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Abstract

Many cellular processes are governed by large and highly-complex networks of chemical in-
teractions and are therefore difficult to intuit. Computational modeling provides a means of
encapsulating information about these interactions and can serve as a platform for gaining
understanding of the biology and making predictions about cellular response to perturba-
tion. In particular, there has been considerable interest in ordinary differential equation
(ODE) models, which have several attractive features: ODEs can describe molecular inter-
actions with mechanistic detail, it is relatively straightforward to implement perturbations,
and, in theory, they can predict the concentration and activity of every species as a func-
tion of time. However, both the topology and parameters in such models are subject to
considerable uncertainty. We explore the ramifications of these sources of uncertainty for
making accurate predictions and develop methods of selecting high confidence predictions
from uncertain models. In particular, we promote a shift in emphasis from model selection
to prediction selection, and use consensus among model ensembles to identify the predic-
tions most likely to be accurate. By constructing decision trees, this consensus can also be
used to partition the space of potential perturbations into regions of high and low confi-
dence. We apply our methods to the Fas signaling pathway in apoptosis to satisfy two goals:
first, to design a therapeutic cocktail to reduce cell death in the presence of high levels of
stimulus, and second, to design experiments that may lead to a better understanding of the
biological network.
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Chapter 1

Introduction

Systems biology is a field that aims to study the function of the cell as a unit, rather than
strictly as a sum of its parts [1,2], as is typical in traditional, reductionist, biology. While the
general systems approach is not new, having found applications for many years in fields such
as operations research and chemical engineering, it took several technological innovations
for biologists to follow suit. These included genome sequencing methodologies (culminating
in the success of the Human Genome Project [3,4]) along with several “high-throughput”
measurement techniques that allow scientists to monitor the state of a cell in great detail:
microarrays perform simultaneous genome-wide measurements of gene expression levels [5];
yeast-two hybrid screens [6] and protein arrays generate information about protein—protein
interactions [7-9]; and improvements in mass spectrometry allow the quantification of pro-
tein concentrations and activation levels (for example, detection of phosphorylation and
ubiquitination) [10,11]. At about the same time, there were complementary advancements
in the ability to perform broad spectrum perturbation experiments: gene insertion and
deletion technology improved [12] and RNA-mediated interference (RNAi) was discovered
as a means of post-transcriptional control [13,14]. Taken together, the turn of the century

saw a revolution in our ability to comprehensively measure a cell’s response to stimulus.

Analysis methods lagged behind experimental progress, however, and we are still learn-
ing how best to take advantage of the massive amount of information being collected.
Although it is possible to build on the work from other systems-oriented fields, systems
biologists are presented with many new challenges unique to the study of life. In the human

cell, for instance, there are 20,000-25,000 genes [15], each coding for a protein, many of
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which have multiple splice variants [16] or states of activation [17]. In addition, cells con-
tain a number of other small molecules that are neither nucleic acid nor protein, and each
species can interact with a subset of all the cellular components. Collectively referred to as

the interactome [7], the network of all interactions encapsulates the incredible complexity

of the cell [18].

Noise is another issue that adds to our difficulty in understanding biology. The specific
contents of each cell are unique but many biological measurement techniques are applied to
populations of cells; it is important to recognize that the average dynamics of the group can
hide the true behavior of the individual [19]. Even with the ability to measure properties
of single cells (using flow cytometry, for example [20]), a cell’s response to stimulus is not
strictly a deterministic function of its state at the time of input. Heterogeneities in the spa-
tial distribution of species and the stochasticity associated with chemical reactions among
rare molecules combine to make cells intrinsically noisy entities [21-23]. Experimental noise

adds yet another source of uncertainty [24,25).

The long-term goal in systems biology is to understand how this large and complex
network leads to observed cellular behavior. How does a cell process the information it re-
ceives from its environment and make decisions accordingly? How are cells able to transmit
signals to each other? In a developing organism, how do cell types become differentiated:
how does a cell know that it is a hepatocyte rather than a neuron? Once we achieve this
forward level of understanding, it is hoped that we will be able to work backwards, to learn
how to manipulate a cell or its environment to change its behavior. There are powerful
clinical implications for such a high level of understanding and there is considerable interest

in systems biology from the perspective of drug development [26-29].

Due to the size and complexity of the cell, the path linking noisy data to biological
understanding and therapeutic utility often comes in the form of computational models.
Whereas logic and human reasoning can come to terms with the results of a small number
of experiments, it is impossible to intuit cellular function from thousands of measurements
taken from distant nodes in the network. Algorithms and mathematics then step in to

assimilate and analyze where we cannot.
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1.1 Modeling approaches in systems biology

Modeling philosophies and approaches are diverse, in part because there are many ways of
dealing with the hierarchical nature of the system and the different sources of complexity. Is
it necessary, for instance, to consider both the mRNA and protein products of a particular
gene or can the whole story be told by one or the other? Is it necessary to model the entire
biological network to understand the function of one specific pathway and, if not, where do
we draw the line of inclusion for relevant species? The nature of our models also depends
highly on the detail of the predictions we hope for them to make. A phenomenological
conclusion might be that a cancer cell will or will not die in response to drug treatment;
alternatively, we might want to know how the concentration of a particular protein changes
as a function of time following treatment. In broad terms, a modeler must decide how
representative their model will be of the true underlying physics. Depending on the nature
of the system, various details may be unimportant for capturing its behavior, just as it is
frequently reliable to apply Newton’s Laws without accounting for the quantum mechanics
of the bodies involved. The difficulty in biology is that, unlike in physics, no one has been
able to derive whether such limits of scale exist and whether the hierarchies of detail can

be disentangled from each other.

Published models of biology range from the purely statistical to highly detailed and
mechanistic [30] (Figure 1-i). At the least detailed end of the spectrum, statistical models
are built upon correlations between components in the system and have no mechanistic
underpinnings. Data mining techniques such as hierarchical clustering [31] or support vector
machines (32, 33] have often been applied to microarray data to group together similarly
expressed genes. If these gene groups share common function, for example, the clustering
may provide the basis for a functional assignment rule. Correlation does not imply causality
and statistical models as such cannot make statements as to the functional relationship

between components.

Building in complexity, graph theoretic approaches such as Bayes nets [34, 35] generate
a probabilistic description of the influence of each species on each other. With this type of

model, conclusions can be drawn about the impact of removing a node in the network so
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Figure 1-1: The scales of modeling in systems biology and the corresponding mathematical
approaches. From Ideker and Lauffenburger, 2003 [30].

that some level of prediction about biological modification is possible. One shortcoming of
Bayesian networks is their acyclic nature: if node A influences node B, it is not allowed for
B to in turn influence A. As feedback loops are thought to be a key feature of biological
networks(e.g. [36-38]), this is not a trivial issue. Nevertheless, Bayesian networks may serve
as an excellent starting point on which to build more realistic models.

Differential equation models lie at the detailed end of the model spectrum, although
among themselves they can capture very different levels of complexity. Most differential
equation models are based on kinetic descriptions of gene-protein and protein—protein in-
teractions, and are mechanistic as such. Models of this type are defined by their topology,
which describes which species interact with which others and how, as well as their param-
eters, which specify the rates of reactions and processes in which these species participate.
Ordinary differential equations are limited to systems of time-derivatives only and are deter-
ministic given precise specification of initial conditions [39]. Partial differential equations
are able to explicitly model dimensions of space in addition to that of time. Stochastic
differential equations [40] aim to incorporate the effects of innate noise on top of time and
space dynamics.

Thanks to their mechanistic underpinnings, differential equation models have great po-

tential for extrapolating system behavior away from the training data. It is possible to
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frame questions about changes to rate constants, protein concentrations, and network con-
nectivity in terms of the mathematics contained within the equations. In terms of drug
development, this allows scientists to explore the molecular mechanism of disease and de-
vise relevant intervention strategies. With the increased power of extrapolation, however,
comes an increased need for detail in specifying the models. Each distinct mechanism is
accompanied by parameters, all of which must be specified either through real biological
experimentation or through fitting of the model to data. Therefore, a model that includes
many mechanisms will have many parameters and will likely require many data points for

proper specification.

1.2 The traditional way to build (and use) differential equa-

tion models of biology

While different researchers may not use exactly the same specific techniques to building
differential equation models, there is a typical iterative approach [1,2,41,42] that is outlined

here.

1.2.1 Problem Definition

The process begins with the specification of the problem at hand and the identification of
the pathway of interest, usually based on prior knowledge about the key elements associated
with a disease or biological process. This stage of model building requires many choices to
be made so that the model best takes advantage of the current state of knowledge without
(a) becoming computationally unwieldy (though this is increasingly less of a concern), or
(b) attempting to extract more information than the existing data provide. (Unrealistic
ambition in model construction leads to “over-fitting” and reduces a model’s predictive
power.) In network terms, the problem definition stage is where primary decisions are
made regarding the topology of the system.

Many choices are made about the number of components to consider and how many
interactions to include. If two molecules are thought to have redundant functionality, it

may or may not be necessary to include both individual species—rather, in some cases, one
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lumped species may be used to represent both. If the interaction between two molecules is
thought to be weak, it may be reasonable to omit the interaction from the model, depending
on where the reaction occurs in the network. If an important part of the pathway lies
downstream of the interaction, its inclusion may be critical for the model’s utility, despite
seemingly insignificant kinetics.

Many proteins undergo modifications in the cytoplasm, and different forms of the same
protein may react with its chemical partners at different rates. Each chemical form can
be thought of as a separate species acting independently of its alternative states. Doing so
may come at a high computational cost that is not necessarily compensated for by increased
biological insight. In the yeast pheromone pathway, for instance, Steb acts as a scaffold,
facilitating activation between its muitiple binding partners, the family of mitogen-activated
protein kinases (MAPK, MAPKK, and MAPKKK), through localization. Because scaffold
proteins have multiple docking sites, they exist in a combinatorial number of states, e.g.
bound to MAPK only, bound to protein MAPK and MAPKK, bound to protein MAPK
and MAPKKK, etc. Accounting for each state as an individual species can thus have
an explosive effect on the size of any model to which it belongs. Clever mathematical
tricks, however, have shown that the model does not have to explicitly account for every
species to obtain accurate predictions about system behavior [43]. Another example of
multiplicative species is the many phosphoylation states available for some proteins. Several
of the proteins implicated in the epidermal growth factor receptor (EGFR) pathway belong
to this class, and Wolf-Yadlin et al. [44] showed that different phosphorylation states of
HER2 display different dynamics. It is also well-known that some proteins exhibit very
different enzymatic activity depending on their level of phosphorylation [45]. Attempts to
incorporate every unique phosphorylation state in a model, however, result in exponential
increases in complexity. It is a difficult balancing act to incorporate enough detail while
maintaining model usability.

Other choices about the depth of complexity relate to the mathematical detail used
to describe the molecular interactions. The researcher must decide whether simplifying
assumptions are to be made with regards to the reactions, such as whether to describe

enzymatic activation using full mass-action kinetics or with the Michaelis—-Menten approx-
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imation [46,47]. The Michaelis—-Menten approximation assumes that the rate at which an
enzyme binds to its substrate is much faster than the rate of product formation, and that
the concentration of the reaction intermediate is therefore at steady state. For a single en-
zymatic reaction, Michaelis—Menten kinetics require the specification of two rate constants,
K, and k,; in comparison, the equivalent mass-action reactions require three parameters.
When incorporated into a model with 100 reactions, the savings in terms of parameter
specification acquire real relevance. Furthermore, experimental measurements of enzymatic
reactions often report K, and k.,;, making it easier for these results to be incorporated into
any model. If the assumption of fast binding is not correct, the application of Michaelis—
Menten kinetics can lead to misleading dynamics for not only the species involved in that

reaction, but for all species downstream.

1.2.2 Model Optimization and Selection

Models of biological networks are rife with uncertainties: uncertainties about the values of
the parameters, about the scope and detail they include, as discussed above, and about
the underlying biology itself. More often than not, standard practice in systems biology is
to work with a single model at a time, defined by a unique topology and parameter set.
Ideally, this model is chosen so as to maximize information while minimizing uncertainty,
though in practice it is difficult to judge when this criterion is met, and other factors, such
as computational expense, also weigh in. While many choices in model definition are ad
hoc, it is sometimes difficult to eliminate candidate models, in which case a more rigorous
model selection procedure is applied.

Traditional methods for model selection are borrowed from standard statistical practice
and may be linked to the problem of parameter estimation [48]. While some model pa-
rameters may be known from prior experimentation, it is common for other parameters to
be fit so as to optimize the relationship between the model and the data. The maximum
likelihood estimate (MLE) of the parameters is the set of values that maximizes the prob-
ability of getting the data given the model. If the noise is assumed to be Gaussian, the
MLE corresponds to the parameter that minimizes the sum of squares difference between

the model and the data. In a Bayesian framework, the parameters are chosen to maximize
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the posterior—the probability of the model given the data—and it is therefore referred to
as the maximum a posteriori (MAP) estimate. In practice, an optimization is performed
on each topologically unique model with the chosen statistical metric as the objective func-
tion. There are many algorithms for performing parameter estimation, some of which are
described and evaluated in [49] and [50].

For model selection, both the MLE and MAP are typically used in a static way: the data
have already been acquired, (for better or worse), each candidate model is parametrized to
generate the best possible fit to the data, and a model may be selected as the most favorable
if it produces the best MLE or MAP score. More sophisticated, but still static, methods
exist for incorporating model size and/or complexity and these include the information
criteria (Akaike, Bayesian, and Takeuchi [51,52]), minimum description length (MDL) [53]
and information complexity (ICOMP) [54]. An alternative static approach is that of cross-
validation [55,56] whereby the models are trained on subsets of the data and evaluated
on their ability to reproduce the remaining, or testing, data. None of these methods were
developed specifically for use with differential equations models.

Another approach to model discrimination is that of experimental design followed by
further data collection [57-60]. The idea is to choose experiments that maximize the ex-
pected differences between model outcomes; then by virtue of this choice, not all models
will be consistent with the new data and these disparate models can be eliminated from the
pool of reasonable candidates. More recently, interactive algorithms that are specifically
designed for selecting among multiple differential equation models have emerged in which
data acquisition and model evaluation are coupled and combined in a single procedure [61].
The major drawback of experimental design for model selection is, of course, the need for

more experiments, which may be both time-consuming and costly.

1.2.3 Model Analysis

Once a model has been developed, there are numerous modes of analysis for determining
various system properties. The particular property of interest may depend on whether the
study is more pedagogical or practical, whether it is being used to further our understanding

of the way biology works or if it was constructed with extrapolation in mind. There is
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inevitably some overlap between the two.

Many biological networks demonstrate robustness to changes in parameter values and
some to changes in topology as well [62-71]. The effect of stochastic reactions on cellular
dynémics is roughly analogous to changing the values of kinetic rate constants in a model.
As cells are clearly functional under noise, it is expected that ODE models of biological
networks should display a robustness to changes in parameters. Genetic permutation in-
curred under evolutionary pressures may also cause effective changes to system parameters
and has the potential to affect topology as well. Small genetic modifications, such as the
mutation of a single amino acid, might generate a difference in that protein’s enzymatic
activation strength. More significant alterations might lead to complete loss of function
for that protein, and the removal of the corresponding node from the biological network
model. Sensitivity analysis, and variants thereof, are commonly used to assess a model’s
robustness [72]. This provides a measure of the expected change to a system output given
a small perturbation to the parameter of interest. Similar information can be acquired
through Monte Carlo simulations in which the model parameters are sampled many times
from a distribution and the ODE integrated for each sample [56].

Bistability is a phenomenon in which a system can achieve one of two possible steady
states; the state achieved by the system depends on the initial concentrations of the species
involved. There are many examples of bistable systems in biology, of cells having to choose
between two fates. Apoptosis is a key example of this behavior, where a cell exposed to
a stimulus must decide whether to die or to proceed on its regular schedule [73]. Models
of biological processes known to be bistable, as in apoptosis, are analyzed to determine
whether they can recapitulate the expected bistability and to assess which part of the
network assumes responsibility for it [74-77]. Non-linear dynamics techniques to address
bistability largely center around fixed point analysis [78]. The standard extension to this
type of analysis is to determine whether the bistable system can be made into a monostable
one by adjusting the parameters or topology.

It is of note that many of the methods of model analysis are used in reverse to aid in
model development. If it is assumed that good models of biological networks are robust,

then this property can factor into the model selection procedure [79].
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1.2.4 Model Validation and Refinement

Models of biology are never exact representations of the true physics and all models are
incomplete and incorrect and many ways. Because of this, no model will be able to accu-
rately predict the system behavior under all circumstances and it is always possible for new
experimental data to be incongruous with the currently used model. When a model can no
longer agree with all of the available data, it must be modified to generate a better match.
If, on the other hand, the model made a prediction, new data were acquired, and there was
good agreement between the two, some consider this to be validation of the model. This is
a somewhat dangerous position to take given that no model will be correct in all cases, but

it does indicate the breadth of its domain of utility.

1.3 Intended impact of this work

The work presented here examines the way that differential equation models are currently
applied to biological networks. Given that models in biology are always uncertain in many
ways, we investigated whether it was still possible for them to be useful for gaining insight
into the biology and for making accurate predictions about behavior in response to per-
turbation. Furthermore, we wanted to develop ways to evaluate predictions without the
requirement that further experiments be performed.

Computational biology is taking an increasingly large role at pharmaceutical companies
that are having difficulty both with keeping the drug pipeline fed with new candidate
therapies and with having to remove drugs already in the pipeline for lack of effectiveness
or unintended side-effects. It is hoped that mathematical models will lead to improved
target identification, drug safety analysis, and clinical trial design. In each of these tasks,
computational biology has the potential to serve as a financial risk assessor, were there a
way to evaluate the confidence in model predictions. Time is also a critical factor in drug
development, and it is unrealistic to spend years performing experiments to get one (still
imperfect) model.

In this thesis we have addressed several issues relating to these problems and suggest a

number of possible solutions. In Chapter 2, we examined the role of uncertainty in parame-
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ters and topology using simple toy systems and simulation. We found that model selection
can sometimes be an unreliable method for identifying the highest accuracy predictions
from non-linear differential equation models. We further highlighted that quality of model
fit is poorly correlated with quality of prediction when models are perturbed away from the
training data. And, though uncertainty in parameters should be addressed when making
predictions, methods for assessing this source of error are incapable of capturing the varia-
tion from uncertainties in topology. The distance in phase space from the training data to a
prediction is a weak indicator of prediction accuracy but the consensus among an ensemble
of well-fitting models is a strong classifier of prediction error.

In Chapter 3, we further developed the use of‘ consensus as a means of identifying high
and low confidence predictions. Our first application was to apply model averaging with
the method of propagated statistical uncertainty to generate time-dependent probability
distributions from predictions using model ensembles. The distributions were able to suc-
cessfully capture the true variation in predictions that resulted from both parametric and
topological sources. We developed a consensus score based on this method of model aver-
aging as a classifier of the overall, time-integrated, validity of model predictions. In order
to define regions of parameter space that we would expect to lead to high or low consensus,
we subjected ensembles to Monte Carlo perturbation experiments and built decision trees
using the resulting ensemble variance. We demonstrated how these trees can then be used
to identify high-confidence, biologically-interesting perturbations, as well as perturbations
for which the models of the ensemble disagree. The method therefore combines selection of
good predictions with experimental design for refinement of the ensemble.

Chapter 4 describes how we used our ensemble methods on the Fas signaling network in
apoptosis. This was a considerably larger system of study, model uncertainties represented
real differences between existing published models, and models were fit to actual experi-
mental data. We constructed an ensemble of 64 models by considering the combinatorial set
of six independent additions to a base network. We used our ensemble to explore treatment
options for sepsis in the form of cocktails of caspase inhibitors. We subjected our ensemble
to perturbations representing different treatments and built a decision tree to classify the

consensus of the ensemble under each condition. We found that with two irreversible cas-

25



pase inhibitors, one each for caspases-6 and -8, the models agree poorly on the treatment
response and we therefore suggested that this experiment be performed to refine the ensem-
ble. With a cocktail of irreversible inhibitors for caspases-3, -8, and -9, all models agree that
cells will experience a significant reduction in caspase-3 activation, despite exposure to high
levels of stimulus. We also performed a secondary analysis of the impact of flux balance
on the model fits and predictions and recommend further experimentation to identify the

relative contributions to caspase-3 activation by caspase-8 and -9.
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Chapter 2

Uncertainty in ordinary differential
equation models of biological
networks: Implications for the
assessment of predictions and a
role for model ensembles

Abstract

Biological modeling places a strong emphasis on building a model that accurately repro-
duces existing data. One anticipated benefit of a highly accurate model is that it can make
accurate predictions. Here we investigate other possibilities for identifying reliable pre-
dictions that may be applicable in the absence of sufficient experimental data to uniquely
determine even the topology of the model. Using synthetic data and small genetic networks,
we explore the use of statistical uncertainty propagated from model fitting to prediction as
a metric of predictions accuracy, as well as various metrics relating the training data to the
predicted trajectory. The former is problematic because statistical uncertainty is difficult
to accurately assess in the absence of a correct topology, and the latter shows some promise
but tends to identify perturbations that remain close to the training data. Interestingly,
we find consensus among an ensemble of topologically diverse models to be an excellent
indicator of high-confidence predictions.
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2.1 Introduction

Computational modeling of biological systems provides a means to increase our understand-
ing of complex cellular and higher-order processes, as well as to make predictions of behavior
resulting from altered conditions or pharmaceutical interventions [27,28,62,80-83]. Cellular
processes are regulated by a complex network of physical and chemical interactions taking
place among thousands of different species, including proteins, nucleic acids, and small
molecules. Past advances in biology have enabled detailed studies to elucidate the role of
individual molecules and reactions; systems biology aims to expand the field of focus to si-
multaneously probe large numbers of interrelated components and processes. By integrating
system-wide information one aims simultaneously for a functional understanding from the
systems perspective and the ability to make quantitative predictions about cellular behavior
in response to a wide variety of perturbations, across a wide range of conditions. Because
of the inherent complexity, computational modeling is a necessary tool in accounting for

the large amount of system detail.

In particular, an emphasis has been placed on ordinary differential equation models
that describe the kinetics of chemical reactions in the cell [30]. Such models are attractive
for their mechanistic nature and power of extrapolation. A sufficiently well-defined ODE
model can accurately predict system behavior under very different conditions than those
under which the model was trained. The power of prediction does not come for free, however,

and greater mechanistic detail imposes greater requirements on system specification.

Differential equation models in biology are typically developed in an iterative fash-
ion [30,82,84]. Typically, the topology (or connectivity) of the network is developed by
searching the literature for known interactions or applying a reverse engineering algorithm
to existing data [35,66,85-89]. A mathematical description of the network is written ac-
cording to that topology and values of any unknown parameters are fit by minimizing the
difference between the model and experimental data. The model is then mined for biological
insight and key predictions are tested experimentally. Eventually, new experiments show
that the model requires refinement, which might involved tweaking the topology and then

refitting the parameters, wherein the process is repeated. Models of cellular processes are
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therefore characterized by their topology and their parameters, both of which are subject
to uncertainty.

Currently, the standard approach is to work with one model at a time, described uniquely
by its topology and parameters. If there are multiple topologies under consideration for the
network, there are several ways to proceed. Often, a single topology will be selected for ad
hoc reasons related to preference, clarity, or computational feasibility. If no experiments are
to be done before continuing further, a more sophisticated alternative is to choose a set of
biologically reasonable candidate models , and then parametrize each through optimization.
The objective function for the optimization—the sum of squares error between measured
and computed trajectories, for instance—is evaluated at the minimum, and this value may
form the basis for a statistical test to select the “best” model. These tests range from
simple to complex and represent Bayesian and frequentist philophies [90,91]. The chosen
model is then used to make all predictions about the system’s response to perturbation.
Proceeding in this fashion amounts to implicitly assuming that the “best” model, as judged
by a statistical test, will make the best predictions. It should be noted that many of the
standard selection metrics were not designed for use with differential equation models.

If there is an opportunity for further data acquisition, experimental design proce-
dures can be implemented for model discrimination, reducing the pool of reasonable can-
didates [58-61,92]. This may not always be an option, as time and cost can influence
decisions. In these cases, it is important to consider the extent to which a model is useful,
given its uncertainties.

In this regard, often little attention is paid to the evaluation of predictions from ODE
models, outside of validation through further experimentation. Several notable exceptions
include the efforts by a number of groups to assess the uncertainty contribution from param-
eters [93-97]. Biology itself is stochastic [65] and biological measurement techniques provide
additional noise to any data. When fitting a specific topology to such noisy data, there will
necessarily be uncertainty in the parameters. (There is some evidence that, relating to
robustness properties of biological networks, the parameters would be ill-defined even for
noiseless data [70]. In this way, biological models may be unidentifiable.) The uncertainty

in parameters at the fit can be propagated onto any post-perturbation prediction using the
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Fisher information [93,98] or the method of bootstrapping [56, 96].

Accounting for the impact of topology on prediction uncertainty has received even less
attention in systems biology modeling. Other fields have, however, highlighted its impor-
tance (72,99, 100] and in particular have noted that model predictions tend to be more
sensitive to differences in topology than they are to differences in parameters [101]. Re-
cently, Kuepfer et al. [102] investigated the ability of 19 topologically different models to
predict the behavior of the mTor pathway. Using an ensemble of models in this way can be
compared to a topological bootstrap, whereby one samples the range of predictions due to
differences in structure.

In this paper, we present an investigation into several aspects of ODE modeling of
biological networks. The first aim was to assess the standard practice of model selection
and its impact on our ability to make accurate predictions. The second goal was to test
several heuristics for prediction evaluation including: (1) the distance between training data
and a prediction (as a measure of extrapolation); (2) propagated parametric uncertainty;
and (3) consensus among an ensemble of topologically different models. All evaluations
were performed in a simulation framework in which the correct answer was available for
each data set and prediction (see Figure 2-1, with more details included in the Methods
section).

A major conclusion of this study is that it is valuable to examine the predictions from the
ensemble of all reasonable models, rather than to pick one model and label it all-purpose.
Furthermore, the consensus among the ensemble of models is a strong indicator of prediction
accuracy. In Chapter 3, we will further address the concept of ensemble consensus and its

utility in various forms for selecting high-confidence predictions.

2.2 Methods

The overall approach pursued here is outlined in Figure 2-1. An actual system was selected
as representative of the true biology from which synthetic noisy data was produced through
model simulation and treated as experimental data. A variety of trial network topologies

was parameterized using this data, resulting in an ensemble of fit models. The fit models

30



- Model1 Model 2
——— — Prediction 1
% Model 2
Z Prediction 2
World °
Z :
7 : Model 2
° Prediction m

Figure 2-1: Schematic of the algorithm used in this study. We began by choosing an
actual system (“Real World”) and simulating it with ordinary differential equations. The
integrated model was sampled and noise was added to produce simulated data (“Data”).
From the point of data generation onwards, the methods were blinded with regards to the
actual system. Multiple models were fit to each noisy data set to create an ensemble of
models (“Model i”); these models differed in their topologies, or their parameter sets, or
both. Rate parameters and/or initial concentrations of the models were then perturbed and
the models were re-integrated under these new conditions to generate predictions (“Model
i, Prediction j”). Properties of the ensemble under perturbation were computed and then
evaluated against the predicted behavior of the actual system (“Prediction Evaluation”).

were subjected to perturbations in the form of parameter changes, and both the fit and
perturbed models were evaluated by comparing the results to those generated by the actual
system. The procedure was repeated for different choices of actual system, different levels of
noise in the data, and different sqmplings for each level of noise. The process can be divided
into several steps: model selection, simulation, model fitting, modification and prediction,
and analysis. Methods for each of these steps are outlined below, along with descriptions

of the tools used for analysis.

2.2.1 Initial Topology Selection

We selected a set of small, simple genetic regulatory networks (GRNs) with which to develop
the methods. The selected GRNs consist of three or four nodes with a single input, as shown
in Figure 2-2A. The six network topologies all follow the same logical rules with respect
to proteins A, B, and C, as described by the truth table in Figure 2-2B. That is, if the

concentration of protein A goes up, the concentrations of proteins B and C go down, and
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vice versa. It was assumed that the concentration of protein D was not measured and
therefore did not figure into the truth table. Such would be the case if the role of protein

D were only a hypothesized one.

The regulation between species was positive or negative transcriptional control and mea-
surements were taken to be the concentrations of the proteins. Transcription and translation
were lumped together in our models (similar to [103] or [46]), and genetic regulation of one
species by another, or by itself was described using Hill coefficients. For protein ¢ under
promotion by protein j and j alone, the dynamics were written as

S aij(af)fi
dt ()P + (z3)Pu

kiw?s (2. 1)

where z™(t) is the time-dependent concentration of protein i, as described by model my;
v; is the constitutive production rate of protein ¢ in the absence of any other proteins;
o is the maximum promotion rate of protein i due to regulation by protein j; &;; is the
concentration of protein j leading to the half-maximal rate of promotion; j;; is the Hill
coefficient of regulation; and k; is the degradation rate constant. Repression of protein i by

protein j was alternatively modeled using equations of the form

?

dt - 1+ (III-T" /I‘.‘,ij)ﬂij

dzj™ Vi

— kia;zm“ (2.2)

where k;; is the concentration of protein j when, due to repression, the rate of production
of protein 7 is reduced to half the constitutive rate. Full equations for all six topologies are
included in Appendix A. Topologies 1 and 4 were parameterized (as specified in Appendix
A) to give Models 1 and 4, and each in turn was used as the actual system. (The use of
the term Model will be restricted to a topology and associated parameterization. In the

absence of specific parameters, it will be referred to as a Topology.)

2.2.2 Data Simulation

Either Model 1 or Model 4 was pre-selected as the actual system and was then simulated,

using the Jacobian numerical software package (Release 3.0A, Numerica Technology LLC,
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Figure 2-2: The six small genetic regulatory networks chosen for study are shown in (A).
The gene A has a basal level of transcription and its corresponding protein either upreg-
ulates (arrow) or downregulates (dashpot) the next gene in the sequence. All six of these
networks show qualitatively similar responses in B and C when we increase or decrease
the rate of transcription of A. The logic rule followed by all six models corresponds to
AND(XOR(A,B),XNOR(B,C)), which is easily understood in terms of a truth table (B).
The gene/protein D is considered invisible; that is, we can hypothesize its presence and how
its presence affects the overall topology but direct measurements of its concentration are
not available.
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Cambridge, MA) for integration of the differential equations. The resulting trajectories of
time-dependent concentrations were sampled at eleven equally-spaced time points (from ¢t =
0 to 10, scaled time units). Gaussian noise was added to generate data values y; ; = z;"* (t)+€
where € ~ N(z*(t),0%z]*(t)). (The m, label is removed from y here to indicate that once
a data set was created, we assumed no knowledge of the actual system used to generate
those data.) Each full data set consisting of the concentrations of proteins A, B, and C at
all eleven time points is denoted with the matrix Y, with rows as species, and columns as
time points. All analyses were carried out for both 02 = 0.2 and 0.3 (corresponding to 20%
and 30% Gaussian noise).

While noise in chemical reactions is best captured by detailed stochastic simulations
that track the evolution of species over time, such methods come at a high computational
expense [21,22]. We performed trial studies on the impact of using stochastic simulations
with Langevin dynamics rather than additive noise (data not shown) and found sufficient
similarity in the properties of the trajectories to continue with the more efficient determin-
istic approach. (It is not generally true, however, that deterministic diffential equations can

necessarily capture the dynamics of noisy systems [104].)

2.2.3 Model fitting

The two primary descriptors of our models are the topology (which for each model is one of
the topologies previously described) and the parameter values, 8. While some parameters
in the models were assumed to be known, (hypothetically, from previous experimental
results), others were fit. Parameters that were fit included a subset of the initial protein
concentrations and rate constants, a summary of which is given in Table A.2. Optimizations
were performed separately for each of the six different topologies—no adjustments were
made to the topology during the fit.

We used Jacobian to find the vector of parameters 8* that yielded the best fit of each
topology to a particular noisy data set Y. The objective function for the optimization
was the log likelihood, equivalent to weighted least squares if the noise is assumed to be
normally distributed, and the value of this function at the optimum is denoted log(L(8%)).

Jacobian uses a BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm to perform local op-
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timization [105]; the bounds on each parameter were set to be sufficiently wide such that
the optima rarely included a value at the bound. (If optimizations to different data sets
repeatedly led to a parameter reaching a bound, that bound was stretched and the fits were
recomputed.) Optimizations were seeded with initial parameter guesses equal to the values

used in the actual system, i.e. from Table A.2.

To attempt to account for the variable number of parameters fit in the different models,
we applied the Akaike and Bayesian Information Criteria [51,52]. Both the AIC and the
BIC balance the likelihood of the fit with terms accounting for model degrees of freedom.
Specifically,

AIC = —2log(L(0%)) + 2K (2.3)

where L(0*) is the maximum likelihood valued at the best fit parameters and K is the

number of estimated parameters. The Bayesian information criterion is
BIC = —21og(L(0*)) + K log(n) (2.4)

where the additional parameter n is the sample size of the data set used to fit the model.

2.2.4 Model modification and predictions

Optimized models with best fit parameters were subject to perturbations of random di-
rections and magnitudes. For this study, a perturbation consisted of altering one or more
parameters. The pool of potentially variable parameters included the initial concentrations
of proteins A, B, and C, {z4(0),z5(0),z¢(0)}, the degradation rate constants for these
same proteins, {ka,kp, kc}, and the constitutive production rate of protein A, y4. These
are relevant parameters in all six topologies. One, two, or three parameters, randomly
selected from this set, were chosen to be varied at a time. The limit of three was chosen
to avoid obscuring the effects of uncertainty in the fit parameters. Among the set of seven
parameters available for perturbation, four were fit during optimization: z4(0),k4,kp, and
kc. If one of these parameters was selected for perturbation, the fit value of that parameter

was replaced with the perturbed value. Similarly, parameters that were initially fixed in the
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optimizations were reassigned perturbed values. Values were selected from a logarithmic
uniform distribution ranging two orders of magnitude above and below the values set in the
original model.

A prediction consisted of the concentrations of proteins A, B, and C as a function of time

generated by integrating the fit model with the perturbed parameter set. In the following

ms,Or

text, y; is the vector of predictions for model s as a result of perturbation r at time
t. Each element of the vector, ygn’ts’A", corresponds to the concentration of protein i. The

ensemble prediction consisted of the union of the y;ns’A" for all six models.

2.2.5 Heuristic measures of prediction confidence
Propagation of statistical error

All model parameters in real systems are subject to some degree of uncertainty whether they
are optimized or determined independently through experimentation; sources of uncertainty
include disagreement between the fit model and the data as well as experimental measure-
ment error. When an ODE model with uncertain parameters is used to make predictions,
the deterministic trajectories are also subject to uncertainty. The covariance matrix of a

prediction under perturbation r, V™A can be approximated as [50]

T
a ms,AT a ms,Ar
Vit & (———yg 5 )Vg (#—yg 5 ) + V. (2.5)

where Vy is the covariance matrix of the parameters, and the partial derivatives are sen-
sitivities of the model predictions to the various parameters. The V. term can be used to
account for additive measurement noise. In the absence of the correct model, the matrix
Vy is estimated using

2 -1
0 10gL> (2.6)
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H* is the Hessian matrix valued at the best fit and L(@) is the likelihood of the data given

the model with parameters 8, as in section 2.2.3.

VTS’AT was computed for all predictions r. As a measure of the total uncertainty of a

prediction due to parameters alone, we calculated a score UgE’Ar for the propagated error
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by summing the variances at unit time points from ¢ = 0 to 10 across all species.

Upeir — vamhm) (2.7)
=0

Distance from training data to prediction

We measured the distance between the training data and a prediction in three ways. The
simple sum of squares distance computes the difference between data value y;; for species
¢ at time ¢ and the predicted value under perturbation for the same species, at the same

ms, r

time, y; " and integrates over species and time:

N T
5,Ar 3,87\2
Dgss™ = Z Z(yi,t —ypor)? (2.8)

i=1 =0

We also computed the nearest point sum of squares which adds together the distances
between each time point on the predicted trajectory and the nearest datum to which the

model was fit:

2
DpA =3y ( min (yir y:";’Af)) 2.9)

i=1 =0 T€[0,T)

A third metric of distance between the training data and a prediction was formulated in
which a box was drawn around the data in phase space. For each prediction time point
lying outside the box, the distance was computed from the center of the box; points inside

the box do not contribute to the metric:

;";;A’ = Z Z y:';"’A') , for all points outside the box (2.10)
=1 =0

where yPC is the center of the box in phase space, i.e.

=3 (te[o X Vit~ té?(},r%q Yit) (2.11)

Consensus among models in an ensemble

We developed and tested a number of similarity scores to express the level of consensus

among our ensemble in making a given prediction. The combinatorial consensus score, Ccc
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sums up the differences between all combinations of models in the ensemble, over evenly
spaced time points and across all species:
N
CAr
Cee= 2.

=1

T M M A
NN et -yt (2.12)
t=0 Jj#s

s=1

where M is the number of models in the ensemble, N is the number of proteins that are
measured and T is the last measured time point. Similarly, the weighted combinatorial
consensus score Cyycc weights the differences according to the mean value of each model

pair:
N T M M ms,Ar m,,Ar)

wcc—ZZZZ .

A‘r sAT
=1 t=0 s=1 ];és yzt +y mJ )/2)2

(2.13)

The mean consensus score Cjs¢ calculates the mean prediction and then sums the differences

between each model in the ensemble and this mean:

M N T M
8Ar A, .
Cric = Z Z Z(ym -5iy)’ = Z Cyé (2.14)
s=1 i=1 t=0 s=1
The weighted mean consensus score Cyprc weights the differences according to the mean
prediction:
M N (yms,Ar yAtr)Z M A
Ay — L ms’ r
CWuc=2_2.2 A2 =2 Cwiic (2.15)
s=1 i=1 t=0 @it ) s=1

C™: is a measure of the distance from model s to the mean ensemble prediction. Summing
over the C™: therefore gives the overall variance of an ensemble prediction. All consensus
measures have the property that they are low (close to zero) for a prediction for which all
models predict a similar trajectory and increase with increasing disagreement among the

models.

2.3 Results and Discussion

Our aim was to develop an understanding for how the quality of predictions from ODE
models varies as a function of different features of the data, the perturbations, and the

models themselves. Our overall strategy in working towards this goal was to generate a large
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database of simulations across variant models from which to draw statistics that relate these
features to prediction accuracy. As one tangible outcome, we sought methods to choose high
confidence model predictions. A key feature of the work involved investigating the potential
role of ensembles of models to improve upon predictions that are traditionally made using
a single model. A computational framework for addressing both facets of the project was
created and is described in Figure 2-1. Actual systems were chosen and simulated with
additive noise; the noisy data sets were then fit to models with different topologies to create
an ensemble of models; and, finally, numerous perturbations were applied to each member
of the ensemble and the simulation outcome was recorded. The entire process was repeated
for multiple actual systems, different levels of noise, and different subsets of the ensemble
to yield millions of predictions for study.

The six models of our ensemble represent simple genetic regulatory networks that share
the same Boolean logic with respect to the concentrations of the proteins involved (Figure 2-
2). That is, if we represent high and low expression of a protein as on and off states, we
would expect the six models to behave the same way, under all conditions. In choosing
the ensemble this way, it is reasonable to assume that every topology has a good chance of
fitting data generated from any of the other models.

We selected Model 1 and then Model 4 as our actual system (see Figure 1), each defined
by assigning a single set of rate constants and initial conditions to Topology 1 and Topology
4. We then used the models to simulate deterministic time courses of protein concentration.
To each simulation we added proportional Gaussian noise in which the variance of the
distribution at each time point was a fixed percentage of the calculated deterministic value
(simulating measurement noise). We generated fifty different data sets for each actual
system at each of two levels of noise, 20% and 30%, for a total of 200 simulated initial data
runs.

Optimization was performed to individually fit Topology 1 through Topology 6 to each
of the 200 data sets. Fit models were generated by selecting parameters that minimized the
sum of squares error between the model and data, subject to constraints (see Methods).
Each of the 1200 fit models was uniquely specified by its topology and parameters; even for

fit models where the topology matched that of the actual system, parameter values differed
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from the actual system due to the noise added to produce the data.

Quality of fit cannot always select the model with the correct topology

We rank-ordered the fits to each data set according to the maximum likelihood (ML) and
found that, according to that metric, fit models with Topology 1 were rarely selected as
the best model when Model 1 was used as the actual system. Figure 2-3 (top row) shows
that in the case of single data sets with 30% noise, in only one case out of 50 was a fit
model with Topology 1 identified as the best model. Due to over-fitting, Topologies 3,
4, and 6, which all have an additional fit parameter compared to Topologies 1, 2, and 5,
were preferred. The Akaike Information and Bayesian Information Criteria (AIC and BIC)
are both metrics that attempt to improve the model selection procedure by balancing the
quality of fit with the number of degrees of freedom. (The criteria differ in that they are
derived from either a frequentist or Bayesian perspective.) After applying these metrics,
Topology 1 was correctly selected as the best in about half of all trials. Similar results were
obtained with 20% noise (see Figure A-1 in Appendix A).

When the actual system was instead Model 4, and the data had 30% noise, the maxi-
mum likelihood metric correctly chose Topology 4 in about one fifth of the trials. It was
outselected by Topologies 3 and 6 which are equivalent in size. In this case, the AIC and
BIC overpenalized the larger models, including the correct topology, always preferring a
simpler one (Figure 2-3, bottom row). It was in fact impossible to find a linear correction
term for the degrees of freedom that could consistently select the correct topology from
data derived from Model 1 and Model 4. (We tested the Takeuchi Information Criterion
(TIC) [52] and the Information Complexity (ICOMP) [54] as well (data not shown) and
observed that these were also incapable of consistently selecting the correct topology from
models of different complexity.) These results demonstrate that when the topologies un-
der consideration are expected to behave similarly, and can all recapitulate the data well,
the quality of fit between model and data is not generally capable of selecting the correct
topology, even when supplemented by information criteria (specifically, the AIC and BIC).

The concept of statistical indistinguishability encapsulates the premise that when mod-

els are very similar near the data on which they are trained, there may not be enough

40



Maximum Likelihood Akaike Information Criterion Bayesian Information Criterion
1 1

0.8

06

Fraction of times selected as best model

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
. 1 2 3|1 415 6 - 1 2 -3].4]5 6

Topology number

Figure 2-3: Histograms for the fraction of times each topology was selected as the best
model by Maximum Likelihood, AIC, or BIC. The top row corresponds to data generated
from Model 1, whereas the bottom row is for Model 4 (see Figure 2-2 for topologies). By
ML, fit models with Topology 1 were rarely selected as the best model when Model 1 was
used to generated the data because this topology has fewer parameters than Topologies 3,
4, and 6. While accounting for this difference with AIC or BIC improves the ability to select
the correct topology in this particular case, these model selection metrics over-penalize fit
models with the correct topology when the data was generated from Model 4.

information to tease them apart. The same may be true if the data are simply poor. It can
be difficult to establish whether the ML, AIC, and BIC values associated with biological
models imply distinguishability. Differences in the likelihoods of two candidate models 7 and
j are typically assessed for significance using the likelihood ratio test (LRT) [90], in which
the test statistic A = —2(log L; — log L;) is compared to a x? distribution with degrees of
freedom equal to (df; — df;). For models of the same size that have different underlying
topologies, the procedure is not straightforward. Moreover, when the models are based in

differential equations, A may not follow a x? distribution.

To establish distinguishability using the AIC or BIC, the usual method consists of simi-

41



larly computing the differences associated with the candidate models, §; = AIC; — AICyj,.!
Models can be accepted or rejected based on the §;, although the thresholds for these
decisions are somewhat empirical in nature [52].

We do not wish to imply that the statistical methods commonly applied to non-differential
equations models will never be applicable to ODE models such as we’ve described here.
Rather, we wish to highlight that there are cases where these methods will not generate the
expected result and, lacking access to the correct answer as we had here, it is impossible to
know a priori whether one’s own particular test case falls in the category of applicable or
not.

A discussion of identifiability is also warranted here, which we consider to be the ability
to select the correct topology given perfect data. (There is an alternate notion of iden-
tifiability, that being whether multiple parameterizations of the same topology can yield
identical fits to the data. We will use the first definition.) Noiseless data were generated
using Model 1 or Model 4 and each topology was optimized to this data. The likelihoods
for the fit models, normalized to the best fit, are plotted in Figure A-2. Model 1 is not
identifiable as an actual system because through parameter adjustment, Topology 4 can
be made to generate as good as fit as Topology 1. In contrast, Model 4 is identifiable as
no other model topology can fit the data as well as Topology 4. There are also greater
discrepancies between the fits of candidate topologies to Model 4 data, and this had an

impact on other results that we discuss below.

Quality of fit is uncorrelated with quality of prediction for models that fit
the data well

One thousand perturbations of random magnitudes and directions were applied to each
of the 1200 fit models and over a million predictions were simulated (see Methods). The
predictions were evaluated by comparing them to simulations of the actual system (without
added noise) for the same perturbation. Figure 2-4 shows the sum of squares error of predic-

tion versus the negative log likelihood valued at the fit for two subsets of the perturbations.

!The standard notation for these differences is A though we have used § here to avoid confusion with the
model perturbations, A, as described in the Methods section.
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In these subsets, the models were all parametrized to data from Model 1 (top) or Model
4 (bottom) with 30% noise. The stripes in the plot arise from the fact that a single fit
model is associated with a particular likelihood score and that each such model was used
to generate multiple predictions.

There is no correlation between quality of fit and quality of prediction in these cases
(p? = 0.024 and 0.060 for Model 1 and Model 4 as actual system, respectively). Even the
best fitting models can make very poor predictions (those points in the upper left) while
less well-fitting models can sometimes make good predictions (lower right). It is also not
true that for any particular data set the best fitting model generates the highest quality
predictions. With Model 1 as the actual system, the best fitting model also made the
best prediction for 10.2% of perturbations. With Model 4, this was a still modest 18.4%.
(Figure A-3 shows the specific breakdown of these results by topology. In Figure A-4 these
results have been normalized for the number of times that each model was selected as the
best fit to the data.)

The disconnect between quality of fit and quality of prediction in this case is partly due
to the fact that all of the models provide a reasonable fit to the data. If a model fits the
data very poorly, it would be unlikely to ever make accurate predictions. In a setting in
which we are interested in using such models to draw biological insight, however, candidate
topologies that cannot match the data would in general not be used in any further analysis.
The emphasis here is that while models may be indistinguishable at the level of fitting, they

most certainly may vary in the quality of prediction when the actual system is perturbed.

Models with the correct topology do not necessarily make the best pre-

dictions

It is not true that the model with the correct topology generates the best predictions
because fitting to noisy data sets results in imprecise parameter values. Our experiment
with Model 1 as the actual system showed that models with Topology 1 made the best
prediction for fewer than 40% of perturbations (Figure 2-5A). When Model 4 was instead
the actual system, models with Topology 4 made better predictions than any other model

nearly 60% of the time (Figure 2-5B).
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Figure 2-4: Plotting the error in prediction against the maximum likelihood at the fit
demonstrates that there is little or no correlation between quality of fit and quality of
prediction. Colors are for the different model topologies. (A) Data from Model 1 as the
actual system. (B) Data from Model 4.
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Unfortunately, the relationship between the data and the model cannot distinguish
between the first case and the second—that would require detailed knowledge of the actual
system, which we do not currently have when studying biology. It should be noted that
sometimes, even when one particular topology makes better predictions than all others in

the ensemble, the absolute error of prediction is still intolerably large.

Model 1 as Actual System Model 4 as Actual System
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Fraction of best predictions
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Topology number
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Figure 2-5: Histograms for the fraction of times each topology makes the best prediction,
i.e. has the lowest sum of squares error compared to the other ensemble models (same data
as Figure 2-4): (A) data generated using Model 1 as the actual system, (B) data generated
with Model 4 as the actual system. When Model 1 is used to generate the data, models
with that topology are only rated best for about 40% of the perturbations. When data is
generated from Model 4, the model with the correct topology makes the best prediction for
about 60% of all perturbations. That in either case the correct topology doesn’t make the
best prediction 100% of the time is due to uncertainty in the parameters.

Quantifying parametric uncertainty is of greatest utility when the correct

topology is known

Many of the prior efforts to account for model uncertainty have focused on understanding
errors in the parameter values [93,95,98]. We investigated the utility of parametric un-
certainty to evaluate predictions by computing the estimated variance of predictions and
comparing it to the actual error of those predictions over our database of perturbations.
When only the correct topology was considered, the error of prediction was consistent in
Upg. In Figure 2-6A and B, data was generated using Model 1 and all fit models had

Topology 1. For perturbations of these models, the error appeared to be linearly bounded
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by the parametric uncertainty?. That is, given the estimated variance of a prediction, a
reasonable limit could be placed on its associated error. When other topologies were intro-
duced, unsurprisingly the estimated variance no longer provided this bound (Figure 2-6C
and D); this follows from the fact that V™" (from Equation 2.5) only describes the width
of the distribution of solutions while the mean is a function of both parameters and topol-
ogy. Although there are other methods to estimate the uncertainty of predictions based on
parameter errors, and we have not tested those here, it is reasonable to conclude that these
are also incapable of capturing the variance due to differences in topology. We have merely
illustrated the issue that both parameters and topology must be considered in order to fully

understand the range of predictions that could be expected under a particular perturbation.

Distance from prediction to training data is weakly correlated with pre-

diction quality

We were interested in learning whether the distance between the training data and a pre-
diction was related to prediction accuracy. The thought was that predictions lying close
to the data are in some way smaller extrapolations than predictions farther away and may
therefore be less prone to error. We calculated the distance between the data and a predic-
tion in three ways, as described in the Methods section. The distances for a subset of the
simulations in which the data came from Model 1 with 30% noise are plotted against the
error of prediction in Figure 2-7. The correlation coefficients for Figure 2-7, corresponding
to the time space (A), phase space (B), and phase box (C) distances are 0.41, 0.44, and
0.35, respectively. While the correlation is weak in all three cases, it is clearly evident that
the largest errors correspond to predictions that lie far away from the training data.

The red squares in Figure 2-7 are taken from models that were fit to the data but
left otherwise unperturbed. With all three distance metrics, there are a number of post-
perturbation predictions (blue dots) that are just as close to the data as the fit models,

but exhibit errors up to an order of magnitude greater. Therefore, one cannot expect a

2For a given value of Upg, the expectation is for the density of the error to drop off exponentially and
the apparent bound arises due to limited sampling and plotting on a log scale.
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Figure 2-6: The propagated statistical uncertainty, Upg, was computed for all models under
all perturbations, and plotted versus the error of prediction. When the model under study
has the correct topology, calculations with the estimated parametric uncertainty can provide
a roughly linear bound on the actual error of prediction ((A) and (B)). When topology is
uncertain, this linear relationship no longer exists and the prediction errors are generally
larger: subplots (C) and (D) show superimposed results for models from all six topologies,
fit to data from Model 1. The right column shows two-dimensional histograms of the data
on the left.

prediction to be accurate simply because it lies close to the data; however, if the distance

from a prediction to the data is large, one might conservatively be wary of its quality.

Consensus among model ensembles is a strong classifier of prediction error

For each of the perturbations in our database, we computed the ensemble distance from
consensus (see Methods). Figure 2-8 shows the relationship between the ensemble variance,
Cume and the error of the ensemble mean prediction. There is an increasing trend in the
error of prediction as the ensemble gets further away from consensus, though the correlation
itself is not particularly strong (p = 0.61 for Model 1 as actual system (top row)). Notably,

however, when the ensemble shows a high level of agreement, it is rare that the average
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Figure 2-7: Distance from data to prediction measured three ways and plotted versus error
of prediction: (A) Simple sum of square distance from data to prediction, (B) distance
from data to prediction using the nearest point in phase space, (C) distance between data
and prediction measured by drawing a box around the data in phase space (see Methods
for details.) The right column contains two-dimensional histograms of the plots in the left
column. Red squares on the left-hand plots show the distance and error for fits of all six
model topologies to each of 50 noisy data sets.
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prediction is poor. As in Figure 2-7, the red squares show the consensus and error for models
that were fit but not perturbed. Once a perturbation has been applied, it is uncommon to
have a similar consensus score to the unperturbed case and yet make a worse prediction.
We concluded therefore that if the ensemble is perturbed and still shows a high level of

consensus, that the mean prediction is likely to be accurate?.

To determine the power of consensus as a classifier of prediction error, we analyzed
the data in Figure 2-8 to produce a receiver operating characteristic (ROC) curve for such
a classification test. The real designation of a prediction was assigned according to the
ensemble mean prediction error: if it was smaller for the perturbation than it was at the
fit, it was judged as being positive, and vice versa. The measure of quality was taken to
be the ensemble variance: predictions for which the ensemble variance was below a chosen
threshold were labelled positive and others, negative. Then a true positive by this test was a
prediction for which the ensemble variance was below the threshold and the mean ensemble
error was less than at the fit. To generate the curve, the stringency of this threshold
was varied from the minimum to the maximum value of the computed variances across all
perturbations and the rates of true and false positives were computed. The same test was
performed separately for each of the 50 data sets built from Model 1 or Model 4 with 30%

noise (see Figure A-6). The results were then averaged to produce Figure 2-9.

The ROC curve emphasizes the strength of the ensemble consensus as a classifier of
prediction error as it is highly distinct from the curve expected for a random classifier
(shown as the dotted line). The curves are very similar for Model 1 and Model 4 as actual
systems, implying that, at least for this particular set of topologies, the ability of consensus
to classify is independent of which model was used to generate the data. The squares in
Figure 2-9 indicate the test where the consensus threshold was the ensemble variance of the
fit. Using this threshold for classification is very conservative. The sensitivity is quite low
(0.31 and 0.42 for Model 1 and Model 4 as actual systems, respectively) but the specificity
(equal to one minus the false positive rate, 0.971 and 0.957) is very favorable. The use of

the consensus at the fit as the threshold of discrimination is a good choice if one is mainly

3Similar conclusions were drawn using the combinatorial consensus score, Cocc, and weighted consensus
scores (data not shown).
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Figure 2-8: Distance between the true prediction and ensemble average prediction as a
function of distance from consensus, Cysc. When models in the ensemble agree, i.e. the
Cumc is small, predictions are accurate. The right hand column consists of two-dimensional
histograms of the data in the left column. Red squares show the distance and error for the
unperturbed fits of all six model topologies to each of 50 noisy data sets. (A,B) Model 1 as
the actual system. (C,D) Model 4 as the actual system.
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Figure 2-9: Averaged ROC curves for consensus as a classifier of prediction error. The
data was drawn from either Model 1 (blue) or Model 4 (red) with 30% noise. The squares
indicate the test in which the threshold of discrimination between positive and negative
predictions is the ensemble variance valued at the fit. While this choice of consensus is
conservative, it does result in the selection of highly accurate predictions.

interested in selecting a small number of predictions that are likely to be accurate. This

choice also has no system-dependency which might lead to bias.

2.4 Conclusion

Here we report an investigation into the use of collections of mathematical models to rep-
resent incomplete knowledge of biological networks. The study used a topologically diverse
ensemble of ODE models and focused on identifying high-confidence predictions from limited
and noisy training data. Six model topologies were fit to simulated data, and predictions
under a variety of perturbations were made from the fit models and compared to “actual”
results from the same model that produced the original simulated data. The results provide
interesting insights into procedures for model selection in biological network and heuristics
for identifying high-confidence predictions.

When multiple topologies fit the available data reasonably well, the quality of fit is not

a good indicator of topological correctness or prediction quality. Model selection, however,
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has an important role in eliminating topologies that agree poorly with the available data.

Heuristics for evaluating the quality of model predictions were also evaluated. Para-
metric uncertainty, which certainly contributes to prediction error in biological modeling, is
difficult to propagate through to prediction outcomes accurately in the face of topological
uncertainty. Quantifying the distance between training data and testing data has some po-
tential for identifying conservative predictions likely to be of high confidence. However, the
most interesting predictions may be those relatively distant from the training data, which
could limit the usefulness of this approach.

The most striking result from this study is that consensus across multiple models was
useful for selecting high-confidence predictions. It will be important to validate these result
with larger and more complex biological networks. We anticipate that approaches based
on this methodology will be useful in applications where making a small number of high-
confidence predictions are important, such as the design of clinical trials.

A prominent issue with ensemble techniques is of course how to choose the models in
the first place. In this example, we hand-picked a number of models expected to behave
similarly. In other applications, it might be reasonable for an expert to mine the biological
literature for uncertainties in network structure, and to construct alternative topologies
based on these differences. There also exist methods to automatically generate model en-
sembles [106-109]. A related concern might be the sensitivity of these methods to particular
choices for the ensemble. For instance, how would the results change if the correct model
were omitted? In this example using the six genetic regulatory networks, leaving out the
actual system bore little effect on the general conclusions (see Figure A-5); however, one
might imagine a pathological case in which the ensemble was very sensitive to the removal
of a particular model.

We further investigated the promising avenue of consensus as a measure of prediction
quality through the use of existing and novel mathematical techniques applied to the same

six-model ensemble presented here. The results of that study are discussed in Chapter 3.
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Chapter 3

Consensus methods for
differentiating high- and
low-confidence predictions from
ODE models in biology

Abstract

Computational models are increasingly relevant for understanding biology at the systems
level. Although the cell is both noisy and complex, improved computational power and
high-throughput experimental techniques are making it easier to build detailed pathway
models with differential equations. At this stage, however, these models are still subject to
considerable uncertainty, in both topology and parameters. Ensembles of models that differ
in their topologies, parameters, or both, may provide assistance in assessing the overall
uncertainty in model predictions. Here, we have investigated the use of consensus among
models of such an ensemble for evaluating predictions and for identifying perturbations that
lead to either high or low consensus. We use model averaging, combined with propagated
parametric uncertainty, to compute time-dependent probability distributions for protein
concentrations in simple genetic regulatory networks. With the same test system, we apply
decision trees to partition parameter space into regions of high or low consensus, as mea-
sured by an ensemble variance. The decision tree can also be used to design experiments for
refining the ensemble. Finally, we introduce the concept of a consensus sensitivity, a contin-
uous metric for evaluating how the ensemble variance changes in response to perturbation.
The decision trees and sensitivities both have the ability to identify the relevant parameters
for distinguishing the models of the ensemble. Overall, we demonstrate how consensus can
be used to encapsulate multiple sources of error in predictions from differential equation
models and to analyze the space of possible perturbations.
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3.1 Introduction

Systems biology, and computational modeling of biological systems in particular, has great
potential for building our understanding of complex biochemical networks. Models encap-
sulate and integrate information from diverse sources to assist our ability to predict cellular
behavior both under growth conditions or in response to stimulus [1,110,111]. Mechanis-
tic differential equation models lie at the detailed end of the spectrum of computational
methodologies [30] and provide opportunities to probe the impact of specific chemical per-
turbations to the cell. These perturbations may represent changes to a cell that occur in a
diseased state, as a result of therapeutic intervention, or both, and as such, these models

hold much promise for the field of drug development [26-29,112,113].

Detailed models of the chemical kinetics inside a cell require large numbers of parameters
to be specified, from rate constants to initial protein concentrations. Typically, many of
these parameter values are unknown. Some of these values can be drawn from the literature,
some can be measured specifically for building the model of interest, and the rest can be

set to nominal values or fit to existing data through optimization [49,84,114,115].

These models are also defined by a topology—or network structure—that provides an
additional source of uncertainty. Not only is it difficult to choose where to delimit the net-
work in constructing a model of a given cellular function, but often there are many biological
uncertainties about the interaction partners of each protein and the specific mechanism by

which these interactions occur.

Can models with so many sources of uncertainty still be useful for identifying drug
targets or proposing their impact on biological function? Probably. At the very least,
uncertain models have a good chance of making accurate predictions near the training data,
provided they can recapitulate the data well. If a model is perturbed strongly away from the
data, its validity must be questioned. The model may still make good predictions, but there
is a chance it may not. Consider the role of model predictions in a drug development setting:
if a pharmaceutical company were to assign development projects based on the predictions
from a model, their importance (or funding) would ideally be ranked as a function of the

potential impact balanced by the likelihood of success. In this way, uncertainty analysis for
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a model’s predictions may present significant value.

Several important papers have described methods for assessing and accounting for un-
certainty in model predictions due to poorly determined parameters [93-97]. In biological
modeling, the focus regarding topological uncertainty has been on solving problems of model
selection [116-119] and experimental design for model discrimination [58-61,92]. Rather
few efforts have been made to explicitly account for topology as a second source of uncer-
tainty in model predictions [102,109,120], despite the fact that predictions may in fact be
more sensitive to changes in structure than to parameters [72,100, 101,121]. In previous
studies, (see Chapter 2), we demonstrated a method of accounting for structural indetermi-
nancy using model ensembles and showed that where the ensemble collectively agreed on a
prediction, the prediction was more likely to be accurate.

The notion of consensus among models has been used in other disciplines for either
improving or validating model predictions. The field of statistics, in particular, has been
a proponent of consensus models into which structural uncertainty is explicitly incorpo-
rated [72,100,122-126]. While the study of econometrics has also employed these methods,
they have additionally made use of implicit techniques, where forecasts from individual mod-
els are linearly weighted to generate an “average” prediction [127-130]. Both approaches
have been adopted for use in diverse other domains, such as weather and climate forecast-
ing [131-133], phylogenetics [134], and ecology [135,136]. Several common classification
algorithms in articial intelligence, such as boosting [137] and bagging [138], also take ad-
vantage of consensus among an ensemble of possible models.

There are a number of differences between the application of consensus in biological
modeling and in other fields. Many other consensus approaches have been developed for
use with classification problems in which a prediction consists of a vector of quantities that
can take on finite number of discrete values. Here, a prediction consists of a time-course
of continuous protein concentrations. Many classification algorithms do not as yet have
continuous analogs.

Models in other disciplines may also not necessarily have the save level of explicit mecha-
nistic interpretation. In statistics and econometrics, models are often built around observed

correlations rather than causal descriptions of physical interactions. With correlation mod-
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els, quality is assessed in terms of ability to accurately predict future measurements on
which the model was not trained. In models of biology, there is the additional constraint of
physical reality. There exists no model of signal transduction or genetic regulation that com-
pletely describes this physical reality, but it is certainly desirable to eliminate interactions
that contradict known biological facts.

Our goal here was to determine the feasibility of different consensus methods both for
identifying high-confidence predictions and for determining which types of system perturba-
tions would lead to those accurate predictions. We tested a model averaging approach as a
means for assessing the uncertainty of model predictions due to parameters and topologies.
The result is a method that yields a time-dependent probability distribution for protein
concentrations. We then demonstrated how regression trees could be used to partition per-
turbations into regions of parameter space that lead to either high or low consensus among
the ensemble of models under consideration. In doing so, we derived a method for simul-
taneously selecting high-confidence predictions and suggesting experiments for refining the
ensemble. Finally, we developed the consensus sensitivities, a novel method for analyzing

how parameter choices lead to high or low ensemble consensus.

3.2 Methods

3.2.1 Models

The models used for the testing of methods presented here are parametrizations of the
six simple genetic regulatory networks described in Chapter 2, as shown in Figure 2-2.
All topologies in this ensemble agree at the Boolean level: increasing the concentration
of protein A leads to a decrease in the expression of proteins B and C. Decreasing the
concentration of protein A has the opposite affect. Equations for the models are provided

in full detail in Appendix A.

3.2.2 Parameter estimation

Simulated data were generated either from Model 1 or Model 4, each of which is a specific

parametrization of Topology 1 or 4. (The parameter values are given in Appendix A.) The
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deterministic results of the integration of each model were sampled at 11 evenly spaced time
points (0 through 10) and proportional Gaussian noise was added in the amount of either
20 or 30%. (The reader is referred to Chapter 2 for more details.)

Degradation constants and initial concentrations of all species for all six topologies were
estimated by unconstrained local optimization with a maximum likelihood objective func-
tion. All parameter fitting was performed using the Jacobian numerical software package

(Numerica Technology LLC, Cambridge, MA).

3.2.3 Monte Carlo simulation of perturbations

Fit models were subject to perturbations in the form of parameter changes. The set of
variable parameters included the initial concentrations and degradation rates of proteins A,
B, and C, and the constitutive production rate of protein A. These parameters are defined
and have the same physical interpretation in all six topologies. For each perturbation, one
to three parameters were selected at random from the set and assigned new values. These
values were drawn from a uniform distribution that extended four logarithmic orders of
magnitude (in base 10). A prediction in response to perturbation consisted of a 3 x 11 matrix
of protein concentrations, with each row representing the time course of concentration of

protein A, B, or C.

3.2.4 Parametric uncertainty

The Fisher information approach was used to estimate the uncertainty of a prediction
associated with a given topology, due to parameters alone. For each perturbation, and

for each model at each time point, we computed the covariance matrix of the predictions

Vi = (%) Vo (ag’g”)T (3.1)

where Vy is the covariance matrix of the parameters, y,,; is the vector of concentrations

using [50]

of each protein species, as predicted by model m at time £, and the partial derivatives of
this vector produce the sensitivities of the model predictions to the parameters, 8. V, was

estimated using the inverse of the Fisher information matrix, evaluated at the optimum of

57



the fit, as calculated by the Jacobian software.

3.2.5 Ensemble variance

We define the ensemble variance as the variance of predictions of the time-dependent protein

concentrations across all models of the ensemble, summed over species and time:

| TN oM L M 2
099 ol USIEED 3% 52
t=0 i=1 m=1 k=1

where T is the total time of the experiment, N is the number of measured species, M is the
number of models in the ensemble, and y; ,; is the concentration of species 7, according
to model m, at time £. The predictions were sampled ten times more finely than the data
(101 time points). Subsequent results based on the calculation of Vr were shown to be

insensitive to the specific sampling rate (data not shown).

3.2.6 Model averaging

We assigned each model the role of expert for the sake of combining their associated prob-
abilities regarding predictions. Expert probabilities are typically combined linearly, using

the linear opinion pool,

M
plinear — Z Ampm (33)
=1
or exponentially, using the logarithmic opinion pool,

M

ps = [ (o)™ (3.4)

m=1
where M is the number of experts, p,, is the probability associated with expert m, and A,
is the weight given to this expert’s opinion.

We assumed Gaussian distributions for each model with means equal to the deterministic
prediction obtained by integrating the system of differential equations and variances equal

to the propagated parametric uncertainty, as shown in Section 3.2.4. The probability that
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at any time ¢ the concentration of species j will be y according to model m is then given by

1 (¥ — Yim t)2)
. . S ex _—’-’_ 3.5
pz,m,t(y) 27T(0'i,m,t)2 p ( 2(0'i,m,t)2 ( )

Using the exponential opinion pool, the probability that any particular protein has concen-

tration y at time ¢ can be written as (see Supplemental Material)

I 1 A (Y — Yimp)?
P (y) = exp (—[ log2w+z,\ 1oga,mt+22’"——i— (3.6)
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Then for any protein species at any time, the concentration of maximum probability is

M
Z WmYim,t

yi,t - mle (3.7)

> wm
m=1

where

ai,m,t

To evaluate the overall quality of a prediction, we computed a consensus probability score

Po =+ Zzlogp (3.9)

i=1 t=1

where pM? is the probability associated with the maximum probability prediction, y™F
The overall procedure for generating the probability density distribution for a perturbation

is illustrated in Figure 3-1.

Weighting schemes

The weighting for each model according to Equation 3.8 is directly proportional to our a
priori confidence in the topology and inversely proportional to the uncertainty in the pa-
rameters. If the \,,, are the Bayesian priors, P(m;), this scheme is equivalent to Bayesian
model averaging [123]. Because calculating these priors requires integrating over the ac-

cessible parameter space, we found that the computational cost was prohibitive for more
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Figure 3-1: Procedure for generating probability distributions of protein concentration as a
function of time. The six fit models of the ensemble are perturbed and then integrated to
yield deterministic time courses (top row; blue, protein A; green, protein B; red, protein C).
Each model is then assigned its own probability distribution by considering the contribution
of parametric uncertainty to the accuracy of prediction (middle section). Distributions from
individual models are then combined according to a logarithmic weighting (bottom row).
The resulting probability distributions encapsulate both topological and parametric sources
of uncertainty.
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than a few fit parameters. We therefore tested two alternative weighting schemes for the
ensemble: equal weighting (A, = ﬁ) and weighting according to the distance of each

model from consensus:

m

_ 1/(ym - 37)2
XM (k- 5)? (310)

where the mean is taken over the models.

3.2.7 Decision trees

Decision trees were used to partition the space of perturbations into regions defined by
either high or low ensemble consensus. The classification and regression tree algorithm
(CART) [139] divides data into subsets that share similar values of a response variable;
the division is performed by making recursive binary splits in the predictor variables. We
defined the predictor variables as the directions and magnitudes of perturbations, expressed
as log-fold changes to model parameters; the ensemble variance, Vg, was the response. Each
split of the tree was chosen to yield the global optimum improvement to the tree’s cost,
given by

cost = Z Z(VE " T2 (3.11)

el ret
where L is the set of all terminal nodes (or leaves), VEA’ is the ensemble variance for
perturbation r, and Vﬁg is the mean ensemble variance of perturbations assigned to node
£. The overall cost of the tree can thus be described as the sum of the variances (of the

ensemble variances) of all terminal nodes.

The decision tree analysis was performed in MATLAB (Version 2007a, The Mathworks,
Natick, MA) with trees initially grown until they met the minimum split criterion of ten
observations. Ten-fold cross-validation was performed to identify the optimal level of prun-
ing, which was set to be the smallest tree within one standard error of the minimum cost

tree.
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3.2.8 Consensus sensitivity

We set C equal to the ensemble variance, Vg, as described above and calculated the sensi-
tivities of this quantity to the vector of variable parameters, 6. (Recall that the variable

parameters are shared among the models.)
oC 2 LY 3yzmt OYi k 4
_aev "M ZZ Z Yimt — Zyzkt Z 80V (312)

This can be re-written in terms of individual models and means:
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We normalize the consensus sensitivities to the parameter values at which they are com-

puted:
ocC oC

ologby ~ ¥ a0v (19

3.3 Results

3.3.1 Model averaging provides time-dependent confidence information

Using our simulation framework, as described in the Methods, the actual system was selected
as Model 1 or Model 4. The model was integrated then sampled and noise added to create
data, and each of six topologies was parametrized to the data to generate an ensemble of fit
models. This was repeated for 50 different data sets for each choice of actual system. The
ensembles were perturbed in a Monte Carlo fashion and we developed and tested several
metrics for identifying how consensus among the perturbed ensembles could be used to
estimate the confidence of predictions. The first of these methods was the use of model

averaging, combined with analysis of parametric uncertainty, as a means of computing
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time-dependent confidence information.

Model averaging is a technique for combining the probabilities from a pool of experts
into a unified probability distribution that accounts for the opinions of all the experts. In
our case, each model of the ensemble was assigned the role of expert. The opinions of
the experts can be weighted evenly in the case of no prior favoritism, or can be weighted
based on past performance—models that have had prior success in assessing predictions may
weigh in more heavily—or they may be weighted in other (possibly heuristic) ways. The
procedure is similar in concept to a vote among models, though not completely analogous,
as the “opinions” expressed are continuous rather than discrete.

Here we have assumed that the probability distribution for an individual model is Gaus-
sian in protein concentration for any given time ¢. The mean of this Gaussian is the solution
of the deterministic ordinary differential equation associated with the model. The variance is
computed as the statistical uncertainty in parameters due to the fitting to noisy data, prop-
agated to the point of perturbation by multiplication with the sensitivities. The Gaussian
probability distributions are generated at each relevant time ¢ for each model in the ensem-
ble. The individual distributions are then combined according to the method of weighted
logarithms to generate a single probability density plot for the ensemble, showing likelihood
of a particular protein concentration as a function of time. This procedure is outlined in
Figure 3-1; the results illustrate probability trajectories that demonstrate uncertainty due
to incomplete knowledge of parameter values and topology.

To assess the ability of model averaging to capture the real uncertainty in predictions
from the ensemble, we compared the resultant probability distributions to the variability
that would have arisen either from parametric uncertainty within a particular topology, or
from topological uncertainty across the models in the ensemble. In Figure 3-2, the leftmost
column displays the probability distributions generated through averaging models 1 through
6 with equal weighting. The color at each point on the plot indicates the probability
density that the protein of interest is present in the cell at that concentration, at that
time. The solid and dotted lines correspond to the correct answer—the prediction from the
actual system—and the maximum probability (MP) prediction according to the averaging

procedure, respectively.
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The second column shows the superposition of simulations from 50 ensembles of six
models that were each fit to a different noisy data set from Model 1 as the actual system.
The predictions from topologically distinct models are each plotted in a different color.
Together, the simulations encapsulate the uncertainty from intra-model (parametric) and
inter-model (topological) sources. The third column consists of two-dimensional histograms
of the data in the second column to demonstrate the density of simulations. Each row
represents a different specific perturbation from the set of Monte Carlo experiments. These
perturbations are representative of the pool of simulations and were not selected because
they were the most or least successful implementations of the model averaging; rather,
they each demonstrate a different possible result for the averaging procedure. The top row
corresponds to a perturbation of A log;, C, = 1.8331 and A log;,v4 = 0.5327 and represents
a case where the models agree best with each other at intermediate time values but are less
consenting at early and late times. The second row (Alog,o B, = 1.7803, Alog;qC, =
1.8724 and Alog;ykc = —0.6456) is a case where the models agree well with each at all
times examined, and the MP trajectory is highly consistent with the actual system. The
third row (Alog;y A, = 0.9582, Alog;y B, = 0.3301 and Alog;, C, = 0.9562) represents a
case where the MP trajectory as predicted by model averaging is not particularly accurate
in terms of capturing the concentration from the actual system, but predicts high confidence
in the protein concentration at early and late times.

The goal of the model averaging is to capture in a probability distribution the variability
expected due to the intra- and inter-model uncertainty and therefore we would expect that
the model averaging in column 1 should reproduce the intra- and inter-model uncertainty
shown in columns 2 and 3. For our particular test cases, the model averaging was successful
in meeting this goal. The MP trajectories do not necessarily agree with the corresponding
trajectories as predicted by the actual system. Nevertheless, in comparison to column 3,
the method has accurately assessed the overall uncertainty and performs well in terms of
identifying where the models are consistent in their predictions: high-confidence regions
in the probability density plots correspond well with the regions of high-occurence in the
multiple-data set simulations. It is also noteworthy that where the MP prediction is most

accurate, i.e. in greatest agreement with the actual system, the assessed probability is
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higher.

We computed an overall consensus score for predictions by integrating the probability
density of the MP trajectories over time, summed over protein species A, B, and C. The
consensus score serves as an internal check of the MP predictions. It is a self-assessment
of the accuracy of the MP predictions, under the assumption that high levels of consensus
equate to high quality predictions. Consensus scores are highest when the parametric
uncertainty of individual models is low and the models also agree with one another. A low
score can imply one of three scenarios: either the individual models agree but have low
confidence in their predictive ability, or the models are individually confident but disagree,

or, in the worst case, models are both dissonant and lacking confidence.

We subjected the 50 fit ensembles (each resulting from a different noisy data set) to 1000
perturbations in the form of parameter value changes. We calculated the consensus scores,
Pc, and errors of MP prediction for each and found a negative correlation (Figure 3-3).
Of particular note, predictions for which the consensus score is high are very unlikely to
be poor: when the score assigns high-confidence to the MP prediction, that prediction is
likely to agree well with that from the actual system. It is not necessarily true that an MP
prediction with a low consensus score is inaccurate, similar to the way that a sample from
a wide distribution still has some probability of lying very near the mean. Although the
results shown in Figure 3-3 are a superposition of 1000 perturbations, the anti-correlation is
not a result of the superposition. The same perturbations to a single ensemble of fit models

yields a very similar distribution (Supplementary Figure B-1).

We tested the impact of two different weighting choices on the consensus scores: the
first was equal weighting (Figure 3-3A) and the second was weighting by distance from
consensus (Figure 3-3B), which gives models an extra boost in the vote if their prediction
was very near the overall mean prediction of the ensemble. The weighting choice bears little
effect on the relationship between consensus score and MP prediction error. The correlation

coefficient for the errors of the two weightings is 0.9292 (Supplementary Figure B-2).
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3.3.2 Decision trees for partitioning the space of perturbations into re-

gions of high and low confidence

For random perturbations to the ensembles of fit models, we computed the ensemble vari-
ance to assess the degree to which there was consistency among model predictions. Pertur-
bations consisted of changes to the values of one to three parameters chosen from a possible
set of seven (see Methods). As shown in Figure 2-8 and described in Chapter 2, it was
previously found that when models in an ensemble have low variance, it is rare for the av-
erage prediction to be inaccurate. With this result in mind, we built decision trees in which
the predictor variables were the logfold parameter changes used to generate the perturba-
tions, and the response was the ensemble variance. The resulting trees were used to predict

consensus of an ensemble given the parameter values corresponding to a perturbation.

Figure 3-4 shows the decision tree built on a single data set derived from Model 1 as
the actual éystem, at the 30% noise level. The color of each node, which varies from bright
yellow to dark red, indicates the average value of the ensemble variance for all simulations
belonging to that node. (This value is also printed inside each node, along with the node
number.) The colors of the branching arrows indicate the dimension of parameter space in
which the cut at that level was made. For instance, the first cut is in Alog;okp and all

other cyan arrows represent cuts related to this parameter.

With node color as a visual guide, it is clear that different branches of the tree correspond
to perturbations with differing average levels of consensus. The leftmost leaves in the tree !
correspond to regions of parameter space in which the models agree poorly with each other.
Simulations belonging to leaves on the rightmost branch of the tree have low ensemble
variance. Because the simulations associated with these nodes have high consensus, they

are more likely to be accurate.

In Figure 3-5A, we have tabulated the ensemble variance of all simulations, and, sepa-
rately, only of those simulations in the best or worst leaves of the tree. For this particular
example, there were 1000 perturbations in all, 561 of which were included in Node 64 (and

for which the mean ensemble variance was 2.621), and 7 of which were members of Node 8

!Terminal nodes are referred to as leaves.
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(with a mean ensemble variance of 585.41). The range of variances seen in all simulations
is over three orders of magnitude wide, from nearly zero to over 600. The variances of
simulations in the best node range up to 42.063, and the simulations in the worst node all
have variances over 550. The variance for the models at the fit (prior to perturbation) was
0.593.

An important question in regards to the simulations in the best node is whether they
have high consensus simply because these represent weak (i.e. small, insignificant, or trivial)
perturbations. It is known that the six models agree well in their predictions at the fit to
the data, so if the models are subjected to small perturbations, or large perturbations in
insensitive directions, and the models do not stray far from the fit, it is likely that the
predictions will still be accurate. That this might be true of some simulations does not
negate the quality of these predictions, but more interesting biological insight might come
from highly accurate predictions that are substantially different from the training data.

To examine whether there were interesting predictions in the best tree node, we gener-
ated a histogram of the squared Euclidean distance between post-perturbation predictions
and the data to which the models were fit (Figure 3-5B). Although there are many pre-
dictions belonging to the best node for which the distance to the data is small, the overall
distribution of distances is quite similar to that of the entire pool of simulations across the
tree. As a reference, the average distance from the data to the mean ensemble fit model for
this same experiment was about 3, whose base 10 logarithm is 0.477 (data not shown). In
particular, there are a number of predictions for which there is both high consensus and a
very large distance between the average ensemble prediction and the data.

Two such simulations are shown in Figure 3-6. The top row corresponds to a pertur-
bation of Alog;;C, = 1.8331 and Alog;yv4 = 0.5327; the bottom to a perturbation of
Alogy B, = 1.7803, Alog;y C, = 1.8724, and Alog;¢ k¢ = —0.6456. (These are in fact the
same perturbations shown in the top two rows of Figure 3-2.) The feature that high con-
sensus/large distance-from-data simulations share is a positive perturbation to the initial
concentration of protein C. This is unsurprising because the six genetic regulatory networks
under consideration are linear, with protein C at the bottom of the reaction chain. Changes

to the initial concentration of protein C bear no effect on the concentrations of proteins A
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and B and provided the degradation constants k¢ for each of the fit models are not too
different, there should be good agreement between the resulting time-dependent trajectories
from all models.

The mean ensemble predictions in the worst node of the tree are neither very far, nor
very close, to the data. When the ensemble variance is high, however, it may not be
meaningful to consider the mean ensemble prediction because the models may have very
different opinions about the trajectories. If there is no good reason to favor one model over
another a priori, it may not be possible to evaluate which model (if any) is correct. If an
experiment were to be performed corresponding to the perturbations suggested by these
high variance nodes, it would not be possible for all of the ensemble models to agree with
the data. (If they cannot agree with each other, they cannot possibly all agree on the same
data.) The parameter choices corresponding to these perturbations then make excellent
candidates for further experimentation, as they will allow models to be discarded.

To demonstrate this concept, we took the six fit models that were used as the basis for
building the decision tree, and we subjected them to a perturbation that would be suggested
by the first two cuts in the tree: Alog;yk4 = —0.125 and Alog,q kg = —0.600. The results
of this simulated experiment are shown in Figure 3-7. The top row shows the fits of all six
models along with the data to which they were optimized, while the bottom row shows the
post-perturbation predictions from each model. In particular, while all other models predict
a decrease in the concentration of protein A over the experimental time, Model 2 predicts
upregulation. To adjust for the feedback in Topology 2, the corresponding fit estimated a
very different value for the degradation rate constant of protein A compared to the other
models. In resetting the value of this constant, Model 2 is no longer able to accurately
predict the system behavior.

Regarding the predicted trajectories of protein B, the perturbation experiment leads to
a strong disagreement between Model 2 and Model 5, while Models 1, 3, 4, and 6 would
probably not be distinguished due to the differences in predictions being less than the
experimental error. An accurate time course experiment measuring the concentration of
protein C might be able to eliminate Models 2, 5, and 6 from the pool of candidate models.

However, when we simulated the actual collection of data with 30% noise (equal to the level
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of noise in the simulated data used for training the models), the differences in predictions

were insufficiently large compared to the noise (Figure 3-7, bottom right).

3.3.3 Consensus sensitivity: A novel metric for identifying the separatri-

ces of consensus space

Using the decision tree, we were able to identify regions of parameter space where the
ensemble predictions were both in good agreement among themselves but differed greatly
from the training data. The implication was that although individual models might be
sensitive to a particular perturbation, the consensus of the ensemble may be insensitive to
this same change. We defined a new metric called the consensus sensitivity in which we
compute the sensitivity of the ensemble variance to parameter changes. For the set of 1000
perturbations to a single ensemble of fit models (Model 1 as the actual system, 30% noise),
we calculated the consensus sensitivities to each of the variable parameters (Figure 3-8).

The magnitudes of the sensitivities make it clear that some parameters have a much
greater impact on the consensus than others. The initial concentration of protein A has
the ability to separate models when it is large. This is intuitive because the A protein is
at the head of the linear genetic regulatory network for all six topologies considered. Both
the initial concentration of protein B and its degradation rate constant may also have a
significant effect on the ensemble consensus. This again is unsurprising considering that
many of the differences among the candidate topologies relate to the position of protein
B in the network or whether or not it is autoregulated through positive feedback. The
consensus sensitivities to the degradation rate constant for protein C, k¢, are particularly
small because protein C is the output of the system and no other species lay downstream
to be affected by changes to its expression.

The most striking features of these plots are the minima for the sensitivities to k4 and
kp. Interestingly, these minima coincide very well with the values of Alog;o kg = —0.45
and Alog;o k4 = —0.04/ — 0.10, the first two levels of cuts chosen by the decision tree built
on the same simulations. The consensus sensitivities also provide a means for identifying
these separatrices. We constructed a tree and performed consensus sensitivity analysis with

Model 4 as the actual system rather than Model 1, and observed the same type of pairing
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(see Supplementary Figures B-5 and B-6). The decision tree is built according to a greedy
algorithm: each cut is made to generate the best improvement in the tree cost, without
consideration of the impact to successive cuts. The first few cuts to the tree define the
major axes of separation between regions of parameter space where the consensus is high

and those where it is low.

3.4 Discussion

Using consensus as the basis for our approaches, we tailored existing means and developed
new ones for analyzing the quality of predictions from ensembles of ODE models. Our test
case consisted of six very simple genetic regulatory networks that follow the same Boolean
logic. The data for training and testing models was simulated so that we were able to
evaluate the performance of the different metrics under consideration.

The first use of consensus we described here was as the underlying basis for model
averaging. Each model of the ensemble acted as an expert, providing an opinion about
the time-dependent protein concentrations. These opinions were framed mathematically
as Gaussian probability densities with means set to the deterministic values predicted by
each model, and variances equal to the propagated parametric uncertainty. Probabilities
from individual models were combined logarithmically and the maximum probability (MP)
prediction was identified, along with its associated consensus score.

For our simple test case, model averaging performed very well in capturing the true
variation in predictions resulting from uncertainty in both parameters and topology. In
previous work, (see Chapter 2), we found that parametric uncertainty was insufficient for
evaluating prediction error when topology was also undetermined. Model averaging as we
have done then presents a method for combining both sources of error and capturing that
information in a single probability density function.

We deliberately chose to use simulated—rather than real—data and very simple test
systems to demonstrate the utility of the method. There are many possible scenarios, how-
ever, where adjustments to the method might have to be made to deal with the complexities

of more realistic systems. For instance, the Fisher information method of estimating pa-
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rameter uncertainty, as used here, may not accurately assess the contribution of the fitting
procedure to prediction error within a single model topology. First, the Fisher information
used in the calculation is only an estimation of the true uncertainty matrix, which is too
unwieldy to compute, and, even if we could derive the actual Fisher information, it is only a
lower bound on the true variance [90]. Secondly, the sensitivities used in the calculation are
only valid locally and some evaluation of the smoothness near a prediction may be required
to establish the appropriateness of the assumptions. Thirdly, our assumption of normality
for prediction uncertainty is also likely to break down in larger, more non-linear systems.

Rather than make so many assumptions—about the quality of the Fisher information
estimate, about the smoothness, and about Gaussian distributions—one could try to re-
produce column 3 of Figure 3-2 using a bootstrap method [56,96]. The simulations in
column 2 were derived from ensembles fit to 50 data sets that differed in their noise alone.
A non-parametric bootstrap approach might try to recreate these curves by sampling a
single data set (with replacement) many times. An ensemble would be generated for each
sampled data set and predictions would analyzed for overlap among all ensembles. A major
drawback to this approach would be the computational expense in increasing the number
of model optimizations. Whereas the model averaging approach introduced here requires
only a single optimization for each topology in the ensemble, the non-parametric bootstrap
would require optimization for each topology, for each sample of the data.

A parametric bootstrap might also be considered with the re-introduction of some as-
sumptions. Once models are fit to a single data set, and a Fisher information matrix (FIM)
is estimated, multiple simulations of each topology can be performed by sampling the pa-
rameters from Gaussian distributions described by the FIM. This method again comes at a
computational cost due to the increased number of integrations of the differential equations.
In general, this cost is significantly less than that related to the optimization.

There are a number of different choices in the implementation of model averaging that
have not been fully explored. We chose to use the logarithmic opinion pool as the method of
combining the probabilities from individual models. An alternate formulation is that of the
linear opinion pool in which probabilities are added directly, without logarithmic normal-

ization. The logarithmic pool was selected primarily because of the algebraic simplifications
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to the maximum probability prediction function. We did not perform a full analysis of the
differences between linear and logarithmic pools for capturing the true prediction variabil-
ity, although individual distributions from the two methods were qualitatively very similar
(see Supplementary Figure B-3 for an example comparison).

We tested two different weighting methods, equal and distance from consensus, which
were similar in terms of their performance. There are, of course, many other reasonable
weighting choices. If the weights are set to the true model priors, P(M), then our method is
equivalent to Bayesian Model Averaging [123,125]. The difficulty here is in the calculation

of these priors, which requires integration over all accessible parameter space:
P(M) = / P(M|6)P(8)d6 (3.16)

Even the approximation of this integral through Monte Carlo simulation is time-consuming
and the computation is exponential in the number of fit parameters. Signal transduction
pathway models, as an example, may have on the order of 50 or more unknown parameters
that are optimized to the data [74,140].

Another statistically-based choice would be that of Akaike weights [52]. The Akaike
Information Criterion (AIC) [51] (see Chapter 2) is computed for each topology, and the

lowest AIC of the candidate models is subtracted off the total for each:

The weight associated with any model ¢ is taken as

_ exp(—3D;)
S exp(—5Dm)

i (3.18)

The MP trajectory of protein concentration resulting from the model averaging may
not necessarily capture the true dynamics better than any single model; furthermore, it
will not always be the case that high consensus among models is indicative of predictive
accuracy. In any situation, there exists a possibility that all of the models will be making

the same wrong prediction. That said, the model averaging procedure is nonetheless useful
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for describing the variation of predictions that result from the parametric and topological
uncertainties, as they have been assessed, and for providing information about where that
variability is large or small.

We developed a consensus score that integrates the probability associated with the MP
trajectory which is helpful in identifying those predictions where there is good agreement
among models and a low level of parametric uncertainty. One shortcoming is that the score
is relative rather than absolute. There is no threshold above which one can say for certain
that a prediction is accurate. In a drug research setting, this may nevertheless be sufficient
for ranking predictions in terms of their confidence given the current amount of information.

Our second application of consensus was the use of decision trees to partition a space of
perturbations into regions or high or low ensemble variance. The trees additionally provide
information about the parameters with the most impact on consensus, those being the first
few cuts of the tree. Once parameter space has been partitioned, it becomes dually useful.
Regions corresponding to low ensemble variance can be used to identify higher-confidence
predictions. Regions of high variance suggest further experiments for testing and refining the
models of the ensemble. In the process of ensemble refinement, it is important to recognize
that elimination of a model from the ensemble does not necessarily imply that the topology
of that model is incorrect. A further investigation of feasible parameterizations should be
considered before assuming that a mismatch to new data has real biological implications.

A possible concern with decision trees is the robustness of the greedy algorithm to noise
in the data. In our test case, this was not a problem, as a second tree, built on a data set
with different noise, looked very similar to the original one (Supplementary Figure B-4). In
practice, the random forests technique [141] could be applied to build tree-based classifiers
that are less sensitive to noise.

In constructing one’s own trees, consideration must be given to the particulars of the
Monte Carlo perturbations used to generate the ensemble variances. If experimental design
is to be extracted from the tree, then perturbations should only consist of changes that can
be applied through real experimental manipulation. The sampling rate in each dimension
. may depend on the smoothness of the consensus surface. Our third tool, the consensus

sensitivities, can provide assistance in this respect.
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The consensus sentivities are a new metric for analyzing the dependence of the ensemble
variance on parameters. The sensitivities at any specific point may not be particularly in-
formative but when measured across parameter space, they map out the relative importance
of the parameters when they take on different values, and define separatrices for regions of
high and low consensus.

A key feature of all three methods discussed here is that there is no requirement for
the correct model—that which represents the actual system—to be in the ensemble. They
simply state whether the existing members of the ensemble agree or not, and attempt to
evaluate the uncertainty of any predictions using the information contained in this agree-

ment.

3.5 Conclusions

The work presented here provides a proof-of-concept of three different approaches, all related
to consensus, for investigating prediction quality from differential equation models. With
model averaging we can either obtain time-dependenf information about our confidence in
the prediction 6f protein concentration, or compute a cumulative score for the weighted
average prediction as a whole. Decision trees can be built to relate parameter changes to
ensemble variance and delimit parameter space into regions of high or low consensus. Low
consensus regions can provide experimental leads for improving our knowledge of reasonable
models; high consensus regions suggest high-confidence predictions. Consensus sensitivities
can provide a continuous means to analyze what types of perturbations lead to high or low
ensemble variance.

There are many issues that will likely need to be studied further before these methods
can be practically used on larger, more realistic systems. We did not address the topic of
initial topology selection which may not be trivial. For now, the topologies can be built
- manually through careful mining of the biological literature to gain an understanding of
which aspects of a given network are well-established, and which may be a source of mech-
anistic uncertainty. Alternatively, reverse engineering methods that try to build topology

from scratch given biological data [35,86] often provide a ranked list of probable topologies,
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which would serve as a starting point for the ensemble.

Another topic to be examined is the role of the choice of selected outputs. With our
simple test case, we measured proteins A, B, and C, thereby providing dense information
for fitting the models. In a large system, the network is typically probed very sparsely. As
a result, models in the ensemble might be overfit and likely to diverge when the system
is subject to perturbation. In particular, in branched pathways, where an output may
be receiving flux from diverse sources, it may be difficult to establish the balance across
these branches. Differently balanced models may be able to fit the output equally well, but
will make very different predictions about system response to perturbation of a particular
branch. Therefore, it may be helpful to do a consensus analysis of the fluxes, in addition to
the outputs.

Although a substantial amount of development remains, applications of consensus to
understanding the predictions from biological models hold much promise. OQur future work
will apply these techniques to the Fas signaling network in apoptosis, discussed in detail in

Chapter 4.
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Figure 3-2: Comparison of model averaging to the actual prediction variability. To assess
the performance of model averaging for capturing real uncertainty, we simulated 50 noisy
data sets, generated an ensemble of fit modesl for each, the applied the same perturbation
to all models. Each row represents one such perturbation: (A) Alog;, C, = 1.8331 and
Alogiyva = 0.5327, (B) Alog,o B, = 1.7803, Alog,,C, = 1.8724, and (C) Alog,y B, =

0.3301 and Alog;y C, = 0.9562. The first column shows the probability distributions gen-

erated through the logarithmic opinion pool. The second column shows the time courses
generated by all 300 perturbed models (50 data sets x 6 models) and the third column
shows the corresponding density of simulations.
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Figure 3-3: Error of the maximum probability time course vs. cumulative consensus scores,
Pc, from model averaging. Consensus scores were computed by integrating over time the
value of the probability density at the maximum probability concentration. Scores were
additionally summed over species A, B, and C. High consensus scores are rarely associated
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model weighting schemes were tested: equal (top), and distance from consensus (bottom) in
which models were proportionally assigned more weight if they were closer to the ensemble
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Figure 3-4: Regression tree built to partition prediction space into regions of high and low consensus. This tree was built using the set of 1000
parameter perturbations as predictor variables and the resulting ensemble variances as the response variable. Red nodes correspond to perturbations
for which there is high ensemble variance and the model predictions are the most dissimilar; yellow nodes correspond to perturbations for which there
is good consensus among the models in the ensemble. The colors of the arrows indicate the dimension of parameter space in which that particular
cut was made (see legend for specific assignments). Nodes are labelled with an identity, e.g. Node 6, and the mean ensemble variance of simulations

belonging to that node.
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Figure 3-5: Comparison of the properties of simulations at opposite ends of the decision tree.
The ensemble variance and the mean squared Euclidean distance of ensemble predictions
to the data were computed for all 1000 simulations. The simulations were then sorted
according to the decision tree in Figure 3-4. 561 simulations were assigned to the node of
lowest ensemble variance while 7 were assigned to the node of highest variance, (the “best”
and “worst” nodes, respectively). Simulations in the worst node invariably have very poor
consensus while those belonging to the best node are on average of higher consensus than the
entire pool of perturbations considered. Many of these high consensus predictions are trivial
(in that they lay very close to the training data), although a select number of perturbations
result in consistent model predictions very far from the data.
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Figure 3-6: Protein time courses for two perturbations resulting in both high consensus
and a large distance between the mean ensemble predictions and the training data. The
perturbations applied here correspond to the same perturbations shown in rows A and B
of Figure 3-2.
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Figure 3-7: An example simulated experiment performed at the suggestion of the decision
tree. All six topologies were fit to data generated by Model 1 as the actual system with
30% noise (top row). All fit models were then perturbed using Alog;yks = —0.125 and
Alogygkp = —0.600. The time courses for the perturbed models show considerable dis-
agreement and, in particular, models 2 and 5 make very different predictions than models 1,
3,4, and 6 (bottom row). Data from a real experiment were simulated using the perturbed
actual system with 30% noise and show that measurements of proteins A and B would be
more informative for distinguishing between models than those of protein C.
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Chapter 4

An ensemble of Fas signaling
network models to elucidate
pathway function and design an
optimal cocktail of caspase
inhibitors

Abstract

Apoptosis, or programmed cell death, is a critical regulatory process that plays an impor-
tant role in many organismal functions, from development to homeostatis. Dysregulation of
apoptosis resulting in either too much or too little cell death is implicated in a wide range
of diseases; a systems-level understanding of the underlying biochemical network is there-
fore highly sought-after. In this regard, there has been considerable interest in developing
differential equation models of the Fas signaling network. While these models can provide
detailed answers to mechanistic biological questions, they also require detailed specification
at the level of topology and parameters, both of which are subject to uncertainty. Here,
we examine the role of topological choice in predicting the response of overstimulated cells,
such as would be observed in sepsis, to potential therapies. We created an ensemble of
64 models through combinatorial expansion of a base network and subjected this ensemble
to perturbations in the form of simulated treatment with cocktails of caspase inhibitors.
The ensemble variance at each point of perturbation was used to train a decision tree for
classifying consensus based on treatment. Using the tree, we were also able to solve two
design problems: (a) selection of the optimal inhibitor cocktail for reducing cell death due to
apoptosis, and (b) selection of the optimal inhibitor cocktail for refining the model ensemble.
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4.1 Introduction

Apoptosis is the process by which cells commit suicide in response to internal or exter-
nal cues [73]. It is alternately known as programmed cell death because it is governed by
a tightly-controlled network of interacting proteins. The primary players in this network
are the cysteinyl aspartate-specific proteases (caspases [142]) and the Bcl-2 family of pro-
teins [143,144], the latter of which interact with the caspases and with each other at the
mitochondrial membrane. Cell death regulated by apoptosis plays a positive, and indeed
necessary, role in many physiological processes including development, homeostasis, and
viral defense. Dysregulation of apoptosis, on the other hand, is the root cause of many
diseases, either through absence or overabundance [145-148]. Cancer cells often lose their
ability to undergo apoptosis, leading to uncontrolled proliferation and tumor growth [149].
Other afflictions, such as sepsis [150], stroke [151], and neurodegenerative disorders [152],
are characterized by unconstrained death when cells become hypersensitive to apoptotic

stimulus or when cells are presented with an excess of death signal.

A fundamental comprehension of the apoptotic pathway is critical to our ability to
address the causes of these diseases and develop relevant treatments. Due to the complexity
of the core protein network, mathematical modeling may be the best way to synthesize our
knowledge of the individual components into a systems-level understanding. There are
indeed several published differential equation models of the Fas signaling network [74-77,
153-161]. These models differ considerably in scope, detail, methodology, and focus; a

summary is provided in Table 4.1.

The first major model of apoptosis by Fussenegger et al. [153] was developed as an ex-
ploratory tool for studying the network and investigating possible therapeutic interventions.
Their model was parametrized with nominal values and their reaction kinetic equations in-
corporated several assumptions about rate-limiting steps. At the time of publication (2000),
it was a fairly complete model capturing the dynamics from receptor-ligand binding to ex-
ecutioner caspase activation, through both caspase-8 and caspase-9. They did not include a
direct path from caspase-8 to membrane permeabilization (which is included in more recent

models through the mediator Bid) and rather caspase-3 activation was required to occur
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before activation of caspase-9. They examined how over-expression or mutation of various
proteins (either alone or in pairs) would affect apoptosis and concluded that it is more
difficult to inhibit apoptosis than to promote it. All of the perturbations considered were
related to proteins intrinsic to the network rather than exogenous additions to the system.
The work of Bentele [74], published four years later, took advantage of the greater
state of knowledge about the apoptosis network and furthermore tackled several important
technical aspects of using differential equations to describe biology. The authors separated
known biochemical interactions from those lacking mechanistic detail and used mass-action
kinetics to describe the former and black-box modules with thresholding to model the latter.
Rather than assign nominal values to unknown rate constants and initial concentrations,
they performed a considerable number of Western blot time-course experiments, the data
from which were used to fit parameters through a novel optimization procedure. They
subsequently used their fit model to make predictions about the roles of IAP and FLIP
in providing the system with thresholding behavior. In particular, they proposed that
the ability of a cell to withold from apoptosis in the presence of small, non-zero ligand
concentrations depended critically on the nature of receptor complex inhibition by FLIP.
Three further studies [155, 157, 161] have constructed comprehensive models that en-
compass both the Type I and Type II pathways in detail. The first of two models by Hua et
al. [155] very explicitly modeled formation of the DISC, follow-on activation of caspase-8,
and inhibition by FLIP. Their model was parametrized using values drawn from the biologi-
cal literature as well as values fit by hand to a set of experimental time-course data (Western
blots of procaspase-3 and procaspase-8). They used their model to test three different hy-
potheses about the mechanisms by which Bcl-2 might inhibit the mitochondrial pathway
and analyzed the impact of over-expressing or knocking-down its expression. The second
model from Hua et al. [157] differed from the first in a number of ways. They reduced the
overall model size through several simplifications (notably, removing the explicit description
of receptor complex formation as well as the mechanism of mitochondrial permeabilization)
but also added some new interactions, such as feedback from activated caspase-3 to caspase-
8 through caspase-6. Also, parameters in this model were fit to data using optimization.

They performed Monte Carlo simulations of the mechanistic model using different choices
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of initial concentrations and applied decision trees to clusters of the outcomes. The tree
approach was used to analyze how the initial concentrations of various species resulted in
either slow or fast activation of caspase-3.

The work of Albeck et al. [161] stands out for its extensive integration of experiments
and computation. The authors used three means of measurement (live-cell microscopy,
flow cytometry, and immunoblotting) to probe apoptotic activation in response to external
stimulus, both at the single cell and cell population level. Both their model and their
single-cell experiments show that under baseline conditions PARP cleavage by caspase-
3 occurs in an all-or-none fashion, but that stochastic differences between cells lead to
variance in the time-to-activation following stimulus. They also showed (again, with both
modeling and experiment) that a more graded response could be obtained in individual cells
under perturbation, for example, by downregulating Smac or by upregulating Bcl-2 while
downregulating XIAP.

Many other mathematical models of apoptosis have not attempted to include both the
Type I and Type II pathways, preferring to concentrate of the role of a particular subnet-
work [75-77,154,156,158-160]. A significant subset of these papers (as well as some of the
larger models) have operated on the assumption that the apoptotic network is bistable—
that cells exist in either dead or alive states—and have analyzed the network for sources
of this bistability. Various parts of the network have been cited as generating bistability
including the interactions of XIAP with caspases-3 and -9 [156,158], inhibition of the DISC
by FLIP [74], feedback from caspase-3 to caspase-9 [158], sequestration of caspase-8 by
BAR [75], interactions between Bcl-2 and Bax [77], cooperativity in formation of the apop-
tosome [76], and degradation of caspase-3 [154]. Other network properties that have been
assumed or investigated are irreversibility (cells cannot die and then return to life) [158,159]
and robustness (small changes to rate constants or initial concentrations should not destroy
the bistability and/or irreversibility) [69,76,77,158-160].

While it is interesting to consider the properties of small parts of the network, inde-
pendent of the system as a whole, it is not necessarily the case that two subsystems, each
individually bistable or irreversible, will retain their dynamic properties when joined in a

single model. While the larger models that aim to encompass the biology of the entire
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network are less prone to such issues, these are also inevitably subject to differences and
uncertainties in topology which may or may not impact their overall dynamic behavior.
Here we examine the role of topological choice on predictions from differential equation
models of the Fas signaling network. In particular, we are interested in designing cocktails
of caspase inhibitors for reducing cell death in the overstimulating conditions observed in
sepsis. To this end, we built an ensemble of 64 models derived from a base network and
the combinatorial enumeration of six possible add-ons. We subjected the ensemble to over
one thousand possible treatment options involving caspase inhibitors and built a decision
tree based on the consensus among models in response to perturbation. The decision tree
allowed us to simultaneously solve two design issues: first, we were able to identify treatment
options that would reliably lead to alleviation of apoptosis, and secondly, we were able to
design an experiment with caspase inhibitors for refining the ensemble of reasonable models.
In addition, we investigated the role of flux balance in this branched pathway for generating

the different observed model behaviors.

4.2 Methods

4.2.1 The Base Model

There are several aspects of the Fas signaling network that are both well-accepted by the
biological community and are consistently represented in computational models. The path
from Fas ligand stimulus to caspase-3 activation can be sub-divided into three main parts
which together constitute our base model, a diagram of which appears as Figure 4-1.

Part I consists of the initiation of the pathway in response to stimulus. The first step is
binding of Fas ligand to its receptor, Fas, at the cell membrane, followed by recruitment of
FADD and formation of the death-inducing signaling complex (DISC). The DISC recruits
procaspase-8, leading to its subsequent cleavage and activation. Activation of caspase-8
can be tempered by the presence of FLIP which competitively binds to the DISC. Part
IT involves cleavage of procaspase-3 by caspase-8. The direct activation produced through
the joint action of Parts I and II is sometimes known as the Type I or extrinsic pathway

of apoptosis [162,163]. Part III consists of a more circuitous route to caspase-3 cleavage
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Author Year Species | Pathway | Parameters Focus

Fussenegger 2000 18 I/11 Nominal values Effect of combined therapies

Bentele 2004 41 I/11 Fit to data Parameter estimation/Threshold mechanism for activation by ligand
Eissing 2004 8 I Literature/Nominal values BAR as a source of bistability

Stucki 2005 10 11 Nominal values Interplay of SMAC, IAP, and Casp3

Hua 2005 85 I/11 Literature/Adjusted by hand Effects of changing levels of Bcl-2

Rehm 2006 19 11 Literature/Supplementary experiments Casp3 activation from mitochondrion and control by XIAP

Hua 2006 29 I/11 Fit to data/Adjusted by hand Integration of model-driven and data-driven approaches

Legewie 2006 13 11 Literature Role of XIAP is bistability of the mitochondrial activation pathway
Bagci 2006 31 11 Literature/Nominal values/Other models Bistability of the mitochondrial pathway

Chen 2007a 11 I Nominal values/Drawn from other models | Bax activation as a source of bistability

Chen 2007b 6/8 11 Literature/nominal values Robustness analysis to compare direct and indirect mechanisms for MOMP
Cui 2008 up to 9 11 Nominal/Drawn from other models Comparison of 4 models of the Bcl-2 apoptotic switch

Albeck 2008 58 I/11 Literature/Nominal values Modeling the all-or-none response of Casp3 activation

Table 4.1: Prior published models of the Fas signaling pathway, broken down by year of publication, number of species included in the

model, whether the Type I and/or Type II pathways were modeled, source of parameter values, and focus of the analysis.
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Figure 4-1: Base Model of the Fas signaling network. Green arrows represent an activating influence while red arrows represent inhibition.



following activation of caspase-8. This so-called Type II (or instrinsic) pathway of apoptosis
is initiated when caspase-8 cleaves Bid, which then promotes formation of mitochondrial
membrane pores by Bax, and leads to release of Smac and cytochrome c into the cytoplasm.
cytochrome c subsequently assists formation of the apoptosome, a large multi-unit protein
complex that facilitates activation of caspase-9. Activated caspase-9 can cleave procaspase-

3, hence completing this path to activation.

The specific mechanisms included in our base model are described in more detail below.
All reactions herein described were modeled using mass-action kinetics except for the release
of Smac and cytochrome c from the mitochondria. For these reactions we assumed that the
rate of release was proportional to the concentration of Bax pores, but that no complex was

formed during the interaction.

DISC formation

Fas remains inactive until bound by Fas ligand (FasL) at which point they bind to form the

Fas complex (FasC):
Fas + FasL. = FasC (4.1)

The Fas complex can then bind reversibly to intracellular FADD to form the Death-Inducing
Signaling Complex (DISC) [164,165]:

FasC + FADD = DISC (4.2)

Reactions localized to the DISC

Binding of procaspase-8 to the DISC can lead to cleavage to the activated form, caspase-

8 [166].

DISC + Pro8 = DISC:Pro8 (4.3)

DISC:Pro8 — DISC + Casp8 (4.4)
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FLIP competitively binds to the DISC, reducing the activation of caspase-8 [167,168].

DISC + FLIP = DISC:FLIP (4.5)

Activation of effector caspase-3
Once initiator caspase-8 is activated, it proceeds to cleave and activate the effector caspase-

3 [169,170] which itself goes on to induce the apoptotic disassembly machinery.

Casp8 + Pro3 + Casp8:Pro3 (4.6)

Casp8:Pro3 — Casp8 + Casp3 4.7)

Activation of Bid by caspase-8
Activated caspase-8 also cleaves the BH3-only member of the Bcl-2 family, Bid [171]. Ac-

tivated Bid is referred to as truncated Bid (tBid).

Casp8 + Bid = Casp8:Bid (4.8)

Casp8:Bid — Casp8 + tBid (4.9)

Interactions between Bcl-2 family members at the mitochondrion

Truncated Bid facilitates the dimerization of Bax, a key step leading to permeabilization of

the mitochondrial membrane [171-174].

tBid + Bax = tBid:Bax (4.10)
tBid:Bax + Bax = tBid:Bax, (4.11)
tBid:Baxs = tBid + Baxs (4.12)

In the base model we assume that Bax dimers can spontaneously separate into monomers

but that monomers cannot autoassemble into the dimer.

Bax; — 2Bax (4.13)

91



Bcl-2 can reversibly bind to both tBid and Bax [172, 175, 176], reducing the rate of Bax

dimerization induced by truncated Bid.

Bcl-2+tBid = Bcl-2:tBid (4.14)

Bcl-2 + Bax = Bcl-2:Bax (4.15)

Release of Smac and cytochrome ¢ from the mitochondrion

Bax dimers, Baxy, are taken to signify formation of mitochondrial membrane pores, allowing

the release of cytochrome ¢ and Smac into the cytoplasm [174,177-179].

Baxs + cytocyy, — Baxa + cytoc (4.16)

Baxy + Smacmite — Baxz 4+ Smac (4.17)

Construction of the apoptosome and activation of caspase-9

Formation of the apoptosome begins when cytochrome c is released from the mitochondria
and binds to Apaf-1 [180]. Seven cytochrome c/Apaf dimers combine to form a single

apoptosome, and it is assumed that this assembly is irreversible [181,182].

cytoc + Apaf = cytoc:Apaf (4.18)

Tcytoc:Apaf — Apop (4.19)

The apoptosome can bind two molecules of procaspase-9 and their co-localization leads to

cleavage into the active form, caspase-9 [183]. It is assumed that the apoptosome is also
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capable of directly binding to the active form.

Apop + Pro9

Apop:Pro9 + Pro9

Apop:Pro9,

Apop + Casp9

Apop:Casp9 + Casp9

Activation of caspase-3 by caspase-9

Apop:Pro9

1

1

Apop:Pro9,

— Apop:Casp9,

1

Apop:Casp9

1

Apop:Casp9,

(4.20)
(4.21)
(4.22)
(4.23)

(4.24)

Caspase-9 can cleave procaspase-3 into caspase-3 either as a free molecule in the cyto-

plasm [170] or bound to the apoptosome [184].

Casp9 + Pro3
Casp9:Pro3
Apop:Casp9 + Pro3
Apop:Casp9:Pro3
Apop:Casp9, + Pro3

Apop:Casp9,:Pro3

Activation of caspase-9 by caspase-3

—
=

1

1

Casp9:Pro3

Casp9 + Casp3
Apop:Casp9:Pro3
Apop:Casp9 + Casp3

Apop:Casp9,:Pro3

Apop:Casp9, + Casp3

(4.25)
(4.26)
(4.27)
(4.28)
(4.29)

(4.30)

In a positive feedback loop, caspase-9 can also be activated by its substrate caspase-3, either

free or in complex with the apoptosome [185].

Casp3 + Pro9
Casp3:Pro9
Casp3 + Apop:Pro9

Casp3:Apop:Pro9

—
=

1
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Inhibition by and of XIAP

XIAP functions to inhibit apoptosis by binding effector caspase-3, thereby preventing it

from carrying out cellular disassembly [186,187]:

XIAP + Casp3 = XIAP:Casp3 (4.35)

XIAP can also bind full-length and cleaved caspase-9, either in the cytosol [188] or local-
ized to the apoptosome [189,190]. We assume that Apop:Pro9; is quickly converted to
Apop:Casp92 so that it does not have the opportunity to bind XIAP.

XIAP + Caspd = XIAP:Casp9 (4.36)

XIAP + Apop:Casp9 = XIAP:Apop:Casp9 (4.37)
XIAP + Apop:Casp9, = XIAP:Apop:Casp9, (4.38)
XIAP + Pro9 = XIAP:Pro9 (4.39)

XIAP + Apop:Pro9 = XIAP:Apop:Pro9 (4.40)

When Smac is released from the mitochondria, it binds to XIAP, relieving the inhibition of
the caspases [191,192].
Smac + XIAP = Smac:XIAP (4.41)

4.2.2 Model add-ons to generate the ensemble

We chose six independent modifications to the base model, reactions that are differentially
represented in the existing published models, and some of which are still uncertain from
a biological perspective. By no means is this an exhaustive set of the differences among
models, the biological uncertainties, or the possible mechanistic descriptions of the system.
These were chosen, rather, as a representative sample of the types of choices that distinguish
reasonable Fas models. They share the property that each may be included or not by
switching rate constants to zero. An ensemble of models was created by constructing the

combinatorial set of all possible combinations of inclusion or exclusion of the add-ons. The
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ensemble therefore consisted of 26 = 64 different topologies, each of which was parameterized

to create a model.

The modifications are each described in detail here and are summarized in Figure 4-2. In
the text, model topologies are referred to by a six-bit binary code where each bit represents
inclusion (1) or exclusion (0) of each add-on, in order from 1 to 6 as described below. The
Base Model is referred to as Model 000000 and the model that includes all possible add-ons,
the Master Model, is Model 111111.

Add-on No.1: Inclusion of caspase-2

Though rarely included in models—see [74] as an exception—caspase-2 is known to be
activated by caspase-3 [193] and there is further evidence that caspase-2, like caspase-8, has
the ability to cleave Bid into tBid [194]. Inclusion of these reactions introduces a source of
positive feedback for the Type II pathway and a source of crosstalk between the instrinsic

and extrinsic pathways. The specific reactions for this model modification are as follows:

Casp3 + Pro2 += Casp3:Pro2 (4.42)
Casp3:Pro2 — Casp3 + Casp2 (4.43)
Casp2 +Bid = Casp2:Bid (4.44)
Casp2:Bid — Casp2 + tBid (4.45)

'Add-on No.2: Inclusion of caspase-6

Caspase-6 is known to be a mediator of positive feedback through the Type I apoptotic
pathway. Caspase-3 cleaves procaspase-6 into caspase-6 [170, 195] which then activates
caspase-8 [196]. These reactions have been included explicitly in some models [74,157,161],

while in others this feedback is modeled as occurring directly, without mediation of caspase-
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Figure 4-2: Master Model of the Fas signaling network, showing the six model add-ons used to build the library of topologies. Solid lines
represent interactions included in the Base Model whereas dotted lines correspond to the various optional add-ons. As in Figure 4-1,
green and red arrows indicate activating or inhibiting influence, respectively.
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6 [75).

Casp3 + Pro6 = Casp3:Pro6 (4.46)
Casp3:Pro6 — Casp3 + Caspb (4.47)
Caspb + Pro8 + Casp6:Pro8 (4.48)
Casp6:Pro§ — Caspb + Casp8 (4.49)

Add-on No.3: Interactions of caspase-3 with members of the Bcl-2 family of

proteins

It has been proposed that there exists a positive feedback loop linking the Type I and Type
II pathways, in the form of deactivation of Bcl-2 by caspase-3 [197-199]. If activation of
caspase-3 were to occur quickly by direct action of caspase-8, these reactions could accelerate

mitochondrial membrane permeabilization.

Casp3 + Bcl-2 = Casp3:Bcl-2 (4.50)

Add-on No.4: Autodimerization of Bax

The mechanism by which the Bcl-2 family of proteins interacts to control permeabilization
of the mitochondrial membrane and subsequent release of cytochrome ¢ and Smac is still
contested [200,201]. Previously, it had been assumed that Bid functioned to directly activate
Bax and that membrane permeabilization required interaction of these two molecules. More
recently, it has been shown that the role of Bid may be, at least in part, an indirect one
because cells with Bid mutated to prevent binding to Bax still die [202]. The hypothesis is
that Bcl-2 acts as a stop for membrane permeabilization and that activated Bid operates by
relieving this barrier. Several recent papers have addressed this uncertainty by investigating
possible mechanisms of permeabilization, both direct and indirect, and concluded that a

direct model was preferred for its robustness properties [77,159,160].

Our base model is one in which there is only direct activation by Bid: Bax dimerization
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requires the assistance of tBid. As one of our model options, we allow autoactivation of Bax
through spontaneous dimerization, a reaction which has been previously proposed [203]. In
this model, if there is insufficient Bcl-2 in the cell to sequester Bax molecules and prevent
them from binding to one another, the mitochondria become leaky, and release cytochrome
¢ and Smac, even in the absence of a Fas ligand stimulus. This differs from the proposed
models by Chen and Cui [77,160] in which complete Bax activation requires at least one

monomer to interact with a mediator molecule.

2Bax = Baxy (4.52)

Add-on No.5: Inactivation of FLIP by caspase-8

In the base model, FLIP reduces the rate at which caspase-8 becomes activated by competing
for the binding site of the DISC. This next model modification allows for a positive feedback
in which activated caspase-8 can cleave FLIP, reducing its ability to bind the DISC, and

increasing the rate at which caspase-8 is activated at the cellular membrane [204].

Casp8 + FLIP = Casp8:FLIP (4.53)

Add-on No.6: Binding of Bcl-2 to the apoptosome

The last add-on is a putative mechanism by which Bcl-2 might act anti-apoptotically: by
binding to the apoptosome, thereby preventing local activation of caspase-9. The mecha-
nism of action may involve binding to either cytochrome c [205,206] and/or Apaf-1 [207-209]
though the latter reaction has been challenged as occuring in C. elegans but not hu-
mans [210]. We modeled the interaction of Bcl-2 directly with the apoptosome rather
than with cytochrome c or Apaf-1 individually, because in our model the apoptosomes are
formed very quickly following mitochondrial membrane permeabilization. The overall effect
of this reaction could be neutral or negative towards apoptosis considering that Bcl-2 at the

apoptosome may displace activated as well as inactivated caspase-9, the consequence being
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that more of the active form is present in the cytoplasm to activate free procaspase-3.
Apop + Bcl-2 = Apop:Bcl-2 (4.55)

4.2.3 Parameter values

Where possible, values for rate constants were drawn from published experimental results. A
summary of the rate constants and their soﬁrces is shown in Table 4.2. Little information is
available on the initial concentrations of proteins, and there is likely strong variability across
cell-types and even individual cells. As a result, we chose to fit the initial concentrations
of all species that represent individual proteins, and to set the initial concentrations of all
complexes to zero. At any given time, the concentrations of these complexes are not zero,
and these values can be obtained by equilibrating the system of differential equations in
the absence of FasL stimulus. However, it was found that equilibration occured on very
fast time-scales (on the order of minutes, data not known) and did not affect the resulting
stimulus responses. Due to the large number of models and simulations, as a time-saving

measure we used zero concentrations for all complexes and equilibration was not performed.

4.2.4 Experimental Data

Data for fitting parameters that were not available in the literature were generously do-
nated by Dr. Fei Hua, who used the same data in previously published work on Fas model
simulation [155,157]. The data can be divided into two subsets, though all experiments
were performed on Jurkat.E6 human T cells. The first set consists of Western blot data for
the fraction of uncleaved (pro)caspase-3 and -8, collected over an 8-hour time span follow-
ing stimulation with 100 ng-ml~! Fas ligand (FasL). The second set consists of two dose
response experiments, one each in regular Jurkat cells and in Bcl-2 over-expressing Jurkat
cells. Cells were stimulated with either 1, 10, 100, or 1000 ng-ml~! FasL and the fraction
of cells positive for cleaved caspase-3 was measured at times out to 8 hours using FACS
analysis. The data used for fitting are shown in Figure 4-3. Further details on the nature

of the experiments can be obtained from [155] and [157].
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Forward Reverse Forward Reverse
R1 R2 P1 P2 Rate Rate Value Value
Constant Constant nM~! s~ s~ 1

1 Fas FasL FasC klon kloff Fit 1.1 klon [211
2 FasC FADD DISC k2on k2off Fit Fit
3 DISC Pro8 DISC:Pro8 k3on k3off Fit Fit
4 DISC Casp8 DISC: Pro8 k4on k4off 0 Fit
5 DISC FLIP DISC:FLIP k50n k5off Fit Fit
6 Casp8 Pro3 Casp8:Pro3 k6on k6off 8.7E-4(k6off+k70ff) /k7off [212]  Fit
7 Casp8 Casp3 Casp8:Pro3 k7on k7off 0 Fit
8 Casp8 Bid Casp8:Bid k8on k8off Fit Fit
9 Casp8 tBid Casp8:Bid k9on k9off 0 Fit
10 tBid Bax tBid:Bax k10on k10off Fit Fit
11  tBid:Bax Bax tBid:Baxz kllon kiloff ki0Oon k10off
12 tBid Baxgp tBid:Baxgp k12on k12off Fit Fit
13 Bax Bax Baxg k13on k13off 0 Fit
14 tBid Bcl-2 tBid:Bcl-2 kl4on kl4off Fit 220 kl4on [213]
15 Bax Bcl-2 Bax:Bcl-2 kison k150ff Fit Fit
16 Baxg cytocmito Baxg cytoc kl6on k16off  Fit 0
17 Baxz Smacmito Baxg Smac kl7on k17off kl6on 0
18 cytoc Apaf cytoc:Apaf k18on k18off Fit Fit
19 cytoc:Apaf — Apop kl9on k19off Fit 0
20 Apop Pro9 Apop:Pro9 k200n k20off Fit Fit
21  Apop:Pro9 Pro9 Apop:Pro9s k2lon k21off k20on k200ff
22  Apop:Pro9s —_ Apop:Casp92 k220n k22off Fit 0
23 Apop Casp9 Apop:Casp9 k230n k23off k200n k20off
24 Apop:Casp9 Casp9 Apop:Casp9s k240n k24off k20on k200ff
25 Casp9 Pro3 Casp9:Pro3 k250n k250ff (k250ff+4.8)/(2.5E5) [214] Fit
26 Casp9 Casp3 Casp9:Pro3 k26on k26off O 4.8 [214]
27 Apop:Casp9 Pro3 Apop:Casp9:Pro3 k270n k270off 140/ (k270off+k280off) [215] Fit
28 Apop:Casp9 Casp3 Apop:Casp9:Pro3 k28on k28off © Fit
29  Apop:Casp9s Pro3 Apop:Casp92:Pro3 k29on k290ff k270n k270ff
30 Apop:Casp9s Casp3 Apop:Casp92:Pro3 k30on k30off 0 k28off
31 Casp3 Pro9 Casp3:Pro9 k3lon k31loff Fit Fit
32 Casp3 Casp9 Casp3:Pro9 k32on k32off 0 Fit
33 Casp3 Apop:Pro9 Casp3:Apop:Pro9 k33on k33off k3lon k31loff
34 Casp3 Apop:Casp9 Casp3:Apop:Pro9 k34on k34off 0 k32o0ff
35 Casp3 XIAP Casp3:XIAP k350n k350ff 2.5E-3 [187] 2.4E-3 [187]
36 Casp9 XIAP Casp9:XIAP k36on k36off k350n k350ff
37 Pro9 XIAP Pro9:XIAP k370on k370ff k350n k350ff
38 Apop:Pro9 XIAP Apop:Pro9:XIAP k380on k38off k350n k350ff
39 Apop:Casp9 XIAP Apop:Casp9:XIAP k390n k39off k350n k350ff
40 Apop:Casp92 XIAP Apop:Casp9s:XIAP k40on k40off  k35on k350fF
41 Smac XIAP Smac:XIAP k4lon kdloff  TE-3 [216] 2.2E-3 [216]
42  Casp3 Pro2 Casp3:Pro2 k42on k42off Fit Fit
43 Casp3 Casp2 Casp3:Pro2 k43on k43off 0 Fit
44  Casp2 Bid Casp2:Bid k44on k44off Fit Fit
45 Casp2 tBid Casp2:Bid k450n k450ff 0 Fit
46 Casp3 Pro6 Casp3:Pro6 k46on k460ff Fit Fit
47 Casp3 Caspb Casp3:Pro6 k470n k47off 0 Fit
48 Casp6 Pro8 Casp6:Pro8 k48on k48off Fit Fit
49 Caspb Casp8 Casp6:Pro8 k49on k49off 0 Fit
50 Casp3 Bel-2 Casp3:Bcl-2 k51on k51off Fit Fit
51 Casp3 Bel-2jpactive Casp3:Bcl-2 k52on k52off 0 Fit
52 Casp8 FLIP Casp8:FLIP k53on k530ff Fit Fit
53 Casp8 FLIPjpactive Casp8:FLIP k54on k540ff O Fit
54 Apop Bcl-2 Apop:Bcl-2 k550n k550ff Fit Fit
55  Icasp2 Casp?2 ICasp2:Casp2 k56on k560ff  Assigned Assigned
56  Icasps Casp3 ICasp3:Casp3 k570n k57off Assigned Assigned
57  ICasps Caspb ICasp6:Caspb k58o0n k58off  Assigned Assigned
58  Icasps Casp8 ICasps:Casp8 k590n k590ff Assigned Assigned
59  Icasps Casp9 Icaspg:Casp9 k60on k60off Assigned Assigned

Table 4.2: Reactions and corresponding rate constants for the Fas signaling network.
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Figure 4-3: Data used for fitting the Fas models.

4.2.5 Model optimization

Parameters for which no value was available in the literature were fit to the data. Op-
timization was performed in Jacobian (Numerica Technology, Inc., Cambridge, MA) with
the weighted least squares objective function. Optimization seeds for the non-zero initial
concentrations are shown in Table 4.3. It was previously found by Hua et al. that a FasL
concentration of 100 ng ml~! corresponded to an effective FasL concentration of 2 nM for
modeling [155]. Thus, the initial concentration of FasL in the model was set to 0.02, 0.2, 2,
or 20 nM when fitting to experimental data from cells stimulated with 1, 10, 100, or 1000

ng ml~! FasL, respectively.

4.2.6 Model perturbations and predictions

We implemented model perturbations that mechanistically represent binding of caspases by

synthetic inhibitors in the presence of a strong Fas ligand signal such as might be seen in
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Species Initial value seeds (nM)
Apaf 100
Bax 75
Bcl-2 75
Bid 25
CytOCmito 100
FADD 20
Fas 10
Pro2 20
Pro3 200
Pro6 20
Pro8 30
Pro9 20
Smacmito 100
XIAP 30

Table 4.3: Optimization seeds for fitting initial concentrations in the Fas models.

sepsis [150]. There are a wide variety of caspase inhibitors available, that differ in a number

of features:

1. Specificity: Caspase inhibitors come in a wide variety of specificities, from those
that bind strongly to a single caspase, to broad spectrum inhibitors that bind with

some strength to all caspases.

2. Reversibility: Inhibitors can either bind their targets irreversibly, removing them
entirely from the apoptotic network, or they can bind reversibly, mimicking the natural

behavior of XIAP. (Unlike XIAP, however, they are not bound by Smac.)

3. Binding to active or inactive forms of caspase: It is possible to design inhibitors
that bind to procaspases as well as active ones, just as XIAP can bind caspase-9 and
procaspase-9, though in practice most inhibitors bind to the active site of their targets,

regions that are not exposed in the inactive forms.

We modeled the addition of cocktails of inhibitors [217] consisting of up to five specific cas-
pase inhibitors, one each for caspases-2, -3, -6, -8, and -9. We assumed that all inhibitors act

on the active form of each caspase, and are ineffective against caspases that are complexed
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with other molecules, yielding 5 additional reactions and 10 new species.

Icasp2 + Casp2 + Igagp2:Casp2 (4.56)
Icasps + Caspd = Icasp3:Caspd (4.57)
Icasps + Casp6 = Icasps:Caspb (4.58)
Icasps + Casp8 += Icagps:Casp8 (4.59)
Icaspg + Casp9 = Icaspg:Casp9 (4.60)

For specific inhibitors, the ko, of each reaction was either 0 or 1073 nM~! s~1. (Setting
kon to zero effectively removes that inhibitor from the cocktail.) If ko, was non-zero, then
ko for that reaction could be either 0, 1072 or 107! s~!. We used kog = 0 to represent
irreversible binding of an inhibitor. Reversible binding could occur with a Kp of 10 or
100 nM, representing strong or weak inhibition within the range seen among commerically
available inhibitors!. The four possible settings for each of five inhibitors results in 4° = 1024
perturbations. All inhibitors were assumed to be present in the cell at a concentration of
50 nM and the external Fas ligand concentration was set to 20 nM (equivalent to the highest

level of FasL simulus in the experiments used for fitting the data).

4.3 Results

4.3.1 Poorly constrained models in a branched pathway have very differ-

ent flux profiles

In Figure 4-4 we show the superposition of fits by the 64 topologies to the dose response
data shown in Figure 4-3. Models were fit to the entire set of data simultaneously, and
while they are able to recapitulate the activation curve of caspase-3 in the presence of high
stimulus concentrations, in general, the models are poor fits to the time courses for lower
concentrations of Fas ligand. There are several possible explanations for this result that
highlight many of the real difficulties in building complex differential equation models of

biological pathways.

!See http://www.calbiochem.com for a subset of available inhibitors.
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Figure 4-4: Superposition of fits by all 64 Fas signaling pathway topologies to the data
regular (left) and Bcl-2 over-expressing (right) Jurkat cells. The various colors correspond
to FasL concentrations of 20 nM (blue), 2 nM (red), 0.2 nM (green), and 0.02 nM (magenta).
The agreement between models is progressively poorer for lower stimulus levels.

One possibility is that parameter space was not explored sufficiently to find values that
would reproduce the data well. The objective function space for these optimizations was
plagued by many local minima, as different initial seeds for fit parameters invariably led
to different solutions (data not shown). Due to time constraints (optimization of a single
topology required on the order of 2 hours using Jacobian) and a very large search space (on
the order to 50 fit parameters per topology) we did not do full multi-start optimization.
Also related to optimization was the fact that, although we did allow initial protein con-
centrations to vary, the optimizer did not move along these directions, and final estimates
of initial concentrations never changed more than 1% from the seed values provided to the
optimizer. To alleviate this issue, we tried scaling these variables prior to optimization so
that they were similar in magnitude to the rate constants. We observed no effect on the

quality of the resulting fits (data not shown).

Another issue that may have affected the ability to reproduce the data is the inappropri-
ate fixing of parameter values. As much as possible rate constants were assigned according
to values derived from the biological literature. Also in accordance with the literature, we

constrained several rate constants to equal each other, provided this was chemically rea-
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sonable. All of these choices were made to improve the size of the optimization space in
relation to the number of data points used in the fits. However, if these values were incor-
rect, then we may have inadvertently made the optimization problem more difficult. (We
tried optimizing the models with no fixed parameters and found that they could reproduce
the time course data from the regular Jurkat cells remarkably well; however, they were al-
most universally insensitive to Bcl-2 over-expression because they channeled very little lux
through the mitochondrial pathway. These models were therefore judged as being overfit.)

A third concern regards assumptions about differences between regular and Bcl-2 over-
expressing cells. We assumed, as was done in [157], that only the concentration of Bcl-2
was different between the two cell typés, and that the initial concentrations of all other
proteins were unchanged. Note, however, that the observed reduction in sensitivity to Fas
ligand in the over-expressing cells could similarly be caused by a simultaneous reduction in
the number of Fas receptors (data not shown). With our assumptions, the optimizer had
no possibility of finding this solution.

Lack of knowledge of the initial concentrations, and in particular differences in initial
concentrations between the two cell types, could be alleviated somewhat if we had more
information about the relative fluxes through the Type I and Type II pathways. The data
that were used to fit the models were drawn from the two branch-points in the network:
caspase-8 is where the two pathways diverge, and caspase-3 is where they reconverge. There
is, therefore, very little information to constrain the relative amount of caspase-3 activation
from caspase-8 and caspase-9.

To address this issue further, we calculated the time-dependent fluxes into activated
caspase-3 from either caspase-8 or caspase-9 and clustered the 64 models according to their
flux patterns (Figures 4-5 and 4-6). Clustering was performed using the k-means algorithm
with k = 8. Figure 4-7 shows the cumulative contribution to caspase-3 activation by caspase-
8 and -9 for four topologies, each drawn from a different flux cluster. We immediately
observed that in many cases, the relative contribution of caspase-8 to caspase-3 activation
was considerably more than that by caspase-9. In some topologies, up to 99% of the flux was
through caspase-8, regardless of Bcl-2 level or concentration of Fas ligand. In other classes

of models, caspase-9 contributed up to 99% of the caspase-3 activation, though only for
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very low concentration of ligand. Other clear features were that the flux through caspase-8
was delayed and the maximum flux decreased for lower stimulus concentrations. Quite to
the contrary, lower ligand concentrations often resulted in significantly more flux through
caspase-9 (though, as with caspase-8, the activation did not occur for several hours following
stimulus). As would be expected based on path length, activation by caspase-9 always
occured after the initiation by caspase-8. We hypothesize that when large concentrations
of caspase-8 become activated on a short time-scale, direct activation of caspase-3 quickly
follows, so quickly in fact that by the time the mitochondrial pathway has activated caspase-
9, there is little procaspase-3 left on which it can act. If caspase-8 is activated more slowly,
as it is when there is little ligand present, the mitochondrial pathway has a chance to catch
up and play a greater role in activation.

Figure 4-7 also serves to demonstrate how the time course of caspase-3 activation can
be altered by over-expression of Becl-2 and how this change is dependent on the particular
flux balance of a model. A large surplus of Bcl-2 was observed to invariably repress the
mitochondrial pathway. Caspase-8 was able to compensate for this loss to different degrees,

depending on the specific parameters and topology of the model.

4.3.2 Graded response data can be reconciled with switch-like action by

considering activation noise

Another major concern regarding our inability to fit the data well relates to the nature
of the data itself and the known switch-like behavior of the apoptotic network. Several
experimental studies using FRET reporters have shown caspase activation in individual
cells to occur very rapidly once initiated, on the time scale of minutes [161,218,219]. The
same studies also showed that variations between individual cells in a population result in
differences in the time to activation. Averaging over a population of switch-like individuals
can generate an apparent graded response, masking the all-or-none behavior. Our models
were intended to predict the expected dynamic behavior occurring within a single cell, so it
is unsurprising that at low ligand concentrations, the models do a poor job of recapitulating
the population data. For high levels of FasL, this should not be as much of an issue as the

switching times will vary proportionately less.
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Figure 4-5: Clustering of the flux into activated caspase-3 by caspase-8 for the 64 fit models. Clustering was performed using k-means

with a correlation distance metric and 100 replicates. As the concentration of ligand is decreased, the flux through caspase-8 is delayed
and broadened.
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Figure 4-6: Clustering of the flux into activated caspase-3 by caspase-9 for the 64 fit models. As with caspase-8, smaller stimuli result in
delayed and broadened fluxes. Overall, in these models, caspase-9 contributes relatively little to activation of caspase-3, which is evident
through comparison of the flux magnitudes. However, interestingly, the proportional flux through caspase-9 is considerably more for low
rather than high FasL. This relates to the delay between activation from the Type I and Type II pathways.
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Figure 4-7: Contributions of caspase-8 (dash) and caspase-9 (dot-dash) to activation of
caspase-3 (solid) under baseline values or Bcl-2 over-expression. The relative amount of
caspase-3 activated by the Type I and Type II pathways varies considerably by model
(Topology 000000, 000010, 000110, and 000111 from top to bottom), by ligand concentration
(either 20 nM (blue), 0.2 nM (green) or 0.02 nM (magenta) within each plot), and by Bcl-2
concentration (left and right columns). The models shown belong to clusters 2, 1, 8, and 3
(in order, again, from top to bottom).
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Figure 4-8: Comparison of behaviors among flux clusters under perturbation. The models
of the ensemble were clustered according to their flux profiles into activated caspase-3 (as
shown in Figures 4-5 and 4-6) and models were subject to perturbations in the form of
treatment with irreversible inhibitors to caspases-3, -8, and -9 (left) or treatment with irre-
versible inhibitors of caspase-8 and caspase-9 only (right). Simulations are colored according
to the cluster to which they belong, not according to the concentration of Fas ligand, which
was constant at 20 nM.

It may or may not be the case that Bcl-2 over-expressing cells also display such switch-
like activation profiles. Prior experiments in HeLa cells showed that Bcl-2 over-expression
may cause more gradual switching, though the specifics depend on the concentrations of
other species in the network, e.g. XIAP [161]. It is therefore unclear whether the data col-
lected from Bcl-2 over-expressing cells show a graded response due to population-averaging
or because the response within each cell is actually more gradual in this case. If mito-
chondrial membrane permeabilization is the major source of the all-or-none response in
apoptosis [76,161], then shutting down the Type II pathway may very well lead to the

latter result.

We tested the ability our models with more switch-like activation profiles (and therefore
generally poorer fits to the data) to generate a graded response when subjected to stimulus
noise. As shown in Figure 4-9, v.ve simulated activation of caspase-3 in model 110001 for
100 different concentrations of Fas ligand, randomly selected from a log-normal distribution
with mean 0.02 nM (corresponding to the 1 ng ml~! FasL experiment) and 5% or 30%

proportional variance. These simulations reflect the stochastic nature of ligand molecules
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binding to the cell surface, a possible source of switching-time variation across individual
cells. The population mean trajectories, shown in red, are in stark contrast to the determin-
istic prediction with [FasL] = 0.02 nM (green). For the same model, receptor concentration
would not similarly result in different switching times for the cells. The same proportional
levels of noise in Fas receptor would be expected to bear little effect because it is at a
saturating concentration with respect to the ligand for this particular choice of initial con-
centrations. We did not explore the impact of noise in other species on the time to caspase-3
activation, but it is very reasonable to expect that there may be other, intracellular, sources

of variation.

4.3.3 The optimal caspase cocktail for differentiating between models

While the models agreed poorly on the activation profile of caspase-3 under conditions
of low ligand concentration, they were unanimous in the quick onset of apoptosis for high
concentrations. We therefore retained all 64 topologies in the ensemble as we were interested
in the response of cells to different caspase inhibitor treatments in the presence of high
stimulus concentrations, mimicking cellular conditions in a septic environment.

We subjected all models of the ensemble to 1024 different perturbations resulting from
four different inhibitors choices for each of the five caspases in the model. For each per-
turbation representing a treatment condition, we computed the ensemble variance of the
activation profiles of caspase-3, as described in Chapter 3. We used the inhibitor speci-
fications for the cocktails as the independent variables for constructing a decision tree to
classify the ensemble variance of the responses (Figure 4-10).

The nodes of the decision tree are color-coded to indicate the level of consensus of treat-
ment choices belonging to that node with yellow representing high consensus, and red, low
consensus. There is a distinct separation of high and low consensus perturbations, with
only two major cuts required to separate the good from the bad. Namely, simulated addi-
tion of an irreversible inhibitor of caspase-8 and any choice of inhibitor ezcept irreversible
for caspase-9 results in large ensemble variance, regardless of whether there are inhibitors
present at any strength for caspases-2, -3, and -6. All other choices involving caspase-8 and

-9 lead to continued agreement among the models. In Figure 4-11B we have plotted the
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simulated time courses for caspase-3 activation from all 64 models in the ensemble under
treatment with an irreversible inhibitor of caspase-6 and caspase-8. This was the treatment
condition corresponding to the largest ensemble variance of all 1024 tested treatment op-
tions. Referring back to Figure 4-8, we see that a large fraction of this variation is captured
by the differences in the model fluxes at the fits. Therefore, we would expect that experi-
mental testing of the cellular response to this inhibitor cocktail would lead to elimination

of whole clusters of models that do not agree with the data.

4.3.4 Optimal inhibition of apoptosis involves a three-pronged attack

While experiments for refining the ensemble can be designed immediately by looking at
the tree, the design of the optimal treatment plan for reducing apoptosis in the presence
of high stimulus involves a second step. Once perturbations of high consensus have been
identified by the tree, predictions from those treatment profiles need to be analyzed further
to determine therapeutic effect. In Figure 4-12, we have plotted the ensemble variance
against the mean concentration of active caspase-3 at 8 hours. From this plot we identified
those perturbations corresponding to high ensemble variance and low activation. It turns
out that, according to the models, in order to significantly reduce caspase-3 activation we
require at a minimum three points of intervention: caspase-3, caspase-8, and caspase-9.
(Choices involving caspase-2 and caspase-6 are redundant to the effects of the other three

inhibitors.)

We also looked into the ensemble variance as the best metric for measuring the consensus
of the ensemble. Another possible measure, which is even simpler, is the variance of the
predicted caspase-3 concentration at a single time-point, say at 8 hours. In Figure 4-13, the
value of the full ensemble variance is plotted against the variance at 8 hours for all treatment
options. Importantly, the metrics agree on all counts when there is good consensus among
the models. Using the 8-hour time points to generate the decision tree did not alter any of

the first three levels of cuts in the tree (data not shown).
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4.4 Discussion

4.4.1 Simplifications and uncertainties not accounted for in the models

In this work our goal was to investigate the diversity or similarity of predictions from an
ensemble of topologically different models. It was not our goal to capture all of the biological
or modeling uncertainty about Fas signaling in these choices, but rather to consider some
of the disparities in the existing literature and examine their impact. There are many
simplications and omissions in both our Base and Master models. As a first example, there
are several species that we left out of our models that are purportedly redundant in function
or behavior. Caspase-10 is thought to behave as an initiator caspase, in a similar manner
to caspase-8, and in most models is omitted for this reason [74-76,155,157,161]. Similarly,
for the sake of modeling, caspase-7 is usually considered redundant to effector caspase-3, at
least in terms of apoptotic initiation, and thus has typically been lumped with caspase-3
in models. Experiments have neverthless shown several differences between caspase-7 and
caspase-3. For instance, XIAP binds to each with slightly different affinities [187,216] and
c-IAP-1 appears to be a stronger inhibitor of caspase-7 while the reverse is true of c-IAP-
2 [220]. It is also known that, once activated, caspase-3 has a more dominant role in the
execution of cellular disassembly, and that the two proteins may have distinct targets [221].
These omissions are potentially relevant to our therapeutic cocktail design, as the inhibitor
intended to bind caspase-8 may not also act on caspase-10, leaving an open channel for
propagation of the apoptotic signal.

The Bcl-2 proteins are those that interact at the mitochondrion to prevent or promote
release of cytochrome ¢ and Smac, both of which behave pro-apoptotically. The Bcl-2 family
itself consists of both pro- and anti-apoptotic proteins: Bax, Bak, Bim, Bid, Bik, Bad, and
Noxa belonging to the former, and Mcl-1, Bcl-2, Bel-W, A1A, and Bel-xL, the latter [144].
The pro-apoptotic group can further be divided into two sub-classes. Bax and Bak are
directly involved in mitochondrial membrane pore formation while the others, known as
BH3-only proteins for their basic structural unit, are facilitators of this activity. In our
model, there is a single representative from each of the main classes: Bax represents both

Bax and Bak; Bid represents itself plus Bim, Bik, Bad, and Noxa; and Bcl-2 is the sole
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anti-apoptotic protein.

Knockout or knockdown experiments of the different Bcl-2 family members have demon-
strated that there are certainly within-class differences. Deletion of Bax in mice led to
male sterility and lymphoid hyperplasia [222] while Bak deletion mutants showed no side-
effects [223]. Double mutants of both Bax and Bak were inviable [223] so, while the precise
roles of the two proteins may be distinct, they each have some ability to compensate for
lack of the other. Another difference between Bax and Bak lies in localization. Bax re-
sides in the cytosol until apoptotic initiation, whereas Bak is thought to be localized to the
mitochondrial membrane regardless of apoptotic stimulus [224].

We also modeled a single inhibitor of apoptosis species, which we labeled XIAP. There
are in fact a number of similar proteins, namely c-IAP-1 and c-IAP-2. All three act by
binding to caspases and preventing downstream activity, but they likely exist at different
concentrations in the cell, have different affinities for the various caspases, and also have
different non-caspase binding partners. Roy et al. [220] showed that the c-IAPs can bind
TRAF proteins but XIAP does not, and that XIAP is a more potent inhibitor of both
caspase-3 and caspase-7 than either c-IAP by 2-3 log-fold.

One major concern about the potential success of the caspase inhibitor cocktail is that
previous research has shown that, in some circumstances, relief of apoptosis only leads to
necrotic or autophagic cell death [225-227]. It is unclear whether this cellular “back-up
plan” is cell type-dependent and how specific it is to the particular cell stimulus. If the
bypass occurs at the receptor level, rather than in the cytosol, the same inhibitors may be
effective against cell-death in response to Fas ligand but not to TRAIL, for instance. In
general, there is a poor understanding of how the caspase network connects to and influences
other cellular pathways (see [228] as an example) and, furthermore, we have not attempted
to include these connections in our models.

There is also a question of whether cells that are “rescued” from apoptosis are viable
after treatment. For example, our simulations suggest that the best reduction of caspase-3
activation with the inhibitor choices tested is still only about 85%. The presence of that
much activated caspase may or may not result in cellular disassembly. In this regard, we did

not include any degradation (or constitutive production) processes in the models. Other
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researchers have found that active caspase-3 is targetted for ubiquin-mediated degradation
on the order of hours, which is within the time scale of processes considered here [161]. This
degradation may be sufficient to account for the last 15% of activation, though we cannot

do more than speculate without directly incorporating this effect into the model.

4.4.2 Recommended follow-up experiments

We suggest a number of experiments as follow-up to the computational studies performed
here. The first set of recommended experiments relates to improved model building. In
an ideal world, one would perform flow cytometry experiments to measure the initial (pre-
stimulus) concentrations of several important components of the network with special at-
tention to any differences between cell lines for which data is to be collected.

The model fitting could further be greatly improved with data collected at the single cell
level, both to eliminate the impact of averaging over a population of stochastically distinct
cells and to make clear whether the all-or-none property exists only in baseline cells or
whether this phenomenon is also exhibited in the presence of Bcl-2 over-expression.

The flux balance in this branched pathway needs to be established and it cannot be
done by measuring only network components that are shared by both the Type I and
Type II pathway. One way to establish this balance would be to repeat the dose response
experiments and to measure the time-dependent activation of Bid and/or caspase-9, in
addition to caspase-3 and -8.

To eliminate candidate models from our ensemble, we suggest an experiment in which
cells are subjected to irreversible inhibitors specific to caspase-6 and caspase-8, respectively.
Finally, we would want to test our prediction of a cocktail of inhibitors of caspases-3, -8, and
-9 as a potential treatment for preventing apoptosis in the presence of high concentrations

of Fas ligand.

4.5 Conclusions

In this work we built an ensemble of 64 models that differed in their topologies, both for

understanding the apoptosis pathway and designing treatment options for preventing cell
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death. The construction of the ensemble highlighted many of the difficulties relating to
the modeling of real biological pathways with differential equations, and, specific to this
network and dataset, found that underspecification of the fluxes can lead to a wide variety
of predicted behaviors under certain conditions. Nevertheless, all models of the ensemble
agreed strongly on the cellular response to high ligand concentration, and we used our unique
ensemble approach to test the sensitivity of this activation to different treatments using
caspase inhibitors. Each specific combination of inhibitors led either to continued agreement
on a quick activation, continued agreement but with reduced activation, or disagreement
between models. We hope to conduct our suggested experiments in order to validate our

methods but also to test the viability of the proposed caspase inhibitor therapy.
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Figure 4-9: Simulations of the stochastic response of apoptotic activation to changes in Fas
receptor and ligand concentrations. It is known that non-Bcl-2 over-expressing cells exhibit
a switch-like response to apoptotic stimuli. Our data were from cell populations, but the
models represent the dynamics of single cells. To rectify this difference, we verified that
averaging over individual models could reproduce the data. Simulations in which the Fas
ligand concentration was varied (at either the 5% (A) or 30% (B) level) produced vastly
different switching times while the same variability in the concentration of Fas receptor (C
and D) had little effect. All simulations shown here are for model 110001 with a mean Fas
ligand concentration of 0.02 nM and a mean Fas receptor concentration of 10 nM.

117



Casp2 s 1:1.816 C840
Casp3 C8=0 #
Caspt s
30684
Casp8 mmmm C9=0 C8={2,3}
Casp9 C940 C8=1
4:1.110] 6:0.820 70616
6:0.901 [5-7.738 13:0.986 150,735
16:0.798 17:1.106 19: 1.683 240809 27:0.966 [25.0562] 310722
320847] [330750 35:1.078 460618] [47.0507] [48:0571] {490553] [50:0.760 [52.0.733
* 5 0580 GEED

| |

i s e

Figure 4-10: Decision tree for analyzing the prediction space of the perturbations by caspase inhibitor cocktail. Node color represents
the ensemble variance (x10%) for the predictions from the 64 models of the ensemble. Yellow corresponds to low variance while red
corresponds to high variance. Cuts in the tree are made regarding inhibitor choices: 0 = irreversible inhibitor for that caspase, 1 =
strong reversible inhibitor (Kp = 10 nM), 2 = weak reversible inhibitor (Kp = 100 nM), 3 = no inhibitor. There is high variance when
the models are subjected to an irreversible inhibitor of caspase-8 and no inhibitor of caspase-9.
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Figure 4-11: Demonstration of the predictions from the ensemble of models for different
choices of caspase inhibitors. Models were subjected to a (A) irreversible inhibitors of
caspases-3, -8, and -9; (B) irreversible inhibitors of caspases-6 and -8; (C) irreversible in-
hibitors of caspases-3, -6, and -8; and (D) irreversible inhibitors of caspases-2 and -6, a
strong reversible inhibitor of caspase-8, and a weak reversible inhibitor of caspase-9. The
first cocktail represents a strong decrease in caspase-3 activation while maintaining agree-
ment among the models. Cocktails (B) and (C) represent the highest ensemble variance
and highest steady-state variance of all the possible combinations: if cells were experi-
mentally subjected to these combinations, it should be possible to eliminate some of the
candidate models. Cocktail (D) demonstrates that given the right combinations, even four
simulataneous inhibitors can have very little effect on caspase-3 activation.
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Figure 4-12: Ensemble variance vs. mean concentration of Casp3 at 8 hours for the 1024
caspase inhibitor cocktails. There are several clear groupings based on the particular com-
position of the inhibitor cocktail. Some notable cocktails are distinctly colored in the plot:
irreversible inhibitors of caspase-3, -8, and -9 (green); irreversible inhibitors of caspase-8
and -9, and a strong reversible inhibitor of caspase-3 (orange); no inhibitor of caspase-3,
irreversible inhibitor of caspase-8, weak reversible inhibitor of caspase-9 (red); no inhibitor
of caspase-3 or -9, irreversible inhibitor of caspase-8 (cyan); no inhibitor of caspase-3 and
any inhibitor of caspase-8 ezxcept irreversible (magenta).
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Figure 4-13: Comparison of the full ensemble variance to the variance of steady state values,
computed across the 64 models of the ensemble for each of 1024 inhibitor perturbations.
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Chapter 5

General Conclusions and Future

Directions

In this thesis, we studied the current modeling paradigm in systems biology and proposed
new tools for improving the way biological models are used, both for making predictions
about response to perturbation and for learning about the biology. In Chapter 2, we used
a simulation framework to explore the impact of parametric and topological sources of
uncertainty on the ability of differential equation models to make accurate predictions. The

simulation results highlighted several key points:

1. Model selection methods may not be able to identify the correct topology from a set

of plausible candidates.

2. The best-fitting model, whether with the correct topology or otherwise, will not nec-

essarily generate the most accurate predictions.

3. The model with the correct topology, whether the best-fitting model or otherwise, will

not necessarily generate the most accurate predictions.

4. Uncertainty due to parameters cannot capture the full variation in predictions when

topology is also unknown.

In Chapter 2 we also found that the consensus among a family of well-fitting models, as

measured by an ensemble variance, was shown to be a very strong classifier of prediction
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error. Together, these results emphasize the advantage of supplementing model selection
with prediction selection when many models can capture the data well.

In Chapter 3, we used ensemble consensus as the basis for the development of meth-
ods designed for identifying high- and low-confidence predictions from differential equation
models. One such method combined a model averaging approach with propagated statisti-
cal uncertainty, resulting in probability distributions of protein concentration as a function
of time. Such distributions are useful in a number of ways. First, they can be used to make
predictions that incorporate information about uncertainty in both topology and parame-
ters. Second, they can highlight the species and time points for which we have the most or
least forecasting information. Finally, they can be used to compute an overall score for a
prediction that incorporates information from all species and time points, and this score can
be used to determine whether the predictions under a particular perturbation are reliable
or not.

Also in Chapter 3, we developed two methods for exploring the parameter space ac-
cessible by experimental perturbation, the goal being to identify the regions of this space
corresponding to either high or low confidence predictions. In one method, we subjected
model ensembles to Monte Carlo perturbations within the accessible parameter space, and
computed the corresponding ensemble variance. We then used decision trees to map param-
eter space into regions of consistent consensus, and used opposing branches of the tree to
(a) identify biologically interesting high-confidence predictions and (b) design experiments
to refine the ensemble of plausible models. Our second method for mapping consensus in
parameter space consisted of computing a new metric, the consensus sensitivities, which
measures the sensitivity of the ensemble variance to changes in parameters.

We tested our method of mapping parameter space by applying it to a real biological
system, as described in Chapter 4. We built 64 models of the Fas signaling network and
used consensus among the ensemble to identify the best sepsis treatment possible with a
cocktail of specific caspase inhibitors. In working with a larger system and real data, we
encountered many of the difficulties associated with mechanistic modeling of biology. In
particular, in the apoptosis network, more work needs to be done to understand the relative

contributions of the Type I and Type II pathways, as model behavior in response to stimulus
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was shown to be largely determined by the fluxes through these two parts of the network.
Our experiences reinforced the need to be able to conduct systems biology iteratively, where
experiments support modeling, and modeling promotes further experiments, as it is often
unknown exactly what information will be needed to constrain a model properly. That
said, our ensemble technique is one approach for maximizing the utility of the information
at hand.

There are numerous avenues to be explored further based on the work presented here.
Due to time and technical limitations, we did not test our model averaging technique on
the apoptosis network, nor did we compute the consensus sensitivities. I recommend that
both of these tests be performed to validate the techniques using a larger, more realistic
system.

Another possible extension to this work is to implement consensus ideas in an optimiza-
tion framework. Several experimental design algorithms for model discrimination already
employ this basic idea, but rather than use them to seek out perturbations where models
disagree, they could also be applied in the opposite way, to find perturbations for which
consensus is reached. Instead of optimizing on the difference between model predictions,
our objective function could consist of an ensemble variance term, balanced by the mean

distance of the predictions from the fits:

M M LM 2
F(26;0) =" (zm(0 + AB) — 2 (0))° -8B ) (mm(o + A8) — i > z(0+ AO))
m=1 m=1 k=1

where z,,(0) and z,,(0 + A8) are the values of the m** model at the fit and under pertur-
bation, and the sums are over all models M. § is a tuning parameter to weight the relative
importance of the ensemble variance compared to the distance from the fit. Optimizing
such an objective function on A@ may lead to predictions that are both biologically inter-
esting (because they are far from the data used to train the models) and of high-confidence
(because the models agree on the predictions).

In the work presented here, the ensembles were constructed using single parameteriza-
tions of models with distinct topologies. It would not be difficult to expand the ensembles

to include multiple parameterizations of each topology: the optimization functions of large

123



models with many unknown parameter values and limited data are often plagued by multiple
local minima.

Yet another interesting avenue of further research might be to consider not only experi-
mental perturbations, but also variation among patients or across cell types. For instance,
one could imagine exploring the consensus among an ensemble of models built to represent
different patients subjected to in silico drug treatments. The decision tree could then be
used to identify treatments for which all patients were expected to respond similarly or
treatments for which we would expect to see stratification. Ensembles could be built to
include both biological uncertainties as well as patient differences and the methods could
be used to analyse whether predicted patient differences were more or less significant than
the dispersion seen across multiple biological representations.

Overall, the ensemble methods presented in this thesis lay the groundwork for many
applications of biological modeling, and may be of particular interest in the field of drug
development and clinical trial design. The depth of their utility, however, cannot be fully
evaluated until they are integrated with experiments and it is hoped that future collabora-

tions will enable this implementation.
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Appendix A

Chapter 2 Supplementary Material

A.1 Model equations
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A.2 Parameters for Models 1 and 4 as actual systems

Table A.1: Parameters for Models 1 and 4 when they were used as actual systems to generate
simulated data

Parameter Value in
Name Biological Meaning Units Actual System
Model 1 Model 4
YA 0.05 0.05
YC I . . 0 0
" Constitutive production rate [conc.]/[time] 1 n/a
D n/a 1
KAB Concentration at half-maximal 1 n/a
[conc.]
KAD expression rate under repression n/a 1
apc Maximal express1f)n rate under [conc.]/[time] 1 1
apB promotion n/a 1
¢BC Concentration at half-maximal [conc] 1 1
¢pB expression rate under promotion . n/a 1
Bas 2 n/a
Bap Hill coefficient of regulation none n/a !
Bec 1 1
BpB n/a 2
ka 0.2 0.2
kg . . 0.4 0.4
ke Degradation rate constant 1/[time] 04 04
k D n / a 04

A.3 Effect of reduced noise on model selection

The model selection results with 20% additive noise are very similar to those obtained with
30% noise. Maximum likelihood (ML) is unable to identify Topology 1 as the basis of the
actual system although the AIC and BIC are more successful. When Model 4 was used
as the actual system, Topology 4 gets selected with relative frequency using ML, though
the AIC and BIC overpenalize the larger models. As with 30% noise then, there is an

inconsistency with all three model selection procedures.
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Figure A-1: Histograms for the number of times each model was ranked best with Model 1
(top) or Model 4 (bottom) as the actual system and 20% noise. Data represent optimizations
of all six topologies to 100 datasets that differed only in the noise added to the deterministic
simulation of the actual system.
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A.4 Model identifiability
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Figure A-2: Identifiability of the different topologies with Model 1 or Model 4 as the actual
system

Data were generated using Model 1 or Model 4 as the actual system, sampled at unit
time points from ¢ = 0 to ¢ = 10, with no noise added. All six topologies were then fit
to the noiseless data, producing the normalized negative log likelihood scores as shown
above. In the case of Model 1 as the actual system, there is poor identifiability among the
candidate topologies and, in particular, Topology 4 can be made to generate as good a fit as
the correct topology, Topology 1. With Model 4 as the actual system, the identifiability is
somewhat better, as demonstrated by the greater differences between the likelihood of the
fit of the correct topology and those of the incorrect topologies. Topology 3 can, however,

also generate high quality fits.
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A.5 Probability that the best fitting model will make the

best predictions
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Figure A-3: Histograms for the fraction of times that each topology generates the best fit
and also make the best predictions. The results are for Model 1 (A) and Model 4 (B) as
the actual system, 50 datasets with 30% noise and 1000 perturbations.

o
&

0.45

041

o
w

0.35r

0.25
031

0.2r 0.25

0.15} o2r

0.15
0.1

0.1p

0.05
0.05

0 | B
2 3 4. .8 8 1 2 3| 4 |5 6
Topology Number Topology Number

Normalized fraction of time best fit model makes best prediction

Figure A-4: Histograms for the number of times each model is the best fit and also makes
the best prediction, normalized by the number of times each topology was selected as the
best fit. The results are for Model 1 (A) and Model 4 (B) as the actual system, 50 datasets
with 30% noise and 1000 perturbations.
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A.6 Impact of ensemble choice on consensus

It is important to consider the impact of omitting the correct topology. In real biological
examples, unlike the simulated systems tested here, it is certain that no model under consid-
eration will be a complete and accurate description of the true underlying mechanism. We
repeated the calculations of ensemble variance for the perturbation experiment, this time
leaving out models with Topology 1. The conclusion remained the same in this case—that
consensus among models implied higher prediction accuracy.
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Figure A-5: Error of prediction vs. ensemble variance when the correct topology is omitted
from the ensemble. The same data, fits and perturbations that were used to generate
Figure 2-8 were again used here but predictions from models using Topology 1 were omitted
from the calculations of the mean prediction error and the ensemble variance. Panel B is a
two-dimensional histogram of the data in Panel A.

A.7 Receiver Operating Characteristic (ROC) curves for in-

dividual dataruns

The ROC curve shown in Figure 2-9 is an average over 50 trials with unique datasets.
The ROC curves for individual datasets are noisier but also demonstrate the strength of
consensus as a classifier. It is interesting that the position of the fit value of the consensus
on these curves (shown as red stars) is quite variable: this indicates that the number of true

positives inside the fit threshold is inconsistent. This might be the result of high sensitivity
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to noise and suggests that either the Monte Carlo sampling rate should be increased or else

the fit threshold might be too strict.
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Figure A-6: ROC for 50 data runs with Model 1 (top) or Model 4 (bottom) as actual system.
Red stars correspond to the classification scheme where the threshold of discrimination
between good and poor predictions is the value of the ensemble variance at the fit.
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Appendix B

Chapter 3 Supplementary Material

Derivation of probability under model averaging
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Additional figures
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Figure B-1: Error of MP prediction vs. consensus score for individual data sets. Data
sets were all generated from Model 1 as the actual system with 30% noise. The same
perturbations were applied to all data sets. Noise affects the specific errors and scores but
the overall correlation is independent.
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Figure B-2: Comparison of the errors of the MP predictions from equal or distance-from-
consensus weighting. The correlation coefficient is 0.9292 and the distance-from-consensus
measure performs slightly better on average than equal weighting. Importantly, for large
errors, the two weighting methods are very nearly equivalent.
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Figure B-3: Comparison of the linear and logarithmic opinion pools. For the same set of fit
models under the same perturbation, the probability distributions associated with the linear
(left) and logarithmic (right) opinion pools were computed. The maximum probability (MP)
trajectory is very similar under the two methods, and the overall distributions share similar
features.
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Figure B-4: The effect of a different noisy data set on the construction of the decision tree. An ensemble was built by fitting all six
topologies to data from Model 1 as the actual system with 30% noise. The data differed only in the noise from that used to build the
tree in Figure 3-4 and the same perturbations were applied. The first three levels of cuts are consistent between the trees and overall
there is a high degree of similarity.
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Figure B-5: Decision tree built on data from Model 4 as the actual system. The same procedure as was followed to build the tree shown
in Figure 3-4 was applied using an ensemble fit to data from Model 4 as the actual system with 30% noise.
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Figure B-6: Consensus sensitivities for an ensemble fit to data from Model 4 as the actual system. The black line shows the location of
the first cut in the decision tree built on the same perturbation experiment (Figure B-5), and the red and green lines show the positions

of the two second level cuts.
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