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Abstract

As autonomous robots are increasingly used in complex, dynamic environments, it
is crucial that the dynamic elements are modeled accurately. However, it is often
difficult to generate good models due to either a lack of domain understanding or
the domain being intractably large. In many domains, even defining the size of the
model can be a challenge. While methods exist to cluster data of dynamic agents
into common motion patterns, or "behaviors," assumptions of the number of expected
behaviors must be made. This assumption can cause clustering processes to under-fit
or over-fit the training data. In a poorly understood domain, knowing the number of
expected behaviors a priori is unrealistic and in an extremely large domain, correctly
fitting the training data is difficult. To overcome these obstacles, this thesis takes a
Bayesian approach and applies a Dirichlet process (DP) prior over behaviors, which
uses experience to reduce the likelihood of over-fitting or under-fitting the model
complexity. Additionally, the DP maintains a probability mass associated with a
novel behavior and can address countably infinite behaviors. This learning technique
is applied to modeling agents driving in an urban setting. The learned DP-based
driver behavior model is first demonstrated on a simulated city. Building on successful
simulation results, the methodology is applied to GPS data of taxis driving around
Boston. Accurate prediction of future vehicle behavior from the model is shown in
both domains.
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Chapter 1

Introduction

1.1 Motivation

On November 3rd, 2007, the DARPA Urban Challenge was held. This was a compe-

tition of fully autonomous vehicles racing in an urban environment while obeying all

traffic laws (i.e., not only stopping at stop signs but maintaining intersection prece-

dence). While this was arguably one of the most impressive feats of autonomous

robots to date, it also demonstrated how difficult it is to replace or even mimic hu-

mans. This is illustrated by an event that occurred during the race between MIT's

and Cornell's vehicles. Cornell's vehicle came to a stop in the middle of a road and

MIT's vehicle, approaching from behind, decided to pass. As MIT's vehicle completed

the pass and pulled back into the lane, Cornell's vehicle began to move forward, caus-

ing a minor collision. If either vehicle had understood the behavior of the other,

this, potentially, could have been avoided. This incident is a shining example of how

autonomous robots need to understand the behaviors of the objects with which they

interact, in order to truly succeed in complex domains.

As autonomous robots are increasingly used in a variety of complex domains,

behavior modeling stands out as being extraordinarily useful. It should be no surprise

that humans have become particularly adept at creating models of objects with which

they must interact. The ability to predict an object's response to different actions

allows humans to achieve desired outcomes.



1.2 Problem Statement

The attention of this thesis is on behavior modeling in domains that are poorly

understood and extremely large. Motivated by the Urban Challenge, the problem of

modeling the behaviors of cars driving in a city environment is the chosen application

of this work. A successful driver behavior model will need to solve two problems:

predicting the destination of vehicles and the routes chosen to these destinations.

The first step of a solution is to model vehicle destinations. Building on the way

humans typically understand destinations, this thesis defines a destination as a loca-

tion that assigns a probability to nearby road segments. This probability represents

how likely drivers are to park there while heading to the destination. An example of

a destination, and something that appears in the results section, is an airport. This

is not only a logical destination to model, but knowing a driver is heading to the air-

port does not exactly specify the road on which the driver parks. What it does mean

is the driver will tend to park close to the airport, with this "closeness" measured

by a probability distribution (see Section 2.2 for a proper definition of a probabil-

ity distribution). This destination representation attempts to model how varied the

parking locations are of drivers heading to a destination. Compared to a destination

that is a residential area, it is expected that an airport would have a much "tighter"

distribution. The problems this presents are finding the number of destinations, their

central locations, and the probabilities of each road segment near a central location

being a stopping point for that destination.

Once the destination model has been created, the next step is to understand how

drivers travel to these destinations. When routes are discussed it is sufficient to

think of them as a sequence of road segments that lead to an ending location near

the vehicle's desired destination. A simple approach is to learn the probabilities of

cars turning or going straight at every intersection by counting how frequently they

happen in training data and making predictions based on that. While there are some

disadvantages to this, which are discussed later, the central problem is that making

predictions this way ignores the past. The intuition behind this is seen by attempting



to predict a destination given the following two premises:

There is a vehicle on the highway.

There is a vehicle on the highway coming from the airport.

The second statement would make prediction easier and contains additional infor-

mation that the simple approach, described previously, cannot capture. Building on

this intuition, a successful driver behavior model needs a more general approach: one

that can learn the probability of a driver taking every possible path. Although it

may seem necessary to have nearly infinite training data to learn the nearly infinite

possible paths through a city, a solution requiring that much training data is unrea-

sonable. To overcome this, the solution must "understand" the domain is extremely

large and be able to reason about paths not seen in the training data. When a path

is not seen in the training data, this does not mean there is no information about

it. What is known about unseen paths is how frequently new paths appeared in the

training data. Based on the size of the domain, the amount of training data, and

the number of unique paths, the model should be able to predict about how likely an

unseen path is to occur.

A central assumption of this thesis is that the behavioral domain is too large and

poorly understood to have a designer provide a model for either destinations or paths

to each destination. While it is obvious to designate the airport as a destination, it is

unrealistic to expect a designer to know all the destinations of all drivers. The paths

drivers choose may be subject to factors that are difficult to model (e.g., ignorance

of a "better" path, driver's mood, etc). To overcome these challenges, the model will

need to be learned from training data.

1.3 Approach

1.3.1 Finding Destinations

To capture the selection of parking locations around a destination, each destination

is represented as a Gaussian distribution (Section A.1). Building on this, the entire



city is represented as a mixture of Gaussians, where each destination Gaussian also

has a weight associated with it. This weight corresponds to how likely a destination

is for a car, so the entire city is a combination of these weighted Gaussians.

Learning models of destinations is made difficult by an unknown number of des-

tinations. To overcome the challenge of unknown model size, the destinations are

assumed to be distributed according to a Dirichlet process (DP, Section 2.4.2). By

assuming the destinations were generated from this process, it is possible to infer the

most likely number of destinations based on how frequently new destinations are seen

in the training data. This is in opposition to typical methods that either require the

number of model components to be explicitly specified beforehand or a penalty placed

on the number used. To be able to specify the number of destinations or a penalty,

a fair amount of designer understanding is required, an assumption that this thesis

wishes to avoid.

1.3.2 Learning the Probability of Every Path

Section 1.2 briefly discussed a simple approach to learning the probabilities of paths

by finding the frequency that different actions at an intersection happen and the

intuition this provides for needing to learn the probability of every path. To do

this naively places a parameter on each path (representing its probability), in total,

requiring nearly an infinite number of them.

To better understand how many parameters are needed, consider the following

illustration. Figure 1-1 shows four copies of a 5x5 block city, each with a driver's

possible route drawn in green. Even if loops are not allowed, there are an extremely

large number of paths traversing even a small city. By knowing the probability of

each possible path, predictions about a vehicle's next action or end location can be

made. As an example, assume the bottom right path occurred far more frequently

in the training data than the others. If this were the case, it is then expected for

the route to have a significantly higher likelihood of occurring. At the same time, to

naively learn the probabilities associated with infinitely many paths, infinite data is

needed. Figure 1-2 shows three possible infinite probability distributions over paths
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Figure 1-1: Four possible routes traversing a 5x5 block city.

where each path is indexed and each index correspond to a bar with probability

proportional to its height. To overcome requiring infinite data, it is assumed that

these paths are generated from a DP. While DPs are also used in Section 1.3.1, its

justification here is quite different. A DP ranks the kind of probability distributions

shown in Figure 1-2 by how well they fit the training data. Using this approach, it

is not necessary to have infinite data to capture the probability of each path. This

DP ranking is based on the number of paths that have been seen and how frequently

they occur.

Consider another explain regarding Figure 1-1. Of 100 observed paths of data the

paths shown in the figure were the only ones seen (i.e., all 100 cars took one of the

four paths). The DP based on these 100 observed paths would say some distributions

(a and b, Figure 1-2) are more likely (rank them higher) than other distributions (c,

Figure 1-2). By having this ranking on path distributions, it is possible to sum over all

distributions, enabling predictions about paths that both appear and do not appear

in the training data. A DP has a parameter a (that can be learned from data) which

~

~

C

F
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Figure 1-2: Three possible distributions over all paths.

is approximately proportional to the probability that the next path will be novel. For

example, if ten paths of data were collected resulting in the training data {1, 2, 2, 2,

1, 1, 2, 1, 2, 2} (where each unique path is given a number), a would be small since

the training data leads one to believe new occurrences happen relatively infrequently.

Conversely, if the data had been {1, 2, 3, 4, 5, 3, 6, 7, 8, 9}, a would be large.

With the understanding that different types of destinations have differing degrees

of path variety, it is undesirable for a destination with a high variety of paths to

influence the distribution over paths to a destination with low variety. By modeling

driver behavior as having a destination with each having its own distribution over

paths, the model can learn how varied the paths are to each destination without being

influenced by others.

The high degree of flexibility provided by DPs make one wonder if perhaps the

model sounds too good and must require an unattainable amount of data. This

question is actually part of a far bigger issue: how well a model "fits" the training

data. This is a fundamental issue that is addressed in this thesis and the argument

is made in Chapter 4 that one of the strongest elements of a DP is its ability to

appropriately fit the training data through the use of a probability associated with a

novel path appearing as the next path.



1.4 Contribution

The main contribution of this thesis is to present a powerful tool for behavior model-

ing. This thesis asserts that DPs are ideally suited to driver modeling. A DP's ability

to learn the number of behaviors from the training data, handle countably infinite

behaviors, and maintain a probability of a novel behavior occurring makes a strong

case for its use here. While DPs have gained increased attention more recently, they

have not yet been discussed in the broad terms of behavior modeling. It is the hope

of this thesis to show that the sole reason DPs have not yet been used to address

behavior modeling is due to their relatively recent appearance in common literature.

Since the applications of DPs are fairly new, most focus almost exclusively on the

benefits and do not address the drawbacks. This thesis also attempts to address the

two main disadvantages of DPs: the amount of training data needed and the slower

learning time than conventional methods. Even with these drawbacks, DPs have the

potential to solve many behavior modeling problems that typical approaches cannot

address due to large, poorly understood domains. In Chapter 4, the DP-based driver

behavior model is demonstrated in both simulation and on real data.

1.5 Thesis Overview

The main purpose of Chapter 2 is to clarify DPs to the reader and facilitate under-

standing of how they differ from typical approaches. Chapter 3 introduces the model

of a vehicle in an urban environment. The methodology developed is then tested in

Chapter 4, both in simulation and on real GPS data of taxis driving around Boston.

Chapter 5 offers some concluding remarks and future work.





Chapter 2

Background

2.1 Chapter Overview

This chapter begins with a brief introduction to probability theory in Section 2.2.

Building on the foundation set in the Section 2.2, Section 2.3 discusses Bayesian

inference. Section 2.4 introduces stochastic processes, and the process that is the

basis of this thesis, the Dirichlet process in Section 2.4.2. Section 2.5 describes past

approaches to modeling the behaviors of drivers.

2.2 Probability Theory

It is sometimes difficult to say with certainty that an event will always or never occur,

and in these cases, discussing the event in terms of a degree of belief is necessary. For

example, it is rare to be able to say a driver will always turn left at an intersection, but

to say the driver will turn left 90% of the time is typically much more reasonable. In

probability theory, this is denoted P(Left Turn) = 0.9. Probability theory allows us to

capture this degree of belief as a probability distribution. A probability distribution

is a function that, for the entire space E (the set consisting of all possible events),

obeys



1. P(A) > 0, for all events A C e,

2. P(A1 U A 2 U...) = P(A1) U P(A2) U..., for disjoint', events Ai C e

3. P(OE) = 1,

which are referred to as the axioms of probability [7]. A probability distribution is a

function from subsets of E to the real numbers.

Rather than describing distributions of an event A, it becomes more useful to think

of this event as a variable, X. This is not an ordinary variable, it is a variable that

has a probability associated with it taking each value in E. Since this distribution

of X e O is specified by a distribution, X is thought of as "randomly" taking one of

these values. Due to this randomness, it is called a random variable.

There are two kinds of random variables, discrete and continuous. A discrete

random variable is defined by a probability mass function (PMF), Px : X -* R, that

gives the probability of X taking an exact value in O. The notation px (x) represents

the probability mass function for the random variable X at x. For example, if X is a

random variable describing the probabilities of a vehicle going left, straight, or right

at an intersection, its PMF may be written as

1/6 if x = Left

(x) = 1/2 if x = Straight

1/3 if x = Right

0 otherwise

So, to compute the probability of the vehicle turning, the probability "masses" can

be added such that P(Left U Right) = 1/2.

The second kind of random variable, a continuous random variable, is defined

by a probability density function (PDF), fx : X - IR. Unlike in PMFs, where

probabilities are given for the random value taking an exact value, the probability of

a continuous random variable taking on an exact value is zero because the probability

Isets that do not share any elements



of choosing any one value out of infinitely many values is zero. The PDF gives the

relative probability of different values. Probabilities for continuous random variables

are only meaningful over a range of values of X. Consider a simple random variable

representing the speed of a car where the speed is uniformly distributed between zero

and 70. The PDF of this random variable, X, is

fx(x) = 1/70 if 0 < x < 70

S0 otherwise

Note that for continuous random variable X, fx is used to represent its PDF, in

contrast to Px representing the PMF of a discrete random variable X. While the

probability density at X = 45 is 1/70, P(X = 45) = 0. Similarly to how it is possible

to sum over the probability masses with PMFs to calculate the probability the vehicle

is traveling over 45, fx(x) is integrated over all values of x greater than 45. So,

P(X > 45) = j fx(x)dx

= 5/14.

There are three terms that appear throughout this thesis: distribution, density,

and measure. A distribution can either refer to the function describing a discrete

or continuous random variable but the term density uniquely refers to the function

for a continuous random variable. Anything described as a distribution or a density

must obey the axioms of probability. The term measure is an abstraction of the ideas

such as "length" and "size." A measure maps a set onto the line [0, 00). It allows

for comparison of different sets based on the "size" of the set defined by the mea-

sure. Therefore, all distributions are measures but not all measures are distributions.

This abstraction is important as distributions are introduced over sets that are more

complex than the real numbers or the natural numbers. When a distribution over dis-

tributions is discussed, it is typically described as a measure over distributions since

the word measure allows for more abstract thinking about how some distributions are

"bigger" or "more likely" than others. Additionally, in this chapter, random variables



are always represented by a capital letter and instances of random variables, a lower

case letter. This is not strictly adhered to in other chapters.

2.3 Bayesian Inference

When a random variable of a model has not been observed but evidence of the variable

is known, the techniques of probabilistic inference can be used to infer the value of

the random variable. If the probability of X, the variable of interest, given E, the

evidence, is known, then P(X) can be determined immediately. More often, however,

the probability of the evidence is known as a function of the unobserved X. Based

on the evidence (e.g., a measurement), inference can often be performed using

P(EIX)P(X) (2.1)
P(X|E)= (2.1)P(E)

(read as the probability of X conditioned on E), known as Bayes' rule. Bayes' rule

is derived from the conditional relationships

P(Y,Z) = P(YIZ)P(Z) (2.2)

= P(Z|Y)P(Y)

where P(Y, Z) is a distribution of two random variables, also called a joint distribu-

tion. In Equation (2.1) P(X) is referred to as the prior distribution, the belief about

the distribution of X before any evidence has been observed. P(EIX) is called the

likelihood, representing how likely the evidence is given X. P(X E), the posterior, is

the distribution after the evidence has been incorporated. Often, for mathematical

simplicity, a conjugate prior of P(EIX) is chosen for P(X). It is called a conjugate

prior when P(XIE) has the same type of distribution as P(X). To illustrate these

concepts, imagine a coin with unknown bias, 0 < Q < 1, that is then flipped ten



times. The PMF of X (the outcome of the coin flip) is defined as

Px () = {Q
1-Q

0

if x = H

if x=T

otherwise

The outcome of these flips is used as evidence to update the belief of the coin

Representing the evidence as the number of heads, nH, and the number of

nT, from the flips, makes the distribution on nH and nT multinomial (Section

written as

P(nH, nT Q)= (nH+ nT)QnH(1 _Q)n T

Its conjugate prior, the Dirichlet distribution (Section A.6)

Qal-1(1 _ Q)a2-1
P(Q) = ,

P) Ual- 1(1 - u)a2-ldu'

is used as the prior. The posterior, as shown by

P(QlnH, nT)
P(nH, nTIQ)P(Q)

fo P(nH, nTIQ)P(Q)dQ
nH+nT)QnH(1 - Q)nT Qal-1(1-Q) '2 - 1

nH Q1 fO ual--1(--Lu)2-1du

fo H+nT (1 Q)nTQ 1 l-1 , - a2-1

Q nH _ O- _ () a
2-1

fo QnH(1 - Q)nTQal-l(1 - Q)a-1dQ

Qal+nH-l(l _ Q)a2+nT-l

f0 Qal+nH-1(1- Q)a2+nT-ldQ

has the same form (i.e., Dirichlet distributed) as the prior with new parameters. If

the prior is chosen such that all values of Q are equally likely (al = a 2 = 1), the

initial distribution of Q is shown in blue on Figure 2-1 and the posterior in green

after seven heads and three tails were observed (nH = 7, nT = 3).

Something that was not properly explained yet was the denominator of Equation

(2.4), which, according to Equation (2.1), should be P(nH, nT). Before this can be

(2.3)

bias.

tails,

A.5),

(2.4)



&

Coin Bias

Figure 2-1: The prior coin bias (blue) and posterior (green) after observing seven
heads and three tails.

explained, the concept of a marginal distribution must be introduced. Given a distri-

bution of two random variables P(Y, Z), one of them, say Z, can be "marginalized"

out by summing over all possible values it can take. Explicitly, Ez P(Y, Z) = P(Y)
and can be extended for densities by replacing the summation with integration. Com-

bining the idea of marginalization with Equation (2.2) explains the denominator of

Equation (2.4).

The last part of this example that requires explaining is the fundamental method-

ology choice of this thesis by using a prior distribution. The discussion of choosing to

use a prior distribution quickly falls into a much heated philosophical debate between

Bayesians and Frequentists. A Frequentist would criticize the arbitrary choice of the

prior shape and that the coin bias is an actual value and is misrepresented as a ran-

dom variable. The Bayesian reply would argue that this is managing uncertainty and

the prior allows for not over-fitting the training data. This back and forth argument

is apparent in Figure 2-1 by the posterior distribution. It revolves around its shape

and raises questions such as:



* Was it correct to assume the coin bias is Dirichlet distributed?

* Perhaps 7/10 is a better estimation of the coin bias?

* What other distributions could have been used?

* Is the mathematical simplicity afforded by using a conjugate prior worth the

potential loss of accuracy?

If one believes a coin is truly fair, the model described by Equation (2.3) with

Q = 0.5 is expected to perform well, a model that performs equally on the first and

thousandth trial. If one has reason to believe it is a biased coin, domain experience

leads, once again, to Equation (2.3). This time Q is unknown, but it can be learned

from the data. While the model is not fully specified, domain experience allows for

the application of a parameterized model and, in general, with each flip of the coin

the estimation of the bias becomes more accurate.

The argument behind the use of DPs in this thesis is that perhaps the designer has

reason to believe the coin had severe manufacturing defects, such that it potentially

had more than two sides. Clearly Equation (2.3) would no longer be able to capture

the behavior of this coin. If the extension is then made that this coin may have

countably infinitely many sides, a parametric model would require infinitely many

parameters to capture this behavior. In this case it is perhaps less useful to focus on

designing a parametric model, and instead discuss the generative process that creates

the sides.

A main assertion of this thesis is that the domains are extremely large and poorly

understood. Therefore, in these types of domains, it is unreasonable to expect a

designer to create an accurate model. While this thesis makes no claims about putting

The Bayesian versus Frequentist argument to rest, the Bayesian approach, using a

DP prior, is justified by its ability to fulfill the problem statement.

A concept that is essential to finding the "best" model is data likelihood. Data

likelihood refers to how likely the data is to have been generated from a model. More

formally, the likelihood of the data, P(E I), is the probability that the evidence E



Figure 2-2: A simple Bayesian network.

came from a model with parameters 0. There are two approaches: maximum likeli-

hood estimation and maximum a posteriori estimation. The word estimation is used

since the goal is to approximate (estimate) the model as accurately as possible with

the limited view provided by the training data. With 0* as the desired parameteriza-

tion, they can be explicitly written as:

Maximum likelihood: 0* = argmaxo P(E 0)

Maximum a posteriori: 0* = argmaxo P(E1O)P(0)

2.3.1 Bayesian Networks

A Bayesian network [20] is a directed graph representing the dependencies between

random variables. The network is composed of a set of random variables with an

arrow from a node X to a node Y standing for the conditional relationship P(YIX)

[35].

Figure 2-2 shows a sample Bayesian network with four random variables, X, Y1, Y2,

and Y3, illustrating conditional distributions P(YIjX), P(Y21X), and P(Y31X). Fig-

ure 2-3 shows an equivalent Bayesian network to Figure 2-2 using a common "plates"

notation [21].

Bayesian networks are useful for understanding which variables have an influence

on other variables. For example, imagine having weighed a person two times and

based on these two measurements, a predicted distribution over a third measurement



Figure 2-3: An equivalent Bayesian network to Figure 2-2 redrawn using "plates."

is desired. This could be represented as two nodes, Y1 and Y2 (the first two measure-

ments), and an arrow connecting them to node Y3 (the third measurement). This is

a perfectly valid Bayesian network since the values of Y, and Y2 are closely related

to Y3 , but just because it can be written that way does not mean specifying those

conditional distributions will be easy. Instead, if Figure 2-2 were used, where X is

the true weight of the person, the conditional distributions would, typically, be easier

to describe. This is mainly due to quantifying either how three noisy measurements

relate to one another (first representation) or how much the scale's noise corrupts

the person's true weight (second representation). Usually, it is far easier to under-

stand how much noise is added by a sensor. These graphical models appear again in

Chapter 3 to assist in visualizing the relationships between random variables of the

DP-based behavior model.

2.3.2 Markov Models

Markov models [32] are useful in inferring the state of a system that evolves over time.

The Markov assumption [35] asserts that the current state of a system only depends

on a finite history of past states, typically just on the previous state. Sometimes

called Markov processes or Markov chains, Markov models are stochastic processes

(Section 2.4) whose structure exploits the Markov assumption. The model is defined



Figure 2-4: A Bayesian network representation of a Markov model

as a set of states Xt at a time t and a transition model P(Xt+llXt). The transition

model, stating that the next state only depends on the current state, is a direct result

of the Markov assumption. Figure 2-4 is a Bayesian network drawing of a Markov

model.

A simple vehicle model where the vehicle's state is its current road segment and

its next state is its next road segment can be formulated as a Markov model. In this

model, the behavior of vehicles passing through a specific intersection is captured

by the transition model. Say road A connects to roads B, C, and D and a vehicle

transitions from A to one of these three segments with the probabilities described

in Table 2.1. These values can be easily learned from data by counting the number

Xt+1 P(Xt+lX, =A)
B 0.4
C 0.35
D 0.25

Table 2.1: A Markov model describing transition probabilities for road segment A.

of times each transition is taken and dividing that number by the total times a car

departed road A. Given training data of 100 cars traversing road A, learning a simple

transition model, with 40, 35, and 25 of these paths transitioning to roads B, C, and

D, respectively, would result in the learned transition model shown in Table 2.1. It

can be shown that this is, in fact, the maximum likelihood estimate (Section 2.3) of

the parameters. The subtle thing about this model, and a property that is strong

motivation to question the use of a Markov model to model drivers, is that there is

no concept of how well the number of observations fit the size of the domain. If 4

of 10 or 40,000 of 100,000 transitioned to segment B, the learned probability would

a $ a a 0



be the same. In extremely large domains, understanding how well the learned model

has captured the underlying behavior is crucial, something that is difficult to reason

about taking this approach.

While the Markov assumption is sometimes incorrect, even in those instances

where it is questionable, its ease of use makes it an attractive model choice. Addi-

tionally, the state can be augmented to increase accuracy (e.g., making the state the

past two road segments) at the cost of increasing the size of the state-space. In this

thesis, the Markov model is used as a baseline of comparison. In a simple domain it is

expected that the proposed DP-based model will agree with the Markov model pre-

dictions, providing a form of a sanity check. When the domain is extended to include

underlying dynamics, the past history of a vehicle becomes increasingly important,

something the approach described in this section cannot model well.

2.3.3 Clustering

To solve the problem of finding destinations, observations need to partitioned into

groups, a methodology known as clustering. These clustering techniques aim to place

similar observations together. The algorithms have no understanding of what the

groups represent. They could be personalities of people or destinations of cars driving

around a city; it is simply grouping them based on some group specific distribution.

Algorithm 1 k-means
1: Randomly place cl, ..., Ck in the space
2: while cl,., , ck changed do
3: for i = 1 to n do
4: Assign di to the closest cluster
5: end for
6: for j = 1 to k do
7: Recalculate the position of cj to best fit the data assigned to cluster j
8: end for
9: end while

As one may suspect, this problem has been addressed multiple times. The most

common algorithm for clustering is the k-means algorithm [25]. As the name implies,

the number of clusters, k, must be specified in advance. The algorithm then attempts



to find the k Gaussian distributions that minimize the variance inside of each clus-

ter. The k-means algorithm is shown in Algorithm 1 for centroids cl, ..., Ck and data

d1, ..., dn-

There is a family of algorithms, called expectation maximization (EM) [8, 36],

that behave similarly to the iterative process of k-means. The goal of EM is to find

the maximum likelihood (Section 2.3) estimate of the parameters of a model with

latent variables. These algorithms are composed of two steps, an expectation (E)

step and a maximization (M) step.

* E Step: Estimate the values of the hidden variables, given the parameters and

observed data.

* M Step: Find the parameters that best explain the estimated hidden variables

and the observed data.

While k-means and EM have been used in numerous applications, in all of them

a designer had sufficient domain understanding to be able to specify k or build a

parametric model for EM.

The necessity of inferring the number of clusters has been overcome in a variety

of ways. This has been done by starting with a small number of clusters and then

splitting clusters based on a statistical test [19]. In [6], model complexity is directly

penalized by subtracting the number of clusters, scaled by a constant, from the likeli-

hood. An iterative process of increasing k and decreasing k is used to find the correct

k using this augmentation. Both of these approaches utilize domain knowledge to set

the statistical test or penalty scaling constant. While less restrictive than k-means

and EM, this assumption is still too strong for the domains of interest to this thesis.

A play on the name k-means, X-means [30] attempts to infer X using the Bayesian

information criterion (BIC) [22]. The BIC of the model M is

BIC(M) = ln(L) - In(n) (2.5)

where L is the likelihood of the data, m is the number of parameters, and n is the



number of observations. X-means decides the number of parameters by maximizing

Equation (2.5). While this approach is less restrictive than all of the others previously

mentioned, choosing this as a way of penalizing complexity is as arbitrary as assuming

the locations were generated from a DP. Through the use of the probability of a novel

path appearing, the DP approach has the added benefit of being able to judge how

well the behavior is seen in the data.

By assuming the clusters are generated from a DP, the approach taken here is

similar to what was first presented as the infinite Gaussian mixture model [33]. The

details of applying the method described in the paper are discussed in Section 3.2.2.

2.3.4 Monte Carlo Methods

Sometimes exact inference is impossible and in these cases Monte Carlo methods

can be used. Monte Carlo methods rely on repeated use of random numbers to

approximate probability distributions. To use these Monte Carlo methods, samples

must be drawn from distributions. The straightforward way to draw values from a

distribution is to input a value drawn uniformly on the unit interval into the inverse

of the distribution's CDF. An issue arrises in some distributions when the inverse of

the CDF is difficult to calculate.

Rejection Sampling

To sample from a distribution, such as Equation (3.15),

k

P(ls, ..., Sk, W) oc r(,/2)-k(Pw/2)(kO-3)/2 -1/(20) S -/2- -s/2

j=1

calculating the inverse of the CDF would be extremely difficult. Instead, a method

called rejection sampling [16] can be used where samples are generated from a "pro-

posal" distribution, g, that is both easier to sample and is nonzero where the distri-

bution of interest, f, is nonzero. A sample is either accepted or rejected based on the

region of probability between the f(x) and g(x) at the sample x. The procedure is



shown in Algorithm 2 for cg(x) > f(x) for all x E RN and c > 1. In the algorithm,

U[a, b] is the uniform distribution between a and b.

Algorithm 2 Rejection Sampling
1: U = 00

2: while u > f(y) do
3: Draw y - g
4: Draw u • U[O, cg(y)]
5: end while

Markov Chain Monte Carlo

For a given Bayesian network and some observed variables, the objective is usually

to infer the posterior distributions of the hidden (not observed) variables. Often, it is

impossible to perform exact analytical inference, in which case Markov chain Monte

Carlo (MCMC) methods can be used [28]. In MCMC, the Bayesian network is said

to be in a current state where each variable in the network has a specific value. The

state then evolves by updating the values of the hidden variables conditioned on the

variable settings from the previous state. As the evolution continues, it approaches

a "dynamic equilibrium" [35] where the number of occurrences of a network state is

proportional to the posterior probability of that state. This methodology is at the

heart of the inference procedure described in Chapter 3.

Gibbs Sampling

Gibbs sampling [12], a MCMC method, often appears in conjunction with more com-

plex MCMC inference procedures. Its purpose is to generate samples from a difficult

to sample multivariate distribution. Typically for Gibbs sampling, conditional dis-

tributions between the variables are known and are used to draw samples of the

multivariate distribution. This algorithm is typically performed for a set number of

iterations, or "sweeps." Algorithm 3, for variables 01, ... , 9, whose conditional distri-

butions are known, is as follows:



Algorithm 3 Gibbs Sampling
1: for sweep = 1 to # of sweeps do
2: for i randomly chosen from 1, ..., n do
3: Draw Oi  O8il01, .., · Oi-1, i+l, ..., On
4: end for
5: end for

2.4 Stochastic Processes

A stochastic process [11] is a sequence of random variables with an evolution that

has some element of chance, resulting in no method for exactly predicting the fu-

ture values. One of the simplest examples of a stochastic process is the Bernoulli

process [7].

The Bernoulli process is a sequence composed of N independent Bernoulli trials

(i.e., coin flips). In a Bernoulli trial, a success (heads) happens with probability

P(X = 1) = p and a failure with probability P(X = 0) = 1 - p. To use this

intuition to eventually understand Dirichlet processes, it is not enough to think of

stochastic processes as a sequence of outcomes that were generated over time. It is

important to understand a stochastic process as defining a probability measure on

sequences. The Bernoulli process defines a probability distribution on sequences of

ones and zeros. Consider the two sequences HTHTH and HHHHH known to have

been generated from coin flipping with a biased coin where P(Xi = H) = 0.8 for

the ith flip. Therefore the Bernoulli process defines a measure over heads and tails

sequences such that P(HTHTH) = 0.02048 and P(HHHHH) = 0.32768.

Gaussian processes (GP) [34] are the next logical step to building the intuition for

DPs. Similarly to how the Bernoulli process defines a measure over sequences, GPs

define a measure over functions. It does this by creating an infinite multivariate Gaus-

sian distribution (Section A.1). The idea is that this infinite vector is approximately

a function, and a Gaussian process defines a measure over these infinite vectors. By

marginalizing (integrating) over all but a finite set of these infinite variables, the re-

sulting distribution over them is Gaussian. Since GPs are useful here solely to build

intuition, with the goal of not getting lost in the details of GPs, Figure 2-5 helps to
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Figure 2-5: A posterior Gaussian process conditioned on 20 observations.

understand them on a basic level2 . The graph shows a GP as a mean (the solid line)

and a 95% confidence interval (the gray region) conditioned on the 20 observations

shown as crosses. The observations define a distribution over functions, where func-

tions that more closely resemble the black line are more likely. There is far more to

GPs than that which was mentioned here, but any further explanation would have

little purpose for this thesis.

Instead of considering all functions, the next step is to limit the discussion to

special kinds of functions: random measures. These random measures are random

functions that obey the axioms of probability (Section 2.2). As an example of a

process whose draws are random measures, consider a one dimensional Gaussian

distribution with an unknown standard deviation. For the sake of the example, and

being Bayesian, let's say domain knowledge leads us to place a prior over the variance

2This figure was generated using the Gaussian process for machine learning MATLAB tool-
box (www.gaussianprocess.org/gpml/code).

i
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Figure 2-6: Plots of three random measures.

with distribution

3/4, if < a < 23.

Pr (a) = 1/4, if 2 < a < 3 .
0, otherwise

Thinking of this as a random process, Figure 2-6 shows three random measures

drawn from this process. This implies that the process is a measure over measures.

Distributions shaped like the blue or green distribution on Figure 2-6 are three times

more likely to occur as those shaped as the red distribution. This notion of a measure

of measures is essential to understanding Dirichlet processes.

2.4.1 Model Types

Before Dirichlet processes are discussed in the next section, it is important to un-
derstand the difference between the two types of models that have, thus far, been
presented to represent probability distributions. These two types are parametric and
nonparametric. A parametric model is defined by a finite set of parameters and a re-
lationship between them. A simple example of this is a Bernoulli trial, parameterized



by a single value, p. Nonparametric models, although the name may not imply it, do

have parameters, though there are infinitely many of them. Another way to view the

two types of models is that the number of parameters in a nonparametric model tend

to grow with the amount of training data.

A Gaussian process (as briefly discussed in Section 2.4) is an example of a non-

parametric probability distribution since it would require an infinite number of mean

and covariance values to fully specify. A second nonparametric distribution, and the

main building block of this thesis, is described in the following section.

2.4.2 Dirichlet Processes

Dirichlet processes (DP) [42, 3, 15, 5, 41] define not just a measure over any measure

but over measures that have Dirichlet distributed (Section A.6) finite marginals. This

is identical to how a GP has Gaussian distributed finite marginals. Formally, for a

random measure G over space E, it is said that G - DP(a, H) is Dirichlet process

distributed with base distribution H and concentration parameter a if

(G(Al), ... , G(A,)) - Dir(aH(A1), ... , alH(A,))

for every finite partition A, ..., Ar of O. A partition of E is a collection of disjoint

sets that contain all elements of O. Al = [0, 0.4) and A 2 = [0.4, 1] is an example of a

partition of E when E is the unit interval. To further clarify the notation, if H is a

uniform distribution over the unit interval, H(A 1) = fo0.4 dx = 0.4.

The base distribution, H, can be understood as the "mean" of the DP. The concen-

tration parameter, a, controls how closely a draw from this DP resembles its "mean."

This is similar to the precision describing how closely a draw from a Gaussian dis-

tribution resembles its mean. In Figure 2-7 the top plot is the base distribution,

H = fG(2 , 1/2) (Section A.2), and the three plots below are for a = {1, 10, 10000}.

Immediately, what may strike the reader is that the draws of this process are discrete

probability distributions even though the base measure is continuous. Something less

obvious from the picture is that, while it is true they are discrete, there is a prob-
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Figure 2-7: Three sample draws (bottom three plots) from the base measure (top)
with a = 1 (second from the top), a = 10 (second from the bottom), a = 10000
(bottom).

ability mass associated with every point of O (in this example O = [0, oc)). These

plots show how the base measure can be thought of as the mean of a DP and a can

be thought of as precision. The higher a is, the more closely the draw resembles H.

While there are many related processes, there are two that are particularly useful

to this thesis: the Chinese restaurant process and the GEM process. Note that the

P6lya urn scheme, the original process used to prove the existence of the DP, is not

covered here but an interested reader can refer to [9].

The Posterior Dirichlet Process

As Section 2.2 discussed, the choice of a conjugate prior can often greatly simplify

the calculation of the posterior. As illustrated by the conjugate prior example in

Section 2.2, the Dirichlet distribution is the conjugate prior of the multinomial dis-

tribution. That relation allows for the posterior distribution (the DP conditioned on

previously observed 01, ..., 0,) to itself be DP distributed when a DP is used as the

prior. Formally, conditioned on 01, ..., 0n drawn from G - DP(a, H), for every finite



partition,

(G(A1),..., G(Ar))O1, 1.... ,On - Dir(aH(A1) + nl,..., aH(Ar) + nr)

where ni is the number of O1, ..., On that fall in the partition Ai. Therefore the posterior

DP can be written as

a 1
a+n - n

where 60, is a point mass centered at Oi (i.e., the contribution of is only added to

c'H at Oi for i = 1, ..., n).

Chinese Restaurant Process

The Chinese restaurant process (CRP), initially named in [2], comes from that au-

thor's observation that Chinese restaurants appear to have infinitely many tables.

The generative model for the CRP is as follows. Consider an empty restaurant with

countably infinite tables. The first customer walks in and sits at the first table de-

terministically. The second customer sits at the first table with probability 1 and

the second table with probability 1. It then continues such that the nth customer

sits at a previously occupied table proportional to the number of customers already

seated at it and a new table proportional to a (the same a as in Section 2.4.2).

As described thus far, this process is a measure on partitions of the integers where

each customer is an integer and each table is a partition. This process can be extended

to produce a draw from a DP with base distribution H (the same H as in Section

2.4.2). When a customer sits at a new table, a parameter for that table is drawn

from the base measure H. A customer sitting at an already occupied table inherits

the parameter of that table. Looking back at Figure 2-7, the bottom three plots show

the next customer sitting at a table with parameter 0 proportional to the height of

the bar at 0. Therefore, the distribution of 01 E O as the first customer walks in is
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Figure 2-8: The Bayesian network representation of the CRP.

11 a, H - H, and after n people have been seated is

1 a
n+110i,... On, a, H ~ E 6(,On+1, i) + a H. (2.6)

i n+a n+a
i=1

where 6 is the Kronecker-delta function (6(a, b) = 1 if and only if a = b and zero

otherwise). The purpose of explaining this process is that n samples from the CRP

are equivalent to sampling from a draw from a DP n times. Figure 2-8 shows the

Bayesian network representation of n data points, xi for i = 1, ..., n, generated from

this process. It is important to note that it is very likely that many of the Oi values are

the same (all people at the same table have the same 0I) and while it is not obvious

yet, this formulation makes inference about these Ois difficult.

The purpose of explaining processes that are related to DPs is to enable inference

procedures of the latent variables 0i. These variables are referred to as latent since

they are not directly observable from the data. Instead, the variables must be inferred

from their relationship with variables that are observable. The inference algorithm,

Algorithm 4, is an implementation of Gibbs sampling (Section 2.3.4). Equations (2.6)

and (3.18) describe how to implement Steps 6 and 7, respectively. This often leaves



Algorithm 4 CRP Inference
1: for i = 1 to n do
2: Draw 0i - H
3: end for
4: for sweep = 1 to # of sweeps do
5: for i randomly chosen from 1, ..., n do
6: Draw Oi - Oi 101,... , Oi-1, 0i+1., , On, a, H

7: end for
8: Draw a - aln, k
9: end for

one with less than ideal parameters due to this procedure's inability to "move" chunks

of data at once. If 10 people were sitting at a table that happened to have been drawn

a mediocre parameter, the only way for the parameter to change is for one of them to

land on a new table, draw a better parameter, and then have all of them switch. This

is difficult because it is not only important how well the data fits the parameter of the

table but also how many people are already sitting at the table (see Equation (2.6)).

In some sense, the table parameters and assignments would need to "travel" through

an area of lower likelihood to find better parameters, something this procedure is

unlikely to accomplish.

The next section describes another process related to DPs that make inference

significantly easier. As a final remark on CRPs, if H is a continuous distribution

it is impossible for two tables to have the same parameter, but if H is a discrete

distribution there is a nonzero probability that two tables have the same parameter

(this follows from the basic probability theory in Section 2.2).

GEM Process

One of the simplest constructions of the DP was shown in [37] by the use of "stick

breaking." This construction is similar to that of the Chinese restaurant if there

are infinite customers. The result of stick breaking is a discrete probability distribu-

tion over all natural numbers. These stick breaking weights, r = (7r-,)n0 1 such that

0,~_7i = 1, are said to be drawn from a GEM process [31], standing for Griffiths,



Figure 2-9: The Bayesian network representation of the GEM process.

Engen, and McCloskey. More concretely,

n'| ~ Beta(l, a)

n-1

7n = n (1 -
i=1

For Dirichlet process distributed G - DP(a, H), G = "n, • r•,oe, where 6~0 = 1 at

,, - H and zero otherwise. Figure 2-9 shows the Bayesian network representation

of n data points drawn from this process where cj indexes the 0i from which xj was

generated. Due to its simplicity, this is the exact method that was used to generate

Figure 2-7.

It was mentioned in Section 2.4.2 that this formulation, while slightly more dif-

ficult to understand than the CRP, is far easier on which to perform inference. To

make this algorithm clear, it is going to be described using the same terms as the CRP

formulation (customers, tables, etc) but it is important to understand that this pro-

cedure was enabled by understanding a DP as Figure 2-9 and not as Figure 2-8. The

reason the CRP terminology is still used is that it is extremely intuitive. Once again,

Gibbs sampling is the foundation of the inference algorithm. In Algorithm 5 cl, ..., cn

are the table assignments, x1, ..., xn are the data points, Oj is the parameter for table

j, and H is the base measure. The distribution P(cjcl, ... , ci-1, Ci ., ., c , ..., 9 k, a)



,orithm 5 GEM Inference
for i = 1 to n do

ci = 1
end for

Draw 01 - H

for sweep = 1 to # of sweeps do
for i randomly chosen from 1, ..., n do

Cold = Ci

Draw ci - c| 1cc, ... i- , Ci 1, c, , 01, ,..., Ok,
if ci > k then

Draw Ok+1 Ok+1 xi, H

k = k + 1
end if
if table Cold is empty then

Remove 0Cold

end if
end for
for j = 1 to k do

Draw Oj Oj jC1, ... , c,, 1, .. , Ok, a
end for
Draw a - aon, k

end for
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is a discrete distribution with k + 1 elements. Each element i = 1, ..., k + 1 is propor-

tional to the likelihood that ci belongs to table i, where table k + 1 is a new table.

This distribution is defined as

P(ci = jlC, ..., ci-1, Ci+l, ... , Cn, 01, ... , Ok, ) (x n i, 8j) (2.7)
n-i+a

for ci < k and

P(c4 = jlc1, ..., c•1_, ...,, 0, ..., Ok a) Oc ' F(xi, O)dGo(0) (2.8)

for ci > k where x• I Oi - (0O), and Go is the conjugate prior of F [28].

Equations (2.6) and (3.18) describe how to implement Steps 19 and 22, respec-

tively. As the algorithm shows, it is now not only possible to move chunks of data,

but this happens for each Oj every sweep during Step 19.

2.4.3 Past Applications of Dirichlet Processes

This section briefly discusses some publications using DPs to give a flavor of the

kind of problems DPs have been used to solve. To learn the hierarchy of topics in

groups of documents, [10] used a nested Chinese restaurant process. [43] used DPs

to identify motif structures in biopolymer sequences (such as proteins and DNA). To

track maneuvering targets, [17] used a hierarchical Dirichlet process Markov model to

represent potentially unknown underlying system modes. [39] used hierarchical DPs

to tackle the revisiting problem in robot map building by learning "typical" room

structures offline and the novel probability mass corresponds to observing a room

whose structure was not in the training set. [38] used hierarchical DP Markov models

to model genetic recombination for the potentially infinite "founders" and events

which generate genealogies. All of these applications clearly highlight a DP's ability

to either learn the number of states, handle infinite states or maintain a probability

mass of a novel state.



2.5 Driver Modeling

There have been numerous approaches to modeling the route preferences that drivers

choose. They can be loosely grouped into designer-provided models and common

models. Based on a driving behavior survey, [14] developed a behavior model that

used a behavior survey to classify drivers into different profiles to enable prediction.

This is not the type of data that this thesis is concerned with and, to use this method-

ology in other cities, it may be necessary to perform additional surveys. [23] focused

on driver preferences by accounting for both the time it takes to traverse a road seg-

ment based on the time of day and the amount of time loss a driver is willing to

accept. The focus of the paper is on finding better paths to suggest to drivers, not to

predict the actual routes drivers choose.

Section 2.3.2 outlined Markov models, and while the Markov assumption is rather

strong, their ease of use makes them an attractive choice for driver modeling. [29]

took an approach similar to that described in Section 2.3.2 except the true driver state

is "hidden" by GPS sensor noise and the mode of the driver is unobservable. This

formulation is difficult to make end location predictions due to an intractable sum

over all possible actions leading to a destination and is very susceptible to over-fitting

the training data. To enable end location predictions, [4] models these transition

probabilities explicitly, but in doing so prevents any method for updating the proba-

bilities based on a partially observed path. Using a hierarchy of Markov models, [24]

is able to make both local and destination predictions but is still susceptible to over-

fitting the training data in regions of sparse data. Taking a machine learning [27, 40]

approach, [44] uses inverse reinforcement learning. While this paper presents impres-

sive results, it does not discuss a method for finding destinations and is vulnerable to

over-fitting the training data.

As a side note, a fascinating fact was mentioned in the results section of [23].

According to the data collected, only 34.5% of drivers choose the fastest routes (based

on their aggregated data) and only 30% of drivers follow the route that would be

provided by a traditional fastest-route planner. This further drives home the point



that attempting to create a model for driver behavior is extremely difficult. One of

the first aspects of any model that attempts to model drivers, one would assume,

is that a driver tries to minimize travel time. Whether this is due to either driver

ignorance or another factor (e.g., a stressful route) is highly debatable and most likely

difficult to model.





Chapter 3

The Driver Behavior Model

3.1 Chapter Overview

This chapter introduces a driver behavior model based on Dirichlet processes. Section

3.2.1 explains the overall model structure. The methods for clustering destinations

and learning the distribution over paths are described in Sections 3.2.2 and 3.2.3,

respectively.

3.2 Behaviors as Paths to Destinations

3.2.1 Model Description

The behavior model of a driver, as described in Section 1.3, consists of two parts:

destinations and paths to the destinations. The easiest way of understanding the

model is to think about how it would generate a path. First, an ending road segment

is chosen from the mixture of Gaussian distributions representing destinations. This

is done by selecting a destination proportional to the "weight" of each Gaussian, and

then choosing the ending location based on the distribution of that destination. Once

the destination and ending location have been selected, the distribution on all paths

for the destination (Section 1.3 described how each destination indexes a distribution

on all paths) is used to choose a path.



In this thesis, DPs (Section 2.4.2) are used both for clustering destinations and for

finding a distribution over paths based on the justifications provided in Section 1.3.

Figure 3-1 shows the Bayesian network (Section 2.3.1) of the driver behavior model1 .

Hs I

I I

Figure 3-1: A Bayesian network representation of the behavior model.

The variables in the figure are held consistent throughout this chapter and are defined

as follows:

* k: the number of total destinations

* nd: the number of paths ending at destination j

* P,,,m: the m th path generated to destination j

* qj: the distribution over all paths to destination j

"* 'j: the parameter of the GEM measure on qj

1This diagram was motivated by a similar diagram in [21].
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* pj: the mean of destination j

* sj: the precision of destination j

* G,: the distribution over pj

* Gs: the distribution over sj

* H,: the base measure of the DP over G,

* Hs: the base measure of the DP over G,

* a: the concentration parameter of the DPs of over both G, and G,

In the figure, example shapes of H, and G, - TDP(a, H,) are shown. Each group

of data (e.g., the cluster the data belongs to) has a mean pj , G,, where the height

of the blue lines represent the probability of pj choosing the parameter value at that

location2 . There is a similar relationship for the precision sj, governed by H8 , a,

and Gs. The distribution over the paths leading to destination j is defined by the

distribution qj - GEM(-yj) (Section 2.4.2). Shown next to qj, in blue, is a plot similar

to G,'s except each probability mass on qj's diagram is indexed by a natural number3

where each index corresponds to a path. Based on the destination parameters pj and

sj and distribution qj a path pj,m is drawn. This is repeated for m = 1, 2, ... , nj data

points (paths) for j = 1, 2, ..., k groups (destinations).

To learn the model, destinations must first be found by clustering the last road

segment of the training data. After this is accomplished, the training data is grouped

based on its most likely destination. Given these paths for each destination, the DP

measure over the distribution on paths is learned.

The purpose of Figure 3-1 is to understand the relationship between the observable

and latent variables. Except for pj,m, all other variables in the figure are hidden.

Given a set of training data, the learned model will consist of inferred values for

a, yj, Ipj, sj, nj, and k for j = 1, ..., k. The distributions H, and H8 are assumed and

2Despite showing only one hundred visible blue lines, there is a probability mass at all locations.
3Only fifteen values are shown but there is a probability mass associated with all natural numbers.



G,, Gs, and qj are not necessary to make predictions (this can be seen from Equation

(2.6)).

Figure 3-1 can be redrawn slightly to show that learning the behavior model can

be accomplished in two distinct steps. Figure 3-2 represents the same model except

a variable xj,m, the parking location, has been introduced. This new variable is

Figure 3-2: A second Bayesian network representation of the behavior model.

observable from the data and the dotted red line on the figure shows the separation

between the clustering problem (left) and the path distribution learning (right). The

only technicality is the clustering part must be solved first, since the path distribution

learning problem requires knowing to which destination each path belongs. Section

3.2.2 is concerned with solving the left side of the figure and Section 3.2.3 focuses on

the right side of the figure. Section 3.2.4 puts the full model back together to make

destination and route predictions.

Hii



3.2.2 Infinite Gaussian Mixture Model

The infinite Gaussian mixture model (IGMM) was introduced in [33] but uses a

somewhat uncommon parameterization of the gamma distribution and lacks a de-

tailed description of multivariate clustering. [26) applies [33]'s model with the same

parameterization described in Section A.2 but they use prior knowledge to set the

DP parameter a and do not learn it from the data. The IGMM is defined as a mix-

ture of k Gaussian distributions with mixing proportion 7ri (i.e., the "weight" of each

destination), mean pi and precision si for i = 1, ..., k. The probability of paths with

end road segments xl, ..., x, generated from these clusters can be calculated as

n k

P(l, ... Xn...,. I, S , kSki, , ... k) = H ~ irjJ1(Xi; [ij, jS 1). (3.1)
i=1 j=1

Indicator variables, cl, ...,cn, are now introduced to assist in model learning with

ci = j implying data point i belongs to group j. Conditioning Equation (3.1) on

these indicators yield

P(Xl ,..., Xn, Al, ... , i k, Sl, ... , Sk, Cl, ... , Cn) 1 P(Xl1, pcý, Sc ), . .. 1nt n, S,)

-f fN(Xi;A,,s4
1),

i=1

due to each data point's conditional independence caused by the indicators. More

specifically, the distribution of the data points belonging to group j is

n3

P(P1...,;I: j, Isj) -= fJf(im;iJj,s 1)
m=l

nj 1/2

S= -s3(im-) 2 /2
i=1

Oc 8
. e- sj f E (im--j)2 /2 (3.2)

where xl,., , X are the data points belonging to group j and nj is their count. The

symbol "oc" stands for "proportional to," and is commonly used in probability theory



since the axioms of probability demand that distributions have a total mass or density

that equals one. By incorporating this notion of proportionality, the algebra is made

simpler since all constants can be removed, as was done in Equation (3.2).

To find {pl, ... , kS1, ., Sk, Ir 1, ... , rk} that best explains the data, the notion of

DPs must be introduced, since this is the approach taken to overcoming not knowing

k. A modified version of the left half of Figure 3-2 that includes the indicator variables

l, ..., cn is shown in Figure 3-3. In the figure, {wir, 7r2,...} = 7r ~ GEM(y) as described

I

1111111,,, 1. 1

Figure 3-3: A Bayesian network representation of the mixtures of Gaussians.

in Section 2.4.2. Additionally, A, r, 13, and w have been added with the relations

H, = NV(A, 1/r) and H, w g({,w). It is important to note that there is a minor

overloading of notation here. In Figure 3-1 ,pi - G, and si - Gs but in Figure 3-3

pj - N/(A, 1/r) (3.3)

Sj - 9(1, (Ow)-1). (3.4)

Even though these two sets of relations are similar, notice how many pis and pys are

generated (the same applies to si and sj). In Figure 3-1 there are exactly n pi, with

any two pi having a positive probability of having the same value (G, is a multivariate



distribution). In Figure 3-3 there are infinitely many pj, with any two having zero

probability of taking the same value (.NJ(A, 1/r) is continuous) with the indices of the

used parameters stored in the indicators cl, ..., c,. From this point on, assume any

mention of yj or sj refers to them as they are in Equations (3.3) and (3.4).

To begin, the prior distributions are introduced. While some may seem somewhat

arbitrary, they were chosen with the purpose of simplifying much of the algebra while

restricting the flexibility of the model as little as possible. By taking this approach,

the posterior distributions are either normal or gamma distributed for all but one of

the parameters. All distributions used are discussed in more detail in the appendix.

The prior distributions are defined as:

P(A) = fg(A; LtX, o)

- --e oc2 x e a (3.5)

P(r) = fg(r; 1/2, a 2/2)

1 1/2-1 -r2/2 -1/2 -r/23.6)
F(1/2) (O- 2/2)1/2e (36)

P(1 yuIA,r) = fng(lj;A, 1/r)
r1/2= /2 e - r(pj - A)2 /2 cx rl/2e- r(pj - A)2/2 (3.7)

P(3 - 1) = fg(/-1; 1/2,2)

- P(!3) = fg-1 (f; 1/2,1/2)

(1/2) 1/2 -1/2-1e-1/(20) -3/2 -1/(2,) (3.8)[(1/2)
P(w) = fg (w; 1/2, 2or)

1 w1/2-1 -wl(2) c W-1/2e - w/(2o ) (3.9)

P(sjl 3, w) fg(sj;,3/2,2/(p w))
1 s~/2-1 -wsj/2

F(0/2)(2/(/%)),/2 i

= F(//2)-l(Ow/2)/2s /2 /2-1 e-s/2 (3.10)

As noted in [33], it is questionable to define a prior in terms of the observations, as

done in Equations (3.5), (3.6), and (3.9), but this could be circumvented by normal-



izing the observations. It is left in the form shown for mathematical convenience.

From these priors, posterior distributions can be derived using Equation (2.1),

beginning with the parameters of the model. Treating Equation (3.2) as the likelihood

and Equation (3.7) as the prior yields

P(pj -l, ... , sin , s , Ar) OC P(x l,..., -, j |pj, Sj)P(p jlsj, A,r)

= P(x-Ltj, sj) ... P(jj Ij, sj)P( jsj, A, r)

cx (s•ij/2e - s ji j ( m - j )2/2) (r1/2e - r(pj - A)2/2

Pj I iX,..,XnjSj,A, " ([i i sxjm + Ar 1 1
Sm= sjnj + r sjnj +n r

(3.11)

Next, using Equation (3.10) as the prior for Equation (3.2) results in

P(sj JJ1, ..., j,, j, A, r) Oc P(-i, ..., i j Ij, Sj)P(sjl j , A,r)

= P(;ýIu ,sj ) .. (inj ij, sj) P(sjIi, A, r)
c (.si/2e ,nj 1(.i(m-,,J)2/2 S(/2-1 

- 3ws j I/2

0/2+nj/2-1 e-s /[n (x•mr-)2/2+w/2]

SjPx, ... , I nj,inj, AIgA, , 2 [ r 2 Ej)2 +/3W] . (3.12)
m=1

To derive the posterior distributions for the parameters, the parameter values are

treated as observations. Starting with the hyperparamteters A and r, Equation (3.7)

is treated as the likelihood and Equation (3.5) and (3.6) are used as the prior distri-

butions for A and r, respectively. These two posterior distributions are:

P(XA I-l, .,pk, r) cx P(Pl, ..., -klA, r)P(A)

- P(,I•lA,r)-...P(AkIA, r)P(A)

x (rl/-( / (r//2e-r(P ) 2 /2) (.e -()



S( + [ 1 r 1 (3.13)
S(-rAj=1P( rk+1/ rk+1/

j=l

c( P(pl,•, r)-... P(IkIA, r)P(r)

C (r1/2e-r(h,-A)2/2) S(r/2e-r(iA)2/2) (r-1/2 e r/2

Srk/2+1/2-1e-rlj[E(•j-A)2/2+±a/2]-

riIp, ..., lk, A, , 2
[k

-j=1
(3.14)

Finally, the last two posterior distributions are:

P(Olsl, ... , sk, w)

P(wIS, ..., Sk, 3)

o( P(s ll, w) ... P(Sljl w)P(3)

oc r ( /2)- (w/2 )0/280/2-1 -3si/2 -3/2
(j=1

k

cc r(p/2)- (f/2) (kO- 3)/2e - 1/(20) 1 43/2 -)wsj/2
j=1

O( P(sil3, w) .. P(si ' ,w)P(w)

(3.15)

cx (jI F(/2)-l(~w)/2)S/2S-1 wsj/2) (-1/2e-w/(224))

c wklkp/2+1/2-1 -w/L[/2Elk sj+l/(2 )]-1

WiS1, ..., Sk, 1

-1)

(3.16)

Unfortunately, Equation (3.15) does not simplify to a common distribution as the

others did. Methods to sample from this distribution are discussed in Section 3.2.2.

The final step is to derive the posterior distribution for a given the indicators

cl, ... , c,. The symmetric Dirichlet prior, placed on mixing proportions, is written as

k

fDir ( 1, . k; a/k, ..., a/k) = (~k)k H /k-1
j=1I

P(rrl1, ---, Pk, A)

+ 1)

( +k
2 ' j=1



It is then possible to integrate out the multinomially distributed indicators:

= pm(C1, ... , Cn; 71, ... , 7"k) fDir 1, ( 1 , 7"k; )d(Tr, ., 7rk)

r(a/) f k n3+a/k-1

j=1

rF(a) k F(nj + a/k)
F(n + a) H r1 (a/k)

j=1

P(cl, ... , cnla )

Placing a vague inver

tion (3.17) yields

se gamma prior on a g •- 1(1/2, 1/2) and combing with Equa-

P(nl, ... , nka) =r( a)
F(n + a)

and the posterior distribution for a is

P(alk, n) = F(a)a
F(n + a)

(3.18)

To extend the methodology to a second dimension, the simplest approach is to

maintain a second set of all parameters and hyperparameters. By taking this approach

it is assumed that the first and second dimensions are uncorrelated. While there

are no significant issues with this assumption here, in an application where such an

assumption would be unreasonable, multivariate Gaussians (Section A.1) and Wishart

distributions (Section A.4) can be used to replace univariate Gaussians and gamma

distributions, respectively.

A Simpler Infinite Gaussian Mixture Model

It is fair to ask if the formulation of Section 3.2.2 is overly complex. The previous

approach had distributions over parameters of prior distributions, leading one to

wonder if this is truly necessary and if having vague priors, especially over [pj, is

sufficient. Formally, consider the following priors:

A = x

(3.17)

(3.19)



r = o 2 (3.20)

P(pj IA, r) = fg(j; A, 1/r)
r1/2

S e - r (pj -A) 2 /2 1 rl/2e- r(I j- )2 /2 (3.21)

p( )-') = f(/-1; 1/2,2)

> P(3) = fg-1(0; 1/2, 1/2)

(1/2)1/2 /3-1/2-1e-1/(20) a0-3 / 2 e-1/(2') (3.22)
r(1/2)

= (3.23)
P(sj3, w) = fg (sj;f /2,2/(13w))

1 0/2-1 e-s/2
= (0/2)(2)3/2 23

= F(3/2)-1(1/2)1/2 s/ 2-1e-sj/2 (3.24)

This simpler model proposes that having a vague prior over pj and a distribution over

only one parameter of sj's prior4. This simpler model is compared to the complete

IGMM in Section 4.2.1.

Sampling Procedure

Due to the analytical intractability of exactly inferring pl, ... , ki Sl, ..., Sk, C1, ..., Cn

and a from the distributions described in Sections 3.2.2, a MCMC (Section 2.3.4)

method is used. The sampling procedure used to generated the results in Chapter 4

is shown in Algorithm 6. Equations (3.15) and (3.18) both require a bit more effort to

sample from since they are not in a standard form. Rejection sampling, as discussed

in Section 2.3.4, is used due to the ease of implementation but adaptive rejection

sampling [18] may also be used to improve performance.

4Equation (3.24) is actually the chi-squared distribution, a common distribution used as a prior
for an unknown variance.



Aorithm 6 IGMM Inference
1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:
18:

19:

20:

21:

22:

23:

24:

25:

26:

27:
28:

29:
30:
31:
32:

Draw A -~N (/A , a')
Draw r ~ g(1/2, ux 2/2)
Draw p ~ G-1(1/2, 1/2)
Draw u ~ g(1/2, 2o)
Draw (i N N(A, 1/r)
Draw s, ~ G(, (3w) 1)
Draw a g G-1(1/2, 1/2)
k=l
for sweep = 1 to # of sweeps do

for j = 1 to k do
Draw lj - 13 j |x, ..., n. , j, A, A, r
Draw sj - sJ |I ,. ... , r- , pj, r

end for
Draw r ~ r1 k, ...., pk, A
Draw A ~ A|ptl, ... , [k, r
for i randomly chosen from 1, ... , n do

Cold = Ci

Draw ci ~ ci c1, ... , Ci-l , Ci+l, ... Cn, 01
if ci > k then

Draw Ok+1 - Ok+1 xi, H
k = k + 1

end if
if table Cold is empty then

Remove Ocold
k= k-1

end if
end for
for = 1 to k do

Draw 0j 0 .lck, ... , c,, 01, ... , 0k, a
end for
Draw a - aln, k

end for

Alg



3.2.3 The Dirichlet Process Prior Over Paths

Each destination found using the methodology in Section 3.2.2 indexes a distribution

over paths leading to it. Two paths, each defined as a sequence of road segments, are

said to be equivalent if they are exactly the same. Consider a parametric approach

to modeling this distribution where a probability mass is maintained over every path.

For all paths pj,i indexed by destination j,

Pj,i q, i = 1, ... , (3.25)

where q = {qi, ..., q1} and 1 is the total number of paths. These values can be approx-

imated from the data by the expression

qi = nji (3.26)
nj

where nj,i is the number of times path i was taken to destination j. Figure 3-4 shows

a small sampling of paths that use the blue circled road segment. Imagining the sheer

Figure 3-4: A small sample of the paths traveling through the circled road segment.

number of paths that travel on this one road segment, then realizing that it is just

one road segment in the whole city, should begin to give a sense for the number of

parameters needed to maintain a probability of each path (e.g., 1 is extremely large).

This means Equation (3.26) will need an immense amount of data. To circumvent

maintaining these nearly infinite number of probability masses, this thesis assumes

that q is Dirichlet process distributed.

The best way of understanding this part is through the CRP. Each unique path



is the parameter for a table with the number of customers sitting at the table cor-

responding to the number of times the path was taken. The base distribution, H,

is a uniform distribution over all paths. So the probability distribution 5 of path

j,nj+l = (j+l,, nj+l ) where r) is the ith road segment of Pj,nj+l is

1'

Pj,n +1 Pj, 1, .. pj,j, lj, H nj,i + 7 H (3.27)
i=1 nj + 7j nj + yj

where 1' is the number of unique paths in the data (l' << 1). Equation (3.27) shows

how the CRP maintains a distribution similar to Equation (3.25) with the under-

standing that not all the paths will show up in the data. It does this by not explicitly

specifying the qj values for each path and instead asserting that qj ~ DP(yj, H).

This implies new paths will be drawn from H with probability .4-. In Section 2.4.2
nj +-j "

it was noted that there is a nonzero probability that two tables may take the same

parameter if H is discrete. Therefore it may be possible, in the sense of generating

a series of paths from the CRP, of having a customer sit at a new table but draw a

path that is also at another table.

To learn the DP distribution over paths, the path (customer) is assigned to a

nonempty table if the path matches the path (parameter) of the table. If it differs

from all of the parameters at occupied tables, the path of data is "seated" at a new

table. While it is possible that two identical paths were drawn for two different tables,

it is assumed this does not happen in the model learning. This is a valid assumption

since the DP with the highest likelihood is what this thesis is interested in. The

domain is so large that it is far more likely a customer sat at a previously occupied

table with that parameter, than sat at a new table and drew the same parameter.

Once all the training data has been assigned to tables, yj that best explains the seating

arrangement is calculated. Unlike the method for finding a in Section 3.2.2, where a

is sampled from its distribution, for the DP over path distributions, the maximum a

posterior estimate of yj is used. This is calculated by finding the yj which maximizes

Equation (3.18) (setting a = yj). This is done because there are no latent variables

5A series of road segments is written this way because the order matters (i.e., (ri, r 2 ) = (r 2 , rl)).



in this part of the model. Using the methodology described in this paragraph, there

is no ambiguity about which customers sit at which table, unlike Section 3.2.2.

3.2.4 Path Inference and Prediction

Reverting back to the model where a probability mass for each path is maintained

leads to the methodology for solving path inference and prediction from the DP-based

model. The probability of path pj,i, given an observation of the road segment series

(rm, ... , rm), is formally written as

rm), t .{-i-,i -if (rl, ... , rTm) E Pj,i(328)

0 otherwise

where nj,i is the number of times Pj,i was observed in the data Pj,1, ... ,Pj,nj, indexed

by destination j.

After observing a vehicle on a series of road segments, the probability of the

vehicle's next action is given by its probability of taking the road segment to which

the action leads. Explicitly,

P(rl (r , ... , rm), , opj,1, ... , j, 1, nj,1, ... , nyj:l )

ac P(pj,1 , ... ,pj,11r, (ri, ... , rm), lj,1, ... , j:l)P(Tr l(r , ... , Tm), j,,1 ., ., lj:i)

CX ) P(P J,i ( I (r ,. .,rm, r),Inj, l, ... , nj:l)
i=1-i

Oc nj,i (3.29)
i:(rl,...rm,r)E pj,i

since it is assumed all actions (straight, left, and right) are equally likely. Equation

(3.29) shows that if the data doesn't show a complete picture of how often paths are

taken, the prediction accuracy will severely suffer. Specifically, nj,i should rarely be

zero, as most paths are eventually taken (no matter how infrequently) but enough

data must be seen to capture that.

This problem of over-fitting the data can be overcome by using a DP prior over



paths. The purpose of the remainder of this section is to rewrite Equation (3.28) and

(3.29) by using Equation (3.27) as the model. To begin,

n, if i < l'
P(pj,i Inj,1, ... , nj,,, j, H) c - (3.30)

Yj if i > l'

is the prior over road segments, a slight approximation of Equation (3.27). It is a

slight approximation since Pj,i should, technically, be allowed to be drawn again from

H. Since the chance of this happening is so small, 1/1, it is ignored. This is equivalent

to saying that once a path is assigned to a table it is not allowed to be drawn for

another. For i < 1', the distribution over paths

P(pj,i (ri, ...,rm), nj,1 , ... , nj,l,, yj, H ) c n , if (ri, ..., r ) Pi

1 0 otherwise

stays the same, and for i > 1'

P(pj,i (ri, ... , rm), nj,1, ... , nj,, yjI, H) 0c 7 if (ri,...,rm) G p,i

0 otherwise

The distribution over the next road segment is then

P(r (r, ..., rm), PjPj,,, 1.Ipj,I', .j, .l', 7Yj, H)

ca P(Pj,1, ...,Pj 1',Ir, (rj, ... , rm), nj,1, ... , nj,,, 'yj, H)P(rI(rl, ..., rm), nj,1 , ... , nj,,, 'Yj, H)
I/

cx P_ P(pj,iI(rl, ... , rm, r), 1, ... , nj,, yj, H)
i=1

+ E P(pj,ji(ri,...,rm,r),n, j, H)
i=l'+1

c n 3,i+ . (3.31)
i:(r,...,rm,r)EPj,i

The last term in Equation (3.31) represents the probability of a path not seen in

the data traversing (ri, ..., rm, r). To understand this term, think back to the CRP.



A new path is drawn with probability proportional to -yj and, assuming there are

three possible actions (straight, left, and right), the novel probability mass is split

evenly amongst them (having no reason to believe one action is more likely than

the others). It should not surprise the reader that H does not appear in the final

expression, since, thinking back to Figure 3-2, the distribution over paths is drawn

from a GEM distribution with parameter 'yj. This is equivalent to a draw from a DP

with parameter yj and a base measure that is uniform over all natural numbers (as

was used here). To incorporate the paths assigned to all destinations, a summation

is performed over Equation (3.31) for j = 1, ..., k.

While this section thus far has discussed predicting the next road segment, Section

1.2 discussed how a driver model should also be able to predict destinations. The

probability of partial path p going to destination j is

P(jjlp,a) c< P(p j,a)P(jla).

= Yj - nj+ j n+a
- (+j y nj~ipj )i ) (3.32)

nj + "yj :ppj,i n

where a = {P,1i, ..., pill,, i...k,l, n 1,,1 ... , n1,1', ... nk,1', 71, ... , ik}. To understand where

this expression comes from, consider the two terms on the right hand side indepen-

dently. The first term comes from Equation (3.30) and can be understood using the

following intuition: p may either be part of a novel path heading to j with probability

or may be part of known path Pj,i (if it is consistent with pj,j) with probabil-nj +-j

ity .n . The second term is the "weight" of the destination. This weight can be

calculated by thinking back to the CRP for the infinite Gaussian mixture model. In

this CRP, a known parameter (destination j) is drawn again with probability equal

to nj
n+a±





Chapter 4

Experimental Results

4.1 Chapter Overview

The two problems of finding destinations and learning the DP over path distributions

to the destinations are first tested in separate simulations in Sections 4.2.1 and 4.2.2,

respectively. This is followed by Section 4.2.3, where simulation results from the full

model are shown. Section 4.3 extends the results from simulation to real GPS data

of taxis driving around Boston.

4.2 Simulation

4.2.1 Finding Destinations

To validate the IGMM, it was compared against the following three models:

1. the randomly chosen generative model from which the data was drawn,

2. expectation maximization (Section 2.3.3) given the number of clusters that were

used in the generative model1 ,

3. the simplified IGMM.

'Patrick Tsui's expectation maximization code was used which can be found at:
www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8636&objectType=file



For this test Gaussian distributions were generated with mean and variance chosen
uniformly on the intervals [-40,40] and [0,25], respectively. Before the results from
the tests are shown, a sample run with k = 3 clusters is plotted in Figure 4-1. This

0.3

0.1

0.

O.C

Figure 4-1: A sample generative and learned model with k = 3.

figure clearly shows the IGMM (green) resembling the generative model (red). It is
important to note that while it is promising that the IGMM learned a model close
to the generative one, a model with more or less clusters may often explain the data
set better, especially as the number of clusters increase. For example, Figure 4-2
demonstrates how the IGMM learns a model with a higher likelihood. In this figure
the IGMM decided on three clusters as opposed to the six cluster generative model.

The lines and error bars in Figure 4-3 are the results from 45 tests. Each test was
run using data generated along a single dimension with five different trials at each
k = 2, ..., 10. In Figure 4-3, the log-likelihood, ln(P(El0)) (Section 2.3), is used to
simplify calculations. Since the log function is monotonic, there is no difference in
drawing conclusions from either two models' likelihoods or log-likelihoods to see which
model is best. The plot shows the IGMM having a higher log-likelihood than the other

0.2



Figure 4-2: A sample generative and learned model with k = 6.
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Figure 4-3: A comparison of different clustering techniques.
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three models. To understand why this is, consider Figures 4-1 and 4-2. With data

resembling Figure 4-1, all four approaches tended to have similar likelihoods. The

real differences arose when generated clusters fell close to one another, as in Figure

4-2. In these tests, both the IGMM and simplified IGMM models would, in general,

group clusters that fell close together as a single cluster. EM was explicitly told the

number of clusters to find, so if it were to group two clusters as one, it would need to

find a spot where another cluster could fit best. The results also show that the added

complexity of the full IGMM seems to be worth it, as compared to the simplified

IGMM.

Finally, since this will actually be run on two dimensional data, Figure 4-4 demon-

strates the kind of clustering that is done to find destinations.

S..··

Figure 4-4: A demonstration of two dimensional synthetic data clustering.

4.2.2 Learning a Distribution Over Paths to a Destination

The second part of the model is composed of the distribution over paths that lead

to a specific destination. This test is designed to assist in understanding how the

learned distribution is affected by more data. Figure 4-5 shows the 10x10 city that

;9



was used to generate the paths of data. Four sample paths (yellow), and the three

road segments that are the focus of Figure 4-6 (blue, green, and red) are shown in the

figure. A path of data is generated by picking a starting segment uniformly over the

Figure 4-5: The 10x10 simulated city used as a sanity check for modeling the distri-
bution over path distributions as a DP.

city, a goal segment from the distribution on location 1, and then the shortest path

is found between the start and goal. When two paths are encountered with the same

length, one of them is randomly chosen. The DP-based behavior model is compared

to a Markov model (Section 2.3.2) with a state as a road segment and transitions that

cause the state to change to any of the neighboring road segments. From 10,000

paths of training data, Figure 4-6 shows the learned probabilities for three different

road segments (blue, green, and red) taking the actions straight, left, and right from

the Markov model (dashed) and the DP-based behavior model (solid).

These results show that the Markov model and the DP-based model both tend to

approach the same values. The DP-based model lagging behind the Markov model is

a result of yj in Equation (3.31). As more data is seen, -yj shrinks compared to nji

and it approaches the Markov model probabilities.



Straight

0n

Number of Paths Number of Paths Number of Paths

Figure 4-6: Markov model and DP-based model predictions for straight, left, and
right turns for the similarly colored road segments in Figure 4-5.

At first glance these results may give the impression that this thesis is using

powerful machinery to accomplish the same thing as a simple Markov model. This

simulation is extremely simple, so a Markov model should perform well. The fact that

the DP-based model approaches the Markov model probabilities should be viewed as

a sanity check. Looking at the blue road segment, an argument can be made that the

DP-based model does not over-fit the data as the Markov model does. The DP-based

model essentially "understands" how limited a picture the data gives. The blue road

segment is an example of a road segment used infrequently and how the model is more

"hesitant" to make any strong predictions. Seeing the large fluctuations in the blue

Markov model probabilities lends validity to the DP-based model's relatively small

change in distribution. Comparing the red and green lines shows the effect of the

DP-based model's understanding of how well it has learned the underlying structure.

Both of these road segments have similar probabilities, but the red segment showed up

far more frequently, meaning the car behavior associated with it is better understood.

One of the main assertions of this thesis is that the paths drivers choose are

complex due to their individual understanding of the domain. This understanding

Left Right



translates into preferences toward or away from road segments that very likely differ

from the shortest time path. Due to there being no such underlying behavior of the

vehicles in this simulation and only one destination, it is unsurprising that the two

models would make similar predictions.

To adequately compare the two models, it is also necessary to look at how long

each of them took for learning. Looking at Figure 4-7, the Markov model, as expected,

is linear in the number of paths. This is due to it having only to look at each path once

and store the counts. In a naive implementation, the DP-based model has polynomial

8SiO
vl
V

E

a-c..

Paths of Data

Figure 4-7: A comparison of learning
model.

times for the Markov model and the DP-based

learning time, since for every path of data, it needs to check all previously seen paths.

4.2.3 The Full Driver Behavior Model

This section tests the full DP-based behavior model. First destinations are clustered

and then a DP over path distributions are learned for each cluster. The city shown

in Figure 4-8 is used to test how well this model can learn underlying structure (as

opposed to the city used in the previous section which had very little underlying



understand that the green road is faster and

Figure 4-8: The 10x10 simulated city used to the test the full model.

that the red areas are slower. As such, the data generated from this city will take

that into account.

The DP-based model is compared to the same Markov model as described in

Section 4.2.2. The models were compared using next road segment prediction accu-

racies and goal location predictions, given a partial path. Figures 4-9, 4-10, and

4-11 show the prediction accuracy for a variety of city sizes and training data. These

tests demonstrate that the DP-based model does significantly better than the Markov

model. In some of the plots, it appears the Markov model has an increased accuracy

as more of the path is seen. While this may seem counterintuitive since the Markov

model disregards the past, the increase in accuracy is not a result of the model but

structure). In this diagram the drivers
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Figure 4-9: The results comparing the next road segment prediction accuracy of the
Markov model and the DP-based model in a 10x10 city with 10,000 paths of training
data.
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Figure 4-10: The results comparing the next road segment prediction accuracy of the
Markov model and the DP-based model in a 14x14 city with 10,000 paths of training
data.
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Figure 4-11: The results comparing the next road segment prediction accuracy of the
Markov model and the DP-based model in a 20x20 city with 10,000 paths of training
data (blue) and 50,000 paths of training data (green).

the test becoming easier. Referring back to the yellow paths drawn on Figure 4-8, as

a path gets closer to an end location, the prediction gets easier. This accounts for

the increase in the Markov model prediction accuracy.

The argument behind using a DP distribution over paths is that any latent struc-

ture can be captured. Again, looking at the yellow paths, it seems most of the latent

structure would occur around the middle of the paths, when the DP-based model

performs the best. From these plots one can imagine that the more underlying struc-

ture a domain has, the better the DP-based model will perform. In practice, it seems

unreasonable to expect to see more than 30% of a driver's path.

Lastly, one of the more interesting observations is gained from Figure 4-11. The

differences between the two sets of colored lines show that for five times more data,

the Markov model sees a slight, if any, improvement. On the other hand it has a

noticeable effect on the DP-based model. This implies that when implemented on a

real system, the longer it is in use the better the predictions become.

Figures 4-12 and 4-13 are demonstrations of how the DP-based model not only can

make predictions about future actions, but also make predictions about destinations.

0
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The mixing proportions used to generated the data were 7r = 15%, w2 = 35%, and

r3 = 50% and the learned model inferred '1 = 2752, 72 = 797, and y3 = 1205,

where 7j is the DP parameter associated with the DP indexed by location j (the

location numbers are the same as assigned in Figure 4-8). In the figures, the right

columns of the plots show a sequence of observations about a vehicle and the left

column (generated using Equation (3.32)) shows the model's predicted ending location

distribution for the vehicle.

The top set of plots in Figure 4-12 shows the prior distribution on stopping loca-

tions (nothing about the vehicle has been observed). The vehicle is then observed on

two road segments (green) heading to the right. Looking at the bottom right plot,

it is fair to assume the vehicle could either be heading to destination 2 or 3. The

destination distributions look reasonable, considering there are some paths leading

to location 3 that have already been passed where as nearly all of the paths that

head to 2 are still valid. Once it turns right, as in the top right plot Figure 4-13,

the model strongly predicts it will head to location 3. Despite this strong prediction

in the top set of plots, something interesting happens once the vehicle unexpectedly

turns left, as shown in the bottom right plot (it now becomes a novel path). Once

the path stops matching any known path, Equation (3.32) becomes a function of only

'71, '72, 7Yr, 71, 72 , and 73, and the bottom left plot reflects this.

Another interesting behavior of the model is seen from comparing the bottom

distribution of Figure 4-12 and the top distribution of Figure 4-13. While the distri-

butions over destinations 2 and 3 behave as expected, the probability that the vehicle

is heading to destination 1 actually increases as more of the green path is seen. As

the observed path becomes longer it fits fewer paths from the training data, so it

gradually becomes more likely to be a novel path to destination 1 (due to the large

value of 7y). The model realizes this path was actually novel in the bottom of Fig-

ure 4-13 and it becomes clear how mixing proportions and concentration parameters

effect end destination prediction.



4.3 Boston GPS Data

The CarTel project2 at MIT has collected an extremely large amount of data from

GPS receivers placed inside taxis. Fortunately, they have allowed their data to be

used in this thesis to test the methodology on real world data.

The data was recorded as time-stamped GPS locations, from which sequences of

road segments must be extracted. The data is divided into a path any time a taxi has

moved less than 100 meters in one and half minutes or GPS measurements jumped

over 500 meters. While there are certainly taxi stops that last less than a minute

and a half, any shorter time window will make it impossible to distinguish stop lights

or traffic from the end of a path. In fact, in looking at the data, it seems the one

and a half minute stopping window did pick up some traffic. This, combined with

attempting to match noisy GPS to road segments, adds a fair amount of uncertainty

to the problem for which the model has not been designed. The model, in its current

form, relies on being able to match sequences of road segments exactly, so any error

in extracting the sequence of road segments (e.g., briefly snapping the data to an

incorrect road segment) will cause the model to think that two identical paths are

different. In an attempt to clean up the data, rather than dealing with sequences of

road segments, paths will be represented as sequences of waypoints along the roads.

While this was by no means perfect, it reduced the error a significant amount, and as

far as learning a distribution of paths is concerned, both methods are just sequences

of integers. Even with this noise, the DP-based behavior model was applied to the

data to see if perhaps any of the latent structure can be captured.

From 18,000,000 GPS data points taken over a month and a half period, 22,724

paths of waypoints were extracted. Figure 4-14 shows the waypoints (blue), clusters

that were learned (one standard deviation shown in red) from the stopping locations

of each path (black). Anyone familiar with the greater Boston area will agree that

the clusters found by the model are unsurprising. It is especially reassuring that

the airport (location 6) was found, as this is probably one of the most common taxi

2cartel.csail.mit.edu



Figure 4-14: The destinations (red) found from clustering the stopping locations of
each path of data (black).

destinations. As a side note, it should become clear looking at Figure 4-14, why the

probability mass over novel behaviors is so important. Expecting training data to

capture all of the possible paths in a domain this large is certainly unreasonable.

Figure 4-15 shows some of the paths extracted from the data. The noisy paths

caused the learned DPs for each location to have very large yj values. Even if two

taxis took the same path, just a single noisy data point snapping to a different way-

point would convince the model they were two different behaviors. Referring back to

Equation (3.32), if yj is large compared to nj for all j, the model will just predict all

vehicles are heading to the most popular destination. In a naive attempt to overcome

this, two paths were said to be equivalent if 90% of the waypoint sequence matched.

Figure 4-16 shows two paths that matched (the green waypoints were laid on top of

the red) and Figure 4-17 shows two that did not.

While requiring only 90% of the waypoints to match helped the model some, to

be useful for end location prediction, more training data is needed (to increase nj

relative to 7j). This is not surprising if one considers the amount of data used in the

simulated city (a far smaller domain) with the amount used for the greater Boston



Figure 4-15: Some of the paths of data of taxis driving around the greater Boston
area.
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Figure 4-16: Two paths (green overlaid on red) with more than 90% of the waypoints
in agreement.



Figure 4-17: Two paths (green overlaid on red) with fewer than 90% of the waypoints
in agreement.

area. The take-away message from this conclusion is that 22,724 noisy paths of data

are too few to make reliable predictions, according to the model, something that other

models have no concept of.

Despite not having enough training data to draw any useful conclusions about end

destinations, the resulting model can be used to demonstrate something not previously

discussed: anomaly detection. Table 4.1 shows the number of paths leading to a

destination (as numbered in Figure 4-14), the yj value of that destination, and the

resulting probability the next path to that destination will be novel. The bottom row

is the probability of a novel destination appearing from the next path of data. Since

22,724 paths of data mapped to 12 destinations, it is expected that the probability of

a new location appearing is extremely low. The last column corresponds to testing

performed on 1,370 withheld paths to determine accuracy of the probability of a novel

path. As the table shows, and considering the previous discussion on the relatively

small training set for the domain, the model seems to be able to understand how

likely new paths are to occur. To be useful for anomaly detection, more training data

would need to be provided. For a specific application, if anomalies were expected 1%



Location # of Paths yj Prob of Novel % Novel in Test Paths
1 2021 2207 0.52 73%
2 2138 2925 0.58 79%
3 8167 3910 0.32 48%
4 884 264.8 0.23 35%
5 788 197.7 0.20 16%
6 2057 2427 0.54 70%
7 311 103.5 0.25 44%
8 437 199.9 0.31 42%
9 3290 2464 0.42 66%
10 42 259.7 0.86 75%
11 2535 3606 0.59 73%
12 54 124.38 0.70 67%

Novel - 1.316 .00005089 0%

Table 4.1: Results comparing predicted probability that a novel path would occur
from the training data and the actual frequency of novel paths in the test data.

of the time, the DP-based model gives a structured method for knowing when enough

training data had been provided.

Previously, it had been stated that the model needed more training data to predict

a vehicle will go anywhere but the most popular destination. While this is true, the

model may be forced to make predictions by removing all novel paths from the test

data and assuming the remaining paths had been previously observed. Predictions

are based on the first third of the 788 remaining paths (from the 1,370 test paths).

Given these partial paths, the model predicted the correct destination in 610 of the

paths, an accuracy of 77.4%. It is encouraging that the model, once it is given what

it thinks is an appropriate amount of training data, will perform well.





Chapter 5

Future Work and Conclusions

5.1 Future Work

5.1.1 A Better Observation Model

While the simulation showed good results and the real data was promising, the DP-

based behavior model needs improvements to operate effectively in the presence of

noise. The reason for this is that the initial formulation had no mechanism for han-

dling noise. To overcome this, a naive observation model was added such that 90% of

the waypoints must match to say two paths are equivalent. This approach was by no

means meant as a real solution to handling noise. The work presented here has shown

no reason why this model will not work in the presence of noise, if the noise were

dealt with properly. The solution will need to redefine a path as a distribution over

"similar" paths or a distribution over points close to a path. This could be accom-

plished by something such as modeling a path as a series of "close" road segments, a

series of Gaussian distributions as in [13], or even using DPs.

5.1.2 Path Extraction

The naive method of converting road segments to waypoints and snapping GPS points

to the nearest waypoint leaves much to be desired. Not only does this method make

predictions about the next road segment somewhat cumbersome, it ignores much of



the road connection information stored in the original representation. In the future,

a simple car model may be used to properly filter road sequences from the GPS data.

5.1.3 Recognizing Drawings of Battlefield Strategies

A potential application for hierarchical Dirichlet processes (HDP) is a handheld com-

mander advisor unit in development at the Charles Stark Draper Laboratory. In

the field, a commander draws the current battlefield situation and his future plans

directly on the device and it computes the probability of possible outcomes. While

there are set symbols of inputting a combat unit and its plan, the overall battlefield

strategy needs to be recognized. This has proven to be a difficult problem because

of the potentially infinite ways a battlefield may be laid out, especially when taking

into consideration different types of environments. To begin to understand where the

difficulty lies, consider a commander attempting to input a coordinated attack on

both a flat plain and on a hilly landscape. The two drawn pictures may look quite

different, but the device must recognize them both as coordinated attacks to compute

the probabilities of potential outcomes accordingly.

On the bottom level of the hierarchy is a DP for each strategy. Each DP will learn

the types of ways a strategy is drawn and learn a distribution over them. The top

level of the HDP shares information about movements over strategies. For example,

if data were acquired for coordinated attack and retreat in a hilly landscape, it may

be desirable to share qualities of these two strategies. If this hierarchy were not

in place, the model will not share information about retreat strategies to enhance

its understanding of coordinated attack. A better approach is to allow the model

to decide during learning how useful transferring knowledge is, rather than making

those types of assumptions a priori.

There are three main reasons why this is a potentially good application for HDPs.

First, DPs are very flexible in finding what they believe is the correct complexity of

the model (e.g. what is the "right" number of ways to represent coordinated attack?).

Approaches where the model complexity must be specified in advance are prone to

over-fitting or under-fitting of the training data. Second, DPs can handle countably



infinite strategies and countably infinite ways of drawing each strategy. While count-

ably infinite strategies will not be seen in practice, a framework that naturally allows

for this may prove extremely useful when dealing with a large number of strategies

that need to be inferred. Third, DPs maintain a probability mass associated with a

novel strategy. A determination of a strategy as "novel" may be used to conclude

poor strategy specification. Typically an ad-hoc method is used for this, where a

threshold needs to be exceeded for it to have "decided" which strategy is most likely.

Using HDPs for this will allow for a probabilistically justified approach for prompting

the commander to redraw the strategy. The probability mass associated with a novel

strategy may be used to draw conclusions about the amount of data necessary to

learn a sound model.

5.2 Conclusions

This thesis has presented a nonparametric Bayesian approach to behavior modeling,

focusing on large, poorly understood domains in which accurate models are difficult

to create and typical parametric models break down from over-fitting training data.

The basis of the nonparametric approach was the DP. Rather than using a parametric

model, a DP defines a process that governs the parameters of the model. Using DPs

for behavior modeling for large, poorly understood domains is motivated by three

main benefits. DPs do not require any a priori knowledge of the number of expected

behaviors; they "understand" the training data is a limited view of the domain, and

there are no issues with having infinitely many behaviors. With this justification,

and inspired by the DARPA Urban Challenge, a behavior model for drivers in a city

environment was constructed.

It was discussed that a successful driver model would need to be able to predict

both the next action of a driver (e.g., a left turn) and its desired destination (e.g.,

the airport). From training data the model first clustered path ending locations into

destinations. Based on the assignments from the clustering, each destination learned

a process that governed the distribution over all paths in the city that drivers took



to the destination.

The DP-based driver model was then tested by predicting paths and destinations

for a held-out data set. In simulation, the model performed extremely well compared

to a Markov model approach. For the 20x20 simulated city (840 road segments) it

was able to predict a vehicle's next action correctly over 80% of the time with only

30% of the path observed. Building on the simulation results, the model was then

applied to taxi data from the greater Boston area. The results on the real data were

promising but inconclusive due to a relatively small data set and the model not being

explicitly designed to handle noisy paths. Based on the encouraging GPS results

presented here, if a realistic observation model is incorporated and advanced data

processing techniques are utilized, it is reasonable to expect a model that can make

sound predictions of a vehicle's next action and destination.



Appendix A

Probability Distributions

All probability distributions that appear in this thesis are defined in Sections A.1-A.6.

This is especially important due to the prevalence of multiple common parameteriza-

tions for some of the following distributions. For a general introduction to probability

theory the reader should refer to [7].

A.1 Gaussian

A Gaussian distribution, also known as a normal distribution, is a continuous distri-

bution defined by two parameters p and E which represent the mean and covariance,

respectively. A random variable x - AN(p, E) implies

P(X) = f(x;,) = (27)N/2 1/2 ,(x) T  (). (A.1)

A less common parameterization, but one used in this thesis for algebraic simplicity

is AN(pi, s - 1) where the precision s = E- 1.

In Section 3.2.2 a posterior distribution is derived from the product of n Gaus-

sians with a Gaussian prior. Fortunately, as discussed in Section 2.3, the Gaussian

distribution is its own conjugate prior, which results in a posterior distribution of the



form [1]:

oc fgN (x; p1I, E 1 ) ... fg(x; A-n+1, Yn+1)

( [n+1 -1 -1 n+ ] - 1)
.i=1 i=l i=l

(A.2)

A.2 Gamma

A gamma distribution is a continuous distribution defined by shape parameter, a,

and scale parameter, b. A random variable x - g(a, b) implies

P(x) = fg(x; a, b) = 1 (a)b e
IF (a) ba (A.3)

In (A.3), F(a) = foM za-le-zdz is the gamma function, the extension of the factorial

function to complex numbers. There are other common parameterizations of the

gamma distribution that the reader may be familiar with but this is the only one

used in this thesis.

A.3 Inverse-Gamma

The inverse-gamma distribution is the distribution of a random variable x - 9-l (a, b)

when x - 1. g9(a, 1/b). x - 9-1(a, b) implies

P(x) = fg-i (a, b) = (a +1)e-blx
IF(a) (A.4)

Equation (A.4) can be derived [7] from the relation

fg-1(y;a,b) = fg(g-(y); a, b) dg 1(y)

with y = g(x) = 1/x and an inverted second parameter.

f r (X; A, t)



A.4 Wishart

The Wishart distribution is a distribution over p x p positive-definite matrices, W.

Its probability density function is written as

1 n-p-1 Tr(V_ W_/2
P(W) = fw(W; n, V) = p(n/2)Vn/ 22/ 2  e - ( V - W ) / 2  (A.5)

where n is the degrees of freedom, V is the scale matrix, and P,(z) = rp (p - 1)/ 4  (+

(1-i)/2) is the multivariate gamma function. It is important to note that the Wishart

distribution is the multivariate generalization of the gamma distribution. By setting

p = 1 and restricting W and V to be 1 x 1 matrices yields

fw(W; n, V) = Wn/2-le-W/(2V)
IF(n/2)(2V)n/2

= fg(x;n/2,2V).

This may be useful in Section 3.2.2 for readers who wish to extend the methodology

to multiple dimensions by replacing gamma distributions with Wishart distributions.

A.5 Multinomial

A multinomial distribution is a probability distribution over a set of draws from a

discrete probability distribution. For a discrete distribution

7T if x = 1

72 if x = 2

P(x) =
7rk if x = k

0 otherwise



where E-j ri = 1, the probability of outcome counts ni, ..., nk is

P(ni, .... , nkIl, ... 7k) = pm(ni ., nk; 7l, 7k, l ) - H i( !)i i
[L (ni!)

A.6 Dirichlet

A Dirichlet distribution is a continuous distribution with parameters al, ..., ck that

defines a distribution over rl, ..., rk where Ei 7ri = 1. It can be thought of as a

distribution on k dimensional discrete distributions, explicitly written

P(rl, ... , kla ,...,ak) = fDir(T1, ... ,T rk;a1,..., k) (A.6)
= -fl F (a )) (A.7)
IF(Ei ai) i
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