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Abstract

Electric propulsion systems provide an attractive option for various spacecraft propulsion
applications due to their high specific impulse. The power balance of an electric thruster based
on a helicon plasma source is presented. The power balance is shown to be comprised of several
variables, including the RF power supplied to the system, dissipative losses in transmission
hardware, losses in the neutral confinement tube, uncoupled RF radiation, ionization power, and
plume output power.

A thermal model for the neutral confinement tube is presented whereby heat flux may be derived
from thermal response data. Numerical simulation and experimental benchmarking are
employed to validate this thermal model.

A mapping of power consumption is presented. Comparison with experimental parameters
indicates that 97% of the power supplied to the system is accounted for, suggesting that primary
loss mechanisms have been identified. Avenues for improving the performance of the thruster,
based on these data, are presented.
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Chapter 1

Introduction

The helicon plasma source has several advantages over competing technologies for producing

high density, accelerated plasma flows suitable for application to spacecraft propulsion. The

power balance associated with the mini-Helicon Thruster Experiment (mHTX) at MIT is

evaluated herein, with the goal of evaluating overall thrust efficiency and mapping avenues for

improving performance.

1.1 Historical Context

The utility of ionized gases for space propulsion has been recognized since the time of

Tsiolkovsky 1'1. Robert H. Goddard informally outlined many of the principles and physical

concepts in the 1900s [2]. In the late 1920s, Oberth, building on these principles, included a

section about electric propulsion in his classic book Wege zur Raumschiffahrt [3]. The first peer-

reviewed study on the viability of electric propulsion (EP) appeared in 1948 [4], following the

development of lightweight nuclear power systems. In the United States, Ernst Stulinger did

much to develop the field of electric propulsion during the 1950s [5-71



The first successful spaceflight of an electric thruster occurred in July 1964, when the SERT I

gridded ion engine completed a pre-programmed thrust profile during a 25 minute suborbital

flight 81]. In 1998, Deep Space 1 (DS1) was the first spacecraft to use an electric thruster for

primary propulsion [9]. The DS1, Hayabusa [101, Smart 1 ["], and Dawn [12] spacecraft all

illustrate the utility of electric propulsion for high-energy missions that might not otherwise be

possible using more conventional chemical propulsion. Table 1-1 lists the required velocity

increments for typical space missions.

Mission Delta-V [kmls]
Earth Surface to LEO -9.3
Earth Surface to C3 11.2
LEO to GEO 4.2
LEO to C3 3.2
LEO to LLO 3.9
LEO to Mercury Orbit & Return 31.0
LEO to Venus Orbit & Return 16.0
LEO to Mars Orbit 5.7
LEO to Mars Orbit & Return 14.0
LEO to Mars Surface and Return 34.0
LEO to Jupiter Orbit and Return 64.0
LEO to Satum Orbit and Return 110.0
LEO to Solar Escape 8.7
LEO to 1000 AU (50 yr) 142.0
LEO to Alpha Centauri (50 yr) -30,000

Table 1-1: Typical velocity increments for interplanetary and interstellar missions 113-14]

The strength of electric propulsion lies in its very high specific impulse relative to chemical

solutions. Table 1-2 compares the specific impulses of various chemical propellants. Table 1-3

gives typical operational characteristics for several electric propulsion systems.



Oxidizer Fuel Isp (SL) Isp (Vac)
H2  389.4 455.3

H2-Be (49/51) 459.0 540.0
CH 4  309.6 368.9
C2H6  306.7 365.7

LOX C2 H4  311.5 370.9
RP-1 300.1 358.2
N2H4  312.8 353.1
B5H9  318.8 383.5
B2H6  341.9 409.8

CH 4 - H2 (92.6/7/4) 319.0 379.5
GOX GH2 407.9 457.7

H2  411.8 479.3
H2-Li (65.2/34.8) 434.3 515.3

CH 4  348.4 415.8
C 2H6  340.3 406.8
MMH 348.3 415.4
N2H4  365.3 430.1
NH3  360.3 422.8
B5Hq 357.3 427.7

H2  409.6 477.4
CH 4  355.6 421.5

C 2H6  358.3 422.1
RP-1 349.4 410.3

OF 2  MMH 349.7 415.0
N2H4  345.0 409.0

MMH - N2H4 - H20 (50.5/29.8/19.7) 353.3 398 8
B2 H6  372.8 445.6
BSH 9  361.1 432.5

FLOX (30/70) H2  395.0 461.2
FLOX (30/70) RP-1 316.6 377.2
FLOX (70/30) RP-1 344.6 403.6

FLOX (87.5/12.2) MMH 359.7 423.3
CH 4  319.1 376.7
C2H4  309.7 368.6

N2F4  MMH 322.8 380.6
N2H4  335.0 390.5
NH3  326.9 379.9

B5H9  332.5 397.8
MMH 302.2 355.9

CIF5 N2H4  313.2 365.3
MMH - N2H4 (86/14) 303.2 356.9

MMH - N2 H4 - N2 HNO, (55/26/19) 305.0 357.1

CIF 3  
MMH 284.6 334.1
NH 4  294.4 342.4
MMH 288.5 341.5

MMH - Be (76.6/23.4) 316.9 379.6
MMH - Al (63/37) 295.0 353.1

N20 4  N2H4  292.0 343.8

N2H4 - UDMH (50/50) 288.9 341.7
N2H4 - Be (80/20) 327.4 392.8

BH, 298.7 358.5

N20 4 - NO (75/25) MMH 289.7 342.9
N,H4  293.1 345.0

UDMH-DETA (60/40) 269.2 318.7
IRFNA (Ill-A) MMH 274.5 324.3

UDMH 272.2 322.1
UDMH-DETA (60/40) 274.4 325.2

RFNA (IV, HAD) MMH 279.8 330.8
UDMH 277.4 328.6
MMH 284.7 336.8

H20 2  
N2H4  

286.7 337.6
N2H4 - Be (74.5/25.5) 335.6 403.5

B5H, 307.8 371.6

N2H4  
B2H6  

341.0 403.4
SB5sH, 326.9 389.7

Table 1-2: Theoretical performance of various chemical rocket propellant combinations; PC =
1000 psia; Expansion to sea level is 14.7 psia. Vacuum expansion implies Ae/At = 40 (prepared
by Rocketdyne Chemical and Material Technology) [15]



Thruster Power [kW] IsP [s] Efficiency Propellants
Resistojet 0.5 - 1.5 300 80% N2H4, NH3, Inert Gas, Stable Liquid
Arcjet 0.3- 100 500- 1000 30%- 40% N2H4, NH3, H2

Gridded Ion Thruster 0.2 - 4 2800 65% Xe
Hall Effect Thruster 0.3 - 6 1600 50% Xe
Applied Field MPD 1 - 100 2000 - 5000 50% NH3, H2, Ar

Self Field MPD 200 - 4000 2000 - 5000 30% NH3, H2, Ar
Pulsed Plasma Thruster 0.001 - 0.2 1000 7% Solid Teflon

Table 1-3: Typical operating features for selected electric thrusters 6

While electric propulsion certainly provides distinct advantages over traditional chemical

schemes for high energy, long-duration space missions, different EP systems themselves have

their own sets of advantages and disadvantages. A discussion of the relative merits and

drawbacks associated with various systems is given in the sections that follow [13, 161

Resistojet

The resistojet is certainly the simplest form of electric propulsion available. In a resistojet,

electrical energy is simply used to heat a propellant by convection or conduction, which is

subsequently exhausted from a conventional rocket nozzle. While this type of thruster is

conceptually, operationally, and mechanically quite simple, it is a fundamentally temperature

limited device. The very high values of specific impulse that characterize other EP concepts are,

therefore, inaccessible to this simple configuration, barring development of advanced higher

temperature materials.

Arcjets

A second electrothermal thruster is the arcjet. In this device, high temperature material

limitations are circumvented by use of a high-temperature plasma arc to heat propellant gases.



Because of the uneven heating profile associated with this type of machine, typical efficiencies

are lower than those available with other devices, which can be seen in Table 1-3. Electrode

erosion is a potentially lifetime limiting factor due to the very high temperature of the central arc.

Finally, the power processing unit in an arcjet device must provide protection against arc "run

away," in which the arc resistance drops and the arc current increases disastrously, vaporizing

the electrodes and destroying the device [171

Gridded Ion Thrusters

Gridded ion thrusters have more in-flight experience for primary propulsion than other EP

systems [8,9,10,12]. In a gridded ion system, propellant gas is ionized inside a chamber. A

negatively biased grid extracts ions and accelerates them through the grid potential to produce

thrust. This ion beam is neutralized by an external cathode, producing quasi-neutral plasma

downstream. These systems provide high specific impulse with very high efficiency, as given in

Table 1-3. The use of grid arrays with tight dimensional tolerances, however, as well of

potentially life-limiting cathodes for beam neutralization, can impact the reliability of these

devices.

Hall Effect Thrusters

Hall Effect thrusters have also been used for primary propulsion for spacecraft [11]. These

devices offer many of the same advantages as the gridded ion engines discussed above. Notably,

they forgo use of material grids for accelerating ions. Hall Effect thrusters use a radial magnetic

field near the exit plane of the thruster to confine electrons and promote propellant ionization.

As in the gridded ion design, when the positive ions leave the thruster they are neutralized by an



external cathode, yielding a quasi-neutral plume. This external cathode is, again, a potentially

lifetime limiting device. Furthermore, the ions in a Hall thruster tend to be hotter than those in

gridded machines, resulting in higher plume divergence and in chamber erosion due to ion

impingement.

Colloidal Thrusters

A device closely related to the gridded ion thruster is the colloidal thruster. In these devices,

propellant droplets with very high mass-per-unit-charge are extracted electrostatically from a

propellant dispensing capillary and accelerated through the extraction grid potential to produce

thrust. These devices are attractive in that they require no gas phase ionization, and therefore

circumvent the accompanying electrical and thermal power losses. Colloidal systems are

capable of providing very small thrust levels for very precise maneuvering. However, because of

their low thrust per dispenser, colloidal systems require very large arrays to achieve appreciable

thrust levels.

Magnetoplasmadynamic (MPD) Thrusters

An MPD is an electromagnetic thruster which uses the Lorentz force to accelerate plasma to

provide thrust. In its simplest form, it consists of a coaxial arrangement of an inner cathode and

an outer anode. The presence of conducting plasma within the channel establishes a radial

current. The azimuthal magnetic field may be applied (applied-field MPD) or, if the radial

currents are sufficiently large, self induced (self-field MPD). Because the propellant plasma is

quasi-neutral throughout, there is no need for a neutralizing external cathode. These devices are

capable of very high power densities and very high thrust density. However, the efficiency is



typically low, as can be seen in Table 1-3, and the very high powers at which these devices

optimize (106 - 107 W) are not readily achievable without nuclear power or perhaps beamed

power scenarios. Additionally, the electrodes are a potentially lifetime limiting component,

particularly due to anode starvation and the asymmetry of the discharge current.

Pulsed and Unsteady Electromagnetic Concepts

Several concepts exist for unsteady or pulse-mode electromagnetic systems, including the pulsed

plasma thruster (PPT) and the pulsed inductive thruster (PIT). Because these devices are

inherently unsteady and potentially have very high instantaneous power levels, they are prone to

high dissipative losses. In the case of the PIT, the emphasis on very short magnetic rise time

tends to drive up the conducting mass of the device, as well as the mass of the power processing

unit. PPT devices using solid propellant (usually Teflon) are very simple and robust, in spite of

their poor efficiency. The PIT has no electrodes, which are susceptible to erosion, and its

average power can be scaled up by increasing the pulse frequency.



1.2 Helicon Plasma Source

In 1970 a simple plasma source was discovered [18] for producing dense plasmas by exciting

helicon waves. The utility of this plasma source for space propulsion was not exploited until

over thirty years later [191]. Since that time, researchers throughout the world have experimentally

verified the viability of the helicon plasma source for spacecraft propulsion.

1.2.1 Source Properties

The helicon plasma source has several advantages as a source of laboratory plasma that may

potentially translate into utility as a thruster for space propulsion. First, a helicon plasma source

can operate with a wide variety of feed gases. The current experimental configuration has been

run using monatomic gases like xenon and argon, as well as molecular gases like nitrogen.

Mixed molecular species, such as air, have also been run successfully. This is advantageous for

space propulsion because it gives some flexibility in propellant selection.

Next, a helicon plasma source can produce plasmas with very high densities, approaching

1020 particles/m 3 . For application to spacecraft propulsion, this means that a helicon thruster

may achieve very high thrust densities with good volumetric efficiency for the thruster as a

whole.

Finally, a helicon is an electrode-less plasma source. This eliminates the risk of

contamination of the plume with cathode material, and consequently there is a smaller risk of

contamination of the spacecraft by the plume.



1.2.2 Acceleration Mechanism

It is well established that bulk plasma acceleration is accomplished when the helicon wave

couples to the electron population, establishing an ambipolar electric field. Ions are in turn

accelerated by this electric field, accelerating the plasma bulk. The means by which wave

energy is transferred to the electron population with such high efficiency is still an active area of

research. It has been shown that in order for purely collisional damping to account for the

observed deposition of RF energy, the plasma must have a collision frequency at least 1000

times greater than the theoretical value [20]. A second coupling mechanism that has been

suggested is Landau damping [21]. Experiments indicate, however, that there are an insufficient

number of phased fast electrons in the helicon discharge for Landau damping to account for the

majority of directional coupling [22]. Finally, Trivelpiece-Gould (TG) mode conversion has been

suggested as an alternative means of coupling helicon wave energy to the plasma [23]. However,

analysis shows that if TG mode conversion is a dominant energy absorption mechanism in the

high-Bo plasma, such mode conversion must be occurring on the outer plasma surface only [24]

This is in contrast to the observed high-temperature core associated with the helicon discharge.

A final theory created to explain the efficient absorption of helicon wave energy posits that

during operation in the helicon mode, a radial plasma density gradient forms a potential well,

trapping the helicon wave, and allowing electromagnetic energy to be absorbed over the course

of repeated reflections [25]. This theoretical framework predicts radial variation in the hot

electron population density, and data consistent with this prediction have been presented [26]

Despite the lack of a clear, mechanistic understanding of helicon wave damping, the

elegance of wave-coupled acceleration of plasma for space propulsion begs its exploitation. The

synergistic coupling of the ionization, heating and acceleration mechanism associated uniquely



with the helicon plasma source is advantageous in assuring a robust, reliable solution for future

space propulsion applications.

1.3 Helicon Plasma Thruster Design

1.3.1 Evolution of mHTX Design

The antecedents of the mHTX study at MIT lie in earlier experimental work on the first stage of

the VASIMR engine [27]. Experimental investigation of the helicon thruster at MIT was begun in

January 2004. Since that time, several revisions of the experimental apparatus have been

implemented. Most notably, a change in the construction of the helicon antenna from braided

shielding to copper tubing has been made, and several revisions in the construction and number

of electromagnets have been effected. After preliminary implementation [281, spectrographic

emission data were taken for the helicon plasma source operating with argon in the helicon and

inductively coupled mode [29]. Concurrently, preliminary work was begun in characterizing the

power balance for the helicon plasma source [30]. Most recently, preliminary performance

metrics were gathered for the helicon plasma source, operating in its current configuration [311. A

more detailed description of the systems associated with the mHTX is given in the sections that

follow.

1.3.2 RF Circuit

Power is transferred from the RF power supply to the impedance matching network over

standard RG-218 coaxial cable with a characteristic impedance of 75 Q. The matching network

is used to manually match the dynamic load impedance associated with the helicon discharge. It

is comprised of a series and shunt variable capacitor, ZI and Z2, which can be seen in Figure 1-1



below. Test points for measuring voltage and current are implemented with series capacitors, Cl

and C2, and current sensing transformer, TI, respectively.

The RF feed through into the vacuum chamber is constructed from ¼ in. copper rod and

S/4in. K-type copper tubing. The feed through is arranged so that the smaller ¼ in. center line fits

coaxially inside the larger 3/4 in. return line. The complete feed through assembly has a

computed mass of approximately 0.75 kg, based on the linear weight of the two materials.

The antenna used in the current configuration is a right-hand polarized, half-helical

antenna, which has been shown to preferentially excite the m = +1 mode. Antenna length is one-

half the axial wavelength, and is constructed from 1 in. copper tubing.

Figure 1-1: RF Circuit for the Helicon Experiment in the MIT SPL. The transmission line is
represented with characteristic impedence ZT. The impedance matching network is formed by
Z1 & Z2. C1 & C2 form a voltage-sensing network. TI is used for current sensing. Load
impedance is dynamic, and related to the character of the plasma discharge.

1.3.3 Magnetic Structure

The helicon plasma source has been shown to exhibit three unique modes of operation [32]

When an RF signal is applied to the system in the absence of the axial magnetic field, two modes

may be excited: the capacitively-coupled plasma mode (CCP) and the inductively-coupled

plasma mode (ICP). In non-propagating discharges, energy penetration is limited to the plasma

skin depth, given by:

1



2 C (1-1)
0 Pe

This expression for the skin depth is valid for co << pw , which is easily satisfied for the

conditions under consideration.

Alternatively, in the wave-coupled mode of operation in which an imposed axial

magnetic field is present, RF energy can penetrate to the center of the plasma, resulting in energy

deposition far from the plasma edge and offering the potential for much higher density. In the

experimental apparatus under consideration, this axial magnetic field is produced with a single

electromagnetic solenoid comprised of 162 turns of 66 mm square cross-section copper

conductor. The coil is wound on a single aluminum bobbin and has length 12 cm, outer radius of

9.5 cm, and inner radius 3.5 cm. The polyurethane insulation is rated to 200 "C, ultimately

limiting the full-field run time for the assembly. The total resistance of the wound copper

conductor is 0.03 K. The maximum current delivered to the assembly is 180 A, resulting in a

total power consumption of approximately 970 W at maximum field. Experimental

measurements using a Hall-effect sensor show that the axial magnetic field strength scales at 11

Gauss per Ampere on axis.

Future plans for the thruster magnetic assembly include the removal of the

electromagnets in favor of a high field rare-earth permanent magnet assembly.



1.3.4 Confinement Structure

The neutral confinement structure in this experimental study was a thin-wall fused silica quartz

tube. The inner diameter of the confinement tube is 2 cm. The wall thickness is 1.5 mm, giving

an outer diameter of 2.3 cm.

Future plans for the experiment include replacement of the transparent quartz

confinement tube with an opaque alumina tube to limit radiative heating of the surrounding

structure. In a fully integrated thruster, heating of the surrounding permanent magnet assembly

must be carefully controlled in order to avoid exceeding the Curie point of the magnets, and the

consequent field degradation. This is especially problematic in very high field neodymium-iron-

boron magnets, whose Curie temperatures may be as low as 353 K. Material properties for

quartz and alumina are given in Tables 1-4 and 1-5 below.

Physical Properties
Density
Hardness
Specific Heat
Thermal Diffusivity
Thermal Conductivity
Electrical Resistivity
Softening Point

Table 1-4: Properties of fused silica used in cu

Table 1-5: Properties
tube on mHTX.

c

for Fused Silica at 20*C
2203 kg/m3

5.5- 7.0 Mohs Scale
740 J/(kg-K)

0.00848 cm2/s
1.3 W/(m-K)

>1018 Q-m
1650 0C

urrent neutral particle confinement tube on mHTX.

Physical Properties for Alumina at 200C
Density 3984 kg/m 3

Hardness 9.0 Mohs Scale
Specific Heat 755 J/(kg-K)
Thermal Diffusivity 0.111 cm2/s
Thermal Conductivity 33.0 W/(m-K)
Electrical Resistivity 1012 0.m

Melting Point 2054 0C
)f alumina to be used in future revision of neutral particle confinement



1.3.5 Propellant Feed System

Primary components associated with the propellant feed system are shown in Figure 1-2.

Propellant gases are stored in high-pressure gas cylinders at up to 4500 psi. The pressure

regulator reduces this pressure to the 20 - 25 psi level required by the flow controller. The

isolator shown in the schematic below is necessary to prevent the induction of spurious signals

onto the flow control electronics contained in the flow controller. The flow controller is

comprised of a "hot-wire" mass flow sensor that provides feedback to drive an electrically

actuated solenoid valve. This provides precise control of propellant flow rate between 0 - 100

sccm.

I, NUILU•I Isolator Vacuum

Figure 1-2: SPL Propellant Feed System for mHTX. Current experimental work uses argon
propellant.



Chapter 2

Power Balance

In considering the overall power balance of a helicon plasma source as a thruster, there are

several small-scale effects which contribute to inefficiency and tend to increase the propellant

plasma cost-per-ion. Microscopic effects are considered. These microscopic effects are grouped

into lumped loss terms which are used to define the power balance.

2.1 Microscopic Loss Effects

2.1.1 Transmission Losses

First, power is dissipated in ohmic losses in the transmission line and antenna structure and some

power is reflected due to impedance mismatch. The RF power measured in the helicon

experiment in the SPL includes the ohmic losses in the transmission hardware. Losses in the

coaxial cable connecting the RF power supply to the impedance matching network can be

estimated. The cable is standard RG-213/U with loss -4.9 dB/100 m.

It is well known that for RF currents flowing in conductive media, current density

increases toward the surface of the conductor. In a plane conductor, the decay of current density

with increasing distance from the surface is exponential and has the form:



J(d) = Js exp(-d / ) .

This is called the skin effect 133]. The constant 6 is the skin depth. From the form of Equation 2-

1, the skin depth is the distance from the conductor surface at which current density has been

reduced by a factor of e-. For a good conductor, the skin depth is approximately given by

S= 1 (2-2)

Here a is the electrical conductivity of the material and gr the relative permeability. This causes

the effective resistance of any solid conductor to increase with increasing frequency. For the

case of copper (a = 5.96 x 107 S/m, gr = 1) operating at 13.56 MHz, we obtain a skin depth 6

17.7 pm.

Clearly, transmission losses can be reduced somewhat by reducing operating frequency,

thereby increasing the skin depth and decreasing the resistance per unit length. Figure 2-1 below

shows the dependence of skin depth (and thus resistance) on frequency in copper.

(2-1)



Skin Depth vs. Frequency
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Figure 2-1:
frequency.
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Log-log plot of skin depth and characteristic resistance as a function of operating
Note that the characteristic resistance has units [ -m2 / m2].

Physical Properties for Copper
Density 8960 kg/m 3

Hardness 3.0 Mohs Scale
Specific Heat 385 J/(kg -K)
Thermal Diffusivity 1.116 cm2/S
Thermal Conductivity 385 W/(m-K)
Electrical Resistivity 1.7 x 106  Q-m
Melting Point 1083 0C

Table 2-1: Property data for copper.

Additional losses associated with the matching network are neglected in this analysis. This

circuit is comprised of reactive elements whose dissipative losses are assumed to be small

compared to the ohmic losses associated with the balance of the transmission hardware.



2.1.2 Ionization and Excitation

In order to make use of electromagnetic body forces to accelerate the propellant gas, particles

must first be ionized. The RF power supplied to the propellant gas must therefore provide the

energy required for ionization.

If we assume that the neutral gas is fully ionized, and given the ionization energy for the

species under consideration, we can compute the power required for ionization:

PION = eciFPNA (2-3)6 0MM

Here, F is volumetric flow rate in standard cubic centimeters per minute (sccm), NA is

Avogadro's number, MM is the molar mass of the species, and p is the density of the species at

STP. Substituting the appropriate values for argon given in Table 2-2, we can express the power

required for ionization more simply PION = 1.13F .

Physical Properties for Arg on
Density (STP) 1.633 kg/m 3

Molar Mass 39.948 g/mol
First Ionization Energy 15.76 eV
Second Ionization Energy 27.63 eV
Heat Capacity (298.15K) 20.786 J/(mol-K)
Melting Point -189.35 °C
Boiling Point -185.85 0C

Table 2-2: Property data for argon.

As might be expected, the power consumed in propellant ionization is linear in ionization energy,

and inversely proportional to the molar mass of the species. This simple linear relation is plotted

over the range of flows of interest in Figure 2-2 below.



Propellant Ionization Power Requirement
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Figure 2-2: Ideal power required for full ionization of several noble gas propellants. Powerrequired for ionization is governed by si, the ionization energy for the species.

Ionization cross section of argon neutrals is a function of the incident electron energy. There is a

great wealth of empirical data available for electron-atom collision cross sections in argon [34]

Using these data, it is possible to construct a semi-empirical expression for the total ionization

cross section [35]. This expression has the form:

Qi - ++ - + 2 1 _ In2.7(x-1). 5  (2-4)M+x x X• x-1 3 2x

Here e is the incident electron energy in keV. The constants L, M, N, and P are chosen to fit

empirical data sets [36, 37] for the experimentally verified cross sections. These constants are

given in Table 2-3. The parameter y is e/Pi, and the parameter x is E/P.

In addition to ionization, electron collisions excite neutrals. The energy absorbed by

neutrals in excitation can be lost in de-excitation or can form metastable states. When this de-

excitation occurs, the energy absorbed by the atom during collision is lost as radiation. We can



model the excitation cross section for argon in a similar way as above. The expression for the

excitation cross section is given by:

1 C
QEX = In

F(G + e) e EX
(2-5)

F and G are two adjustable parameters and EEX is the excitation threshold energy. Again, an
empirical data set [37] is used to compute numerical values for these parameters. Their values are
given in Table 2-3 and the resultant plot of these cross sections as a function of incident electron

energy in argon is given in Figure 2-3 below.

Ionization and Excitation Cross Sections in Argon
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4

3.5
3

2.5
2

1.5
1

0.5
0
0.01 0.1 1 10

Incident Electron Energy [keV]

Figure 2-3: Brusa model for the total ionization and total excitation cross-sections in argon as afunction of incident electron energy. The ionization cross section reaches a maximum value ofQi 4.4 x 10-20 m2 at e - 40 eV. The excitation cross section reaches a maximum value of QEX7.927 x 10-21 m2 at e = 50 eV.
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Brusa Model Parameters for Argon
SEX 11.5 (eV)
F 25.19 ke 1' 10-2o m2

G 2.36E-02 keV
L 78.76 10-20 m2

M 18.62
N 25.66 10-20 m2

P 0.00842 keV
Table 2-3: Parameters for computing the total ionization and total excitation cross-sections in
argon. Computed cross section is expressed as a function of electron energy.

By comparing the relative magnitude of the ionization and excitation cross sections, we can see

that, in the range of electron energies of interest (20 - 100 eV), ionizing collisions are likely to

dominate exciting collisions. We can therefore expect that losses due to neutral excitation will

be small, and can subsequently be neglected.

2.1.3 Hot Neutral Flux

Once the RF power has been deposited in the feed gas, there are further losses due to the flux of

hot neutrals to the wall of the source tube. Because of the high degree of ionization [38]

(approximately 99%) present in the vicinity of the helicon antenna and in the downstream

plasma, it is reasonable to assume that thermal losses associated with neutrals will be low.

2.1.4 Radial Plasma Diffusion

The axial magnetic field necessary to excite the helicon wave-mode also aids in plasma

confinement. However, plasma can diffuse across magnetic field lines to intercept the tube,

where the ions surrender their ionization energy during recombination. Because the magnetic

field is not strictly uniform down the length of the tube, there is the possibility of ions streaming



freely along the field lines until they intercept the walls of the source tube due to curvature in the

field.

2.1.5 Non-Ideal Utilization

Hot neutrals that escape into the plume do not experience electromagnetic body forces and

essentially leave the tube with their thermal speed, in which case, the RF energy used to heat

them is wasted. As discussed previously, the high degree of ionization associated with the

helicon plasma source largely precludes this loss mechanism from playing a major role in the

overall power balance.

2.1.6 RF Irradiance

Some fraction of RF power is lost in non-ideal coupling of RF radiation from the antenna to the

plasma. Transmitted RF will be scattered and dissipated through interactions with the walls of

the vacuum chamber. The operating frequency of 13.56 MHz corresponds to a wavelength of

22.1 meters. Because the non-conducting windows of the vacuum tank are much smaller than

the vacuum electromagnetic wavelength, propagating electromagnetic radiation will remain

effectively shielded inside the tank. In order to measure the losses due to RF irradiance,

measurements must be taken from inside the vacuum chamber.

2.1.7 Transmitted Radiation

We can gauge the relative importance of losses due to transmitted plasma radiation by studying

the radiation characteristics typical of argon, given in Table 2-4, and comparing these against the

transmission characteristics of fused silica, given in Figure 2-4.



Persistent Strong Argon Spectral Lines
Intensity Wavelength (nm) Spectrum
150 66.186900 Ar II
300 67.094550 Ar II
1000 67.185130 Ar II
1000 72.336060 ArII
180 86.679997 Ar I
150 86.975411 Ar I
180 87.605767 Ar I
180 87.994656 Ar 1
150 89.431013 Ar I
300 91.978100 ArlI
300 93.205370 Ar II
1000 104.821987 Ar
500 106.665980 Ar I

Table 2-4: Vacuum wavelength of high-intensity persistent argon spectral lines. Wavelengths
are uniformly below the transparency cutoff for quartz and will therefore contribute to
confinement tube heating [39-41]
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Figure 2-4: Radiation transmission characteristics of fused silica. Transparency increases very
sharply at approximately 200 nm, and declines sharply above 3000 nm [42]

Based on the number and relative intensity of persistent spectral lines whose wavelength fall

below the lower cutoff transmission wavelength of 200 nm in fused silica, it is reasonable to

assume that the fraction of power lost from the system in the form of transmitted radiation is

small compared to that which is captured. Nonetheless, there are many blue Ar II lines, and the



radiative contribution by these will contribute to the power balance of the system. In the absence

of experimental data, however, these losses are not quantified in this analysis. Future work on

this problem might characterize these losses rigorously using bolometry.

2.1.8 Plume Power

The plume power associated with any rocket device can be expressed most simply as the jet

kinetic power:

PLUwME = hC2. (2-6)
2

Here ri is the mass flow rate in kg/s, c is the exhaust velocity and PPLUME is given in Watts.

Unfortunately, the exhaust velocity associated with the helicon thruster is non-uniform and the

plume is slightly divergent. We know that the thrust is the product of mass flow rate and exit

velocity. We can recast the plume power in terms of the thrust:

F 2

PPLUME = (2-7)
2Mh

The effect of the non-uniform, radially integrated exhaust velocity is captured in the direct

measurement of the thrust force. Figure 2.5 shows such a direct thrust measurement for the

mHTX as a function of mass flow rate.



Thrust vs. Mass Flow Rate

Ma=Flw Raes mgffs

Figure 2-5: Thrust versus mass flow rate measurement for PRF = 635W, Bo = 1540G as a
function of mass flow rates of argon. This Figure adapted from Reference 31.

Using existing data we can compute an approximate power output in the plume. The standard

volumetric flow rate of 20 sccm used in this study corresponds to a mass flow rate of

approximately 0.55 mg/s.

2.2 Macroscopic Effects

2.2.1 Transmission Hardware Heating

In order to estimate the ohmic losses associated with the transmission hardware, especially the

RF feed through into the vacuum tank, we can measure the heating rate of the vacuum feed

through and from this determine the amount of power lost to ohmic heating.

2.2.2 Confinement Tube Heating

Several of the microscopic heating mechanisms discussed in the previous section contribute to

the effect of heating the walls of the neutral confinement tube. Specifically, plasma diffusion,

radiation by plasma in wavelengths absorbed by fused silica, and the diffusion of hot neutrals all



result in confinement tube heating. Derivation of heat flux based on temperature evolution on

the outer wall of the confinement tube will be discussed in the following chapter.

2.2.3 Plume Power

Plume output power measurements can be obtained from previous research [31], as described in

Section 2.1.8 and given in Figure 2-5. In this study the plume power is particular to the

operating conditions of the experiment. Without scaling laws describing the variation of plume

power with input power, these results cannot be directly generalized to other experimental

conditions. In particular no information about the input power variation of efficiency can be

extracted.

2.2.4 RF Flux Measurements

Uncoupled electromagnetic radiation which leaves the system can be measured directly using an

RF Flux meter. For this analysis, RF flux will be assumed to be isotropic, based on the reflective

nature of the vacuum chamber walls, so that the total radiated power is given by

PRF = RFds . (2-8)
S

2.3 Power Balance

Using the measured variables discussed in Section 2.2 above, we can define the power balance in

terms of measureable variables as follows:



(2-9)PRF, - PTRANS - PION - PTUBE - PPLUME - PRFo,, = O

In the expression above, P., is the RF power input to the system from the power supply,

PTRANS the power dissipated in transmission hardware, PrjO the power required to ionize the

propellant gas, PTUBE the power lost to the walls of the neutral confinement tube, PPLUME the

plume power computed directly from thrust measurements, and PRF,, the uncoupled

electromagnetic radiation that is reflected and dissipated along the walls of the vacuum chamber.

As discussed previously, contributions due to neutral excitation, transmitted radiation, and non-

ideal utilization are expected to be small. These effects will be neglected in the analysis of the

sections that follow.

Having defined the power balance of the system we can now characterize the efficiency.

This is the ratio of the useful power output of the system, in this case the plume power, to the

total input power:

7 _= PPLUME (2-10)
PRFIx

By performing a global characterization of the loss mechanisms in the system, this work will

establish a path toward reducing losses and improving overall system efficiency.



Chapter 3

Benchmarking

A methodology and apparatus for obtaining heat flux data from temperature data is outlined in

the sections that follow. Numerical simulation of the confinement tube thermal response is

performed and compared against experimental data to validate the approximated governing

equation for heating rate. A baseline experiment using this approach is discussed. Results of

this baseline experiment are presented. The baseline experiment indicates that measurements

taken at low temperatures can be used to determine incident heat flux to 10% accuracy.

3.1 Analytic Approach

The thermal response of the neutral confinement tube to heat input at the inner boundary is

governed by the heat equation. For a temperature-invariant thermal conductivity, we can express

the heat equation in cylindrical coordinates:

aT =(1 (r T 1 a2T a2T(
pc, = kt -- ,- r-- a+- (3-1)

a0t r r K r) r20 2 (21)



The governing equation is subject to boundary constraints on the inner and outer surfaces of the

neutral confinement tube:

q(r = R,) - -kVT = r (3-2)
q(r =Ro) - aoT(3-2)

We can use some relevant insights to reduce the dimension of the problem. First, we assume that

the thermal deposition on the inner boundary is azimuthally symmetric, so that the temperature T

has no angular dependence.

Axial gradients in temperature are driven by the axial gradient of radial heat flux. Radial

temperature gradients, on the other hand, are driven by the local heat flux, according to Fourier's

law of conduction. Thus, for a scalar conductivity, the ratio of the axial-to-radial temperature

gradients varies in the following way:

V_:T V.ir (z)V-T oc -(z) (3-3)
VrT ,r (z)

If we assume that the local radial heat flux is much greater than the axial variation, then it is clear

that the effects due to axial gradients in temperature can be neglected. This is borne out

experimentally, as typical axial gradients, V_T T_ 40 K/cm, compared to typical radial gradients,

VT T 200 K/cm.



Finally, because the thickness of the neutral confinement tube is small compared to the

outer radius, do _0.13, we can neglect radial effects, including the effect of the radial

geometry on the steady-state thermal gradient. Approximating the tube as a flat surface, the

steady state distribution becomes linear and can be written:

AT , (z) (34)
Ax k

Substituting the thermal conductivities for quartz given in Table 1-4, as well as the relevant

dimensions for the neutral confinement tube and the range of heat fluxes of interest (1 W/cm 2 <

$r (z) < 3 W/cm 2), we obtain a the resultant temperature drop (10.9 K < AT < 32.6 K). Even

when compared only to standard temperature, this gradient is negligibly small.

Using these simplifications, we can now integrate the heat equation between the inner

and outer radius of the neutral confinement tube to obtain the ordinary differential equation:

dT -dT 4 .T) (3-5)
PCp (Ro - RI) = pdcp = (-kVT)dr = (r = RI) - (r = Ro) = r - acrT (3-5)

In the steady state, it is clear that the input heat flux, Or, is balanced by the radiated power:

Or = ao7TE Q4 . (3-6)



The parameter a is the gray-body parameter. For real processes this parameter takes a value a <

1. This parameter captures the non-ideal nature of the radiative heat transfer, and has the effect

of driving up the required equilibration temperature. For the heat flux ranges of interest, we can

compute a conservative equilibration temperature by assuming the neutral confinement tube

radiates as a blackbody. The heating range 1 W/cm 2 < r (z) < 3 W/cm 2 corresponds to a final

equilibrium temperature of 648 K 5 TEQ 5 853 K. While To << TEQ, corresponding roughly to

To 5 0.6TEQ, the radiation term can be neglected, and the heat equation reduces to the simple

form:

dT
pdc =- -, (t). (3-7)

We can integrate to obtain:

T = To + r (s) ds = To+ (r)(.) (3-8)
pdc P0 pdc

This solution is clearly linear in time. In this way, by measuring the slope of the linear portion of

the temperature growth on the outer surface, we can find the associated heat flux, (or). By

integrating the measured heat flux down the length of the quartz tube, it is then possible to

evaluate the power lost.

In order to assess the validity of the quasi-static, zero-dimensional analysis, described

above, as a means of computing the heat flux to the confinement tube walls, it is helpful to first

obtain a thermal response baseline, wherein the total input power is known. By evaluating the

energy balance using temperature measurements, we can compare the resulting computed power



to the known input power. This will yield a measure of the error that we can associate with this

approach.

Figure 3-1: Cutaway of particle confinement tube outfitted with helical resistive element.Resistor is wound from 22 AWG Nichrome-A stock. Total wound length is 23 cm withoutcompression. Resistance is Rc - 7.4 n.

The diagram above illustrates the apparatus for performing the baseline experiment. The source

tube is fitted with a wound resistor in thermal contact with the inner wall of the source tube. The

tube measures 40 cm in length by 2 cm inner diameter. Wall thickness is 1.5 mm.

By simultaneously measuring the temperature of the resistive element and the outer wall

of the confinement tube, we can evaluate the total change in the internal energy of the system

over a given interval of time. This change in energy per unit time is the power we wish to

quantify.
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Temperature data will be taken with laminated K-type thermocouples on the surfaces of

interest, as shown in Figure 3-2.

Figure 3-2: Thermocouple placement along confinement tube. Five K-type thermocouples are
bonded at equal intervals along the 40 cm length.



3.2 Numerical Simulation

We can create a numerical model for the system based on the simplifying assumptions presented

in the previous section. We have assumed that the system can be modeled using Equation 3-5.

We can create a simple finite difference model of this ordinary differential equation to further

test the validity of this assumption. The time-rate-of-change in temperature can be

approximated:

dT T - T=+1 . (3-9)
dt At

Similarly, the temperature, which is a function of time, can be approximated:

T,+ 1 +T iT(t)= T + (3-10)
2

Using these finite difference approximations, for constant heat flux, r, Equation 3-5 can be

written:

The gray-body parameter, a, can be varied to provide the best fit to empirical data. In this way,

numerical modeling of the system can better quantify any deviation from the ideal blackbody

case. There are two methods by which we can simulate the behavior of the system. The first is



to factor Equation 3-11 completely and solve the resulting fourth-order polynomial directly for

the roots in 8T. The second method involves linearizing Equation 3-11 by assuming that the

temperature increase during each time step is approximately linear. Each of these are discussed

in the sections that follow. Each simulation will be compared against the experimental data

shown in Figures 3-3 and 3-5, using the heat flux derived from the linearized curves in Figures 3-

4 and 3-6.



Baseline Temperature Evolution
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Figure 3-3: Temperature growth and saturation for baseline thermal response test. In this
experimental run, temperature is taken from TC2, which is partially occluded by centering clamp
(see Figure C-2 for detailed experimental setup).

Linear Temperature Evolution
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Figure 3-4: Linearized temperature growth for baseline thermal response test.
of 1.5158 K/s corresponds to a thermal energy flux of 0.3460 W/cm 2.

The heating rate

y = 1.5158x - 9.3633

I I I W ....



Temperature Growth-Decay at +4.5 cm
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Figure 3-5: Temperature growth saturation and decay for 20 sccm Ar, B = 0.165 T, PRF = Ikw.
In this experimental run, tube lip is placed +6 cm forward of plume-side magnet face. Data are
for +4.5 cm forward of plume-side magnet face. No appreciable occlusion is present in this
configuration.

Heating Rate at +4.5 cm
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Figure 3-6: Linearized temperature growth for 20 sccm Ar, B
heating rate of 1.6479 K/s corresponds to a thermal energy flux of

= 0.165 T, PRF
0.376 W/cm 2

We will see that modeling of temperature decay properties, as given in Figure 3-5, is

complicated somewhat by the presence of axial gradients due to uneven cooling in the tube.

= 1kw. The



MATLAB code for both the exact and linearized methods are given in Appendix B.



3.2.1 Exact Solution

Expanding Equation 3-11 yields a fourth order polynomial in Ti+1. Carrying out the expansion,

Equation 3-11 can be expressed:

4 +3 T2T2 3+16pcpd 16r 4 16pcpd
+1 + 4TiTi+1 + 6TTi+1 +Ti+l + + Ti 4  Ti =0. (3-12)

cAt ) ac a cAt

The solution for Ti+1 is the contained in the roots of this polynomial expression. We require that

the solution for the new temperature must be a positive, real-valued, and that Ti,, > T, for

r > 0. A quartic polynomial with real coefficients, as in this case, may have four real roots,

two real roots and one pair of complex roots, or two pairs of complex roots.

By implementing this expression in MATLAB, we can compare the simulated result with

experimental data. This method consistently returns two real-valued roots, one positive and one

negative, and two complex roots forming a conjugate pair. Valid temperature data is thus limited

to only one root.

The simulated baseline and growth-decay curves computed using this method are

presented in Figures 3-7 and 3-8.
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Figure 3-7: Real and simulated thermal response of the neutral confinement tube during the
baseline experimental run. Simulated curve is given for PIN = 3460 W/m 2 and a = 0.55.

H-Mode Simulated Temperature Profile -Exact Solution
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Figure 3-8: Exact solution for finite-difference simulated temperature growth and decay.
Simulated curve uses PN = 3762 W/m 2, with blackbody parameter a = 0.58.
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3.2.2 Linearization

As an alternative to iteratively computing the solution for updated temperature directly as in

Section 3.2.1 above, we can also use linearization of Equation 3-11 to obtain an approximate

temperature increment per time-step. We assume that the updated temperature value is

incrementally greater than the previous value, so that:

T+il = Ti + 6T. (3-13)

We require that the time-step, At, be sufficiently small that I/T, << 1. Plugging into Equation

3-11, and discarding all higher order terms in 6T, we obtain:

pcd =r -a (16T + 32T3 T). (3-14)
At 16

We can solve Equation 3-14 for the temperature increment:

S= rAt - AtT4 (3-15)

pcd + 2arAtT 3

This expression gives a simple means of updating temperature at each time step to

approximate the thermal response of the system. Implementing this expression into MATLAB

we can compare the result to the experimentally obtained growth characteristics. The simulated

baseline and growth-decay curves computed using this method are presented in Figures 3-9 and

3-10.



Baseline Simulated Temperature Profile -Linearization
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Figure 3-9: Simulation of a baseline thermal response curve using a linearization scheme.Coverage of the thermocouple area by retaining clamp in this experiment drives down the graybody parameter. This plot corresponds to PN = 3460 W/m2 , and a = 0.55.
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Figure 3-10: Simulated temperature growth and decay using a linearization scheme. Simulatedcurve uses PIN = 3762 W/m 2, with blackbody parameter a = 0.58.
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It is clear that both methods under predict experimentally obtained results for the choice of

parameters shown. This deviation reaches a maximum in the time range between 100 - 150

seconds for both simulations. In the case of the baseline simulated temperature profile, for the

choice of gray body parameter and the measured heating rate, maximum deviation is

approximately 10%. For the H-Mode heating data, deviation from the centrally averaged

temperature is somewhat greater, approximately 15%. One potential explanation for this

deviation is the inverse variation in specific heat with increasing temperature, which is not

captured in the model. This would explain the temperature variation in heating rate, while

admitting the same steady state behavior observed both in the model and experimentally.



3.3 Measurements

The temperature evolution of the particle confinement tube and resistive element were measured

as described in section 3.1 above. The resulting temperature profiles are given in Figure 3-11

below.

Temperature Evolution
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Figure 3-11: Temperature evolution of the resistive element
applied to the system is 16.45 W. At this heating rate, thermal
the source tube requires approximately 25 s.

100 120 140

and confinement tube. Power
response of the outer surface of

It is important that we select a region on the curve for which the temperature is low so that we

can neglect power losses due to radiation. We must also be sure that sufficient time has passed

that the outer surface of the tube has begun to respond to the heat flux. We can see that the data

between 30 - 60 seconds roughly satisfies these two requirements. The linearized portion of

these two curves is presented in Figure 3-12.
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Figure 3-12: Linear fit of temperature data. The data subset is taken immediately following the
onset of thermal response on the confinement tube outer surface. Operation below 80 'C ensures
that radiative effects can be neglected.

Using the linear fit to these data, we can directly ascertain the variation of temperature with time.

The rate of change in the internal energy of the system is given by:

AU AT + ATR (3-16)
-= mTc pT, + mec pR A-

At At At

The subscripts "T" and "R" are included to distinguish between the tube and resistor. The mass

of the resistor is measured directly, and we find that mR = 0.015 kg.

We can compute the fraction of the mass of the quartz tube in which we are interested.

The resistor is in thermal contact with only 23 cm of the entire tube length. Inputting the

properties for the quartz source tube given in Table 1-4, and appropriate dimensional values, we

obtain a mass of mR = 0.051 kg.



We are now in a position to compute the total change in internal energy per unit time. We can

AT.
recognize immediately that the terms are precisely the slopes of the two linear trend lines

At

in Figure 3-12, above. Plugging into Equation 3-12, we find that Pcop = 14.8 W.

compare this with the DC power input to the system by the power supply, Pmv = 16.45 W. Thus

the error associated with this approach is given by:

PIN - PCOMP= (3-17)
PIN

This corresponds to an error E = 10%.

We can

-I



Chapter 4

mHTX Power Measurements

Measurement of the heating rate for the RF transmission hardware and neutral confinement tube

is carried out. From these measurements, power losses are derived. Additional losses are

computed for coaxial RF transmission cable, vacuum feed through center conductor, propellant

ionization, and plume power.

4.1 Transmission Hardware Heating

Because of the much higher thermal conductivity of copper compared to fused silica, we can

assume that axial temperature gradients in copper are relatively small and that equilibration times

are short. In considering the losses associated with the transmission hardware as a whole, it is

useful to consider the effects of the coaxial cable, the vacuum feed through, and the antenna

separately, so that the transmission factor in the power balance becomes:

PTRANS = PCOAX + PANT + PFT . (4-1)



4.1.1 Coaxial Transmission Cable

As discussed in section 2.1.1, the RF transmission cable that carries the RF signal from the RF

power supply to the impedance matching network is a standard RG-213/U coaxial cable with a

characteristic loss of -4.9 dB/100m. It should be noted that this rating, in which loss is linear in

distance, is only accurate if losses are small. Otherwise, line losses will exhibit logarithmic

behavior. This loss is related to the input-to-output power ratio according to the expression:

G =10 log POurT (4-2)

Converting this to a power ratio, we find that:

-0.049L)

Pour = 1 0 1 . (4-3)
PIN

In this expression, L is the length of the cable in meters. The coaxial transmission cable used in

the mHTX has a length of 8 m. Substituting into Equation 4-3, we find that the output power

from the coax is approximately 91.3% of the input power. This means that 8.7% of the input

power is dissipated in the line itself. This loss fraction is sufficiently small that we may take the

linear loss rating associated with the cable as approximately correct. For an input power of 590

W, therefore, we obtain the coaxial transmission loss, PcoAX = 51.33 W.



4.1.2 Antenna

Direct measurement of the antenna heating rate is somewhat problematic due to the excessive

degree of RF coupling between the antenna and the thermocouple. It is clear that these signals

are an induced artifact due to the proximity of the radiant element to the thermocouple junction,

and do not represent actual thermal measurements. Cessation of RF signal results in an

instantaneous drop in the reported temperature, as given in Figure 4-1 below.

In order to circumvent these difficulties, temperature measurements may be taken at

intervals, before and following application of an RF pulse. This is precisely the approach taken

to obtain the measurements shown in Figure 4-2.
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Figure 4-1: Helicon antenna temperature evolution over a two-minute run. Thermocouple is

bonded directly to antenna in this experimental run. Excessive noise in the temperature signal is

presumably caused by RF coupling to the thermocouple. Projected heating rate is presented in

red.
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Pulsed Antenna Heating Rate
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Figure 4-2: Antenna heating rate extracted from a series of points following application of an RF
pulse with duration approximately 20 s. Hold times following pulses are typically less than 10
seconds. Heating rates are shown in red.

From the trend of the heating rate data gathered during this experimental run, it is clear that as

the antenna becomes hotter the heating rate increases. This follows naturally from the increase

in the bulk resistivity of copper with temperature. This has the unfortunate effect of

complicating the direct measurement of ohmic dissipation in the antenna in particular and the RF

transmission structure in general.

Based on the pulsed heating behavior shown in Figure 4-2, and the longer duration

heating shown in Figure 4-1, it is reasonable to assign an average dissipation corresponding to

dT/dt = 2. It is clear in the above figures that the system has not reached a steady state in which

the ohmic dissipation is balanced by radiated power. Because this dissipation will increase with

increasing temperature, an average heating rate of 2 K/s is thought to be reasonable, if

conservative. For an antenna mass of 97 g, we obtain the power dissipation associated with the

antenna, PANT = 74.69 W.



2.1.3 Vacuum Feed Through

Several aspects of the RF feed through design complicate direct determination of its associated

heating rate. Close proximity to RF currents tend to induce a great deal of noise on the low-

voltage thermal signals. The length of the feed through, approximately 0.75 m, makes

measurement resolution problematic. Furthermore, the high specific heat of copper makes

estimation of dissipated power strongly susceptible to minor variations in heating rate.

In order to obtain trends with any degree of confidence, therefore, it is necessary to take

thermal data over much longer time scales than those typical of confinement tube or antenna

heating. The data given in Figure 4-3 represents a 2-minute experimental run.
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Figure 4-3: Temperature growth associated with the feed though
are taken 0.5 m from the vacuum chamber RF feed through flange.

120 140

outer conductor. These data

A complete analysis of the dissipation in the feed through is complicated by the presence of

brazed joints and discontinuities in conductor diameter and thickness. A simplified analysis



follows, in which the feed through is assumed to be comprised of two elements, an inner

conductor 1/4 in. in diameter and an outer conductor 3/4 in. in diameter.

We assume that the thermal conductivity of copper is sufficiently high and dissipative

effects sufficiently uniform that temperature gradients along the feed through may be neglected.

Using a feed through length of 0.75 m and a linear mass of 0.955 kg/m, we can compute the

power dissipated in the outer conductor based on the measurements given in Figure 4-3, Poc =

55.13 W.

In the absence of experimental data for the heating rate of the inner conductor, dissipative

losses can be estimated by considering the difference in resistances of the inner and outer

conductor in conjunction with the known dissipation on the outer conductor. For a skin depth of

6 = 17.7 pmn, we can use the data for copper in Table 2-1 to compute the resistance associated

with a copper conductor carrying an RF signal of 13.56 MHz. For a conductor outer diameter of

1.9 cm, we find the resistance is approximately Roc = 0.805 Q/m. For an outer diameter of 0.64

cm, on the other hand, this resistance becomes Ric = 2.41 Q/m. Neglecting temperature

variations in conductivity, we can therefore roughly estimate that the dissipative loss on the inner

conductor will be three times that on the outer conductor.

Using this simplified analysis we obtain PFT = 220.52 W.

4.2 Ionization Power

The power consumed in ionizing the propellant gas is proportional to the propellant flow rate and

inversely proportional to the molar mass of the species, as discussed in Section 2.1.2. For argon,

the ionization power requirement is given by PION = 1.13*F, where F is the flow rate in sccm.

For our reference condition of 20 sccm Ar, the power requirement is PION = 22.6 W.



4.3 Confinement Tube Heating

As described above, the heat flux to the walls of the confinement tube was determined by

measuring temperature response at various locations with respect to the magnet and antenna

structure. We apply a linear fit to data taken while T << TEQ, SO that radiative effects can be

neglected. This approach is illustrated in Figure 4-4, which shows temperature plots and linear

fits for a typical experimental run.

Temperature Evolution at 0 cm

600
Sy = 11.323x - 47.6 -16 cm

500

M 400 -9 cm

0"• 300 Yh,200E 100 0.0 10.0 20.0 30.0 40.0 50.0 60.0
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Figure 4-4: Temperature response of the neutral particle confinement tube. Operating conditions
during this run are PFOR = 1.19 kW in argon at 10 sccm, with field strength B = 0.2T. The slope
indicated for the -16 cm position corresponds to a heat flux of 2.58 W/cm 2.

Using this methodology, it is possible to obtain the heating rate and thereby the incident heat flux

along the walls of the neutral confinement tube for a variety of experimental conditions. Due to

the limited number of thermocouple channels available during any given run, flux measurements

at a large number of positions relative to the antenna and electromagnet can be taken by varying

the position of the neutral confinement tube between runs. In this way, the location of the

thermocouples, which are fixed to the neutral confinement tube, might also be varied. Figures 4-



5 through 4-8 give the heating rata data which are used to derive the flux profiles given in

Figures 4-9 and 4-10.
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Figure 4-5: Linearized temperature plots along the length of the neutral confinement tube. All
plots correspond to input power PRF = 590 W, B = 0.2 T, and a flow rate of 10 sccm.
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Figure 4-7: Linearized temperature plots along the length of the neutral confinement tube. All
plots correspond to an input power PRF = 590 W, B = 0.2 T, and a flow rate of 40 sccm.
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Using these slopes we can derive the energy flux to the neutral confinement tube using exactly

the method outlined in Sections 3.1 and 3.3. Following this approach, we obtain the curves

given in Figures 4-9 through 4-10 below. In considering these figures it is important to note that

the plume-side electromagnetic face corresponds to x = 0 cm. Propellant is injected upstream at

x = 40 cm, travels in the - ex direction, and is exhausted at x = 0 cm.
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Figure 4-9: Heat flux to the walls of the neutral particle confinement tube. Operating conditionsare PFOR = 0.59 kW in argon at (A) 10 sccm, (B) 20 sccm, and (C) 40 sccm with field strength B= 0.2T.
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Figure 4-10: Thermal response of the neutral particle confinement tube. Operating conditions
during this run are PFOR = 0.59 kW in argon 20 sccm, with (A) B = 0.09T, and (B) B = 0.2T.

By evaluating the area under the curves of axial energy flux, we can obtain the integral heat flux

incident to the inner surface of the neutral confinement tube. For the test case of 0.2T magnetic

field and flow of 20 sccm argon, this corresponds to PTUBE = 120 W.



It is useful to consider the effect of magnetic field geometry relative to the neutral

confinement tube on the flux profiles given in the figures above. The axial magnetic field

strength for the magnet is given in Figure 4-11 for different values of coil current.
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Figure 4-11: Axial magnetic field strength for the electromagnet assembly associated with the
mHTX. Note that, as in the figures for axial heat flux, the plume-side electromagnetic face
corresponds to x = 0 cm. Propellant is injected upstream at x = 40 cm, travels in the
- e, direction, and is exhausted at x = 0 cm.

It is clear by considering these figures that the downstream region with higher magnetic field

experiences much more effective radial plasma confinement. This is reflected in the

substantially reduced confinement tube heating rate measured in all cases.



4.4 Plume Power

Using thrust data taken on the mHTX experiment in a previous study [311 and provided in Figure

2-5, we can obtain the thrust for the standard flow of 20 sccm of argon, or 0.55 mg/s, used in our

test case. This corresponds to a thrust of approximately 8.5 mN. Plugging into Equation 2-7, we

find the plume power is approximately PPLUME = 65 W.

4.5 RF Flux Measurements

In order to measure the uncoupled RF flux inside the chamber during operation of the thruster,

the RF flux meter was placed inside the chamber. Because the device is not suitable for

operation under vacuum, the helicon antenna was driven under atmospheric conditions to

quantify the power radiated from the antenna. During this analog run, a maximum sustained

forward power of 400 W was achieved, in which an RF flux of approximately 160 tW/cm 2 was

obtained. We can obtain an upper bound on the RF deposition along the tank wall by assuming

that the measured RF is isotropic, and all the energy is absorbed by the tank wall. We can model

the vacuum chamber as a perfect cylinder with diameter 1.5 m and length 1.6 m. In this case,

substituting into Equation 2-8 we obtain:

PRF,, = (2rL+2r2RF. (4-4)

Solving with the appropriate values, we obtain PRF,, = 18.05 W.



Chapter 5

Conclusion

In this section the observations from the previous chapter are applied to the power balance,

outlined in Chapter 2. An accounting of all the losses and outputs associated with the system is

completed and the overall system efficiency is computed. Avenues are identified for improving

overall efficiency. Recommendations are offered for future work.

5.1 Power Balance Tabulation

A final accounting of the output and loss mechanisms associated with the mHTX experiment is

included in Table 5-1 below. Of the 590 W of forward power consistently applied across

experimental runs, approximately 572 W have been accounted for. This represents about 97% of

the total power.



Power Blance for mHTX@mit
I'COAX b1.33 VV
PFT 220.52 W
PANT 74.69 W
PION 22.60 W
PTUBE 120.00 W
PPLUME 65.00 W
PRFouT 18.05 W
PTOT 572.19 W

PRFIN 590.00 W

Table 5-1: Tabulated power for the mHTX experiment.

5.2 Improving Performance

In its current configuration, the helicon thruster operates at approximatly 11% efficiency. From

the tabulation in Table 5-1, it is immediately clear that the majority of losses are ohmic

transmission losses. To some degree, these are particular to the experimental setup in the SPL

and are not representative of losses likely to be encountered with a working thruster. In a typical

spacecraft, RF transmission losses, for example, might be expected to be much lower, as the

conversion from RF to DC power will take place in relatively close proximity to the use point.

It is clear from the data presented in Figures 4-9 and 4-10 that the majority of energy flux

in the neutral particle confinement tube occurs under the antenna, between x = 7 cm and x = 17
cm. It is possible that variation in the magnetic field geometry may produce a more favorable

axial potential distribution that might reduce these losses. It may be advantageous, therefore to
study the role of magnetic field geometry and strength under the antenna in radial particle and
energy transport in this region.



5.3 Recommendations for Future Work

Future work on the helicon thruster in general and the power balance in particular should first

focus on reducing losses associated with power transmission hardware. This might be

accomplished in a variety of ways: by reducing operating frequency; increasing conductor

surface area; and reducing the source-to-sink distance associated with the experiment.

Second, there is a need for a more precise measurement of the power dissipated in the RF

feed through. Losses computed from heating rates in this study indicate that power dissipation in

the feed through may consume over one-third of the power applied to the system. Further

studies with more spatial precision should be undertaken to further characterize this loss path.

Additional measurements for losses in the RF impedance matching network will also be

beneficial.

Third, measurements of radiation at transmitted wavelengths should be taken using a

bolometer to quantify this loss.

Finally, concurrently with the previous recommendation, the mHTX experiment should

migrate to the use of permanent magnets for generation of the magnetic field. Several

commercially available options exist for permanent magnets, especially rare earth magnets such

as Neodymium-Iron-Boron (NdFeB), which can provide comparable or greater fields, which

may be more easily manipulated in experiments, for a small fraction of the mass required by

electromagnets.





Appendix A

Helicon Thruster Control Software

Experimental hardware for the mHTX experiment is controlled and monitored by a set of virtual

instruments (VIs) in a LABVIEW environment. Three VIs are used to control and monitor the

RF power supply, low voltage power supply for magnetic field generation, and flow controller.

The RF power supply VI, shown in Figures A-1 and A-2, allows the user to establish power set

point, and returns the instantaneous forward, reflected and net power delivered by the power

supply. Matching network impedance and VSWR are also displayed. Magnet current (Figure A-

3 and A-4) set point is user selectable and shown in real time. Rate of change of magnet current

is limited by a user selectable ramp rate. Propellant gas flow rate, shown in Figure A-5 and A-6,

is user selectable, and instantaneous propellant flow rate is returned. A user selectable propellant

gas correction factor is also displayed.

The data acquisition program for gathering the temperature data presented in this work is

shown in Figure A-7 and A-8. Due to the number of feed through ports, the maximum number

of thermocouple signals that could be monitored simultaneously was limited to five.

Temperature is measured and stored at 5 Hz. Numerical temperature values are shown for each

channel, as well as graphical temperature history. Maximum and minimum temperatures are



user selectable and set the y-axis temperature range. A variety of junction types can be selected,

including K-type used in this study. The temperature of the cold junction is user defined. This is

typically set to the standard temperature, 25"C.



Figure A-i: RF power supply control VI. This graphical user interface (GUI) is used to control the RFPP RF-10S/PWT 1.2 kW 13.56MHz power supply.



Figure A-2: Block diagram illustrating the control logic for the RFPS GUI.
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Figure A-3: Magnet control VI.
magnetic field for the mHTX.

This GUI is used to control the Agilent N5761A 6V 180A 1080W power supply supplying the



t1 RLam Rate Ww sEJsedl Ltm Prowcion

Figure A-4: Block diagram for the LVPS GUI.
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Figure A-5: Propellant flow rate control VI. Used to control the propellant flow control loop.
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Figure A-6: Block diagram for the propellant flow rate control GUI.
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Figure A-7: Temperature measurement VI. This VI is used to acquire the temperature measurements presented in this work.

99



Figure A-8: Block diagram for temperature acquisition GUI.
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Appendix B

Finite Difference Modeling Code

The finite-difference model of the thermal response of the neutral confinement tube to constant

heat flux given in Section 3.2 was completed in MATLAB R2006a. Two methods were used in

solving this model. The first is an exact solution based on evaluating the roots of the fourth-

order finite difference model. The second is a less computationally intensive, approximate

method based on linearization of the temperature response. Code for the MATLAB .m files used

to implement this method are included in the figures that follow.
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* ThermPoly
% function ThermPoly(flux,a,To,tcut,trun)

% This function computes roots of the polynomial temperature function.% The output vector T is the temperature history.
Input variable flux is incident heat flux in W/m^2.Input variable a is the gray-body parameter (1 < a < 0).Input variable To is the initial temperature of the system.% Input variable tcut is the total flux duration in seconds.& input variable trun is the total simulated time in seconds.

function ThermPoly(flux,a,To,tcut,trun)

Define Constants
dt=0.2; s=5.67e-8; rho=2200; cp=740; d=.0015; T(1)=To-273.15;
Temp=To; i=l; tstar=0;

"Create Temperature Vector
while (tstar<trun)

if tstar<tcut
phi=flux;

else
phi=0;

end
p=[l 4*Temp 6*Temp^2 (4*Temp^3)+(16*rho*cp*d/(a*s*dt)) ((-16*phi/(a*s))+Temp^4-(16*rho*cp*d*Temp/(a*s*dt)))];r=roots(p); Temp=real(r(4)); T(i+l)=Temp-273.15; time(i+l)=tstar;i=i+l; tstar=tstar+dt;

end

% Extract Experimental Data from Excel
num=xlsread('20-150-1000 H-Mode SS','Sheetl','E2:E2626');

% Plot Data
plot(time,T,'r',time,num,'b')
title('Simulated Temperature Profile - Exact Solution')xlabel('Time [sj')
ylabel('Temperature [deg C]')
grid

Figure B-1: Code for computing the exact solution to the fourth order polynomial expression for Ti+1 in finite-difference modeling ofthe neutral confinement temperature evolution. Developed using MATLAB R2006a.
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? The rmLi.n
% function ThermLin( Flux,a,To, tcut, trun)

% This function uses a linearization technique to simulate temperatu-! re.A The output vector T is the temperature history.
% Input variable flux is incident heat flux in W/m^2.Input variable a is the gray-body parameter (1 < a < 0)Input variable To is the initial temperature of the system.Input variable tcut is the total flux duration in seconds.a Input variable trun is the total sirmulated time in seconds.

function ThermLin(flux,a,To, tcut, trun)

% Define Constants
dt=0.2; s=5.67e-8; rho=2200; cp=740; d=.0015; T(1)=To-273.15;Temp=To; i=1; tstar=0;

,Create Temperature History
while (tstar<trun)

If statement sets (phi = flux) for 0 < tstar < tcut,% and (phi = 0) for tcut tstar < trun.
if tstar<tcut

phi=flux;
else

phi=0;
end
deltaT= ( ((phi*dt) - (a*s*dt*Temp4)) / ((rho*cp*d) + (2*a*s*dt*Temp3)));Temp=Temp+deltaT; T(i+l)=Temp-273.15; time(i+l)=tstar; i=i+l;tstar=tstar+dt;

end

% Extract Experimental Data froml Excel
num=xlsread('20-150-1000 H-Mode SS','Sheetl','E2:E2626');

% Plot Data
plot(time,T, 'r',time,num,'b')
title('Simulated Temperature Profile - Linearization')xlabel('Time [sj')
ylabel('Temperature [deg C)')
grid

Figure B-2: Code for computing the linearized approximation for Ti+1 in finite-differencemodeling of the neutral confinement temperature evolution. Developed using MATLABR2006a.
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Appendix C

Experimental Hardware

Images are included of experimental hardware used in this study.
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Figure C-l: Neutral confinement tube outfitted with Nichrome-A resistive element. lotal
wound length is 23 cm. Resistance is R z 7.4 Q.

Figure C-2: Experimental setup for thermal baseline experiment.
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Figure C-3: Detail of the vacuum feed through and helicon antenna. The neutral confinement
tube fits coaxially inside the helicon antenna. Propellant gas is injected in the lower left end and
exhausted at the upper right end.

Figure C-4: mHTX setup in operation using an alumina neutral confinement tube.
Thermocouple is visible, bonded to the source tube near the exit.
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