to the Voigt body:

r = Gý + pi (0.0.1)

where - is the dimensional stress tensor, ' is the dimensional strain tensor and ' is

the dimensional rate of strain tensor. However, as the experimental data suggests (see

next chapter),the coefficients G and p depend strongly on frequency. This suggests

that the models used are not appropriate to represent the mud, as they not only de-

pend on the mud properties but also on the frequency of the external forcing. We will

present a generalized viscoelastic model that will have all the coefficients independent

of frequency and will be valid for any sinusoidal forcing.



In the most recent paper on oscillatory motion of a viscoelastic mud [6] Zhang

and Ng solved the equations of motion in Lagrangian for the problem of a viscoelastic

mud layer put into motion by harmonic pressure applied on the surface of the layer.

In our analysis the mud layer will be put into motion by the waves propagating on the

overlying water column. We allow the water waves to decay due to energy dissipation

inside the viscoelastic mud and we solve the equations of motion in the Eulerian form

allowing a nonzero mean horizontal velocity inside the mud layer. Zhang and Ng ap-

plied the perturbation analysis to obtain first and second order equations of motion

inside the mud layer and then solved them numerically. In our approach we solved

the equations of motion analytically, in particular for the mean displacement inside

the mud layer, and compared to the numerical results of Zhang and Ng. The profiles'

shapes of the mean horizontal displacement are the same but the quantitative results

differ because Zhang and Ng considered that there is no shear stress on the top of

the mud layer even at the second order. However, as it will be shown later, due to

the second order movement of the interface between mud and water layers the shear

stress at the interface is non zero at the second order.

The plan of this thesis is the following. First, we introduce a generalized viscoelas-

tic model and fit it to the experimental data available, so that its coefficients depend

only on the properties of the mud and not on the external forcing. Second, we use the

perturbation analysis to analytically solve the interaction of a thin mud layer with

sinusoidal waves propagating on top of a water layer of intermediate depth. Finally

we apply the obtained results to analytically solve the propagation of narrow-banded

waves on top of a thin semi-infinite layer of viscoelastic mud.





Chapter 1

General viscoelastic model of fluid

mud

1.1 Experimental Background

In a technical report from Institute of Mechanics, Beijing China, Huhe and Huang

(1993) describe experiments on the rheology of fluid mud in Hangchow Bay. Using

a RMS-605 rotating drum viscometer they recorded stress/strain relations in both

steady and time harmonic tests for a wide range of fluid-mud densities and clay

concentrations. For steady flows the relation is essentially Bingham plastic in accord

with nearly all past experiments. For time-periodic tests within the frequency range

of 0.2 < w < 70 rad/sec, the relation is much more complex, suggesting that the

rheology of mud under waves differs considerably from that of steady flows. Their

results are reported in the form of a simple viscoelastic material,

; = Gr m + Pmj (1.1.1)

where

= Y= = with U- (1.1.2)
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and where the symbol ii represents the velocity and the symbol U represents the

displacement. Note that in this thesis the dimensional variables will be marked by a

bar (t, U, ... ) and the dimensionless without.

The data show however that both G, and Im measured depend not only on mud

properties (chemistry, salinity density and sediment concentration, etc.), but also

strongly on the frequency. Specifically, Gm increases while the viscosity coefficient

ym decreases sharply with frequency. This dependence on frequency implies that the

simple model (1.1.) is inadequate.

In a more recent study Jiang and Mehta (1998) reported extensive time-periodic

tests for fluid mud from the south coast of India for circular frequencies in the range

of 0.02 < f < 4 hertz, or 0.12 < w < 24 rad/sec. They fitted their data to a three-

parameter viscoelastic model. These parameters however are also dependent on the

frequency.

Since in both known experiments the frequency dependences are similar and the

frequencies tested coincide with the common range of wind-induced sea waves. Both

sets of data are of direct relevance to coastal/ocean engineering.

In the following of the present chapter we treat the available data to obtain the

experimental complex viscosity td as function of w, then we propose a generalized

visco-elastic model based on all the experimental data. The frequency dependence

is taken into account by the proposed model rather than by frequency dependent

coefficients of the simpler models used by Jiang & Mehta (1998) and Huhe & Huang

(1993). Meaning that the coefficients of the proposed model are independent of

frequency. In the next chapter the resulting rheological law is applied to a simple

problem of wave attenuation and the wave induced mass transport inside the mud

layer. In the last chapter we will treat the nonlinear evolution of the narrow-banded

waves over a semi-infinite and finite length mud layer.



1.2 Data by Huhe & Huang, 1993

In this section we deduce the experimental values of the complex viscosity Id(w)

characterizing the mud from the data supplied by Huhe & Huang.

For harmonic motion

= iWt - -iwt e-iwtr= Te , = e , = e 1.2.1)

and

= -• (1.2.2)

In the simple Maxwell model used by Huhe & Huang (1993), one gets

'r = (Gm - iwpm)7 = m + m (1.2.3)

Defining the complex viscosity Pa relating stress and strain by

T= pd(W)y, where /d = PI + ii•, (1.2.4)

it is evident that

rdW= /Im(W), (w) G(w) (1.2.5)

With these relations the frequency dependence of the real and imaginary parts of pd

can be inferred from the data of Huhe & Huang.

The data from Huhe & Huang is available from two different flume tests noted

A and B. The values of pl, and G, provided by Huhe & Huang are listed in the

Appendix A.2 in tables A.4 and A.5 for the flume A and in tables A.6 and A.7 for the

flume B. The deduced values of pr and pi are plotted in figure (1-1) for the flume A

and in figure (1-2) for the flume B. In both figures the log-log scale was used instead

of the normal scale. The reason for this is that the complex viscosity varies sharply

with the frequency and the data cannot be clearly visualized using the normal scale.
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Figure 1-1: Experimental data by Huhe & Huang (1993), data set A. Real and imag-
inary parts of the complex viscosity pd in log-log scale.

As the viscosity pd is complex we can define its modulus /ldl and phase 0 E [0, 7r/2]

such that

pId = /IPdle' (1.2.6)

The parameter has to be necessarily confined into the interval [0, ir/2] because the

experimental values of real and imaginary parts of the complex viscosity Ad are both

positive.

0e [, r/2]

It is clear that the parameter 0 indicates whether the mud is more or less elastic. In

the extreme case when 0 is equal to zero the mud is a simple Newtonian fluid. At the

other extreme the mud behaves as an elastic solid when the parameter 0 is equal to

7r/2. Because of the importance that the parameter 0 has on the mud properties it is

plotted in figure (1-3) for the data set A, and in figure (1-4) for the data set B.
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Figure 1-2: Experimental data by Huhe & Huang (1993), data set B. Real and imag-
inary parts of the complex viscosity ILd in log-log scale.

1.3 Data by Jiang and Mehta, 1998

In this section we deduce the experimental values of the complex viscosity ad(w) from

the data supplied by Jiang & Mehta.

Jiang & Mehta chose the three-parameter viscoelastic model to model the rheology

of the mud:

; + a•& = 3 ~o + ri (1.3.1)

The mechanical analogy of this model is represented in figure (1-5). It consists of a

spring 2G1 in series with a Maxwell unit, which is a spring 2G 2 and a dashpot 2/m

in parallel. The parameters al, p0 and /1 will be deduced as functions of G 1, G2

and Im later in this section. Jiang and Mehta plotted their recorded values of G1,

G2 and jIm for eight frequencies in the range of 0.02 Hz < w < 4 Hz for Attapulgite

and Kaolinate (AK) mud and summarized similar results for other mud samples in

an empirical formula (eq. 1.3.2) with two parameters E and A depending on the

frequency, mud type and the solid fraction 4

Id, G1, G2, = exp(e)fA (1.3.2)

.C3 .C3
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Figure 1-3: Experimental data by Huhe & Huang (1993), data set A. Modulus and
phase of the complex viscosity Yd in log-log scale.

The data provided by Jiang & Mehta is presented in the appendix A.1. The physical

characteristics of the mud samples considered by Jiang & Mehta are summarized in

the table A.1, and the values of the parameters 6 and A for each mud sample are

listed in table A.2.

Unfortunately the raw data is no longer available and Jiang & Mehta report only the

parameters E and A which represent the fit of the data on the entire range of exper-

imental frequencies 0.12 < w < 24 rad/sec. In the following section we will present

a generalized viscoelastic model and will describe a method to obtain the coefficients

of this model based on a finite number of the experimental points. Therefore we will

base our computation as if Jiang and Mehta measured the viscosity for all mud sam-

ples at the same eight frequencies w= [.12 .24 .54 1.2 2.4 5.4 12 24] rad/s as they did

for AK mud sample. The values of the parameters G 1, G2 and p,, will be evaluated

at these eight frequencies using the data for e and A and the empirical formula (eq.

1.3.2).

By applying force balance on the mechanical analogy, the coefficients a,, 00 and i1

can be related to G1, G2 and I'm as follows

ILm 2G 1G2  2/1mG 1al = o = P = 0(1.3.3)
G, + G2' G1 + G2 ' G1 + G2

24

+ A -0.34
0 A 0=0.24
* A =0.20
* A =0.17
xA =0.14

SA =0.08

x 
X

X X

II ` I
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Figure 1-4: Experimental data by Huhe & Huang (1993), data set B. Modulus and
phase of the complex viscosity Id in log-log scale.

Using the three-parameter model (eq. 1.3.1) and considering the case of a simple

harmonic motion, the complex viscosity becomes

31 + i °
Pa - 1 (1.3.4)

1 - iwal

hence its real and imaginary parts are

,r = (1.3.5)

1 + w2a2

S= -1+wa 2  
(1.3.6)

1 +w 2a2

(1.3.7)

Thus knowing for each mud sample the parameters E and A we can evaluate the

parameters G1, G2 and pm at any frequency and in particular at the 8 frequencies

considered. From these we can deduce the parameters al, o0 and 01 and finally the

experimental complex viscosity Pd. The real and imaginary parts of the complex

viscosity are plotted in figure (1-6) using the log-log scale. The modulus and phase

of the complex viscosity I'd are plotted in figure (1-8). The values of the phase 0

are close to r/2, which indicates that the mud samples considered by Jiang & Mehta

have an important component of elasticity.
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Figure 1-5: The three-parameter viscoelastic model of Jiang & Mehta, 1998.

In figure (1-7) only the data for the mud samples MB (Mobile Bay mud) was plotted.

All three samples plotted have the same composition but different solid volume frac-

tions 0 (0.07, 0.11, 0.17). As one can expect the real part of the viscosity increases

with the solid volume fraction ¢. It is interesting to note that the imaginary part

of the complex viscosity also increases with the solid volume fraction ¢, keeping the

ratio of elasticity to viscosity approximately unchanged for different values of ¢ (see

the right-hand side plot in figure (1-8)). In the same figure we observe that the mud

samples studied by Jiang & Mehta have a much greater elasticity to viscosity ratio

compared to mud samples studied by Huhe & Huang.

1.4 Generalized viscoelastic model

Let us introduce the generalized viscoelastic model, relating the components of the

stress and the strain tensors by a differential equation:

( N1 
N-1 

(

n=1 n=O
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Figure 1-6: Experimental data by Jiang & Mehta (1995). Real and imaginary parts
of the complex viscosity id in log-log scale.

with the symbols ar representing the partial derivative with respect to time t. A

similar form of a viscoelastic model was introduced by Bird et al. [2]. The only

difference with the last one is the fact that we introduced the coefficient bo responsible

for the elastic behavior at zero frequency. In our model (eq. 1.4.1) the material

behaves as purely elastic solid at zero frequency, with the elasticity coefficient being

bo (iij = bo •i). Note that the linear cases of a purely viscous fluid is captured by the

proposed model (eq. 1.4.1) when all the coefficients ai, and b, except bl are equal to

zero. In this case the model reduces to

-ij = b (i) = "i(1.4.2)

Indeed the dimensional coefficients a,, (in s") and b, (in Pa.s"), which should de-

pend only on the properties of mud, can be found from the experimental data of

the complex viscosity AId. It should be pointed out that, in a linear problem and

simple harmonic motion, empirical information on the frequency dependence of the

complex viscosity Pd is sufficient for modeling purposes as long as the shear motion

is dominated by one component, as in the case of long waves over a shallow layer

of fluid mud. The generalized viscoelastic law (1.4.1) can however be used for more

complex problems where convective nonlinearity may introduce higher harmonics.

· · ·
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Figure 1-7: Experimental data by Jiang & Mehta (1995), MB mud samples only. Real
and imaginary parts of the complex viscosity pd in log-log scale.

This situation is similar to the nonlinear Navier-Stokes equations in which the linear

Newtonian viscosity is determined empirically from steady shearing experiments in

concentric rotating cylinders.

For the special case of a purely sinusoidal motion in time

= -ie , y= y = e- t  (1.4.3)

we have from (1.4.1)

S=-, (1.4.4)

where 1 is complex
,= i =leO _i bo + E En-1 b.(-iw)" (1.4.5)y = Ip eit _ _e En=1 (1.4.5)

1+ En=1 n(-iw)n

The constant do was taken to be equal to one without modifying the generality of

the model. In fact if the constant do is not equal to one and is different from zero, it

is enough to divide the numerator and the denominator by the value of do simulta-

neously to get the equation (1.4.5). Note that in the numerator the highest index of

summation is N - 1 as opposed to the one in the denominator which is N. This is

done to keep the same number of unknown coefficients in the numerator and denom-

inator - N.
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Figure 1-8: Experimental data by Jiang & Mehta (1995). Modulus and phase of the
complex viscosity pd in log-log scale.

Note that using the expression (1.4.5) the limit of complex viscosity at zero frequency

can be evaluated. In fact when w -+ 0 the viscosity tends to a finite real value and

an infinite complex value

I -4 (bl - aoa 1) + i- (1.4.6)

1.4.1 General method for finding the coefficients a, and b.

There are 2N unknowns to be determined 7a, ,n-l, n = 1,2,3,... N. For this we

need 2N real or N complex equations. Suppose that the experimental value of the

complex viscosity Yd is given at N frequencies wL, w2, ... WN. By equating the values

of PId(wl) at N frequencies wi, 1 = 1, 2, 3,... N to the complex viscosity p given by

the equation (1.4.5), one obtains N complex or 2N real linear algebraic equations for

2N unknownsn, b- 1, n = 1, 2, 3, ...N

Pd(W ) = P(wI), 1 = 1, 2, 3, ...N; (1.4.7)



The equation 1.4.7 can be rewritten more explicitly in terms of coefficients a~ and bn

N-1

o + bn(-iw1)"

Ad(w) + iA)(w) = n=

n=1

(1.4.8)

where A' = -iwlid and Ai = -iw/p are known from the experimental data.

Separating the real and imaginary parts, one gets 2N real equations for 4i, and bn.

Two cases are to be considered: N is even or N is odd.

In case when N is even, N = 2M and the equations are:

M M-1 M-1

A'(w) Z(-1) 2 ?- + A-(w) (-1) 2p+1 Lpw+ - 1)2p (4
p=1 p=O p=O

M M-1 M-1

AI(w) Z-(-1)P 2pw~P - A(w 1) (-1)Pa2p+1 p+1 p 2p+1b 2
p +
1

I

p=l p=O p=O

In case when N is odd, N = 2M + 1 and the equations become:

M M M-1

Ad(wl) Z(-1)P 2pw~0 + A(wj) Z(-1)Pa2p+lw2 p+1 -  - 2pw2P

p=1 p=O p=O
M M M-1

AI(wi) Z(-1)P I2pw2P - Ad(w,) ,(-1) +2p+lw. + P, 1- 2p+ lw l2p+

p=1 p=O p=O

= -A'd(W)

= -Ai(wj)

= -A'd(w)
= -Ai(wi)

The system of equations for ii and bn can be written as A.X = Y with the unknown

X = (al, .. aN, b0, .-. b-1)T. Let us obtain explicit expressions for the matrices Y and

A.

Let Y1 be the l-th component of the matrix Y. Than

= -Ad(wl)

= -A'(wd)

for

for

N + 1 < 1 < 2N

N+1II <2N



To get the expression of the matrix A we consider two distinct cases. The case when

N is even and the case when N is odd.

In case of an even N we can find an integer M such that N = 2M. The elements Alp

of the matrix A are for the first N lines (1 < 1 < N):

Al 2p

A1 2p+1

At N+1+2p

= Ad(w)(-1)Pd2pw,2p for 1 <p < M

= A(W)(-1) P2p+lw2p+1 for 0 p M- 1

= --1)Pb2pW pW2 for O<p<M-1

for the next N lines (N + 1 < 1 < 2N):

= A' (w)(-1)P 2p 2p for

= (-J))(1)pjP fo 2p+10

2p 2p+1 for 0
-- (--l)p b2p+ l W l

1 < p < M

for O<p•M-1

< p< M-1

In case of an odd N we can

Alp of the matrix A are for

At 2p

Al 2p+1

At N+1+2p

find an integer M such that N = 2M + 1. The elements

the first N lines (1 < I < N):

= Agd(w)(-1)Pl2pw?2p for 1 < p < M

= Ai()(-1) P2p+l 2p+1 for 0 < p 5 M

= -(-1)pb2pC12 for O<p<M-1

for the next N lines (N + 1 < 1 < 2N):

= A'(wt)(-1)P\2p p for

= - A (rW)(- 1)p2p+~2p+

= 2p+12p+1 for 0o

1 < p < M
for 0 p< M

<p<M-1

Al 2p+1

At N+2+2p

At 2p

Al 2p+1

At N+2+2p



The unknown matrix X is obtained by inverting the matrix A

X = A-lY (1.4.9)

Note that in the viscoelastic model (1.4.1) the order N of the highest derivative is

equal to the number of used data points. Thus the order of differentiation increases

with the number of data points within a given range of frequencies.

1.4.2 Generalized model for Huhe & Huang, data set A

At this point the values of the complex viscosity was deduced from the experimental

data of Huhe & Huang and a method was presented to compute the coefficient a, and

b, of the generalized viscoelastic model. For the data set A Huhe & Huang presented

the results for 12 different frequencies. Using the method described above we could

compute 12 coefficients da and 12 coefficients be, such that the resulting complex

viscosity p would match exactly all the data points. However as the data is highly

scattered but possess clear trends there is no need in to exactly match all the twelve

data points available. Instead we chose four points (N=4) inside the data range which

capture the trends given by the data but avoid the irregularities. The number of the

coefficients is the reduced from 12 x 2 to N x 2. The resulting complex viscosity

is plotted together with the experimental data in figure (1-9) for different volume

fractions in log-log scale. The data points used for the evaluation of the coefficients

4, and b, are marked by squares.

The corresponding values of the coefficients ian and b, are plotted in figure (1-10).

The values of the computed coefficients din and b, are listed in table (1.1).
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Figure 1-9: Experimental data by Huhe & Huang (1993), data set A and fitted real
and imaginary parts of the complex viscosity M(w) (continuous lines) using selected
data points (marked by squares). Log-log scale.

q 0.37 0.23 0.20 0.17 0.14 0.08

ad -0.12218 -41.9780 -15.1629 108.529 -375.600 -175.717
a2 -118.133 -67.9081 -69.241 -1753.64 628.434 163.232
d3  -2.88248 -5.93441 -2.65462 -62.8995 212.318 30.4877
d4 0.07374 0.42527 0.04753 3.34052 -34.6822 -2.02384
bo 180159 85454.7 18467.0 24831.1 179539 6240.70
b1  4555330 25932.1 65989.3 1376920 -1759440 -83303.4

b2 -3346770 -1040300 -140502 -2280260 -1940330 -151503
b3  -4356320 -940117 -176451 -6021200 3791420 132053

bl - boa, 4577350 3613150 346004 4071810 65675300 1013290

Table 1.1: Coefficients i,, (in s") and b, (in Pa.s") - Data by Huhe & Huang, data
set A

1.4.3 Generalized model for Huhe & Huang, data set B

For the data set B provided by Huhe & Huang the coefficients an and bn as well as

the resulting complex viscosity p were computed using four data points (N = 4). The

resulting complex viscosity pI is plotted as function of frequency in figure 1-11

The corresponding values of the coefficients dn and bn are plotted in figure 1-12.

The values of the computed coefficients an (in sn) and bn (in Pa.sn) are listed in

table A.6.
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Figure 1-10: Dimensional coefficients an and b, for mud samples provided by Huhe
& Huang (1993), data set A

1.4.4 Generalized model for Jiang & Mehta

The data provided by Jiang & Mehta was treated in the same way as the one provided

by Huhe & Huang using four data points (N = 4) from the available frequency range.

Four coefficients in, four coefficients bn as well as the resulting complex viscosity pt

were computed.

The resulting complex viscosity p is plotted as function of frequency in figure (1-13).

The corresponding values of the coefficients i~ (in sn) and bn (in Pa.s") are plotted

in figure (1-14).

The values of the computed coefficients iin and bn are listed in table (1.2).

0 0.37 0.23 0.20 0.17 0.14 0.08

a1 3.39210 15.6591 -155.898 15.4006 11.1584 9.58842

a2  0.19550 13.0727 4.11920 12.8004 6.85566 5.41669

a3  -0.05810 0.91256 28.5325 0.88478 0.32268 0.14459
a4 0.00021 -0.00111 -0.20689 -0.00039 0.00038 0.00095
bo 4294.43 90.3429 505.357 516.287 2964.15 1008.04
bl 40368.6 4765.02 -11906.4 13458.3 62655.7 40132.4

b2 5422.86 6102.73 -2813.15 14077.0 51952.7 33268.5
b3  -1641.19 589.746 2097.43 1165.82 3104.06 1114.9

bl - bodt 25801.5 3350.32 66877.8 5507.14 29580.6 30466.9

Table 1.2: Coefficients at (in s" ) and b, (in Pa.s ) - Data by Jiang & Mehta
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Figure 1-11: Experimental data by Huhe & Huang (1993), data set B and fitted real
and imaginary parts of the complex viscosity /(w) (continuous lines) using selected
data points (marked by squares). Log-log scale.

1.4.5 Conclusion

A viscoelastic model with frequency-independent coefficients was fitted to the avail-

able experimental data. The number of the time derivatives present in the model and

the values of its coefficients depend on the number of the data points considered. For

the available experimental results it was shown that a fair agreement with experi-

ments can be obtained using 4 data points and 3 time derivatives.

It was noticed that the real part of the complex viscosity should tend to a finite value

even when the frequency tends to 0. To prove it experiments should be done at low

frequency (lower than f = 0.02Hz).

·
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Figure 1-12: Dimensional coefficients dn and b, for mud samples provided by Huhe
& Huang (1993), data set B
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Figure 1-13: Experimental data by Jiang & Mehta (1995), and fitted real and imagi-
nary parts of the complex viscosity p(w) (continuous lines) using selected data points

(marked by squares). Log-log scale.
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Chapter 2

Multiple-scale analysis of water

waves interacting with a muddy

seabed

The problem of the small amplitude water waves riding over a thin layer of mud

inherently possesses small parameters which are the wave steepness and ratio of the

mud layer to the water layer depths. Thanks to the existence of these small param-

eters the problem of the evolution of water waves over a thin layer of mud can be

linearized by expanding the unknowns into the perturbation series. This also give us

the possibility to introduce slow scales characterizing the time and the distance at

which the waves are damped.

The solution at the leading order will give the rate of damping of water waves and the

wavenumber shift that arise through the interaction with the mud layer. The second

order solution will provide the mean displacement inside the mud layer, the higher

order corrections to the leading order movement and the analytical expressions of

the long waves generated by the slow modulations of the envelope of the free surface

waves. The analysis will be conducted for the case of a single frequency characterizing

the sinusoidal oscillations of the free surface waves.

The studied problem is the propagation of waves on a layer of water of depth h over

a thin layer of mud of depth d. The forcing water waves are harmonic of frequency w



and have a wavenumber k0o that will be determined using the dispersion relationship.

The forced free surface displacement is q(t, t), where t is the horizontal coordinate

and t represents the time. The displacement of the interface of the mud layer is

(, t-). The viscosity and density of the mud are p and p(m), and the viscosity of

water is p('). The mud will be modeled as a linear viscoelastic material as described

in the first chapter of the present thesis. The local erosion and deposition rates are

neglected as they are too small to affect the wave-induced motion of the mud layer

to the leading order (Liu and Mei 1989).

Given the experimental data, a reasonable assumption will be that the water layer

r(x,t)

h

4(x,t)

y
Vx

Water

Mud layer d

Figure 2-1: Studied problem

can be treated as inviscid. That is to say that the mud is much more viscous than the

water. In fact the experimental data suggests that the viscosity of water is smaller

than that of the mud by a factor 10- 5 on average for the mud samples considered.

As a consequence the water layer can be treated as inviscid to a very good approxi-

mation. The water layer is also assumed to be homogeneous, incompressible, initially

irrotational and of intermediate depth (i.e. kh = 0(1)).

J i
I

------ - ---- ~



2.1 Scaling

The dimensional quantities will be marked by a bar, and the dimensionless without.

The obvious common scale to both water and mud layers is the time scale w- '.

2.1.1 Water layer

It is natural to scale the free surface displacement by its amplitude that will be noted

a. It is expected that the movement of a thin and dense mud layer does not affect the

water motion at the leading order. Therefore it is reasonable to expect that the scale
2

of the wave number is E- and that the horizontal length scale inside the water layer is

given by 3 that neglects the effect of the mud layer. The scale of the water horizontal

velocity is aw. The scale of the velocity potential is then given by J. In water of

intermediate depth it is expected that the horizontal and vertical length scales are

comparable and therefore the mass conservation equation requires the horizontal and

vertical velocity scales to be equal. The dimensionless height of the water layer is

defined as H = h-. Finally the dynamic pressure scale is p(W)ga.

The scales for the water layer are summarized in the table (2.1) below.

".=- x U =awU _=w- 1t 4-•=•_ k =W2-k
Vy I=awV p(w) p(w)gap(W) g=a h

Table 2.1: Scaled quantities inside the water layer

2.1.2 Mud layer

The horizontal length scale and the wave number inside the mud layer are the same

as the ones inside the water layer. However, as the mud layer is thin compared to the

wavelength, it is natural to chose the mud layer depth d as the mud layer's vertical

length scale ,'. Note that g' = p + h+ d is the vertical coordinate inside the mud layer

and 9 is the vertical coordinate inside the water layer. The horizontal velocity has

the same scale as the one inside the water layer aw. The scale of the vertical velocity

however is given by the balance of the terms in the conservation of mass equation



and is equal to ewd, with the small parameter e defined as:

- << 1 (2.1.1)
g

The mud viscosity is scaled by its real value at constant shear (zero frequency) which

was obtained by interpolation of the experimental data using the method described

in previous section:

-o -- bl - boal (2.1.2)

The components of the rate of strain tensor scale as 9 and the components of the

stress tensor scale as "0'. The pressure scale is the same as the one inside the water

layer. The components of the stress tensor scale as their larger term which is expected

to be the pressure term. The displacement inside the mud layer is scales as velocity

times w which gives a for the displacement in the horizontal direction and Ed for the

scale of the displacement in the vertical direction.The strain tensor is then naturally

scaled as 2, and the rate of strain tensor as 7. The scale of the interface displacement

can be estimated using the fact that the ratios of the upper surface displacement to

the height of the underlying layer are expected to be the same in both water and mud

layers, i.e. (Liu and Mei 1989 ). The water/mud interface displacement scales

then as Ea because of the assumption that d - a.

The scales inside the mud layer are summarized in the table (2.2) below.

9-= X = awu j !!j P' = p(m)gap(m) X = aX
' = dy' = aWdv ij oaw j ij = yp(m)gaaij Y = EdYw-'t =w -v = ' -

"" 
Wlt 

aW2 aC d ._ aw2 ,:ij

Table 2.2: Scaled quantities inside the mud layer

where the parameter y represents the densities ratio:

p(W")

= p(m)

42



The depth of the mud layer is assumed to be comparable to the amplitude of the free

surface waves:
d
- = 0(1)
a

The symbols o'i and 7r3 represent respectively the components of the total stress

tensor a and the viscous stress tensor T. Each of the dimensionless components of

the two tensors are related by

ii = _p(m)Si + + T
SyRe

where Jij is the Kronecker delta and where the Reynolds' number Re is defined as

p(m) awd
Re - (2.1.3)

The magnitude of the Reynolds number for the mud samples available is of order

0(10-2) for the case a = d = O.1m and of order 0(1) for the case of a = d = 1m.

In all that follows all the equations will be written in terms of dimensionless quanti-

ties, unless otherwise specified.

2.2 Exact governing equations and boundary con-

ditions

2.2.1 Exact governing equations

In this section the exact equations governing water and mud motions are stated. It is

assumed that water and mud layers are separated by a clearly defined interface and

the erosion and deposition are neglected. In all that follows the partial derivatives

with respect to a variable x of a function f will be denoted by f,, and the derivative

with respect to x as an operator will be denoted as 4,.



Water layer

The governing equation for the inviscid water is the Laplace equation

(,Y + (Ix = 0 - H < y < E•c (2.2.1)

The pressure inside the water p(W) layer can be deduced from the velocity potential

4I by using the Bernoulli equation which is

p(W) = _ -I [(x)2 + ()2] (2.2.2)

Mud layer

The governing equations for the mud layer are the Navier-Stokes equations for an

incompressible fluid. They are the mass conservation equation

Ux + VyI = 0 (2.2.3)

the x-momentum conservation equation

Ut + E(uux + vueI) -Y7P(m) + a(

and y-momentum conservation

E 2 [Vt + E(uvX + vvy,)] = -p, + Re ,

2.2.2 Exact boundary conditions

Free surface

The kinematic boundary condition on the free surface is

rq = (v - E?7Ax(x,

d
a

+ Tx1)

(2.2.4)

(2.2.5)

(2.2.6)Y = E•77



The dynamic boundary condition is

-7 = t + (2.2.7)

The kinematic and dynamic boundary conditions (equations (2.2.6) and (2.2.7)) can

be combined by taking the Lagrangian derivative of the dynamic boundary condition

(2.2.7) with respect to time. The combined boundary condition becomes:

y= 0r1 (2.2.8)

Water/Mud interface

The kinematic boundary condition on the water/mud interface is in terms of the

water quantities:

4, = e6 +E 2
xx, y = -H+E 2 c (2.2.9)

and in terms of the mud quantities:

d a
(a = -V - EdU, y = 1+ ea d (2.2.10)

The dynamic boundary condition on the water/mud interface requires the continuity

of stresses through the interface (a.n' = -p(w)i) with n = (n(x), n (y)) being the unit

vector normal to the interface and pointing inside the water layer. In component

form the continuity of stresses through the interface reads:

Saxxn (x) + axyn(y) -
.yxn (x) + ayyn (y ) =

y' = 1 + E•(, (y = -H + c2() (2.2.11)
-p(w) n(x),

-p(w)n(y),

t + +~J +(,,D + ,•2)1(Dtt + 4ýy f [at + 2(4)xax + 4)yay) x Y



Bottom of the mud layer

Finally the no slip boundary condition on the bottom of the mud layer reads in terms

of the velocity field:

u = 0, y' =O (2.2.12)

v = 0, y' = 0 (2.2.13)

In terms of the displacement the no slip boundary condition is:

X = 0, y' =0 (2.2.14)

Y = 0, y'= 0 (2.2.15)

2.3 Approximate governing equations and bound-

ary conditions

In this section the exact governing equations will be approximated using the fact

that the parameter E governing the nonlinearities of the problem is small. At first

the slow variables will be introduced and the physical quantities will be developed

into perturbation series. Secondly the approximate equations up to the third order

0(e 2) in water and up to the second order O(c) in mud will be obtained and the

approximation of the sinusoidal forcing will be introduced. Finally the approximate

equations will be deduced for each order.

2.3.1 Slow variables

Given the fact that the mud layer is thin compared to the water wavelength and

because its dimensionless depth d  = O(E) is of order e, we expect the leading order

equations to be unchanged by the presence of the mud layer. The mud layer will

influence the order O(E) equations and the length and time corresponding to the

damping of waves will be of order 0(1/E). It is therefore natural to introduce new



time variables t, t l , t2,... and space variables x and xl such that t" = O(1/E") and

xl = O(1/E) represent the slow scales. They new time and space variables are defined

as follows:

t -t, tl ECt, t2 2t, ... (2.3.1)

x -x, 1 ~ Ex. (2.3.2)

Note that the slowest horizontal length scale is xl. This is due to the fact that after

the distance xl waves will be significantly damped and there will be no more point

in studying their evolution afterward.

The derivatives with respect to t and x should be replaced with the derivatives with

respect to the slow variables:

at 19 + 619, + E2 + O(IE3)

, "-a + E,1 + C2 X2 + O(E3)

t -, tt + 2E'9tt1 + iE2at•1  + C2O& + 0(E3)

19xx i + 2Ec. + E2dxi21 + O(E3)



2.3.2 Perturbation series

Using the fact that the nonlinearities of the problem are governed by a small param-

eter E, the unknowns of the problem can be developed into the perturbation series:

r(x, t, x, t1, t2, ...)

((X, t, X tl, t,2, ... )

I)(x, y, t, X1, 1l, t2, ... )

p(W)(x, y, t, , tl, t 2, ***...)

u(x, y, t, xl, t, t 2,...)

v(x, y, t, x1, tl,2, ...)

p(m)(x, y, t, x tl, t 2, -...)

rij (X, y, t, Xl, t1, t2, ...)

yij (x, y, t, x1, tl2, ...

'ij (x, y, t, x, t1, t2, ...)

where for n = 0, 1, 2,...

are of order 0(1).

= R0o(xt, 1x tl,t2, ...) + ~r(,t, xltl, t2 ...) +...

= 1( t7 1, t t 27, ...) + 61(l , t, 1 7t1, t2, ... + ..

0 1o(xyt, tl,tz,...)+ E~1(xyt, 2,*tl,t2,...) + 1 1 2

=( W ) 
(1 y, ( t, X1, tl, t2, ...) + ep

) (X, y, t, X1, tl, t2 ...) -+

U0(, Yt, X1 tl1 t2, ...) + •u(, Yt, X1 tlt2,...) +.

=Om7 Yo t)x17, tl1t2,... + F (X7 Yt, X1 tl, t2,...) + .
O (X), y, t, X l, t1, t2, ...) + Ep)(n) (., y, t, Xl, tl, t2 , ...) + -•

7 (,yt, 1,tl2, ...) + E7T3(, Yt, X1 tl2, t2 -) +
ii (X tX2j32 . EN 1

T y t, l, tlt *, ) + 1 1 (,yt, ,tlt2, *.) . +

to (, Yt, x l,tl, t2,...) + 6 (y, Y t 1 2, t t ...) +...

the unknowns (,, 77,, pn (n U n V, Pn), -r, yn and2 "

2.3.3 Governing perturbation equations

Using the perturbation series expansions stated in previous section, the governing

equations can be approximated to the wanted precision. The purpose of the present

chapter is to compute the damping rate, the wavenumber shift and the mean dis-

placement inside the mud layer. In the water layer we also want to determine the

characteristics of the generated long waves due to the modulation of the short waves.

To get these properties, we need to write the governing equations for the first three

orders (up to the order O(e2)) inside the water layer and for the first two orders (up

to the order O(e)) inside the mud layer.



Water layer - Laplace equation

Let us first deal with the Laplace equation (2.2.1). Introducing the slow scales we

get:

Dxx + 2 eDxxl + c62 4xxx + Jyy = 0

Now using the perturbation series expansion and keeping the terms up to the order

O(e2), the approximate Laplace equation becomes

0 (63) O= 0,yy + (O,xx + E (~l,yy + - l1,xx + 2D0,sxl)

+62 (D2,yy + 4 2,xx + 2 l1,xxl + •O,xiXl)

Summarizing the equations order by order we get the final expressions of the approx-

imate Laplace equation

O(EO) : 4o,.y + Do,,xx

O(eI) : D1,yy + ( 1 1,xx

O(e2) : D2,yy + D2,xx

(2.3.3)

(2.3.4)

(2.3.5)

where the functions Fo, F1 and F2 were defined as:

Fo = 0

F1 = -2i0o,,xl

F2 = -2(1,)l, - )o,xlxl

Water layer - Bernoulli equation

Using the slow scales the Bernoulli equation (2.2.2) becomes:

p() = -- - 'ItI - 64) 2 -2 2 + (+2 )p 41h-2 x Y+ ,4xDj

(2.3.6)

(2.3.7)

(2.3.8)

+ 0(6 3 )



Introducing the perturbation series expansion

(W) ( EW) 2 (2W)PA + Ep, + EP2 = -4ýo,t - l,t - 2 2,t - E)0,t1 - E2•1,t1 - 2 (0,t 2

- (4 ,x + 2c(o,x(D,Z + o,y + 2E(o,y(i 1,, +2
2E4co,xo,x,) + O(e3 )

Regrouping the equations order by order we get

0o(,): (W)

O(co) : pw)

O(E) pW)O~~e2 .2

- '01,t

L+ ODO't, +1 (1,2 0m,+ 4 ,)0 Y)

(2.3.9)

(2.3.10)

= -[(12,t + '1),ti + 0o,t 2

+cIo0 ,x4),6 + 4P0,yD 1~,y + (DO,X4O,X1I (2.3.11)

Mud layer - Mass Conservation equation

Introducing the slow scales the conservation of mass equation (2.2.3) becomes

us + cuX, + vyI = 0 (2.3.12)

Introducing the perturbation series

(2.3.13)

For the first two orders the mass conservation equation is

0(c0 ) :

0(e')

UO,x + VO,y'

Ul,x + vl,y,

= 0

= -UO,xl

(2.3.14)

(2.3.15)

Mud layer - Horizontal Momentum Conservation equation

Using the slow variables the x-momentum conservation equation (2.2.4) becomes

= -7P X) + (eTy~ ,

UO,s + EUl,X + EUo,- X + o,"• ' + Evl,y' = O(E2)

+ Efa 7" + O(IE2)Ut + Euu, + E(uux + vUY ,)



Introducing the perturbation series we get

UO,t + eul,t + EUO,tl + E(Uouo,X + vouo,' n) (m (m) - Cm)

+ a + Ery x + O(E2)

Collecting the terms order by order, we obtain the final expressions of the approximate

equations for the horizontal momentum conservation:

O(E0) : U0,t

O(E) : Ul,t + UO,tl + UOUO,s + vouo, y'

(m) 1 a X
= -yTP,x + - T0,y,

(m) (m) la X
= -- 7P1,X -YP6,xl 1 + Red- l,' +

Mud layer - Vertical Momentum Conservation equation

The introduction of the slow scales do not modify the vertical momentum conservation

equation (2.2.5) to order O(c). The introduction of the perturbation series expansions

gives:

O(e2) _= Cm) (im) + oE, (2.3.18)

The final expressions order by order are:

0(EO) :

O(El) :

(m)
POym

(m)
PLY I

= 0

1

-yRe OY'Y

(2.3.19)

(2.3.20)

(2.3.16)

1xx

Re(2.3.17)
(2.3.17)



2.3.4 Boundary conditions in terms of the perturbation se-

ries

Free Surface - Combined Kinematic and Dynamic Boundary Condition

Let us first introduce the slow scales. The combined kinematic and dynamic boundary

condition on the free surface (2.2.8) becomes:

O(E3) = tt + 2Ett + E2 [,Pt,I + 2Dtt2] + 4,

+[at at,+ (4,)+a] + ,4) (+ 2e4YXj), =_

By expanding the last parenthesis we obtain on the free surface (y = eq):

O(E3) = tt + '4 + 2eutt + E2 [,b1t1 + 2 2tt]

+E[(2+)2)t + + 6 + ++ 2e (4+(x )t+ E 4 + 4) (4 + )

Grouping the terms order by order and introducing the differential operator -

tu + O, the boundary condition on y = Er7 becomes:

O(E3)= FI + E 2Qu1t + ( +) t

+e2  + 2Fu 2 + 2 (x4Pxj) + ( + ) + (4 + 41yy) (4 + )

Now expanding the unknowns dependent on y around the average position of the free

surface (y = 0) we get:

o(E3 ) = (rF)IO + E(r<4j)Io + •j1 2(r~yy )10

+e [2(ttl)0o + 2o(+)E?7 o + (I) + )to + E~ ( (• )ty 0]o+

+E(2 )iti)0O + 2(tt2)2o 0+ 2 (ýxDx)it lo + ('D + 4i)2 lo
1 [ ( ý D xo x + ý D yo q y) ( C 2 + ý 2) o

+ 2 X Y a(m~m 1101



Grouping the terms order by order:

= (re) lo + E [(rFy)Io + 2((tt)1o + (• 2 + 4) t (]

+e2 +(r )lo + 2(4dttj)o + 7 (4 + )ty lo + (4t)itDo + 2(tu2) 0

2 ( )o

Expanding the unknown functions into perturbation series the boundary condition

becomes:

o(E3) = (rDo)lo + •e(r1)o +e 2(r 2)o 0

+E[ o(r,(o)Io + Em((rIo)Io + eno(rF )Io + 2(4ou)Io + 2E(4,1,tt)o

+ ((+D+, + D 2e( o,xD,x + om,y4,,))t 10

+E2 [(rFyo)lo + 27o ( o,Yt )lo + 70o (o( , + ¢,,)t o2 + ( o,tltl)lo + 2(Co,t2) 0

+ 2 (Do,x o,x,)t o + (o,x + ,,)D 1Lo1+ i(4o,x0 X + Io,3A, ) ( oý,Z

Grouping the terms order by order we get:

= (r4o)lo

+ (r )lo + 7o(r1yo)Io + 2(Qo,ttl)Io + (D, + ,y)

+ 2 [(rP2)0 + m(' o) + 2(0,DD, + o,y,)t + l(ryyo)lo + 2o770(o,yutt)1o

+ 7o ( o,x + 4,•)2,, + Io(ry 1)lo + (Io,tlts)lo + 2(Do,t)2 0+ 2 (Do,x4o,xl),l

+2(Q1,i,)1o + ( , + O,y)2 ,o + 2[(o,d0 + [o, + ) (2,X + i,) 1
2(4ý1,ttj~ ~ ~ lo. +o,0•)]10+2 0A10

+ 4,)]

(Dax + ýa) (4 + p2)] o



The combined kinematic and dynamic boundary condition can now be written for

the first three orders:

0(0 ) : (r¢4o)lo = Go (2.3.21)

O(El): (F41)lo = G, (2.3.22)

O(E2 ): (F1 2)lo = G2 (2.3.23)

with the constants Go, G1 and G2 defined by:

Go = O (2.3.24)
1, = - [o(]yo)lo + 2(o,tt)Io + , + o,•o (2.3.25)

G2 = - [1(rJo)Io + ?0o(rIF ,)lo + 2(o,x(l,x r+ (,y4),y)t + ((r1yo)o + 2no0( o,lttj)Io

+ 2(4~1,ttj)o + mo 0, + oy• + (o,ti)lo + 2(o,t) + 2 (o,
+ (Io,x+ o,y)ti +1 [(4+o,Xx + o,yy) (c,I + ,y,)]l o0 (2.3.26)

Free Surface - Dynamic Boundary Condition

Let us first introduce the slow scales. The dynamic boundary condition on the free

surface (2.2.7) becomes:

-2 ((D + 42 + 2e4,D x) = 0, y = E7

Due to the small amplitude of the free surface waves the terms that depend on the

vertical position of the interface can be developed into Taylor series around the average

interface (y = 0):

- = ('4)Io + EI7(+ý)Io + 2t 1 + 0 (4)t)10 + E2?7(t1y)jo + E2('t 2)10

+ (I + lo )+ Eq [(' + '),] 10 + 2E((x)10(I1x) o + 0(E3)



Grouping the terms of the respective orders, we get:

+ E 7ON2 21 012 ) x+E2 [! 2(%,p)oo + qI4tly)lo + 1 [(D2 + ý%)•] 1o + (4•)Io(¢x,)1o

Expanding the unknown functions into perturbation series we obtain:

-7o - 191 - 2 92 = (do,t)1o + 1E(p,,t)o + 62(2,t)10

+E 7o(0o,k)o + n1((o,Yt)lo + eio(i,Yt)Io + (¢4o,)l1o + e(Di,t,)Io

+1 4)2,x + ID,,) lo + E [(o,I, ) Io0 + (Lo, ,w) 101}

+E2 { 17(0o,yyt)lo + ?0o( o,t1y)lo + (0, 2 ) lo

+ _o [(i2,,x + ,I)21 + oo,,] lo} + o(e3)

Grouping the terms by order we get:

-o70 - E1, - e2i 2 = ( 0o,,)o,, + E 1,t) lo ( + oRo,yt)lo + (o,t)Io + , + ,y

+e2 (42,t) 10 +1 ((0,yt)10 + 0(,yt)+ + ( ,t010 + 1 0,Y)10

+ 0o(0o,D0)o10 + (40,t2)10 + [(0,X,) + (00,y 1,y)0]

+ ?1o [(4pI, + Io,) + 4o, ]o + o(e3)

The dynamic boundary condition on the free surface can now be written for the first

three orders:

O(eo): - o7 = Ho (2.3.27)

O(e'): - 77 = H (2.3.28)

O(e2 ): - 72 = H2 (2.3.29)



with the constants Ho, H, and H2 defined by:

Ho = ( o,t) o

H, = (4 i,t)lo + qo(4o,yt)lo + (o,t1)lo •2 + ,+ ) o
1

H2  = (.2,t)Io + (71 o,yt)lo + No(Ii,,t)Io + (4',t )Io + 2q 2o(o,,yy)lo

+ Qno(4o,t,)lJo + (cDo,t,)Io + ((0o,x(1,x)Io + ('o,y 1,y) o
1+ 770 [(@o, + eD,!)y+ I)O,X(O,X] o

(2.3.30)

(2.3.31)

(2.3.32)

Interface - Kinematic Boundary Condition in terms of water quantities

After the introduction of the slow scales the dynamic boundary condition on the

interface in terms of the water quantities (2.2.9) becomes:

, = EJ( + E2(t, + E2C4 z + O(E3) y = -H + e2(

Expanding into the Taylor series around the average interface (y = -H):

(4 _)I-H + E62 •(yy) -H = '¢E + E2(jt + E2 x (4'x)-H + O(E•)

Expanding into the perturbation series we get:

((IO,y) I-H+EfI:1,y)I-H+E2 (4 2,y) IH+E2 (0 ,,yy) I-H = EC•,t+E 2(1,t+E 2C0,tj +E2(0,X(%,x)-H+O((E3 )

Grouping the terms of the last equation order by order we get:

O(co) : ( o,y)I-H = Lo

o(E0 ) : (o,,y)I-H = L1

(E2): (1 2,y)j-H = L2

(2.3.33)

(2.3.34)

(2.3.35)



with the constants Lo, L 1 and L2 equal to

Lo = 0 (2.3.36)

L1 = Co,t (2.3.37)

L2 = (1,t + o,t +- [(oo,x)x]I-H (2.3.38)

To compute the expression of L 2 the fact was used that 0o,,y = -4o,xx. This identity

comes from the Laplace equation at the leading order (equations (2.3.3) and (2.3.6)).

Interface - Kinematic Boundary Condition in terms of mud quantities

After the introduction of the slow scales, the dynamic boundary condition in terms

of the mud quantities (2.2.10) becomes

d aS+ Eýt =-v - -(Xu + o(2), y'= 1 +
a d

Expanding into Taylor series around the average interface position (y' = 1) we get:

(t + E(t, = d(v)11 + E((v,)Il - •C,(U)11 + 0(E2)a

Expanding the unknowns into the perturbation series we get:

d d
Co,t + EC1,t + Eo,,t = -(vo) 1 + d-(V) 1 + ECo(Vo,w')l -1 (o,x(Uo)I1 + 0(e2)a a

The dynamic boundary condition at the interface in terms of the mud quantities can

now be written for the first two orders:

o(E) : Co,t = -(vo) I (2.3.39)
a

O(El) : C(,t = d(vi)11 - (ot, - [(Couo)X] 1  (2.3.40)
a

where we made use of the fact that vo,y, = -uo,x. This identity comes from the mass

conservation equation to the leading order (2.3.14).



Interface - Dynamic Boundary Condition

The dynamic boundary condition on the interface (2.2.11) can be simplified by using

the fact that due to the shallowness of the mud layer the interface stays relatively flat.

Let us estimate the orders of magnitude of the components of the vector 'i = (nu, ny)

normal to the interface. In terms of the dimensional variables these components are

equal to

n(x) = da 1

(d )2 + (d)2  + ()2

In terms of the dimensionless variables the components of the normal vector are

n(x) = a d = 0(E2)
(1 + e4( )2

n(Y) = 1 = 1 + 0(E 4)
/(1 + 4 (4)2 (-)2

Therefore the dimensionless components of the tangential stress are to order O(E2)

(.-).e-" x) = axnx + a, = a" + O( 3)= -R--XY + 0(E3 )SRe
(a.n-).e-<Y) = a"yn, + a'yn, = a" + 0(E2) _ _p(m) + 6r• yy + 0(e 2)

=yRe

The dynamic boundary condition on the interface (2.2.11) can now be rewritten as

O(E3) = Trxy

-p(W) = -p(m) + RTY + O(e)
yRe



By using the Taylor expansion around the average position of the interface (y' = 0)

the approximate dynamic boundary condition on the interface becomes

O(E2)

p(W) Iy=-H

_ I'=1 + f d( (r =)l 1_=l
- y 1  y'= E (7y l + O( 2)- p / 2d (Ž=l- ¢ \ Ifl,= --+l ,, ,= 2

Expanding the unknowns into perturbation series, the conditions expressing the con-

tinuity of the stresses through the interface become

O(E2)

E(W)

y=-H

j •yly,'=1 + Er1y ,'=1 + E(o ( 1y'=1

S Po i- P y'=1 1

a I ( M) + _ ( ,T/ y ,=1 + O (E 2)_E (0 P ",Y') I y,= y Ree

The dynamic boundary conditions - tangential and normal stress continuity - on the

interface can now be written for the first two orders.

Tangential stress continuity:

O(~O) : 70'Y|=l =

o(01) : T'I7Y=1, =

0

d (Tro,¢)jY,=i

(2.3.41)

(2.3.42)

Normal stress continuity:

O(EO) m): '=A = PA )ly=--H

__.wy' ==-H - Iy- +pl -k ' 'I- y ' = Id P6yI/1 yRe

(2.3.43)

(2.3.44)

- P=-Iy=-H



Bottom - Horizontal Velocity

It is straightforward to see that the no slip condition for the horizontal velocity (2.2.12)

for the first two orders is

0(W0) (uo)lo = 0 (2.3.45)

O(') : (ul)lo = 0 (2.3.46)

Bottom - Vertical Velocity

The no slip condition for the vertical velocity (2.2.13) becomes

O(EO):  (vo)10 = 0 (2.3.47)

O(E) : (v,)lo = 0 (2.3.48)

Bottom - Horizontal Displacement

The no slip boundary condition in terms of the horizontal displacement (2.2.14) is

0(o0): (Xo) o = 0 (2.3.49)

0(d'): (X1) o = 0 (2.3.50)

Bottom - Vertical Displacement

The no slip boundary condition in terms of the vertical displacement (2.2.15) is

0(E0): (Yo)lo = 0 (2.3.51)

O(') : (Y1)lo = 0 (2.3.52)

2.3.5 Sinusoidal waves

We will assume the waves to be sinusoidal with respect to the fast scales x and t at

the leading order. The amplitude of the sinusoidal waves is allowed to vary with the

slow scales. Note also that as viscoelastic model of the mud involves derivatives with



respect to time t, the assumption of sinusoidal wavetrain will simplify the computa-

tions of the stress strain relationship.

In fact we will assume that at the leading order the free surface displacement is a

slowly varying in time and space sinusoidal wave train of the form:

o(x, t, , ti, t2, ... ) = 1 [A(xtl, , ... )ei(xt) + c.c.] (2.3.53)

with A = A(xl, tl, t2 , ...) being a function slowly varying with time and with the real

function O(x, t) given by

7 = 4(x, t) - kox - t (2.3.54)

In that case the dependence on time t and on short length scale x is known at the

leading order. In fact, under this assumption, any leading order Fo quantity will be

of the form

Fo(x, y, t, X1, tl, t 2, ...) = Foo + (Fole*i + c.c.)

with Foo = Foo(y,xl,tl,t2,...) and For = Fol(y,xl,tl,t 2,...) being slowly varying

functions with time and horizontal coordinate.

For the next order O(E) the governing equations indicate that the second order solu-

tions will not only be composed of zeroth and first harmonics, but also will include

second harmonic. Therefore any second order quantity Fz will be of the form

Fl(x, y, t, xl, t1, t2, ...) = Flo + (File"' + c.c.) + (Fi2e 2i' + c.c.)

with Flo = Flo(y, 1, tl, t2,...), F11 = F1 (y, x1, tl, t2,...) and F12 = F12 (y , l, tl 2, ...)

being slowly varying functions of time.

Finally for the third order O(E2) the governing equations indicate that the solutions

will also include third harmonics. Therefore any second order quantity F2 will be of

the form

F2 (x, t, x,tl t2 , ...) = F20 + (F2 1e'i + c.c.) + (F22e2 i' + c.c.) + (F23e 3iO + C.C.)



with F20 = F20 (y, xltl, t 2,...), F21 = F21(y, 1 tl, t2, ...), F22 = F22(y1, 1t, t2 ...)

and F23 = F 23 (y, x 1, t1 , t2 , ...) being slowly varying functions of time of order 0(1).

Using the assumption of the sinusoidal forcing we will now obtain explicit relationships

between the stress and strain tensors for the first two orders.

2.3.6 Relationship between stress tensor and the velocity and

displacement fields

In this section the relationship between the stress tensor r, the velocity (u, v) and

the displacement field (X, Y) will be obtained for the first two orders. To do it we

first express the stress tensor in terms of the strain tensor, then we express the strain

tensor in terms of the displacement field and link the displacement field to the velocity

field.

Dimensionless Stress-Strain Relationship

The mud is modeled as a viscoelastic fluid using the model (1.4.1). As opposed to

the case of a purely viscous fluid, the stress tensor is not simply proportional to the

rate of strain tensor, but is related to the strain tensor by the differential equation

(1.4.1), which in dimensionless terms is:

N N-1
1 + an ) T) = ( bn (t)n (2.3.55)

n=l 1 n=O

with the dimensionless coefficients an and bn defined as

an = a• n (2.3.56)

bn = bn wn  (2.3.57)
fuow

Note that the dimensional values of di and bn were computed in chapter 1 and listed

in tables (1.1) and (1.2).



Our objective is to express in terms of the displacement and the velocity field the

components of the stress tensor appearing in the governing equations of the mud

layer movement (2.3.16), (2.3.17) and (2.3.20), which are: ro", T-r, rox and Iy.I

Before we can do this we first need to compute explicitly the strain components in

terms of the perturbation series.

Explicit expressions of the components of the strain tensor

Now the strain tensor will be expressed in terms of the displacement field.

The strain is defined as:

(:= ;y (
Yl ^/ 7 XY, + (E a), Y

Xyl + ( 4) 2 yx 2cX,a= a
2E9Yz)i XIa2 V ( ,s

Note that the introduction of the slow scales does not modify the last expression to the

studied order O(E2). Expanding the unknown displacement (X, Y) into perturbation

series we get

S 2E1Xo,,
Xo,y + EX1, I'

Xo,y, + EXly,

2E4 Yo,ya 0,Y, + O(E2)

Grouping the terms order by order we get

70 = 0,

7Y0Y = 0
111/=

yX" = 2 Xo,,
'1' = X1,y, ,

Y" = 24Yo,y,

Note that as the strain tensor is symmetric its components y~'x and 'y" are equal.

The expression of the strain tensor can now be deduced straightforwardly for each

harmonic. We assume that the mean displacement inside the mud. layer is of the

second order O(E), therefore the terms Xoo and Yoo are equal to zero.

2EX2aEg + O(E2 )

O(eo) : O(C) : I



At the leading order 0(E0 ) we have:

7OY = Xo0,y, = 0,

At the second order O(E) we have:

Y = 0,

=-1X = X1o,y',

8 = 24Yoo,v = 0

,X = 2iko Xo,
-7ri = X•xo,y,

71 = 2xYo1,y,

xy

712 X12,y,,

yy = 0

Approximation of the generalized visco-elastic model

Introducing the slow time scales the differential operators appearing in the generalized

visco-elastic model (2.3.55) become:

-- 1 + an(a)" + E nan,(Ot,()("-l) + O(E2) (2.3.60)
n=1

N-i
n=1

N-i

-+ bn,(9)" + E nb,(at,)("-l) + O(E2 )
n=O n=0

(2.3.61)

Introducing the perturbation series expansions the viscoelastic model (2.3.55) be-

comes:

an (at)n )

N

+1E
n=l

'TO+ EC +

N
n=1

b +()n-) O

-Yo] + 0(62)(N-1

{ xx = 0,
oey7 = X0o,y,,
YOYI = 0

(2.3.58)

(2.3.59)

N

1 + an(a)-
n=1

N-1

En0b,(a)"
n=0

n=l

(n=1
N-1

\n=0n=O
N-1

S+ nbn(at,) (at)(n-1)
n=0

(atj)(at)(n-) T



Combining the terms of the last equation

relationship for the first two orders:

( N(· 1+ n(Ot)n~wi+

= b ,(a,)"tn + (
N-1

order by order we get the stress-strain

(2.3.62)

(2.3.63)

N-1

b,(40 )

1: bn~ (at) n 70,tn=0(NEnan (at)(n-1) 7-0
n=1

V-1
E bn (at)(n-1) Nto,<

rt=o

Introducing the sinusoidal movement approximation we get to decompose the un-

known stress, strain and rate of strain tensors into different harmonics.

At the leading order O( 0o), the stress-strain relationship (2.3.62) becomes:

O(E0) : 7oo00 + + + an(-i)n ro-eio e' + c.c.

-boyoo + [(1 b,(-i)n) 'YoiO + c.C.
- n= o

Equating the terms of the last equation harmonic by harmonic we get

= boyoo = 0

= N b,(-i)" ° Yol
n=o

(2.3.64)

(2.3.65)1 + an(-i)n T01
n=1

Where in the equation (2.3.64) the fact was used that there is no mean displacement

at the leading order 0(1) and thus yoo = 0.

We can now determine the leading order components of the stress Ir-Y, --yy, rTx needed

for the governing equations (2.3.16), (2.3.17) and (2.3.20). In fact from the equation

0(E1 ) :

O(f1) :



(2.3.64) we get for the zeroth harmonic

4" = 0

7 o~ = 0

From the equation (2.3.65) we get for the first harmonic:

( N
1 + an(-i)n xox

n=1

1 + Z an(-i)n ro'
( Nn=l

N-1

= (b,(-i)(n _ixx = 0
n=0

N-1E bn(_i)n X 1,Y
(n=0

= -l b,(-i)"n= Xol,z,

N-1
E bn(_i)n _7 YJ = 0

(n=o

Note that in the equation (2.3.70) the shear stress is related to the displacement X 01.

A more compact and usual form can be obtained as the displacement can be expressed

in terms of the velocity. In fact the velocity is simply the Lagrangian derivative of

the displacement:

u = DtX = [at + E (uax + vO,,)] x

Introducing the slow scales we get

U= [a, + E (at + u + vO',)] x + O(E2)

Introducing the perturbation series:

uo + EU1 = Xo,t + E (Xl,' + XO,t1 + uoXo,X + voXo,y') + O(E2)

(2.3.66)

(2.3.67)

(2.3.68)

(2.3.69)

(2.3.70)

(2.3.71)



Separating the orders we get:

Uo = Xo,t (2.3.72)

Ul = Xo,tl + Xi, o + uoXo,z + voXo0,, (2.3.73)

Introducing harmonics we get for the equation (2.3.72):

uoo + (uoleieo' + c.c.) = -iXoje'e + c.c. (2.3.74)

which gives the following relationships between the leading order velocity and dis-

placement:

uoo = 0 (2.3.75)

Uol = -iXox (2.3.76)

For the second order O(c) the equation (2.3.73) gives:

uo1 + (uile"i + c.c.) + (ul2e2iO' + c.c.) = Xoo,tj + (ikoXoiu~u + Xol,yZv*l + c.c)
+ [(Xol,tl - iX1 1 + ikouooXol + vooXolj,,) e" + c.c.]

+ [(-2iX12 + ikouolXol + volXol,y,) e2i" + c.c.]

remembering that there is no leading order displacement Xoo = 0 and using the

equation (2.3.75) saying that uoo = 0 we get:

ulo = 2R {ikoXolu u + Xoj,yv~1 } (2.3.77)

un = -iXn + Xol,t1 + vooXol,, = -iX 1 1 + Xol,t (2.3.78)

ul2 = -2iX 12 + ikouo0 X01 + vo0 X01 ,y, (2.3.79)

where in the equation (2.3.78) we used the equation (2.3.80) to say that voo = 0.

The relationship between the vertical velocity v and the vertical displacement Y is in

all ways similar (v = DtY) and can be written immediately in terms of the different



harmonics of the perturbation series. At the leading order O(Eo) we get:

voo = 0 (2.3.80)

vol = -iYol (2.3.81)

At the second order O(c) we get:

vlo = 2 {ikoYolu~1 + Yol,y;,vO} (2.3.82)

Vl1 = -iYll + Yol,tl + vooYol,y, = -iYll + Yol,tl (2.3.83)

V12 = -2iY 12 + ikouo01 Y 1 + V 1Yo,l,y' (2.3.84)

where in (2.3.83) we again used the equation (2.3.80) to say that voo = 0.

Noticing that at the leading order the first harmonic of the velocity uo1 and of the

displacement X0o are related simply by equation (2.3.76) we deduce that Xol = iuol.

Now using this fact we can rewrite the equation (2.3.70) in terms of stress and velocity

only:

+ an(-i)) T7 = i bn(-i)n) uoI,,, (2.3.85)
n=l n=o

Defining the dimensionless viscosity p

N-1

E bn(-i)"
P n=0 (2.3.86)

1 + Z an(-i)n
n=l

we can rewrite the leading order components of the stress tensor (equations (2.3.66)-

(2.3.68) and (2.3.69)-(2.3.71)) in a compact form. For the zeroth harmonic compo-

nents we have:

S = 0 (2.3.87)

= 0 (2.3.88)

TOO = 0 (2.3.89)



For the first harmonic components we get:

TO 'ý = 0 (2.3.90)

Tj7" = PU01,y' (2.3.91)

TOY = 0 (2.3.92)

Let us now express the second order O(E) shear component of the stress in terms of

the velocity and the displacement. The second order O(E) relationship between stress,

strain and the rate of strain is given by the equation (2.3.63) and is rewritten below

for easier reference:

0(E') I+ Z a,.(Qt)) T1+ (•nan(at)( ') Ot (2.3.93)
n=1 n=1

N-1 N-1
bn(at)n YI + ( nbn (, ) (n-1) 'o,t

n=0 n=0

The left-hand side of the equation (2.3.93) is:

o + + +[( + an(-i)" _1 1 e~e' + c.c. + 1 + an(-2i)n" 12e 2ii + C.C.
n=1 n=l

+ airoo,t, + nan(-i)(n-1) 701,ei' + c.c.

The right-hand side of the equation (2.3.93) is:

boylo + bn(b i)n yle'O + c.c. + [( b(-2i)n -e2 "i + C.C.
n=O n=0

+byo,t + N nb,(-i)("-) oelte + c.

Equating the zeroth harmonic of the left-hand side and the right-hand side:

7o10 + a1 Too,tl = bo7o1 + blToo,tl



Using the fact that there is no mean displacement at the leading order (Yoo = 0),

the relationship (2.3.64) between T0oo and Yoo Too00

rewritten as

booo = 0) the last

710 = boYlo

Finally the shear component is:

x--oy = boyxlO

Or in terms of the velocity and the displacement field:

Irjo' = boXxo,y,

Now let us evaluate the second order O(E) first harmonic of the stress, equating the

first harmonic of the left-hand side and the right-hand side:

1+ an(-i)n 7_11 +
n=1

N-1711+ nb,(
n=0

Dividing both left- and right-hand sides by
N

+ an(-i)' and using the defini-
n=l

tion (2.3.86) of the complex viscosity I we get for the shear component r~:

(N
(iy n=1 oTi1"Y N 01t

1 + yan(-i)nn=1
= -iy~ 1+ No 7l,t

From the system of equations (2.3.59) we have that yxh = Xll,y,, from the systerri of

equations (2.3.58) and from the equation (2.3.76) we get that -y,, = Xoy, = iuol,y'

equation is

(2.3.94)

b, ( -i) n -i)(n-1)) o~1,tl

N
E nan (-i)(n-1) 'r01',<

n=1



and the equation (2.3.91) says that 7TO~ = puo1,,. The expression of rT'Y becomes:

= -ipX 11 ,y, +
N

1 + E an(-i)n

n=1

1 + Ean(-i)n
n=1

N-1

Multiplying and dividing the first term in the parenthesis by E b,(-i)(n) and using
n=1

again the definition (2.3.86) of the complex viscosity / the last equation can be

rewritten:

N-1

Snb,(-i)(n- 1)
n=0

N-1
E bn(-i)(n)

\ n=O

N

E nan(-i)("- 
l)

1 + Ean(-i)n
n=1I

Equating the second harmonic of the left-hand side and the right-hand side of the

equation (2.3.93) we get:

( +
N

E an(-2i)" 712 =
N-1

Eb,
n=0

(-2i)n) 712

N

Dividing by 1 + E an(-2i)n both left- and right-hand sides of the last equation we
n=1

get for the shear component of the stress 7.xi:

N-1

Z b,(-2i)n
x2y n=0 Xy
1 N 712

1 + 1 an(-2i)n
n=O

J UY/t,

7sy-
711

--
)

= -iXll,y, + /I



From the system of equations (2.3.59) we have -y'2' = X12,,', and the last equation in

terms of the displacement field becomes:

N-1

E bn(-2i)"

T712y n=O X12,y'

1 + Ean(-2i)
n=1

Summarizing the above analysis the second order O(E) shear stress is:

(2.3.95)

1 + Z an(-i)"

-i/-tX11,v' + /.I

N-1

Ebn(-2i)n

n=N X12,y'

1 + E an(-2i)
n=1

uoi,y't 1(2.3.96)

(2.3.97)

2.3.7 Approximate governing equations under the assump-

tion of sinusoidal waves

Using the assumption of sinusoidal waves the governing equations can be simplified

by being separated into different harmonics. Let us rewrite the governing equations

in terms of different harmonics for the water and mud layers.

Water Layer - Laplace Equation

The Laplace equation for the first three orders and for each harmonic will now be

written.

At the leading order O(o0 ) the Laplace equation (2.3.3) becomes, after using sinusoidal

= boXlo,y,X%

xy
71-i7z-o yX12
Tyz y

,N-1

E nbn(-i)(n-1)
n=O

.v -



wavesn:

hOO,yy + (0~l,yyeiV + c.c.) + (-k2I0Po1eie + c.c.) = Foo + (Fole"O + c.c.)

With the right-hand side (2.3.6) being:

Fo = Foo + (Fol e- + c.c.) = 0

Grouping the terms of the last two equations harmonic by harmonic we get:

(2.3.98)
4 0l,yy - koo 01 = Fol = 0

At the second order O(E) the Laplace equation (2.3.4) becomes for sinusoidal waves:

4)o,yy + ( 11,~ye'4 + c.c.) + (-kO-( e'O + c.c.) + (D12,yye2iO' + c.c.) + (-4kO12i 2ei' + c.c.)
= Flo + (Fnlei' + c.c.) + (Fi2e24i + c.c.)

The right-hand side (2.3.4) is equal to

Flo + (Flue4' + c.c.) + (F~ ie2io + c.c.) = -2(I)o,zl

= -2iko ol,xleO + c.c.

Grouping the terms of the last two equations harmonic by harmonic we get:

S10o,yi = Flo = 0,
I)ll,yy - ko2D11

4)12,yy - 4ko2412

(2.3.99)Fn1 = -2iko(ol0,x,

SF12 = 0



Finally at the third order 0(02) the Laplace equation (2.3.5) becomes for sinusoidal

waves:

20,yy + (O2,yye + c.c.) + (-k I21eýe + c.c.) + ( 22,yy2i + c.c.) + (-4ko 22e + c.c.)

+ (O23,yye 3i P + c.c.) + (-9k 2423 e 3i + C.C.)

= F2o + (F2,le + c.c.) + (F22e2i + c.c.) + (F23e3i& + c.c.)

with the right-hand side (2.3.8) being equal to

F2 = F20 + (F21eie + c.c.) + (F22 e2iO + C.C.) + (F23e 3i + C.C.)••

= -241,zl - Io, 10xix

= (-2iko 1j,x1e'O + c.c.) + (-4iko(D12,x1e2i + c.c.) - oo00,xl + (-o01jxei + c.c.)

Grouping the terms of the last two equations harmonic by harmonic we get:

(I20,yy = F20 = - 4 00,lxlx,

2421,yy - kI'21 = F21 = -(2iko4D1,xj + 1,,) (2100)
(2.3.100)

I22,yy - 4k=(22 =F 22 = -4ikoI12,Xz2

(23,yy - 9ko2(I 23 = F23 = 0

Water Layer - Bernoulli Equation

The Bernoulli equation relates the pressure to the velocity potential of the same order.

As it will be observed later we do not need to determine third order pressure relation.

Therefore we only need to write expression of pressure for the first two orders.

At the leading order O(o0) the Bernoulli equation (2.3.9) is:

pOO) + (p ()e iO + c.c.) = -(o,t = io01ei ' + c.c.



Grouping the terms of the last equation harmonic by harmonic we get:

p( = 0, (2.3.101)
p(W) = iol

At the second order O(E) the Bernoulli equation (2.3.10) is:

po) + (pi eiO + c.c.) + (p1)e2e + c.c.) = - , + o, + ( +

- {(--illei* + c.c.) + (-2i412e2i ' + C.C.) + (00,t 1 + (01o,tje il + C.C.)

+ [2k24|o 1I2 + (-k e2 i + c.c.) + 2o, 2  
1, 2i + C.C.)] }

Grouping the terms of the last equation harmonic by harmonic we get:

p{ ) = - ((oo,t1 + kol2Io 1i 2 + IIO1,YI2),
p ) = i1 1 - o, , (2.3.102)

) = 2i4 12 + I, 0k - 1•()D,

Mud Layer - Mass Conservation Equation

The mass conservation of the mud layer (equations (2.3.14) and (2.3.15)) will now be

written harmonic by harmonic for the first two orders.

At the leading order O(co) the mass conservation equation (2.3.14) is:

(ikouoiei" + c.c.) + voo,ly + (voi,y,e i ' + c.c.) = 0

Grouping the terms of the last equation harmonic by harmonic we get:

vo0o,0 , = 0 (2.3.103)
vol,y, + ikou0o = 0

As it was stated previously by the equation (2.3.80) the zeroth harmonic of the

vertical velocity is zero voo = 0 and the first equation of the system (2.3.103) is



trivially satisfied.

At the second order O(E) the mass conservation equation (2.3.15) is:

(ikounlle' + c.c.) + (2ikou l2e2i O + C.c.)

+v1o,yv + (vii,ye il + c.c.) + (Vl2,yie 2i0 + c.c.)

= -u00,xi + (-uol,x1ei¢ + c.c.)

Grouping the terms of the last equation harmonic by harmonic we get:

Vl0,y, = -U00,x 1 = 0

viiy, + ikouli = -uoi,xl (2.3.104)

v12,y' + 2ikou12 = 0

Where the fact was used that there is no leading order mean velocity inside mud layer

(equation (2.3.75)). Note that the first equation of the last system is consistent with

the previously found result (2.3.82) which says that:

vlo = 2? {ikoYoiu 1 + Yol,y/v O1}

In fact the second equation of the system (2.3.103) says that ikouil = vo1,,, and the

equation (2.3.81) dictates that Yol = ivol. Therefore we can write:

vio = 2•• {Yoiv 1l,,i + Yo1,yv0l} = 2RI {(Yolv)y,} = 2R {i (Ivol12),} = 0

Mud Layer - Horizontal Momentum Conservation

The horizontal momentum conservation inside the mud layer (equations (2.3.16) and

(2.3.17)) will now be written harmonic by harmonic for the first two orders.

At the leading order O(E0 ) the horizontal momentum conservation equation (2.3.16)

is:

(-iuoeie' + c.c.) = -y(ikope + cc) + + (70 'e+•,,•• + c..)]



Grouping the terms of the last equation harmonic by harmonic we get:

XY, = 0

-iuo, = -ikop i) + ~71Y

Using the leading order expressions of the shear stress (2.3.88) and (2.3.91) the last

system of equations becomes:

S0 = 0 (2.3.105)
-iuo1 = -ikoZY7p +Re •1UOl,y'y'

At the second order O(E) the horizontal momentum conservation equation (2.3.17) is:

(-iulleio + c.c.) + (-2iul2e 2i'  + c.c.) + 00oo,t + (uol,tjeii + c.c.)

+ [uoo + (uo0eie' + c.c.)] (ikouol e"' + c.c.) + [voo + (vol e i' + c.c.)] (uol,yeie' + c.c.)
-= [(ikop(M)e' + c.c.) + (2ikop )e2iO + c.c.) + (M) + (P(,Me + C.)]

a+ [1.O,' + (i-~V',e'o + c.c.) + ( x12,e 2i + c.c.)] + + [00y, + (iko-fjei " + c.c.)]

Opening the parenthesis we get:

(-iun lle + c.c.) + (-2iul2e2i• + c.c.) + Uoo,tI + (uo0,t 1el'k + c.c.)

+uoo(ikouolei' + c.c.) + (ikou21 e2 iNO + c.c.)

+2 {volu•I,,y,} + voouoo,y, + (uoo,y'vo eie + c.c.) + voo(uol,,ei~' + c.c.) + (voluol,,e 2 iN + c.c.)

S-r[(ikopl e • + c.c.) + (2ikoplj)e2i~ +c.c.) +P + o( pt il +oc.c.)]

+ [lr1,o + (1 xr,,ei• + c.c.) + (e2y e• + c.c.)] + 1 (ikoT0xe + c.c.)

Grouping the terms of the last equation harmonic by harmonic we get:

u00,t, + vo00u00,y' + 2 { vol uol,,, -(mP 1Rdo y'+M)+M)* = •(in + laz ,
-iUll + U0o,tl + ikouoouo1 + Uoo,,,vol + voouol,,, = -'Y[ikopI7) +p01,xl +R 1•TYy, + iko R0e01

-2iu12 + ikounl + Voluol,y, =-2i VkoP• + 12 '0 ll~O12 +Re d 2Yy'



Using the expression (2.3.95) of the zeroth harmonic of the shear stress TI7o, the

equation (2.3.90) saying that TJx = 0, and the equations (2.3.75) and (2.3.80) saying

that u00oo = voo = 0, the last system of equations becomes:

2R I volu*x, I = - (Mox + - (boXRo, ,)r 7-YP0,1 +Red (b0X10,Y'y1 )
-iull + UOl,t- = -Y [ikoplm ) + po? + , T ], (2.3.106)

-2iu 12 + ikoul1 + voluo1 ,y, = -2i koPm2 ) + 12,y'

With <~' and rx2y given by equations (2.3.96) and (2.3.97) respectively.

Mud Layer - Vertical Momentum Conservation

The vertical momentum conservation inside the mud layer (equations (2.3.19) and

(2.3.20)) will now be written harmonic by harmonic for the first two orders.

At the leading order O(EO) the vertical momentum conservation equation (2.3.19) is:

p 9, + (pl) ei_ + c.c.) = 0

Grouping the terms of the last equation harmonic by harmonic we get:

(m) = 0Poo,,' = (2.3.107)
(m) = 0(POl,y=

At the second order O(E) the vertical momentum conservation equation (2.3.20) is:

p (, + ((m) , e' + c.c.) + (m = + ) e i + CC.C
Sc)12,]y Re

Grouping the terms of the last equation harmonic by harmonic we get:

(M) 1 .YY
(m) = yy

Pll,y' 01,y'

,=(m) 0
1,yi)-



Using the leading order expressions of Tr' = 0 (equation 2.3.68), the last system of

equations becomes:

p(mn) =0
910,y'

(m) 0

12,y,' =0

(2.3.108)

2.3.8 Approximate boundary conditions under the assump-

tion of sinusoidal wave

In this section the approximate boundary conditions will be obtained explicitly for

each order and each harmonic.

Free Surface - Combined Kinematic and Dynamic Boundary Condition

At the leading order 0(co) the combined kinematic and dynamic boundary condition

(2.3.21) with the use of the equation (2.3.24) becomes:

(,oo,z,)lo = Goo = 0,

(I1o,y)0o - ( -01)o) = G01 = 0
(2.3.109)

At the second order O(c) the combined kinematic and dynamic boundary condition

(2.3.22) with the use of the equation (2.3.25) can also be computed explicitly. But

first we need to compute the different harmonic components of G1 = Glo + (Gllei ' +

c.c.) + (G12e2io + c.c.). As a reminder the expression (2.3.25) is rewritten here:

G1= [~o(r7io)lo + 2(%o,tt)Do + ( ,+ + ,



Term by term we obtain:

ry(O = (Oyy + Otty) [00oo + ((Io 1
e i" + c.c.)] = %o,yy + [(ýo 1,yy - (o01,y)e i O + C.C.]

70 (rF1o) = ( 2ei + c.c.) {ooo,yy + [(ol,yy - 0ol,y)e"' + c.c.] }
2A - ((Io,yy - (Ioy) + (-( oo,y)e i* + c.c.) + [ A((Iol,yy - Io0,y)e 2io + C.C.]

2(o,tt, = (-2i(Iolt,te i P + c.c.)

o.. ) = [(iko~olei + c.)2] = [2kjDo 2 + (-k~i~ e2  + C.C.)

= (2ik24 ie 2i + C.C.)

( = 4+)(2.,Yt + C.C.) 2]t0, t - o) o y  + ( (I ol,y e i  - c 2 t
= [211Dol,y12 + +0,y + (24oo0,y01,ye i i + C.C.)+ ( , 1 ,ye2 i- + C.C.)] t

= (-2iPoo,y4ol,yei + c.c.) + (-2i21,,e2 i  + c.c.)

where the assumed expression (2.3.53) for qo was used. Now each harmonic of the

constant G 1 can be deduced:

Glo = -RI {A* (Ol1,yy - (Iol,y)lo}
Gl = - [- (Doo,yy)lo - 2i (,IOl,tl)lo - 2i ()oo,Yyoi,y)lo] (2.3.110)

G12 = - [ - (I,01,y) + 2ik 42i1 - 2io21,,] o

And the boundary condition at the second order O(c) being:

( 10,y) -= Glo = - R {A* ((Oi,yy - (DO0,y) 0 ,

(4Dll,)Io - ( 1 )lIo = G1 = - [(4Ioo,yy) - 2i (0ol,ti) - 2i (OY0,O1,Y)] ?p.3. 111)

(4)12,y)O 0 - 4 (41 2)10 = 12 - [:(IO01,yy - 4)01,y) + 2ik(ID1 - 2iI21,y1 ] o

Finally at the third order O(e2) the combined kinematic and dynamic boundary

condition (2.3.23) for the zeroth harmonic become:

(20o,y')10 = G2o (2.3.112)



with the constant G20 that will now be deduced from the equation (2.3.26). In fact

we need to compute the zeroth harmonic of the constant G2 given by the equation

(2.3.26) and reminded for easier reference here:

G2 - [T1(7 )io + 70(T0y')lo + 2(4,x1,x + o,yD,y)t + 2 (I2,, o)o + 277o0(1 o,yttj)jo

+ 2(4i,tt,)o + 7o ( + qo(, + (Do,tit1)Io + 2(,o,)12 0 + 2 (o,DIo,xw)tjo

+ (D,x + ,), ++ 2 [(Do,xx + D,,4) (o, + I,)1 to (2.3.113)

Let us compute each term of G2 separately.

The term ri(FY,(o)Io

AF•o = (yy + oa,)[0oo + (4%oe' o + c.c.)] = (o01,yy - 4oi,Y)ei o + c.c.

S[rlo + (?771 e'o + c.c.) + ('12e' * + c.c.)][(o 1,yy - 401,y)J0 ei + C.C.]

= 2 {fq1 (4o1,yy - 4o,,y)1o} + h.h.

where the abbreviation h.h. stands for 'higher harmonics'.

The term ro0(FPY1l)lo

(rIl1) = (•yy + aOtt)[( 1 0 + (ulle'o + c.c.) + (I12e2 ·NO + c.c.)]

= [(ll,,y - 411,,)e io + c.c.] + [(Q12,yy - 40 12,y)e&i + c.c.]

70o(rl1) o = 2(Ae'k + c.c.] [(11,,yy - i1,,j)eui + c.c.] + [(d12,yy - 4~12,y)e' + c.c.]o0

= R {A*(4ql,y, - 1ii,y)lo} + h.h. (2.3.114)

The term 7702 (uuLo)Io

FyyO)

7o02 (royy(D)1

= (,,y + oyu)[4oo + (%oei' + c.c.)] = (o,01,yy~ - o1,,,)eiV' + c.c.
1 [2A 12 + (A2ei¢ + c.c.)l[(0ol,uyy - 0o1,yy)e8i + c.c.0lo

0 + h.h. (2.3.115)



The term 27ro(0Io,ytt 1)lo

2To0(4o,yttl)[o = (Ae2¢ + c.c.)(-ioil,ytleg i + c.c.) = 2R{(iAD•i,yt 1 )Io} + h.h.

The term ((Io,tltl)jo

(,0,t1t1)o = (Ioo,tlt1)lo + h.h.

The term (,x , + ,t10

(,+ ,Y)t2  o = [(ikoCo2 eie + c.c.)2  (D0O,ye + C.C.)2]t

= 2k2 (1o112) 10 o+ 2 (Ioi,'Y2) 1 10+ h.h.

(o,X + ,)t o = [(iko°ooei + c.c.)2 + (Io'l~ + C.C.2]

= 2k2 (IolDo 1, 0 +12 (10+ 2 ,02) 1o,, + h.h.

The terms 2(Qo,A1,+ o,yI1',y)t, 2 (QI1,tl) o, o (, + 7 )o, 0 2()ot 2e) o and 2 (o,Xi o,i)t o
do not have zeroth harmonic because of the differentiation with respect to fast time t.

It can be shown that the term [(4o,.0. + 0o,yay) (Io,' + o,i)] 10 also does not have

zeroth harmonic, and the expression of G20 can be worked out so that:

((20,y) 10o = G20
= -{R [A* (4Il,yy - I)lo,y)o] + •R [27 1 ((IO1,yy - (o,y)lo0 ] + [2iA (4i,yt) 1o]

+ ((oo,tt)o + 2k0 ([Io)01I2]t) 1 0 + 2 ([I)01,yI2]tl) o } (2.3.116)

Free Surface - Dynamic Boundary Condition

The dynamic boundary condition (equations (2.3.27)-(2.3.32)) on the free surface will

now written for each harmonic for the first two orders.

At the leading order O(0o) the boundary condition expressed by (2.3.27) and (2.3.30)



becomes:

0 = Hoo = 0, (2.3.117)
-A = Hol = -iIol

At the second order O(c) the boundary condition (2.3.28) with the use of the equation

(2.3.31) can also be computed explicitly. But first we need to compute the different

harmonic components of H1 = Ho1 + (H11ei' + c.c.) + (H 12e2iP + c.c.). As a reminder

the expression (2.3.31) is rewritten here:

H1 = ((Ii,t)Io + rlo( 4(o,yt)Io + (4o,tl)Io + f (I2,x -+ oD, (2.3.118)

Term by term we obtain:

P,,t = (-i41 oei~ + c.c.) + (-2idjoe2i' + c.c.)

4o,yt = (-i ol,yei*O + c.c.)
Ao o,yt = (A e + c.c.)(-iCo,,e + c.c.) = 2 i + (i ol,=yi~~ + + C.c.)

(iot, = 1oo,t1 + ()ol,tze i) + Cc.)

1o, = (ikoDojei' + c.c.)2 = 2kO21| Io 1 + (-_ko2( pe2i + c.c)
2,y (Io0,y eib + c.c.) 2 = 214o0, 1 + (, i, O C.+

The harmonic components of the constant H1 become:

H10o = R {iA ('i,Y) Io} + (4 oo,t1)Io + k2 (1,Do,1 2)1o + (o01,ly 2) 0
Hi1 = -i ((11) o + (4Do1,tj)1o (2.3.119)

H 12 = -2i (4)12)1o - i 0 (4Do1,y)1 - k (D21)10 + I (2y) )

and the dynamic boundary condition itself is written as

-r10 = Hio = { iA (1 } + (woo,t,) o + k ( o12)(o + (1o01,y 12) ,0
-711 = H11 = -i (ID11)o + (o01,tl)0o, (2.3.120)

-712 = H12 = -2i (4I12)lo - ik (oo1,y)Io - k2 (21)10 + (l,) )o



Interface - Kinematic Boundary Condition in terms of water quantities

At the leading order 0(E0 ) the boundary condition expressed by (2.3.33) and (2.3.36)

is simply:

(0oo,y)l-H = Loo = 0,

(Iol,y) -H = Lo, = 0
(2.3.121)

At the second order O(E) the boundary condition expressed by (2.3.34) and (2.3.37)

becomes

(4lO,y)l-H = Llo = 0,

(Ill,y)I-H = L1= -ilo 1 ,

(D12,y) -H = L12 = 0

(2.3.122)

At the third order O(E2) we first estimate the constant L2 term by term:

l(,t = (-i(j1e'i + c.c.) + (-2i(12e2iN + c.c.)

ot = (oo,t + (Cotlei + c.c.)

(60o,2 = (Aei' + c.c.).(iko ole ¢ + c.c.) = 2R {ikoA*4ol } + (ikoA iole 2i P + c.c.)

(CoIo,,), = (-2k 2A4ole2iO' + c.c.)

The boundary condition expressed by (2.3.35) and (2.3.38) becomes

(420,y) -H = L20 = (00,tl,

(421,y)l-H = L21 = -i11 + 01,t, A o •
(2.3.za3)

(4)22,) I-H = L22 = -2i( 12 - 2kgA4ol,

S((I23,y) - H = L23 = 0

Interface - Kinematic Boundary Condition in terms of mud quantities

The Kinematic boundary condition on the interface expressed in terms of the mud

quantities (2.3.39) and (2.3.40) will now be obtained for each harmonic.



At the leading order O(o0 ) the boundary condition (2.3.39) becomes:

0 = (voo) 11, (2.3.124)
-iCol = 4(•o0)11

At the second order O(c) we first rewrite in terms of harmonics the right-hand side

of the boundary condition (2.3.40) term by term:

d d-v1 = - [vo1 + (vi1lei + c.c.) + (v12eN2i + C.C.)]
a a

-Co,tj = -Coo,tl + (-Col,tlei + 4c.c.)

Couo = [coo + (Colep' + c.c.)] . [Uoo + (uoieiv + c.c.)]

= (oooo + 2R {Cou*1} + [(Coouoi + oluoo)ei~ + c.c.] + (Co1uole2i ~ + C.C.)

(Couo), = [iko(Coouol + (~ooo)e2i + c.c.] + (2ikoC(ouolue 2i O + c.c.)

Finally the second order boundary condition (2.3.40) can now be written for each

harmonic

0 = (vio)II - (oot,

-i•i = 4(vii) I - Col,t, + iko((oouo1 + Cojuoo), (2.3.125)

-2i(12 = 4(V12) 1 + 2iko(oluo,

Interface - Dynamic Boundary Condition

The dynamic boundary conditions on the interface (equations (2.3.41)-(2.3.44)) will

now be rewritten for each harmonic. First we will obtain the expressions for the

tangential stress continuity (equations (2.3.41)-(2.3.42)) and then we will get the

expressions for the normal stress continuity (equations (2.3.43) - (2.3.42)).

At the leading order O(o0 ) the tangential stress continuity (2.3.41) is:

70 I1=1 = 0,
Toiy I=l- 0



Using the leading order expressions of the shear stress (equations (2.3.88) and (2.3.91))

we rewrite the last system of equations:

S 0lyl= 0 (2.3.126)
LUoly Iy'=l = 0

At the second order O(e) the right-hand side of the tangential stress continuity (2.3.42)

is:

S- [Coo + (Cole"~ + c.c.)]. [r•, + (o,ei +.)]

d -• Coo'y, + 2R {z i } + [(Coo0 , + • 01 ,)ei ' + c.c.]

+ (Co~rxJy,e 2· ~i + C.c.)

The second order tangential stress continuity condition becomes:

a a 

y

Tlly' =-

[ (00 ) IY, +y' 2 {01 (0 y' y'1 ]
[Coo (Troy,,) Iy'=1 + o01 (ooYy)ly=11l]

t12=1 ( 1 (OXy, y')I,= 1

The equation (2.3.88) says •'Y = 0 and the equation (2.3.91) says Tojy = /ol,yi,

and the equation (2.3.95) says Tj2 o' = boXlo,y, therefore we rewrite the last system of

equations as:

1 1Y '= l -~ [/00 (UO1,y'y') 1] ,

T2 y,= I -- 01 (U01,y') y'=l

(2.3.127)

With rl'y and -1x2y given by equations (2.3.96) and (2.3.97) respectively.

Now let us obtain the normal stress continuity boundary conditions (2.3.43) and

(2.3.44) for each harmonic.

a (,oxy)d ¢(0 TI,)Y



At the leading order O(eo) the normal stress continuity boundary condition (2.3.43)

for each harmonic is straightforward:

( (Min) \=

( (in)) ,s=

) ly=-H

( Wo)y=-H

At the second order O(e) the term -2,o (om) in the right-hand side of

stress continuity (2.3.44) is:

a-a ( Mp( )

(2.3.128)

the normal

= -- [o + (+oei +c) c(m) + C+
dLod + ++Ol, O' C] + C·C.)]

+ 29? ({S, (m)
÷21•Y

+ (00oo01,y + 00,y) ei"' + c.c.

+ (C01Po,my,e2 + C..)

The second order normal stress continuity condition (2.3.44) for each harmonic be-

comes:

= (P W))1
11= ((W)) y=-H

= ((w)) y=-H

- 1 Coo ( 7n)d Co 10,y' y

-- i01 k • 'y')
y'I=1

+ 2R M)py'=1, ) jY~(0*1q ( (>,=)
0 V (m) y' M , (2.3.129)
'01 f ,' l

Bottom - Horizontal Velocity

At the leading O(e) and second order O(e) the boundary conditions (2.3.45) and

(2.3.46) are expressed for each harmonic as:

1 oolo= 0, (2.3.130)
U0110 = 0

( (m)

(M) =1
1(m)

ym(P)l'=1

a ( o o(m),
d OP6ooo,



U1010 = 0,

U1110io = 0,

U1210 = 0

(2.3.131)

Bottom - Vertical Velocity

At the leading O(e) and second order O(e) the boundary conditions (2.3.47) and

(2.3.48) are expressed for each harmonic as:

V0010 =

voolo =

Vy01 0 =vil10 =

v121o =

(2.3.132)

(2.3.133)

Bottom - Horizontal Displacement

At the leading O(c) and second order O(e) the boundary conditions (2.3.49) and

(2.3.50) are expressed for each harmonic as:

Xoolo =

Xollo =

Xlolo =

Xl1 10 =
X121o =

(2.3.134)

(2.3.135)



Bottom - Vertical Displacement

At the leading O(c) and second order O(E) the boundary conditions (2.3.51) and

(2.3.52) are expressed for each harmonic as:

Yoolo = 0, (2.3.136)
Y0110 = 0

Y1olo = 0,

Y1110 = 0, (2.3.137)
Y1210 = 0

2.3.9 Solvability Conditions

The differential equation governing different orders (indexed by the integer n) and

different harmonics (indexed by the integer m) of the velocity potential 4,nm is

1nm,yy - m2 kinm = Fnm (2.3.138)

with the functions Fnm defined previously by equations (2.3.98)-(2.3.100). The cor-

responding boundary conditions are:

(Q(nm,y - m 2 4nm) 0 = Gnm (2.3.139)

(4 nm,y)lH = Lnm (2.3.140)

with the constants Gnm defined by equations (2.3.109), (2.3.110) and (2.3.116) and

the constants Lnm defined by equations (2.3.121) and (2.3.122).

The governing equation is an inhomogeneous ordinary differential equation. As the

corresponding homogeneous problems may have nontrivial solutions, for each couple

(n, m) the function Fnm and the constant Gnm and Lnm should verify the solvability

condition.



Zeroth harmonic (m = 0)

For the zeroth harmonic the boundary value problem at order O(En) is

4ýn0,yy = FnO

(4no,y) 1 = Gno

(=no,Y) -H =L,

The homogeneous solution is constant in y and the solvability condition to be verified

is:

SFnody = Gno - Lo (2.3.141)

First harmonic (m = 1)

For the first harmonic the boundary-value problem is at order O(En ) is

(nl,yy - k2 4 =nl = Fna

('Dni,y - m24nl) 1 0 = G

(nl,)-H = Ln1

As it will be verified in the next section, the homogenious solution for m = 1 is

proportional to cosh Q with Q = Q(y) = ko(y + H). The solvability condition follows

from the Green's formula:

fo cosh Q L,1

FI dy = G,-1 (2.3.142)
-H cosh q cosh q

with q = Q(y = 0) = koH.

Higher harmonics (m > 2)

For harmonics higher than the second one m > 2 there cannot be any homogeneous

solution (see C.C. Mei, 1989). As it will be seen very soon, if the homogeneous

solution existed, it could not satisfy the dispersion relationship (2.4.5). Thus the



corresponding inhomogeneous problems for m > 2 are always solvable.

2.4 Solution to the approximate equations

In this section we will derive the solution to the approximate equations for each order

and for each harmonic. We will proceed incrementally. The first step consists in

solving the leading order water problem, which is not affected by the presence of

the mud layer. The next step is to couple the obtained solution with the leading

order mud layer solution. The two are coupled through the interface kinematic and

dynamic boundary conditions. The so obtained leading order movement of the mud

layer affects second order O(e) movement in water which will be computed. Then,

the second order O(e) solution inside the mud layer, which is coupled to the second

order solution of the water layer through the interface, will be obtained. In particular

the mean displacement inside the mud layer will be deduced. Finally the use of the

solvability conditions for the inhomogenious water problems for the first three orders

will give the equation governing the slow evolution of the free surface wavetrain.

2.4.1 Leading order 0(1) solution - Water layer

Because the mud layer is thin, the leading order water problem is not affected by the

presence of the mud layer. It is confirmed by the governing equations which are sum-

marized and solved below. Now each harmonic of the leading order velocity potential

1o = 'Poo + ((oIei& + c.c.) and leading order pressure Po = Poo + (pole"' + c.c.) will

be determined.

Zeroth harmonic

The equations governing the zeroth harmonic of the velocity potential are the Laplace

equation (first line of the system (2.3.98)) and the Bernoulli equation (first line of the



system (2.3.101)):

IOO,yy = 0,

(oW) = 0

The corresponding boundary conditions are the combined kinematic and dynamic

boundary condition on the free surface (first line of the system (2.3.109)) and the

kinematic boundary condition on the interface (first line of the system (2.3.121)):

(¢oo,y)lo = Goo = 0,

(0OO,y) -H = Loo = 0

The boundary-value problem above imply that the function Goo = 4 oo(y, xl, t, t2,... )

is independent of the variable y. It depends only on slow space and time-scales.

0oo = ¢oo(xl, t 2, .. .) (2.4.1)

First harmonic

The equations governing the zeroth harmonic of the velocity potential are the Laplace

equation (second line of the system (2.3.98)) and the Bernoulli equation (second line

of the system (2.3.101)) are:

401,yY - kIo201

(W)P61

=Fo- =0

S i(0o

The corresponding boundary conditions are the combined kinematic and dynamic

boundary condition on the free surface (first lines of the system (2.3.109)), the kine-

matic boundary condition on the interface (first line of the system (2.3.121)) and the



dynamic boundary condition on the free surface (second line of the systems (2.3.117)):

(4O1,0)1o - (Iol)lo = Go, = 0

(4 ,y) -H = Lo = 0
A
S=- Ho0 = -i ('oi) 02

This boundary-value problem is governed by a homogeneous ordinary differential

equation and thus there is no need to use the solvability condition.

The solution of the above written boundary-value problem is the classical water prob-

lem solution which is:

oi= - Q A(xl, tl, t2, ... ) (2.4.2)2 cosh q

po) cosh Q A(x tl, t2, 2...) (2.4.3)
P2) - cosh q

(2.4.4)

and the dispersion relation:

ko tanh q = 1 (2.4.5)

with the constant q and function Q = Q(y) being defined as

q - koH (2.4.6)

Q - ko(H+y) (2.4.7)

To see if we recover the usual water dispersion relationship from the obtained one

(2.4.5) we need to transform the dimensionless variables into dimensional. As it was

w2

w2 = gko tanh(koh)

Therefore the usual water dispersion relation is recovered.



2.4.2 Leading order O(1) solution - Mud layer

The mud layer is put into the movement because of the pressure gradient created

by the leading order water waves. The momentum is transfered to the mud layer

through stresses on the interface separating water and mud layers. Let us now obtain

the expressions of the leading order quantities describing the leading order of the mud

layer (uo, vo, Po).

Zeroth harmonic

At the leading order the problem is linear and we expect the leading order solution

to contain the first harmonics only. Therefore we predict all the leading order zeroth

harmonic terms to be equal to zero. Let us show it mathematically. The equations

governing the zeroth harmonic of the unknown quantities are the mass conservation

(first line of the system (2.3.103)), the x-momentum conservation equation (first line

of the system (2.3.105)), the y-momentum conservation equation (first line of the

system (2.3.107)) and the condition on the zeroth harmonic of the velocity (2.3.75)

and (2.3.80):

Voo,Y = 0

0=0

0oo = 0U00 = 0

VO0  - 0

The corresponding boundary conditions are the non slip boundary conditions in

terms of the velocity field (first lines of the systems (2.3.130) and (2.3.132)), the kine-

matic boundary condition at the interface (first line of the system (2.3.124)), the tan-

gential stress continuity through the interface (first line of the system (2.3.126)) and



the normal stress continuity through the interface (first line of the system (2.3.128)):

(uoo) lo = 0

(voo) o = 0

(voo) l = 0

bo (Xoo,y,) I, = 0

0 lyP=1 = (poo) l=

In case when b0 - 0, the obvious solution of these equations is:

u 00 = 0

v00 = 0

S(m)0o = 0

Xoo =0

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

The last equation comes from our initial assumption that there is no mean displace-

ment of the mud layer at the leading order.

The zeroth harmonic terms come from the nonlinearities of the equations, but as the

mud layer is thin these terms affect only the second order O(E) solution. This explains

why all the zeroth harmonic quantities are zero at the leading order.

First harmonic

The equations governing the evolution of the first harmonic are the mass conservation

(second line of the system (2.3.103)), the x-momentum conservation equation (second

line of the system (2.3.105)) and the y-momentum conservation equation (second line



of the system (2.3.107)):

vol,y, + ikouol = 0

-iuol = -iko-Yp(M) + 1 a

p(m) = 0

The corresponding boundary conditions are the non slip boundary condition (second

lines of the systems (2.3.130) and (2.3.132)), the kinematic boundary condition at the

interface (second line of the system (2.3.124)), the tangential stress continuity through

the interface (second line of the system (2.3.126)) and the normal stress continuity

through the interface (second line of the system (2.3.128)):

(uol )o = 0

(vol) o = 0
d

-iCol = -(vol)IIa

P(UOly')'y'=1 =

(R(o y'=l (P(o1))y=-H

First, let us solve the y-momentum equation. Because the mud layer is thin the

pressure is constant through the entire layer and equals to the pressure in water by

continuity of stresses through the interface:

(i) ( A
P = (PO() Iy=-H = 2 cosh q

Secondly, let us solve the x-momentum equation. It can be rewritten as:

.Re d ikRed (m )
u01,y'y' + 2--U01 = iko - 1p La a~L



Using the definition (1.4.5) of the phase of the complex viscosity (jp = Ipeie~) we

define the dimensionless complex parameter A as a positive root of A2 = -iRe d

A- e-(+) Red (2.4.12)

Note that the expression under the square root may be rewritten in terms of the ratio

of the mud layer depth d to the Stokes' boundary layer thickness 6, V-

d
d, = - (2.4.13)

The expression under the square root becomes

Redo p(m) d2w d2
Re I2 = 2d

Finally the simplified expression for A is

A = d,,/2e- (0+z)

The experimental values of the parameter 0 are confined into the first quadrant, so

that the phase of A is also confined into [0, 7r/2] interval. The amplitude of A increases

with the dimensionless depth d,.

The equation of conservation of the x-momentum becomes

UOl,y,' - A2 U0 1 = _ X2ko(ypMo)

The solution is the sum of the solutions of the corresponding homogeneous equation

(cosh(Ay') and sinh(Ay')) and the particular solution (koYTP(')):

o01 = kop(o) [1 + Go cosh(Ay') + Ho sinh(Ay')]
-ykoA
S o [1 + Go cosh(Ay') + Ho sinh(Ay')]
2 cosh q



Note that if the only other root A- - e-( was selected as the square root

of -inR  then the solution will be unchanged. This is due to the fact that A- = -A

and that the solution always involves both e ' and e- Y'.

Applying the boundary conditions the constants Go and Ho are determined:

U0ollo0 = 0 G Go=-1

Uol,y'll = 0 Ho = tanh(A)

Therefore the horizontal velocity inside the mud layer is completely found:

ykoA
Uo1 = kA [1 - cosh(Ay') + tanh(A) sinh(Ay')]

2 cosh q

Now, we can solve the mass conservation equation to obtain the expression of the

vertical velocity vol:

Vol (y, x, tl, t2, ... ) = 1y=o - iko uol" ,l tl t2, .. )dy"

using the no slip boundary condition (vo) lo = 0 we get:

vol = - yk2A [Ay' - sinh Ay' + tanh A(cosh Ay' - 1)]
2A cosh q

or using the dispersion relation:

Vo01 = -i ko [Ay' - sinh Ay' + tanh A(cosh Ay' - 1)]
2A sinh q

Finally, the amplitude of the interface displacement Col can now be found from the

approximate kinematic boundary condition on the interface ((ol = i (vol) 1):

.d ykoA d tanh ACoi = i-(vol)I~,'= = 1 )a 2 sinh q a A

Since A c , the amplitude of the interface movement goes to zero (Co -- 0 as --+ 0.

Meaning that when the mud layer is shallow compared to the Stokes' boundary layer



thickness there is no movement inside mud. As the experimental values of the viscos-

ity, and therefore of the Stokes' boundary layer thickness, increase sharply when the

frequency w goes to zero, we expect to have no mud movement at low frequencies.

Let us summarize the leading order solution inside the mud layer for the first

harmonic:

() = A (2.4.14)
2 cosh q

_ 7koA
U koA [1 - cosh(Ay') + tanh(A) sinh(Ay')] (2.4.15)

2 cosh q

vol = -i [Ay' - sinh Ay' + tanh A(cosh Ay' - 1)] (2.4.16)2A sinh q
koA d f tanh A

01 - 2 sinh qa (2.4.17)

The study of the properties of these solutions will be conducted in the section (2.5).

2.4.3 Second order O(E) solution - Water layer

Zeroth harmonic

The equations governing the second order zeroth harmonic of the water layer are the

Laplace equation (first line of the system (2.3.99)) and the Bernoulli equation (first

line of the system (2.3.102)):

lo,y F = F = 0,

pi )  = - (oo,~ 1 + k0,• 0 12 + I2o2,y12)

The corresponding boundary conditions are the combined kinematic and dynamic

boundary condition on the free surface (first line of the system (2.3.111)), the kine-

matic boundary condition on the interface (first line of the systems (2.3.122)) and the



dynamic boundary condition on the free surface (first line of the system (2.3.120)):

(4I10,y) 0 = Glo = -- {A* (o01,yy - o0,y)10o

(tl1o,y)l-H = L1o = 0

-710 =-- H10 = R {iA ((l,y) O + (o00,t + kI201 2 + I01,y 2) 0

The mean pressure correction can immediately be determined by plugging in the

expressions of the leading order solution iol and %oo:

k211 12 + Io1,12  kAI cosh2 Q + koIA 2 sinh 2 Q

4 cosh2 q 4 cosh 2 q
A12  oAIs2 Q) = IA2
= A2 (cOsh2 + cosh2 Q) cosh(2Q)

4 sinh2 q 4 sinh2 q

pM = - o00, A! 2  cosh(2Q)
4 sinh2 q

By plugging in the leading order solution 4ol and Ioo we obtain the expressions of

the constants Ho1 and Glo.

For the constant Glo we have:

((oDoryr - <PD,010

C10

(kcosh2 Q + k.A sinhQ
2 cosh q 2 cosh q)

= -ikO2A + iA = iA! (1 - ko2)
2 2 2 =0

-R - iIA 2~ (1 - ko)] = 0

The solvability condition

SFlody = Glo - Llo

is trivially satisfied as all its terms are equal to zero.

The equations and the boundary conditions for Ilo imply that the function 41)o =

1)1o(y, x, tl, t2, ... ) is independent of the variable y. It depends only on slow space

and time-scales.

o10 = 0o(x1, ttl 2, t2,...)
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For the constant Ho1 we have:

[ iA (P 10, 1 o

(ko•lox01•2 + 1 2o1,,12) 10

H/o

[iA (i. sinh Q \ 1

= JR [iA IA* - IA1

k2J2 cosh2 Q 4 A2 sinh2 Q

4 cosh2 q 4 cosh2 q 0

- IA(k - 1)

1 4A2 + oo,t + A2(k 2 + 1)2 4
jAj2 IAI2= oo,tk + (Co - 1) = Doo,t + 2

4 4 sinh2 q

Then the second order solution for the zeroth harmonic is

1Po = '1o(xX,tl,t2,. ..)

sinh2 cosh(2Q)

JAI2
1 = 4 4 sinh2 q

(2.4.18)

(2.4.19)

(2.4.20)

Note that in case of purely sinusoidal waves, there is no slow time modulation and all

the derivatives with respect to tl vanish. In such case the usual nonlinear correction

is found: the mean free surface is lowered (7710 < 0) and the mean pressure is negative

plo < 0. In case of narrow-banded waves, the slow time variation appears and the

terms 7710 and Plo depend on the time variation of the long waves (4Ioo,tl).

First harmonic

The equations governing the second order first harmonic of the water layer are the

Laplace equation (second line of the system (2.3.99)) and the Bernoulli equation
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(second line of the system (2.3.102)):

'11,y, - ko111 = F, F =-2ikoo,

P() = i 11 - 01,tl

The corresponding boundary conditions are the combined kinematic and dynamic

boundary condition on the free surface (second line of the system (2.3.111)), the

kinematic boundary condition on the interface (second line of the systems (2.3.122))

and the dynamic boundary condition on the free surface (second line of the system

(2.3.120)):

(I11,y)Ol - (1 1)Io = GI1,

((I11,y)[-H = LI,

-11,= Hil

with the constants Gl 1 , L11 and Hll given by the second line of the systems of

equations (2.3.110), (2.3.122) and (2.3.119):

Gi -A (42oo,yy)o - 2i (4oul,tD)o - 2i (,Doo,y~0l,yv)o]

Ll = -i(ol

H 11 = -i (4Iu)1o + ((oil,ti)jo

Let us first express the constant GC1 in terms of the free surface amplitude A. As the

function )oo is independent of the variable y its derivatives with respect to y vanish

and we get

Gl = 2i (ol,t 1)io = 2i -icosh Q = At2 cosh q
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Now let us compute the expression of the function F11 in terms of the free surface

amplitude:

Fl = -2iko 0 o1 ,xj = -2iko -i
cosh Q
2 cosh q )Xx= -ko cosh Q

cosh q

The solvability condition (2.3.142) can now be written explicitly in terms of terms of

the free surface wave amplitude A:

Co0Ati + i
cosh q

-ko Ax, 0  cosh Q dy
cosh q -H cosh q

koAx1 io

2 cosh 2 q ]-H

sinh 2q +

(1 + cosh 2Q) dy =

sinh 2q'k
2ko

Ai
sinh 2q

A (sinh 2q
2k0 sinh2q

Note that the factor in the parenthesis of the last equation is equal to the group

velocity C, given by the dispersion relation (2.4.5). That is

C = 1 + sinh2q) (2.4.21)

Thus the solvability condition can be written in a compact form:

(01
Atl + C 9 A2 = i - •cosh q

Replacing the expression of (o1 by its expression (2.4.17) in terms of the free surface

wave amplitude we get:

At, + CgAx = iklCA (2.4.22)

where the complex parameter kl was defined as:

k = d ( 2k )(1
a 2q + sinh 2q

tanh AA ) (2.4.23)

The newly defined parameter kI characterizes the rate of decay of the free surface

wave amplitude due to the energy dissipation inside the mud layer.
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The equation 2.4.22 describes the evolution of the free surface wave amplitude with the

slow time- and space-scales. In case of a purely sinusoidal wave the slow time derivate

at, vanishes and the equation governing the slow evolution of the wave amplitude

reduces to

Axi = ik A

Its solution is an exponentially decaying function:

A(xi) = Aoe ik l l = Aoe - ki1eike

Note that the in terms of fast space-scale we have kxll = Ekjx. In the following by

change in the wavenumber it will be meant ekl unless otherwise specified. We have:

Ek _ d (1 tanh A) 2q (2.4.24)

ko h A 2q + sinh (2q)

The damping and the induced wavenumber shift can be computed respectively from

the real and the imaginary parts of the expression (2.4.24)

Do= ( ) Ak = ( (2.4.25)

Note that when d - 0 then
Ekl-- 0
ko

On the other hand if d >> J, (d, >> 1) then ta c" -1 0 and

ek2 d( 2q
ko h 2q + sinh 2q

which is real and negative. In other words for a large values of d, the damping is

negligible and the waves become longer.

The influence of the water layer depth is the following. For very short waves or deep

water, q = koH > 1,
Ek 1  . (2.4.26)
ko
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and for long waves in shallow water,

-- d (2.4.27)
ko 2 h

Now let us obtain the solution for the first harmonic (11. I11 is the solution of

an inhomogeneous equation at the second order. It consist of a sum of the solution

to the homogeneous equation and a particular solution 11. The solutions of the

corresponding homogeneous equation are sinh Q and cosh Q. The part of the solution

proportional to the cosh Q is already included into the leading order solution. We

expect the solution to be of the form:

I11 = Csinh Q + 11

Note that there is only one constant to be determined, but two boundary conditions.

This is not a problem, as the application of both boundary conditions produces equiv-

alent results. This is due to the fact that the boundary conditions are linked by the

solvability condition.

To find the particular solution the method of the variation of the constants is em-

ployed. Let us look for a particular solution in a form O(Di = C(y) sinh Q, with C(y)

being a function of y. Then

lly, - k2(11 = C"(y) sinh Q + 2C'(y)ko cosh Q = F 1l = -kocosh Q A
cosh q

The equation above holds if

C"(y) = 0
2koC'(y) - A-() 2 cosh q

which is equivalent to

C(y) = Acosh +Co
2 cosh q
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A particular solution is then

A = -Ac h sinh Q + Co sinh Q1 2 cosh q

This solution should satisfy the boundary conditions on the free surface and on the

bottom. As the two boundary conditions are linked by the solvability condition we

need only to impose one boundary condition and the second boundary condition will

automatically be satisfied. For the ease of the computations the bottom boundary

condition will be applied:

(CkhQ Al sinh Q -osh kQ
(1,,Y) -H =- Coko cosh Q - 2 sinh Q - cosh Q -H

2 cosh q 2 cosh q -H

= Coo + qA = -iol = iklCA cosh q
2 cosh q

The constant Co is then

Co = i-CA cosh q - Axq = iklCgA sinh q - A0
ko 2ko cosh q 2ko cosh q

The total solution for the first harmonic of the second order velocity potential 411 is:

q Axly11 = ikiC,AsinhqsinhQ - A~1 sinh Q - sinh Q
2ko cosh q 2 cosh q
Q sinh Q

= iklC,A sinh q sinh Q - Ash
2ko cosh q

The pressure correction inside the water layer can be deduced straightforwardly

p,) = s (koAt, cosh Q - Ax,Q sinh Q) - kiCgA sinh q sinh Q
S 2ko cosh q

The first harmonic free surface movement correction is

rq1 = -Hll = i (11)Jo - (ol,tl)0o = i ikCgA sinhh q Ax + 1 At
2ko0 cosh q 2

i q sinh q= -A - kIC,Asinh2q - i Aoq
2 2ko cosh q 1
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Note that in absence of the mud layer (k1 = 0) the solutions are the known water

layer solution (see C.C.Mei 1989).

Let us finally summarize the obtained solution for the second order first harmonic:

Q sinh Q11 = iklCgA sinhqsinhQ - Q sinh (2.4.28)
2ko cosh q

p = (koAtl cosh Q - Ax, Q sinh Q) - klCgA sinh q sinh Q2.4.29)2ko cosh q
i q sinh q

i = -At, -i kiCgA sinh2 q - i A (2.4.30)2 2ko cosh q

Note that in the absence of the mud layer kl = 0 and we recover the solutions for

inviscid water waves propagating over a solid bottom (C.C. Mei, 1989).

Second harmonic

The governing equations for the second harmonic are the Laplace equation (third line

of the system (2.3.99)) and the Bernoulli equation (third line of the system (2.3.102))::

-12,yy- 4k 2 12 = F 12 , F1 2 = 0

p(W) - 2i@12 + 2 412 - D

The corresponding boundary conditions are the combined kinematic and dynamic

boundary condition on the free surface (third line of the system (2.3.111)), the kine-

matic boundary condition on the interface (third line of the systems (2.3.122)) and the

dynamic boundary condition on the free surface (third line of the system (2.3.120)):

(¢12,y)I-H = L12

(¢12,y) 0 - 4(12)0o = G12

- 12 = H12
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with the constants G12 , L 12 and H 12 given by the third line of the systems of equations

(2.3.110), (2.3.122) and (2.3.119):

L12 = 0

G12 - (<ol,yy - ,ol,y) + 2ikOOl4D - 2i21,ýy

H12 - -2i (p12)lo - 2i (Rol,y)2 10 2 0k (oD1) 1o +
1
1 ( 10
2 Ol) 0 o

Let us first compute the constant G12-

_A -k2 - A

- -A2 k + i A2 - k0 2A2
4 4 2

sinh Q
(-2 sinh q )
+i A2] 3 i2 o 4

+2ikh ( cosh2 QA2)
(4 cosh2 q

A2(k 2 _ 1)

- 2i
sinh2 Q A2

4sinh2 q i]0
3i A2

4 sinh2 q

Now the boundary-value problem for the velocity potential can be solved. In fact the

corresponding governing differential equation is a homogeneous ordinary differential

equation. Its solution is:

(12 = C1 cosh 2Q + C2 sinh 2Q

Applying the boundary condition on the bottom we get:

0 = ((4 12)1H = (2koC1 sinh 2Q + 2koC 2 cosh 2Q)IH = 2koC 2

This implies

C2=0

To determine the constant C1 the boundary condition on the free surface is applied:

3i A2

4 sinh 2 q
= ('12,y)1 - 4 ( )12)1o = (2koC1 sinh 2Q + 2koC 2 cosh Q) o - 4 (C1 cosh 2Q) o
= 4C (ko sinh q cosh q - cosh 2q) = 4C, (cosh 2 q - cosh 2 q + sinh2 q)
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This implies
3i A2

C1 4
16 sinh4 q

And the second harmonic of the second order velocity potential is:

3i A2

(D12 = 6sinh4 cosh 2Q
The pressure component ) ca16sinh now be determined:

The pressure component p w) can now be determined:

3 A2  12
h4 cosh 2Q + -ko8 sinh q 2

cosh 2 Q A
4 cosh2 q 2 4 cosh2 q

3 A2

nhq cosh 2Q
8 sinh4 q

1_A2
8 sinh 2 q

1 1 2SA 2

8 sinh2 q

1 (cosh 2  2
8 sinh2 q /

1
8

sinh2 Q
sinh2 q

cosh 2Q)sinh2 Q - cosh 2 Q - 3 q
sinh2

3 cosh 2Q
sinh2 q j

Finally the second harmonic of the free surface displacement can be determined:

7712 = 2i (412)0 + (o01,y) 1k+ 2 (o21) o
1
2(01,y) 0o

2i j sinh4 cosh 2Q(3i16 sinh4 q
21k 4 sh c 2 Q A2 I
20 4 cosh 2q J 0

3i A2

8 sinh4 q
3i A2

8 sinh4 q

1
2

A2 ko sin
cosh 2q +

4 cost
A 2

cosh 2q +
4

A (ko sinh Q
2 2 cosh q

ko sinh2 QA2)
4 cosh 2 q

h q A 2 cosh2 q
iq 8 cosh 2 q

A2 ko2 sinh2 q

8 cosh2 q
A2 k8 +8

3i A 2  A 2

3- A cosh 2q +-8 sinh4 q 4
A2  1
8 sinh 2 q (2 sinh2 q 1

A2  1
8 sinh 2 q

3i q
sinh 2 q
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Summarizing the solution for the second order and second harmonic:

3i A2

12 16 sinh4 1 cosh2
p = A2( 1+csh-Q)

12 8 sinh2 q sinh2 q

A2  1 (2sinh2lq - 3i q
8 sinh2 q sinh2

The last expressions provide second order second harmonic correction to the leading

order movement and they are unchanged by the presence or the absence of the mud

layer.

2.4.4 Second order O(E) solution - Mud layer

The second order solution for the mud layer provides the second order correction to

the leading order movement. In particular the zeroth harmonic solution gives the

mean displacement inside the mud layer, meaning the average displacement around

which the mud layer oscillates. In the present section we will compute the average

displacement of the mud layer. The first and second harmonic corrections to the

leading order movement will not be computed here as they do not carry interesting

physical significance.

Zeroth harmonic

The presence of the viscous component in the viscoelastic model makes it possible for

the mud layer to dissipate the energy. Due to the nonlinearity introduced by the in-

ertia terms, the displacement inside the mud layer has a non zero steady component

- mean displacement. In the approximation of small amplitude waves, this steady

correction is of second order O(E) and will be computed in this section.

The governing equations for the zeroth harmonic mud quantities are the mass con-

servation (first line of the system (2.3.104)), the x-momentum conservation (first line

of the system (2.3.106)) and y-momentum conservation equation (first line of the
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equation (2.3.108)):

VlO,y' = 0

2 vo = + (boXlo,y)
(pn) = 0

we also have the relationship (2.3.77) relating the velocity ulo to the previously ob-

tained leading order displacement X01 and velocity ulo:

Ulo = 2R {ikoXoUul 1 + Xol,yiv~l }

This expression can be rewritten using the mass conservation equation (second line of

the system 2.3.103) saying that ikoucl = vo*,,, and using the equation (2.3.76) which

implies Xol = iuol:

Ulo = 2RI {Xo 1v 1,I+Xol,, y Xo } = 2ý {(XolvDl),} = {i (uo0vi),}

= -2 {i(u~ivo1)y, = 2= (uslvol),,

These equations can be simplified using the previously obtained solution for the ze-

roth harmonic of the leading order 0(1) (equations (2.4.8)-(2.4.11)). In fact, as the

equations (2.4.8) to (2.4.11) state, all the zeroth harmonic mud-related quantities are

identically zero at the leading order and we get for the second order zeroth harmonic

governing equations:

vio,,' = 0, (2.4.31)

SRe d
X10, "--= 2nbd a v(0ou1sx,y,,} , (2.4.32)XI°'y'Y' bo a

p1, = 0, (2.4.33)

l0o = 25 {(Ulvoi)y, } (2.4.34)
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Note that these equations are valid only in case when bo J 0. In particular in case of

a purely Newtonian fluid these equations will not hold, and the assumption of having

the zeroth harmonic displacement Xlo will be not valid anymore.

The corresponding boundary conditions are the non slip boundary conditions in terms

of the velocity field (first line of the systems (2.3.131) and (2.3.133)) and in terms of

the displacement field (first line of the systems (2.3.135)), the kinematic boundary

condition at the interface (first line of the system (2.3.125)), the tangential stress

continuity through the interface (first line of the system (2.3.127)) and the normal

stress continuity through the interface (first line of the system (2.3.129)):

Violo

Xlolo

0

bo (XjOYy'=1

= 0

= 0

= 0

d
= -(vIo) 1 - Coo,t,a

= -- [ booC (Xoo,'y'y,)[ J=l + 2•R {ý*fW (uol,'')y,=l ,1

P_ a[C (C(m) (m

[ Owii'/ y= -H d 1 Y/=\ Y =1

Again using the previously computed leading order 0(1) solution (equations (2.4.8)-

(2.4.11)) the boundary conditions are simplified:

vio10
(Xlo,y,)lyl=1

1 0 Y '=1

viol0o

Xiolo

= 0,

" - 2 b• O ) _ -( n o 1 'Y ) 1Y ' j1 ,

= 0
= 0

= 0
-0
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The zeroth harmonic of the vertical velocity can be deduced straightforwardly from

the governing equations and the boundary conditions. One can immediately see that:

V10 = Vio(Y,xl ,t l ,t 2, . . .) = 0 (2.4.35)

The pressure and the mean horizontal displacement require a little more work.

Let us first compute the mean pressure correction. From the equation (2.4.33) one

can see that the zeroth harmonic of the pressure is constant through the layer and

equal to its value on the interface plus a nonlinear correction which is due to the

curvature of the interface. We have

From the second order solution inside the water layer we obtain the first term of the

right-hand side:

)y=-H 4 sinh2 q

The leading order solution for the mud layer tells us that the leading order pressure

p1) stays uniform inside the mud layer. As a consequence the term p,), is zero. The

zeroth harmonic of the second order pressure inside the mud layer finally is:

p i ( nA2  (2.4.36)
p = )00't 4 sinh2 q

Let us now compute the mean velocity ulo given by the equation (2.4.34). The

nonlinear term (volUl)1, appearing in the equation (2.4.34) can be estimated. First
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let us estimate voluo*1:

volu, (= -i A [Ay' - sinh(Ay') + tanh(A)(cosh(Ay') - 1)] x( 2A sinhq

X •2sinhq )[1 - cosh(A*y') + tanh(A*) sinh(A*y')]

= -iY2ko I Ay'- Ay'cosh(A*y') + tanh(A*)(Ay')sinh(A*y')
4 sinh 2 q A I

- sinh(Ay') + sinh(Ay') cosh(A*y') - tanh(A*) Isinh(Ay')(2

+ tanh(A) cosh(Ay') - tanh(A) - tanh(A) Icosh(Ay')l2 + tanh(A) cosh(A*y')

+ Itanh(A) 2 cosh(Ay') sinh(A*y') - Itanh(A) 2 sinh(A*y')]

The derivative of the last expression gives:

(volu) = -i 2k IAI2  1 [A - A cosh(A*y') - jAl2y' sinh(A*y') + A tanh(A*) sinh(A*y')
4 sinh2 q A

+A* tanh(A*)(Ay') cosh(A*y') - A cosh(Ay') + Al cosh(A*y')12 + A*1 sinh(A*y')12

- 2 tanh(A*)R { A cosh(Ay') sinh(A*y')} + A tanh(A) sinh(Ay')

- 2 tanh(A)R { A sinh(Ay') cosh(A*y')} + A* tanh(A) sinh(A*y')

+ A ltanh(A)12 I sinh(Ay') 2 + A* ltanh(A)12 Icosh(A*y')l2

- A* Itanh(A)12 cosh(A*y')]

The expression of the mean velocity ulo given by the equation (2.4.34) is

ulo = 2 {I (Ulvo1)y,}
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Therefore

u10 = - 2sinh2 R 1 - cosh(A*y') - A*y'sinh(A*y') + tanh(A*) sinh(A*y')

A*
+ tanh(*)(*y') cosh(A*y') - cosh(Ay') + I cosh(A*y')l 2 + Isinh(*y')l2

tanh(A*)- 2 R {A cosh(Ay') sinh(A*y')} + tanh(A) sinh(Ay')

-2 t {{A sinh(Ay')cosh(A*y')} + tanh(A)sinh(A*y')
A*

+ |tanh(A)12 I sinh(Ay') 2 + Itanh(A)12 Icosh(A*y')| 2

A- Itanh(A) 2 cosh(A*y') (2.4.37)

The last unknown to be computed is the horizontal displacement X 10 governed by

the equation

Re d
"X,, = 2 Re d 0 R IVol ul,y, }  (2.4.38)

The corresponding boundary conditions are:

(Xily,)Ia = -2 L oR [IL1 (Uol,yy)|y'=1 , (2.4.39)

Xlly,=O0 = 0 (2.4.40)
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The nonlinear term volu~, appearing in the equation (2.4.38) can also be estimated

voluO,1,, = i2[Ay sinh (Ay') + tanh(A)(cosh(Ay') - 1)] x

x * 2 sinhq [sinh(A*y') + tanh(A*) cosh(A*y')]

|IAI2  *= -iy2ko A[Ay' - sinh(Ay') + tanh(A)(cosh(Ay') - 1)] x
4 sinh2 qA

x [ - sinh(A*y') + tanh(A*) cosh(A*y')]

= -iko A 2  y'[ - sinh(A*y') + tanh(A*) cosh(A*y')] + Isinh(Ay')12

4 sinh2 q A
- tanh(A*) sinh(Ay') cosh(A*y') - tanh(A) sinh(A*y') cosh(Ay')

+ jtanh(A)j 2 Icosh(Ay')12 + tanh(A) sinh(A*y') - ltanh(A)12 cosh(A*y')}

= -iy 2 k0o44 sinhA2 q A*y'[ - sinh(A*y') + tanh(A*) cosh(A*y')]

"+-A Isinh(Ay')12 - 2R(tanh(A) sinh(A*y') cosh(Ay'))

+ Itanh(A)12 l cosh(Ay') 2 + tanh(A) sinh(A*y') - Itanh(A)12 cosh(A*y')] }
Adding the complex conjugate to obtain the real part we get

2R? (vo01 1 l,y,) = vou+Iv,y, + V01UO,y,

= -i-y2ko inh2  /A*/ [-sinh(A*y') + tanh(A*) cosh(A*y')]

-Ay' [ - sinh(Ay') + tanh(A) cosh(Ay')]

+ [ sinh(Ay') 2 - 2R(tanh(A) sinh(A*y') cosh(Ay'))

+ ltanh(A) 2  tcosh(Ay') 1 (A* -2A

A* A
+- tanh(A) sinh(A*y') - tanh(A*) sinh(Ay')

- Itanh(A)12 ( cosh(A*y') - A cosh(Ay') }
= -iy2ko- 2 2ia FI(y') + F2(y') + F3(y')

= 2'y2ko 22  F (y') + F2(Y')+F 3(Y')4 sinh2 q
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Where the functions FI(y'), F2(y') and F3(y') were introduced to simplify the nota-

tions. They are defined as follows

= Ay'[ sinh(Ay') - tanh(A) cosh(Ay')]

A
= (tanh(A) sinh(A*y') - Itanh(A)12 cosh(A*y'))

= [sinh(y')i2 - 23?[tanh(A) sinh(A*y') cosh(Ay')]

+ Itanh(A) 2 Icosh(Ay')I 2 ]

(2.4.41)

(2.4.42)

(2.4.43)

Now the horizontal momentum equation (2.4.32) can be written in terms of functions

F (y'), F2(y') and F3(y'):

Xlo,y,= Bo{Fr(y') + F2 (y') + F(Y')}

where the constant B 1o was defined as

l •y2ko IA12 Re d
2 sinh2 q bo a

(2.4.44)

In order to integrate the last equation let us compute the first integrals of the functions

FI(y'), F2(y') and F3 (y'). They are

SF1 (y')dy'

F2(y')dy'

F3(y')dy'

=A [J y' sinh(Ay')dy' - tanh(A) y' cosh(Ay')dy']

=

A*
(tanh(A) sinh(A*y')dy' - Itanh(A)12

(2.4.45)

cosh(A*y')dy) (2.4.46)

[ I.sinh(Ay') 2 dy'- 2R [ tanh(A)dy sinh(A*y') cosh(Ay')dy']

+ Itanh(A) 2 J Icosh(Ay')12 dy'] (2.4.47)

The following relationships will be used to calculate the integrals of F1 (y'), F2(y') and
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Sy' sinh(Ay')dy'

y' cosh(Ay')dy'

1

1= -
y'

('

cosh(Ay') -

sinh(Ay') -

sinh(Ay') + co)st

cosh(Ay')
+ const

In the following the integration constants will be omitted while computing the in-

tegrals, and only one global constant of integration will be added in the end. The

products and sums of the used hyperbolic functions are related by the following equa-

tions

sinh(a) sinh(b)

cosh(a) cosh(b)

sinh(a) cosh(b)

1[cosh(a + b) - cosh(a - b)]

1
2= [cosh(a + b) + cosh(a - b)]

1
= 2 [sinh(a + b) + sinh(a - b)]

The primitives of the products of the hyperbolic functions apearing in the expression

of F3 (y') are

J Isinh(Ay')12 dy' = sinh(Ay') sinh(A*y')dy'

= cosh(A + A*)y' - cosh(A - *) y']dy
1 (sinh(A + A*)y' sinh(A - A*)y'

2 A + A* A - A*

J cosh(Ay') cosh(A*y')dy' =U
1
2

[ cosh(A + A*)y' + cosh(A - A*)y']dy'
sinh(A + A*)y' sinh(A - A*)y'

A + A-A*

118

F3(y'):
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1= [sinh(A* + A)y' + sinh(A* - A)y']dy'

1 (cosh(A + A*)y' cosh(A - A*)y'
2 A +A* A - A*

The primitives of the functions F1 (y'), F2(y') and F3 (y') can now be evaluated:

sinh(Ay') F= y' cosh(Ay') - sinh (Ay') tanh(A) y' sinh(Ay')

= y' [cosh(Ay') - tanh(A) sinh(Ay')] + - [tanh(A)

tanh(A) Itanh(A)12

- A cosh(A*y')- sinh(A*y')

-1 A* sinh(A + A*)y'
2 \A + A*

cosh(Ay')

cosh(Ay') - sinh(Ay')]

sinh(A - A*)y'
A -A* )

+ Itanh(A) 2 (sinh(A + A*)y' sinh(A - A*)y'
t + A* A - A*

-2R [tanh(A)(cosh(A + A*)y' cosh(A- A*)y'•
ItnJ A + A* A - A*

Finally the once integrated horizontal momentum conservation equation becomes

= oBy'os [ cosh(Ay')
1

+ A [tanh(A)

- tanh(A) sinh(Ay')]

cosh(Ay') - sinh(Ay')]

tanh(A) Itanh(A)12
t+ cosh(A*y') - sinh(A*y')

1 A* f (sinh(A + A*)y' sinh(A - A*)y'
2A A + A* A - A*

+ Itanh(A)12 (sinh(A + A*)y'A +¥A*

- 2R [tanh(A)

sinh(A - A*)y'A --• A*

(cosh(A + A*)y' cosh(A - A*)y'
A + A* A - A*

Integrating again we find the expression of the mean horizontal displacement X1o as
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SF1 (y')dy'

J F2(y')dy'

J F3(y')dy'

X10,y,

Ssinh(A*y') cosh(Ay')dy'

I+ Zo



function of the variable y':

1 r,. sinh(Ay)- cosh(Ay')
- R1 ?- iy sinh(Ay') - -

1
++2 [tanh(A) sinh(Ay') - cosh(Ay')]

tanh(A) sinh(A*y) tanh (A ) 2cos

1 A* (cosh(A + A*)y' cosh(A -
2 A (A + A*)2 (A - A

tanh(A) cosh(y) sinh(Ay')
A cy A

cosh(A + A*)y' cosh(A - A*)y'
(A + A*)2 + -A*) 2

sinh(A + A*)y'
(A + A*)2

y' 1
[sinh(Ay') - tanh(A) cosh(Ay')] - cosh(Ay')

+ [ tanh(A) sinh(Ay') - cosh(Ay')]

tanh(A)
+ sinh(A*y')-

1 A* cosh(2Ary ')
+-8 T (Ar) 2

-2R tanh(A) sinh(2Ary)
It (Ar) 2

tanh(A) 2)cosh(A*y')

cos(2AiY') )
+ ( i)2

sin(2Aiy ' )

(/\ i)2

Itanh(A)12 (cosh( 2
,\r()2

} Zoy' Z}
B= A1o0 [sinh(Ay') - tanh(A) cosh(Ay')] - cosh(Ay')

tanh(A) tanh(A) 2

v 2 sinh(A*yI) - cosh(A*y')

1 A* cosh(2Ary')
8 t~ s (Ar) 2

-2R FhA( sinh( 2 ArI2&tah) (Ar)2

cos(2A'y') + Itanh(A)12 cosh(2Ary '))

y') cos(2Aiy ' )
a (A) 2

tanh(A) sinh(Ay')]

cos(2A•'')
(/i)2

+ (sin(2Aiy') + Z 0y' + Z
(/i)2 ) ZoI I ZI

where Zo and Z1 are the constants that will be determined using the boundary con-

ditions. Let us now apply the boundary conditions.
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+ Itanh(A)12

sinh(A - A*)y'
+ Zoy' + Zi

- tanh(A) sinh(Ay')]= B•o-•

h(A*y')

A*)y'
2•

-2R Itanh(A)



The no slip boundary condition (2.4.40) gives

0 = X1olo S2 tanh(A) + 1 ( 2

A2 A 8 A (Ar7
+ Itanh(A)12 ( 1A 1 + Z,

This gives the expression of Z1 :

2 1*A 1 *
A2  8A [ \ r2 + (Ai)2 +2 tanh()A) 2  (iA)2)]

= B• - 1- [ ((A-2 + (A)2)+ Itanh(A) 2 ((A)2 (A)2) }
The nonlinear term appearing in the boundary condition (2.4.39) is:

A 2

= 72ko4 sinh q

A 2
= 72 ko

4 sinh q

2 A2

4 sinh qk° (

tanh A* cosh( + tanh() inh(
A* I - cosh(Ay') + tanh(A) sinh(Ay')] ly,=1

tanh A*\
A*) A2 -cosh(A) + sinh2(A)]

tanh A* A2

A* Jcosh(A)

The right-hand side of the boundary condition (2.4.39) can now be rewritten as

272ko a A2
bo d 4 sinh q
bo d 4 sinh q cosh(A)

92ko A2 I e-(o+r)
= 2Re

bo 4sinhq I[ l cosh(A)
2Re72ko A 2  -i

= 2cs-R 1
= bo 4 sinh q cosh(A)

= Me 72ko A2 1
= 2Re h (

bo 4 sinh q cosh(A)

B,[o s()1 (1 -tanh A*

cosh(A) A*

tanh A*

A*

tanh A*

A*tanh A*
A*

Where the fact was used that

dl
A2  Red 1 -i('+i)

al- m *2
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The boundary condition (2.4.39) becomes

= B Io{ [cosh(A) - tanh(A) sinh(A)] + A [sinh(A) - tanh(A) cosh(A)]

+±A [tanh(A) cosh(A) - sinh(A)]

tanh(A) Itanh(A)12
+ cosh(*) sinh(*y')

A

sinh(2Ar)Ar sin(2-A) + Itanh(A)12 sinh(2A') sin(2Ai)

-2R [tanh( A) (cosh(2Ar) + cos(2Ai)] +

= B 1 tanh(A) 1
cosh(A) A cosh(A*)

(sinh(2Ar)sin(2A') + Itanh(A)12

Ai J
-2 [tanh(A) (cosh(2Ar) +cos(2Ai)]

1
cosh(A)

tanh A*]
A* J]

The last equation determines the value of Zo:

Zo = Bl•o{cc
1

osh(A) (

sinh(2Ar
Ar

tanh A*
A*

) sin(2)

Ai
tanh(A) ( cosh(2r) +

sinh(2Ar)Ar

1

cosh(A)
ki\\

l) + Itanh(A)12

i cos (2Ai)

)]}}>
sin(2Ai)

tanh(A) csh( *
A

sinh(2Ar)
Ar

+ Itanh(A)12

\" /

sin(2A )

h(2A) sin(2i
Ar Ai

-2 [tanh(AX)(cosh(2Ar) + .cos(2i))
It tA + i

sinh(2Ar)
A r

sin(2Ai)
Ai + Itanh(A)12 sinh(2Ar)

Ar sin(2Ai)
-! A

2R anh(A) cosh(2Ar) +cos(2Ai)It9 tah A) +i

Putting all the information found together we can write the final expression for the
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mean displacement of the mud layer X1o:

Xlo = B0 Y [sinh(Ay') - tanh(A) cosh(Ay')]

2
+ [tanh(A) sinh(Ay') - cosh(Ay')]

tanh(A) tanh(A) 2
+ 2 sinh(A*y') - A cosh(A*y')

1 A* cosh(2Ary') cos(2Aiy') Itanh(A) cosh(2Ary ' )  cos(2Aiy')
_8 (Ar)2 (Ai)2 (Ar)2 (Ai)2

-2&R [ta ) sinh( 2Ary') + .sin(2A y') + Zoy' + Z (2.4.49)

With the constants Zo and Z1 given by:

S Bio A* sinh(2A') sin(2A') + Itanh()1 2  sinh(2Ar) sin(2Ai)

-2R [tanh(A) (cos~ 2A i+i (2.4.50)

Zi = Bio }{ 2 - [ ((A + (i)2)+ Itanh(A)12 ((A)2 -()2) }
(2.4.51)

The equations (2.4.49) to (2.4.51) give the explicit expression of the mean horizontal

displacement X10 inside the mud layer. The profiles of the mean displacement were

studied by Zhang and Ng [6], who considered a similar problem of a thin viscoelastic

mud layer under a non-decaying progressive wave modeled by a harmonic pressure

applied uniformly on the surface of the mud layer. Our approach is different in two

ways. First, Zhang and Ng modeled mud as a Voigt body with only two coefficients,

but according to the experimental data available to us these coefficients strongly

depend on the frequency of the forcing. In our approach for each mud sample we

found the dimensional coefficients a~ and b, that are frequency independent and rep-

resent the mud properties in the entire range of experimentally available frequencies

(0.1Hz < w < 20Hz). The second difference is the wave decay for which Zhang and
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Ng did not account in their article. In fact the wave damping is considerable even at

the leading order and t he mud movement will change when the waves are damped.

In particular for large values of xl after the waves are damped there should not be any

mud movement. This is taken into account by our approach as the mean horizontal

displacement inside the mud layer is proportional to the square of the decaying wave

amplitude:

X10 oc IA(xl, t)12 c e- 2k  (2.4.52)

Zhang and Ng did not provide an explicit expression of the mean displacement and

solved the averaged governing equation numerically. We compared our computed

mean displacement X 10 to their numerical results plotted in the article [6] for the

same values of the dimensionless parameters introduced by the authors: the elasticity

parameter ANg ~om and the viscosity parameter 6Ng = - 2 . The resultsparameter N = vscs p9w

are plotted in figure (2-2) for three values of 3 Ng = 0.1, 0.3, 0.5 and three values of

xNg = 1, 3, 10. The difference in the values of the mean displacement amplitude

is due to the difference in the normalization. Otherwise the profiles have the same

properties: the reversal at large values of ANg and for 6Ng = 0.1, the growing values of

the amplitude with the elastic parameter AyNg and even the shapes are the same. Still

an important difference is present between the results of Zhang and Ng and figure

(2-2). The slope at the edge of the mud layer is finite in the present work but is equal

to zero in the work of Zhang and Ng, who considered that the shear stress at the top

of the mud layer is zero at both leading and second orders. The shear stress is indeed

equal to zero at the leading order but at the second order the interface movement

should not be neglected and the shear stress is no more equal to zero. This condition

is expressed mathematically by the equation (2.3.42).

It was also checked that in case of a purely elastic mud (all the coefficients an>l and

bn>l equal to zero and b0 finite) the mean horizontal mud displacement is identically

zero. In fact, as it was pointed out by Zhang and Ng, elasticity enables the mud

to recover from any applied deformation, while the viscosity makes such a restoring

capacity impossible. Therefore it is natural to have no mean deformation of the mud
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0

Xlo X1o
(a) 5Ng = 0.1 (b) 5Ng = 0.3

0.

0.

0.

0.

0O

Xlo
(c) Ng = 0.5

Figure 2-2: Profiles of the mean horizontal displacement Xlo for three values of
AN 9 = 1, 3, 10

layer for the purely elastic case. The study of the properties of the mean displacement

will be done in section (2.5) for different mud samples.

2.4.5 Long wave equation

Note that till this point the long wave potential 4oo = Ioo0(x1 , tl, t2,... ) is undeter-

mined. The equation governing it is given by the solvability condition (2.3.141) for

n = 2. That is:

SF 2ody = G20 - L20 (2.4.53)/0H
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with the constants G20 and L 20 given by the equations (2.3.116) and (2.3.123):

F20 - -00,xlxl

- R [A* (l,,,,yy - 11,y)o] + ~ [271 (4~o1,y - (ol,)lo] + R [2iA (4)*,yti)J 101

+ oo,tit, + 2ko ([1 o1I2] 1
L20 = o00,tl= 0

Both constants G20 and L20 will now be computed in terms of the previously found

expressions for the first two orders solutions.

To compute G20 we first evaluate each term one by one. The first term of the right-

hand side becomes:

(ID11,y) 10= _ ( sinh q
2 cosh q

((11,yy) 0o = - (k o +
qko sinh q
2 cosh q

*, + iklACg cosh 2 q

Ax, + ikiACg cosh2 q

= - ko) Ax1

- ko)
(A*A)x 1

2

The second term is:

(4o~O,y)1 = --A

((ol,yy)lo = -2AkO

((IOl,yy - DOl,y)lo

S1{2~7r 1 ('01o,yy - ()01,y)lo

= -- A(k - 1)
2

=2(k 2 1)R A) - k*CgA* sinh2 q+ kos q A*2koocosh q X1)Ij

1\-f A*A : jk~QA*Ainh q sinh q A•A 1- 1)R -A*At, + 2ik*CgA*A sinh2 q + Ashq*A,ko cosh q'
4 sinh12 q
4 sinh2 q

_ 1

4 sinh 2 q

q sinh q (A*A)xl - (A*A)t, + 4kC sinh 2 q(A*A)l
ko cosh q jg q
qsinhq ,(A*A) - (A*A)t1 + ki/Cg(A*A)
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The third term is:

R 2iA (*,0tlto) 10 = 2iA (A*)
(A*A)tl

2

The last two terms give:

2k2 ([I o, 2]t) 1 +2 ([14oi,Yl2] t)
= 2k (A*A)t ) + 2 (A*4A),,

1 2= (ko + 1)(A*A)tl2

So that the constant G20 becomes:

q sinhq (A*A) - (A*A
ko cosh q )t,] - k'Cg(A*A) - 40oo,titl

(A*A)t,
2

2 -2ko 1

-(ký + 1)(A*A)tl - Poo,tj2
+ si2q )
sinh 2q}

- ko] (A*A)x, +
2 2sinh 2 q

1 1  1 1 - cosh2 q
S [C, - ko] (A*A)xl + + h2 q2 2 2 sinh2 q sinh2 q

- k) (A*A),, - coo,tlt, - k'Cg(A*A)

(A*A)t, - @oo,tlt, - kCg(A*A)

1 k0  1= 1 [(A*A)tl + Cg(A*A), l ] + (A*A), - (A*A)t1 - Ioo,tlt, - kCg(A*A)
2 2 4 sinh2 q

= -(A*A),I
2 4 sinh (AA)t - oo,tt4 sinh 2 q

Where the use was made of the equation governing the slow evolution of the wave

amplitude found previously from the solvability condition for ~11:

At, + CgAxi = ikiCA

which implies

(A*A)t, + C,(A*A)x, = -2krC,(A*A)

Finally the long wave equation can be fully written:

oo,tjtj - H4oox(x 1 = 1(A*A)- 1 (A*A),,2 4 sinh2 q
(2.4.54)
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This is exactly the same equation as the one governing the long waves in the absence

of mud layer (see Mei, 1989 [9]). We conclude that the mud layer does not affect the

generation of the long waves.

2.5 Physical deductions

This section is dedicated to the analysis of the physical properties and experimental

values of previously obtained solutions.

2.5.1 Interface displacement

We now study how the interface displacement is affected by the free surface waves.

For that we will study the properties of the ratio Rmp of the interface displacement

to the surface displacement, both in dimentional terms:

Co eao0 1  eoi
Ramp - - - (2.5.1)

q-o1 aA A

The interface displacement (ol was found previously (eq. 2.4.17) and its product with

E = a2 is:
9

SA q d tanhA)
21= sinh q h 1 A

The ratio of interest is finally:

Ramp d q tanh A) (2.5.2)

where q = koH = koh.

The ratio Ramp goes to zero in deep water when the waves are short (koh >> 1) and

do not reach the bottom.

Also the ratio Ramp decreases when the ratio A of mud layer depth to the water layer

depth decreases. Physically this means that the shallower the mud layer is compared

to the water depth and the wavelegth the less it will be able to move and dissipate

wave energy.
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To get an idea of how the factor 1 - ta A influences the ratio Ramp let us express

it in terms of the parameter 0 and the ratio d = - explicitly. The parameter 0

characterizes elasticity. An entirely viscous material will have 0 = 0 and a material

which is entirely elastic will have 0 = !. A material which combines both the viscous

and elastic properties, as in case of the mud, will be characterized by values of 0

between 0 and . The ratio - determines how much of the mud layer depth will

be affected by the motion of the waves. In particular if the ratio d, = - 1 one

can expect that the entire mud layer will be in motion. To determine how the two

parameters 0 and d, = A affect the amplitudes ratio Ramp its expression will now be

rewritten explicitly in terms of the two parameters. Note that up to now the effects of

elastic properties of mud were implicitly hidden into the parameter A = d,v/2e-i(+").

To simplify the notations let us introduce two real parameters a and f

a -v2 sin (+4) (2.5.3)

0 cs(2.5.4)

Note that both parameters are known as long as the value of 0, characterizing the

elasticity of the mud, is given. Also note that the values of the parameters a and 0

are not independent, but linked by the relationship a2 + 32 = 2. The parameter A

can be rewritten in terms of a and p

A = (3 - ia)d, (2.5.5)
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Now let us evaluate tanh(A) in terms of a, P and ds.

eA - eA- e -d"e-icad" - e-pdse-iads
tanh() e + e- ee-iad + e-pdee-iads

efds( cos(ads) - i sin(cds)) - e-pds (cos(ad,) + i sin(ad,))

e/ds ( cos(ad,) - i sin(ads)) + e-/d ( cos(ad.) + i sin(ad,))

cos(ad,) sinh(pd3) - i sin(ad.) cosh(pd,)
cos(ad,) cosh(pdd) - i sin(ad,) sinh(/d,)

[cos(ad,) sinh(/pds) - i sin(ad,) cosh(pdd)] [cos(ad,) cosh(pds) + i sin(ad,) sinh(pd,)]

cos2(add) cosh2 (/d3) + sin 2 (ad) sinh2(pd,)
sinh(pdd) cosh(/d,) - i sin(ads) cos(ad,)

cos2 (ad,) cosh 2( (d,) + sin2(ad,) sinh2(/dd) (2.5.6)

The ratio t-h(A) can be computed

tanh(A) 1 • + ia + ia
tanh(A) =- 2+• tanh(A) (2.5.7)

A d, a2 + /2 2d,

The real and imaginary parts of 1 - th(A) are

th A) = 1- 2[- at(tanhA) + P(tanhA)]

1 (asin(ad,) cos(ad,) + P sinh(Lds) cosh(dd,) 5 8 )
S2 2 2 .5.8)

2d, cos22(ad,) cosh2(2d,)+ sin2 (ad,) sinh2 (Od,)

( tanhA) = [aR(tanh A) +00(tanh A)]

1 (a sinh(pd,) cosh(pd,) - p0sin(ad,) cos(ad, ) )2.59)
2d, cos 2(ad,) cosh 2(/dý) + sin 2 (ad,) sinh2(Od,)

To simplify the labeling on future figures let us introduce two new functions

koH
fH (koH) = (2.5.10)

sinh(koH)
tanh A

g(O,d,) = 1 - (2.5.11)
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The parameter Ramp given by the equation (2.5.2) is then rewritten as

Ramp = fi(koH)g(0, ds)h (2.5.12)

In the limit of a thin Stokes' boundary layer d, - oo we have g(G, d,) -+ 1 and

d koH
h sinh(koH)

and if we consider only long waves in shallow water (koH << 1) then the approximate

expression of the amplitude ratio becomes:

d
Ramp --

On the other hand when mud layer is shallow compared to its Stokes boundary layer

thickness we have d, -* 0 and

(1 - tanh(A))

1 tanh(A))

g(0, d,)

1
-> 1 (a2 ds + p 2 d,) = 02d,

1
(--(apd, - Pad,) = 0

2d8

-0

and independently of the fact if waves are short or long the interface displacement is

negligible compared to the one of the free surface:

Ramp -+ 0

In the general case we need to consider the full formula (2.5.12) for the expression of

Ramp. The function fi(koh) decreases exponentially for large water depth, as it can

be seen in figure (2-3). From the equation (2.5.6) the denominator of the function

g(9, d,) is

cos2 (ad8 ) cosh 2(pd,) + sin 2(ad.) sinh2(,d,)
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It may become zero, causing a resonant behavior of the amplitude of the interface

displacement Col. Let us study in which cases that can happen.

k0oH

Figure 2-3: Behavior of the function fi(q) = fi(koH) = fl (koh)

In order for the denominator of the function g(0, d,) to be equal to zero two

conditions should be satisfied simultaneously

cos(ads) cosh(pd.) = 0

sin(ad,) sinh(pds) = 0

As the hyperbolic cosine is always different from zero, and as sine is different from

zero when cosine is equal to zero the previous condition becomes:

cos(ads) = 0

sinh(pdO) = 0

ad, = 0 +m)r

Od 8 = 0

Note that d, = 0 does not satisfy both conditions and therefore does not cancel the
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denominator. Using the identity a2 + /2 = 2 the condition of resonance become

/3 = 0

d =- + m(2 ) 12

By definition P/ - Vcos (9 +

d, is
4) and the condition for resonance in terms of 0 and

0 = (2.5.13)

(2.5.14)d, = + m(2)V2

with m being an integer. Therefore for the resonance to take place the material

koH koH
(a) Real part of g(ds, 0) (b) Imaginary part of g(d., 0)

Figure 2-4: Real and imaginary parts of g(d,, 0)

should be entirely elastic (0 = ') and have a particular ratio of the mud layer depth

to its Stokes' boundary layer thickness given by (2.5.14). In particular it is clear that

no resonance can be observed for an entirely viscous fluid.

From the experimental results available it can be seen that neither of the mud sam-

ples has an entirely elastic behavior. However as the material exhibits behavior close

to elastic the resonance peaks should become visible. To demonstrate this the de-

pendence of the real and imaginary parts of g(O, d,) on d, was plotted in figure (2-4)

and the dependence of the modulus and phase of g(O, d,) on d, was plotted in fig-
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5 0 1 2 3 4

koH koH
(a) Modulus of g(ds, 0) (b) Phase of g(ds, 0)

Figure 2-5: Modulus and phase of g(ds, 8)

ure (2-5). In both figures three values of the elasticity parameter 0 were considered:

(0, 0.5, 0.9) x 2, representing respectively purely viscous, viscoelastic and almost en-

tirely elastic materials. One can see that there is no resonant peak for a purely viscous

fluid (9 = 0 case studied by Ng [7]), however when the material becomes more elastic

the resonant peak can be seen clearly. At 0 = 0.5 x T the resonant peak exists but

is not as important as the one corresponding to 0 = 0.9 x E. The mud samples pro-

vided by Huhe & Huang posses average values of 0 of approximately 0.3 for all mud

samples and thus one should expect to see a small tendency to resonate. For the mud

samples provided by Jiang & Mehta the elastic behavior is much more pronounced

with the experimental values of 0 close to E. Therefore one should expect to observe

resonant behavior for values of d, satisfying the condition of the resonance (2.5.14).

The first values of d, corresponding to the resonant behavior are 1.11 and 3.33 which

can clearly be seen in figure (2-5). The expression of both real and imaginary pars

of g(9, d,) have a factor - appearing, the maximum values of the peaks are reduced

hyperbolically when d, increases.

It is interesting to note that the real part of g(8, d,) takes the same value of ap-

proximately 0.4 independently of 0 at the first resonance (when d8 = 1 ). As a

consequence when the material is highly elastic the imaginary part of g(9, d,) is much

larger than the real part at the first resonance, and the phase of g(8, d,) is very close

to T when d, =1
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The modulus and phase of the ratio Ram of the interface displacement to the free

surface displacement given by the equation (2.5.12) is plotted in figure (2-6) for one

sample from Jiang & Mehta's experiments (MB, 0 = 0.11). One can clearly see a res-

koH koH
(a) Modulus of Ramp (b) Phase of Ramp

Figure 2-6: Modulus and phase of Ramp for samples by Jiang & Mehta, MB ¢ =
0.07, 0.11 0.17

onant behavior for the values of d8 = 1.11 as predicted by the equation (2.5.14) with

m = 0. The resonant peaks at higher values of d. = (I + m) - for (m = 1, 2,...)

are not as pronounced. Let us explain why it happens.

In fact it can be seen that the terms creating the resonance of the function g(d,, 0)

are inversely proportional to d,. Therefore the amplitude at the resonance decreases

when d, increases. In other words we expect to have a larger amplitude at the first

resonant peak of g(d., 9) than at other resonant peaks. The first resonant peak of

g(d,, 9) is given by the equation (2.5.14) and corresponds to m = 0:

d
d, = - -= 1.11 (2.5.15)bs 2 2

The phase of the ratio Ramp is plotted in the right part of the figure (2-6). When the

mud layer is shallow compared to its Stokes' boundary layer thickness, the interface

displacement is almost in antiphase with the free surface (phase shift is approximately

equal to -ir). On the other had when d, is large the interface and the free surface
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are almost in phase (phase shift is approximately equal to 0). The small peaks at

d8 = 3 ' 3.33, d 8 = 5 '• 5.55 etc. correspond to the resonant peaks and can

be seen because the elastic parameter 0 is very close to 1.

Another sample is presented in figure (2-7) where the modulus and the phase of the

ratio Ramp were plotted for the case of the data set A with solid volume fraction

¢ = 0.08. One can see that the shorter are the water waves the more in phase are

the interface and the free surface. As the elasticity parameter for this sample is only

about 0.5 x ' the resonance is much less pronounced compared to the case of Jiang

& Mehta. The peak value of Ramp is 7 times smaller.

koH koH

(a) Modulus of Ramp (b) Phase of g(ds, 0)

Figure 2-7: Modulus and phase of Ramp for samples by Huhe & Huang, data set A
0 = 0.08, 0.14 0.20

2.5.2 Analytical study of damping rate and wave number

shift

Definitions

The second order correction kL to the leading order wavenumber was obtained previ-

ously (2.4.23). This expression is complex, and its real part represent the wavenumber

shift and the imaginary one - the damping. We will now study both the damping as

well as the wavenumber shift. Of particular interest to us is the following dimension-
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less ratio:

Ek d ( 2q )(1_tanhA) (2.5.16)
ko h 2q + sinh (2q) A

The damping and the induced wavenumber shift can be computed respectively from

the real and the imaginary parts of the last expression (2.5.16)

Do = ( = -- d2(q)f {g(k, d,)) (2.5.17)
D = ko h

Ak = k 2(q)R {g(0, d)} (2.5.18)ko =

where the function f 2(q) was defined as:

f2(q) = 2q (2.5.19)
2q + sinh (2q)

Note that as the imaginary part of g(0, d8) is always negative, hence the damping

rate Do is always positive.

The behavior of the function f 2(q) = f 2(koh) = f 2(koH) is relatively simple and is

plotted in figure (2-8). The function f(koh), and therefore the damping, decreases

exponentially with the increasing depth. As higher frequencies mean shorter waves

and larger wavenumbers, we conclude that the high frequency waves are not damped.

Physically this happens because the waves do not reach the bottom.

Limiting cases for different mud layer depths

As the mud layer becomes shallower A << 1 the complex wave number correction

vanishes:
ek s

When the mud layer is thick compared to its boundary layer thickness d >> 6J,

(d. >> 1) then the elastic properties lose their influence on the complex wavenumber
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koH

Figure 2-8: f 2 (koH)

correction kj. In fact for large d, we have th oc -L 0 and

Ek, d 2q
ko h 2q + sinh 2q

which is real and negative. In other words for a large values of d8 the damping is

small and the waves become longer. Also the damping becomes independent of the

viscoelastic properties of the mud layer.

The influence of the water layer depth is the following. For very short waves or deep

water, koh > 1, the complex wave number correction vanishes:

ko

and for long waves in shallow water the complex wave number correction takes the

following form
Ek, yd

ko 2 h

Limiting case of a Newtonian fluid

The obtained complex wave number correction should be valid in the case when the

mud is modeled as a purely viscous fluid. In that case the expressions of the damping

and the wavenumber shift should reduce to the known corresponding expressions for

a purely viscous fluid.
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In fact in the limiting case of a purely viscous fluid the imaginary part of the viscosity

and the parameter 9 vanish and we get

8 0

a -, 1

1 sinh d, cosh d, - sin d, cos d,
Os{g(0,d,)} - 2d, cos 2 d, cosh 2 d, + sin 2 d, sinh 2 d,

1 sin d, cos d, + sinh d, cosh d,
2d, cos 2 d, cosh 2 d, + sin 2 d, sinh 2 d,

The corresponding damping rate and wavenumber shift tend to

S ( q ( sinh d, cosh d, - sin d, cos d8  (2.5.20)
Do h , 2q + sinh(2q) cos2 d, cosh2 d, + sin2 d, sinh2 d, J

d ( 2q ) + 1 sin d, cos d, + sinh d, cosh d,
Ak .- - E 2q + sinh(2q) 2d, cOS2 d. cosh d. + sin2 d, sinh2 d•

(2.5.21)

The last expression of the damping rate Do is exactly the expression obtained by Ng

(2000) [7] in case of the inviscid water limit.

2.5.3 Damping rate and wavenumber shift for muds in two

experiments

The damping rate and the wavenumber shift were computed using all available ex-

perimental data provided by Huhe & Huang (1994) and by Jiang & Mehta (1995).

The samples exhibiting the most elastic behavior are from Jiang & Mehta's data and

we expect the largest resonant amplitude from these samples.As it will be seen the

resonance corresponding to the samples of Jiang & Mehta is about 7 times stronger

than the one corresponding to the samples by Huhe & Huang.

The case of a purely viscous material was studied by Ng (2000). Ng did not pre-
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dict resonant behavior as the material needs to be at least partly elastic to tend to

resonate. The present work differentiates itself by using the viscoelastic model to

represent the behavior of the mud and, therefore, by introducing the possibility of

the resonant response of the mud layer. The resonance occurs for particular values

of dimensionless mud layer depth d, and the largest resonant amplitude is expected

to occur for d8 given by equation (2.5.15). By dispersion relation one can deduce the

corresponding values of koH, as function of which the damping Do and the wavenum-

bershift Ak are plotted. At resonance the water wave energy dissipates significantly.

Damping rate

The damping rate corresponding to the mud samples MB 4 = 0.07, 0.11, 0.17

provided by Jiang & Mehta is plotted in figure (2-9) for three depth ratios 4 =

0.1, 0.15, 0.2. It clearly possesses a peak that is due to the resonance inside the mud

viscoelastic mud layer which increases with the depth ratio d. Small peaks of damp-

ing are observed for some samples close to the predicted values of d, = 3 3.33

and d, = 5 5.55. These peaks are not pronounced as they are canceled by the

factors - f 2(koH) decreasing exponentially with increasing frequency. The damping

rate for mud samples OK ¢ = 0.11, KI ¢ = 0.12 and AK ¢ = 0.12 is plotted in

figure (2-10) for three depth ratios d = 0.1, 0.15, 0.2. Note a difference in the scales.

The damping rate corresponding to the samples KI ¢ = 0.12 and AK 4 = 0.12 are

one order of magnitude smaller than the one corresponding to MB ¢ = 0.07 or OK

0 = 0.11.

The damping rate corresponding to the data provided by Huhe & Huang is plotted

in figures (2-11) and (2-12) for the data set A and in figures (2-13) and (2-14) for

the data set B. As the elasticity parameter 8 is only about 0.3, the maximum value

of the resonant peaks are not as important as in the case of Jiang & Mehta samples

(note the difference in the scales of the plots). Moreover, there are two opposite phe-

nomena present: the resonant behavior tending to increase the values of the damping

rate Do when d, increases to its first resonant value - 1.11 and the factor f2(koh)
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tending to decrease the value of Do when d8 , and thus w increases. As in the case

of Huhe & Huang's data the elasticity parameter is small, resonance is moderate and

the factor f 2(koh) wins and cancels the resonance before the peak at d, = 1.11

is achieved.

Another interesting phenomenon is that the value of the damping rate decreases con-

sistently when the the solid volume fraction increases. This is due to the fact that

an increase of solid volume fraction makes mud heavier and therefore more difficult

to move. This can be seen in figure (2-15) where the amplitudes of the interface are

plotted for a mud samples of the same chemical composition but for three different

solid volume fractions 4 = 0.08, 0.14, 0.24. It is clear that the amplitude of the

interface displacement decreases when the solid volume fraction ¢ increases.

1 0.2

025 0.15

0.1
0.15

0.1

0.05

0-
0 05 1 1.5 2

koH
(a) MB q = 0.07

0.35

0.3 UP2

0.15 0.150.025 0

0.1
0 r ""
0 0.5 1 1.5 2

koH
(b) MB q = 0.11

0.35

0.3

•S?0.25

0l 0

5 H1 1.5 2
koH!

(c) MB 0 = 0.17

Figure 2-9: Damping coefficient Do = 1o for three depth ratios d = 0.1, 0.15, 0.2.
Samples by Jiang & Mehta, MB ¢ = 0.07, 0.11 0.17
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Figure 2-10: Damping coefficient Do - kI for three depth ratios d 0.1, 0.15, 0.2.
Samples by Jiang & Mehta, OK 0 = 0.11, KI q = 0.12 and AK 0 = 0.12
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Figure 2-11: Damping coefficient Do = L for three depth ratios d = 0.1, 0.15, 0.2.
Samples by Huhe & Huang, data set A, 0 = 0.08, 0.14, 0.17
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Figure 2-12: Damping coefficient Do = L for three depth ratios d = 0.1, 0.15, 0.2.ko h
Samples by Huhe & Huang, data set A, q = 0.20, 0.24, 0.34

Wavenumber shift

The wavenumber shift corresponding to the mud samples MB q = 0.07, 0.11, 0.17

provided by Jiang & Mehta is plotted in figure (2-16) for three depth ratios =

0.1, 0.15, 0.2. As in case of the damping coefficient, it clearly possesses a peak that

is due to the resonance inside the mud viscoelastic mud layer which increases with

the depth ratio d. The wavenumber shift for mud samples OK 0 = 0.11, KI q = 0.12

and AK k = 0.12 is plotted in figure (2-17) for three depth ratios - = 0.1, 0.15, 0.2.

Note the difference in the scales. The wavenumber shift corresponding to the samples

KI q = 0.12 and AK ¢ = 0.12 are one order of magnitude smaller than the one

corresponding to MB 0 = 0.07 or OK q = 0.11.

The wavenumber shift corresponding to the data provided by Huhe & Huang is plotted

in figures (2-18) and (2-19) for the data set A and in figures (2-20) and (2-21) for the

142



0.06

00.os 0.2

0.10.01

0.5 1 1.5 2

koH
(a) Data set B 0 = 0.08

0.06

0.05
O

o.(b) Data 0.2

0.15 "'

0.1

0 0.5 1 1.5 2

(b) Data set B 4 = 0.14
koH

(c) Data set B € = 0.17

Figure 2-13: Damping coefficient Do = ' for three depth ratios =0.1 0.15, 0.2.koSamples by Huhe & Huang, data set B, = 0.08, 0.14, 0.17
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Figure 2-14: Damping coefficient Do = k" for three depth ratios = 0.1, 0.15, 0.2.ko h 01 01 .
Samples by Huhe & Huang, data set B, ¢ = 0.20, 0.23, 0.37

data set B.

To determine whether the waves become shorter or longer due to the interaction with

the mud layer, one needs to determine the sign of Ak. The sign of the wavenumber

shift Ak is determined by the sign of the real part of g(8, d,) plotted in the left

part of the figure (2-4). One can immediately infer that for a purely viscous fluid

g(9 = 0, d,) 2 0 is positive for all values of d,, and therefore the wavenumber shift is

negative for the entire range of frequencies. If the mud is purely viscous (no elasticity)

then the water waves become longer due to the interaction with mud layer.

When the elasticity becomes more important the behavior of the function g(9, ds) and

therefore Ak changes. When the parameter koH is lower than the the one at which

the mud layer resonates (let us call it (koH)res), (koH < 1 the wavenumber shift

is positive Ak > 0, meaning shorter waves. For larger frequencies (koH > 1 the)~'Vu)~~rb I~VVV-L~·LIVV rVIICY6UL IU~CI~I C ( (k(oH)res
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Figure 2-15: Amplitude of the interface displacement 1o I for different values of solid
volume fraction q. Data by Huhe & Huang (1994), data set A, q = 0.08, 0.14, 0.24

wavenumber shift is negative Ak < 0 (longer waves).
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Figure 2-16: Wavenumber shift Ak for three depth ratios 4 = 0.1, 0.15, 0.2. Samples
by Jiang & Mehta, MB ¢ = 0.07, 0.11 0.17

2.5.4 Mean horizontal displacement X10 inside the mud layer

The analytical expression for the mean displacement Xio(y') inside the mud layer was

computed previously in this chapter and is given by equations (2.4.49)-(2.4.51). In

the present section we will study graphically its behavior and use the experimental

data to compute the predicted values of Xlo for different mud samples.

First let us note that the shape of the profile of the mean horizontal displacement

is entirely determined by only two parameters: the dimensionless mud layer depth

d =d and the phase 0 of the complex viscosity y representing the proportions of
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Figure 2-17: Wavenumber shift Ak for three depth ratios d = 0.1, 0.15, 0.2. Samples
by Jiang & Mehta, OK 0 = 0.11, KI q = 0.12 and AK ¢ = 0.12

0.03

0.02

o oo.1

-0.02 -

-0.03 ,0.2o -
0 0.5 1 1.5 2

koHI
(a) Data set A q = 0.08

o0.0

0.02

, 0.01

-0.01

-0.0

-0.02(<ol

0. 5
0.10

0.20

0 0.5 1 1.5 2

koH
(b) Data set A q = 0.14

00.20

0.05 0.5 0.10

-0.01

-0.02

0 0.5 1 1.5 2

koH
(c) Data set A = 0.17

Figure 2-18: Wavenumber shift Ak for three depth ratios = 0.1, 0.15, 0.2. Samples
by Huhe & Huang, data set A, ¢ = 0.08, 0.14, 0.17

elasticity compared to viscosity (for a purely viscous mud 0 = 0 and for a purely elastic

mud 0 = D). The amplitude of the mean horizontal displacement is proportional to

the constant B10 given by the equation (2.4.44).

From the experimental data (see figure (1-3(b))) the value of the parameter 0 is

approximately 00 0.3 x j for the mud samples provided by Huhe and Huang and 9 ;

0.9 x 2 for the mud samples provided by Jiang and Mehta (see figure (1-8(b))). These

two cases represent a moderately elastic mud and a highly elastic mud respectively.

The profiles of the mean horizontal displacement Xo1 are plotted in figure (2-22(a))

for the case of a moderately elastic mud 0 = 0.3 x 2 and in figure (2-22(b)) for a

highly elastic case 9 = 0.9 x 1 for three values of the dimensionless mud layer depth

d8 = 0.1, 2, 5. For simplicity in both cases the value of the parameter B 10 was taken

to be unity Bo = 1.

In figure (2-22(c)) are plotted the profiles of the mean horizontal displacement for

145



<12Co

koH
(a) Data set A 4 = 0.20

x10 
-

0.15010o•0_ _.2 •. . . . . .

4

0

-1

-2

0 0.5 1 1.5 2

koH
(b) Data set A € = 0.24

0.15
0.10.... _ -- - -.. .. ..

0 0.5 1 1.5 2

koH
(c) Data set A 0 = 0.34

Figure 2-19: Wavenumber shift Ak for three depth ratios
by Huhe & Huang, data set A, ¢ = 0.20, 0.24, 0.34
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Figure 2-20: Wavenumber shift for three depth ratios
Huhe & Huang, data set B, ¢ = 0.08, 0.14, 0.17

= 0.1, 0.15, 0.2. Samples by

0 = 0.3 and for values of d, smaller than 1.5. From this figure it can clearly be

inferred that when the mud layer is shallow or comparable to the Stokes boundary

layer thickness d8 = , < 1.5 the profile is close to linear. It was checked that the same

linear profile with a different amplitude is observed for other values of the parameter

0. The amplitude of the mean horizontal displacement for the linear profiles defined

as Xloly,=_ is plotted as function of dimensionless mud depth d, for three values of

the elasticity parameter 0 = 0.1, 0.3, 0.9 in figure (2-22(d)). In summary the profile

of the mean horizontal displacement inside the mud layer is linear while d8 < 1.5 and

only its amplitude depends on the value of 0. It only starts to have a nonlinear shape

when the dimensionless mud layer depth becomes larger than d8 e 1.5.

When the mud layer is deep compared to its Stokes boundary layer thickness, the

profile becomes highly nonlinear and can reverse as it can be seen in figure (2-22(b))

for the case d, = 5. The extreme case of a deep mud layer of low viscosity d, = 15 >>
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Figure 2-21: Wavenumber shift Ak for three depth ratios • = 0.1, 0.15, 0.2. Samples
by Huhe & Huang, data set B, q = 0.20, 0.23, 0.37

1 is plotted in figure (2-22(e)) where one can see a strongly nonlinear profile.

Let us now obtain the values of the mean horizontal displacement inside the mud

layer using the experimental data available. We will not present the results for each

of the mud samples available but only for selected ones. From the data of Jiang

and Mehta, 1995 we selected the three MB mud samples corresponding to the solid

volume fractions ¢ = 0.07, 0.11 and 0.17. These mud samples have the same chemical

composition but different solid volume fractions.

As it was pointed out the two parameters that govern the shape of the profile of the

mean horizontal displacement are 0 and d8 = -. Given the experimental data (see fig

(1-8(b))) the parameter 0 is approximately constant 08 0.9 x 1 on the entire range of

experimental frequencies. However the dimensionless depth d8 = A depends strongly

on the frequency through the Stokes boundary layer thickness 6s = . As it

was inferred from figures (2-22), the profile of the mean horizontal displacement is

linear while the dimensionless depth is smaller than d, < 1.5, therefore it is important

to know the order of magnitude of the experimental Stokes boundary layer thickness.

The experimental data for the viscosity fixes the values of the Stokes boundary layer

thickness 6s that is plotted in figure (2-23(a)) for the MB mud samples. In the case

of the solid volume fraction 0 = 0.17 and € = 0.11 the mud layer depth should be

larger than 3m in order to get a non linear profile of the mean horizontal displacement

(d, < 1.5). In reality the mud layer depth is no more than d = im with a usual depth

of d = 10cm, hence the profile of the mean horizontal displacement will be linear for
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the entire range of experimental frequencies for the samples corresponding to ¢ = 0.11

and ¢ = 0.17. The mud sample corresponding to ¢ = 0.07 can potentially have a

nonlinear profile if the mud layer depth is sufficiently large.

From the data by Huhe & Huang three samples from the data set A that have a

solid volume fraction equal to 4 = 0.08, ¢ = 0.14 and q = 0.24 where selected

and the corresponding Stokes boundary layer thicknesses plotted in figure (2-23(b)).

From this figure it is clear that for all three samples considered the Stokes boundary

layer thickness is larger than 2m. Therefore for any mud layer that is thinner than

approximately 3m the profile of the mean displacement will be linear.

We notice that in the paper [6] Zhang and Ng obtained numerically nonlinear profiles

of the mean horizontal displacement Xlo using certain values of the dimensionless

parameters. In fact by translating these values into the dimensional quantities we

find that the mud layer depth d should be of order 10m, the same as the water layer

hight h. Under these conditions we naturally expect a nonlinear profile of X 10 and

our results are not contradicting the work of Zhang and Ng [6].

The mean horizontal displacement is proportional to the constant B10 given by the

equation (2.4.44):

712ko _ A12 Re d IA 2 P2(m). 2 d2
10o = 2 in 2  q b) 2 2kO - (2.5.22)

2 sinh2 q bo a 2 cosh q bo

The parameters governing the constant B 10 are clear. The first factor sh is

simply the square of the value of the dimensionless pressure on top of the mud layer.

The factors = (•and - are fixed for a given mud sample. The factors ko and

w2 depend on the frequency and the water layer depth only. Finally the depth of the

mud layer d appears explicitly in the expression of B lo.

Finally the experimental profiles of the mean horizontal displacement are plotted in

figure (2-24(a)) for the Jiang & Mehta's data (MB 4 = 0.17, 0 = 0.11, ¢ = 0.07)

and in figure (2-24(b)) for the Huhe & Huang data (data set A ¢ = 0.24, ¢ = 0.14,

¢ = 0.08). In all the cases the mud layer depth was taken to be equal to d = im and

the dimensionless water layer depth to koH = 0.7. These plots confirm that all the
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profiles of the mean horizontal displacement Xo1 are very close to linear except the

lightest mud from the data by Jiang & Mehta (MB, q = 0.07) that start to have a

nonlinear shape as d, approaches the value of 2.

2.5.5 The mean horizontal velocity Ulo inside the mud layer

The mean horizontal velocity ulo was computed previously in this chapter and is

given by the equation (2.4.37) and rewritten here for convenience:

o = -uil•o 1 - cosh(A*y') - A*y' sinh(A*y') + tanh(A*) sinh(A*y')

+ tanh(A*)(A*y') cosh(A*y') - cosh(Ay') + I cosh(A*y')12 + A--I sinh(A*y')12

- 2 anh(A* {A cosh(Ay') sinh(A*y')} + tanh(A) sinh(Ay')

-2 tanh( {A sinh(Ay') cosh(A*y')} + - tanh(A) sinh(A*y')
A *

+ Itanh(A) 2 I sinh(Xy')l2 + Itanh(A)12 I cosh(A*y')l2

A- Itanh(A) 12 cosh(A*y') (2.5.23)

Were the constant i'o is the amplitude of the mean horizontal velocity ujo:

Ulo = y2k1A12  (2.5.24)
2 sinh2 q

As in the case of the mean horizontal displacement X10, the profile of the mean

horizontal velocity uj 0 depends only on two parameters: the dimensionless mud depth

d, = 1 and the phase 9 of the complex viscosity /L indicating how strong the elastic

properties of the mud are compared to its viscous properties (for a purely viscous mud

0 = 0 and for a purely elastic mud 9 = 1). The profiles of the mean horizontal velocity

are plotted for three different dimensionless mud layer depths d8 = 0.5, 1, 2, 5 in
figure (2-25(a)) for 0 = 0.3 x and in figure (2-25(b)) for = 0.9 x For these plots

the value of '1o was taken to be one: Ulo = 1. It is clear that the profile of the mean

horizontal velocity becomes more and more nonlinear at when the dimensionless mud
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layer depth increases. In particular we observe a highly nonlinear profile for d8 = 5

in both 0 = 0.3 x × and 0 = 0.9 x E cases. The amplitude of the mean horizontal

velocity is much larger for the case of a highly elastic mud 9 = 0.9 x E than for a

moderately elastic mud 0 = 0.3 x 1. This is something we could expect from the

leading order results. In fact we saw that the amplitude of the leading order interface

movement is getting stronger when the mud layer becomes more elastic 0 --+,

The experimental values of the mean horizontal velocity were plotted for two samples

from the data provided by Jiang & Mehta (MB, € = 0.07 and q = 0.11) in figure

(2-26(a)) and for two samples provided by Huhe & Huang (data set A, k = 0.08

and ¢ = 0.14) in figure (2-26(b)). Because of a large difference in the magnitudes

of ulo the scales in the figures (2-26(a)) and (2-26(b)) are different by a factor 15.

Both for the data from Jiang & Mehta and from the data from Huhe & Huang the

magnitude of the mean horizontal velocity is larger for lighter muds. The magnitude

is significantly (more than 10 times) larger for the sample MB ¢ = 0.07 than for data

set A, ¢ = 0.08, because the MB 0.07 sample is highly elastic (9 = 0.9 x E), whereas

the data set A, ¢ = 0.08 sample is only moderately elastic (0 = 0.3 x 2).
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X 1o X 1o
(a) 0 = 0.3 x d=0.1, 2, 5 (b) = 0.9 x d,=0.1, 2, 5

U U.Z U.4 OU.

(c) 0 = 0.9 x Z2

X l o

d. = 0.1, 0.5, 1.1, 1.5

0.4

15

-0.1 0 0.1 0.2 0.3

X 1o
(e) 0 = 0.3x Z d =15

Figure 2-22: The profiles of the mean horizontal displacement Xlo
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(a) Samples by Jiang &
0.17, 0.11, 0.07

Mehta, MB, 0

0.24

1.5 2

koH
= (b) Samples by Huhe & Huang, data set A

0 = 0.24, 0.14, 0.08

Figure 2-23: Experimental Stokes boundary layer thickness

Xlo Xlo
(a) Samples by
0.17, 0.11, 0.07

Jiang & Mehta, MB, q = (b) Samples by Huhe & Huang, data set A
0 = 0.24, 0.14, 0.08

Figure 2-24: The profiles of the mean horizontal displacement Xlo for d = im and
koH = 0.7
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U10  U10

(a) 0 = 0.3 x, d8 = 0.5, 1, 2, 5 (b) 0 = 0.9 x, d8 = 0.5, 1, 2, 5

Figure 2-25: The profiles of the mean horizontal velocity ulo with Ulo = 1

U10

(a) Samples from Jiang &
0.07, 0.11

Mehta, MB,

U1 0

4 = (b) Samples from Huhe and Huang, data set
A, 0 = 0.08, 0.14

Figure 2-26: The profiles of the mean horizontal velocity ulo for selected mud samples.
Different scales are used for the two plots.
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Chapter 3

Narrow-banded waves propagating

on top of a shallow semi-infinite

mud layer

In the present chapter we will apply previously obtained results to study the propa-

gation of narrow-banded water waves on top of a shallow mud layer. First the case

of a semi-infinite mud layer will be considered, then the water waves interaction with

a mud layer of a finite length will be studied.

In the case of a semi-infinite mud layer the problem can be decomposed into two

domains: the '-' region where there is no mud and the '+' region where a shallow

layer of mud is present (see figure 3-1). The problem can then be solved separately

for each of the two regions. The two solutions will then be coupled by the boundary

conditions at the edge of the mud layer, which are the pressure and the horizontal

flux continuity. All the quantities in the '-' region will be indexed with a sign '-' and

the quantities in the '+' region will be indexed with a sign '+' respectively.

Before we are able to solve the long wave equation (2.4.54), we need to obtain an

explicit expression for the slowly varying amplitude of the water waves.
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'-' region '+' region

h Water layer

Mud layer

Figure 3-1: Narrow-banded waves on top of a thin semi-infinite mud layer

3.1 Leading order solution

As it was shown in chapter 2 only the amplitude of the leading order wave problem

is affected by the presence of a thin mud layer. In particular at the leading order

there is no reflected wave generated at the edge of the mud layer and the incoming

wave from the '-' region continues its propagation in the '+' region. Thus the velocity

potentials (D- and 44- in both '-' and '+' regions are both given by equation (2.4.2):

cosh Q
2 cosh q
cosh Q(D-i A+(xx, t( )
2 cosh q

the velocity potential is continuous at the boundary (x, xl) = (0, 0).

( I) = ((D+1)Io

which implies the continuity of the amplitudes at the edge of the mud layer

A- (xl, tl) o = A+(xt, ti) (3.1.1)

156



3.2 Slow evolution of the short waves' amplitude

A(xl, tl)

3.2.1 '-' region

In the '-' region where the mud layer is absent we consider the propagation from

left to right of the narrow-banded waves, which are modeled by the superposition of

waves having very close frequencies. We consider two waves of the same amplitude

with dimensionless frequencies 1 - et and 1 + cQ with Q << 1. The corresponding

dimensionless wavenumbers are respectively ko - eK and ko + eK so that the free

surface displacement r- in the '-' region is written as:

o= 1 Ao ei[(ko-,K)x-(1-i)t] + Ao e(ko+e))-(1+()t] + C.C.

= Ao e(ko-t) ei[-eK+e + eiEK-Eft] +
2 2

-= -ei(kox-t) cos(eKx - Eat) + c.c.2
SA cos(Kxl - Otl)ei(kox- t) + c.c.
2

Finally defining the slowly varying amplitude A-(xl, tl) of the short waves

7- = A-(xl, ti)ei(kox - t) + c.c (3.2.1)

A-(xl, tl) = Ao cos(Kxl - Otl) (3.2.2)

In the '-' region the solvability condition (2.4.22) in the absence of the mud layer

(ki = 0) is simply:

A- + CgA- = 0 (3.2.3)

and provides a relationship between K and Q:

Q = CgK (3.2.4)
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3.2.2 '+' region

Let us now deduce the explicit expression of the slowly varying free surface wave

amplitude in the '+' region where a thin layer of mud is present. First note that the

mud layer does not introduce any inhomogeneity in time and we expect the amplitude

A+(xl, tl) to be of the form:

A+(xl, tl) = [Bj+(xl)eflt' + B+(xl)e - iant] (3.2.5)

This amplitude should satisfy the solvability condition (2.4.22), this time with a non

zero value of kl

At + CgA = iklCA +  (3.2.6)

This gives:

[iQB+ + CgB+~x] ei"t' + [-iQB+ + CgB2+x] e- '" t = ikiCg [B+ei'nt + B+e-jit1]

This gives the governing equations of the variables B + and B+:

B+ (ikC, -i)B+ = i(ki - K)B+

B+ ~ = (iklCg + if)B
2,xi += B = i(ki + K)B + ,

The solutions are straightforward:

B+ = .+ei(ki-K)x,

B + = i+ei(kx+K)•,,

with B+ and B+ being constants. The expression of the free surface wave amplitude

in the '+' region is then

A+(xi, t) = eilxl [Bei(-Kxi+t-) + f- ei(KI -
B1e)] (3.2.7)A+(z, t 2 kll
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The constants B+ and i+ are determined by the boundary condition (3.1.1). In fact

the boundary condition (3.1.1) is rewritten as:

[e"•t' + e-it] - [B+(O)eilt + B+(0)e-il]

B 2 eintl+ +e-nt

the constants B+ and 4+ are then

B+ = Ao

B+ = Ao

Finally we can write the expression of the free surface wave amplitude in the '+'

region:

A+(xi, ti) = Aoeiklxl cos(KxI - Ptl ) (3.2.8)

3.3 Long-wave equation

Now that the explicit dependence of the slowly varying free surface wave amplitudes

on xl and tl is found, the long wave equation (2.4.54) can be solved analytically. It

is rewritten here for easier reference:

ýoo,tjtl - H4oo,x = (A*A) (A*A)2 (A*A)2 4 sinh2 q
(3.3.1)

We will need to solve separately the long wave equation in the '-' and '+' regions and

then couple the solutions using the second order boundary conditions.
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3.3.1 Solution to the long wave equation in the '-' region

First let us evaluate the right-hand side of the long wave equation. To simplify the

notations we introduce a new variable

T = F(xl, tj) - Kxl - Otl (3.3.2)

then we have

A- = AocosT = A0 (es" + e-')

24
A-_ A_ (2 + e2i + e 2

i)

(2iKe2i * - 2iKe- 2i* ) = i-A2 (e2i~
2

(-2ine2i4 + 2ie-2i'k) = -Cg_. Ao (e2i, _ e-2ii)

The right-hand side of the long wave equation (3.3.1) is then

=iK A[ (e2 N e-2i) + koC0 (e02i2iK 2 2 sinh(2q)

ikoK A + C 9i heN (e2i-2iT

• -o(4 sinh(2q)

iao (e2i -_C2iM

RHS- = iao (e2i~" - e- 2i )

- 2i]

(3.3.3)

where the real constant ao is defined as:

koK
o= A 04

C+
sinh(2q)

(3.3.4)

The right-hand side dictates the form of the particular solution Poo to the long wave

equation in the '-' region:

P6(x, 7tl) = C- (e2i' _ e- 2i )
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The value of the constant C- is determined by substituting the expression of Po into

the long wave equation (3.3.1). This gives

(-4Q2 + 4HK 2)C - = iao

the constant C0 is finally equal to

- = (H (3.3.5)
1 4K2(H - C2)

Note that the constant C- is purely imaginary and therefore the particular solution

is real and equal to:

P6o(xl, tl) = +Ce2iT + c.c. (3.3.6)

Physically the particular solution is the bound wave generated by the slow amplitude

variation and propagating at the group velocity.

Now that a particular solution was found let us find the solution to the homoge-

neous equation. The homogeneous equation satisfied by the velocity potential oo0

(physically the free wave) is simply the wave equation:

4- - H •- = 0

The most general solution is a superposition of two waves traveling with velocity /I

to the left and to the right. The radiation condition eliminates the existence of the

right-going wave in the '-' region, as the wave can only be generated at the edge of

the mud layer and propagate to the left, as opposed to being generated at -oo and

propagate to the right. Therefore the oscillatory part of the homogeneous solution

Goo(xi, ti) depends only on one variable xl + -i-tl •.
As the presence of the mud layer does not introduce any inhomogeneity in time, the

solution can only be of the form

Goo = xlG- + - e 2i K (x l + t ) G e- 2iK (x l + t ) (3.3.7)
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where the term x Go was introduced in order to allow the existence of a current in

the left region that will match the boundary condition at the edge of the mud layer.

Note that any constant would also be a solution of the homogeneous long wave equa-

tion, but a modification of the velocity potential by a constant does not affect any

related physical quantity, since they are obtained by differentiation.

The values of Poo(xz, ti) are real and as the velocity potential oD-(xl, tl) = Poo(xl, tl)+

Goo(xl, t) is also real, hence the values of the Goo(xl, t) have to be real as well.

Therefore

G2 = GY (3.3.8)

The total solution 4oD is the superposition of the particular solution and the solution

to the particular equation:

-00o(X, tl) = P6o(xi, ti) + G-o(x1, t1 )

and its final expression is:

So(x1, t1) = xlo + [iGe2iK C(x1~ 7t) + 1e2i~ + c.c] (3.3.9)

3.3.2 Solution to the long wave equation in the '+' region

Let us now compute the right-hand side of the long wave equation in the '+' region:

(A+*A4

(A+*A

Ao(
A+ = AoeiklXlcos = ei[(K+kl)x-Qtl] +

A+ = A (2e-2kI x + e2i[(K+ik)xtl-ti] + e2i[(K-ik')x-Oti)

) = (-4kie-2ki· l + 2i(K + ik )e2i[(K+iki)x• 1- l ] - 2i(K - ik)e - 2 [(Kiki)xl - t1])

iK 2 [2ie-2kx + ki e2i[(K+iki)x-nt- ( k- e2i[(K-iki)xj-Ot]

2 0[ K K) K
)t •Ao ( 2i[e2i[(K+ikl)xi-tli] + 2 iQe-2i(K-iki)x1-nt]

SC 9 iK A [-e2i[(K+ik )xj-ot1I + e-2ij(K-ikI)x-nt]
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The right-hand side of the equation is then

RHS + ikoK 2i ke-2ki'x
4 - 2i e- K%Z- +K

K sinh( q)
K sinh((2q)

= iao 2i3oe- 2k lx + [1 + i6o1 e2i[(K+iki)x - 0tl ]  [1 io] e- 2i[(K- ik)xl - t t l]

with the real constant Po defined as

k1
o = 1K

1
Cg1+ sinh(2)sinh(2q)

(3.3.10)

By linearity the particular solution P+ can be obtained by linear superposition of

Po+(x1 , tl)

P,+ (x1, tl)

P2(x 1, tl)

= Co+e-2ki xl

= l+e-2i[(K-iki)x1 -ntl]

- 2e+ 2i[(K+iki)xz-0tjI

(3.3.11)

(3.3.12)

(3.3.13)

The constants Co, C+ and C+ can be determined by substituting the expressions of

Po+(xl,tl), P1+(x1,tl) and P2+(xl,tl) into the long wave equation (3.3.1).

For the constant C+ we get:

O,tltl = 0

PosX,+l = 4(kI')2 Co+e-2kif l

The partial long wave equation gives:

-H x 4(k,) 2Co+e-2 k'lx = -2aooe- 2kixj

therefore

O 2H(kf) 2 (3.3.14)
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For the constant C+ we get:

P1+

Pi+1,X121

- _42ý+e
- 2i[(K

- ikc)x
l - •2 l ]

S-4K2 (1 A)
The partial long wave equation gives:

-4Q2 + 4HK2 (1 -k_ + = -(1 - ioo)iao

(1 - i/o)iao

4K 2 [H

S-70oC1

i 
) 2

k'jc - C g2 ]

iao

4K 2(H - Cg2)
1-

-2iH kl-2iH-C2 K

where the complex constant yo was defined as

1-i
7Yo

.o
2- 9

1- 2i H _ _ H(HCK K H-C Ki

Note that when there is no mud to the right, k' is equal to zero and yo = 1.

For the constant C2 we get:

P2,tit1

2,1i X

S _4-2+ 
e - 2i[(K+ik

L )x1 -2t 1 ]

= -4K 2 (1

The partial long wave equation gives:

-4Q 2 + 4HK2( C+ = (1 + iPo)i'oo
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it is clear that

C+= = -7Y C) = 7C (3.3.16)

Finally the particular solution is real and has the following expression:

Po(sXI, t1 ) = e- 2 kgx k [ 0 ) + (7 * e2i* +c.c.] (3.3.17)

The homogeneous solution is again the solution of the wave equation:

1oo, - HQoo, • = 0

The radiation condition says that there is no wave generated in the infinity and

therefore the free wave can only propagate to the right in the '+' region.

Goo = e-2+iK (x- / t) 2I + 2iKý(l-vHt1) (3.3.18)

As opposed to the '-' region where short waves exist and propagate, the short waves

are sooner or later damped in the '+' region. Therefore we cannot physically accept

the mathematically acceptable steady current in the '+' region, which was accepted

in the '-' region.

As the values of P+(xl, tl) are real and as the velocity potential (4+ (xI, ti) is real the

values of the G+(xl, tl) have to be real. Therefore

G = G+" (3.3.19)

Finally the velocity potential on the '+' region is the sum of a particular solution and

the solution to the homogeneous equation:

P+o(Xj, t1 ) = Goo(xi, ti) + PO+(xl, t1 )
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and its final expression is:

oo(x,tj) = oe 2kx + [Ge2iK7(x1-Vti) 1+ 7 -e2kk xl2i1W + c.c.] (3.3.20)

The constants appearing in the expressions of 4oo and 4)+ will be determined using

the second order boundary conditions.

3.3.3 Second order boundary conditions at the edge of the

mud layer

The boundary conditions at the edge of the mud layer (x, xl) = (0, 0) are the pressure

and horizontal flux continuity. They are at the second order:

(W(w)-W)+

+ + 1+(D,X + ZX)10 ( oX + ,,)1

We are interested in the zeroth harmonic only and the corresponding boundary con-

ditions are:

( (Wi) (w)+(lo) 10 = ( oo, 1)0o

The expression of the zeroth harmonic of the second order pressure was found in

previous chapter and is

( - - IA 12
4 ih 2 q cosh(2Q)
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As the amplitude of the free surface waves is continuous through the interface we

obtain:

(ýOO,ti) 10

(4oo,i) 10

= ( oo,tl)1o

= (+oo,,) 10

(3.3.21)

(3.3.22)

3.3.4 Constants in the expressions of the velocity potentials

To get the final expression of the velocity potentials we need to determine the values

of the three constants Go, G- and G2 appearing in the expression of the the ho-

mogeneous solutions G-o(xl, t) and the two constants G, and G+ appearing in the

expression G+o(x1 , ti).

Let us apply the boundary conditions by starting by the continuity of the pressure

at the edge of the mud layer (eq. 3.3.21). In the '-' region we have

SPoo,t, (xl,tl) + Goo,t (x 1, tl)

= 2iQ(-C')e-2iW +c.c.

= 2iQGe2iK (zr+- t, ) + c.c.

Thus

oo,ti (x, ti) = 2it(-CT)e-2i• + 2iGe2iK•L (xi'+vti) + c.c.

and at the edge of the mud layer xl = 0

(oo,t)1o = [2iaGe 2ilt, - 2i{e2i" t i +c.c.]

= [2i (G1 - C e2it, + c.c.]

(3.3.23)

(3.3.24)
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In the '+' region we have

=Poo,t1(x, tl) + G (o,t1(x, t)
= e2k'xl [2it 0(-Cj)e-2i* + C.C.

= 2iQ• e-2iK ( -it) + C.C.

Thus

, (xD , t1) = 2i+Iyo(-O;)e-2ki•'•e-2" + 2i + e-2iKe (x'- t(i') + c.c. (3.3.25)
0O0',t (xi, ti) =--~ o ý)

and

(I+,t 1) = [2inie2iin- 2iQyo 1e 2i2 + c.c.]

= 2in - Tod) e2 iO + c.c. (3.3.26)

Equating the expressions of (4o,t,) o and (oo,t,) 1o (equations (3.3.24) and (3.3.26))

harmonic by harmonic we get:

= +t -'0o (3.3.27)

Now let us apply the flux continuity boundary condition (3.3.22) at the edge of the

mud layer. In the '-' region we have:

= Po~o,xl(xx,tl) + Goo,l(xx, t)

= -2iK(-QC)e - 2i i + c.c.

= + 2iK Cg Ge2iK (x1l+JHt1)

=~ vo+L -- ,1

00o, 1 ( x, tl) = G o +

±C.C.]

+ 2iKC-e- 2i* + Goo, l(xl, tl) + c.c.]

(3.3.28)
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(+Goo,tl (xl, 7)

Poo,tl (xx, tl)

Go00,t (Xl, tl)

(D -00,Xj (Xj tj)
P60-,Xj (Xj tj)
G-00,Xj (XI tj)

2iK-Cg G, e 2iK ((x1+ t)



and

(@oo, 1x) 10 = Go + 2iK ie 2 itl + 2iKC e2iatl

oo 0 1 H[ IC CT
=G 0

= Go + 2iK g
VH-

CTI09
e2ifltl + C.C.

In the '+' region we have

Thus

op,,1 (x , tl) + Go,51 (x1, t )
= e- 2kl [-2klo + - 2i(K - ik)7o(-Ci[)e-2i + c.c.]

= -2iK Og + -2iK-(xl-Vtl) + C.C.

= e 2kl x [-2k~&o - 2i(K - ik')7o(-C1)e- 2" c.c]

-2iK C•• +e- ~C(i t ) + C.C. (3.3.29)VH-t-~c

and

(o,l,)1o = -2koC + 2iK
v/ftH -G+ + e2 i ti + c.c.

Equating the expressions of (oo,xl,) 1 and (o,x) 1o harmonic by harmonic we get:

- -2k1GCo
= -G, + gIH+ -

G, + --- CT
9

1 -ik) 70oC

This, together with the pressure continuity boundary condition, gives us a system of

three equations for three unknown constants Go, G-, G+ and Gt.

The expression of Go is clearly

G- = -2k'Co+ (3.3.32)
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To determine the expressions of the constants Gj and G+ we need to solve the

following system:

G, + -TIC9
= -1+ 1 F

-G +-
C9 (1

-k o
Kj

The sum of the last two equations gives:

2Gi + --- C, - C- = -CYOi
g9

and the expression of G, is

12G, = -Cý2 1 - Yo - (3.3.33)

The difference of the same two equations gives:

-c 1  Ci = 2Gt - yoI- (1
C9 Cg

and the expression of G+ is

- (1 - 70) -
C, 11

- o (1 (3.3.34)

3.3.5 Final expression of the velocity potentials

Let us now summarize the final expressions of the velocity potentials in the '-' and in

the '+' region.

In the '-' region we have:

=- xG + (+1e2i* + 2eiK n(xi±+vHti)
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o-o(X 1 , tl) +c.. ) (3.3.35)

+ C 1-i K TyoCý

k1- i- ]
K

k%,- i K) 70CKi

+ = 1
2c



with constants Go, Co, C

Go

Co+
= -2k'i +

2H(k'1)2
koA2
8Hk'

iao

1 -
G= -C, 1 - Yo -2 [1

sinh
sinh(2q)

ikoA2
16K(H - C2)

- 0 (1
koAo ( + sinh(2q)

3K(H -
32K(H - C )

(3.3.39)- o (1 -

In the '+' region we have:

[(I 

Xl, tl) 
= 

o+e-2k 
xi

+ [0 e 1 o -2k'xl2i +e -2iK (x-t) c.c. (3.3.40)G+ , G 1 + ",c.c (3.3.40)

with constants 'y, /3o and G+ being defined as

1 - ifo

1 - 2i H H
H-C• K H-C K

ki
/o = KK

1
Cgsinh(2q)

ao kK
4

1
2 -(1

+ g9
sinh(2q)

- ~0o)C
ikoA 1+ C

32K(H - Cg2)

1 -70

-(1 - 0)

(3.3.41)

(3.3.42)

(3.3.43)

K(

9 11 -o(1 -
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(3.3.36)

(3.3.37)

(3.3.38)

1 - Yo -

and G1 being defined as

k(-i
K1

k)(



3.4 The second order mean horizontal velocity

The second order mean horizontal velocity is U = 4 o0,.X + 4 o10,, = 0oo,xi, where

the fact that the potential 1 0o is independent of the fast scale x was used. The

expressions of oo,x, and oPo,x were computed previously in both '-' and '+' regions

and are given by equations (3.3.28) and (3.3.29).

In the '-' region we have:

00, l,tl) G o 2o + iK-Sij e HiK(x Vt) + 2iKC e2ij + c.c.

This expression of the velocity has three distinct parts: the mean current, the free

wave and the bound wave. Let us study each of the components separately. First we

introduce the new notations:

(I,x, (x, tl) = =•-( 1, t) = (U-) +U + (3.4.1)

Where U- is the total mean velocity in the '-' region, (U-) is the mean current, U_

is the velocity of the free wave and U/ is the velocity of the bound wave.

The mean current (U-) in the '-' region is:

(U-) = Go = o- = -U, (3.4.2)

Where the constant UM represents the amplitude of the mean current at the edge of

the mud layer and is given by:
koAU -

M; 4H

Even though the mean current is constant in the '-' region, it will decay exponentially

in the '+' region. This is the reason why we introduce the new notation UM.

The steady current is always negative and is generated at the edge of the mud layer.

As long as the mud layer exists in the '+' region, there will be steady flux to the left

in the '-' region. As will be seen later, this is due to the fact that the tl averaged

pressure (p" )) is increasing with x, in the '+' region and is pushing the fluid to the
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left, creating a negative current in both '-' and '+' regions.

The free wave velocity Ua in the '-' region is:

S= 2iK- g Gje2giK(x+Ii t) + c.c.

= 4K CR {ie2iK (xe tr)N/'H- I
koA• + sinh(2q)

8(H - C )

-- X
8(H - C2 )

x 1-YO- 1-o

e2iK (x+ t )e V-H-- o - 1 -C,

cos 2K- (x + Ct + F
I /1J

Where 0- is the phase of the complex parameter 1 - 7o - 4E

Finally the free wave velocity in the '-' region Uj is

a;p = U Cos [2K--(xi + vit) + F +

+ 70]

(3.4.3)

with the amplitude Uf given by:

koA ( 1 + sinh(2q)
Uf = -

8(H - Cg2) (1 -- Yo 1 - oC9

The velocity U1? of the bound wave is:

Uý, = 2iK~Ce 2i* + c.c. = 4KR {iCOe2i}I

sinh(2q))
koA2

A - cos(2xF)
4(H - C2)

Or, written in a more compact form:

11j = Us cos 2 Kxl - Qtl + - (3.4.5)
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with the amplitude Uj

Us= sinh( 2q) )koA g  (3.4.6)sinh(2q) 4(H - Cg2)
In the '+' region the total mean velocity +oo,1 (xl, t) is given by the equation (eq.

3.3.29) and is rewritten for easier reference below:

(I00,xl(xl, tl) = -- 2kf Coe-2k'x1

+ [-2iK v e-2iK (xv t) + 2iK 1 - ik - oCie-2k• •e 2il + c.c.

As in the case of the '-' region the expression of the mean velocity I0,21 (xl, tl) has

three distinct parts: the mean current, the free wave and the bound wave. Let us

study each of the components separately. First we introduce the new notations:

I),+ (x1, l) = U+(x1, tl) = (Uk) + 1 + U,- (3.4.7)

Where U+ is the total mean velocity in the '+' region, (U+) is the mean current, UF+

is the velocity of the free wave and U+ is the velocity of the bound wave.

The mean current (U+) in the '+' region is:

(U+) = _2kloe-2+eki - ko= -2ki= T = -2kIx
4H Me

Where the parameter U+ represents the amplitude of the mean current at the edge

of the mud layer and its expression is given by:

U kA (3.4.8)

The last expression shows that the mean current is also negative in the '+' region

and decreases exponentially with kixl. Naturally at +oo when the short waves are

totally damped the tl averaged mean current (U+) vanishes.
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The free wave velocity U1 in the '+' region is:

--- = -2iK 1 (x1 - V 'ti) C.C

= -4K W {i-G+e2iKA(xii)

k-A c (1+ C9
8( 0H sinh(2q)
8(H - C ) (1i - o) + - 7o (1 k- I -}2iK (xit1)

K
koA C 1 +

- o (1- i)] cos 2K•09 (x - V/Ht l )
[v/H-

Or, in a more compact form the free wave velocity U+ in the plus region is:

=U co-s2K C" (xi - V/ut l )-X co UF CSIV'ft

with the amplitude U;F of the free wave given by:

koA 21 + C
UF+ 0 A H ( sinh2q))

8(H - C2) x (1- yo) +- 1

The velocity U+ of the bound wave in the '+' region is:

UBA = 2iK 1 -i- )- o e-2k~1e2i + c.c.

= 4KR i (1-i k) oCe-2kixle 2iP}

sinh(2q))
koA e-2kx{ (1

4(H - C2) e \

e- 2 x cos 21F
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sinh(2q)
sinh(2q)

8(H - C )

x (1- 'o) + -C9

(3.4.9)

- Yo (1 (3.4.10)

= -(1 K)

koA (1 + sinh(2q)

4(H - 92)

°7e2i }

Y
X.. /

- . - --

-F +7]

- + 7]



A more compact expression is

U•= U+e- 2kix1 cos2 KKX tl - + (3.4.11)

with the amplitude U+ defined as:

U °2 o (1 - iZK) (3.4.12)

S  4(H - Cg2 )

Note that the factor 4 is common to all six constants UM, U+ , UF, U+ , Us and

U+ can be rewritten using the dispersion relation (2.4.5) in terms of koH only:

koAO k2Aj A2SkA _ A(3.4.13)
4H - 4koH 4koH tanh2 (koH)

Let us summarize the results for the mean velocity.

In the '-' region we have:

U-(xx,ti) = (U-)+U.- + + (3.4.14)

(U-) = -U M  (3.4.15)

u- U= cos [2K ( rx + VHt1) + + i (3.4.16)

Uj = Us cos2(Kxl - Qt1 + -) (3.4.17)

With the constants UM, Uf and Ug defined as

k0oA2
U• = (3.4.18)

2koA2C i h (1 + 1 o i

SkoA 2 sinh(2q) (3.4.20)

4H (1c- )
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In the '+' region we have:

U+(xl,tl) = (U+)+U+ +UB+ (3.4.21)

(U+) = -U+e - 2kix (3.4.22)

+= UFcos 2K--(x- v-t) - 0+ +7] (3.4.23)

U+ = U+e- 2k 1Z cos [2(Kxl - Otl) + r] (3.4.24)

With the constants UMj, Uf and Uý defined as

U = koA (3.4.25)
S 4H

2 -o (1 + kK
U = ( H -o + 1-7 o 1 -i (3.4.26)
F 4H 2( 1 --) C, K _\--)

U = 4H (1~1iq) -(.Y i (3.4.27)

Note that all the amplitudes depend only on two parameters: the dimensionless

depth koH and the fraction - representing the ratio of the characteristic length

of modulation to the characteristic length of damping. The constant mean current

(0OO,1,) is the same in both '-' and '+' regions, depends only on the dimensionless

depth koH and is equal to

(oo koA A 0 (3.4.28),X - 4H 4koH tan(koH)

The amplitude of the mean current j(Qoo,x,)( is plotted in figure (3-2). From this

figure it can be seen that the value of the current is singular for koH = 0 and the

theory is invalid for too shallow water, as the theory was developed for a water layer

of intermediate depth koH = 0(1). The current is weak in deep water and increases

in intensity in shallow water.
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koH

Figure 3-2: Amplitude of the mean current (0oo,x1) = UM = U+

3.5 Second order mean pressure

As it was shown in chapter 2 (eq.

following expression

2.4.19) the second order mean pressure has the

pw ,t - IA|2 cosh(2Q)10o 4 sinh2 q

The last term on the right-hand side can easily be evaluated in both '-' and '+'

regions.

In the '- region we have:

IA-12 = A cos2 I =A4 [2 + (e2i + C.C.)

The first term of the right-hand side of the second order mean pressure has been

computed previously and is given by the equation (3.3.23):

S[2itie2iKýH (xi+Viti) - 2inCe 2 i + C.C.]

The second order mean pressure in the '-' region becomes:

cosh( 2Q)A2 2
10 8 sinh2 q

2i[ G e2iK • (xj + v-t)
[2iQ2Gje V

- cosh(2Q) Ao2) e2ixF
16 sinh2q
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The averaged in tl slowly varying pressure is

cosh(2Q) 2 koA' cosh(2Q)(P ) = - A =-) = A20P0o-8 sinh2 q 0 4 sinh 2q

In the '+' region we have:

IA+2 Ag2e-2kx1 cos2 = -2xit [2 + e + .)

The first term of the right-hand side of the second order mean pressure has been

computed previously and is given by the equation (3.3.25):

00,tl(xi-,,t . 0(,(X, t1 ) = [2iG+e2iK (x-it)- 2ifyl e- 2 kioe 2iTe + C.C.]

The second order mean pressure in the '+' region becomes:

(w)+ _ cosh(2Q) A -2kxip ()+ =e 8 sinh2 q

- 2i +e-2iK•(x•-it1) - 2if r _- cosh(2Q) A e- 2k 1e2i• + C.C.
-2.iQ (2f o C- -16 sinh 2 q 0

(3.5.2)

The averaged in tl slowly varying pressure is

(pw)+) _cosoAO )A~e2kt a _ koAI cosh(2Q) e 2 k1xZ

8 sinh2 q 4 sinh 2q

Note that at large values of xl the averaged pressure vanishes

(p(W)+) ,> 0

and this term is due exclusively to the free wave generated by the presence of the

mud layer and traveling with the velocity VHI.

In particular we see that the averaged in t1 pressure increases with xl. Therefore we

expect to have a mean current independent of tl and going to the left.
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3.6 Second order mean free surface displacement

As it was shown in chapter 2 (eq. 2.4.20) the second order mean free surface displace-

ment has the following expression

IAI2

r10 = -o"0,tl -4 sinh2 koH

This expression is in all ways similar to the second order mean pressure expression

except for the factor cos 2Q. The expressions for the free-surface displacement can be

deduced right away.

In the '-' region we use the equation (3.5.1) and replace cos 2Q by 1 to get:

Ac A-[i
710 = A - 2i e 2iC A2 e2i + C.C.

8 sinh2 koH 1 16 sinh2 koH

Similarly to the case of the mean long wave velocity, the last equation shows that

the mean free surface displacement 7lo consists of three distinct terms. The first one

represents a constant free surface set down and is due to the short waves modulation,

the second is the free wave contribution and the last term is due to the short waves

modulation. Let us study each of the terms separately. Let us first introduce short

notations for each of the above mentioned terms:

rio(xI, tl) = N-(xl, ti) = (K-) + Af + KN (3.6.1)

where (.N-) is the constant free surface set down,AJ is the mean free surface dis-

placement due to the free waves generated at the edge of the mud layer and N/J is

the mean free surface displacement due to the bound waves. Let us now compute the

expressions of each of these three terms.

The constant free surface set down in the '-' region is

(n-) = -N, (3.6.2)
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with NM being the amplitude of the set down, which expression follows straightfor-

wardly from the equation (3.6.1):

(3.6.3)N- sinh2

M 8 sinh2 koH

The mean free surface displacement KV due to the free wave generated at the edge

of the mud layer is:

= 24i• •i, e(.x+.H tl)}

= -4QR fiGe2iK (xe + t)}

koA2(1sinh(
2q)

8K(H - Cg2) {1 -Y0-

8oAH
8H C

1 + g+ sinh(2q)

1- I
- ~o - C9-170 (

x cos (2K5 (x +vfH (3.6.4)

where the constant GI was replaced by its previously computed expression (3.3.39)

and where 0f is the phase of the complex parameter 1 - To - - o (1 - i).

The mean free surface displacement A(. due to the free wave can be rewritten as

= NN cos (2K (xl + VHtl) +) (3.6.5)

With the amplitude Nj of the mean free surface displacement due to the free wave:

koA 2NF= 8HCg9
1+ C9P

sinh(2q)

13I11 - HH
1 - -o - - o (1 - (3.6.6)
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The mean free surface displacement .jh due to the bound wave generated by the slow

modulations of the short waves envelope is:

2iQ1C - 16 sinh2
16 sinh2 koHJ

e2i}

1 A 2

- 16 sinh 2 koH)

+ C,
sinh(2q).,

e2i

koA(2
16K(H - Cg2)

1 A sinh2
- 16 sinh2 koHJ

(+ h )

sinh(2q)
1+ C
( Ch(q

(1 S,

1 K H(1- + K H  cos [2(Kxl- t1) + 7r]
-) + ko sinh2 koH 1 X -H2

koH

cosh2 koH
cos [2(Kxl - Qtl) + 7r]

(3.6.7)

Where we used the dispersion relation (2.4.5) and the expression (3.3.38) of the con-

stant Ci-. Finally the mean free surface displacement Ka, due to the bound wave

generated by the slow modulations of the short waves envelope is:

Ar; = Ng cos [2(Kxl - Otl) + 7r] (3.6.8)

with Ný being the amplitude of the surface wave:

C+ gsinh(2q)
C2 )

+(1-# H

+koH
cosh2 koH

In the '+' region we use the equation (3.5.2) and replace cos 2Q by 1 to get:

+o = -- Aoe-2k''x
=710 8 sinh2 q

- [2i~e-2iK~(x1-vt) 2iny_ CT 1 Ao2 e- 2k'xl e2i2
16 sinh2 q 0

(3.6.10)
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4HkoA
4HK

e2i

koAg
4H C,9

C9koAgN- = 44H (3.6.9)

+ C.C.]



As in the case of the '-' region, the last equation shows that the mean free surface

displacement 7+o consists of three distinct terms. The first one represents a constant

free surface set down and is due to the short waves modulation, the second is the free

wave contribution and the last term is due to the short waves modulation. Let us

study each of the terms separately. Let us first introduce short notations for each of

the above mentioned terms:

+(x1 , ti) = nA+(x, ti) = (Anr) + A• + •N (3.6.11)

The constant free surface set down in the '+' region is

(Af+ ) = -N e -2 kx1'  (3.6.12)

with N + being the amplitude of the set down, which expression follows straightfor-

wardly from the equation (3.6.10):

N+ sinh k = N  (3.6.13)8 sinh2 koH
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The mean free surface displacement ANr due to the free wave generated at the edge

of the mud layer is:

=-- 2• -2in• -2iK (xl-- jtL)

S4 ( 1 + sinh(2q))S 32K(H - C/2)

0  (1 + sinh(2q)

8K(H - C2) L

SkoA 9 1+ sinh(2q) R
S8H " 1 - H

koA 2

- 8H g

-(1 ) -{ -0 (1

Og

{
1+ C9Ssinh(2q)

C2

1- H  (1H

1 -Y

k) -2iK (xe1-KIitI)
K)_

K)]

- yo) + 1-

- 0o) + C9 ki)]

x cos (2K (x - t+ r - 0+NIH F

where the constant G+ was replaced by its previously computed expression (3.3.44)

and Where 0+ is the phase of the complex parameter (1.•-)+ -[ o1 -o)CI~~ · ~VVYI L I~ rlU~VVI,~VIYI ~-YLUII'JI \ -07 70g

So that the mean free surface displacement PjN due to the free wave is:

.JV = N COS 2KC (xi - Htl) + 7r -v(H (3.6.15)

With N + being the amplitude of the mean free surface displacement A/j due to the

free wave: (+ +h(
sinh(2q)

1Hs H
(l- Yo)+ (3.6.16)

The mean free surface displacement JV- due to the bound wave generated by the slow

modulations of the short waves envelope is:

= 2 (2iny 1i- - 16 sinh2

(3.6.17)
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(3.6.14)

- C koAgF - 8H 98Hg

-2k'x1 e2iQ }

0(1 - ) e-2iK-- (xl-- Ht)

irr-2iK -(g -xl-H tl)e vfH-

- o (1

C1 [1- o
vH -Yo

I
ki11-iK I



= 2( {2infin_ -  A 2
S- 16 sinh2 koH

1
-~ 16 si

= 42e- 2k'xl1 - (1 + C9
sinh(2

) e-2kixl e2i }
A0 ) e 2i*

nh2 koH J

koA 2
q) 16KH(1- -)

kgH A 1
HQ 16 cosh 2 koH

1+;

(1 -

sinh(2q) koH
)- cosh2 koR

n- /

kAg e- 2k'1x
4H o Cg

sinh(2q)
C2

+koH
+ cosh2 koH cos [2(Kxl - Otj) + ir + +]

(3.6.18)

where 0+ is the phase of the complex parameter [yoCg (n2) - cOH
+cosh IcoH"

Finally the mean free surface displacement NJV due to the bound wave generated by

the slow modulations of the short waves envelope is:

NA+ = NBe-2 k1 1 cos [2(Kxi - Qtl ) + 7r + 0+] (3.6.19)

with N + being the amplitude of the free surface displacement ANi due to the bound

wave:
1+ C( sinh(2q)

C2^ (10) /
koH

cosh2 koH

Let us finally summarize the results for the mean free surface displacement in both

'-' and '+' region.

In the '-' (no mud) region we have:

r o(xl,tl) = Jn-(x=,tl) = (nV-> +~ +N-

(N-) = -N-

NA-
Ali-

= N•cos 2K (xi'fl
= Ný cos [2(Kxl - Qt1 ) +, r]
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koAg e_2k'

4H

e2iT

e2i

N+ koAS4H1 (3.6.20)

+ V-It l) + 4F)

(3.6.21)

(3.6.22)

(3.6.23)

(3.6.24)

= 4Ge-2k~' xp

H-



With N M being the amplitude of the set down, Nj being the amplitude of the mean

free surface displacement due to the free wave, and Nj is the amplitude of the free

surface displacement generated by the bound waves. The expressions of the ampli-

tudes are:

8 sinh2 koH

koA- 1- sinh(2q)1
4H 1 _

koA 1 sinh(2q)
4H

1 1 -Yo- 1- 70 1-

2 0L K).

[+1 ( 1-  c koH
C, 1+ c- cosh2 koHsinh(2q)

(3.6.25)

(3.6.26)

(3.6.27)

In the '+' (mud) region we have:

i%(xi, t1)

NJ >

Ar;

= +(i, t,) = (AN+) + J)/v + ~N
_NM+ e-2 kix'

= N+ cos(2Ks (xl -vtl) )+r-+)

= N+e-2 kix1 cos [2(Kx, - Ot,) + r + ¢]

(3.6.28)

(3.6.29)

(3.6.30)

(3.6.31)

With N+ being the amplitude of the set down, NF being the amplitude of the mean

free surface displacement due to the free wave, and N + is the amplitude of the free

surface displacement generated by the bound waves. The expressions of the ampli-

tudes are:

A 2
8 sinh2 koH

koA2  1 + _HoAC 1 + sinh(2q)

koAg 1+ sinh(2q)

4H 1-Cg
H /

1 - /+ 1 - o 1 kfifl
o+1 1YO + k_ J

inh(2q) cosh 2 k0H

The constant free surface displacement (Ar) is negative in both '-' and '+ regions ,

and as one can intuitively expect vanishes for xl -+ +oo. In fact while the short
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waves exist it is a well known fact that the average free surface sets down and this is

confirmed by the negative sign of qlio in both the '-' and the '+' regions (equations

(3.6.22) and (3.6.29)). However when the short waves are damped (at large values of

xl) there is no more reason for the average free surface to set down, and the average

value (Af+ ) vanishes exponentially together with the amplitude of the short waves.

For the plotting purposes let us define the following functions:

fN(koH)

k'
n+(koH, • )K

k"
n (koH, j')

n • K

nB (koH, )
K

n (koH, -)K

oA2 1= + sinh(2q)

H4H1 _ k ]
21 vf-HC l [ (1 i '_•
=1 -1o - ko -

2 KC

1 vk[(= 1- C [o+ 1-7 o 1-i)

2 2K

[1 1 H - H koH

Cg 1+• c2q cosh 2 koH

= + H IoHS+ c cosh 2 k0oHsinh(2q)

(3.6.35)

(3.6.36)

(3.6.37)

(3.6.38)

(3.6.39)

Now the amplitudes NM, NW, Nj, N+ , N+ and N+ can be rewritten as:

Ao
8 sinh2 koH

K= fN(koH)n-(koH, )

K
A 2

8 sinh 2 koH

= fN(koH)n4(koH,

(koH
B K"

(3.6.40)

(3.6.41)

(3.6.42)

(3.6.43)

(3.6.44)

(3.6.45)

The tl-averaged free surface displacement NM = N + is plotted against koH in figure

(3-3), together with the function fN(koH). The functions nF and n4 are plotted in
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figures (3-4(a)) and (3-4(b)), and the functions nB and n+ are plotted in figures (3-

4(c)) and (3-4(d)) against the dimensionless water layer depth koH for three values of

the parameter k. Note that the constant free surface displacement and the amplitude

of the bound waves in the '-' region are unaffected by the presence of the mud layer

in the '+' region.

z

koH

Figure 3-3: Constant free surface displacement NM and the function fN

The analytical expression of the damping coefficient ki is given by the imaginary part

of the equation (2.4.23) and depends not only on the mud properties but also on the

properties of the water waves. Its expression is rewritten below for convenience:

d 2 k°2 1 tanh 6.46)
=-a 2q+ sinh2q A (3.

It is interesting to see directly the influence of the dimensionless mud depth d, and

of the phase 0 of the complex viscosity p on the slow evolution of the free surface

waves. For simplicity we take -7 = 1 and K = 1. In figure (3-5) we plotted for three

values of the dimensionless depth d, = 0.1, 1.1, 3 the functions nh, n+ and n+ for a

highly elastic case (9 = 0.9 x • ). The value d8 = 1.1 corresponds to the resonance

of the function ý (1 - tan) } appearing in the expression of k. The dependence

of the functions nF , n+ and n+ on the parameter 9 for a fixed value of d, = 1.1

corresponding to the resonance is plotted in figure (3-6).

From the figures (3-5) and (3-6) we infer that the amplitude of the free waves in the '-'

(no mud) region is extremely small and is of any significance only when the function
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Figure 3-4: Functions n-, n+ , nB and n+ against

koH for several values of - = 0.1, 1, 10K ') `)I

koH
(b) n+ for = 0.1 1, 10\ rF K 7 ') )'

koH
(d) n+ for = 0.1, 1, 10

the dimensionless water layer depth

s {g(d8 , 0)} = ` {1 h- is very close to resonance (d8 = 1.1 and 0 --+ f). The

amplitude of the free waves in the '+' (mud) region vanishes slower with increasing

koH in case when the function Q {g(d8, 9)} is close to resonance (d, = 1.1 and 0 --+ ).

On the other hand the amplitude of the bound waves in the '+' region vanishes faster

when the function Q {g(d8, 9)} is close to resonance (d, = 1.1 and 0 -~).
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Conclusion

We have introduced a generalized viscoelastic model to fit the existing experimental

data so that the constitutive coefficients are just material properties independent of

frequency. We showed that the use of 8 coefficients was enough to obtain a good fit of

the experimental data in the considered range of frequencies. By applying the pertur-

bation analysis we obtained an analytical solution to the problem of the interaction

of a thin viscoelastic mud layer with a sinusoidal wave propagating on top of a water

layer of intermediate depth.

At the leading order we found that a strong damping and wave number shift are

possible if the waves induced Stokes boundary layer thickness is a certain fraction

of the mud depth (see equation (2.5.15)) and if the material has a large proportion

of elasticity compared to viscosity (phase 0 of the complex viscosity 4u close to f).

It was further noticed that lighter mud corresponded to a more significant damping.

This is due to the fact that lighter muds are easier to move and hence have a larger

amplitude of movement at the resonance that in its turn enhances the energy dissi-

pation by viscosity. Therefore a light highly elastic mud will be extremely efficient

at the energy dissipation for the values of forcing frequencies such that the induced

Stokes boundary layer thickness is approximately equal to the mud layer depth.

At the second order we obtained analytically that a mean horizontal displacement

occurs inside the mud layer under sinusoidal waves if the real part of the viscosity

is non zero. In fact, as it was mentioned by Zhang and Ng [6] a purely elastic solid

will always restore its initial position when the stress is released, meaning that for

an elastic mud the displacement will be zero. In case of a general viscoelastic mud

the viscous part will be responsible for a non zero mean displacement. We found

that the mean displacement inside the mud layer has a linear profile as long as the

dimensionless mud layer depth d8 = - is smaller than 1.5. As the Stokes boundary

layer thickness Js is larger than 2m for most of the experimental samples considered
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we predict that the profile of the mean horizontal displacement inside the considered

mud layers should be linear unless the mud layer depth d is larger than 3m.

As we studied the water/mud interaction in a fixed frame, we found a non zero

mean Eulerian velocity at the second order which is due to convection. For mud layer

depth d such that d8 = A < 3 the mean horizontal velocity is negative. Its amplitude

strongly depends on the phase 0 of the complex viscosity M. As the material becomes

more elastic (0 approaches E) the amplitude of the mean horizontal velocity increases

together with the leading order quantities.

Finally, we studied the evolution of the narrow-banded waves on top of a thin

semi-infinite mud layer. The analytical expressions of the mean second order veloc-

ity, free surface displacement and pressure were obtained. It was shown that due to

the damping of waves through viscous dissipation inside the mud layer a negative

current will be generated in water with an amplitude independent of the mud proper-

ties. The amplitude of the steady current depends only on the amplitude of the free

surface waves and on the dimensionless water layer depth koH. In the mud region

the current decays together with the amplitude of the short waves to vanish when the

short waves are completely damped by the mud layer.

The next steps will be to study the evolution of the narrow-banded waves on top

of a finite mud layer and to extend the perturbation analysis to a slopping bottom.
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Appendix A

Experimental data

A.1 Experimental data by Jiang & Mehta, 1998

The physical characteristics of the mud samples used in the experiments by Jiang &

Mehta are listed in table A.1.

Type Size ¢ Principal Constituents
KI - Kerala, India mud 2pm 0.12 Montmorillonite, kaolinite, illite, gibbsite, organic matter (5%)

OK - Okeechobee mud 9pm 0.11 Kaolinite, sepiolite, montmorillonite, organic matter (40%)

MB - Mobile Bay mud 15pm 0.07, 0.11, 0.17 Clayey silt of undetermined composition, sand

AK - Attapulgite + kaolinite 11pm 0.12 Attapulgite (50%), kaolinite(50%)

Table A.1: Physical characteristics of mud samples used

For each of the mud samples the values of the parameters e and A

and pmu are listed in the table A.2. The real and imaginary parts

viscosity are listed in the table A.3.

defining G 1, G2

of the resulting

Table A.2: Coefficients of Equation (1.3.2) for KI, OK, MB and AK muds
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G1 (Pa) G2 (Pa) p (Pa.s)
Mud 4 e A A e A
KI 0.12 9.160 0.257 3.843 -0.405 9.292 -0.405
OK 0.11 5.548 0.127 0.318 -0.687 5.290 -0.687
MB 0.07 3.659 -0.030 -1.439 -0.975 3.165 -0.975
MB 0.11 6.352 0.075 2.139 -0.745 6.695 -0.745
MB 0.17 8.274 0.108 -3.864 -0.696 8.374 -0.696
AK 0.12 8.049 0.114 2.604 -0.490 8.222 -0.490



(w in s-') 0.13 0.25 0.57 1.26 2.51 5.65 12.6 25.1
KI R(p) 2.2107 1.1551 5.1640 0.2270 0.1090 0.0463 0.0197 0.0094

= 0.12 !(p) 4.3051 2.8111 1.6448 0.9454 0.5769 0.3206 0.1787 0.1072
OK R(I) 0.0861 0.0438 0.0194 0.0086 0.0042 0.0018 0.0008 0.0004
= 0.11 Q(IL) 0.2072 0.1181 0.0604 0.0309 0.0172 0.0086 0.0043 0.0024
MB R(p) 0.0193 0.0094 0.0040 0.0017 0.0008 0.0003 0.0001 0.0001
= 0.07 ,(•() 0.0617 0.0307 0.0135 0.0060 0.0030 0.0013 0.0057 0.0003
MB R(p) 0.1417 0.0683 0.0285 0.1191 0.0056 0.0023 0.0010 0.0662
= 0.11 (~(p) 0.6366 0.3420 0.1639 0.0790 0.0419 0.0199 0.0095 0.0050
MB !R(M) 1.1567 0.5557 0.2343 0.0996 0.0473 0.0197 0.0083 0.0004
= 0.17 (i(p) 3.7310 2.0534 1.0150 0.5048 0.2744 0.1342 0.0662 0.0358
AK WR(I) 1.4015 0.6648 0.2598 0.0986 0.0416 0.0150 0.0054 0.0022
= 0.12 5(j) 2.2662 1.3981 0.7495 0.3895 0.2164 0.1073 0.0534 0.0290

Table A.3: Real and imaginary parts of the complex viscosity y (in N/cm 2 ), Jiang &
Mehta

A.2 Experimental data by Huhe & Huang, 1993

The mud samples used in the experiments of Huhe & Huang differ by the type of flume

from which they were obtained and by their solid volume fraction ¢. For the mud

samples from the flume A (respectively from the flume B) the measured parameters

Gm and /m are listed as functions of frequency and of solid volume volume fraction

0 in tables A.4 and A.5 (respectively in tables A.6 and A.7). The resulting real and

imaginary parts of the complex viscosity are given in table A.8 for the data set A and

in table A.9 for the data set B.

0.34 0.24 0.20 0.17 0.14 0.08

0.11 9.00 0.65 0.40 0.31 0.39 0.05
0.19 5.00 0.55 0.37 0.22 0.30 0.05
0.30 3.80 0.42 0.11 0.25 0.32 0.01
0.46 3.50 0.41 0.15 0.29 0.28 0.04
0.74 3.50 0.48 0.17 0.23 0.30 0.03
1.10 3.60 0.75 0.19 0.18 0.31 0.01
2.00 3.70 1.40 0.19 0.20 0.38 0.06
3.00 3.70 1.80 0.19 0.30 0.38 0.07
4.80 4.30 2.30 0.30 0.40 0.38 0.12
7.50 6.50 2.90 0.45 0.80 0.45 0.15
11.00 12.0 3.20 1.10 1.00 0.49 0.28
19.00 21.0 3.60 1.80 1.30 0.65 0.21

Table A.4: Real elastic module Gm (in N/cm2) - data set A
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0.34 0.24 0.20 0.17 0.14 0.08

0.11 190 17.0 7.00 5.00 5.00 0.40
0.19 75.0 7.00 2.50 2.10 2.50 0.30
0.30 40.0 4.00 1.50 1.10 1.50 0.12
0.46 21.0 2.50 0.80 0.70 0.90 0.21
0.74 12.0 2.00 0.60 0.55 0.70 0.11
1.10 9.00 1.70 0.40 0.40 0.50 0.11
2.00 6.00 1.80 0.28 0.35 0.40 0.08
3.00 4.00 1.50 0.29 0.30 0.22 0.06
4.80 3.30 1.10 0.23 0.25 0.17 0.04
7.50 3.10 0.80 0.23 0.25 0.11 0.03
11.0 2.80 0.50 0.23 0.25 0.08 0.02
19.0 2.60 0.33 0.15 0.09 0.05 0.01

Table A.5: Viscosity pm (in N.s/cm2 ) - data set A

0.37 0.23 0.20 0.17 0.14 0.08

0.11 20.0 1.00 0.35 0.09 0.30 0.03
0.19 18.0 0.65 0.28 0.12 0.10 0.03
0.30 14.0 0.84 0.17 0.11 0.17 0.04
0.46 13.0 0.74 0.18 0.12 0.14 0.05
0.74 13.0 0.75 0.19 0.13 0.06 0.06
1.10 13.0 0.76 0.20 0.12 0.11 0.05
2.00 13.0 0.80 0.12 0.11 0.09 0.05
3.00 13.0 0.93 0.12 0.15 0.07 0.07
4.80 14.0 1.10 0.14 0.31 0.12 0.08
7.50 15.0 1.80 0.24 0.69 0.22 0.08
11.0 19.0 2.10 0.72 0.90 0.42 0.11
19.0 28.0 2.30 1.90 1.10 0.55 0.18

Table A.6: Real elastic module Gm (in N/cm 2) - data set B
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0.37 0.23 0.20 0.17 0.14 0.08

0.11 600 15.0 6.50 1.70 2.00 0.50
0.19 210 4.50 3.00 1.00 0.70 0.12
0.30 110 2.50 1.50 0.70 0.40 0.50
0.46 70.0 1.60 0.80 0.50 0.36 0.20
0.74 41.0 1.00 0.45 0.35 0.31 0.10
1.10 26.0 0.80 0.30 0.25 0.21 0.09
2.00 15.0 0.60 0.25 0.24 0.15 0.08
3.00 10.0 0.55 0.18 0.21 0.13 0.06
4.80 7.00 0.55 0.15 0.20 0.10 0.04
7.50 5.20 0.45 0.15 0.20 0.09 0.03
11.0 4.50 0.30 0.20 0.12 0.08 0.02
19.0 4.00 0.20 0.19 0.08 0.05 0.01

Table A.7: Viscosity ~Lm (in N.s/cm 2 ) - data set B

Table A.8: Real and imaginary
set A, Huhe & Huang

parts of the complex viscosity p (in N.s/cm2), data
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w (in s-') 0.11 0.19 0.30 0.46 10.74 1.10 2.00 (3.00 4.80 7.50 11.0 119.0
R(,u) 190 75.0 40.0 21.0 12.0 9.00 6.00 4.00 3.30 3.10 2.80 2.60

= 0.34 Q(jt) 81.8 26.3 12.7 7.61 4.73 3.27 1.85 1.23 0.89 0.87 1.09 1.11
R(A) 17.0 7.00 4.00 2.50 2.00 1.70 1.80 1.50 1.10 0.80 0.50 0.33

= 0.24 S(p) 5.91 2.89 1.40 0.89 0.65 0.68 0.70 0.60 0.48 0.39 0.29 0.19
R(tt) 7.00 2.50 1.50 0.80 0.60 0.40 0.28 0.29 0.23 0.23 0.23 0.15

= 0.20 ZI(p) 3.64 1.94 0.36 0.33 0.23 0.17 0.09 0.06 0.06 0.06 0.10 0.09
R(IL) 5.00 2.10 1.10 0.70 0.55 0.40 0.35 0.30 0.25 0.25 0.25 0.09

= 0.17 S.(p) 2.82 1.16 0.83 0.63 0.31 0.16 0.10 0.10 0.08 0.11 0.09 0.07
R(p) 5.00 2.50 1.50 0.90 0.70 0.50 0.40 0.22 0.17 0.11 0.08 0.05

= 0.14 a([t) 3.55 1.58 1.07 0.61 0.41 0.28 0.19 0.13 0.08 0.06 0.04 0.03
R(p) 0.40 0.30 0.12 0.21 0.11 0.11 0.08 0.06 0.04 0.03 0.02 0.01

= 0.07 D(j) 0.42 0.24 0.03 0.08 0.04 0.01 0.03 0.02 0.03 0.02 0.02 0.01



w (in s- ') 0.11 0.19 J0.30 J0.46 10.74 1.10 2.00 3.00 4.80 7.50 11.0 19.0
R(p) 600 210 110 70.0 41.0 26.00 15.00 10.00 7.00 5.20 4.50 4.00

= 0.37 a(p) 182 94.7 46.7 28.3 17.6 11.8 6.50 4.33 2.92 2.00 1.73 1.47
R(I() 15.0 4.50 2.50 1.60 1.00 0.80 0.60 0.55 0.55 0.45 0.30 0.23

= 0.23 9(up) 9.09 3.42 2.80 1.61 1.01 0.69 0.40 0.31 0.23 0.24 0.19 0.12
R(p) 6.50 3.00 1.50 0.80 0.45 0.30 0.25 0.18 0.15 0.15 0.20 0.19

= 0.20 (yi) 3.18 1.47 0.57 0.39 0.26 0.18 0.06 0.04 0.03 0.03 0.07 0.10
R(p) 1.70 1.00 0.70 0.50 0.35 0.25 0.24 0.21 0.20 0.20 0.12 0.08

= 0.17 ZI(1p) 0.82 0.63 0.37 0.26 0.18 0.11 0.06 0.05 0.06 0.09 0.08 0.06
R(p) 2.00 0.70 0.40 0.36 0.31 0.21 0.15 0.13 0.10 0.09 0.08 0.05

= 0.14 9(p) 2.72 0.53 0.57 0.30 0.08 0.10 0.05 0.02 0.03 0.3 0.04 0.03
•R(u) 0.50 0.12 0.50 0.20 0.10 0.09 0.08 0.06 0.04 0.03 0.02 0.01

= 0.08 J(u) 0.27 0.16 0.13 0.11 0.08 0.05 0.03 0.02 0.02 0.01 0.01 0.01

Table A.9: Real and imaginary parts of the complex viscosity p (in N.s/cm 2), data
set B, Huhe & Huang
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