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Abstract

The LIGO (Laser Interferometer Gravitational Wave Observatory) detectors have now
completed their fifth science run and have reached design sensitivity. Gravitational
wavebursts only last for a few cycles within the characteristic frequency band of LIGO.

This work focuses on the study of burst-like hardware injections during the fifth
science run. Injected signals serve multiple purposes. Their primary goal is to study
the cross-couplings between the gravitational wave channel and the auxilary channels.
They also allow us to benchmark the ability of our search method to extract the signal
parameters, thereby validating a whole portion of the analysis pipeline. Finally,
they enable us to quantify the efficiency of our detectors depending on the strength
and morphology of the signal. The stationarity of this parameter is also studied to
ensure the variation of the sensibility is limited. Using theoretical estimations of the
amplitude of the gravitational waves emitted by different sources, these efficiencies in
turn allows us to have an estimate of the rate at which detection can be expected for
each type of astrophysical object.
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Chapter 1

Introduction

The quest for gravitational waves is a recent scientific adventure. One of the

predictions of Albert Einstein's General Relativity Theory is that a changing mass

and energy distribution can create ripples in space-time which propagate away from

the source at the speed of light. Their amplitude is so small that many, including

Einstein himself, thought that they would remain for ever unverifiable theoretical

predictions.

Even if gravitational waves have never been detected directly, their indirect influ-

ence has been measured in the binary neutron star system PSR1913+16 [1]. In this

binary, one of the star is a pulsar that emits radio waves at an extremely stable fre-

quency. The observation of the variation in the time of arrival of radio pulses allows us

to compute the orbital parameters of the binary. The observed loss of potential gravi-

tational energy measured by the decreasing distance between the two objects is equal

within measurements error to the theoretical rate predicted by General Relativity.

Throughout the sixties, however, Joseph Weber struggled to detect them using

massive aluminum cylinders [2]. His pioneering work in resonant mass detectors has

led to the development of the more sophisticated and sensitive interferometers.

Today, the Laser Interferometer for Gravitational wave Observation (LIGO) has

completed its five science runs and accomplished its sensitivity goals [3]. Similar

efforts are being undertaken in Europe - with GEO and Virgo - and Japan - with



TAMA and LCGT. Even if no detection has been made yet, extremely valuable

information has been gained in order to move on to the next step on th road to

detection and observation. Indeed, detector sensitivity increased from one science

run to the other and the data being analyzed now is the most promising to date.

Furthermore, advanced LIGO, expected to start collecting data in 2013, could

very well be the first instrument to detect a wave. Its reach will be multiplied by

an order of magnitude. This means that detection will be 1000 times more likely to

occur in a given observation time.

In Chapter 2, we explain the basics of gravitational wave detection. We start

by describing the potential sources of such waves and by explaining the theory of

gravitational wave propagation and detection. We then describe the LIGO detectors,

and try to understand the fundamental limitations that these interferometers have in

detecting gravitational waves.

In Chapter 3, we describe the burst search pipeline. We start by looking at how

the injections are performed and describe the algorithm that searches for candidate

events.

In Chapter 4, we study the results of the analysis of the data, including the pa-

rameter estimation and the efficiency calculations. We verify the coherence of these

results with the information on the noise levels and translate these efficiencies in de-

tection range and probability. Finally, we look at wether these results are stationnary

throughout and after the fifth science run.

We conclude in Chapter 5 by summarizing the significance of this work and outline

potential future investigations.



Chapter 2

Gravitational radiation

2.1 Sources

The first idea one has in order to study gravitational waves is to generate them in a

laboratory. A simple calculation of the order of gravitational wave magnitude that

a rotating dumbbell, a high energy accelerator or a nuclear explosion could create

clearly proves that waves of astronomical origins are by far those we are the most

likely to detect. Burst waveforms can be generated by a number of sources [4], [5]

and [6].

2.1.1 Neutron Star Binaries

A binary star is a stellar system consisting of two stars orbiting around their center

of mass. Unfortunately, binaries emit at a very low frequency and will remain out of

reach for some time.

However, as we have seen for PSR1913+16, the emission of waves progressively

over millions of years increases the frequency of emission as the stars come closer

together. The signal emitted will resemble a chirp in that the frequency and amplitude

will increase as the two objects coalesce. This signal will be characterized by the

masses radial separation and eccentricity of the two orbiting bodies. The end of

life of a neutron star binary could emit copious amounts of gravitational waves at



frequencies up to 1 kHz.

2.1.2 Supernovae

Type II supernovae are triggered by the violent collapse of a stellar core to form a

neutron star or a black hole. According to [7], gravitational waves from such sources

may be detectable throughout our galaxy and the Magellanic Clouds.

2.1.3 Pulsars

Pulsars are believed to be highly magnetized rotating neutron stars which emit a

beam of radio waves. Their periods range from 1.5 ms to 8.5 s. The radiation

can only be observed when the beam of emission is pointing towards the Earth.

The gravitational wave emission would result from the rotation of the presumably

nonaxisymmetric neutron star. Uncertainty in the ellipticity of those objects prevents

us from predicting the levels of emission.

2.1.4 Black holes

After a star of sufficient mass has undergone a supernova explosion, it sometimes

retains sufficient mass to continue to collapse. The mass collapses past the mathe-

matical boundary known as the event horizon, a boundary past which gravitational

attraction around the mass is so strong that not even light can escape, and contin-

ues to condense until the mass is crushed into a point of zero dimension known as a

singularity.

The calculation of gravitational wave emission from black holes is somewhat chal-

lenging, as is the calculation of wave emission from supernovae. Calculation of the

emission from a falling test particle has been found to depend on the respective masses

of the test particle and the black hole, as well as the angular momentum of the parti-

cle orbiting the black hole as it falls inward. A similar calculation can be performed

for two black holes falling into one another. Since light does not escape from a black

hole, gravitational radiation may be the most effective method of observation, since



information about the gravitational attraction around the black hole, and hence the

matter inside, can be found from the waves emitted.

2.1.5 Stochastic background

Similar to the cosmic microwave background and the unprobed cosmic neutrino back-

ground, density fluctuations in the early universe can lead to a stochastic background

of gravitational waves . If this signal is ever detected it could give us extremely valu-

able information on the early universe, possibly as early as the Planck time. It would

indeed potentially allow us to discriminate different cosmological models. However,

for most models the predicted amplitude of the stochastic background is well be-

low the sensitivity of what is technologically achievable today or in the intermediate

future.

2.1.6 Serendipitous science

As always when inventing a new way of looking at things, unsuspected phenomena

might very well turn out to be dominant.

Our goal is to search for - and characacterize the detector efficiency to - all possible

signals, as long as they have short duration and a frequency content in the 64-1600 Hz

band which stands out above the detetor noise. This is why on top of astrophysical

signals like the Zwerger-Muller waveform, "ad-hoc" waveforms with Gaussian and

sine-Gaussian morphologies were injected (see 3.1 for details). Similar sensitivities

may be expected fo different waveforms with similar overall characteristics (central

frequency, bandwidthn duration). See [8] and [9] for a detailed discussion on the

extent to which this statement is true.



2.2 Gravitational wave theory

Gravitational waves are ripples in the curvature of spacetime. Their theoretical exis-

tence is a consequence of Einstein's General relativity. They are the vector of grav-

itational information when a body changes its gravitational attributes. Contrary to

Newton's theory where the information on the masses is instantly known everywhere,

these waves propagate out from their source at the speed of light.

In this chapter we will describe the theoretical construction without pretending

to prove anything. For a complete treatment see [4], [10], [11] and [12].

Space time interval ds between two points is given by the Minkowski metric of

Special Theory of Relativity by:

ds2 = -c 2dt2 + dx2 + dy2 + dz 2  (2.1)

or

ds2 = g,, dx, dx, (2.2)

For small perturbations to a flat space-time, g,, can be written as the sum of 7, and

h,, where 7,,, is the unperturbed metric and h,, is the metric perturbation.

g v = ~7,_ + h ,, (2.3)

In the transverse traceless gauge, in which coordinates are marked out by the lines

of free falling test masses, the weak field limit of Einstein's field equation becomes a

wave equation:

V2 - h,, = 0, (2.4)

and h,, takes the form:



0

h+ hx

hx -h+

0

h+ and h correspond to the two orthogonal polarizations of the gravitational

waves. Their respective effect on a circle when passing orthogonally to the page is

illustrated below:

Time

Figure 2-1: The evolution of the shape of an otherwise circular arrangement of free
masses as a wave passes orthogonally to the plane defined by the arrangement. This
evolution is shown for both polarizations. Time passes from left to right.

Lastly, we define the root-sum-square amplitude of a gravitational wave as:

hrss = h(t)2 dt. (2.5)



2.3 LIGO interferometers

The effect of a wave is to stretch and shrink objects in orthogonal directions.

One way to determine with precision the distance between objects is to measure

the time it takes for light to travel from one object to the other. The earliest use

of light to experimentally determine the nature of spacetime is Michelson and Mor-

ley's interferometric experiment. There are two complementary approaches to detect

gravitational waves with laser interferometers: space-based and earth-based. A space-

based antenna is free from seismic excitations and can utilize long arm lengths of order

1010 m. It is best suited to detect gravitational waves in a frequency band between

10- 4 Hz and 10- 1 Hz.

An earth-based antenna has its best sensitivity in a frequency band between 100

Hz and 1000 Hz. The Laser Interferometer Gravitational Wave Observatory, or LIGO

[13], is made up of three such interferometers. Two are colocated in Hanford in

Washington State. One, referred to as HI, is 4 km long. The second, H2, is 2 km

long. The LIGO Livingston Observatory in Louisiana has a single interferometer with

4 km arms, called L1.

Hanford, Washington Livingston, Louisiana

Figure 2-2: The two LIGO interometers



2.3.1 Antenna Pattern

The detector does not have the same response to waves coming from any direction.

Let x and y be the directions defined by the interferometer arms. If a wave arrives

from the x or y direction, the displacement will only happen in the other arm. The

sensitivity is therefore half of what it is when coming from the z direction with the

proper polarization. Similarly, if a wave arrives along the bisector between the x and

y axes, the change in length will be equal in both arms, generating no difference in

the travel times of the laser.

The response to a wave arriving at local time t depends on the dimensionless

amplitude and polarization and its arrival direction [14]. In the low frequency limit,

the differencial strain signal detected by the interferometer can be expressed as the

projection of two polarization components.

hdet = F+(a, 6, t)h+(t) + Fx(a, 6, t)hx(t) (2.6)

where a and 6 are the right ascension and declination of the source.

Hanford4 6 10 12 14 16 1 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

Virgo 0.- .

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 2-3: Evolution of the F+ component as a function of time when look-
ing at waves with random polarizations coming from the center of the galaxy
(a = 17h45m40.04s, 6 = -2900'28.1" ). The factors are different from one site
to the other because the interferometers are oriented differently.



These plots allow us to predict when the three detectors are the most sensitive to

waves coming from a given direction.
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Figure 2-4: The two first graphs show the F_ component of a linearly polarized wave
coming from Scorpius X-1 for four different polarizations 0, 30, 45 and 60 degrees.
The lower two graphs show the polarization-averaged antenna pattern.

When looking at the sky from Earth, Scorpius X-1 is the strongest source of X-rays

after the Sun. Recent theories predict a temporal correlation in the X-ray emissions

and the gravitational radiation of this low mass X-ray binary.

Those graphs therefore allow us to predict the antenna pattern that shoud be

expected when observing this source and consequently when the best time to observe

it is.

1
0.9

0.8

10 0.7

0.8

0.5

S0.4

: 0.3

0.2

0.1

0

.... ... ..

S

............ ................................................. '' '' ' ' ' '' '' ' '
......................... .............. .....

....................... .... .. ...... ........ ... .. ... .

.................. ...i .A· · ···· ·..... ...... .... . ... ..

.. .. .. ... ..... .. ... .. .. ... .. ... .. ... .. .

............. ........ .............. .... ...... ......... ....... .. -··

.... .. ...... ........ ....... .... .............. ..... .. ........ .

........ .... ....... ........ ................. .. ..... ...
..... .... .. ... .. ........ .... .... .... .......... ........ ...... · ······ · · · · ·
....... ...... ..... ....... .... ........ ... ....... .. .. .. .....

... ... .. .. ... .... .. ... ... .. .. ... ... ..... ..

............ ........... ..... .... .........

.............................................

.. ... . .. -.... . ... .. ... .. .. ...~~~~~~~~ ~ ~ ~ ~ .



2.3.2 Primary Noise Sources

LIGO has accomplished its five science runs and reached its performance goals. The

last one, S5, started in November 2005 and ended in September 2007.

The sensitivity of the detectors is in fact primarily limited by three noise sources.

Under 40 Hz, seismic activity is the main noise source.

Thermal noise is dominant between 40 and 150 Hz and corresponds to thermal

fluctuations in the mirror that can excite the fundamental pendulum mode.

Above 150 Hz, shot noise dominates. It is a result of photon counting statistics.

Best Strain Sensitivities for the LIGO Interferometers
Comparisons amongSI -5 Rs 6(0 S Runs GO-6 -02-Z

le-23

10•I e-2 i1.......... ...
i~t~:

Figure 2-5: Best LIGO sensitivity curve as of
isons[1]. h[f] is defined such that the signal
f h2 [f]df.

June 4, 2006 with historical compar-
energy in a given frequency band is

The Science Requirements Document (SRD) [15] takes into account those three

major noise sources.The S5 sensitivities achieve a performance comparable to the

SRD goal. The difference corresponds to secondary noise sources. The 60 Hz comb is

the result of coupling with the alternating current and all its harmonics. Moreover,

daily human activity temporarily increases noise levels on a daily basis.





Chapter 3

Signal Hardware Injections and

Burst Search Methods

So far the quest for these waves has remained an elusive goal. When the time we

believe something was detected comes, the characteristics of the instruments need

to be known well enough in order to prove that the trigger can not possibly be due

to anything else. One way to characterize the instrument's response to a wave is to

simulate one. Waveforms can be prepared in advance and injected in the detector.

Adding the signals to the digitized time series that the detector recorded is called

performing a software injections. Hardware injections are done by directly exciting

the mirrors according to the simulated gravitational wave pattern.

In this work we will address only the hardware injections.

These injections were intended to address any instrumental issues, including cali-

brations, and provide a robust end-to-end test of LIGOs data analysis pipelines. They

also provided an important tool for establishing the safety of the veto analysis, i.e.,

the absence of any couplings between a real gravitational wave burst and the auxiliary

channels we considered as potential vetoes.



3.1 Hardware Injections

In order to understand the response and performance of the LIGO interferometers,

we inject signals and study the response of the detector and the analysis pipeline.

The exact knowledge of the input allows us to confirm and predict the instrument's

behavior. Hardware injections provide the only end-to-end test of the system.

3.1.1 S5 Hardware injections

The hardware injections can be classified in two categories.

The daily burst injections were made to characterize the detector and therefore

have strengths above and below the 50 % efficiency hrss. The waveforms injected

include:

* Sine-Gaussians: sinusoid with a given frequency inside a Gaussian envelope

with Q= 9, and fo assumed the value of 70, 235, 914 and 2000 Hz.

h(to + t) = hosin(27rfot)exp(- (2f°)2)

Time series of sine gaussian waveform

Time (s)

Figure 3-1: Time series and spectral
Q=9: 235 and 2000 Hz.

Spectral content of sine gaussian waveform

3 0 500 1000 1500 2000 2500

0.15

0.05

Frequency (Hz)
3000

content of two sine-Gaussian waveforms with

,k-,235 Hz

2000 Hz

U.25 ~ · 7

?



* Zwerger-Mueller waveforms resulting from numerical simulations of core col-

lapse supernovae, A3B3G1. Refer to [16] for a comprehensive analysis.

4 A-21

I

ci'

.r
C

Figure 3-2: Time series and spectral content of a Zwerger Muller waveform.

* Gaussians of the form h(to + t) = ho * exp(-14) with T equal to 1 ms. On the

following plot we have also included Gaussian waveforms with the time constants

corresponding to the strong injections. It allows us to observe the impact of

that parameter on the waveform morphology and its spectral signature. In

particular, as the time constant increases, most of the signal power is under

100 Hz and the performance of our search method decreases (see 4.2.1 Gaussian

Waveforms).

Time series of Gaussian waveforms Spectral content of Gaussian waveform

05

0.03

0.1

0 ZO .4 .- -00 800 1000
3 0 200 400 600 000 1000

time (s) Frequency (Hz)

Figure 3-3: Gaussian waveform characteristics.
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* Cosmic string cusps with a cutoff frequency of 220 Hz. Refer to [17] for more

details.

x 10-
21

0.5
Time [s]

0 10 100
Frequency [Hz]

Figure 3-4: Cosmic Cusps waveform characteristics.

* Band-limited white noise burst (wnb250bw100dt30) These have a specified cen-

tral frequency of 250 Hz and bandwidth of 100 Hz and have a Gaussian envelope

in the time domain with a sigma of 30 ms.

They have two polarization components so the incident waveforms at Hanford

and Livinsgton were chosen to be different.

X 10
-
21

Time [s]

Figure 3-5: Time series of the white noise waveform for Hanford and Livingston. The
white noise waveform is the only one for which the injected waveform is different from
one site to the other.



* Ringdown waveform. The final state of a compact binary coalescence is ex-

pected to be a perturbed black hole which will radiate away the perturbations

as gravitational waves in the form of a damped sinusoid [181. The waveform

that we used corresponded to a fo of 2600 Hz and a decay time of 300 ms.

Figure 3-6: Ringdown waveform from a black hole of mass 100 MO and spin 0.96

corresponding to a fo of 235 Hz and Q = 9, at a distance of 1 Mpc.

The sine-Gaussian and Gaussian waveforms were chosen to represent the two gen-

eral classes of short-lived gravitational wave bursts of narrow-band and broad-band

character respectively. The supernovae and binary black hole merger waveforms were

adopted as a more realistic model for gravitational wave bursts.

High amplitude bursts were also injected. These have two amplitudes, roughly 16

and 32 times the threshold of detectability. They consist of:

* Sine-Gaussians with Q=9 at a ten different frequencies: 50, 70, 100, 153, 235,

393, 554, 850, 1304, 3068 Hz.

* Loud Gaussians with tau= 0.3, 1, 3 and 10 ms.

A total of 20 different waveforms we injected during the S5 run. The injections

were grouped in sets whose magnitude were varied. The injections were not performed

on a fixed schedule.

a



Injected Waveform Hi H2 Li
Gaussian 0.3 ms
Gaussian i ms
Gaussian 3 ms

Gaussian 10 ms
sine-Gaussian 50 Hz
sine-Gaussian 70 Hz

sine-Gaussian 100 Hz
sine-Gaussian 153 Hz
sine-Gaussian 235 Hz
sine-Gaussian 393 Hz
sine-Gaussian 554 Hz
sine-Gaussian 850 Hz
sine-Gaussian 914 Hz

sine-Gaussian 1304 Hz
sine-Gaussian 2000 Hz
sine-Gaussian 3068 Hz

Band-limited White Noise, 250 Hz, 6f = 100Hz, c = 30ms
Zwerger Muller (A3B3G1)

Cosmic String Cusps, fctoff= 2 2 0 Hz
Ringdown 2600 Hz, 6t = 30ms

Total

90
1208
90
90
78

1182
88
88

1207
78
83
78

1104
88
1189

78
1104
1114
1090
178

10305

94
1438
94
94
92

1433
103
103

1450
92

101
92

1341
103

1422
92

1341
1341
1341
198

12338

72
1078
72
72
62

1077
64
64

1075
62
62
62

1015
64

1070
62

1015
998
983
143

9172

Table 3.1: Number of S5 hardware injections on each detector. For all the sine-
Gaussians, Q=9.

Injected Waveform H1 H2 L1



3.1.2 Hardware injections procedures

This section was largely inspired by the work of M. Sung. For more details, refer to

[19]. The Gravitational Wave channel DARM_ERR is the error point of the interfer-

ometer differential arm-length feedback control loop, and is called e(t). The actuators

for this control loop are the end test mass coil actuators. The LIGO calibration group

has utilized several independent techniques in efforts to attain the absolute calibration

of the end test mass coil actuators [20].

The detected strain is the sum of the gravitational wave and the noise: s(t) =

n(t) + h(t). A(f) is the actuation function. It can be divided into the actuation

performed on ETMX and ETMY, using the coupling coefficients kx and ky.

A(f) = kxAx(f) - kyA(f) (3.1)

Injections are performed on ETMX. In order to take into account the actuation func-

tion to the X arm, we divide the desired antenna strain waveform in the frequency

domain, hynj(f) by Ax(f):

ax(f) = -hinj(f)l/A(f) (3.2)

ax(f) is then transformed back to the time domain.

Observable
DARM ERR, e(t) Ditgtal Filter DCTRL(t)

-- D(f ..)..

Hardware
injections
EXC, ax(t)

kctuation

_ _,.__ L . s,(t)

Sensing s,.= s(t)-s (t) Antenna (true) strain
Residual strain

Figure 3-7: Simplified block diagram of the differential arm servo system of the LIGO
detectors



C(f) and D(f), the sensing and digital filter blocks, are linear response func-

tions that model the differential arm servo system. e(f) = C(f)(s(f) - Sctr(t))=

C(f)(s(f) - A(f)D(f)e(f)) so

1+ C(f)D(f)A(f)s(f) 1 + (f)D(f)A(f) e(f) = R(f)e(f) (3.3)
C(f)

where R(f) is the response function of the detector.

An injection period starts 5 seconds before the first injection and ends 5 seconds

after the last injection. The injection period is divided into 64 seconds segments

with 16 seconds overlapping with the next segment. Noise spectrum is obtained from

measurements 50 seconds before and after the injection period.

S64s )

Figure 3-8: Time segmentation of the analysis



3.2 KleineWelle

The first stage of the burst search pipeline is to identify times when the GW chan-

nels of the three interferometers appear to contain signal power in excess of the

baseline noise. These times are called triggers and can be generated using different

algorithms. KleineWelle [21], [22] is the algorithm we will use in order to quantify

the efficiency of the different detectors. KleineWelle is a time-frequency method uti-

lizing multi-resolution wavelet decomposition. The time-frequency decomposition is

obtained using the Haar wavelet transform.

The wavelet transform for a time series f(t) is defined by the integral:

G(u, s) =J f(t) 1) dt (3.4)

The squared wavelet coefficient provide an estimate of the energy associated with

a certain time-frequency pixel.

For the case of discrete data, a computationally efficient algorithm exists for cal-

culating wavelet coefficients over scales that vary as powers of two. This is the dyadic

wavelet transform. The simplest example of such wavelets is the Haar function:

1 0<t< 1/2

4 jHaar(t)= -1 1/2 < t <1

0 otherwise
Clustering is used to increase sensitivity and provide a normalized cluster energy.

The significance of a cluster is defined as the negative logarithm of the probability

that the energy result from gaussian white noise. A trigger is generated when this

number exceeds a certain threshold.

Two versions of KleineWelle were used to produce the efficiency curves. One

for the frequencies between 64 and 1024 Hz, the other for higher frequencies. This

had an impact on certain properties of the parameter estimation (see Section 4.1.2.

Frequency Reconstruction).





Chapter 4

Data Analysis of Signal Injections

4.1 Signal Parameter Estimation

Analysing the parameters of the response, namely the exact time of detection and

the estimated frequency of the detected signal allows us to check the whole detection

pipeline is functioning properly.

4.1.1 Timing

On top of verifying that KleineWelle is functionning properly, the timing distribution

allows us to define a time window specific to each waveform. How close should the

trigger be in order to postulate that the injection was detected? By looking at the

histogram of the difference between the injection peak time and the closest trigger,

one can differentiate detected signals from background triggers and deduce the time

window that defines detection.

The central peak stands out from the background very clearly. We did check

however that the histogram density outside the defined interval matched the average

background rate, equal to the total number of triggers times the total number of

injections when we substract the peak divided by the total observation time.



-0.06 -0.04 -0.02 0 0.02

Figure 4-1: Timing error plot for the sine-gaussian waveform
tion is more spread out for lower frequencies.

of 70 Hz. The distribu-

The time window necessary to include all the detected signals narrows as the

frequency f of the signal increases. This is consistent with the fact that the time

between two peaks in the signal scales as 1/f.

-0.06 -0.04 -0.02 0 0.02 0.04 0.0 0.08
Thw~lz

Figure 4-2: Timing error plot for the sine-gaussian waveform of 914 Hz. The peak
is contained inside a time window of 15 ms that becomes the citerion for detection.
The mean error is less than 4 ms and the standard deviation is around 3 ms for the
three detectors. The constant deviation is due to the burst-finding algorithm data
conditioning filters.
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The following plot summarizes the results for all the waveforms. As mentioned

earlier, the low frequency sine-Gaussians and the 10 ms second Gaussian waveform

have less clean distributions. For all the other signals, the mean deviation is typically

under 5 ms and the standard deviation under 3 ms.

H1 HI H2 H2 L1 L1
At Waveform Mean S.D. Mean S.D. Mean S.D.
11 0.3 ms 8 0.4 7.5 0.5 7.5 0.6
20 1 ms 8 3.5 6.5 4.4 8.6 3.4
32 3 ms 17 3.8 14.4 2.4 14.5 2.9
75 10 ms 11 20.6 1.8 7.2 13.3 22.7
32 50 Hz 9 7.5 17.6 6.3 13 5.5
50 70 Hz 12 7.8 11.5 10.6 15.3 9.2
21 100 Hz 7 3.3 7.5 3.1 7.5 0.9
15 153 Hz 6 1.7 7 2.2 6.8 1.3
15 235 Hz 5 3.2 4 3.8 5 3.2
10 393 Hz 8 1.3 7.1 1.1 6.8 0.5
8 554 Hz 6 0.9 5.3 0.8 5.4 0.1
8 850 Hz 6 1 5.1 0.8 5.3 0.2
9 914 Hz 4 2.4 3.3 2.8 4.1 2.5
4 1304 Hz 1.7 0.7 1.7 0.7 2 0.4
5 2000 Hz 5 3.2 4 3.8 5 3.2
5 3068 Hz 8 1.3 7.1 1.1 6.8 0.5
20 White Noise 7 5.8 5 6.2 0.4 2.6
10 Zwerger Muller -2 1.6 -1.5 2 -1 2
20 Cosmic Cusps 3 5 1.6 3.9 4 5.8

Table 4.1: Measure of the mean and standard deviation of the timing error of the
detected injections. All times are in milliseconds. The At defining detection is de-
termined by looking at the whole distribution and differentiating the distribution of
detected signals from the background triggers.



4.1.2 Frequency Reconstruction

KleineWelle uses the powers of 2 in the frequency domain to define the time-frequeny

pixels that it analyzes. Despite this intrinsically poor frequency resolution, it is inter-

esting to quantify KleineWelle's performance at estimating frequency. Two versions

of KleineWelle were used to produce these plot, for under and over 1024 Hz.

Figure 4-3: Distribution of
form. The peak at 1024 Hz

2550 3500 32082 41001

rL~LJ~~ ~4A I. 1~J&.L

the reconstructed frequency for each sine-gaussian wav-
is due to the use of two versions of the algorithm.

The 100, 153, 393 and 850 have a small standard deviation, typically around 15

Hz. This constancy in the reconstructed frequency is due to the fact that these are

high amplitude injections.

H1 H1 H2 H2 Li L1

Mean detected Standard Mean detected Standard Mean detected Standard

Frequency (Hz)
Frequency (Hz) Deviation (Hz) Frequency (Hz) Deviation (Hz) Frequency (Hz) Deviation (Hz)

100
153
235
393
554
850
914
1304
2000
3068

176
253
384
558
862
934
986

2075
2570
3259

14
13
88
14
59
13
88
184
636
589

173
247
382
567
903
938
996
2050
2781
3474

12
20
98
17
41
12
71
34

733
325

168
248
368
550
844
942
989
2018
3151
3336

13
10
81
17
63
10
65
35

940
236

Table 4.2: Mean reconstructed frequency and standard deviation of the detected

injections for each interferometer

Frequency Reconstruction for sine-Gausins

Soo to Is15 2000
Reconstructed Frequency (Hz)

(10 -100 t
I I ¶ I I 00

153 Hz

235 Hz
................. 393 Hz

- 554 Hz

914 Hz

1304 Hz

- 3068 tz

O • ii 1
-' • !•.......

2500 30o 3500 4000



On the other hand, the daily injections - 235, 914 and 2000 Hz - give a more

spread out distribution, beacause their amplitude is sometimes much smaller.

Mean Estimated Frequency for the Sine-Gaussan waveforms

10 10
Injected Central Frequency (Hz)

Figure 4-4: Mean Estimated frequency as a function of injected central frequency of
the sinegaussian waveforms.

The low mean reconstructed frequency of the 914 Hz sine-Gaussian is another

consequence of the use of two versions of KleineWelle.

Overall, KleineWelle has a tendency to over-estimate the frequency of the detected

signal by a factor of 70 %. This is due to the logarithmic tiling of the KleineWelle

analyis.



4.2 Efficiency curves

The following plots show the measured efficiency of the analysis pipeline as a function

of root-sum-squared strain amplitude, e(hrss), for each simulated waveform. The

efficiency data points for each waveform are fit with a function of the form:

h a(1+3tanh( ,r))
e(hr8,) = 1/(1 + rs 50% ) (4.1)

h50 %

where h5 0% is the hrss corresponding to an efficiency of 0.5, a is the slope, 3 is

the parameter that descries the asymetry of the sigmoid. This fitting function was

adopted by the burst analysis group [23], [24] and [25],. One characteristic of all

these plot is that H1 and L1 are on average 1.7 times more sensitive than H2, which

is consistent with H2's smaller length of 2 km. H1 and L1 are indeed twice as long.

The analytic expressions of the fits are used to determine the signal strength hrss

for which the 50% efficiency is reached. These fits are subject to statistical errors

from the limited number of injections. We will approximate these with Poisson error

bars even if a proper treatment requires binomial distribution.

Also, the overall amplitude scale is subject to the uncertainty in the calibration

of the interferometer response. This uncertainty was conservatively estimated to be

10% during the fourth science run [26].

4.2.1 Gaussian waveforms

The two graphs corresponding to 0.3 and 3 ms were not able to compute a sigmoid

because the signals injected to study coupling effects were too loud to be able to

determine efficiencies. The 10 ms Gaussian does not even have an efficiency of one at

those high amplitudes because most of its power is under 100 Hz.
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The L1 curve of the 1 ms Gaussian waveform is very steep. This is due to the fact

that only one amplitude has an efficiency that is less than 1.

4.2.2 Sine-Gaussian waveforms

Here also it is obvious that some of these waveforms were injected for coupling studies,

as their amplitudes are more than an order of magnitude above their threshold of

detectability.

Efficiency - sine-Gaussian - 70 Hz Efficiency - sine-Gaussian - 235 Hz

Efficiency - sine-Gaussian - 914 Hz

08

06

0 . .. .- •. . .. e ff

0.2 i i

10
. 2

10
- 2

2 10 21 10
- 2

0 10
9

Injected amplitude (strain Hz"
1/2

] Injected amplitude [strain Hz
- 1/2

]

43

19s



Efficiency - sine-Gaussian - 2000 Hz

-L iiii i i io iii 1 . . eff

i i i i~i fi • i •i it ; : : i:iii: 2 sl l:ef
10

-
c 10 10

Injected amplitude [strain Hz
-
i

2
]

4.2.3 Astrophysical waveforms

For the Zwerger-Muller waveform, the L1 efficiency curve is once again abnormally

steep for statistical resons. The L1 and H1 curves are actually supposed to be very

close. L1 is surprisingly less sensitive than H1 to the white noise waveform. If the
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injected waveforms were identical, L1 should be closer to H1. This feature is constant

throughout S5 (see section 4.4.) and does not correspond to a temporary drop in Ll's

sensitivity.

In fact the injected waveforms were chosen to be different for Hanford and Liv-

ingston.
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Figure 4-5: Spectral density of the white noise waveform for the two sites. The

energy distribution for Hanford matches better the most sensitive frequency range of

the detectors.

4.3 Signal to Noise Ratio considerations

For all of the Sinegaussians, the quality factor is fixed. The quality factor quantifies

how damped the oscillations are. A high Q means that the system will oscillate many

times before loosing its energy.

Strain Sensitivity of the LIGO Interferometere - May 2007

Figure 4-6: Strain sensitivity of the LIGO interferometers - May 2007

This graph shows the current noise levels [27]. The intervals have a constant

width because the x-axis is logarithmic. This constant width is narrow enough for us

to define a noise level. The values were chosen to represent the average value in the

m m m m m r _



interval. The following table shows those numbers.

The four sinegaussians in the daily burst injections, namely 70, 235, 914 and 2000

Hz were chosen to define the value of SNR 50 %.

H1 H2 L1
sine-Gaussian 50 Hz 2.1 9 1.6
sine-Gaussian 70 Hz 0.65 1.9 0.7

sine-Gaussian 100 Hz 0.32 0.85 0.26
sine-Gaussian 153 Hz 0.22 0.47 0.27
sine-Gaussian 235 Hz 0.32 0.5 0.33
sine-Gaussian 393 Hz 0.45 0.7 0.49
sine-Gaussian 554 Hz 0.6 0.95 0.7
sine-Gaussian 850 Hz 0.9 1.4 1
sine-Gaussian 914 Hz 1 1.56 1.15

sine-Gaussian 1304 Hz 1.4 2.15 1.55
sine-Gaussian 2000 Hz 2.2 3.15 2.5
sine-Gaussian 3068 Hz 3.5 5.5 3.8

Table 4.3: Noise levels defined by figure 4.5. for each interferometer

Note that these averages are nearly constant from one interferometer to the other.

The high values of the ratio for the 1304 Hz waveform is due to the poor fitting

performance of the sigmoid curve.

H1 H2 L1
sine-Gaussian 70 Hz 9.4 6.4 8.6

sine-Gaussian 100 Hz 8.8 7.4 9.6
sine-Gaussian 153 Hz 6.8 6.4 5.6
sine-Gaussian 235 Hz 4.9 5.5 5.2
sine-Gaussian 914 Hz 3.9 4.3 4.1

sine-Gaussian 1304 Hz 14.3 18.6 14.2
sine-Gaussian 2000 Hz 5.0 5.5 4.9

Table 4.4: Ratio of detection threshold and noise level



4.4 Comparison with software results

Software injections add a simulated signal to the data after it has been recorded.

Since they performed this a posteriori, the interferometer is not affected while it is

recording data.

Here we compare our efficiency results to those obtained by L.Blackburn using

the S5 software injections.

The hardware injections are optimally oriented, while the software injections come

from a randomized direction and have a randomized polarization. In order to account

for that, we have multiplied the detection thresholds of the software results by the

average antenna pattern. The value of the average antenna pattern is 5 for the

direction and for the polarization. See [4] for details.

H1 H1
S H

sine-Gaussian 70 Hz 5.7 6.1
sine-Gaussian 100 Hz 2.2 2.7
sine-Gaussian 153 Hz 1.2 1.5
sine-Gaussian 235 Hz 1.4 1.6
sine-Gaussian 554 Hz 3.0 2.6
sine-Gaussian 850 Hz 3.5 3.8

Table 4.5: Comparison of hardware (H)

H2 H2
S H

11.7 12.1
4.4 6.3
2.9 3.0
2.8 2.8
4.5 4.1
6.3 6.0

and software

L1
S

8.3
2.9
1.5
1.6
3.9
8.2

(S)

L1
H

6.0
2.5
1.5
1.7
3.0
4.3

detection thresholds

We observe that they are remarkably similar.

The software results are on average 5 to 10 % smaller than the hardware results.

One significant discrepancy is the value for L1 for the 70 Hz waveform. The two

approaches agree on the Hanford detector's performance, but the software analysis

reveals much weaker performance for Li corresponding to a 50 % increase in the

detection threshold.



4.5 Detection range

In order to have a better idea of what these sensitivities mean, we can convert it

to spheres inside which an event of a given strength needs to happen in order to be

detected. Here we follow the approach of [25].

d2 EGW 1 C3

= - < h2 2 > (4.2)dAdt 16 G + >  (4.2)

For a high Q sine-Gaussian waveform of frequency fo emitted isotropically at a

non-relativistic distance r, we obtain:

r2 C3

EGW = 4G (27 fo) 2h2 (4.3)

According to Ott et al. [28], a core-collapse supernova's waveform can be modeled

by a high Q sine- Gaussian with a central frequency 654 Hz. A linear interpolation

of our results gives us an h50% of 3.10- 22Hz- 1/2 at that frequency. Just like in [4],

we take into account the fact that the waveform is not monochromatic, and that the

fact that is spread in the time-frequency plane reduces the sensitivity by a factor of

2 and obtain a reach of 2 kpc for this model. The second estimation we can use is

that of a binary black hole merger waveform calculated by the Goddard numerical

relativity group [29]. The s25WW model, based on a 25 MO progenitor; emits more

energy in gravitational waves but with a higher characteristic frequency of 937 Hz.

If we consider this similar to a high-Q sine- Gaussian, we obtain a reach of 100 kpc.

According to [29], a binary system of two 10 MO black holes will radiate up to 3.5%

of its total mass and have a peak emission at 750 Hz. The reach obtained for those

values is 22 Mpc. Similarly, if the mass of each black hole is 100 MO, the reach is

800 Mpc.



4.6 Variability of the efficiency

4.6.1 Throughout S5

The evolution of the efficiency was studied for the daily injections, as they are nu-

merous enough to be cut up into quarters. The efficiency was found to be stable, in a

satisfactory way. Below is the evolution of the efficiency of the 235 Hz sine-gaussian

waveform. Apart from a slight L1 decrease in the first quarter, the curves barely

evolve throughout S5.
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The relatively low L1 sensitivity to a white noise waveform is a constant feature

throughout S5.

4.6.2 Post S5 studies

The fitting performance in the S5 efficiency curves was often limited by the distri-

bution of the injected strengths. These plots indeed have more data points on the

right of the threshold of detectability than on the left. Furthermore, these points

were generally too spread out. On October 7th, we performed a series of hardware

injections taking those remarks into account.

Injected waveform Hi H2 L1

Gaussian 0.3 ms 600 635 587
Gaussian 1 ms 600 642 596

sine-Gaussian 70 Hz 580 614 556
sine-Gaussian 235 Hz 588 616 594
sine-Gaussian 914 Hz 428 450 434

sine-Gaussian 2000 Hz 612 632 589
sine-Gaussian 3068 Hz 579 615 571

Zwerger Muller (A3B3G1) 459 478 403
White Noise 457 485 440

Table 4.6: Number of post-S5 injections performed on October 7th 2007

The density of the injected hrss was doubled and the number of points on each

side of the detection threshold was balanced (see appendix). The lower statistics of

this series of injections is compensated by the better distribution of injected signal

strengths.
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Figure 4-7: Detection efficiency on October 7th

The performance of the detector is generally better during the post S5 period by

a factor of 14%. This is due to the continuous comissionning throughout the fifth

science run. In fact the efficiency during the post S5 run is very similar to that at

the end of S5. The discrepancy for the H1/L1 efficiencies at the end of the S5 run

are again due to the unicity of the point with an efficiency that is different from 1.

The calibration uncertainty taken to be 10% [26] account for the smaller discrep-

ancies. In fact, if we assume the same slope for H1/L1 and H2, we would obtain

2 * 10- 22Hz- 1/2, a value that is much closer to the Post-S5 efficiencies.

Interferometer H1 H2 L1
Period S5 End Post-S5 S5 End Post-S5 S5 End Post-S5

Gaussian 1 ms 2.09 2.0 1.59 3.48 3.5 3.10 2.03 2.0 1.71
sine-Gaussian 70 Hz 6.15 5.5 4.42 12.15 11.5 10.73 6 5.5 4.84

sine-Gaussian 235 Hz 1.56 1.5 1.52 2.76 2.8 2.73 1.71 1.5 1.54
sine-Gaussian 914 Hz 3.90 3.94 6.79 6.23 4.73 4.40

Zwerger Muller 2.3 2.8 1.92 4.29 4.1 4.08 2.88 2.8 1.88
White Noise 2.79 2.7 2.36 4.77 4.6 4.43 5.61 5.0 3.62

Table 4.7: Comparaison of detection thresholds for various waveforms during, at the
end of and after S5. The "End" period refers to the end of the S5 run.
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Timing error

* Gaussian waveforms
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Sine-Gaussian - 235 Hz
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Sine-Gaussian - 554 Hz
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* Astrophysical waveforms

Cosmics Cusps waveform
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Band-limited white noise waveform
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Appendix B

Evolution of the efficiency

throughout S5
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Zwerger Muller waveform
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Appendix C

Post S5 Efficiencies

Efficiency - Gaussian - 0.3 ms
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Figure C-1: Dection efficiency of the Gaussian 0.3 ms waveform on October 7th
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Efficiency - sine-Gaussian - 70 Hz
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Figure C-2: Dection efficiency of the Sinegaussian 70 Hz waveform on October 7th
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Figure C-3: Dection efficiency of the Sinegaussian 235 Hz waveform on October 7th
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Efficiency - sine-Gaussian - 914 Hz
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Figure C-4: Dection efficiency of the Sinegaussian 914 Hz waveform on October 7th
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Figure C-5: Dection efficiency of the Zwerger Muller waveform on October 7th



Efficiency - White Noise waveform
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Figure C-6: Dection efficiency of the White Noise waveform on October 7th
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