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Abstract

Forest operations planning is a complex decision process which considers multiple ob-
jectives on the strategic, tactical and operational horizons. Decisions such as where
to harvest and in what order over different time periods are just some of the many
diverse and complex decisions that are needed to be made. An important issue in
real-world optimization of forest harvesting planning is how to treat uncertainty of
a biological nature, namely the uncertainty due to different growth rates of trees
which affects their respective yields. Another important issue is in the effective use of
high capital intensive forest harvesting machinery by suitable routing and scheduling
assignments. The focus of this thesis is to investigate the effects of incorporating
the robust formulation and a machinery assignment problem collectively to a forest
harvesting model.

The amount of variability in the harvest yield can be measured by sampling from
historical data and suitable protection against uncertainty can be set after incorpo-
rating the use of a suitable robust formulation. A trade off between robustness to
uncertainty with the deterioration in the objective value ensues. Using models based
on industrial and slightly modified data, both the robust and routing formulations
have been shown to affect the solution and its underlying structure thus making them
necessary considerations. A study of feasibility using Monte Carlo simulation is then
undertaken to evaluate the difference in average performances of the formulations as
well as to obtain a method of setting the required protections with an acceptable
probability of infeasibility under a given set of scenarios.

Thesis Supervisor: Jorge R. Vera
Title: Visiting Associate Professor of Sloan School of Management
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Chapter 1

Introduction

1.1 Thesis Background and Motivation

Forest harvesting is an activity that has progressed from harvesting in small parcels

of land for building materials and firewood in the past, to becoming a large scale com-

mercial activity over the past century. Efficient forest management involves making

a variety of inter-related decisions to achieve goals set for the operational, tactical

and strategic horizons. At the strategic level, forest decisions have to be made for

road building, fleet management and sustainability. In the past few years, various

other environmental considerations such as biodiversity, wildlife protection and global

warming control are also included when making decisions at the strategic level. At

the tactical level, annual harvest plans, road upgrades and equipment utilization de-

cisions are made. Lastly, at the operational level, harvest scheduling, bucking, truck

dispatching are just some of the daily decisions made for smooth and cost effective

operations. The interested reader is directed to [11] for a more thorough discussion

on the wide ranging decision making problems in the forest industry.

The use of optimization models to aid such decision making processes in the for-

est industry is therefore required and has been acknowledged in awards such as the

Edelman prize in 1998 [10]. In many supply chain management models, market un-

certainty from both the demand and supply sides are important factors that needs to



be taken into consideration before making critical decisions. Collected field data can

be subjected to measurement errors, which leads to data uncertainty in the optimiza-

tion models. From the demand side, demand is mostly projected and seldom known

exactly, and optimal prices are estimated as they depend on the evolution of the

commodities market. From the supply side, uncertainties may stem from incomplete

knowledge of the amount and quality of available resources as in the case of oil drilling

and even biological factors in agricultural and forest industries. Such uncertainties

can be addressed using a variety of techniques such as stochastic programming, dy-

namic programming, chance-constrained optimization and robust optimization.

Robust optimization is a methodology in optimization that addresses the need to

hedge against uncertainty that may arise from various sources. Typically, a data

parameter subjected to noise can be modeled as a distributed random variable. How-

ever, full knowledge of the distributions of the random variables are seldomly known

and thus robust optimization deals well in this aspect as only basic knowledge of the

random variables is enough to define the model. Robust optimization then protects

for variations within the deviation of these random variables. Robust optimizaton

has been sucessfully applied in various field including engineering, finance and supply

chain optimization. This thesis implements robust optimization to mitigate the risk

of not meeting forest product demands which may have contractual or other penalties

and a more detailed discussion can be found in Chapter 2.

The other part of the problem examined in this research deals with the efficient use

of harvesting machinery. Commonly, 3 types of harvesting machines are used in har-

vesting a forest: Skidders, Harvesters and Towers.

The 3 types of machines are shown in Figures 1-1, 1-2, and 1-3 respectively. A skidder

is similar to a 4 wheel drive tractor that is used for pulling logged trees in a process

called "skidding" where the logs are transported from the original site to a landing

site for further transportation to a production facility. A harvester is another type



Figure 1-1: Example of a Skidder Figure 1-2: Example of a Harvester
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of heavy vehicle which can be used for felling and bucking trees and are employed

effectively in level to moderately steep terrain. Lastly, towers are crane-like structures

perched on a hilltop which drags the logs to level terrain via cables analogous to a

ski lift and is suitable for harvesting on steep slopes. Therefore, depending on the

terrain, different kinds of machinery are used. All these harvesting machines are high

capital intensive machinery which incurs not only high fixed and operational costs

but also high assignment costs when they have to be shifted from one forest parcel

to another. In particular, the towers require extremely high setup costs and time due

to the complexity of setting up the system as can be seen from Figure 1-3. There-

fore, the efficient scheduling of these equipments to the right forests is an important

problem which can result in significant cost savings if done correctly. Furthermore,

the problem is further complicated by the fact that not all forest parcels are equal

neither in size nor in their composition. Each forest parcel comprises of different

species of trees that have different grades and which are used for making different

products which affects the yield of each forest stand. Hence, the efficiency of each

type of machinery is different within each forest parcel.

We are interested in the implementation of the robust formulation and machinery

scheduling problem and to examine the differences in solutions obtained from a nom-

inal forest problem, a robust model with protection from uncertainty and finally a

robust model with machine scheduling considerations. The uncertainty considered is

in the yield of the forest which is closely dependent on the tree species and results in

different grades of wood.

1.2 Literature Review

Harvesting Planning with scheduling of machinery

In [14], Karlsson et al. addresses the problem of jointly determining the optimal de-

cisions for a short-term harvesting planning problem and crew scheduling problem.

They define a harvest crew as consisting of a harvester and a forwarder working in



tandem. The planning horizon considered was 4-6 weeks with 6 harvest crews and

an MIP problem was developed for his purposes. The solution approach used was

by solving deterministically using a commercial solver, CPLEX and also by using

a pseudo column generation approach where the required schedules were generated

a priori. Their model presents some similarity with the harvesting and scheduling

model that is used in this research. Certain aspects considered in his paper that are

not pursued in this research include the age-related cost of storing and road network

for transportation and maintenance. However, these are not considered in this re-

search as attention is focused on uncertainty containment and the effects of a robust

formulation on scheduling.

Other approaches for a machine location problem

In [19], Vera et al. considered the use of a Lagrangian relaxation approach for solving

a large scale harvesting machine location problem. The work deals jointly with select-

ing the locations for the machinery as well as designing the access road network and is

therefore the combination of 2 well known hard combinatorial optimization problems.

The solution obtained using CPLEX after 600 minutes only yield a solution with a

feasible gap of 27% testifying to the difficulty in solving the problem to optimality.

Their approach work towards reducing this gap by decomposing the problem into

the 2 subproblems using Lagrangian relaxation, strengthening the subproblems and

solving using subgradient and subgradient-hybrid approaches. In a follow up research

[15], Diaz et al. considered the use of a tabu search approach for solving the same

problem. Their solution algorithm consists of a basic tabu search algorithm coupled

with minimum spanning tree algorithms and Steiner tree heuristics to evaluate the

neighbourhood of a solution at each point.

Robust optimization in forest operations planning

In [16], Maturana et al. addresses the use of robust optimization in forest operations

planning and their work forms the backbone for this research. In this paper, they con-

sidered the use of robust optimization to handle the uncertainty of meeting demand



due to biological factors. 3 solution approaches to solving the robust counterpart

of a basic forest operations planning problem that considers harvesting and trans-

portation to demand points were used and compared. The need for a comparison of

3 different approaches arose from the conflict in the objective and constraints after

writing the robust counterpart and the first approach involved ignoring the robust

counterpart of the objective in favour of the constraints and examining the resulting

solutions. The second approach, termed adversarial approach, used an iterative solu-

tion approach developed by Bienstock [7] which allowed correlation in the data and

therefore aided in managing the above-mentioned conflict. The last approach was a

heuristic approach that used as part of the algorithm, one iteration of the adversarial

approach. The paper concluded with a difference in the solutions resulting from the

different approaches but the difference is limited and the adversarial approach might

have resulted in a slightly conservative solution. More discussion follows in Section

3.2 and some relevant results are shown in section 4.2.

1.3 Thesis outline

In Chapter 2, the various robust formulations for an optimization model are discussed.

Chapter 3 presents the nominal and robust forest harvesting model and constraints

added to the model to extend the consideration to machinery scheduling are also

discussed here. Chapter 4 focuses on the use of models using industrial and slightly

modified data to exemplify the effects of the robust formulation and routing consid-

eration to the harvesting decisions and strengthens the argument for their inclusion

in models for forest harvesting planning. Results of a Monte Carlo simulation which

investigates the average properties of the various models as well as gives an indication

for the level of conservativeness to apply for subsequent harvesting models are pre-

sented in Chapter 5. Finally, in Chapter 6, we conclude the thesis with a summary

and suggestions for future research directions.



Chapter 2

Robust Formulations

This chapter describes a brief summary of the robust formulations developed by

Soyster, Ben-Tal and Nemirovski which gives us a basic insight to the development of

robust optimization and a detailed approach developed by Bertsimas and Sim which

was eventually used for this work.

The development of robust optimization was initiated by Soyster in 1973 [18] who

proposed a linear optimization model to obtain a solution that is feasible for all data

that belongs in a convex set. The model was deemed too conservative and traded off

too much optimality for a robust solution. Subsequently, steps were taken by Ben-Tal

and Nemirovski [1, 2, 4] and El-Ghaoui and Lebret [12, 13] who proposed models that

involved solving the robust counterparts of a nominal problem by casting them in the

form of conic quadratic problems. However, this resulted in nonlinear models which

require significantly more computational resources than linear models. Bertsimas and

Sim [5, 6] thereafter proposed an approach for robust linear optimization that is not

only linear but also applicable to discrete problems and allows the user to vary the

level of conservationism for every constraint.



Based on considerations for the application to the foresting industry, we believe that

a few key issues will affect the choice of a suitable robust formulation to be used:

1. Conservativeness of the optimal solution

2. Computational tractability

3. Flexibility in varying the level of conservativeness

The nominal formulation of a typical linear programming problem is:

maximise c'x

subject to Ax < b

1 < x < u.

Using this initial formulation, the assumption is that the data uncertainty only affects

the elements of the matrix A. Without loss of generality, the cost function c'x can be

assumed to be without uncertainty as it can be easily replaced by another variable, z,

and brought into the constraints using z - c'x < 0 which can be easily incorporated

into the matrix inequality, Ax < b.

The model of uncertainty undertaken is as described by Ben-Tal and Nemirovski [3]

whereby a row of matrix A is indexed using i with Ji representing the set of coeffi-

cients in row i that are subjected to uncertainty. Each uncertain element, aj, j E Ji,

is modeled as a symmetric and bounded random variable, aij, j E Ji, that takes values

within the interval [aij - ij , aij + ij], where 4ij is the amount of deviation of the ele-

ment. The budget of uncertainty, F, is defined as the maximum amount of uncertainty

acceptable within the data and is formulated as a constraint, E = 1 i - aj F<3 a ij

and therefore allows one to control the "price of robustness" as defined by Bertsimas

and Sim [5] by varying the value of F.



When the value of Fi is equal to 0 then the problem is the original nominal model

which does not take uncertainty into account and when ri is equal to the cardinality of

Ji, the problem is the equivalent to Soyster's formulation which offers full protection

from uncertainty.

2.1 Soyster's full protection robust formulation

Soyster considers the matrix A as a series of columns (al, a2 , ... , an) with aj,j =

1... n, being the column vectors that are subjected to uncertainty. It is only known

with certainty that the vector lies within a hypercube with center aij and half-length

itij that represents the actual value and the maximum deviation respectively. By

separating the actual vector and the deviation and allocating a decision variable,

yj,j = 1,..., n, to the deviation, the robust formulation considered by Soyster can

be represented as:

maximise c'x

subject to a~ijj + E ijyj _ bi Vi
j j(Ji

Yj _•XJ <•Y3 Vj

l<x<u

Y > 0.

It is noted that yj is the absolute value of the original decision variable at optimality,

Ixl I and that the model can be easily shown to be feasible for all values of ij, j E Ji.

The 2nd term on the left hand side in the 1st constraint, ZjEJ. &jl3x 3 , gives the

required robustness of solution by maintaining a buffer between jEjC , ajxj and bi at

optimality.



2.2 Ben-Tal and Nemirovski's ellipsoidal robust for-

mulation

Ben-Tal and Nemirovski has made significant contributions to the field of robust op-

timization over the years. Of utmost significance is their approach to handle the

over-conservative nature of Soyster's formulation by considering an ellipsoidal uncer-

tainty set instead of a box uncertainty set as in Soyster's methodology. They proposed

the following robust formulation:

maximise c' x

subject to C aij3 x + E &j yj + ai(x) < bi Vi
j jEJi

- yij < xj - Z<ij yij Ji

l<z<u

Y > 0.

where Q is the "safety parameter".

This results in a formulation that has the property of being less conservative by

excluding the possibility of all elements, aij, reaching the limits of their uncertainty

intervals at the same time. The formulation however, has the undesirable property

of being nonlinear and therefore more computational expensive to implement.



2.3 Bertsimas and Sim's adjustable robust formu-

lation

Bertsimas and Sim proposed an approach that was not only linear and tractable but

also allowed the user to control the degree of conservationism by varying the uncer-

tainty budget, F. This uncertainty budget is defined row-wise as ri and is a value

that lies between 0 and cardinality of Ji while not necessarily being integer.

Bertsimas and Sim have shown that their formulation offers full protection against

[Fi] number of changes deterministically and a high probabilistic protection against

further (P - [FLrij)it changes. They first consider the intermediate nonlinear formu-

lation:

c'X

aijzx + max{E &Iyj + (F - L[FJ)&ityt)} 5 b
i jeSi

- yj < xj < yj

l<x<u

(2.1)

Vi (2.2)

Vj (2.3)

(2.4)

(2.5)

where ( in Equation 2.2 is the set {Si U {ti} Si c Ji, Isi1 = [Fri, t E Ji \ Si}.

This maximization term, also known as the protection function fi (xz, Fi), can be re-

formulated as a linear programming model and its dual found to modify the above

formulation so that it becomes linear.

maximise

subject to



The result is a linear robust formulation:

maximise c' x

subject to Zaijxj + ziFi + •ij < bi Vi
j jEJi

Zi + Pij _ aijyj Vij J

-Yj X j < yj V

lj < zj < uj Vj

Pij > 0 Vi, j E Ji

yj > O Vj

z > 0 Vi.

This formulation has the further benefits of being able to control the level of robust-

ness for each constraint using Fi and being naturally applicable to discrete optimiza-

tion problems. This formulation fulfils all the requirements that are being considered

and was deemed to be the most suitable formulation to be applied to the problem

which is presented in the next chapter.



Chapter 3

Model Framework and

Computational Treatment

We describe in this section the forest planning model and the procedure of applying

the robust formulation to obtain a robust counterpart. The original basic model used

here is presented by Carrasco and Vera [8] but similar models have been developed by

many other academia and industry modellers. The main decision of the basic model

is to determine how much to harvest from each forest stand and where to transport

it, given that there is a demand for a combination of log types at different production

or export points (pulp plants, saw mills and ports for export). The main objective is

to reduce the total cost which comprises of operational costs, transportational cost,

assignment costs and a penalty cost for producing in excess. Extensions of this model

deals with decisions related to uncertainty management and scheduling of machinery.

The computational tools used to solve this problem is also discussed at the end of

this chapter.



3.1 Sets, Variables and Parameters

The following sets, variables and parameters were used:

SETS
T: Time periods;

RD: All real demand destination points;

DD: Type of demand destinations {pulp, sawmill or export};

SD: Specific destinations for each type of demand destination in 'DD';

LT: All log types;

LD: Log type required by type of demand destination in 'DD';

AM: All harvesting machines;

MT: Type of machinery {Skidder, Harvester, Tower};

ME: Harvesting equipment of type 'MT';

FS: All forest stands;

SMT: Stands harvestable by machines in 'MT';

DECISION VARIABLES
Xijt: Amount of surface to be harvested in stand i to demand destination j

of type s in period t;

Zimt: binary decision variable to determine if machiner m is active in stand i

in period t;

Wipmt: binary decision variable to determine if machine m will move from

stand i to stand p after period t;

AUXILIAR VARIABLES
SC: Sum of penalty, operational, transportation and assignment costs;

PC: Penalty cost of not meeting demand;

OC: Operational cost of harvesting;

TC: Transportation cost of transporting logged trees to demand destinations;

AC: Assignment cost of assigning harvesting machinery to each forest stands;



PARAMETERS
MC: Machinery capacity;

disct: Discount rate in period t;

PLk: Price of each log of type k ;

SAi: Surface available in stand i;

HYik: Harvest yield of logs of type k per hectare of surface in stand i;

hcim: Unit harvesting cost in stand i with machine m;

tCid: Unit transportation cost of logs from stand i to destination d;

acijq: Unit assignment cost of routing from stand i to stand j with machine type q;

Ddsjkt: Demand of log type k with destination j of destination type s at time t;

wo: Weight on the harvesting cost;

wt: Weight on the transportation cost;

wa: Weight on the assignment cost;

P_Ex: Penalty for excess in the demand;

F: Uncertainty budget;

a: Percentage deviation for each yield parameter;

INDEXING CONVENTION

For clarity in presenting the model, the rest of this thesis will adopt the following

convention for indexing. All subscripts are indexed to their respective sets as defined:

t ET

s E DD

j(s) E SD

k(s) E LD

i E FS

q E MT

i(q) E SMT

p(q) E SMT

m(q) E ME



3.2 Harvesting model description

The basic model is:

minimise SC

subject to:

PC + OC+TC

PC = P_Exz
t

TC = E disct
t

OC = E disct

AC = E disct
t

+ AC < SC

disct ( 1 E PLk( Hyk * Xs- Ddsjkt))
s j(s) k(s) i

* (5 5 we * tcij * Hyik * Xis5 t)
i s j(s) k(s)

* (5 5 5 i wO * hci * Xisjt)
q i(q) s j(s) m(q)

* (E E E wa * aCijq* Wijmt)
i j q m(q)

S 5 5 Xsit < SAk
s j(s) t

SHYik * Xisjt Ž Ddsjkt Vs, j(s), k(s), t.

Constraints (3.1) to (3.5) is the breakdown of the objective function into the re-

spective components for analysis in determining the relative importance of the costs.

Constraint (3.6) states that the total amount harvested over the entire time period

should be less than the total available resources. Constraint (3.7) states that the

amount harvested must be able to meet the demand.

In the forest industry, the parameters that are most susceptible to uncertainty are the

harvest yield and the amount of demand. As only short term decisions are analyzed in

this thesis, the demand can be assumed to be certain based on the fact that contracts

for orders are enforced in the short term. However, in considering models spanning a

longer timescale, demand uncertainty effects have to be considered. The harvest yield

parameter appears in 3 sets of constraints; 2 of which are the objective components

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)



written as constraints (3.2) and (3.3) and 1 of which is the demand constraint (3.7).

The uncertainty can also come from other sources besides differing growth such as

pests, disease, fires or even heavy rain.

Conflicts existing between the worst case scenarios of the objectives and the demand

constraints have been previously pointed out and studied. The worst case for the de-

mand constraints is when there is a decrease in the harvest yield parameters but the

worst case scenario for the objective function constraint is when there is an increase

in the harvest yield parameters. This leads to a solution which overcompensates for

this conflicting interest by taking an overly conservative solution.

The study in [16] shows the differences in objective value when considering the inclu-

sion of either only the demand constraint or both the demand and objective function

constraints. Although there is a difference in the objective value obtained in both

approaches, the mean difference is approximately 10% over the range studied in this

work. Based on the argument that this difference is not too large, slightly over con-

servative and to eliminate the computational effort required to model the 2 conflicting

constraints accurately, this research will only consider the robust counterpart of the

demand constraints.



Applying the robust formulation on constraint (3.7) , the variables Yisjt, qsjkt, and

pisjkt are first created and a common F value E [0,12] for every row is set instead

of setting a Fi for every row. The robust reformulation for this constraint based on

Bertsimas and Sim's robust formulations thus becomes:

EHYik * Xisjt - qsjkt * F + E Pisjkt 5 Ddsjkt

qsjkt + Pisjkt > a * Hyk * Yisjt

0 < X-ijt yisjt

Yisjt > 0

Pisjkt > 0

qsjkt > 0

Vs, j (s), k(s),t

Vi, s, j(s), k(s), t

Vi, s,j(s), t

Vi, s,j(s), t

Vi, s,j(s), k(s), t

Vs,j(s), k(s),t.

where a in constraint (3.9) is a non-negative parameter used to represent the uncer-

tainty distribution in terms of the original yield parameter and the convention for

indexing follows from previously. Constraints (3.8) to (3.10) are constraints obtained

by writing the robust counterpart of the constraint (3.7) and therefore replace (3.7)

in the final model. Constraints (3.11) to (3.13) are the non-negativity constraints on

the dual variables.

(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)



3.3 Routing Extensions

The variables and constraints that were developed to handle the routing consider-

ations are discussed in this section. The problem at hand is one that is analogous

to a multi-period plant location problem with a fixed charge network flow problem

with both being NP-hard problems that are difficult to solve. Much effort has been

expended in solving these problems to optimality as detailed in the Section 1.2. If the

machines are allowed to move unrestricted to any stand as an intermediate point to

the next stand which they harvest, this translates into solving a Steiner tree problem

which can have many solutions for an initial set of vertices. For easy reference, this

formulation is named Formulation A. The Steiner problem is NP-complete and also

hard to approximate. Approximation algorithms have been investigated and best

upper bounds at 95/94 of the optimal value have been found but this best approxi-

mation algorithm is NP-hard as well. [9].

An engineered approach is therefore needed to obtain solutions which are at least

obtainable within a reasonable time. Many different variations of formulations were

created and tested but eventually the key insight came from the earlier mentioned

fact that each type of machinery is only suitable for harvesting certain terrains and

therefore certain stands. Hence, by letting the machines move only to stands which

they can harvest directly and not allowing any intermediate points, we are able to

avoid solving the Steiner tree problem. Although this may seem more restrictive,

it makes some operational sense as leaving machinery in stands which they cannot

harvest also incurs opportunity cost which have not been modelled into the original

model as well as incurs extra costs from splitting the shifting of machinery over sev-

eral periods. This formulation is named Formulation B and the comparison of the

computational effort in solving these two approaches is shown in Table 3.1.



Table 3.1: Comparison of routing formulations

Case No. of Time(s) No. of
constraints nodes

Nominal 158 0.0468003 -
Formulation A 15570 27353.68 514378
Formulation B 3318 295.294 94403

For a given data test instance, the nominal problem without routing solves almost

instantly whereas Formulation A does not solve to optimality even after approxi-

mately 7.6 hours with a relative MIP gap of 13.4% at user termination and has a

large number of brand and bound nodes. Formulation B on the other hand does well

and solved to optimality in a reasonable time of 295.3 seconds. The formulation for

the second approach is thus used as a means of obtaining reasonable routing decisions

in a reasonable time and is detailed here.

The feasible region is defined by the constraints (3.14) to (3.19) as well as the binary

variables Zimt and Wijmt. Binary variable Z indicates which stands are harvested by

machinery during each period and variable W indicates the movements of the ma-

chinery with their corresponding origin and destination pair. Mathematically, this

takes the form of

1 if stand i is harvested by machine m in time period t,

O otherwise.

if machine m moves from stand i to stand p after time period t,
Wipmt =

{ 0 otherwise.



The routing constraints that are added to extend the model to consider machinery

scheduling issues are:

S Xisjt < MC Zim,, Vq, i(q), t (3.14)
s j(s) m(q)

SZimt < 1 Vi,t (3.15)
m

5 ZiMt 1 Vq, m(q), t (3.16)
i(q)

Zimt < 5Zpm,t+l Vq, i(q),p(q), m(q), t (3.17)
p(q)

Zim,t+l < E Zpmt Vq, i(q), p(q), m(q), t (3.18)
p(q)

Zimt + Zpm,t+i : Wipt + 1 Vq, i(q), p(q), m(q), t. (3.19)

Constraint (3.14) states that the maximum area harvested at each stand i harvestable

by machine m of class q is limited by machine capacity, MC, per period. Constraint

(3.15) prevents the assignment of more than 1 crew to stand i at period t. Constraint

(3.16) states that only 1 stand harvestable by the type of machine in a particular

machine class q can have machine m of the same machine class q at each time period.

For constraints (3.17) to (3.19), the index for time period, t, runs from the initial

period to the second last period so as not to exceed the time boundaries due to the

presence of the expression t+1 in the constraints. Together, constraints (3.17) and

(3.18) define the relations that if a machine is being used in any one period, then

there should be a previous path and a following path which will result in a final path

from the initial time period to the final time period. Constraint (3.19) forces the

variable W to take on a value of 1 if both Zimt and Zim,t+l take on a value of 1.

Due to the presence of W in the minimizing objective function, W will take a value

of 0 otherwise. Using this insight in practice, the binary variable W is relaxed to be

0 < W < 1 but it will still only take values of 0 or 1. This results in a substantial



decrease in the number of binary variables in the model that aids in the use of

a branch and bound approach to solve the problem. Together, all these constraints

constitute the required requirements for obtaining the optimal paths for the harvesting

machinery in the multiperiod harvesting problem and are added to the final model.



3.4 Computational Treatment

The models in this work were modeled using AMPL and solved with CPLEX 10.1.

The hardware used was an IBM Thinkpad with Intel Duo Core CPU 2.0 Ghz and 2.0

Gb of RAM, under the Windows Vista operating system.

AMPL is an advanced modelling language for large-scale optimization and mathe-

matical programming problems. AMPL allows for an easy translation from familiar

mathematical and algebraic notation to programming code and allows for a high

level of user control through their interactive command environment. The author

has found very useful the ease in defining multidimensional data and nested sets

and the flexibility in scripting and solution reporting. In general, it allows for easy

definitions of a large myriad of complex optimization programs in concise forms and

is able to link up to a wide variety of powerful solvers including the CPLEX optimizer.

CPLEX 10.1 is a state-of-the-art solver which utilises algorithms that implements the

dual simplex, primal simplex, network simplex algorithms and barrier methods. Of

much relevance and significance to this work is their mixed integer optimizer which

includes sophisticated pre-processing algorithms and many strategies that utilizes

cutting planes and heuristics for finding the optimal integer values. All these strate-

gies and processing can be readily customized by the user. The author has found

the ability to customize search preferences in the branch and bound approach and

warm-starting mixed integer programs useful in finding the optimal values of NP-hard

combinatorial problems.





Chapter 4

Case Motivation and

Computational Results

4.1 Case Motivation and Framework

Several instances were created in order to evaluate the behavior of the robust solution

to the model with routing constraints. The motivating questions to the creation of

these instances are:

1. How does the solution to the robust problem change with respect to changes in

the uncertainty budget and expected variability?

2. Does the structure of the solution change with the addition of robust and/or

routing considerations? If so, how?

3. How does the robust or routing solutions behave when given an a posteriori

uncertain model?

The first 2 questions are addressed in this chapter and the last question discussed in

chapter 5. The robust approach is evaluated in a variety of cases which depend on

industrial or slightly modified industrial data. The problem instances are significantly

smaller than industry standards in order to obtain solutions in a reasonable time but

they are easily scalable to the required industrial dimensions. Our problem consists of
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12 parcels of forest, 6 destinations, 8 types of tree species, and 8 harvesting machines

and spans a total of 12 harvesting periods.

4 cases were implemented in order to answer the questions stated above:

Case 1: This is the nominal robust case without routing constraints using data

originating from a Chile forest harvesting firm. The variabilities are set at 5%, 10%

and 20% with respect to the nominal values to determine the changes in the objective

function and structure of the solution as the uncertainty budget is increased sequen-

tially from 0 to the maximum of 12. As the variability increases, it is expected that

the model will take a more conservative solution to retain its robustness with respect

to changes in the harvest yield.

Case 2: This is a modified version of Case 1 whereby routing considerations are

added and the solution structure and harvesting decisions are studied to determine

the resulting changes compared to Case 1. It is expected that with routing decisions

and assignment costs added to the model, the optimal objective value will naturally

increase. Another point of interest is whether the presence of routing constraints will

affect the initial harvesting decisions when variability and F are the same.

Case 3: This is a modified version of Case 1 whereby two stands are made equal

in all aspects but will be subjected to different variability. This is a simple exercise

to exemplify that the model will make decisions in a rational manner and chose to

harvest the stand with lesser variability so as to reduce the risk due to uncertainty,

ceteris paribus.

Case 4: This is a modified version of Case 3 where routing decisions are added.

We compare the solution for this case with the solution from Case 3 when the vari-

ability is set to be the same. This is another simple example that clearly shows the

differences in solution structure due to the presence of routing considerations, ceteris

paribus.
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Figure 4-1: Objective values of robust model at 5% variability as a function of F

4.2 Computational Results

4.2.1 Case 1: Basic Robust Case

Case 1 uses the original industrial data to obtain the optimal multi-period harvesting

decisions when protected against uncertainty. Variabilities of 5%, 10% and 20% are

introduced into the harvest yield and the objective values are tabulated and plotted.

From Figure 4-1 which shows the optimal objective values at 5% variability and from

Figure 4-2, several phenomenons can be observed. Firstly, it is noted that it only

took a very small increase in the amount of protection for the objective value to peak

and plateau. The optimal objective value remains fairly constant for an uncertainty

budget value of 4 and above. This implies that sufficient protection against the worst

case scenario is provided with a F value of 4 and there is no need to budget for a

higher level of protection for this particular set of data. Optimal objective plots for

other cases of variability at 10% [B-2] and 20% [B-3] exhibit the same behavior and

can be found in Appendix B.
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Figure 4-2: Comparison of objective values of the robust model at different variability
as a function of F

The results indicating a worst case scenario being attained at a F value of 4 is reason-

able, given that the solutions shows that the top 4 producing forest stands produce

approximately 85% of the total required demand. A sample breakdown of the pro-

duction by stands for all 3 formulations are shown in Table 4.1.

From Figure 4-2, it can be seen that as the variability increases, the objective value

increases as well, reflecting a cost increase due to an increase in the level of harvest-

ing. As can be seen in Table 4.3, in transiting from the nominal model to the robust

model, the model decides to harvest more at less risky locations and less in other

locations in order to protect against uncertainty. Overall, the model harvests more in

total to protect against uncertainty and meet the total required demand. Case 3 does

a simple exemplification of this effect by comparing 2 stands modified to be similar

but are subjected to different levels of uncertainty.



F = 2 and 5% variability

Stand Nominal% Robust% Routing%
1 17.2 16.5 18.7
2 0 0 0
3 16.2 16.2 16.5
4 3.1 3.1 4.4
5 2.3 2.3 3.09
6 2.7 2.7 2.8
7 9.2 9.7 8.4
8 40.9 40.8 40.4
9 0.8 0.9 0
10 3.0 3.2 2.9
11 1.9 1.9 0.0
12 2.7 2.6 3.0

1Total II 100 100 100

Table 4.2: Breakdown of costs averaged over all F for 5% variability

Stand Robust Routing Percentage increase
Penalty 481558.4 589882.9 22.5

Operational 1380803.1 1379738.3 -0.1
Transportation 5033166.8 5418603.8 7.7

Assignment - 42346.6 -

Total 6895528.2 7434666.9 7.8

4.2.2 Case 2: Robust Case with Routing Considerations

With the addition of the routing constraints, the objective value increases from the

previous case by 7.5% on average over all the scenarios considered as seen in Figure 4-

3 for the case with 5% variability.

From Table 4.2, the breakdown of the total costs can be observed for 5% variabil-

ity in harvest yield. At first sight, the increase due to assignment cost is not large

and does not justify the modeling and computational efforts to include the routing

constraints. However, the influence of the routing constraints leads to increases in

all components of cost. For example, in the case shown, the total costs actually in-

Table 4.1: Breakdown of output by stands for
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Figure 4-3: Objective values of robust model at 5% variability as a function of F

creased by 7.8% which is mainly due to the increase in transportation costs. This

can be explained by realising that due to the fact that harvesting is being restricted

to areas routed by the machines, certain forest stands with cheap transportation to

final demand destinations could not be harvested. Data for other variabilities show

the same breakdown and is shown in the Appendix A as Tables A.5, A.6 and A.7.

This indirect cost increase due to the inclusion of routing constraints is a large moti-

vation for modelling the routing constraints to get an accurate optimal decision and

is substantial considering the absolute cost in hundreds of millions of this industry.



Table 4.3: Percentage distribution of harvest production for F
at time period 5

= 2 and 5% variability

Stand Nominal Robust Routing
1 14.4 7.02 31.49
2 0 0 0
3 0 0 0
4 0 0 14.30
5 0 0.15 0
6 0.16 0.15 1.68
7 8.14 14.49 0
8 53.74 52.14 51.28
9 0 1.55 0
10 1.36 3.86 0
11 21.14 20.64 0
12 1.06 0 1.25

Total 100 100 100

An interesting question is whether the addition of the routing constraints will result

in any change of the solution structure when compared to the previous case. It is

noted from the data as shown in Table 4.3 that the solution structure does change.

After adding routing considerations, the model harvests an even larger amount but at

a smaller number of stands. Case 4 examines a modified model that helps to explain

a plausible reason for this change in the solution structure.



Table 4.4: Sample data for a comparison of similar stands subjected to different
variability

F 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
A, Stand 2 0 0 0 0 0 0 0 0
A, Stand 8 100.6 101.3 103.5 104.3 105.5 105.9 105.9 105.9

B, Stand 2 0.0 41.3 40.2 30.6 17.5 0.0 0.0 0.0
B, Stand 8 100.6 38.5 41.1 57.4 68.4 105.9 105.9 105.9

4.2.3 Case 3: Robust Case with 2 identical stands

In order to test the behavior of the robust approach when the yield coefficients are

subjected to different uncertainty, a case with two almost exactly identical forest

stands were created with the exception that their yield variability vary. Scenario A

was created whereby stand 2 and stand 8 were chosen to be identical and their harvest

yield was subjected to 5% variability. Given the case when their yield variability is

exactly the same, the model does not differentiate between the two stands and di-

vides the harvesting amount equally between the two or randomly select either one to

harvest the full amount. In Table 4.4, it can be seen that the solver chose to harvest

from stand 8 for this case. For scenario B, Stand 2 was then subjected to a higher

degree of variability. In the case when one stand has a higher variability than the

other competing stand, the model will always choose the stand with less variability to

harvest as long as the demand is being able to be supported by that single stand. In

the event that demand outstrips the supply from a single stand, the model harvests

from the stand with least variability first before harvesting from the other stand. As

an illustration, the model was allocated different uncertainty budgets ranging from 0

to 12 and the result is shown in Table 4.4.

The model shows interesting results when the allocated uncertainty budget was var-

ied. The model decides to harvest more at stand 8 which has lower variability as F

is increased. This is in agreement with what one will expect when the model tries to

avoid risk from uncertainty.



Table 4.5: Simple Illustration of change in harvest decision due to routing constraints

Nominal

R2
R8
Robust
R2
R8

Routing

R2
R8

Period 1

50.3134
50.3133

Period 2

70.6214
70.6214

52.9614 74.338
52.9614 74.338

111.807 156.937

0 0

4.2.4 Case 4: Robust Case with Routing considerations and

2 identical stands

A similar idea is extended to test the effect of routing considerations on two identical

stands. In this case, the yield variability of both stands 2 and 8 are set to be the

same which resulted in an equal distribution of forest harvesting from both stands

initially and can be seen from the data exhibited in Table 4.5. Stands 2 and 8 were

only harvested from periods 1 to 5 and the rest of the periods were excluded from the

table. It is noted that with the addition of routing constraints, the model will chose

to harvest at just one of the locations. This can be explained by understanding from

a cost approach. By only harvesting from only one stand instead of two, the model

avoids costly assignment costs for 2 machines and instead assigns the harvesting to

just 1 machine. This is also one of the reasons for the change in the structure of

the unmodified industrial data in Case 2. The model tries to reduce the number of

machines used to reduce costs and the result is a smaller amount of machines used

for harvesting larger aggregated amounts of logs in a smaller number of stands.

Period 5

35.0927

Period 3

70.6214
70.6214

74.338
74.338

156.937
0

Period 4

70.6214
70.6214

74.338
74.338

156.937
0

35.0927

36.9397
36.9397

77.9839
0 ii

''~ '

3

-· -- --
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This actually leads to a better overall solution to the harvesting problem from an

operational viewpoint. When running an optimization model, it might be numerically

optimal to harvest in small amounts from various stands but this might be difficult to

implement in reality as other costs for crew and overheads not originally included but

have to be taken into account in practice might result in such small amounts becoming

uneconomical to harvest. In other words, the addition of the routing constraints will

result in an aggregation of harvesting to a smaller number of stands, reducing the

number of cases whereby several small amounts are harvested from many stands that

might be hard to fulfill or may lead to higher costs operationally.



Chapter 5

Monte Carlo Feasibility Study

5.1 Description

In order to justify the use of a robust methodology to industrial use, and to determine

the probability of a computed solution being feasible in practice, a Monte Carlo study

of feasibility was implemented. The study aims to provide evidence for the usability of

the solution in making decisions in actual practice and encourage the use of a robust

methodology for forest harvesting planning among practitioners. To implement a

Monte Carlo study of feasibility, 2000 different scenarios for the yield coefficients were

generated whereby each parameter of the harvest yield was perturbed by sampling

from a uniform distribution within the uncertainty interval. The solutions obtained

using the basic robust and routing formulations were then applied to these 2000

scenarios to determine if they still satisfied the required demand. A record of the

percentage of feasible scenarios and the actual amount of infeasibility for each level

of the uncertainty budget was made. The average amount of infeasibility actually

corresponds to the average amount of unmet demand whenever infeasible and this

amount is obtained by averaging the total amount of infeasibility over the number of

cases which are infeasible. Lastly, the average objective value for the basic robust and

routing formulations when applied to the 2000 scenarios was calculated and compared

with the original to determine the difference.
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Figure 5-1: Percentage of feasibile senarios at 5% variability as a function of F

5.2 Results

It is immediately noted that in all cases of different variability, the percentage of

feasible cases increases as we increase the uncertainty budget. The can be seen from

Figure 5-1 and plots for other variabilities B-7, B-8, and B-9 in Appendix B. This

confirms the previous analysis that the worst case is protected by an uncertainty

budget with F equal to 4 as the percentage of feasible scenarios reach 100% or close

to 100% when as F is increased to 4. It is also interesting to note that the percent-

ages of feasible cases for the routing models are almost always slightly greater than

the percentages of feasible cases for the basic robust models. This can be explained

by understanding that due to the presence of the routing constraints, the solution

is forced to take on a more rigid structure which includes aggregation of harvesting

quantities. This aggregation of harvesting decisions to certain stands will result in

less variability by limiting the number of harvested stands that are affected by vari-

ability and can be thought to have the same effect as risk pooling.



4n
4

10
3

BZZ

4-.
o

- 10'
0
E

10o

tIn 1

- Robust.-.-.- --.......-- i.----- - - --....
... ~~.~.~.--~-. ~~.~~. ......... • ..... •......•..... ...... •..... .....

.. .... ~.~-~. • .. ... ~.... ~ ~~~~~..r .. . .. . R . . . .. .r. .. . . .•.. . . . .. T. . . .. .•. .. . . .
r . ... .... . . ..... ..........

-'-----------------------r

........... ------r ------- - ---------- -.. . .. . --.. . . . -.. . .. . --.. . . .- .. . .. .- ----------- -- - - - ------- --------------------------r--- --------~-----------r----·--------------- ----------- L ---- --J---- L j
----- ---------- - --~~-· - ------ rr -- --- --b --- -- -

...... ..... ..... •........ .... • .....;...... •....i.......E~ ~ I~IIEIf~~~~~~III~

-~-r.~~~~.~~~~~.~~.......... {.~ ~
I I I I III-------------------- - ---- --------------- -------------r~ ~------,------------- ---- ;------- ------- ---- ------- -----.~," ~ ~--- ---- --- r--------------,------------~---,----------------------------- -~~---------·- -- ----------- -- - ------C ------------- -~~.~~. h~~.- ~ l-----------------

------------ ~--------------------- ----------- ; --------- -----------------r ------------ ------ ----------------------' -------- ----- - -- - ------- --- -----
--- -- ----- ----- -- -I --- ----- -- --- - -- --- --- -- -- --- -------- -- --- --

-- --- ---- --- - -- --- ---- --- ---- --- ---- --- --- --- ---- --

0 0.5 1 1.5 2 2.5 3 3.5 4
uncertainty budget, r

Figure 5-2: Average infeasibility of senarios at 5% variability as a function of F

One seeming anomaly is that the nominal solution has zero or a low percent feasibility

for all the simulations created. One would expect the nominal solution to be at least

feasible for some scenarios. However, this can be explained by understanding that

the parameters in the harvest yield are allowed to vary individually. The probability

of all constraints moving in the same direction so as to render the original nominal

solution feasible is close to zero due to the large number of constraints and hence

strengthens the need for a robust formulation.

From the graphs of the average infeasibilities Figures 5-2, B-11 and B-12, several

insights can be drawn. Most notable is the fact that the amount of infeasibility or

unmet demand is very high when one does not consider the use of a robust solution

at all. This unmet demand is rapidly reduced by 2 orders even when only a slight

protection is enabled using ' equal to 1. This strongly encourages the use of robust

optimization even at a very low level in order to reduce the cost associated with not

meeting demand which might include failure to meet contractual agreements and lost

of goodwill besides the lost opportunity cost of making more profit. The other insight

is that once protection against uncertainty takes place, the unmet demand is actu-
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ally only a small proportion of total demand. This leads to the concept of a "weak"

infeasibility as opposed to a "strong" infeasibility.

A "strong" infeasibility condition is defined in this paper as the condition that a

scenario is deemed infeasible as long as it does not meet demand whereas a "weak"

infeasibility condition is when the unmet demand is not excessively large and can

possibly be handled in practice using safety inventory or purchase from external sup-

pliers in order to meet the contractual obligations. Hence, an industrial practitioner

can decide to protect up to a certain amount based according to a mix of safety

inventory standards and probability. For example, if an industrial practitioner feels

that it is reasonable to meet demand 95% of the time, then he or she can make use

of the data to determine the suitable F value that will result in a solution that leads

to a 95% chance of feasibility and obtain the harvesting decisions using that budget

of uncertainty. Alternatively, he or she can make use of the average infeasibility data

to compare with the available safety inventory to chose a budget for uncertainty that

is used to obtain harvesting decisions.

Another interesting question that might arise would be to determine the differences

in the amount of feasibility if more information on the distribution was known. For

example, the user might want to set the level of protection against variability within

each parameter to be a certain percentage of a normal distribution. Working with

a 95% confidence interval that the sample will be within the protection level of 5%

of the nominal data, the following calculations results in the required formula for

variance of each parameter. From the normal distribution tables, a 95% confidence

interval corresponds to 1.96a where a is the standard deviation of the parameter.
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Gamma

Setting this confidence interval to be equal to the level of protection that is given:

1.96a = 0.05 HYik

0.05 HYik

1.96

variance, 2 = (0.05 * HYik 2

Sampling from the normal distribution, one arrives at Figure 5-3 where it is observed

that the graphs rises rapidly but reaches a plateau for each level of confidence interval

used. This is actually within expectations as the normal distribution is distributed

closer to the center as compared to a uniform distribution and therefore there will

be a higher level of feasibility for the whole range of protection at 99.99% confidence

interval. However for the other 2 graphs, due to the fact that protection is limited

to 95% or 99% of the distribution, the probability of all sampled parameters be-
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ing able to fulfil all the contraints is greatly reduced which leads to a high chance

of infeasibility. However, it is also noted that the amounts of infeasibility in these

cases are very low which can be attributed to the tails of the normal distribution.

Given that most operational processes have an underlying uncertainty distribution

which is empirically close to a normal distribution, inferences can be drawn from the

6-Sigma methodology to this test to understand that uncertainty containment have

repercussive effects and an adequate amount of variability protection must be used

in conjuction with protection against number of parameter changes.



Chapter 6

Conclusion

6.1 Summary

In this thesis, the key points established from the series of industrial and experimental

cases are that the use of a robust approach for planning forest operations is important

and essential to safeguard against uncertainty induced by the biological nature of the

forest industry as well as other external factors. The extension to include routing

considerations is vital for an accurate modeling of the actual forest harvesting prac-

tice.

Given a solution that is not protected against uncertainty, the possibility of it being

infeasible in practice is very high and the resulting shortage is usually counterbal-

anced by harvesting more than required based on experience from a planner or by

using safety inventory. However, the decisions made based on this approach are usu-

ally dependent on the planners' judgment and experience. On the other hand, the use

of a robust formulation helps in protection against unmet demand deterministically.

Furthermore, by using the data obtained from a Monte Carlo study of feasibility, a

practitioner can judge the amount of uncertainty protection to use for a given prob-

ability of supply shortage scenarios or available safety inventory and then determine

the required harvesting decisions using a robust routing model.



The addition of routing considerations results in a larger problem that is NP-hard and

takes a significantly longer time to solve to optimality but is shown to be important

due to the substantial costs that are included when considering the use of the capital

intensive machinery and also due to its effects on the way forests are harvested. It was

also noted that the consideration of routing constraints may lead to other operational

benefits such as a reduction in harvest decisions that are uneconomical in practice

due to their limited amounts. The inclusion of the routing constraints is therefore

strongly recommended in order to obtain an enhanced model.

Even after some simplifications that reduce the complexity of the problem, the routing

problem remains NP-hard and highly data dependent. Although computational time

and effort for the industrial data set is reasonable, investigation into other data sets

may require more time or effort in tuning the CPLEX options to yield solutions in

reasonable time. This brings about the need for other approaches to evaluate the

effects of a robust formulation on large scale routing problems and has brought forth

interesting ideas for further in-depth research in this field.

6.2 Future research directions

Suggestions for future work include the use of a heuristic approach such as those dis-

cussed in section 1.2 to finding the routing decisions. The application of specialized

heuristics to obtain solutions to routing problems have been successfully and exten-

sively used for many years and a good starting reference is Simchi Levi's The Logic

of Logicians [17]. The author's reason for not using a heuristic initially is due to the

fact that a heuristic method will result in only close to optimal solutions generally

and result in a more protected solution naturally. The solution hence undermines

the effects of a robust formulation which is a major study of this research. However,

as the data size increases, the "curse of dimensionality" manifests and a branch and

bound approach as used by CPLEX will be unrealistic in practice. A study for large

scale systems with this trade off in mind might be further pursued if required.



Appendix A
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Table A.1: Objective values of robust model for various F and variability

I 5% 10% 120%1
0 6102947.528 6102947.531 6102947.528
1 6850948.191 7663581.854 9609709.937
1.5 6878003.959 7718702.813 9728387.983
2 6896994.246 7770591.851 9845051.404
2.5 6899147.785 7781390.118 9869469.098
3 6901294.475 7786270.592 9887177.811
3.5 6902532.86 7790210.145 9897025.647
4 6903506.324 7792834.171 9904455.824
6 6904595.563 7795315.597 9911040.943
8 6904595.561 7795315.598 9912182.465
10 6904595.562 7795315.597 9912258.293
12 6904595.563 7795315.596 9912258.293

Table A.2: Objective values of routing model for various F and variability

r  5I % 10% 20%
0 6615132.485 6615132.485 6615132.485
1 7395206.599 8236262.504 10275256.47
1.5 7420799.82 8292771.378 10396026.09
2 7437134.159 8340241.862 10509536.81
2.5 7439419.971 8354083.436 10558162.38
3 7441093.652 8358277.976 10595631.39
3.5 7441281.074 8358938.608 10612394.29
4 7441290.82 8359238.601 10622057.22
6 7441292.199 8359249.177 10622058.01
8 7441293.865 8359249.156 10622060.87
10 7441230.789 8359249.155 10622059.07
12 7441292.653 8359249. 155 10622058.22



Table A.3: Average infeasibility of robust model for various F and variability

Ir 5I1% J10% 20%
0 -2845.871269 -5693.960968 -11391.44567
1 -26.843563 -51.751349 -96.576993
1.5 -9.820904 -19.217695 -36.377346
2 -6.137512 -14.749244 -33.639074
2.5 -4.514485 -9.16407 -18.800925
3 -1.188583 -4.530578 -8.818877
3.5 -0.888563 0 -0.512733
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0

Table A.4: Average infeasibility of routing model for various F and variability

IF 5% 10% 20%1
0 -2776.640292 -5571.279827 -11201.75657
1 -22.221341 -42.945354 -81.513159
1.5 -5.368829 -17.585026 -31.809073
2 -1.80353 -11.010896 -18.459489
2.5 -0.940033 -2.013524 -7.102701
3 -0.388653 -0.657618 -4.381674
3.5 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0



Table A.5: Breakdown of costs averaged over all F for 5% variability

Stand Robust Routing Percentage increase
Penalty 481558.4 589882.9 22.5

Operational 1380803.1 1379738.3 -0.1
Transportation 5033166.8 5418603.8 7.7

Assignment - 42346.6 -
Total 6895528.2 7434666.9 7.8

Table A.6: Breakdown of costs averaged over all F for 10% variability

Stand Robust Routing Percentage increase
Penalty 1007022.8 1125594.7 11.8

Operational 1459806.3 1461419.2 0.1
Transportation 5304520.4 5706130.3 7.6

Assignment - 46565.9 -
Total 7771349.5 8339710.1 7.3

Table A.7: Breakdown of costs averaged over all F for 20% variability

Stand Robust Routing Percentage increase

Penalty 2254427.5 2400202.0 6.5
Operational 1637902.7 1648018.5 0.6

Transportation 5961217.0 6455175.3 8.3
Assignment - 47268.0 -

Total 9853547.1 10550663.7 7.1
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