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Abstract |  The FLO promoters are among the largest promoters in yeast and receive a 
complex combination of signals from upstream signaling pathways through their 
association with downstream DNA binding factors and chromatin remodelers.  The genes 
regulated by these promoters encode cell-surface glycoproteins that mediate a range of 
cell-to-cell and cell-to-surface adhesions.  Phenotypic diversity in clonal populations of 
yeast cells is mediated in part by epigenetic silencing of the FLO10 and FLO11 
promoters.  Silencing of the FLO promoters is heterogeneous, or variegated, within a 
clonal population of cells.  The variegated transcription of FLO10 and FLO11 results in a 
population of yeast cells that exhibits cell-to-cell variability in flocculation, adhesion to 
and invasion of inert surfaces, and filamentous growth.  In this thesis, I discuss chromatin 
modifying proteins that localize to the FLO10 and FLO11 promoters and act in trans to 
affect transcription and silencing at these promoters.  I describe the results of genome-
wide screens to identify additional trans-acting chromatin modifying factors that play 
roles in the transcriptional regulation and silencing of the FLO10 and FLO11 promoters.  
Some of the candidates identified in these screens had effects on FLO transcription that 
initially seemed paradoxical in light of contemporary theories regarding the role of 
chromatin structure in regulating transcription.  Given that histone deacetylases generally 
repress transcriptional activity, we were particularly surprised to find that mutations in 
components of the Rpd3L histone deacetylase complex reduce FLO promoter activity, 
indicating that Rpd3L plays a role in transcriptional activation of FLO genes.  Careful 
analysis of these mutants, their phenotypes, the transcription of FLO11, and most 
importantly, the noncoding transcripts that we have detected in the promoter region of 
FLO11, have revealed the basis for this apparent paradox. 
 

Thesis Advisor: Gerald R. Fink, PhD.  
Title: American Cancer Society Professor of Genetics, M.I.T. 
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Chapter 1  
 
Introduction 

 Transcriptional variegation describes the phenomenon in which the cells that 

make up a genetically identical clonal population exhibit heterogeneous expression from 

a given promoter.  Although these cells are experiencing equivalent environmental 

conditions, the variegating promoter exists in an active state in some cells and in an 

inactive state in the remaining cells of the population.  Cells that carry the inactive 

promoter can produce progeny with either active or inactive promoters and, conversely, 

cells that carry the active promoter can also produce progeny with promoters in either 

activation state.  Thus, the transcriptional state of a variegating promoter is reversible.  

Another component of transcriptional variegation is heritability.  An active or repressed 

transcriptional state may be inherited over several cellular generations, producing a clone 

of cells that share the same phenotype by a mechanism termed epigenetic because it is 

not a simple Mendelian inheritance of segregated DNA sequence.  The result of 

transcriptional variegation is phenotypic diversity within a cellular population caused by 

heterogeneous expression of the gene driven by the variegating promoter.   

 The phenomenon of variegated expression raises a number of questions.  First, 

how common is this phenomenon within the biological world?  Second, what are the 

biological mechanisms that give rise to variegated transcription?  And third, is variegated 

transcription merely noise, resulting perhaps from random stochastic fluctuations in 

cellular levels of activators and repressors that regulate a variegating promoter?  Or, 

alternatively, has variegated expression evolved at certain promoters because it provides 

some selective advantage for the cellular population carrying them? 
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 In the introduction to this thesis, I begin by considering examples of 

transcriptional variegation that occur across a range of species and the biological 

mechanisms known to underlie these cases.  These examples demonstrate that 

transcriptional variegation occurs naturally or can be easily engineered in many genomes.  

In some instances, variegated expression provides an unquestionable selective advantage 

to clonal populations of cells.  Because chromatin structure has been shown to play an 

important role in the variegated transcription observed in nature, I discuss in this chapter 

the impact of chromatin structure on transcription, a subject of intense study in recent 

years.  Noncoding RNAs have also been implicated as having important roles in 

regulating transcription and chromatin structure in many organisms, with the exception, it 

was believed until recently, of the budding yeast Saccharomyces cerevisiae.  I include in 

this introduction a discussion of recent findings regarding transcriptional regulation by 

noncoding RNAs in yeast, as these findings are relevant to work presented in later 

chapters of this thesis.  I then consider competing viewpoints regarding how observations 

of transcriptional variegation should be explained and interpreted.  Finally, I conclude 

this chapter by introducing the FLO (FLOcculin) gene family of S. cerevisiae that is the 

subject of the work presented in later chapters. 

In Chapter Two, I present our characterization of the variegated transcription that 

is observed from the promoters of the FLO gene family in S. cerevisiae and our finding 

that, as is the case in other examples of variegated expression, chromatin remodeling at 

FLO promoters is a critical component in the mechanism underlying the observed 

variegation (Halme et al., 2004).   

 10 



In Chapter Three, I present the results of two screens that I conducted in order to 

identify additional effectors of the variegated transcription at FLO promoters.  The 

screens identified chromatin remodelers and other transcriptional regulators not 

previously known to affect FLO gene transcription.   

In Chapter Four, I present findings that point to a new model for the mechanism 

underlying transcriptional variegation of FLO genes.  This model involves competitive 

binding to DNA by proteins that may determine whether histone deacetylases are present 

or absent at local regions within the FLO promoters.  Such competitive binding could be 

the root of a simple toggle between two exclusive transcriptional states.  The model also 

involves bistable changes in local chromatin structure resulting from recruitment of 

histone deacetylases and regulatory noncoding RNAs transcribed from within FLO 

promoter regions.   

Finally, in Chapter Five, I summarize these findings, discuss some implications of 

the results reported here, and propose future avenues of research, 

 

Variegated Expression Observed Across Species 

Instances of variegated transcription have been described across biological 

kingdoms from Protista to Animalia.  Some key examples include Position Effect 

Variegation in fruit flies (Henikoff, 1979, 1990; Spradling and Karpen, 1990), Telomere 

Position Effect in yeasts (Gottschling et al., 1990; Grewal and Klar, 1996), Antigenic 

Variation in pathogenic protists and fungi (Borst, 2002; De Las Penas et al., 2003; Kutty 

et al., 2001; Rubio et al., 1996; Underwood et al., 1996), and X-inactivation in female 

mammals (Migeon, 1994; Panning and Jaenisch, 1998).  In each of these cases, all 
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genetic information remains present and intact, but only a subset of cells within the clonal 

population expresses the variegating gene or genes in question.  

Position Effect Variegation (PEV) in Drosophila melanogaster was first 

described in 1930 by H. J. Müller (Spradling and Karpen, 1990).  Among progeny of X-

ray treated flies, Müller recovered five mutants with “white-mottled” eyes.  Each of these 

mutants exhibited variable expression of the white gene in the cells making up the 

hundreds of ommatidia in the fly compound eye.  Linkage analysis revealed that 

chromosomal rearrangements had occurred in each of these mutants.  Other genes that are 

linked to white, such as Notch, also exhibited variable expression proportional to that of 

the white gene in these mutants.  Puzzled by these findings, Müller remarked that no 

contemporary theories were adequate to explain these “peculiar manoevers of some 

portion of chromatin larger than a gene which has been displaced from its original 

position.”  The variegated expression observed by Müller was later shown to be an effect 

of placing genes near heterochromatic regions such as centromeres.  The ectopic 

placement of genes near these transcriptionally silent chromosomal regions results in 

metastable gene silencing due to the spreading of heterochromatic structure into a gene 

that normally resides in a euchromatic region, thus resulting in variegated gene 

expression in clonal populations of cells (Messmer et al., 1992).  

Such position-dependent silencing effects have also been observed in the yeasts S. 

cerevisiae and Schizosaccharomyces pombe.   When reporter genes, such as ADE2 or 

URA3, are placed near yeast telomeres or the silent mating type (MAT) loci, these 

heterochromatic regions exert a metastable silencing effect on the expression of the 

reporter genes (Gottschling et al., 1990; Grewal and Klar, 1996).  In the case of the URA3 
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gene relocation to a position near heterochromatin results in a mixed population of cells, 

some of which express URA3 and are therefore able to grow on media lacking uracil 

because they are capable of synthesizing it on their own and some of which fail to 

express URA3 and are therefore resistant to the drug 5-FOA, which is toxic to URA3-

expressing cells.  When the ADE2 gene is placed near heterochromatin, the resulting 

colonies contain white sectors, consisting of cells expressing the ADE2 gene, and red 

sectors, consisting of cells in which loss of the ADE2 product due to gene silencing 

results in the accumulation of a red pigment in these cells.  Mutations in genes that 

encode factors necessary to establish or maintain telomeric and MAT loci 

heterochromatic structure in yeast, such as the histone deacetylase SIR2, disrupt position-

dependent silencing in yeast (Wyrick et al., 1999). 

Antigenic variation is a form of variegated transcription that has evolved in many 

types of unicellular pathogens.  The phenomenon results in clonal variation of cell 

surface proteins and serves these organisms well as a means of host immune evasion.  

The pathogenic yeast Candida glabrata, the yeast-like fungus Pneumocystis carinii that 

causes pneumonia, and the protist responsible for malaria, Plasmodium falciparum, all 

contain within their genomes subtelomeric gene families that encode the self-surface 

glycoproteins that enable these organisms to adhere to and infect the cells of their hosts 

(De Las Penas et al., 2003; Rubio et al., 1996; Underwood et al., 1996).  The individual 

members of these gene families are heterogeneously expressed such that only a single 

glycoprotein is present on the organism’s cell surface at any given time.  Meanwhile, the 

other genes in the families are transcriptionally silenced.  As in the position effects 

previously described, the chromosomal context of these gene families is important to this 
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silencing.  Furthermore, factors necessary for the formation of heterochromatic structure 

in these chromosomal regions have been shown to be necessary for antigenic variation.  

In P. falciparum, a homolog of the yeast Sir2 protein is required for the dynamic 

chromatin remodeling that leads to antigenic variation in this organism (Freitas-Junior et 

al., 2005).  In C. glabrata, this silencing has been shown to be dependent on Sir3, a 

silencing protein that interacts with Sir2 to establish and maintain heterochromatin.  The 

protist Trypanosoma brucei, responsible for African sleeping sickness, presents perhaps 

the most elaborate version of antigenic variation that has yet been observed (Borst, 2002).  

Within its genome are more than 1100 different genes that encode variant cell surface 

glycoproteins (VSGs).  Trypanosomes escape immune clearance by regularly switching 

the glycoprotein that is being transcribed.  The cell-surface protein expressed at any given 

time in a given cell is transcribed from a telomeric expression site.  The remaining 

approximately 1099 genes that encode VSGs are transcriptionally silenced.  The genetic 

sequence of the transcribed gene is transferred into a telomeric expression site by a gene 

conversion event that displaces the VSG-encoding DNA sequence that previously 

occupied the site.  Thus, in this case, antigenic variation involves not only silencing but 

also a gene conversion event similar to that which occurs in mating type switching in S. 

cerevisiae.  These examples of variegated transcription within clonal populations of cells 

are biologically relevant, since they contribute to the virulence of these pathogens by 

effectively enabling them to play hide-and-seek with their host’s adaptive immune 

system.   

In mammals, the diploid somatic cells of males each carry one X chromosome 

whereas the diploid somatic cells of females each carry two X chromosomes.  Dosage 
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compensation, or equalization of expression levels of genes located on the X 

chromosome, is accomplished by random inactivation of one of the X chromosomes in 

the somatic cells of females (Migeon, 1994; Panning and Jaenisch, 1998).  This 

inactivation results in one silenced X chromosome that persists in a tight heterochromatic 

state and one X chromosome that contains euchromatic regions that are transcriptionally 

active.  The phenotypic outcome of these silencing events is a clonal population of 

somatic cells that are variegated, or mosaic, in the chromosomal copy of their X-linked 

genes that is being expressed.    

 

Chromatin Structure and its Effects on Transcription 

In the nuclei of eukaryotic cells, genomic DNA is folded by its association with 

histone and other proteins into dynamic higher-order structure called chromatin 

(Jenuwein and Allis, 2001; Kornberg and Thomas, 1974).  Chromatin in a structurally 

open and active state is called euchromatin.  Highly compacted and constrained inactive 

chromatin is referred to as heterochromatin.  These two forms of chromatin can be 

distinguished microscopically because they stain differently at the cytological level.  It is 

generally believed that these two chromatic states, euchromatin and heterochromatin, 

correlate with active or inactive transcriptional states, respectively (Berger, 2007; 

Grunstein, 1997a; Jenuwein and Allis, 2001; Li et al., 2007a), although there are 

exceptions (for examples, see Devlin et al., 1990 and Carrel and Willard, 1999).  In all of 

the examples of variegated transcription discussed above, chromatin structure plays a 

critical role in the mechanisms underlying the observed phenomena.   

Chromatin structure is mediated (i) by occupancy and positioning of nucleosomal 

proteins associated with DNA, (ii) by post-translational modifications, such as acetylation 
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and methylation, to the histone proteins in the nucleosomes, and, in some organisms, (iii) 

by DNA methylation (Berger, 2007).  In yeast, where DNA methylation does not occur, 

chromatin structure is believed to be largely determined by nucleosome localization and 

post-translational modifications to the histone proteins.   

The nucleosome particle has been described as “the fundamental component of 

chromatin” (Durrin et al., 1992).  The canonical nucleosome consists of a histone octamer 

made up of two molecules each of the histone proteins H2A, H2B, H3, and H4.  Around 

this histone octamer, 146 base pairs of DNA are wrapped approximately 1.8 times.    

Nucleosome positioning at TATA promoter elements has been shown to prevent 

transcription by preventing the binding of transcription initiation factors to these 

sequence elements (Knezetic et al., 1988; Knezetic and Luse, 1986; Lorch et al., 1987).  

It has also been reported that well positioned nucleosomes are actively evicted from the 

promoters of some genes upon promoter activation, thereby allowing the transcriptional 

machinery access to the promoter DNA (Korber et al., 2006; Korber et al., 2004).  In 

experiments in which expression of the essential genes that encode histone proteins is 

conditionally downregulated, transcription levels have been shown to increase as 

nucleosomes are lost from DNA (Durrin et al., 1992; Han and Grunstein, 1988; Han et 

al., 1988; Kim et al., 1988; Wyrick et al., 1999).   These findings suggest the existence of 

chromatin remodeling factors with the ability to displace nucleosomes in order to 

facilitate transcription.  Such factors have indeed been identified in eukaryotic organisms 

and include complexes such as SWI-SNF and RSC, which catalyze nucleosome 

displacement in an ATP-dependent manner (Burns and Peterson, 1997; Cairns et al., 

1996; Hirschhorn et al., 1992; Winston and Carlson, 1992). 
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The amino terminal tails of histone proteins contain lysine residues that are sites 

for reversible post-translational modifications, including acetylation, SUMOylation, 

methylation, and ubiquitylation, (Berger, 2007; Grunstein, 1997a; Strahl and Allis, 2000).  

Other residues in the histone tails, such as serines, threonines, and arginines, also undergo 

post-translational modifications.  The histone tails are flexible and are largely external to 

the core nucleosome particle, so they are accessible to histone modifying enzymes that 

add or remove these modifications (Davey et al., 2002; Luger et al., 1997). 

Certain histone modifications have been associated with transcriptionally active 

chromatin and others with transcriptionally repressed chromatin.  Histone acetylation, for 

example, is strongly correlated with transcriptional activation (Grunstein, 1997a).  

Current thinking is that the addition of the acetyl group neutralizes the positive charge of 

the lysine residue, thereby decreasing the affinity of the histone for its associated DNA.  

This modification results in a more relaxed chromatin structure that renders DNA more 

accessible to transcription factors involved in transcription initiation.  On the other hand, 

deacetylated chromosomal regions, such as telomeres, rDNA repeats, and the mating type 

cassettes in yeast, are heterochromatic and are associated with transcriptional silencing 

(Armstrong et al., 2002; Braunstein et al., 1993; Braunstein et al., 1996; Fritze et al., 

1997).  The observation that deacetylation of histones occurs within transcribed open 

reading frames (ORFs) to prevent the occurrence of spurious transcription initiation from 

cryptic start sites located within these ORF sequences (Carrozza et al., 2005b), an activity 

that appears to be particularly important at long and/or infrequently transcribed ORFs (Li 

et al., 2007b), is an indicator of the ability of chromatin structure to regulate transcription 

initiation in very localized regions at a given locus.  SUMOylation, which adds large 
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moieties that are two-thirds the size of the histones themselves, seems to be repressive on 

transcription and may lead to profound chromatin structure changes owing to their bulk 

(Shiio and Eisenman, 2003).  It has been proposed that SUMOylation might serve to 

block the addition of other modifications, such as acetyl groups, to histone tails, thereby 

inhibiting transcriptional activation (Iniguez-Lluhi, 2006).  Histone methylation appears 

to have variable effects on transcription, perhaps depending on the precise lysine residues 

that are affected, the number of methyl groups added to the residue, and the positional 

context of nucleosomes (Briggs et al., 2001; Bryk et al., 2002; Dehe and Geli, 2006; 

Fingerman et al., 2005; Li et al., 2007b; Mueller et al., 2006; Ng et al., 2003; Nislow et 

al., 1997; Santos-Rosa et al., 2004; Tompa and Madhani, 2007).  Ubiquitylation of 

histones also appears to have variable effects on transcription (Henry et al., 2003; Mutiu 

et al., 2007; Weake and Workman, 2008; Zhou et al., 2008). 

Histone modifications also create binding sites for proteins by creating new 

surfaces for protein attachment (Verdone et al., 2005).  Acetylation of lysines creates 

binding sites for proteins that contain bromodomains (Yang, 2004), which include 

proteins such as the SAGA histone acetyltransferase complex and the ATP-dependent 

Swi/Snf chromatin remodeling complex (Hassan et al., 2001; Hassan et al., 2002; 

Marmorstein and Berger, 2001; Winston and Allis, 1999).  Histone methylation creates 

binding sites for proteins that contain chromodomains, which include examples such as 

the Drosophila HP1 and Polycomb proteins that participate in chromatin packaging and 

gene silencing (Nielson et al., 2002; Fischle et al., 2003).  

The various enzymes that are responsible for adding and removing covalent 

modifications to the amino terminal tails of histones are conserved from yeast to humans 
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(Doyon et al., 2004; Michan and Sinclair, 2007; Schneider et al., 2005; Wang et al., 1997; 

Yang and Seto, 2008).  These chromatin regulators do not, themselves, have sequence-

specific DNA-recognition properties of their own.  Instead, they appear to be recruited to 

specific locations in the genome by interacting with other proteins that do have target-

specificity (Cosma, 2002).  Histone acetyltransferases (HATs) catalyze acetylation of 

specific lysine residues on histone tails.  Complexes with HAT activity include SAGA, 

ADA, NuA3, and NuA4.    Histone deacetylases (HDACs) catalyze the deacetylation of 

lysine residues in histone tails and are found in large multiprotein complexes with 

transcriptional co-repressors.  HDACs are grouped into three classes based on their 

similarity to known yeast factors: class I HDACs are similar to yeast Rpd3, class II 

HDACs are similar to yeast Hda1, and class III HDACs are similar to yeast Sir2 (Verdin 

et al., 2003; Yang and Seto, 2008).  Site-specific lysine methylation of histones is 

catalyzed by a family of methyltransferase proteins that contain the evolutionarily 

conserved SET domain (Qian and Zhou, 2006). 

Some chromatin remodeling enzymes work globally to alter chromatin structure, 

whereas others appear to have more specific roles.  For example, the histone 

acetyltransferase component of the SAGA complex, Gcn5, is recruited to most 

transcriptionally active protein-coding genes, suggesting a genome-wide role for this 

HAT in regulating transcription (Robert et al., 2004).  The HDAC Sir2 is important for 

heterochromatin formation at all yeast telomeres, as well as at specific locations within 

yeast genome, namely the silent mating cassettes and the rDNA region (Grunstein, 

1997b; Kadosh and Struhl, 1997; Shore et al., 1984).  The HDACs Rpd3 and Hst1 have 

been shown to be recruited to specific gene families in yeast.  Rpd3, for example, is 
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recruited to the promoters of some genes involved in sporulation by the gene-specific 

transcription factor Ume6 (Kadosh and Struhl, 1997, 1998).  Hst1, a homolog of Sir2, has 

also been shown to be recruited to a subset of genes involved in sporulation, in this case 

by the gene-specific transcription factor Sum1 (Xie et al., 1999).   

Nearly twenty distinct histone acetylation and methylation states have been 

identified in genome-wide studies of budding yeast (Berger, 2007; Rando, 2007).  Taken 

together, the combinatorial complexity that can be generated with this variety of 

chromatin marks has lead some investigators to the notion of the existence of a histone 

code that could “considerably extend the information potential of the genetic [DNA] 

code” (Strahl and Allis, 2000; Jenuwein and Allis, 2001, quoted above; Taverna et al., 

2007).   

Many cases have now been reported, however, that show an apparent disparity 

between the effect that a particular histone modification is thought to have on 

transcription and the level of expression observed from the target gene (Berger, 2007).  

The histone deacetylase Rpd3, for example, at many target genes behaves as a 

transcriptional repressor (Carrozza et al., 2005; Kadosh and Struhl, 1997, 1998; Rundlett 

et al., 1998).  Recently, however, Rpd3 has been reported to act directly as a 

transcriptional activator at some genes.  This raises an apparent paradox regarding how 

this histone deacetylase can behave as both an activator and a repressor of transcription. 

 

Roles for Noncoding RNAs in Transcriptional Variegation 

 

 Noncoding RNAs have been shown to play important roles in the regulation of 

gene expression in many organisms.  Mechanisms include targeted degradation of 

messenger RNAs by small interfering RNAs (siRNAs), developmentally regulated 
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sequence-specific translational repression of messenger RNAs by micro-RNAs 

(miRNAs), and targeted transcriptional gene silencing (Carrington and Ambros, 2003; 

Hammond et al., 2001; Hutvagner and Zamore, 2002; Mette et al., 1999; Pal-Bhadra et 

al., 2002).   Collectively, these mechanisms in which a noncoding RNA acts in trans to 

regulate gene expression fall into a category of gene regulation termed RNA interference 

(RNAi).  Interestingly, several of the instances of transcriptional variegation described 

above involve a noncoding RNA regulatory component that is required for the relevant 

heterochromatin formation.   

 The formation of the heterochromatin structure that is responsible for the position 

effects in Drosophila and in the fission yeast S. pombe described earlier both rely on a 

mechanism involving noncoding RNAs (Hall et al., 2002; Lippman and Martienssen, 

2004; Pal-Bhadra et al., 2002; Pal-Bhadra et al., 2004; Volpe et al., 2002).  At the 

sequence level, most DNA found near centromeres and telomeres consists of tandem 

repeats (Lippman and Martienssen, 2004).  The repeats at centromeres range from a few 

kilobases in the fission yeast S. pombe to 100-to-400 base-pair repeats arranged in 

megabase-pair arrays in Drosophila, plants, and mammals (Lippman and Martienssen, 

2004).  Although the exact sequences of these repeated regions are not conserved across 

species, the appearance of repeated sequence elements in heterochromatic regions is 

conserved (Lippman and Martienssen, 2004).  The basic machinery required for RNA 

interference mechanisms, such as Dicer and Argonaute, are also conserved across species 

(Fagard et al., 2000).  Mutation of the RNAi machinery in S. pombe results in the 

aberrant accumulation of complementary transcripts from centromeric heterochromatin 

repeats (Volpe et al., 2002).  This accumulation is accompanied by transcriptional 

 21



derepression of reporter genes integrated at the centromere (Volpe et al., 2002).  

Furthermore, a centromere-homologous repeat at the silent mating-type region in S. 

pombe is sufficient to induce heterochromatin formation at an ectopic site, suggesting 

that a similar RNAi mechanism may be involved in silencing both centromeric regions 

and the mating-type cassettes (Hall et al., 2002).  Heterochromatic silencing and PEV in 

Drosophila have been shown to be affected analogously by disruptions in the conserved 

RNAi machinery (Pal-Bhadra et al., 2002; Pal-Bhadra et al., 2004).   

In X-inactivation, the silencing of the X chromosome is nucleated at the X-

inactivation center (Xic) and is then propagated bidirectionally along the length of 

chromosome (Panning and Jaenisch, 1996).  The mechanism underlying this silencing 

involves the large, polyadenylated noncoding RNA Xist that is encoded by a gene that 

resides within the Xic (Panning and Jaenisch, 1996).  Xist RNA in embryonic cells is 

unstable and can be detected only at the site of transcription.  It can be detected at the Xist 

locus on both X chromosomes in female cells, as well as on the single X chromosome in 

male cells.  Upon the initiation of X inactivation, Xist transcripts produced from the X 

chromosome soon to be inactivated become stabilized and spread along the arms of that 

copy of the X chromosome, thereby coating the chromosome and leading to the 

formation of dense heterochromatic structure (Panning et al., 1997; Sheardon et al., 

1997).  Transcription of Xist from the X chromosome that remains active is silenced by a 

mechanism involving the covalent addition of methyl groups to the transcribed region of 

the Xist DNA itself, which results in the local formation of heterochromatic structure 

there (Panning and Jaenisch, 1996).   
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Noncoding RNAs Regulate Transcription in Yeast  

 
S. cerevisiae, which lacks key components of the conserved machinery required 

for RNAi-mediated regulation of gene expression, was long thought to lack mechanisms 

of transcriptional regulation involving noncoding RNAs.   Over the past few years, 

however, a flurry of publications has reported various examples of noncoding RNAs that 

regulate transcription in yeast (Berretta et al., 2008; Camblong et al., 2007; Hongay et al., 

2006; Martens et al., 2004; Martens et al., 2005).  The reported mechanisms do not 

require the RNAi machinery.  Rather, noncoding RNAs are shown to regulate 

transcription in cis by mechanisms that include (i) remodeling chromatin structure, (ii) 

competing for template sequence by running antisense into the transcript that they 

regulate, and (iii) occluding transcription factor binding sites within promoters by the act 

of transcription itself.  

At the PHO5 locus in S. cerevisiae, noncoding transcription appears to play a role 

in activation of PHO5 transcription (Uhler et al., 2007).   A long noncoding exosome-

degraded transcript synthesized by RNA polymerase II initiates in the region near the 5' 

end of the PHO5 ORF and is transcribed in the antisense direction up to and across the 

PHO5 promoter.  This transcription appears to promote the eviction of nucleosomes from 

the PHO5 promoter.  This chromatin remodeling then allows for transcription of the 

PHO5 gene itself.  Abrogation of the long noncoding transcript delays chromatin 

remodeling and subsequent recruitment of RNA polymerase II to the PHO5 promoter.  It 

has thus been proposed that noncoding transcription through positioned nucleosomes has 

the ability to enhance chromatin plasticity so that chromatin remodeling and activation of 

antisense-traversed genes occurs efficiently. 
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At the yeast IME4 locus, on the other hand, antisense transcription is repressive 

on IME4 expression, presumably because the sense and the antisense transcripts compete 

for the same template sequence when antisense transcription is active at this locus.   

IME4 transcription, and the entry into the meiotic pathway that its expression induces, is 

repressed in haploid yeast cells (Hongay et al., 2006).  This repression is due to a 

haploid-specific transcript that initiates in the intergenic region downstream of the IME4 

ORF.  This transcript runs antisense through the IME4 ORF and the IME4 promoter 

region.  In diploid cells, this antisense transcript is repressed by the binding of the 

diploid-specific a1/alpha2 heterodimer to a motif in the region where the antisense 

transcript is promoted.  Thus, regulation by a long noncoding RNA serves to regulate a 

key cell fate decision, namely meiotic entry, in S. cerevisiae. 

Antisense transcription has also been reported to play a repressive role on PHO84 

transcription in S. cerevisiae (Camblong et al., 2007).  Stabilization of PHO84 antisense 

transcripts is observed in mutant cells that lack the Rrp6 component of the exosome and 

also in aging cells in which Rrp6 levels seem to naturally decrease.  Upon stabilization of 

these antisense transcripts, synthesis of PHO84 sense transcripts is repressed.   It is 

believed that Rrp6 functions to degrade the antisense transcripts at the site of 

transcription.   Interestingly, Hda1 histone deacetylase recruitment to the region of the 

DNA where PHO84 resides coincides with the absence of Rrp6 in both rrp6 mutants and 

in aged cells.  Although Hda1 can be detected both at PHO84 and its neighboring genes, 

the histone deacetylation catalyzed by Hda1 can only be detected in regions that are 

transcribed in antisense.     
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The tight repression of the yeast SER3 gene during growth in rich media is also 

under noncoding RNA regulation (Martens et al., 2004; Martens et al., 2005).   During 

growth in rich media, a noncoding RNA is transcribed across the promoter sequence of 

SER3.  This noncoding RNA, called SRG1, is required for repression of SER3.  The 

SRG1 transcript is transcribed by RNA polymerase II promoted by a canonical TATA 

box sequence located far upstream in the SER3 promoter.  It terminates just upstream of 

the SER3 ORF.  When SRG1 is transcribed, the binding of transcriptional activators is 

reduced at the SER3 promoter.  Thus, this example of noncoding RNA-mediated 

repression occurs by a regulated transcription-interference mechanism in which 

transcription across the SER3 promoter interferes with the binding of transcriptional 

activators to promoter elements.  

Beyond these confirmed instances of transcriptional regulation by noncoding 

RNAs, genome-wide analysis has lead to the discovery of 667 transcripts occurring in 

intergenic regions, as well as antisense transcripts detected at 367 confirmed genes in 

yeast (Miura et al., 2006).   Furthermore, the very recent deep sequencing of the yeast 

transcriptional landscape has revealed (i) the presence of potential regulatory secondary 

transcripts within 6% of yeast promoter regions and (ii) that 11.8% of yeast transcripts 

have overlapping 3’ ends that could allow genes to influence the transcription of their 

neighbors (Nagalakshmi et al., 2008).  Thus, we might have just glimpsed the tip of an 

iceberg of regulation by noncoding RNAs in yeast.   
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Regulation of FLO Gene Transcription and its Phenotypic 

Consequences in Yeast 

 

The FLO (FLOcculin) genes in S. cerevisiae encode a family of cell-surface 

glycosyl-phosphatidylinositol (GPI)-linked glycoproteins called adhesins.  In the standard 

laboratory strain S288C, the FLO gene family consists of the mostly subtelomerically 

located FLO1, FLO5, FLO9, FLO10, FLO11, and a number of pseudogenes.  There are 

additional family members present in the Sigma 1278b strain (work in preparation by 

Dowell, Ryan, Jansen, Boone, Gifford and Fink).   

All proteins encoded by the FLO genes share similarities in amino acid sequence 

and overall protein structure.  These proteins mediate a range of cell-to-cell and cell-to-

surface adhesions (Guo et al., 2000).  Together, the set of proteins encoded by FLO genes 

enable yeast cells to adhere to one another in a process known as flocculation, to stick to 

and invade inert surfaces and, in diploids, to form long filaments called pseudohyphae 

under environmental conditions such as nitrogen starvation.  Individual FLO gene 

products promote a distinct set of overlapping phenotypes.  For instance, expression of 

FLO11, the most extensively studied member of the FLO gene family, promotes surface 

adhesion and pseudohyphal growth.  Expression of FLO10 promotes surface adhesion, 

pseudohyphal growth, and flocculation.  Expression of FLO1 strongly promotes 

flocculation but has no significant effect on surface adhesion or filamentation. 

The transcriptional regulation of the FLO genes is complex.  All of the FLO genes 

have unusually large promoter regions of greater than three kilobases (kb).   Careful 

dissection of the FLO11 promoter has revealed the existence of at least four upstream 

activation sequences (UASs) and nine repression elements which, together, span at least 

2.8 kb of the region upstream of the FLO11 ORF (Rupp et al., 1999).   
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The MAPK and PKA signaling pathways function in parallel to activate distinct 

transcription factors that are known to interact with specific regions of the long promoter 

of FLO11 (Halme et al., 2004; Pan and Heitman, 2002; Rupp et al., 1999).  These 

pathways respond to environmental stimuli and, thus, regulate FLO gene expression in 

response to changes in the levels of nitrogen, carbohydrate, salt, and pH in the yeast’s 

surrounding environment (Cullen et al., 2004; Gancedo, 2001; Palecek et al., 2002).  The 

filamentation MAPK pathway stimulates FLO11 transcription through the binding of the 

Ste12-Tec1 heterodimeric transcriptional activator to specific binding motifs 

(Filamentation Response Elements, or FREs) within the FLO11 promoter.  Activation of 

FLO11 transcription via the PKA pathway is primarily through the activity of Tpk2, one 

of three different PKA proteins in yeast.  Tpk2 promotes FLO11 transcription by (i) 

phosphorylating and thereby inactivating the negative regulator Sfl1 and by (ii) 

phosphorylating and thereby activating the transcriptional activator Flo8.   Sfl1 binds to 

the FLO11 promoter and may recruit the Ssn6-Tup1 general repressor (Conlan and 

Tzamarias, 2001; Pan and Heitman, 2002).  Sfl1 has also been demonstrated to recruit the 

Hda1 histone deacetylase to promoters, suggesting the participation of Sfl1 in chromatin-

mediated repression of the FLO11 promoter (Conlan and Tzamarias, 2001; Wu et al., 

2001).  DNA mobility shift assays indicate that Sfl1 or phosphorylated Flo8 bind to the 

FLO11 promoter somewhere in the region -1150 to -1400 relative to the beginning of the 

FLO11 ORF (Pan and Heitman, 2002).   Binding of Flo8 is thought to compete with 

binding of Sfl1 to this region (Pan and Heitman, 2002).     

Studies of the STA1 promoter in the yeast Saccharomyces diastaticus have also 

shed light on how the FLO11 promoter is regulated.  The 5' upstream regions of the 
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glucoamylase-encoding STA1 gene and the FLO11 gene are almost identical (96%) and 

the genes are coregulated to a large extent (Gagiano et al., 1999).  Two UAS regions have 

been identified in the STA1 promoter (Kim et al., 2004a; Kim et al., 2004b).  UAS1 is 

defined as the region spanning -1642 to -2105 relative to the beginning of the STA1 ORF.  

UAS2 is defined as the region spanning -882 to -1380.  Analogous sequences are located 

in the FLO11 promoter at -1760 to -2175 (UAS1) and at -1000 to -1498 (UAS2).   

At the STA1 promoter, Sfl1 competes with the Ste12-Tec1 activator complex for 

binding of the UAS2 region (Kim et al., 2004b).  The Ste12-Tec1 complex recruits the 

Swi/Snf chromatin remodeling complex.  The Swi/Snf complex, in turn, facilitates the 

binding of the activator protein Flo8 to UAS1 and the formation of a looped DNA 

structure in the STA1 promoter (Kim et al., 2004a).  Flo8 helps recruit RNA polymerase 

II to the STA1 promoter.  The Srb8-11 complex (Srb/Mediator), also represses the STA1 

promoter (Kim et al., 2004b; Song and Carlson, 1998).    

The differences between the STA1 and the FLO11 promoters consist of two 

inserts of 20 base pairs and 64 base pairs, small substitutions, and small deletions (Kim et 

al., 2004a).   Some of these differences may have a profound impact on promoter activity, 

however.  LacZ expression driven by the entire FLO11 promoter has been reported to be 

approximately 20-fold lower than expression from the STA1 promoter (Kim et al., 

2004a).   It has been suggested that this difference in expression may be due to two of the 

changes that exist between the FLO11 and STA1 promoters.    First, an inverted repeat 

sequence that is the probable binding site for Flo8 and Mss11 in UAS1 has a single base 

change in the FLO11 promoter.  Second, the FLO11 promoter has an incomplete FRE 

motif at -1269 to -1261, resulting from the insertion of two bases.   These sequence 
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differences suggest that Flo8, Mss11, and Ste12-Tec1 may bind less efficiently to the 

FLO11 promoter than to the STA1 promoter (Kim et al., 2004a).   

The FLO10 promoter is also activated by the MAPK and PKA pathways, but at a 

much lower level in wild type cells (Halme et al., 2004).  The FLO10 promoter is poorly 

expressed in wild type yeast cells under conditions tested thus far.  However FLO10 

expression can be enhanced by mutating either IRA1 or IRA2, which encode GTPase-

Activating proteins (GAPs) that normally function to downregulate the activity of Ras2 

(Halme et al., 2004).  In ira mutants, increased Ras2 activity presumably hyperactivates 

the MAPK and PKA pathways, thereby increasing activity of the FLO10 promoter above 

wild type levels.   

Despite all that is known and can be inferred about the transcriptional regulation 

of the FLO genes, the collected information has still been inadequate to explain the 

curious observation that FLO gene expression is heterogeneous within clonal populations 

of cells.  The biological consequences of this heterogeneity are particularly clear when 

diploid S. cerevisiae cells of the Sigma 1278b genetic background are grown under 

conditions of nitrogen starvation.  Under these conditions, diploid yeast cells undergo a 

FLO11-dependent developmental transition from yeast form growth to pseudohyphal 

growth (Gimeno et al., 1992; Rupp et al., 1999).  Pseudohyphal growth involves a change 

to elongated cell morphology, adhesion and invasion into surfaces, and a unipolar 

budding pattern in which mother and daughter cells remain attached.  The result is the 

formation of extended chains of elongated cells called pseudohyphae.  When clonal 

populations of diploid Sigma 1278b are grown under nitrogen starvation conditions, 

pseudohyphal filaments form at the edge of colonies.  A peculiar feature of pseudohyphal 
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growth is the clonal variability in the pseudohyphal growth response.  The switch to 

pseudohyphal growth is heterogeneous within the cellular population.  Some of the cells 

in the colony initiate pseudohyphal filament formation and divide in a pseudohyphal 

growth pattern for several generations, occasionally producing yeast form cells.  In 

contrast, cells immediately neighboring the filamentous cells fail to initiate pseudohyphal 

growth and continue to divide as yeast form cells.  This clonal heterogeneity in the 

pseudohyphal growth response results from variegated expression of FLO genes. 

Because previous studies of the regulation of FLO genes performed by other 

groups have provided results that represent an average of the regulatory and 

transcriptional activities occurring in large populations of cells, the question of the 

mechanisms that underlie cell-to-cell variation in FLO gene expression has gone largely 

unaddressed.  Our studies are the first to address the phenotypic variation that occurs due 

to cell-to-cell variability in FLO gene expression and the mechanisms that underlie this 

cell-to-cell variation. 

In the chapters that follow, I present our findings regarding the mechanistic 

underpinnings of the variegated expression of FLO genes in clonal populations of yeast 

cells.  We have identified mechanisms of FLO transcriptional regulation that exist in 

addition to those discussed above.  We have demonstrated that histone deacetylases 

localize to the FLO promoters and are required for their variegated silencing.  We have 

also identified two noncoding RNA transcripts that originate within the promoter of 

FLO11 and appear to compete with one another in cis to regulate FLO11 expression.    

One of these noncoding transcripts promotes FLO11 expression whereas the other 

prevents FLO11 expression.  We have discovered an apparently analogous pair of 
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noncoding transcripts at the FLO10 promoter, as well, suggesting that noncoding RNAs 

may be a common regulatory component at the large FLO promoters of yeast.  At both 

the FLO11 and FLO10 promoters, transcription of these noncoding regulatory RNAs is 

affected by the presence of Sfl1, thus expanding the model for how this well established 

repressor of FLO transcription performs its function.   

In Chapter Four of this thesis, I will present a model in which chromatin structure 

and transcription of competing noncoding RNAs across regions of the FLO promoters 

regulates variegated transcription of these genes.  The model proposes that dynamic 

competition for interactions with FLO promoter sequences by trans-acting protein factors 

determines a switch between chromatin states either permissive or repressive of 

transcription.  The alternate chromatin states regulate transcription of noncoding RNAs, 

which themselves ultimately affect FLO11 expression.  Thus, competitive binding by 

transcription factors forms the basis of a toggle switch between exclusive transcription 

states that underlie the observed cell-to-cell variation in FLO gene expression.   

Contemporary shifts in the way that we understand alternate promoter states help 

to inform this matter.  The large protein complexes that regulate transcription have long 

been thought to form stable, multi-factor complexes that remain in residence on a DNA 

template for extended periods of time.  These complexes are thought then to recruit other 

transcription factors in stepwise development towards an active or repressed promoter 

state.  New technologies have allowed direct measurement of the residence times of 

protein factors on promoters (Hager et al., 2006).  In contrast to the long accepted 

paradigm, the reality appears to be one of regulatory proteins moving rapidly on and off 

the promoters they regulate (Hager et al., 2006).  This “return to template” model, as it is 
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called, suggests that interactions between promoters and transcription factors are dynamic 

and even stochastic (Hager et al., 2006).  Dynamic sampling of and competition for FLO 

promoter interaction by trans-acting regulators thus forms the toggle between alternate 

chromatin states that determine which regulatory noncoding RNA is transcribed at any 

given time, which in turn determines whether or not FLO11 is expressed. 

 

Just Noise, or Something More? 

 
 There has been debate in the literature over how to think about this phenomenon 

that we call transcriptional variegation.  Others have referred to variegated expression as 

“noise” in gene expression (Raser and O'Shea, 2005).  They claim that such biological 

variation is inevitable because of the random stochastic nature of chemical reactions 

within the cell.   They argue that, when large numbers of molecules are present, chemical 

reactions may proceed in a predictable manner, but when a specific type of molecule 

exists in very low numbers, stochastic effects due to limitation of this molecule may 

become prominent.   Since only one or a few copies of DNA, RNA, and proteins of a 

certain type might be present and active in each cell at any given time, the abundance of a 

given gene product is theoretically sensitive to stochastic fluctuations.  In a different line 

of argument, they point out that, despite the fact that we might believe that clonal 

populations of cells are growing in identical conditions, microenvironments might exist 

that are undetectable to the experimenter but that are influencing the cellular population 

differentially.  Apparently disregarding the observation that the transcriptional activation 

state is reversible in instances of transcriptional variegation, they also suggest that the 

random mutation that occurs within a population of cells compromises the notion that the 

clonal population is genetically identical and may explain, or at least contribute to, the 
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observed variation.  These arguments, therefore, attempt to explain away phenotypic 

variation in clonal populations of cells resulting from transcriptional variegation as a 

problem of small numbers or limitations in experimental detection.    

Even if mechanisms that underlie transcriptional variegation involve some 

measure of stochastic activity, it is important to keep in mind that “stochastic” does not 

imply “unimportant” or “unselected”.  Cell-to-cell variation in gene expression has been 

measured on a global scale, but its importance to the fitness of an organism is not yet 

entirely clear.  Recent findings do suggest that evolution actually selects against “noise” 

in gene expression (Lehner, 2008).  Global analyses of gene expression in yeast have 

revealed that essential genes tend to show lower cell-to-cell fluctuation in their 

expression than nonessential genes do (Batada and Hurst, 2007; Newman et al., 2006).  

Addressing the “small numbers” argument, this finding could be explained by all 

essential genes being highly expressed, but it turns out that this is not the case.  The set of 

yeast genes shown to have high levels of cell-to-cell variation is depleted of genes that 

reduce fitness when their expression is increased, as well as of those that reduce fitness 

when their expression is reduced (Lehner, 2008).  From these observations that cell-to-

cell fluctuations in gene expression appear to be subject to biological selection, the 

conclusion has been drawn that such variation represents an important biological trait 

(Lehner, 2008).   

Minimally, it follows from the above observations that genes which show high 

levels of cell-to-cell variation in expression do not reduce organismal fitness.  These 

findings also raise the possibility that the high levels of variation in gene expression 

observed at some loci might actually increase fitness.  Under the “return to template” 

 33



model for regulation of promoter activity discussed above (Hager et al., 2006), one might 

predict that genes subject to very complex regulation with the involvement of many 

competing activator and repressor signals, such as those converging on the unusually 

large FLO promoters (Pan and Heitman, 2002; Kim et al., 2004a; Kim et al., 2004b), 

would be more likely to exhibit high levels of transcriptional variegation because of the 

wide range of possible dynamic interactions occurring between the promoter and trans-

acting factors at any given time.  Most interactions occurring at any given time are non-

productive because the promoter itself must be in the appropriate state for interaction 

with a given regulator to be effective (Hager et al., 2006).  As productive interactions 

occur, the promoter chromatin could evolve through a series of modified states, each state 

serving as a new substrate for subsequent dynamic interactions with trans-acting 

regulators (Hager et al., 2006).   

Complex regulatory mechanisms that introduce fluctuation in gene expression 

have apparently been selected against in nature (Lehner, 2008).   Perhaps where such 

regulatory mechanisms do exist, they have been selected in evolution because they 

provide a net benefit for the organism.  If this prediction is reflective of reality, then the 

variegated transcription observed from the large promoters of the FLO genes in S. 

cerevisiae may have been selected in evolution because it provides a net benefit to the 

yeast population.  As in the examples of microbial antigenic variation discussed above, 

the variegated expression of members of the FLO gene family may have evolved because 

it provides a selective advantage to clonal populations of yeast cells.  In S. cerevisiae, 

variegated transcription is observed from the promoters of at least three members of the 

FLO gene family, namely the promoters of FLO1, FLO10, and FLO11 (Halme et al., 
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2004).  This pattern of gene expression translates into the potential for variegated 

promotion of flocculation (i.e., cell-to-cell adhesion), haploid adhesion to surfaces and 

invasive growth, and diploid pseudohyphal growth within a clonal population of yeast 

cells (Palecek et al., 2002; Verstrepen et al., 2004).  What could this mean for a 

population of yeast out in the wild?   Within a clonal population growing under the same 

environmental conditions, some of the cells in the population may have an active FLO 

promoter and will be expressing the FLO gene under its control while other cells in the 

population will be silent at this FLO promoter and will not be expressing the given FLO 

gene.  This variegated expression from FLO gene promoters may well promote survival 

of clonal populations of yeast when these populations are exposed to various 

environmental stresses.  Imagine the likely case in which a nutrient in the yeast 

population’s immediate environment becomes depleted.  It would be advantageous for 

some cells within the clonal population to be poised, as a result of variegated 

transcription from the FLO11 promoter, to produce pseudohyphal filaments able to grow 

directionally toward neighboring environments that may be more hospitable.  Meanwhile, 

other cells in the population would, as a result of heterogeneous FLO gene expression, be 

poised to maintain the initial colony (perhaps a good thing in the case that the current 

environment is actually the best available), or to wash off to far away places that may 

prove more hospitable to the yeast. 

In summary, the FLO11 promoter is one of the largest promoters in yeast and 

receives a complex combination of signals, some of them competitive, from upstream 

signaling pathways.  The net effect of all regulatory stimulus on the FLO11 promoter is 

variegated transcriptional silencing that results in phenotypic variation within a clonal 
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population of yeast cells.  In this thesis, I examine the chromatin modifying proteins that 

localize to FLO promoters and act in trans to affect FLO gene transcription.  I describe 

the results of genome-wide screens that identified additional trans-acting chromatin 

modifying factors that play a role in regulating the FLO promoters.  Some of the 

candidates identified in these screens, in particular the components of the Rpd3L histone 

deacetylase complex, have effects on FLO gene transcription that initially seemed 

paradoxical because their net effect is the opposite of that predicted by contemporary 

theories regarding the role of chromatin structure in regulating transcription.  Careful 

analysis of these mutants, their phenotypes, the transcription of FLO11, and most 

importantly, the noncoding transcripts that we have detected in the promoter region of 

FLO11, have revealed the basis for this apparent paradox. 
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Chapter 2  
 
Genetic and Epigenetic Regulation of the FLO  

Gene Family Generates Cell-Surface Variation in 

Yeast 

 

Author’s Note |  The material presented in this chapter was originally published as:  
Adrian Halme, Stacie Bumgarner, Cora Style, and Gerald R. Fink (2004). “Genetic and 
Epigenetic Regulation of the FLO Gene Family Generates Cell-Surface Variation in 
Yeast.” Cell 116, 405-415.   
 

I contributed to this work by generating and characterizing the phenotypes of a number of 
the mutant yeast strains that were used in the portions of this study relating to the role of 
chromatin structure in mediating the epigenetic silencing observed at the FLO10 and 
FLO11 promoters.   
 

A subset of the work presented in this chapter deals with phenotypic switching resulting 
from spontaneous mutations in the genes IRA1 and IRA2 that encode GTP-ase activating 
proteins.  These proteins regulate Ras2 activity and the downstream PKA and MAPK 
pathways that converge upon the FLO promoters.  The IRA phenomenon is not itself 
involved in the chromatin-mediated regulation of  FLO10 and FLO11.  It does however 
enhance the expression of the FLO10 gene, thereby revealing the epigenetic silencing 
that occurs at this promoter.  In later chapters of this thesis, the ira1 mutation is used as a 
tool for revealing the variegated silencing at FLO10, but is otherwise unimportant to this 
subsequent work. 
  

Abstract |  The FLO gene family of  Saccharomyces cerevisiae includes an expressed 

gene, FLO11, and a set of silent, telomere-adjacent FLO genes.  This gene family 

encodes cell-wall glycoproteins that regulate cell-cell and cell-surface adhesion.  

Epigenetic silencing of FLO11 regulates a key developmental switch:  when FLO11 is 

expressed, diploid cells form pseudohyphal filaments; when FLO11 is silent, the cells 

grow in yeast form.  The epigenetic state of FLO11 is heritable for many generations and 

regulated by the histone deacetylase (HDAC) Hda1p.  The silent FLO10 gene is activated 

by high frequency loss-of-function mutations at either IRA1 or IRA2.  FLO10 is regulated 

by the same transcription factors that control FLO11, Sfl1p and Flo8p, but is silenced by 

a distinct set of HDACs: Hst1p and Hst2p.  These sources of epigenetic and genetic 

variation explain the observed heterogeneity of cell-surface protein expression within a 

population of cells derived from a single clone.   
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Introduction 

 

Pathogenic microorganisms have evolved diverse mechanisms that generate 

phenotypic variation at the cell surface in response to the host environment.  The 

repertoire for this phenotypic variation is often a family of genes encoding cell-surface 

proteins, each of which has diverged in sequence and function.  A common motif among 

different microorganisms is that one gene family member is expressed and the other 

family members serve as a silent reservoir of variation.  By switching surface expression 

from one family member to another, a pathogen can evade detection by the immune 

system or alter interactions with host tissues (a classic example are the VSG genes in 

Trypanosome bruceii, see (Pays et al., 1994) for review).   

Fungi express several gene families encoding cell-surface glycoproteins that 

confer different adherence and immunogenic properties to the fungal cell wall.  In 

pathogens such as Candida albicans (ALS genes) and Candida glabrata (EPA genes) the 

proteins encoded by these gene families are responsible for adherence to mammalian 

tissues (Cormack et al., 1999; De Las Penas et al., 2003; Hoyer, 2001).  In Pneumocystis 

carinii (MSG genes) these genes encode the primary cell-surface antigen recognized by 

the host immune system (Stringer and Keely, 2001).  In Saccharomyces cerevisiae (FLO 

genes), proteins encoded by these genes confer adherence to agar, solid surfaces and 

other yeast cells (Guo et al., 2000; Reynolds and Fink, 2001).  In these examples, the 

protein encoded by each family member is capable of producing distinct cell surface 

properties and serves as a resource for cell surface variation.  In addition, many of these 

fungal gene families are found near telomeres, a location that may play an important role 

in their regulation and evolution.    
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S. cerevisiae has five known members of the FLO gene family: FLO1, 5, 9, 10, 

and 11.  FLO1, 5, 9, and 10 are adjacent to their respective telomeres (~ 10 to 40 kb from 

the telomeres), whereas FLO11 is neither adjacent to a telomere nor a centromere.  In the 

Σ1278b genetic background, FLO11 is the only expressed member of this family (Guo et 

al., 2000); the telomere-proximal FLO genes are silent.  FLO11 expression is required for 

several important developmental transitions in yeast, including adhesion to agar and 

plastic surfaces (Reynolds and Fink, 2001), sliding motility (Reynolds and Fink, 2001) 

and pseudohyphal filament formation (Gagiano et al., 1999; Lo and Dranginis, 1998).  

When the silent FLO genes are expressed by a heterologous promoter, they confer 

adhesive phenotypes distinct from those produced by FLO11:  Flo1p does not promote 

adherence to agar or plastic, but enhances cell-to-cell adherence that causes flocculation.  

Flo10p generates phenotypes that overlap those of both Flo1p and Flo11p; Flo10p 

promotes adhesion and pseudohyphal filamentation, but also enhances cell-to-cell 

adherence (Guo et al., 2000).  Although these silent FLO genes provide a reservoir of cell 

surface variation, the regulatory mechanisms that permit access to this silent information 

have been unexplored.  

This study demonstrates that expression of the FLO genes, which regulate the cell 

surface properties of yeast, is under both genetic and epigenetic control.  Diploid yeast 

strains filament in response to nitrogen starvation, but this response is heterogeneous: 

some cells initiate the filamentation program, whereas other adjacent cells remain in the 

yeast form.  This variation is the consequence of the metastable silencing of the FLO11 

gene; FLO11 is expressed to produce filamentous cells, but silent in yeast form cells.  

Haploid strains do not filament, but mutate at a high frequency to express another 
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telomere-linked FLO gene, FLO10, resulting in hyperinvasion and flocculence.  Like 

FLO11, the expression of FLO10 is metastably silenced.  This epigenetic silencing of 

FLO10 and FLO11 integrates both promoter and genomic positional information to 

produce variegated expression. 

 

Materials and Methods 

Strains, media, microbiological techniques and growth conditions |  Yeast strains 

used in this study are listed in Table 1.  All strains are derived from Σ1278b (also known 

as MB1000; (Brandriss and Magasanik, 1979; Grenson et al., 1966)) and MB758-5B 

(Siddiqui and Brandriss, 1988).  Standard yeast media, yeast transformations and genetic 

manipulations were performed as described in Guthrie and Fink (2001). To induce 

pseudohyphal differentiation, strains were grown on nitrogen-poor SLAHD media, which 

was prepared as described in (Gimeno et al., 1992). 

 
Yeast strain construction |  Yeast strains carrying gene deletions were constructed by 

PCR amplification of a PTEF promoter driven bacterial kanamycin-resistance gene 

(Longtine et al., 1998), with flanking sequences that would direct the kanr gene to the 

appropriate locus via homologous recombination.  All deletions remove the full ORF 

(ATG-Stop).  Deletion of HMLα silent mating locus and replacement with the LEU2 

gene was performed using plasmid pJR826, kindly provided by the Rine lab.  This 

plasmid contains a SalI-XhoI flanked LEU2 gene replacing an XhoI-flanked genomic 

fragment containing HMLα.  Digestion of this construction with BamHI generates a 

fragment containing the LEU2 gene flanked by sequences homologous to the 5' and 3' 

flanking sequences of HMLα.  Transformation and integration of this fragment replaces 
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the HMLα sequences with those of LEU2.  a sir2- Leu+ transformants were assayed for 

mating with lys1- mating tester strains to confirm deletion of  HMLα. 

To generate TRP1-tagged  PFLO10-GFP and PURA3-GFP strains, a TRP1-tagged 

GFP module (Longtine et al., 1998) was PCR amplified with primers that included 

flanking 50-mers homologous to the 5' and 3' sequences of the targeted ORF.  The ATG 

of the tagged ORF was preserved and used as the GFP start codon.  These amplified 

fragments were then transformed into our strains, selecting for Trp+ transformants.  

Proper integrations were then verified by PCR.  PFLO10-URA3 and PFLO11-URA3 strains 

were constructed by PCR of the URA3  ORF with primers containing 50-mer flanking 

sequences that are homologous to the 5' and 3' sequences flanking the target ORF.  The 

URA3 amplified constructs completely replaced the target ORF with the full ORF of 

URA3 (ATG-Stop), so that URA3 expression would be controlled by the target ORF 

promoter.  Correct integration of the URA3 construct after transformation was verified by 

PCR.  FLO11::HA alleles were generated as described (Guo et al., 2000).  

 To generate the ura3::PFLO10-GFP allele, the TRP1 tagged PFLO10-GFP allele was 

PCR amplified from genomic DNA of a strain containing this allele.  Primers for this 

PCR amplified from 5000 bp upstream of the FLO10 promoter, to the 3' end of the TRP1 

gene (the same sequence used to amplify the original GFP::TRP1 construct).  These 

oligonucleotides also contain flanking sequences that are homologous to the 5' and 3' 

URA3 flanking sequences.  URA3+ trp1- strains were transformed with the amplification 

product, and Trp+ ura3- transformants were selected.  Correct integration was verified by 

PCR.  The ura3::PFLO10-URA3 allele was generated by transformation of ira1- strains 

containing the ura3::PFLO10-GFP allele with a PCR product targeted to replace the 
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GFP::TRP1 sequences with the URA3 ORF.  Transformants were selected for URA3+ and 

trp1- then verified for correct integration by PCR.   

 9Myc-epitope tagged Hst1p and Hst2p were generated by PCR amplification of a 

9MYC cassette (Knop et al., 1999) with flanking sequences which targeted the construct 

in frame to the 5' ends of the HST1 and HST2 genes.  Correct insertion was verified by 

PCR.  The presence of carboxy-terminus 9Myc-tagged Hst1p and Hst2p was verified by 

Western blotting analysis with an antibody specific to the Myc-epitope (9E11; Accurate 

antibodies).  The oligonucleotides used for deletion constructs are listed in Table 2. 

 
Isolation and analysis of spontaneous ira- mutants |  Colonies were grown on YPD 

plates for 14 days.  Cells were harvested from colonies, diluted in sterile water and plated 

onto YPD plates at a density of between 300-500 colonies/plate.  Wrinkled colony 

morphology variants (Figure 2A) could be observed at a frequency of roughly 1/1000.  A 

cross of these wrinkled variants to a smooth strain demonstrated that the wrinkled 

phenotype (as well as the other phenotypes described in Figure 3) were linked to a single 

locus, segregating in a 2:2 pattern among tetrad ascospores.  Complementation analysis 

among wrinkled mutants demonstrated that these spontaneous mutations segregated into 

two complementation groups.  In a transposon library screen (Kumar et al., 2002), a 

transposon insertion in the IRA2 gene was isolated which recapitulated the phenotypes 

observed in the wrinkled variants.  The isolated wrinkled variants fail to complement 

loss-of-function ira1- or ira2- mutations, suggesting that each wrinkled variant resulted 

from a mutation in either ira1- or ira2-.  Ira- mutants can also be easily identified by an 

iodine vapor staining assay.  For iodine staining, about 30 grams of iodine crystals 

(Sigma) were placed evenly over the bottom of a glass dish.  Plates with colonies to be 
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tested were inverted over the iodine crystals for 2-5 minutes.  Ira+ strains stain bright red 

from exposure to iodine vapors, whereas ira1- and ira2- mutants stain yellow. 

 Iodine staining was used to identify Ira- mutants for frequency analysis.  Eight 

independent colonies derived from single cells were grown on YPD plates for 14 days 

and harvested as described earlier for identifying wrinkled variants.  10,000-20,000 

viable cells were plated from each colony at a density of 300-500 colonies/ plate, grown 

for three days, and assayed with iodine vapors to identify ira- mutants.  The median 

frequency of mutations producing an Ira- phenotype was 1.08x10-3, with a 95% 

confidence interval between 7.3x10-4 and 1.4x10-3.  The same colonies were assayed for 

mutations in the CAN1 gene, which could be identified as canavanine resistant colonies.  

1.0-2.0x107 cells were assayed for canavanine resistance from each colony.  The median 

frequency of can1- mutation was 1.54x10-6, with a 95% confidence interval between 

3.1x10-7 and 3.2x10-6.  Therefore the frequency of mutations at the IRA loci roughly 

1000-fold higher than the frequency seen at the CAN1 locus. 

 
Complementation analysis |  To determine of putative ira- mutants carried mutations in 

the IRA1 or IRA2 gene, complementation tests were performed using strains carrying 

kanr-tagged deletion alleles of IRA1 and IRA2.  Loss-of-function mutations in these genes 

are recessive for all the phenotypes we have identified.  Unknown ira- mutants were 

crossed to ira1- and ira2- strains and assayed for complementation of the ira- iodine 

staining phenotype.  Complementation analysis of 96 putative ira- mutants demonstrated 

that all 96 were indeed ira- mutants, with mutations occurring in roughly similar 

frequencies at the two loci (31 ira1-, 65 ira2-). 
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Cloning and sequencing of ira- alleles |  One ira1- allele was sequenced by PCR 

amplification of 10 overlapping 1 kb segments from the genomic ira1- allele.  Both 

strands of these PCR products were sequenced using four sequencing reactions.  

Polymorphisms were verified on both Watson and Crick strands and shown to not be 

present in an amplified wild-type allele. 

The IRA2 gene was cloned into the MCS of plasmid pRS316 by recombinational 

gap-repair from the genomic IRA2 gene in L6828.  Gap-repair constructs for isolation of 

ira2- mutant alleles were generated from either 1) digestion of the pRS316 IRA2 clone 

with BglII (IRA2-BglII) or HpaI (IRA2-HpaI) enzymes, which produce deletions within 

the IRA2 gene, or 2) deletion of a fragment of the IRA2 gene on pRS316 via homologous 

insertion of a SnaBI site-flanked kanr gene generated by PCR amplification as described 

(Longtine et al., 1998).  Digestion with the SnaBI restriction enzyme releases the kanr 

gene and produces the four IRA2-SnaBI constructs used for gap-repair isolation of ira2- 

alleles.  Oligonucleotide primers used to construct these plasmids are listed in Table 2. 

Several ira2- strains were transformed with pRS316 plasmids containing 1) the 

full length IRA2 complementing clone or 2-7) the ira2- gap repair constructs.  For each 

ira2- allele, we identified a gap-repair construct that failed to complement the Ira- iodine 

staining phenotype.  The deleted region of this gapped construct was then PCR amplified 

as overlapping 1 kb fragments from the genomic ira2- allele, and sequenced as described 

above. 

 
Phenotypic analyses of ira- mutants |  Agar adhesion assays were performed with either 

patches or streaked single colonies that were grown on YPD plates for 6 days, then 

evenly washed under a gentle stream of non-sterile R/O water.  Scrubbed colonies were 
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rubbed with a finger after washing.  For flocculation assays, cells were grown overnight 

in liquid YPD media until saturation (~24 hours).  Cells were vortexed briefly (pulse) at 

time zero, and allowed to settle. 

 
Northern analysis |  Total RNA was prepared from harvested cells by using a hot acid 

phenol protocol.  15μg total RNA/sample was separated on a denaturing formaldehyde 

gel.  Northern blotting was performed as described (Sambrook et al., 1989).  Immobilized 

total RNA for each sample was probed with the following probes:  A 500 bp FLO10 

probe homologous to the 5' ORF sequence of the FLO10 gene, A 500 bp FLO11 probe 

homologous to the 5' ORF sequence of the FLO11 gene, a 300 bp ACT1 probe 

homologous to the ACT1 coding region.  Oligonucleotides for generating probes by PCR 

are listed in Table 2. 

 
Chromatin immunoprecipitation assays |  Chromatin immunoprecipitations of 9Myc-

tagged Hst1p and Hst2p were performed as described in (Knop et al., 1999).  Briefly, 

cells were grown to between O.D.600 0.8-1.2 units, harvested and fixed with 

formaldehyde.  Cells were lysed in the presence of protease inhibitors, sonicated to shear 

the chromatin and the lysates were immunoprecipitated with a-myc antibodies (9E11) 

bound to Dynabeads M-450, pre-coated with pan-anti-mouse IgG (Dynal).  The beads 

with bound protein/DNA complexes were washed and the protein/DNA complexes were 

eluted from the beads.   Reversal of the cross links with TE/SDS was followed by ethanol 

precipitation of the DNA in the IP fraction.  This DNA was analyzed by PCR for the 

presence of specific sequences in the FLO10 promoter. 
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Results 

Epigenetic silencing of FLO11 regulates pseudohyphal development  |  Flo11 protein 

expression was visualized by immunofluorescence using strains containing a fully 

functional Flo11p tagged with triple HA epitopes ((Guo et al., 2000); Table 3).  A clonal 

population of cells arising from a single haploid cell is not homogeneous: some cells 

express Flo11p, staining brightly with the HA-specific antibodies, whereas other cells 

from the same culture do not express Flo11p and fail to stain (Figure 1A).   

To demonstrate whether heterogeneous Flo11p expression is due to 

transcriptional regulation of the FLO11 gene, the chromosomal FLO11 ORF was 

replaced with the URA3 ORF, to generate a PFLO11-URA3 allele (Table 3).  With this 

allele, cells that have active transcription from the FLO11 promoter will express the 

URA3 gene and will be Ura+ and 5-FOA sensitive, whereas cells that are either inactive at 

the FLO11 promoter or have a silenced FLO11 promoter will be Ura- and 5-FOAR.  A 

clonal population of cells bearing the chromosomal PFLO11-URA3 allele, when grown 

initially under non-selective conditions, contains some cells that are Ura+ and others that 

are 5-FOAR (Figure 1C).  This heterogeneity agrees with the immunofluorescence 

analysis: a population derived from a single FLO11 cell contains some cells that express 

the FLO11 gene and others that do not.  

To determine whether the state of FLO11 expression is reversible, cells were 

isolated from colonies grown on 5-FOA, grown on YPD media overnight, and re-plated 

onto SC, SC-Ura and SC+5-FOA media.  If the Ura- colonies that grew up were silenced 

irreversibly (e.g. by mutation), then there should be very few Ura+ colonies emerging 

from this population under non-selective growth.  In contrast, Ura- cells selected on 5-
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FOA again generate both Ura+ and Ura- cells at the same frequencies as cells not grown 

on 5-FOA (Figure 1C).  The ability of Ura- cells selected on 5-FOA to generate both Ura- 

and Ura+ cells shows that the transition between FLO11 silenced (Ura-) and FLO11 

desilenced (Ura+) is reversible and switches back and forth frequently. 

The metastable silencing of FLO11 is similar to position-effect silencing 

described for subtelomeric transgenes (Gottschling et al., 1990).  To determine whether 

FLO11 silencing is dependent upon its genomic location, the PFLO11-URA3 allele was 

moved to the URA3 locus, which is located ~12 kb from the centromere on the left arm of 

chromosome V (see Table 3).  The ura3::PFLO11-URA3 strains fail to grow on media 

containing 5-FOA (Figure 1C), suggesting that the FLO11 promoter is not silenced when 

positioned at the URA3 locus.  Therefore, silencing of FLO11 is position-dependent.  

However, in contrast to telomere silencing, silencing of FLO11 is promoter-

specific.  When the URA3 gene with its own promoter is placed at the FLO11 locus, it is 

not silenced (flo11::URA3, Figure 1C), suggesting that factors that specifically recognize 

the FLO11 promoter regulate silencing at this locus.  A candidate for this promoter-

specific factor is Sfl1p, which inhibits expression of FLO11 (Pan and Heitman, 2002).  

Indeed, Sfl1p is required for silencing at the FLO11 promoter (Figure 1B, 1C), 

suggesting that Sfl1p recognition may be a necessary step in the silencing of the FLO11 

gene. 

Genome-wide studies have demonstrated that Hda1p participates in the 

deacetylation of large continuous sub-telomeric regions of the yeast genome (Robyr et 

al., 2002).  These regions extend much further away from the telomeres than Sir2p 

mediated silencing effects and encompass a region that includes the FLO11 gene.  The 
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hda1- PFLO11-URA3 strain fails to grow on media containing 5-FOA (Figure 1C), 

demonstrating that Hda1p is necessary for silencing FLO11.  Since Hda1p deacetylation 

appears to be restricted to specific regions of the genome, the requirement for Hda1p, 

might explain the position-dependence of FLO11 silencing; although the factors that 

localize Hda1p activity are still unknown.  In addition, Hda1p is recruited to specific 

promoters by Tup1p (Wu et al., 2001), which in turn has been shown to be recruited to 

the FLO11 promoter by Sfl1p (Conlan and Tzamarias, 2001).  This suggests a pathway 

by which Sfl1p recruits Hda1p to silence FLO11. 

Mutations that disrupt the function of the yeast Ku proteins, the Sir complex or 

the Sir2p homologues, Hst1-4p, show no effect on FLO11 silencing as measured by the 

activity of the PFLO11-URA3 allele (data not shown).  The failure of  these genes involved 

in telomere silencing to affect FLO11 expression is not surprising because FLO11 is 

quite far from its telomere (>40 kb). 

The phenotypic consequences of FLO11 switching are striking in diploid cells, 

where FLO11 expression is required for the transition from yeast form cells to 

pseudohyphae.  To visualize Flo11p expression in diploids during pseudohyphal 

development, diploid strains homozygous for the FLO11::HA allele were grown on media 

that induces pseudohyphal growth (see Methods).  The expression of Flo11p on the 

surface of nitrogen-starved diploid cells is variegated, some cells express Flo11p and 

some do not, confirming that FLO11 is also metastably silenced under the conditions that 

stimulate pseudohyphal development (Figure 1A).  The elongated, pseudohyphal cell 

types generally express Flo11p on their surface: 90.2% of filamentous cells (n = 174) 
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versus 2.1% of yeast form cells (n = 188) express Flo11p, demonstrating that 

filamentation and Flo11p surface expression are tightly associated (p = 6.1x10-64). 

The expression of Flo11p can be visualized in a phalanx of pseudohyphal cells if 

the colonies are treated gently prior to staining. As shown in Figure 1B , the cells that 

make up the intact filament express Flo11p, whereas the yeast-form cells that surround 

the filament do not.  Moreover, Flo11p expressing cells can be seen to be dividing to 

produce yeast form cells that do not express Flo11p on their surface (Figure 1B arrows).  

The proximity of these two forms, filamentous (FLO11 on) and yeast (FLO11 off), 

suggests that their differentiation is not the result of differing environmental inputs.  

Rather, it demonstrates that epigenetic controls determine the differentiation of yeast and 

filamentous forms. 

 The strong correlation between the expression of Flo11p and pseudohyphal 

filamentation suggests that changes in silencing at FLO11 should affect the pattern of 

pseudohyphal development.  During diploid pseudohyphal filamentation, the 

developmental transition from yeast to pseudohyphal form does not occur in concert 

among all the cells at the periphery of the colony.  Some cells initiate pseudohyphal 

filaments, while adjacent cells continue to divide in a yeast form pattern (Figure 1D).  In 

contrast, desilenced homozygous sfl1- or hda1- diploid colonies both produce an 

increased level of pseudohyphal filamentation (Figure 1D).  This analysis of cell-by-cell 

distribution of Flo11p expression helps clarify previous reports of the enhancement of 

pseudohyphal filamentation in sfl1- mutants (Robertson and Fink, 1998).  Loss of 

silencing produces an altered distribution of FLO11 expression:  from a heterogeneous 

expression in wild-type colonies, to a constitutive expression in homozygous sfl1- or 
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hda1- colonies.  Desilenced cells can then participate in pseudohyphal filamentation 

leading to the hyperfilamentous phenotype observed in sfl1- or hda1- homozygotes.  

Therefore, metastable silencing at the FLO11 locus regulates the transition to 

pseudohyphal development in response to nitrogen starvation. 

 
Phenotypic switching in S. cerevisiae results from mutations in IRA1 or IRA2 |  In 

addition to the epigenetic variegation of FLO11 gene expression, S. cerevisiae is capable 

of altering its cell surface properties via mutations that activate the expression of other 

FLO gene family members.  These mutants appear as wrinkled colony morphology 

variants that have increased adhesion to the agar.  Variants that have stably switched to a 

wrinkled colony morphology (Figure 2A) appear at a frequency of 1.1x10-3 (see Methods 

for details).  The wrinkled colony morphology phenotype results from a single mutation 

in one of two complementation groups.    

Complementation analysis of independently arising wrinkled isolates (n = 96) 

demonstrated that these wrinkled variants result from loss-of-function mutations in either 

IRA1 or IRA2, the yeast Ras GTPase-activating proteins.  The wrinkled ira1- and ira2- 

mutants are phenotypically indistinguishable and occur at similar frequencies.  One ira1- 

and five ira2- alleles from wrinkled variants were cloned (see Methods) and sequenced 

(Figure 2B).  Each of the cloned mutations results from a different nucleotide change 

within the IRA1 or IRA2 ORFs.  The ira1-5 allele contains an insertion of a T-A base pair 

at position 5705 bp of the IRA1 ORF, among a stretch of ten A-T and T-A base pairs.  

Several frameshift mutations were also found among the ira2- alleles.  The ira2-19, ira2-

24 and ira2-26 alleles are all frameshift mutations resulting from a deletion or insertion 

of an A-T or T-A base pair within stretches of 8-14 successive A-T and T-A base pairs.  

 60 



The other two ira2- mutations we sequenced, ira2-6 and ira2-11, are transversions (C to 

G and C to A respectively).  Therefore, the colony morphology variation observed in S. 

cerevisiae is a high-frequency genetic event, which can be traced to sequence 

polymorphisms in either the IRA1 or IRA2 genes.   

 
Altered cell surface properties result from FLO10 activation |  Ira- mutants display 

phenotypes consistent with the activation of additional FLO gene family members.  Ira+ 

strains require FLO11 for haploid invasive growth, whereas Ira- strains do not.  As shown 

in Figure 3A, a FLO11+ strain remains attached to the surface of the agar, whereas a 

flo11- strain washes off easily.  However, the isolated Ira- mutants no longer require 

FLO11 for adhesion.  An ira2- flo11- strain is significantly more adherent than an IRA2+ 

flo11- strain (similar results are observed with ira1- mutants).  This Flo11p-independent 

haploid adhesion of Ira- strains depends upon the normally inactive FLO10 gene, as ira2- 

flo11- flo10- mutants do not adhere to agar (Figure 3A).  In a higher stringency assay for 

adhesion (Figure 3A, scrubbed), the ira2- flo11- strains are even more adherent than the 

FLO11+ strain. 

The wrinkled Ira- mutants also have a significant flocculation phenotype (cells 

adhere and aggregate into large clumps that sediment much more quickly than dispersed 

cells; Figure 3B).  This flocculation in liquid media is also dependent upon FLO10 gene 

activity as loss of FLO10 function leads to a loss of flocculation in the Ira- mutants 

(Figure 3B). 

Additionally, the strikingly wrinkled surface of these Ira- colonies is dependent 

upon the expression of the Flo11p cell-surface adhesin (Figure 3C).  This wrinkled 

surface morphology is likely due to increased FLO11 gene expression as mutations that 
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upregulate FLO11 (sfl1- mutants show a similar wrinkled morphology), or GAL1 

promoter-driven expression of the FLO11 gene (data not shown), also manifest the 

wrinkled colony morphology phenotype. 

These results suggest that altered expression of FLO10 and FLO11 plays a role in 

several of the phenotypes produced in wrinkled Ira- mutants.  To determine whether the 

expression of either of these genes is altered in variant strains, total RNA was isolated 

from a smooth Ira+ strain and two rough Ira- variants (ira1-12 and ira2-6).  Northern 

analysis of these RNA samples (Figure 4), demonstrates that Ira- mutants have higher 

levels of FLO11 (2-fold) and FLO10 (12-fold) message.  Activation of FLO10 and 

FLO11 expression in Ira- strains is dependent upon Ras2p and the filamentous MAP 

kinase and PKA pathways ((Rupp et al., 1999) for FLO11 and Supplemental Figure 1 for 

FLO10).  Messages for the other known adhesins, FLO1, 5 and 9, could not be detected 

by Northern analysis in either Ira+ or Ira- strains.  Therefore, mutations at the IRA loci 

result in a phenotypic switch in colony morphology, and altered cell-surface adhesion.  

Several of these new traits are dependent on transcriptional activation of FLO10. 

 
Epigenetic regulation of FLO10 |  To determine whether the epigenetic silencing effects 

observed at FLO11 extend to other FLO gene family members, a TRP1-tagged Aequorea 

victoria GFP gene (Heim et al., 1994) was inserted into the FLO10 locus, such that GFP 

gene expression would be regulated by the FLO10 promoter (see Table 3).  As a control, 

the fluorescence generated by GFP expression was analyzed when transcription of the 

GFP gene is controlled by the endogenous URA3 promoter on chromosome V (PURA3-

GFP).  The expression of GFP in the URA3 promoter-regulated construct is 

homogeneous (Figure 5A).   
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In contrast, GFP regulated by the endogenous FLO10 promoter (PFLO10-GFP) has 

a very different pattern of expression.  In Ira+ strains, the FLO10 promoter is inactive and 

no GFP expression is observed.  In ira1- strains (or ira2- strains; data not shown), GFP 

expression driven by the FLO10 promoter is variegated.  Some cells have a high level of 

GFP expression, whereas other cells have no evident GFP fluorescence (Figure 5A). 

To dissect the FLO10 silenced and desilenced states, we replaced the endogenous 

FLO10 ORF with the URA3 ORF (Table 3).  The phenotype of ira1- PFLO10-URA3 strains 

is both Ura+ and 5-FOAR (Figure 5B).  This result is consistent with the previous 

observation that GFP expression is variegated when driven by the FLO10 promoter. 

To determine whether the silenced state of FLO10 is reversible, cells bearing the 

PFLO10-URA3 allele were isolated from 5-FOA grown colonies, grown on YPD media 

overnight, and re-plated onto SC, SC-Ura and SC+5-FOA media.  The frequency of Ura+ 

colonies is roughly equivalent to that observed in strains that have not been grown on 5-

FOA (Figure 5B), suggesting that silencing at FLO10, like at FLO11, is metastable and 

switches back and forth frequently. 

To establish whether the silencing at FLO10 requires sequences specific to the 

FLO10 promoter, a flo10::URA3 allele was constructed.  This allele is similar to the 

PFLO10-URA3 allele used earlier, except that in this second strain URA3 is regulated by its 

own promoter (Table 3) and located at the FLO10 locus on chromosome XI.  An ira1- 

flo10::URA3 strain does not silence the URA3 gene.  It grows on SC-Ura media but fails 

to grow on 5-FOA media (Figure 5B).  Therefore, the silencing observed at the FLO10 

locus is likely to require factors that specifically recognize and associate with the FLO10 

promoter. 
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Sfl1p is a likely candidate for directing silencing to the FLO10 promoter as Sfl1p 

represses transcription at both FLO11 (Pan and Heitman, 2002; Robertson and Fink, 

1998) and FLO10 (Supplemental Figure 2) and is also required for silencing at FLO11 

(Figure 1C).  An sfl1- mutant fails to silence the PFLO10-URA3 allele (Figure 5B) 

suggesting that Sfl1p recognition of the FLO10 promoter may be important for the 

promoter-specificity of silencing at FLO10. 

To determine whether the epigenetic silencing of the FLO10 gene is position-

dependent, we constructed strains in which either the PFLO10-GFP or the PFLO10-URA3 

allele was moved to the URA3 locus (Table 3).  Neither of these alleles is silenced at the 

URA3 locus (Figure 5A,B).  Therefore, silencing of the FLO10 promoter is dependent on 

its genomic positioning.  Since FLO10 silencing is dependent on its sub-telomeric 

location (FLO10 is only ~17 kb from a telomere, much closer than FLO11), strains 

containing deletions of several genes required for telomere silencing were constructed 

and tested for silencing of the FLO10 promoter.  Sir3p and Sir4p associate with Sir2p at 

the telomeres and silent mating loci, and is required for silencing at these sites (Shore et 

al., 1984).  Deletion of the SIR3 gene also disrupts this complex, and also disrupts 

silencing at the FLO10 locus (Figure 5B).  A similar result is observed with deletions of 

the genes YKU70 and YKU80 (data not shown; similar to sir3- mutants).  These genes 

encode homologues of the mammalian Ku proteins and are required for telomere 

silencing, but not silencing at HML or HMR (Mishra and Shore, 1999).  Since the Ku and 

Sir proteins are involved in regulating regional silencing effects, the position dependence 

of the silencing at the FLO10 promoter is likely to be mediated by these proteins. 

 

 64 



Silencing of FLO10 requires Hst1p and Hst2p, which associate with the FLO10 

promoter |  The pattern of variegated expression observed for FLO10 is similar to the 

patterns of expression for ectopic genes regulated by telomere silencing (Gottschling et 

al., 1990).  Data from localization experiments (Kennedy et al., 1997; Martin et al., 

1999), expression of ectopic promoters (Gottschling et al., 1990), and genome-wide 

expression analysis (Wyrick et al., 1999) suggest that telomere silencing requires the 

activity of the NAD+-dependent histone deacetylase protein, Sir2p.  The PFLO10-URA3 

allele is still effectively silenced ira- sir2- strains (Figure 5B), demonstrating that Sir2p 

does not play a role in silencing FLO10.  

To determine whether any of the other Sir2p homologues, Hst1p-Hst4p 

(Brachmann et al., 1995), play a role in FLO10 silencing, mutants lacking each of the 

HST genes were assayed for silencing of the PFLO10-URA3 allele.  Both HST1 and HST2 

are necessary for silencing at the FLO10 promoter (Figure 5A,B), whereas deletions of 

either HST3 or HST4 have no effect on silencing at FLO10.  

 Chromatin immunoprecipitations of MYC epitope-tagged alleles of HST1 and 

HST2 were analyzed by PCR probes to determine whether Hst1/2p silencing of FLO10 is 

through interaction of these HDAC proteins with the FLO10 promoter.  A region of the 

FLO10 promoter (-900 to -1175) is enriched in the immunoprecipitate fraction of Myc-

tagged Hst1p and Hst2p strains over untagged strains (Figure 5C).  Different regions of 

the FLO10 promoter (-2050 to -1800 and -550 to -300) as well as a probe to the URA3 

promoter, show little enrichment in the immunoprecipitate of tagged fractions over 

untagged fractions (Figure 5C).   
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To test whether Sfl1p is necessary for recruitment of the Hst1/2p HDACs to the 

FLO10 promoter,  sfl1- strains were analyzed for association of both Hst1p and Hst2p 

with the FLO10 promoter.  Loss of Sfl1p function leads to a disassociation of both Hst1p 

and Hst2p with the Hst1/2p-associated region described above.  Immunoprecipitates of 

9Myc-tagged Hst2p show no enrichment for the Hst1/2-associated region over untagged 

immunoprecipitates in sfl1- strains (Figure 5C).  This suggests that Sfl1p regulates two 

distinct pathways that converge upon the FLO10 promoter:  1)  Sfl1p represses FLO10 

gene expression through inhibition of the Flo8p transcriptional activator ((Pan and 

Heitman, 2002) and Supplemental Figure 1) and 2)  Sfl1p recruits the HDAC proteins 

Hst1p and Hst2p to the FLO10 promoter to silence FLO10 gene expression in a sub-

population of Ira- cells. 

 

DISCUSSION 

 

The experiments described here demonstrate that rapid variation in S. cerevisiae 

cell-wall glycoproteins results from both epigenetic and genetic regulation of the FLO 

gene family.  Although there are five members of this family in S. cerevisiae, FLO11 is 

the only member that is expressed in the Σ1278b background (Guo et al., 2000).  FLO11 

gene expression is required for key developmental transitions in yeast, including adhesion 

to agar and plastic surfaces, sliding motility and pseudohyphal filament formation 

(Gagiano et al., 1999; Lo and Dranginis, 1998; Reynolds and Fink, 2001).   

Genetic and immunofluorescent analyses (Figure 1) demonstrate that epigenetic 

silencing determines whether cells express the cell-surface protein Flo11p and transition 

to a filamentous developmental form in the presence of the appropriate environmental 
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signal.  There are several remarkable features of silencing at FLO11.  First, silencing of 

FLO11 is a binary switch, where FLO11 expression (silenced = OFF, desilenced = ON) 

determines the developmental outcome for individual cells.  The state of this switch is 

inherited for several generations; the phalanges of filamentous cells seen in Figure 1B 

record lineages of more than ten generations in which FLO11 remains in the expressed 

state.  Second, silencing at FLO11 is both promoter-specific and position-dependent.  

These considerations suggest that both global (gene non-specific) and promoter-specific 

factors contribute to the establishment of FLO11 silencing (Figure 6).  The dual nature of 

silencing at FLO11 contrasts with most previously described positional silencing effects, 

which are defined by their promoter-independent ability to silence transcriptional 

activity.  Finally, silencing at the FLO11 gene (~ 46kb from the end of chromosome IX) 

reveals the presence of telomere-independent positional silencing effects within the yeast 

genome.  Telomere-independent silencing has also been described for the rDNA locus 

(Smith and Boeke, 1997) and for the HIS4 locus (Jiang and Stillman, 1996), suggesting 

that metastable silencing of genes may be more widespread than had been previously 

imagined.   

The epigenetic silencing of FLO11 explains the variation in filamentation within a 

genetically homogeneous colony of yeast.  When S. cerevisiae colonies are starved for 

nitrogen (Figure 1B and 1D), they produce pseudohyphal filaments (Gimeno et al., 1992).  

However, only a subset of cells participate in forming filaments.  FLO11 is expressed in 

the filamentous cells and silent in the non-filamentous cells.  This switch is controlled by 

Hda1p and Sfl1p; diploid strains lacking either Sfl1p or Hda1p show constitutive 

filamentation along the edge of the colonies (Figure 1D).  Therefore, silencing regulates 
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the differentiation of cell types:  Cells expressing Flo11p at their surface develop as 

pseudohyphae, whereas Hda1p-silenced cells do not express Flo11p and remain in the 

yeast form. 

 The ability of genetically identical cells to switch between these two 

morphologically distinct forms could be important for survival.  In the human fungal 

pathogen C. albicans any mutation that locks the cells in either a yeast form or a hyphal 

form severely reduces the pathogenicity of this fungus (Braun and Johnson, 1997; Lo et 

al., 1997).  The requirement for both yeast and hyphal forms suggests that there is a 

division of labor; the filamentous forms may represent the foraging form of the fungus, 

allowing it to find more favorable environments, whereas the yeast form is the colonizing 

form, growing more effectively under conditions where nutrients are available.  

Metastable regulation of yeast-pseudohyphal differentiation by silencing allows a clonal 

population of S. cerevisiae to test both of these different phenotypes without committing 

all the cells in a colony to one developmental form or another. 

Saccharomyces can produce additional cell surface variation when other members 

of the FLO gene family are expressed.  The other Flo proteins (Flo1p, Flo5p, Flo9p and 

Flo10p) are capable of producing adhesive phenotypes distinct from those of Flo11p, yet 

only Flo11p is normally expressed.  This situation in yeast is analogous to what has been 

observed in several other microorganisms (De Las Penas et al., 2003; Howell-Adams and 

Seifert, 2000; Mehr and Seifert, 1998; Stringer and Keely, 2001; Weiden et al., 1991), 

where each member of a gene family produces distinct cell surface properties, yet only a 

limited number are expressed. 
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Numerous mechanisms, including gene conversion (Bernards et al., 1981; Pays et 

al., 1983a; Pays et al., 1983b), recombination (Howell-Adams and Seifert, 2000; Mehr 

and Seifert, 1998), trans-splicing (Stringer and Keely, 2001), and epigenetic regulation 

(De Las Penas et al., 2003; Michels et al., 1984; Rudenko et al., 1995) are utilized by 

these microorganisms to produce a switch in surface protein expression.  In S. cerevisiae, 

a mutational mechanism governs access to the reservoir of cell-surface variation provided 

by the FLO genes (Figure 2).  Surface expression of additional FLO genes is 

accomplished through mutation of the IRA1 or IRA2 genes (Figure 4).  These loci are 

genetically unstable, producing loss of function ira- mutations at a high (~10-3) 

frequency.  The source of this high mutation frequency is unclear, although it is evident 

that this genetic instability is not shared across the rest of the genome.  Mutations in the 

CAN1 gene appear at a much lower frequency (~10-6; see Methods).  The ira1- and ira2- 

mutants have novel adhesive phenotypes, many of which result from the transcriptional 

activation of the FLO10 gene (Figures 3 and 4).  This transcriptional activation is 

dependent upon both the MAP kinase and cAMP-regulated PKA pathways 

(Supplemental Figure 1) and is likely due to increased Ras activity in these strains 

(Russell et al., 1993).   

In Ira- cells, the expression of FLO10 is variegated suggesting that FLO10, like 

FLO11, is regulated by metastable epigenetic silencing (Figure 6B).  Although it is 

unclear if the telomere-associated Sir3p and Ku proteins act through Hst1p and/or Hst2p, 

or through some independent mechanism at the FLO10 locus, the genetic analysis 

demonstrates that both promoter-specific (Sfl1p) and position-dependent (Sir3p and Ku 

proteins) information is integrated in the silencing of FLO10. 
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 As each FLO gene is capable of producing distinct adhesive phenotypes, access to 

the silent FLO genes permits yeast to display different cell surface properties.  This 

situation is analogous to VSG expression in trypanosomes (Pays et al., 1994) or the MSG 

switching in P. carinii (Stringer and Keely, 2001), where the transcriptional regulation of 

gene family members is a mechanism to generate diversity.  In these examples, silent 

genes located near the telomeres provide a repository of information that, when accessed, 

can produce phenotypic variation.  Interestingly, many of the genes found near the 

telomeres in yeast are members of multigene families (e.g. the SUC, MAL, MEL, PAU, 

and HXT gene families).  It has been proposed (Otto and Yong, 2002) that novel gene 

functions can arise through the process of gene duplication and divergence.  With this in 

mind, it is interesting that many of the genes found at metastably silenced loci, such as 

the yeast telomeres, are members of larger gene families.  Perhaps these regions are 

favored for the evolution of new gene activities. 
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Figures and Tables 
 
Figure 1 |  Epigenetic control of  FLO11 expression regulates pseudohyphal 
differentiation.  (A)  Immunofluorescence analysis reveals variegated expression of 
Flo11p at the cell surface.  All strains carry the FLO11::HA allele to visualize Flo11p 
expression on a cell-by-cell basis.  Images show an overlay of HA-targeted 
immunofluorescence over a Nomarski image of the same field.  Variegated expression is 
observed in a wild-type haploid strain, but is lost in strains that lack Sfl1p or Hda1p.  
Diploids (a/α) were grown on solid nitrogen starvation (SLAHD) media to induce 
pseudohyphal differentiation.  Flo11p-HA expression in diploids is strongly correlated 
with the filamentous growth form (p = 6.1x10-64).  (B)  Cells isolated from filamentous 
diploid colonies allow the in situ visualization of filamentous and yeast form cells.  The 
budding of yeast form cells off of a phalanx of filamentous cells (arrows) can be seen.  
(C)  The PFLO11-URA3 expression construct reveals the silenced (5-FOAR) and desilenced 
(Ura+) states of the FLO11 promoter.  Two equivalent 10-fold dilution spots are shown 
for each plate.  PFLO11-URA3 (*) indicates that these cells were isolated from 5-FOA 
media, grown on YPD, then replated onto SC, -Uracil and 5-FOA plates.  See Table 3 for 
more detailed descriptions of the URA3 expression constructs.  (D)  Silencing of FLO11 
regulates the transition from yeast to filamentous growth.  In Σ1278b strains, the 
initiation of filamentation at the colony periphery is heterogeneous, whereas in FLO11-
desilenced sfl1- or hda1- mutants, the cells at the periphery of the colony are uniformly 
filamentous. 
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Figure 2 |  Spontaneous, high frequency mutations at IRA1 and IRA2 produce 
wrinkled colony morphology variants.  (A)  A switch in colony morphology is the 
result of high-frequency mutations at IRA1 or IRA2.  Wrinkled colonies were isolated 
from haploid strains at a frequency of about 1x10-3 (see Methods for details of frequency 
analysis).  Genetic analysis of these wrinkled colonies revealed that the phenotypic 
switch from smooth to wrinkled colony morphology is due to mutations in the IRA1 and 
IRA2 gene.   (B)  Several IRA1 and  IRA2 mutations were cloned and sequenced to 
identify the loss of function mutations in these alleles.  The location of each of the 
polymorphisms in both the IRA1 and IRA2 genes are shown.  The consensus GTPase 
activating domain (Tanaka et al., 1990b) is shown for each gene.  4/6 (ira1-5, ira2-19, 
ira2-24, ira2-26) of the mutations sequenced are frameshift mutations, whereas ira2-6 
and ira2-11 are transversions. 
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Figure 3 |  Ira- phenotypes require FLO gene activity.  (A)  Flo11p-independent 
agar adhesion in Ira- strains requires the activity of the FLO10 gene.  (B)  Flocculation of 
Ira- mutants requires FLO10 gene activity.  The top panel shows liquid cultures at 
immediately after resuspension by vortexing.  The bottom panel shows the same cultures 
after 15 minutes.  (C)  The wrinkled colony morphology phenotype of Ira- mutants is 
dependent upon an intact FLO11 gene. 
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Figure 4 |  Northern analysis of Ira-mutants reveals increased levels of FLO11 
and FLO10 transcripts.  Ira- mutants display a 2-5 fold increase in FLO11 transcript and 
a 10-20 fold increase in FLO10 transcript. 

 74 



Figure 5 |  Telomere position effects at FLO10 are mediated by Hst1p and Hst2p 
association.  (A)  FLO10 gene expression shows position-effect variegation.  The FLO10 ORF 
was replaced with a TRP1-tagged GFP gene such that GFP expression was regulated by the 
genomic FLO10 promoter (PFLO10-GFP, see Table 3 for expression constructs).  As a control, a 
similar construct was generated at the URA3 locus, such that the URA3 promoter was 
responsible for GFP expression (PURA3-GFP).  (B)  The PFLO10-URA3 expression construct 
reveals the silenced (5-FOAR) and desilenced (Ura+) states of the FLO10 promoter.  Two 
equivalent 10-fold dilution spots are shown for each plate.  The ira1- PFLO10-URA3 (*) cells 
were initially selected on 5-FOA and grown on YPD before plating on SC, -Uracil and 5-FOA 
media.  As is observed at FLO11, silencing of the FLO10 promoter produces both Ura+ and 5-
FOAR populations of cells.  (D)  Chromatin immunoprecipitation demonstrates Sfl1p-
dependent association of Myc-tagged Hst1p and Hst2p with the FLO10 promoter.  SFL1+ or 
sfl1- strains carrying either MYC tagged HST1 or HST2 alleles (HST1 and HST2; + lanes) or 
untagged alleles (- lanes), were analyzed by chromatin immunoprecipitation.  Quantitative 
PCR reactions from immunoprecipitate (IP) fractions were compared to those from whole cell 
extract (W) to determine the levels of enrichment.  Precipitation of fixed whole cell extract 
samples with anti-Myc antibodies produced an enrichment of a fragment of the FLO10 
promoter (bases -900 to -1175) in both Myc-tagged Hst1p (43.19 fold) and Hst2p (6.93 fold) 
strains.  In sfl1- strains, IP enrichment of this fragment is substantially decreased for both Myc-
tagged Hst1p (15.2 fold less enrichment in an sfl1- strain) and Hst2p (5.2 fold less enrichment 
in an sfl1- strain), demonstrating that Sfl1p is required for the association of these HDAC 
proteins with the FLO10 promoter.   
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Figure 6 |  Silencing at FLO10 and FLO11 integrates both promoter-specific and 
genomic positional information.  (A)  Hda1p regulates telomere-independent positional 
silencing of FLO11.  Sfl1p, which binds the FLO11 promoter, is required for epigenetic 
silencing of the FLO11 gene (Figure 1) and likely provides the promoter-specificity to FLO11 
silencing.  Although it is clear that genomic position regulates FLO11 silencing (Figure 1C), 
the nature of the positional determinants remains unclear.  Silencing of FLO11 also requires 
the Hda1p histone deacetylase (Figure 1),  which is likely to integrate both positional and 
promoter-specific (Sfl1p) information  (B)  Silencing of FLO10 is dependent upon the Hst1p 
and Hst2p HDACs.  These HDAC proteins integrate promoter and positional information 
through interactions with Sfl1p and the telomere-associated Ku and Sir proteins. 
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Table 1 |  Saccharomyces cerevisiae strains used in this study. 
    
Strain           Genotype                       Reference/Source  
 

L6828  MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3  Fink laboratory 
Collection 

10560-2B MATa ura3-52 leu2::hisG his3::hisG  Fink laboratory 
Collection 

L6906 MATa ura3-52 his3::hisG FLO11::HA Fink laboratory 
collection 

AHY957 MATa ura3Δ0 PFLO11-URA3 This Study 
AHY958 MATa ura3Δ0 ura3::PFLO11-URA3 This Study 
AHY967 MATa ura3Δ0 PFLO11-URA3 sir2::kanr hmlα::LEU2 This Study 
AHY960 MATa ura3Δ0 sfl1::kanr PFLO11-URA3 This Study 
L6944 MATa ura3-52 his3::hisG leu2::hisG  sfl1::HIS3 FLO11::HA Fink laboratory 

collection 
AHY959 MATa ura3Δ0 hda1::kanr PFLO11-URA3 This Study 
AHY964 MATa ura3-52 his3::hisG leu2::hisG  hda1::kanr FLO11::HA Fink laboratory 

collection 
AHY961 MATa/α ura3Δ0/ ura3Δ0  PFLO11-URA/PFLO11-URA3 This Study 
AHY962 MATa/α ura3Δ0/ ura3Δ0 sfl1::kanr/sfl1::kanr  PFLO11-URA3/PFLO11-

URA3 
This Study 

AHY965 MATa/α ura3Δ0/ ura3Δ0 hda1::kanr/hda1::kanr  PFLO11-
URA3/PFLO11-URA3 

This Study 

L6901 MATa/α his3::hisG/ his3::hisG FLO11::HA/FLO11::HA Fink laboratory 
collection 

L6946 MATa/α ura3-52/+ his3::hisG/ his3::hisG leu2::hisG/+  sfl1::HIS3/ 
sfl1::HIS3  FLO11::HA/FLO11::HA 

Fink laboratory 
collection 

AHY966 MATa/α ura3-52/+ his3::hisG/ his3::hisG leu2::hisG/+  hda1::kanr/ 
hda1::kanr  FLO11::HA/FLO11::HA 

Fink laboratory 
collection 

CSY748 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira1-5 This study 
CSY749 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2-6 This study 
CSY787 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2-11  This study 
CSY795 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2-19 This study 
CSY800 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2-24 This study 
CSY802 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2-26 This study 
AHY721 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::kanr This study 
AHY877 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::kanr 

flo10::kanr
This Study 

CSY770 MATa ura3-52 leu2::hisG his3::hisG ira2-6 This study 
AHY716 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira1::kanr This study 
AHY877 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira1::kanr 

flo10::kanr
This Study 

AHY387 MATa leu2::hisG his3::hisG ira1-12 This study 
AHY858 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::kanr 

ras2::LEU2 
This Study 

AHY877 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::kanr 
flo10::kanr

This Study 

AHY863 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::kanr 
tec1::kanr

This Study 
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AHY869 MATa ura3-52 his3::hisG flo11::HIS3 ira2::kanr tpk2::kanr This Study 
AHY868 MATa ura3-52 his3::hisG flo11::HIS3 ira2::kanr flo8::kanr This Study 

L6874 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 sfl1::HIS3 Fink laboratory 
collection 

L6889 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 sfl1::HIS3 
flo10::URA3 

Fink laboratory 
collection 

AHY819 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr

This Study 

AHY816 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-GFP::TRP1 

This Study 

SBY009 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PURA3-GFP::TRP1 

This Study 

SBY068 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 PFLO10-
GFP::TRP1 

This Study 

SBY066 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr ura3::PFLO10-GFP::TRP1 

This Study 

SBY123 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ura3::PFLO10-GFP::TRP1 

This Study 

SBY180 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-GFP::TRP1 hst1::kanr

This Study 

SBY183 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-GFP::TRP1 hst2::kanr

This Study 

SBY196 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 PFLO10-
GFP::TRP1 sfl1::kanr

This Study 

SBY022 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 

This Study 

SBY050 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 PFLO10-
URA3 

This Study 

AHY963 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
flo10::URA3 

This Study 

AHY854 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr ura3::PFLO10-URA3 

This Study 

AHY955 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ura3::PFLO10::URA3 

This Study 

SBY148 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 hst1::kanr

This Study 

SYB163 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 hst2::kanr

This Study 

SBY175 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 PFLO10-
URA3 sfl1::kanr

This Study 

SBY109 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 sir2::kanr hml::LEU2 

This Study 

SBY111 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 sir3::kanr hml::LEU2 

This Study 

SBY190 MATα ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 yku70::kanr

This Study 

SBY193 MATα ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 
ira1::kanr PFLO10-URA3 yku80::kanr

This Study 

AHY956 MATa ura3-52 leu2::hisG his3::hisG trp1::hisG  flo11::HIS3 This Study 
AHY881 MATa ura3-52 leu2::hisG his3::hisG HST1::9MYC This Study 
AHY883 MATa ura3-52 leu2::hisG his3::hisG HST2::9MYC This Study 
AHY896 MATa ura3-52 leu2::hisG his3::hisG sfl1::kanr HST2::9MYC This Study 
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AHY968 MATa ura3-52 leu2::hisG his3::hisG sfl1::kanr HST1::9MYC This Study 
AHY950 MATa ura3-52 leu2::hisG his3::hisG flo11::HIS3 ira2::Ty1-

LacZ::LEU2 
This study 
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Table 2 |  Oligonucleotides used in this study. 
     Oligo         Sequence                                       Description  
 

AH179 5'-ACATTCTTCTTCAGCATATAACATACAACAAGATTAA 
GGCTCTTTCTAAACGGATCCCCGGGTTAATTAA-3' 

To generate 
ira1Δ::kanr allele 5' 

AH180 5'-ATAATTATAAGGAAAAACGTATATAATCACTGCAATA 
CTCTAATTTAAAAGAATTCGAGCTCGTTTAAAC-3' 

To generate 
ira1Δ::kanr allele 3' 

AH170 5'-TTTTTTGATATCAACTAAACTGTATACATTATCTTTCT 
TCAGGGAGAAGCGCAGATTGTACTGAGAGTGC-3' 

To generate 
ira2Δ::kanr allele 5' 

AH171 5'-ATGCTTACAGATAGATATTGATATTTCTTTCATTAGTT 
TATGTAACACCTTCTGTGCGGTATTTCACACC-3' 

To generate 
ira2Δ::kanr allele 3' 

BG152 5'-ATGCCTGTGGCTGCTCGATATA-3' FLO10 northern 
probe 5' 

BG153 5'-AAGTAACCTGTCATTTCCACGG-3' FLO10 northern 
probe 3' 

BG154 5'-ATGCAAAGACCATTTCTACTCGCTTA-3' FLO11 northern 
probe 5' 

BG155 5'-TGCCAGGAGCTTGCATATTGAG-3' FLO11 northern 
probe 3' 

ACT1L 5'-ATGGATTCTGAGGTTGCTGC-3' ACT1 northern probe 
5' 

ACT1R 5'-GGCAACTCTCAATTCGTTGT-3' ACT1 northern probe 
3' 

AH166 5'-TCGGTAGACACATTCAAACCATTTTTCCCTCATCGGCA 
CATTAAAGCTGGCGGATCCCCGGGTTAATTAA-3' 

To generate 
sir2Δ::kanr allele 5' 

AH167 5'-TGTAAATTGATATTAATTTGGCACTTTTAAATTATTAA 
ATTGCCTTCTACGAATTCGAGCTCGTTTAAAC-3' 

To generate 
sir2Δ::kanr allele 3' 

AH391 5'-AAGGAAAAAAGCGGCCGCCGAAACTCTTTACTTCCTAAG-
3' 

5' IRA2 gap-repair 
cloning fragment 5' 

AH392 5'-CGGGATCCTACGTAACGTTGGGGGAAAAGTAACAC-3' 5' IRA2 gap-repair 
cloning fragment 3' 

AH393 5'-CGGGATCCTACGTAAGCATGAATGTACATATCTCATG-3' 3' IRA2 gap-repair 
cloning fragment 5' 

AH394 5'-TCCCCCCGGGCCTCGATGAATTTGTTAAGCC-3' 3' IRA2 gap-repair 
cloning fragment 3' 

AH404 5'-
TCGTTTGGATAATGTTTTGGAGTTATACACGCACTTTGATG 
ATACTGAGGTACGTACGGATCCCCGGGTTAATTAA-3' 

5' primer IRA2-
SnaBI::kanr 2 

AH405 5'-AATACCCGCGAAATTTCTGAAGTCGTTCCGTTCTTGTTTTT 
CTAAACTTTTACGTAGAATTCGAGCTCGTTTAAAC-3' 

3' primer IRA2-
SnaBI::kanr 2 

AH406 5'-
GGTTCAATTGCTTTCCAAAGGAGGACAAGAAATAATATTTT 
ACGATTTGCTACGTACGGATCCCCGGGTTAATTAA-3' 

5' primer IRA2-
SnaBI::kanr 3 

AH407 5'-
AATTGGCGTTGGGTCTGTTCTCACTTGGATGTCTATCGTGC 
GATCTGTTCTACGTAGAATTCGAGCTCGTTTAAAC-3' 

3' primer IRA2-
SnaBI::kanr 3 

AH408 5'-AGCCCTGATTCTGAAAATATCATAGATATTTCTCACTTGA 
GCGAAAAGCGTACGTACGGATCCCCGGGTTAATTAA-3' 

5' primer IRA2-
SnaBI::kanr 4 

AH409 5'-CAGATTCCAAGACATATTTCTTGTATCTTGTCTTCCACAC 
GTTTGCTTCGTACGTAGAATTCGAGCTCGTTTAAAC-3' 

3' primer IRA2-
SnaBI::kanr 4 

AH410 5'-TCAAAAGGTGAAGTTTATGTTTGGGTTCAGCGAGGACAA 
AGGACGAATTTTACGTACGGATCCCCGGGTTAATTAA-3' 

5' primer IRA2-
SnaBI::kanr 5 

AH411 5'-GAAAAATTAGCGATAAGAAAACCCTAACATGAGATATGT 
ACATTCATGCTTACGTAGAATTCGAGCTCGTTTAAAC-3' 

3' primer IRA2-
SnaBI::kanr 5 

 80 



AH238 5'-ACGTTGAAGATTTGTTTTAGGGTGCTTAATCAAAGAACA 
ACAAATAAAAACGGATCCCCGGGTTAATTAA-3' 

To amplify 
flo10Δ::kanr allele 5' 

AH239 5'-GACGAATCGTAGACGCAGAAGTATCAATCCAAAGGATAT 
TTCTGCACCTAGAATTCGAGCTCGTTTAAAC-3' 

To amplify 
flo10Δ::kanr allele 3' 

AH133 5'-GAGTTAGCAGCGTCGGAAAC-3' To amplify 
ras2Δ::kanr allele 5' 

AH134 5'-CCCATTAATACCCGTTGTGC-3' To amplify 
ras2Δ::kanr allele 3' 

TRO57 5'-CAAGAAGAATAATCCACCTATTTCAACAATTCTGATACC 
TGTTTACGGATCCCCGGGTTAATTAA-3' 

To amplify 
tec1Δ::kanr allele 5' 

TRO58 5'-AGATGTATGTATGTATGTAGACATTTAATAAAAGTTCCC 
ATGCGAGAATTCGAGCTCGTTTAAAC-3' 

To amplify 
tec1Δ::kanr allele 3' 

AH444 5'-GACCGCAAGCGCAGAGATAAG-3' To amplify 
hst1Δ::kanr allele 5' 

AH445 5'-GAAGAGTTATCCGAGGGAATC-3' To amplify 
hst1Δ::kanr allele 3' 

AH447 5'-GAAGGGAATTACAGGTTGAAG-3' To amplify 
hst2Δ::kanr allele 5' 

AH448 5'-CAATTCATACACACCACACATAC-3' To amplify 
hst2Δ::kanr allele 3' 

AH482 5'-CCAATATGTGTGCCTTTTTCATCAC-3' To amplify 
hda1Δ::kanr allele 5' 

AH483 5'-CGATAAACTCAACTCTTCTGAG-3' To amplify 
hda1Δ::kanr allele 3' 

AH357 5'-CTATCCTCGAGGAGAACTTC-3' To amplify 
yku70Δ::kanr allele 5' 

AH358 5'-CCCCGTTCCTGAAAAATTTC-3' To amplify 
yku70Δ::kanr allele 3' 

AH351 5'-CTTGGCGAAGAAAGGGGTCC-3' To amplify 
sir3Δ::kanr allele 5' 

AH352 5'-CTTGGCGAAGAAAGGGGTCC-3' To amplify 
sir3Δ::kanr allele 3' 

AH256 5'-ACGTTGAAGATTTGTTTTAGGGTGCTTAATCAAAGAACA 
ACAAATAAAAAATGCGGATCCCCGGGTTAATTAA-3' 

To amplify PFLO10-
GFP 5' 

AH239 5'-GACGAATCGTAGACGCAGAAGTATCAATCCAAAGGATAT 
TTCTGCACCTAGAATTCGAGCTCGTTTAAAC-3' 

To amplify PFLO10-
GFP 3' 

AH236 5'-ACGTTGAAGATTTGTTTTAGGGTGCTTAATCAAAGAACA 
ACAAATAAAAAATGTCGAAAGCTACATATAAGG-3' 

To amplify PFLO10-
URA3 5' 

AH237 5'-GACGAATCGTAGACGCAGAAGTATCAATCCAAAGGATA 
TTTCTGCACCTATTAGTTTTGCTGGCCGCATC-3' 

To amplify PFLO10-
URA3 3' 

AH464 5'-TCTAATTAAAATATACTTTTGTAGGCCTCAAAAATCCAT 
ATACGCACACTATGTCGAAAGCTACATATAA-3' 

To amplify PFLO11-
URA3 5' 

AH465 5'-TAAGAATGAAAACATCGTAATGAAGAAACGAACATGTT 
GGAATTGTATCATTAGTTTTGCTGGCCGCATC-3' 

To amplify PFLO11-
URA3 3' 

AH400 5'-TAACCCAACTGCACAGAACAAAAACCTGCAGGAAACGA 
AGATAAATCATGCGGATCCCCGGGTTAATTAA-3' 

To amplify PURA3-
GFP allele 5' 

AH401 5'-GCTCTAATTTGTGAGTTTAGTATACATGCATTTACTTATA 
ATACAGTTTTGAATTCGAGCTCGTTTAAAC-3' 

To amplify PURA3-
GFP allele 3' 

AH384 5'-TCTTAACCCAACTGCACAGAACAAAAACCTGCAGGAAA 
CGAAGATAAATCCAACAGCCCCAGATTCATTC-3' 

To amplify 
ura3::PFLO10-GFP 5' 

AH385 5'-GCTCTAATTTGTGAGTTTAGTATACATGCATTTACTTATA 
ATACAGTTTTGAATTCGAGCTCGTTTAAAC-3' 

To amplify 
ura3::PFLO10-GFP 3' 
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Table 3 |  Expression constructs used in this study.  This table illustrates the 
expression constructs used to study epigenetic silencing at FLO10, FLO11 and URA3 and 
summarizes the silencing effect observed for each construct. 
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Supplemental Figure 1 |  The PKA and filamentation MAP kinase signaling 
pathways are required for transcriptional activation of FLO10 in ira1- and ira2- 
mutants.  (A)  Northern analysis of FLO10 gene expression demonstrates that FLO10 
transcription is dependent upon the PKA and filamentation MAP kinase pathway activity.  
Both IRA1 and IRA2 encode Ras-GAP proteins and regulate Ras activity in vitro and in 
vivo (Tanaka et al., 1990a) and Ras2p is required for ira2--mediated FLO10 gene 
activation.  Ras2p has been demonstrated to activate both the filamentation MAP kinase 
and PKA signaling pathways; both pathways are important for the regulation of the 
FLO11 gene (Rupp et al., 1999).  Signaling via the filamentation MAP kinase pathway is 
required for FLO10 expression and haploid adhesion as tec1- mutations are epistatic to 
ira2- mutations for FLO10 expression.  Members of the PKA pathway, Tpk2p and Flo8p, 
also activate expression of FLO10 in response to ira2- mutations.  Sfl1p, a negative 
regulator of FLO11 transcription, is inhibited by PKA activity (Pan and Heitman, 2002; 
Robertson and Fink, 1998).  Sfl1p serves a similar role at FLO10, as mutations in Sfl1p 
are sufficient to activate FLO10 expression.  Similar epistatic interactions were observed 
between ira1- mutations and mutations affecting the PKA or filamentation MAP kinase 
pathway. (B)  Flo11p-independent agar adhesion of ira2- mutants requires the functional 
PKA and filamentous MAP kinase pathways.  All strains tested for adhesion are flo11-.  
This phenotypic assay for FLO10 function recapitulates the results of FLO10 expression 
analysis in (A) and demonstrates that FLO10-dependent adhesion requires the both PKA 
and filmentation MAP kinase pathway activ ity.
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Chapter 3 
 
Genome-wide Screens Identify Additional 

Regulators of Transcription and Silencing at the 

FLO10  and FLO11 promoters in yeast 

 
 
Abstract |  FLO10 and FLO11 are members of a large gene family in the yeast 

Saccharomyces cerevisiae that encode cell-surface glycoproteins that mediate a range of 

cell-to-cell and cell-to-surface adhesions.  We have previously shown that phenotypic 

diversity in clonal populations of yeast cells is mediated in part by the epigenetic 

silencing of the FLO10 and FLO11 promoters.  The mechanisms that underlie this 

silencing rely on several identified chromatin modifying enzymes and transcription 

factors.  Hda1 and Sfl1 play roles in silencing at both of these FLO promoters, whereas 

Hst1 and Hst2, the homologs-of-Sir2, are specific to the silencing of the FLO10 

promoter.  Genome-wide Tn3-insertion screens were conducted to identify additional 

trans-acting factors involved in the transcriptional silencing of these promoters and to 

investigate further the similarities and differences in the regulation of the FLO10 and 

FLO11 promoters.  The initial screens identified 91 Tn3 insertion mutants, representing 

74 unique genes, that exhibited altered FLO10 promoter activity, and 165 Tn3 insertion 

mutants, representing 102 unique genes, that exhibited altered FLO11 promoter activity.   

Because of our interest in chromatin structure at the FLO promoters, we focused our 

follow-up studies on candidates likely to play a role in chromatin modification or 

remodeling.  Among such candidates identified in the screens were components of the 

Rpd3L histone deacetylase complex, the Srb/Mediator complex, the COMPASS histone 

methyltransferase complex, and other chromatin remodeling factors such as Rsc2, Ada2, 

and Swi1.  Most of these mutants behave as would be expected, according to 

contemporary knowledge of the effects of chromatin modification and remodeling on 

transcription.  Mutants of the Rpd3L histone deacetylase complex, however, present 

phenotypes that were unanticipated given the canonical role of histone deacetylases in the 

repression of transcription. 
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Introduction 

 In Saccharomyces cerevisiae, FLO10 and FLO11 are members of a large family 

of genes that encode cell-surface glycoproteins that mediate a range of cell-to-cell and 

cell-to-surface adhesions (Guo et al., 2000).  We have previously shown that the FLO10 

and FLO11 promoters are epigenetically silenced in a position-dependent and promoter 

sequence-dependent manner that contributes to phenotypic diversity in clonal populations 

of yeast cells (Halme et al., 2004).  The silencing of the FLO promoters is heterogeneous, 

or variegated, within the population of cells.  Variegated transcription of FLO10 and 

FLO11 results in yeast cells that, at the population level, exhibit variability in their 

behavior regarding flocculation (cell-to-cell adhesion), adhesion to and invasion of inert 

surfaces and, in diploids, the formation of long filaments called pseudohyphae (Halme et 

al., 2004).     

In previous studies, we identified several trans-acting regulators of the silencing 

observed at the FLO10 and FLO11 promoters (Halme et al., 2004).  Among these, the 

histone deacetylase Hda1 and the DNA-binding repressor Sfl1 mediate silencing of 

FLO11 transcription.  Hdal also plays a role in silencing at FLO10, but the histone 

deacetylase homologs-of-Sir2 Hst1 and Hst2 have a more critical role in the silencing at 

this locus and are recruited to the FLO10 promoter by a Sfl1-dependent mechanism 

(Halme et al., 2004).   

Despite differences in histone deacetylase specificity at FLO10 and FLO11, there 

is substantial similarity in the transcriptional regulation of these two FLO genes.  The 

PKA pathway and the filamentation MAPK pathway function in parallel to regulate the 

expression of both FLO10 and FLO11 in response to environmental cues (Palecek et al., 
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2002; Pan and Heitman, 2002; Rupp et al., 1999), although an additional level of negative 

regulation exists at the FLO10 promoter (Halme et al., 2004).  Sfl1, the downstream 

effector of transcriptional repression through the PKA signaling pathway, is required for 

silencing at both FLO10 and FLO11.   

Another similarity between FLO10 and FLO11 is their unusually large promoter 

regions.  Careful dissection of the FLO11 promoter has revealed the existence of at least 

four upstream activation sequences (UASs) and nine repression elements which, together, 

span at least 2.8 kb of the region upstream of the FLO11 ORF (Rupp et al., 1999).  Thus 

the FLO10 and FLO11 promoters are seemingly very busy locations where the binding of 

many trans-acting regulators occurs to determine whether the given FLO gene will be 

expressed or not.   

To identify additional trans-acting factors involved in transcriptional silencing of 

the FLO10 and FLO11 promoters, I conducted genome-wide Tn3-insertion screens for 

mutants that displayed either increased (loss of silencing phenotypes) or decreased (gain 

of silencing phenotypes) promoter activity.  These screens served as successful tools for 

identifying candidates not previously known to play a role in FLO gene transcriptional 

regulation.  The initial screens identified 91 Tn3 insertion mutants, representing 74 

unique genes, that exhibited altered FLO10 promoter activity, and 165 Tn3 insertion 

mutants, representing 102 unique genes, that exhibited altered FLO11 promoter activity.    

Because of our interest in epigenetic silencing and chromatin structure at the FLO 

promoters, we focused our attention on candidates likely to play a role in chromatin 

modification or remodeling.  Among such candidates identified in these screens were 

members of the Rpd3L histone deacetylase complex, the COMPASS histone 
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methyltransferase complex, the Srb/Mediator complex, and other chromatin remodeling 

factors such as Rsc2, Ada2, and Swi1.  The candidate complexes of interest and their 

identified effects on transcription at the FLO10 and FLO11 promoters are summarized in 

Figure 1 of this chapter.  Some of the candidate complexes exhibit the same effect at both 

FLO promoters, whereas others are specific to either FLO10 or FLO11 regulation.   

Many of the mutants of the chromatin regulating complexes identified in these 

screens behaved as would be expected according to contemporary functional knowledge 

of the complexes in which they participate and the predicted effects of chromatin 

modification and remodeling on transcription.  Rsc2 and Swi1, which are components of 

the RSC and Swi/Snf chromatin remodeling complexes, respectively, act as activators of 

FLO gene expression, a role in line with their known functions in remodeling DNA-

nucleosomal histone interactions (Martens and Winston, 2003).  Components of the 

SAGA histone acetyltransferase complex, including Ada2, Ada5, and Spt8, also function 

as activators of FLO transcription, again a role that is unsurprising given that acetylation 

of histones is known to promote transcription (Grunstein, 1997).   

The Srb/Mediator complex has been previously shown by others to be involved in 

the transcriptional repression of the FLO11 promoter and the FLO11-like STA1 promoter 

(Holstege et al., 1998; Kim et al., 2004; Nelson et al., 2003; Song and Carlson, 1998).  It 

is also included in this report because results presented here shed light on unresolved 

issues regarding the mechanisms through which the Srb/Mediator complex performs its 

repressive functions.  This will be discussed later in this chapter. 

Some candidate complexes identified in these screens presented phenotypes in 

conflict with contemporary theories regarding the role of chromatin structure in 
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regulating transcription.  For instance, I found that members of the COMPASS complex, 

including the Set1 methyltransferase and Bre2, behave as repressors of FLO11 

transcription.  Mutations in the COMPASS complex result in loss of silencing at the 

FLO11 promoter.  Disruption of silencing at telomeres, at the ribosomal DNA locus 

(rDNA), and at the silent HML and HMR yeast mating cassette loci have been observed 

by others studying COMPASS mutants (Briggs et al., 2001; Fingerman et al., 2005; 

Mueller et al., 2006; Nislow et al., 1997; Schneider et al., 2005), but these and my 

findings are in conflict with reports that the Set1 methyltransferase is involved in active 

transcription (Ng et al., 2003; Pokholok et al., 2005; Santos-Rosa et al., 2002).   And 

most importantly for studies presented in Chapter 5 of this thesis, I found that 

components of the histone deacetylase complex Rpd3L, including Cti6, Rxt2, Pho23, and 

Sin3, behave as net transcriptional activators of the FLO promoters.  Given that histone 

deacetylases, including Rpd3, generally repress transcriptional activity, this was a 

surprising finding (Grunstein, 1997; Carrozza et al., 2005; Kadosh and Struhl, 1997, 

1998; Rundlett et al., 1998).  Other recent studies have also demonstrated that the Rpd3L 

complex can act as an activator of transcription at certain target promoter regions (Sertil 

et al., 2007; Sharma et al., 2007; Xin et al., 2007; De Nadal et al., 2004).  Taken together, 

these collective data raise an apparent paradox regarding the role in regulating 

transcription played by the Rpd3L histone deacetylase complex at different target 

promoters in yeast.  This apparent paradox will be discussed in this chapter and in 

Chapter 5 of this thesis.     
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Materials and Methods 

 

Strains, media, microbiological techniques and growth conditions |  Yeast strains 

used in this study are listed in Table 1.  All strains are derived from Σ1278b (also known 

as MB1000; (Brandriss and Magasanik, 1979; Grenson et al., 1966)) and MB758-5B 

(Siddiqui and Brandriss, 1988).  Standard yeast media, yeast transformations and genetic 

manipulations were performed as described in Guthrie and Fink (2001).  For analysis of 

PFLO10-URA3 or PFLO11-URA3, strains were grown overnight in YPD liquid media, then 

diluted 1:50 in YPD liquid media and grown to OD600 0.8-1.2.  Cell densities were 

adjusted to OD600 1, then cultures were serially diluted (10-fold dilutions for PFLO10-

URA3 stains and 2-fold or 5-fold dilutions for PFLO11-URA3 strains) and plated synthetic 

complete (SC), SC-Ura, and SC+5-FOA (0.1%) agar plates.  For visualization of PFLO10-

GFP or PFLO11-GFP by fluorescent microscopy or FACS, cells were streaked onto YPD 

plates and harvested after one day of growth at 30 degrees C.  Haploid adhesion assays 

were performed as described (Guo et al., 2000).  To induce pseudohyphal differentiation, 

strains were grown on nitrogen-poor SLAD media, which was prepared as described in 

(Gimeno et al., 1992). 

 
Yeast strain construction |  The Tn3 insertion mutants were generated according to 

Kumar et al., 2002.  15 pools of yeast genomic library containing LEU2-marked Tn3 

insertions were isolated from bacterial strains by Qiagen MaxiPrep.  The resulting 

plasmid DNA was NotI-digested to liberate the genomic DNA inserts, which were 

transformed into PFLO10-URA3 ira1- leu2- (SBY022) or PFLO11-URA3 leu2- (SBY251) 

parental strains.  The ira1 mutation was used as a genetic tool to reveal variegated 
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epigenetic silencing at the FLO10 promoter so that it could be studied because, in wild 

type genetic background, the FLO10 promoter is not active under conditions thus far 

tested (Halme et al., 2004).  Tn3-LEU2 transformed cells were selected on SC-Leu plates.  

Leu+ transformants were streaked onto fresh –Leu plates and then replica plated onto SC, 

SC-Ura, and SC+5-FOA to identify candidates of interest.  32,955 Tn3-carrying 

transformants were screened in the PFLO10-URA3 reporter background and 41,532 Tn3-

carrying transformants were screened in the PFLO11-URA3 reporter background.  Tn3 

insertion sites were identified by PCR amplification using random primers in conjunction 

with insert-specific primers, followed by DNA sequencing of purified amplified 

fragments.  The identified Tn3 insertion sites and flanking sequence (to direct 

homologous recombination) were then PCR amplified using gene-specific primers and 

resulting DNAs were transformed into PFLO10-GFP and PFLO11-GFP strains, and into 

MAT a and MAT alpha strains with intact FLO genes.  Resulting haploids were mated to 

produce homozygous diploid mutants.  Yeast strains carrying gene deletions were 

constructed by PCR amplification of a PTEF promoter driven yeast LEU2 or bacterial 

kanamycin-resistance gene (Longtine et al., 1998), with flanking sequences that would 

direct the deletion cassette to the appropriate locus via homologous recombination.  All 

deletions remove the full ORF (ATG-Stop).  Transformation of plasmids was performed 

according to standard yeast transformation protocols and maintained under appropriate 

selection.  Plasmids used in this study are listed in Table 2.  Primers used in this study are 

listed in Table 3. 
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Results 

 

Genome-wide screens identify additional regulators of FLO10 and FLO11 

transcription and epigenetic silencing |  Yeast strains carrying transcriptional reporter 

constructs, either PFLO10-URA3 ira1- or PFLO11-URA3 in the Sigma 1278b genetic 

background (Halme et al., 2004), were mutagenized by transformation with a yeast 

genomic DNA library carrying Tn3 transposon insertions (Kumar et al., 2002; Seringhaus 

et al., 2006).  I chose this approach over one utilizing the yeast gene deletion library 

because the gene deletion library was constructed in the S288C genetic background 

(Winzeler et al., 1999) and I preferred to perform my studies in the Sigma 1278b genetic 

background in which FLO gene regulatory pathways are intact (Liu et al., 1996).  By 

utilizing FLO promoter fusions to URA3, the screens were designed to identify only 

transcriptional regulators of the FLO10 and FLO11 genes.  Promoter activity was 

determined by assaying expression of the URA3 reporter, thus these screens did not detect 

post-transcriptional regulation of FLO gene products.  In the screen for transcriptional 

regulators of the FLO10 promoter, I took advantage of the ira1 genotype as a tool for 

revealing variegated silencing at the FLO10 promoter so that it could be studied (Halme 

et al., 2004).   

Resulting Tn3 mutants were screened for phenotypic changes in silencing of the 

FLO10 and FLO11 promoters compared to the levels of silencing observed in the 

parental strains (Figure 2).  This was accomplished by taking advantage of the ability to 

select positively for and negatively against Ura3 enzymatic activity by growing yeast on 

media lacking uracil or containing the chemical 5-Fluoroorotic acid (5-FOA).   Cells 

exhibiting active transcription from the given FLO promoter express the URA3 gene and 
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are phenotypically Ura+, enabling them to grow on media lacking uracil (-Ura) but not on 

media containing the chemical 5-FOA.   Failure of Ura+ cells to grow on 5-FOA- 

containing media presumably results from the Ura3 enzyme converting 5-FOA into a 

compound that is toxic to the yeast cells (Boeke et al., 1987).  Cells that are inactive or 

silent at the FLO promoter are phenotypically  Ura3- and are thus unable to grow on –Ura 

media but able to grow on 5-FOA-containing media because they are resistant to the 5-

FOA toxicity (5-FOAR).  Populations of the unmutagenized parental strains, which 

exhibit variegated silencing at the FLO10 and FLO11 promoters, consist of some cells 

able to grow on –Ura media and some cells able to grow on 5-FOA-containing media 

(Figure 3).  Tn3 mutants were screened to identify those that displayed a change in their 

ability to grow on both types of media.   

The screens identified mutants exhibiting a range of transcriptional/silencing 

phenotypes (Figure 3).  Some of the mutants have completely lost transcriptional activity 

at the FLO promoter being tested.  Others have completely lost silencing at the promoter, 

resulting in all cells in the mutant population having an active FLO promoter.  Still other 

mutants continue to exhibit variegated expression, but the numbers of cells in the on-

versus-off transcriptional states have been shifted in one direction or the other.    

Tables 4 through 7 provide complete lists of the candidate genes identified in 

these screens and the annotated biological processes with which they are associated 

according to the Saccharomyces Genome Database (www.yeastgenome.org).  In the 

screen for regulators of PFLO11-URA3, 102 genes were identified, 25 of which encode 

products that activate FLO11 transcription and 77 of which encode products that repress 

FLO11 transcription.  In the screen for regulators of PFLO10-URA3, 74 genes were 
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identified, 50 of which encode products that activate FLO10 transcription and 24 of 

which encode products that repress FLO10 transcription.    

Given the level of coregulation known to exist between the FLO10 and FLO11 

promoters (Halme et al., 2004), it is surprising that there is not more overlap between the 

lists of candidate genes identified in the two screens.  If fact, the screens identified only 

12 candidate genes in common (Figure 4A).  This result is more a reflection of 

incomplete saturation in these screens than a true reflection of the level of coregulation 

that exists between these two FLO promoters.   

In effort to achieve genome-wide saturation, I screened 32,955 Tn3-carrying 

transformants in the PFLO10-URA3 screen and 41,532 Tn3-carrying transformants in the 

PFLO11-URA3 screen.  Given the size of the haploid yeast genome (~13 Mb) and the size 

of the yeast genomic DNA inserts (2-to-3 kb) in the Tn3 insertion library used in this 

study (Kumar et al., 2002), the numbers of transformants screened should have been 

sufficient for 99% probability that every 2 kilobase fragment in the yeast genome be 

represented at least once in each of the two screens.  This calculation was made using the 

formula:  

N = ln(1 - P) / ln[1 - (insert size / genome size)] 
 

 
 

which gives the number N of independently generated clones that must be screened to 

obtain any given genomic fragment of the insert size with a given probability P (Clarke 

and Carbon, 1992).  For several genes identified in each screen, I verified multiple unique 

Tn3 insertion sites within the population of mutants (E.g., multiple unique Tn3 insertion 

mutations were found in BRE2, HDA1, HDA2, HDA3, SET1, SIN3, SRB10, SRB11 and 
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other genes in the PFLO11-URA3 screen, and in IRA2, RSC2, STE7 and other genes in the 

PFLO10-URA3 ira1- screen.).  Observing multiple hits in the same gene can often be taken 

as a sign of screen saturation, but there are other telling indicators that genome-wide 

saturation was not reached.  Although the screens did cumulatively identify 19 genes that 

are established effectors of FLO gene transcription, these genes constitute less than 30 

percent of the more than 65 published regulators of FLO transcription (Figure 4B) 

(Cullen et al., 2004; Gancedo, 2001; Halme et al., 2004; Nelson et al., 2003; Palecek et 

al., 2000, 2002; Rupp et al., 1999).  Incomplete saturation may, to some extent, have been 

due to bias in integration site preference of the Tn3 transposon (Seringhaus et al., 2006).  

The screens served as useful tools for identifying a number of candidates not 

previously known to be involved in FLO gene regulation.  Because of our interest in 

epigenetic silencing of the FLO promoters, I focus in this report on only those candidates 

likely to play a role in chromatin modification or remodeling (Summarized in Figure 1).  

Components of the following chromatin-regulating complexes were identified in these 

screens: 

 
1. The Rpd3L Histone Deacetylase Complex 

The screens identified four members of the Rpd3L histone deacetylase complex 

(HDAC), namely CTI6/RXT1, RXT2, PHO23, and SIN3, as transcriptional activators of 

the FLO11 promoter (Figure 5A).  The screens also identified a fifth member of this 

complex, ASH1, as a transcriptional activator of the FLO10 promoter, although the 

phenotype in this case was very mild (Figure 5B).    

The catalytic member of the Rpd3L complex is the conserved Class I histone 

deacetylase, Rpd3 (Verdin et al., 2003; Yang and Seto, 2008).  Rpd3 associates with two 
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distinct complexes: the larger Rpd3L complex and the functionally distinct smaller 

complex Rpd3S that consists of a different set of components (Carrozza et al., 2005a; 

Carrozza et al., 2005b).    Both complexes include Rpd3, Sin3, and Ume1.  The distinct 

members of the Rpd3L complex include Ash1, Cti6/Rxt1, Dep1, Pho23, Rxt2, Rxt3, 

Sap30, Sds3, and Ume6 (Carrozza et al., 2005a; Carrozza et al., 2005b).   The distinct 

members of the Rpd3S complex are Eaf3 and Rco1 (Carrozza et al., 2005b).  The Rpd3L 

complex specifically mediates the transcriptional repression of specific promoters, such 

as INO1 and HO (Carrozza et al., 2005a; Carrozza et al., 2005b).  Rpd3S, on the other 

hand, functions in a signaling pathway from the elongating form of RNA polymerase II 

through the Set2 histone methyltransferase (Carrozza et al., 2005b); Rpd3S recognizes 

methyl marks left by Set2 at sites of transcriptional elongation and deacetylates histones 

within these transcribed sequences to prevent the occurrence of spurious transcription 

initiation from cryptic start sites within open reading frames (Carrozza et al., 2005b), an 

activity that appears to be particularly important at long and/or infrequently transcribed 

open reading frames (Li et al., 2007b).  

In general, histone deacetylation is strongly correlated with transcriptional 

repression (Grunstein, 1997).  Rpd3 was indeed originally identified as a transcriptional 

repressor of genes involved in a diverse set of processes including meiosis, cell-type 

specificity, potassium transport, phosphate metabolism, methionine biosynthesis, and 

phospholipids metabolism (Hepworth et al., 1998; Jackson and Lopes, 1996; Kadosh and 

Struhl, 1997; McKenzie et al., 1993; Stillman et al., 1994; Vidal and Gaber, 1991; Vidal 

et al., 1991).  This transcriptional repression was demonstrated to be a consequence of the 

histone deacetylase activity of Rpd3 (Kadosh and Struhl, 1998a; Rundlett et al., 1998), 
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which mediates deacetylation of lysines 5 and 12 of histone H4 in vivo (Rundlett et al., 

1996).   Rpd3 is known to be recruited to many of its target locations by promoter-

specific binding factors (Carrozza et al., 2005a; Kadosh and Struhl, 1997, 1998b; 

Rundlett et al., 1998).   Ume6, for example, is important for targeted transcriptional 

repression by Rpd3 at the INO1 and IME2 promoters, whereas Ash1 is important for 

targeting of Rpd3 to the HO locus (Carrozza et al., 2005a; Kadosh and Struhl, 1997, 

1998b).  

The roles for Rpd3 in transcriptional regulation discussed thus far have been in 

accordance with the canon that histone deacetylation is strongly correlated with 

transcriptional repression (Grunstein, 1997).  With this in mind, my finding that members 

of the Rpd3L complex activate FLO gene transcription was initially surprising and raised 

the possibility of some indirect role for Rpd3L in the regulation of FLO transcription.  

Recently, however, Rpd3L has been found to play apparently direct roles in 

transcriptional activation at several locations within the yeast genome.  The DAN/TIR 

genes induced during anaerobic growth (Sertil et al., 2007), the DNA damage-inducible 

gene RNR3 (Sharma et al., 2007), the HAP1 gene which encodes a transcription factor 

involved in oxygen and heme regulation (Xin et al., 2007), and osmoresponsive genes 

such as HSP12 (De Nadal et al., 2004) all appear to be activated by Rpd3 localizing to 

their promoters.  Association of epitope-tagged Rpd3 or epitope-tagged Sin3 has been 

detected by chromatin immunoprecipitation at RNR3 and HSP12, suggesting that the 

activating role of Rpd3 is not indirect at these genes (De Nadal et al., 2004; Sharma et al., 

2007).  Furthermore, Rpd3-mediated histone deacetylation accompanies transcriptional 

activation at DAN4 (Sertil et al., 2007), RNR3 (Sharma et al., 2007), and HSP12 (De 
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Nadal et al., 2004), suggesting a mechanism of transcriptional activation by Rpd3 that is 

in apparent conflict with current theories regarding the impact of chromatin structure on 

transcription (Grunstein, 1997). 

 
2. The RSC and Swi/Snf Chromatin Remodeling Complexes

The screens identified the genes RSC2 and SWI1 as transcriptional activators of 

the FLO10 promoter (Figure 7B).  Rsc2 is a component of the RSC (remodels the 

structure of chromatin) remodeling complex and Swi1 is a component of the Swi/Snf 

chromatin remodeling complex, both of which mediate ATP-dependent alterations in 

DNA-nucleosome interactions (Martens and Winston, 2003). 

Both the RSC and the Swi/Snf complexes change chromatin structure by altering 

DNA-histone contacts within a nucleosome in an ATP-dependent manner (Martens and 

Winston, 2003).  Chromatin remodeling by Swi/Snf and by RSC involves unwrapping of 

nucleosomal DNA (Martens and Winston, 2003).  RSC-mediated chromatin remodeling 

results in the transfer of the entire histone octamer from the nucleosome, leaving behind 

naked DNA (Lorch et al., 1999).   

The Swi/Snf complex consists of at least nine protein subunits, including both 

conserved core and nonconserved components (Martens and Winston, 2003).  This 

complex has been well characterized as a transcriptional activator, although there is some 

evidence that it can act directly to repress transcription at some loci, as well (Battaglioli 

et al., 2002; Martens and Winston, 2002; Zhang et al., 2002).  Swi/Snf complexes are 

recruited to promoters by DNA-binding activators and repressors, and the Swi1 

component identified in this screen has been shown to be directly involved in such 

interactions (Belandia et al., 2002).  All Swi/Snf ATPases also contain a bromodomain 
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motif that is capable of binding acetylated lysine residues in histone tails in vitro and is 

required for Swi/Snf binding to at least some promoters in vivo (Hassan et al., 2001; 

Hassan et al., 2002; Marmorstein and Berger, 2001; Winston and Allis, 1999).   

The fifteen-subunit RSC chromatin remodeling complex was identified in yeast 

based on homology to components of Swi/Snf (Cairns et al., 1996).  RSC has been shown 

to have both activating and repressing effects on transcription (Damelin et al., 2002; Ng 

et al., 2002).  Although the RSC and Swi/Snf complexes share very similar biological 

activities, they play distinct functional roles in transcriptional regulation (Cao et al., 

1997; Du et al., 1998).   Expression array experiments have identified several classes of 

genes that are regulated in a RSC-dependent manner.  These include genes that encode 

proteins involved in ribosome biogenesis, stress response, and cell wall integrity (E.g., 

CWP1, SCW11, UGP1, and OPI3).   

 

3. The SAGA Histone Acetyltransferase Complex 

 The screens identified the genes ADA2 and SPT8 as transcriptional activators of 

the FLO10 promoter (Figure 7B).  They also identified ADA5/SPT20 as a candidate 

transcriptional activator of the FLO11 promoter (Figure 7A).  All three of these genes 

encode components of the SAGA (SPT-ADA-Gcn5-acetyltransferase) histone 

acetyltransferase (HAT) complex.   

SAGA is a large complex that consists of at least fifteen subunits, including Gcn5, 

Ada1, Ada2, Ada3, Spt3, Spt7, Spt8, and Spt20/Ada5 (Candau et al., 1997; Grant et al., 

1997; Horiuchi et al., 1997; Roberts and Winston, 1997; Saleh et al., 1997).  The catalytic 

HAT component of the SAGA complex is Gcn5, a protein that is conserved from yeasts 

to humans (Sterner and Berger, 2000).  The functional domains of Gcn5 include a C-
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terminal bromodomain, an Ada2 interaction domain, and the HAT domain (Candau and 

Berger, 1996; Candau et al., 1997), which preferentially acetylates lysine 14 of histone 

H3 and lysines 8 and 16 of histone H4 (Kuo et al., 1996).   

Histone acetylation is considered a hallmark of transcriptionally active chromatin 

(Brownell and Allis, 1996; Grunstein, 1997).  The SAGA complex has been shown to 

function in the activation of transcription both in vivo and in vitro (Belotserkovskaya et 

al., 2000; Dudley et al., 1999; Ikeda et al., 1999; Utley et al., 1998; Wallberg et al., 

1999).   SAGA plays an important role in transcriptional activation at a subset of genes, 

including GAL1, TRP3, and HIS5 (Belotserkovskaya et al., 2000; Dudley et al., 1999).  

SAGA also shows genetic interactions and partial redundancy with the chromatin 

remodeling complex Swi/Snf in its roles in activating transcription of some genes 

(Sudarsanam et al., 1999).   

 
4. The Srb/Mediator Complex 

The screens identified MED1, MED4, NUT1/MED5, SRB8, SRB9, SRB10, and 

SRB11 as transcriptional repressors of the FLO11 promoter (Figure 9A).  Silencing of the 

FLO11 promoter is lost in these mutants.  SRB11 was also identified as a transcriptional 

repressor of the FLO10 promoter (Figure 9B).  All of these proteins are members of the 

very large, multi-subunit yeast Srb/Mediator complex.   

The large multi-subunit Mediator complex in yeast was identified nearly twenty 

years ago as an activity that could promote transcription in an in vitro system by relieving 

transcriptional “squelching”, i.e., interference caused by addition of an excess of 

transcriptional activators (Bjorklund et al., 2001; Kelleher et al., 1990; Myers and 

Kornberg, 2000).  Mediator has long been known as a general transcriptional activator 
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that interacts with RNA polymerase II to promote transcription at almost all promoters in 

yeast (Bjorklund et al., 2001; Myers and Kornberg, 2000).   

There have also been reports that Mediator plays an important role as a 

transcriptional repressor at some loci, including genes involved in cell type specificity, 

meiosis, and sugar utilization (Hengartner et al., 1998).  This repression seems to be 

dependent on the association of Mediator with the Srb8-11 complex, which includes as a 

component the cyclin-dependent kinase (CDK) Srb10.  Members of the Mediator 

complex itself, including the subunits Med1 and Nut1 that we identify as repressors of 

FLO gene expression, have been shown to bring about both transcriptional activation and 

repression depending on the locus examined (Balciunas et al., 1999; Beve et al., 2005). 

Since mutations in Med1 and Nut1 lead to phenotypes resembling those of srb8-11 

mutants, it has been proposed that they must interact with the Srb8-11 complex 

(Bjorklund et al., 2001; Myers and Kornberg, 2000).  Interestingly, the Srb/Mediator 

proteins have also been shown to interact functionally and physically with the 

transcriptional repressor Sfl1 at the SUC2 promoter in S. cerevisiae (Song and Carlson, 

1998) and the FLO11-like STA1 promoter in the yeast S. diastaticus (Kim et al., 2004), 

suggesting that this interaction is likely occurring at the Sfl1-regulated FLO promoters, as 

well.    

In contrast with other candidates discussed here, the observation that the Srb 

proteins regulate FLO11 is not a new one.  Involvement of the Srb proteins in 

transcriptional repression of the FLO11 promoter and the closely related STA1 promoter 

has been shown in other studies (Holstege et al., 1998; Kim et al., 2004; Nelson et al., 

2003; Song and Carlson, 1998).  However unresolved issues regarding the mechanisms 
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through which the Srb/Mediator complex performs its repressive functions and the 

relative strength of the Srb/Mediator mutant phenotypes at the FLO promoters are 

reasons to take notice of the enrichment of the Srb/Mediator mutants among the 

candidates identified in these screens.   

 
5. The COMPASS Histone Methyltransferase Complex

The screens identified two members of the COMPASS histone methyltransferase 

complex, namely SET1 and BRE2, as transcriptional repressors of the FLO11 promoter 

(Figure 11A).  Silencing of the FLO11 promoter is lost in these mutants.   

The conserved histone methyltransferase Set1 is the catalytic subunit of the 

COMPASS (complex associated with Set1) complex and is solely responsible for mono-, 

di-, and trimethylating the lysine 4 residue of histone H3 (H3K4) (Briggs et al., 2001; 

Krogan et al., 2002; Nagy et al., 2002; Roguev et al., 2001; Santos-Rosa et al., 2002).  

Other members of the complex include Bre2, Sdc1, Sgh1, Spp1, Swd1, Swd2, and Swd3 

(Dehe and Geli, 2006).   

The biological significance of H3K4 methylation by Set1 has been a matter of 

some debate.  Early gene-specific and whole-genome studies in yeast found that Set1 

occupancy is enriched at the 5’ ends of actively transcribed genes (Ng et al., 2003; 

Pokholok et al., 2005; Santos-Rosa et al., 2002).  The recruitment of Set1 to locations of 

active transcription is mediated by its interactions with the Paf1 complex, which is 

associated with the elongating form of RNA polymerase II (Krogan et al., 2003).  These 

findings culminated in the hypothesis that trimethylated H3K4 serves as a mark of recent 

transcriptional activity (Ng et al., 2003).   More recent whole-genome studies on human 

embryonic stem cells and differentiated human cells have found trimethylated H3K4 at 
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the promoters of virtually every protein-coding gene, including those that are not being 

actively transcribed (Guenther et al., 2007).  In light of earlier findings, this observation 

has been interpreted as an indication of nonproductive transcription initiation occurring at 

most protein-coding genes in these cells (Guenther et al., 2007).  Despite correlations 

between active transcription, Set1 occupancy, and H3K4 methylation state, the global 

importance of Set1 in active transcription remains in question, since set1 mutants are 

viable and do not exhibit a significant change in transcription over the majority of the 

genome (Li et al., 2007a).   

Deletion of SET1 or other members of the COMPASS complex, including BRE2, 

does disrupt transcriptional silencing at telomeres, at the ribosomal DNA locus (rDNA), 

and at the silent HML and HMR mating cassette loci in yeast (Briggs et al., 2001; 

Fingerman et al., 2005; Mueller et al., 2006; Nislow et al., 1997; Schneider et al., 2005).  

These findings suggest the possibility of a direct role for Set1 and H3K4 methylation in 

gene silencing.   

 
Confirming and further characterizing the phenotypes of the candidate genes 

silencing |  Gene specific primers were used to PCR amplify individual insertion sites 

with sufficient flanking sequence to allow homologous recombination when these 

amplified DNAs were used to transform yeast.  To confirm that the identified Tn3-

insertion sites were indeed the cause of the observed phenotypes and to investigate the 

effects of these mutations on both FLO10 and FLO11 promoter activity, I transformed 

the parental strains carrying PFLO11-URA3 or PFLO10-URA3 (in both wild type and ira1- 

backgrounds) with the amplified Tn3-insertion site DNAs.  To verify that the observed 

phenotypes were not artifacts of the –Ura/5-FOA selection test, I transformed strains 
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carrying alternative transcriptional reporter constructs, the PFLO11-GFP or PFLO10-GFP (in 

both wild type and ira1- backgrounds) constructs (Halme et al., 2004), with the amplified 

Tn3-insertion site DNAs.  These strains were examined using fluorescent-activated cell 

sorting (FACS) and fluorescent microscopy.  To examine the effects of the Tn3 insertion 

mutations on FLO-dependent phenotypes such as haploid adhesion and diploid 

pseudohyphal growth, I also transformed Sigma 1278b wild type haploid MAT a and 

MAT alpha strains with these DNAs, and then mated the resulting strains to generate 

homozygous Tn3 mutant diploids.  The results of these tests are described below.   

The disruption of a gene by the insertion of the large Tn3 transposon sequence 

generally causes a loss of function of the gene product.  In cases where Tn3 mutations in 

several members of the same complex result in the same mutant phenotype, these 

mutations are almost certainly loss of function mutations.  Rare cases have been reported, 

however, in which Tn3-mutants are not nulls (for an example, see Natarajan et al., 1998).  

Therefore the phenotypes of clean deletion strains, in which the entire ORF of the 

candidate gene was replaced with either a KanMx-expression cassette or a LEU2-

expression cassette, were also checked for representative members of the candidate 

complexes.   

 
The Rpd3L Histone Deacetylase Complex is a transcriptional activator of the 

FLO10 and FLO11 promoters |  Tn3 insertion mutations in components of the Rpd3L 

complex result in fewer cells with an active FLO11 promoter, visualized by serial 

dilutions of PFLO11-URA3 expressing strains grown on –Ura and 5-FOA selection media 

(Figure 5A).  These mutations shift more of the cellular population to a silenced FLO11 

promoter state, as demonstrated by the dramatic increase in the number of cells able to 
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grow on media containing 5-FOA.  This observation is confirmed by FACS analysis of 

PFLO11-GFP strains (Figure 5A).  The deletion mutant cti6Δ phenocopies the Tn3 

insertion mutant, confirming a null phenotype in these Tn3 mutants.   

Rpd3 associates with two complexes: the larger Rpd3L complex and the 

functionally distinct Rpd3S complex, which consists of a different set of components 

(Carrozza et al., 2005a; Carrozza et al., 2005b).  To confirm that the phenotypes observed 

are specific to the Rpd3L complex, a strain was constructed in which the EAF3 gene, 

which encodes a distinct member of the Rpd3S complex (Carrozza et al., 2005b), was 

deleted.  The eaf3Δ mutation does not affect FLO11 promoter activity, demonstrating that 

the Rpd3L, but not the Rpd3S, complex regulates FLO11 transcription (Figure 5A).   

FLO10 promoter activity is also reduced in some Rpd3L mutants (Figure 5B).  

PFLO10-URA3 and PFLO10-GFP expressing strains demonstrate that Tn3-insertion 

mutations in CTI6 and ASH1 result in reduced expression from the FLO10 promoter. 

 
FLO11-dependent haploid adhesion and diploid pseudohyphal growth is abolished 

in Rpd3L mutants |  Loss of Rpd3L function results in the inability of haploid yeast 

cells to adhere to YPD-agar in plate washing assays (Figure 6A).  This phenotype is also 

observed in an rpd3Δ deletion mutant, demonstrating that the catalytic component of the 

Rpd3L histone deacetylase complex also plays a role in activating FLO11 promoter 

activity.   FLO11 is sufficient to rescue this defect, as seen when the mutant strains are 

transformed with a 2 micron plasmid carrying a PTEF-FLO11 construct.  Mutation of 

Rpd3L subunits also completely abolishes FLO11-dependent diploid pseudohyphal 

growth under low nitrogen conditions (Figure 6B).  When these mutant strains are 
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transformed with a 2 micron plasmid carrying a PTEF-FLO11 construct, however, 

filamentation is recovered (Figure 6C).   

 
RSC, Swi/Snf, and SAGA activate the FLO10 promoters, but to varying degrees and 

specificity |  Tn3-insertion mutations in components of the RSC and Swi/Snf ATP-

dependent chromatin remodeling complexes affect the activation of the FLO11 promoter 

to different degrees, visualized by serial dilutions of PFLO11-URA3 expressing strains 

grown on selection media (-Ura and 5-FOA) and by FACS analysis of PFLO11-GFP 

strains (Figure 7A).  The Swi/Snf subunit Swi1 is indispensable for FLO11 expression.  

Promoter activity is still detectable in the rsc2 mutant, but is below wild type levels, 

suggesting some role for RSC in activation of the FLO11 promoter, as well.  The SAGA 

histone acetyltransferase complex mutant ada2 exhibits only a small decrease in FLO11 

promoter activity.    

In contrast, activity of the FLO10 promoter is heavily dependent on components 

of RSC, Swi/Snf, and the SAGA complex, visualized by serial dilutions of PFLO10-URA3 

expressing strains grown on selection media (-Ura and 5-FOA) and by FACS analysis of 

PFLO10-GFP strains (Figure 7B).  This observed difference between the two FLO 

promoters may be reflective of FLO10’s location in a subtelomeric region of 

chromosome XI.  Its position near a telomere may result in an increased requirement for 

chromatin remodeling and HAT activity for its transcriptional activation.   

 
Mutations in components of the RSC, Swi/Snf, and SAGA complexes affect haploid 

adhesion and diploid pseudohyphal growth |  Haploid adhesion to YPD-agar in the 

rsc2, swi1, and ada2 mutants correlates well with the levels of FLO11 promoter activity 
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detected using the transcriptional reporter strains (Figure 7A, Figure 8A).  The haploid 

rsc2 strain has a moderate defect in adhesion, whereas adhesion is completely abolished 

in the haploid swi1 strain.  The haploid ada2 strain, which shows very little change in 

FLO11 promoter activity in the transcriptional reporter assays (Figure 7A), adheres to 

YPD-agar indistinguishably from the wild type haploid strain (Figure 8A).  Diploid 

pseudohyphal growth under nitrogen starvation conditions is however severely impaired 

in homozygous mutants of rsc2, swi1, and ada2 (Figure 8B).  This observation suggests a 

possible diploid-specific or condition-specific role for the Ada2 component of SAGA in 

activating the FLO11 promoter, or that there is a FLO11-independent cause for the 

filamentation defect in the homozygous ada2 mutant diploid.  The Spt3 component of 

SAGA has been shown by others to be required for diploid pseudohyphal growth by a 

FLO11-dependent mechanism, an observation that suggests that the filamentation defect 

in the homozygous ada2 mutant is also likely due to a reduction of FLO11 expression in 

diploids (Laprade et al., 2002).     

 
Mutations in the yeast Srb/Mediator complex abolish silencing at the FLO11 

promoter and desilence the FLO10 promoter in an IRA+ background |  Serial 

dilutions of PFLO11-URA3 expressing strains on –Ura and 5-FOA selection media 

demonstrate that Tn3 mutations in components of the yeast Mediator middle module 

(med1, med4), tail module (nut1), and Srb corepressor complex (srb8-11) abolish 

silencing at the FLO11 promoter (Figure 9A).  The med1Δ deletion mutant also exhibits 

this phenotype (Figure 9A).   Fluorescence microscopy comparisons of populations of 

PFLO11-GFP expressing cells in wild type and med1 backgrounds also reveals loss of 

silencing at the FLO11 promoter (Figure 9C).   
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The med1 and srb11 mutants show a loss of the repression normally seen at the 

FLO10 promoter in a wild type (IRA+) background (Halme et al., 2004) (Figure 9B).  

FLO10 promoter activity is detected in these strains without the need for the ira1-

mediated enhancement of Ra2-cAMP signaling.  This finding suggests a role for 

Srb/Mediator in silencing the FLO10 promoter in wild type strains.  The increased cell-

to-cell adherence (compared to wild type) apparent in the med1 population of PFLO11-

GFP expressing cells shown in Figure 9C may be due to derepression of the intact 

FLO10 gene in this strain.  In the ira1 background, however, FLO10 promoter activity is 

not changed in the Srb/Mediator mutants, suggesting a genetic interaction between the 

Ras2-cAMP pathway and the Srb/Mediator complex that suppresses the Srb/Mediator 

mutant phenotypes (Figure 9B).    

 
Srb/Mediator complex mutants display striking FLO11-dependent phenotypes |  

Mutations in med1, nut1, and srb11 in haploid strains reveal crinkly ira-like (Halme et 

al., 2004) FLO11-dependent colony morphologies after 3 days growth on YPD plates 

(Figure 10A).  The med1 phenotype is not as pronounced as the sfl1 mutant phenotype, in 

which the colonies take the form of compact volcano-like structures (Figure 10A), 

suggesting that med1-mediated loss of silencing at FLO11 may not be as complete as 

sfl1-mediated loss of silencing.  Deletion of FLO11 abolishes these phenotypes, 

demonstrating that they are due to upregulation of FLO11 expression. This crinkly 

colony phenotype extends to med1/med1 homozygous diploids after 6 days growth on 

YPD plates (Figure 10B).  

MED1 was previously identified in a screen for repressors of haploid invasive 

growth, but the investigators found no upregulation of FLO11 from its endogenous 
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promoter in their med1 mutant (Palecek et al., 2000), a finding that is in conflict with the 

results reported here.  The conclusion drawn by Palecek et al. was that the enhanced 

invasive growth in their med1 mutant was the result of a FLO11-independent mechanism.  

When FLO10 is expressed, it is sufficient to promote invasive growth in a flo11- strain 

(Guo et al., 2000).  I performed YPD-agar adhesion tests to determine whether the 

“FLO11-independent mechanism” proposed by Palecek et al. might turn out to be the 

desilencing of the FLO10 gene in an otherwise wild type background.  The result was 

negative.  Haploid adhesion to YPD-agar depends on FLO11 even in the med1 mutant 

(Figure 10C).  The derepression of the FLO10 promoter (demonstrated by serial dilutions 

of PFLO10-URA3 expressing strains in Figure 9B) is not sufficient to promote adhesion to 

YPD-agar in the med1 flo11 strain.   

Whereas wild type diploid strains do not adhere to YPD-agar due to ploidy 

repression of the FLO11 promoter, adhesion to YPD-agar is enhanced in the homozygous 

med1/med1 diploid (Figure 10C).  This diploid adheres to YPD-agar as well as does a 

wild type haploid strain, suggesting that ploidy repression is interfered with in these 

strains. 

 
The COMPASS Histone Methyltransferase Complex is required for silencing at the 

FLO11 promoter, but has no effect on FLO10 promoter activity |  Tn3 insertion 

mutations in components of the COMPASS histone methyltransferase complex result in 

loss of silencing at the FLO11 promoter, visualized by serial dilutions of PFLO11-URA3 

strains grown on -Ura and 5-FOA selection media (Figure 11A).  Clean replacement of 

the entire SET1 coding region (set1Δ) with a LEU2 expression cassette results in the same 

phenotype as that observed in the Tn3 insertion mutant, confirming a null phenotype in 
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the Tn3 mutants (Figure 11A).  Deletion of SET2 (set2Δ), another yeast 

methyltransferase, has no effect on FLO11 promoter activity, demonstrating a specific 

role for the COMPASS complex in silencing the FLO11 promoter (Figure 11A).  

 Mutations in the COMPASS complex have no effect on the FLO10 promoter, 

visualized using PFLO10-URA3 expressing strains (Figure 11B).  The set2Δ mutant 

exhibits no change in FLO10 promoter activity either.   

 
COMPASS mutants display no striking FLO11-dependent phenotypes |  Despite the 

loss of silencing observed using the PFLO11-URA3 reporter strains, set1 and bre2 mutants 

in strains that have an intact FLO11 gene display none of the phenotypes usually 

associated with upregulation of FLO11 expression (Guo et al., 2000; Halme et al., 2004).  

The morphologies of haploid set1 and bre2 colonies closely resemble wild-type colony 

morphology rather than having the crinkled appearance often associated with increased 

FLO11 expression (data not shown).   Haploid adhesion and diploid pseudohyphal 

growth also resemble that observed in wild type (Figure12). 

 
Silencing is restored to the FLO11 promoter by rescue with plasmids carrying SET1 

gene sequence |  The absence of any apparent FLO11-dependent phenotype in the 

COMPASS mutants raised doubts about the reporter strain data.  To test further the 

legitimacy of the reporter strain phenotypes (Figure 13A), I performed a rescue 

experiment in which I restored Set1 activity by transforming a set1Δ strain with an 

expression plasmid carrying either the full-length SET1 gene (nucleotides 1-1080) or a 

fragment of the SET1 gene (nucleotides 829-1080).  The 829-1080 fragment of the SET1 

gene maintains its mono- and di-, but not its trimethylation function (Fingerman et al., 
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2005).  Either of these two plasmids was able to rescue the loss of silencing at the FLO11 

promoter seen in the set1 strains (Figure 13A).  These findings demonstrate that loss of 

silencing in the set1 strains is, indeed, due to specific loss of Set1 activity.  These 

findings further suggest that Set1-dependent silencing at the FLO11 promoter does not 

require Set1’s ability to trimethylate lysine 4 of histone H3.  Neither of these SET1 

plasmids had an effect on FLO10 promoter activity in a set1Δ background, further 

demonstrating a specific role for the COMPASS complex at the FLO11 locus (data not 

shown).   Thus, the COMPASS complex has an apparently specific role in silencing 

FLO11 that is similar to that reported at the telomeres and rDNA , but the biological 

ramifications of this role remain unclear (Briggs et al., 2001; Fingerman et al., 2005; 

Mueller et al., 2006; Nislow et al., 1997; Schneider et al., 2005).     

 
Double mutant analyses reveal epistasis of sfl1 and med1 phenotypes over cti6, ste12, 

and flo8 phenotypes |  To examine the genetic interactions of known activators and 

repressors with the identified candidates, I constructed double mutants carrying mutations 

in a candidate and a deletion of one of the following established transcriptional 

regulators: Sfl1, Flo8, or Ste12.  Sfl1 is a repressor of FLO transcription and acts 

downstream of the Ras2-cAMP PKA pathway (Gancedo, 2001).  Flo8 is an important 

activator of FLO gene transcription that also acts downstream of the Ras2-cAMP PKA 

pathway (Gancedo, 2001).  Ste12 is another activator of FLO gene transcription that acts 

downstream of the Ras2-cAMP MAP kinase pathway (Gancedo, 2001). 

Serial dilutions of PFLO11-URA3 expressing cells reveal that the med1 and sfl1 

phenotypes are epistatic to the cti6 and ste12 phenotypes.  The med1 mutation also 

activates the FLO11 promoter in a larger proportion of a population of flo8 cells (Figure 
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14A).  To determine whether these results held with respect to FLO11-dependent 

morphological and developmental phenotypes, I also made double mutants in strains with 

an intact FLO11 gene.  The epistasis results were the same, as demonstrated by the haploid 

colony morphologies and YPD-agar adhesion capacities of the med1 cti6 double mutant 

(Figure 14B and C).   

Judging by the differences in the relative numbers of cells that are 5-FOA 

resistant (due to inactivity of the FLO11 promoter) in the flo8, cti6, and ste12 mutants, it 

appears that Flo8 is the strongest of these activators, followed by Cti6 and then Ste12 

(Figure 14A); although data shown previously (Figure 7A) demonstrates that, of all 

activators tested in this study, Swi1 remains the most critical for FLO11 transcriptional 

activation.   Because cti6 has a stronger mutant phenotype than ste12 but a weaker mutant 

phenotype than flo8, I propose that the Rpd3L complex is likely to be involved somehow 

in counteracting repression mediated by the PKA pathway and that its most likely 

antagonist is Sfl1.     

These results suggest very strong repression of FLO11 promoter activity by Sfl1 

and the Srb/Mediator complex.  Abrogation of this repression by sfl1 or med1 mutation is 

sufficient to allow transcription from the FLO11 promoter even when key activators, 

such as Flo8, Ste12, and Cti6, are absent (Figure 14A).  

These epistasis tests also prove useful in discriminating between proposed 

explanations for Srb/Mediator repression of transcription. One proposed model, specific 

to the Ras-cAMP-dependent filamentation response, is that negative regulation by Srb8-

10 is mediated through the Ste12 component of the MAP kinase cascade (Nelson et al., 

2003).  This model proposes that phosphorylation of Ste12 by the cyclin-dependent 
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kinase (CDK) Srb10 inhibits transcription by rendering Ste12 unresponsive to the 

upstream MAP kinase pathway (Nelson et al., 2003).  The epistasis analysis presented 

here rules out this model because, contrary to its predictions, the med1 phenotype is 

epistatic to the ste12 phenotype as regards FLO11 transcription.  Another proposed 

model for Srb-mediated transcriptional repression is a temporal one: whereas other CDKs 

activate RNA polymerase II elongation by phosphorylating its C-terminal domain (CTD) 

after the transcription initiation complex has been formed (Lee and Young, 2000), it is 

proposed that Srb8-11, associated with the yeast Mediator, prematurely phosphorylates 

the CTD of RNA polymerase II prior to its entering the initiation complex, thereby 

preventing transcription initiation (Hengartner et al., 1998).  This model of Srb8-10-

mediated repression cannot be ruled out by our epistasis analyses. 

 

DISCUSSION 

The genome-wide screens described in this chapter have identified previously 

unknown regulators of FLO transcription and its epigenetic silencing, including the 

Rpd3L histone deacetylase complex, the RSC and Swi/Snf chromatin remodeling 

complexes, the SAGA histone acetyltransferase complex, and the COMPASS histone 

methyltransferase complex (Summarized in Figure 1).  They have also launched 

experiments that have shed light on the mechanisms by which previously reported 

regulators of FLO transcription, such as the Srb/Mediator, perform their functions.   

Several of the complexes identified, including RSC, Swi/Snf, and SAGA, play 

roles in FLO promoter regulation that are reasonably predictable based on their activities 

at other sites in the yeast genome.  These three complexes have well established 
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capabilities in promoting transcriptional activation with well understood mechanisms.  

The phenotype of the COMPASS complex mutants resembles those observed at 

telomeres and at the rDNA, although significant controversy remains regarding this 

complex’s biological role and its significance.  The effect of Srb/Mediator function on the 

regulation of FLO gene expression is also in line with previous observations, and this 

study has shed additional light on its mechanism of action. 

One complex identified in these screens stands out as particularly curious: the 

Rpd3L histone deacetylase complex.   We might reasonably expect this complex to 

repress transcription of FLO genes owing to its ability to catalyze the condensation of 

chromatin structure, but it instead activates their transcription.  It is, of course, possible 

that this surprising observation is the indirect shadow of direct repression by Rpd3L of 

direct activators of FLO gene expression.  However other studies have demonstrated 

apparent activation of transcription as a result of direct binding to and deacetylation of 

target promoter regions by the Rpd3L complex (Sertil et al., 2007; Sharma et al., 2007; 

Xin et al., 2007; De Nadal et al., 2004).  How does this complex activate transcription by 

deacetylating histones in target promoter regions?  This is a question that will be 

addressed in the next chapter of this thesis. 
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Figures and Tables 

 

Figure 1 |  A Summary of the chromatin modifying and remodeling complexes 
identified as transcriptional regulators of the FLO10 and FLO11 promoters in these 
genome-wide Tn3-insertion screens.  Components of the Srb/Mediator complex, 
including MED1, MED4, NUT1/MED5, SRB8, SRB9, SRB10, and SRB11, were found to 
function as transcriptional repressors of both the FLO10 and the FLO11 promoters.   The 
COMPASS methyltrransferase components SET1 and BRE2 were found to play a specific 
role in repressing FLO11 promoter activity, but no role for this complex was identified at 
the FLO10 promoter.  Components of the SAGA histone acetyltransferae complex, 
indluding ADA2 and SPT8, were found to be critical to activation of the FLO10 promoter 
acitivity, but less important to FLO11 promoter function.  The RSC2 component of the 
RSC chromatin remodeling complex is required for transcription from the FLO10 
promoter, and has some role in activating transcription from the FLO11 promoter, as 
well. The SWI1 component of the Swi/Snf chromatin remodeling complex is necessary 
for transcription from either the FLO10 or the FLO11 promoters.  Components of the 
Rpd3L histone deacetylase complex, including CTI6, RXT2, PHO23, SIN3, and RPD3, 
are required for transcription from the FLO11 promoter and may have some role in 
activating transcription from the FLO10 promoter, as well. 
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Figure 2 |  Experimental design of genome-wide Tn3-insertion screens to identify 
novel regulators of FLO10 and FLO11 transcription.  (A) Plasmids containing Tn3-
mutagenized 2-to-3 kb yeast genomic DNA (ygDNA) inserts were Not1-digested to 
liberate these inserts, which were then used to transform Sigma 1278b yeast strains 
carrying PFLO11-URA3 or PFLO10-URA3 ira1-.  (B) Tn3-carrying transformants were 
patched onto YPD plates, then replica-plated onto SC-Ura and SC+5-FOA media to 
identify mutants with increased or decreased ability to grow on these media relative to 
parental strains, indicating changes in FLO promoter activity.  (C) Strains identified as 
having phenotypes in (B) were then subjected to serial dilution assays on the selective 
media to confirm these phenotypes.  (D) The Tn3-insertion sites were PCR amplified 
from genomic DNA template isolated from mutants with confirmed phenotypes using 
primers specific to the Tn3 insertion cassette and nested arbitrary priming.  Products were 
confirmed by agarose gel electrophoresis, purified, and sequenced to identify candidate 
genes.     
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Figure 3 |  The range of phenotypes observed in mutants derived from the 
screens. The screens identified mutants exhibiting a range of transcriptional/silencing 
phenotypes.  Some of the mutants (A) have completely lost transcriptional activity at the 
FLO promoter being tested.  Others have completely lost metastable silencing, resulting 
in all cells in the mutant population having an active FLO promoter (F).  We also 
identified mutants that still exhibit variegated expression, but the numbers of cells in the 
on-versus-off state have been shifted in one direction or the other (B-E).  The table to the 
right indicates the number of unique insertion mutants that were identified representing 
each phenotypic class in each of the two screens (out of 32,955 transformants in PFLO10-
URA3 screen and 41,532 transformants in PFLO11-URA3 screen) and the number of 
candidate genes represented by each group.  More than one unique Tn3 insertion site was 
recovered for some some genes identified in the screens.   
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Figure 4 | (A) The PFLO10-URA3 and PFLO11-URA3 screens identified 12 candidate 
genes in common.  Mutations in these genes affected transcription from the two FLO 
promoters in the same direction, as indicated by arrows (    = increased activity;    = 
decreased activity), except in the cases of RDN25-1, SRY1, and YDJ1, indicated by *.   
(B) The screens identified 19 previously published regulators of FLO transcription. 
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Figure 5 | Components of the Rpd3L Histone Deacetylase Complex are required 
for transcriptional activation of both the FLO10 and FLO11 promoters.  (A) Tn3-
insertion mutations in components of the Rpd3L complex result in decrease in expression 
from the FLO11 promoter, visualized by serial dilutions of PFLO11-URA3 strains grown 
on selection media (-Ura and 5-FOA) and by FACS analysis of PFLO11-GFP strains.  The 
clean deletion mutant cti6Δ phenocopies the Tn3-insertion mutant, confirming a null 
phenotype in the Tn3 mutants. Deletion of the Rpd3S-specific subunit EAF3 does not 
affect FLO11 promoter activity, demonstrating that the Rpd3L, but not the Rpd3S, 
complex regulates FLO11.  (B) PFLO10-URA3 and PFLO10-GFP expressing strains 
demonstrate that Tn3-insertion mutations in CTI6 and ASH1 result in reduced expression 
from the FLO10 promoter, as well, but this effect is not as pronounced as that observed at 
the FLO11 promoter.  The effect, if any, of mutating RXT2 or PHO23 is minor at the 
FLO10 promoter. 
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Figure 5 | Components of the Rpd3L Histone Deacetylase Complex are required 
for transcriptional activation of both the FLO10 and FLO11 promoters, continued. 
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Figure 6 | Reduced FLO11 promoter activity in Rpd3L mutants results in loss of 
Flo11-dependent haploid adhesion and diploid pseudohyphal growth.  (A)  Loss of 
Rpd3L function results in the inability of haploid yeast cells to adhere to YPD-agar in 
plate washing assays, performed after 4 days growth on YPD at 30 degrees C.  FLO11 is 
sufficient to rescue the defect, as seen when the mutant strains are transformed with a 2 
micron plasmid carrying a PTEF-FLO11 construct.  An rpd3Δ deletion mutant also 
exhibits loss of FLO11-dependent adhesion, demonstrating that the catalytic component 
of the Rpd3L histone deacetylase complex plays a role in activating FLO11 promoter 
activity.  (B) Mutation of Rpd3L subunits also completely abolishes FLO11-dependent 
diploid pseudohyphal growth under depleted nitrogen conditions. 6 days on SLAD media 
at 30 degrees C.  (C) When mutant strains are transformed with a 2 micron plasmid 
carrying a PTEF-FLO11 construct, filamentation is recovered.  4 days on SLAD media at 
30 degrees C 
 

A.  
 

Unwashed                                  Washed 
 

7  

8  

5  6  

3  

4  

1      2  

1   wildtype haploid 
2   flo11  
3  cti6 + PTEF-FLO11  

 4  cti6 + PTEF- Empty 
5  rxt2 + PTEF-FLO11  
6  rxt2 + PTEF- Empty 

 7  rpd3 + PTEF-FLO11 
8  rpd3 + PTEF- Empty   

 

  Wild type diploid              cti6/cti6                     rxt2/rxt2 B.  

 

 

 

 

 

 125



 

 

 

 

 

 

 

 

 
 

Figure 6 | Reduced FLO11 promoter activity in Rpd3L mutants results in loss of 
Flo11-dependent haploid adhesion and diploid pseudohyphal growth, continued.    
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Figure 7 | Mutations in components of the RSC, Swi/Snf, and SAGA complexes 
affect FLO10 and FLO11 promoter activity to different degrees.  (A) Tn3-insertion 
mutations in components of the RSC and Swi/Snf chromatin remodeling complexes have 
differential effects on the activity of the FLO11 promoter, visualized by serial dilutions of 
PFLO11-URA3 expressing strains grown on selection media (-Ura and 5-FOA) and by 
FACS analysis of PFLO11-GFP strains.  The Swi/Snf subunit Swi1 is indispensable for 
FLO11 expression.  Promoter activity is still clearly detectable in the rsc2 mutant, but is 
below wild type levels, suggesting some role for RSC in activation of the FLO11 
promoter.   The SAGA histone acetyltransferase complex mutant ada2 exhibits only a 
small decrease in FLO11 promoter activity.  (B)  In contrast, activity of the FLO10 
promoter is heavily dependent on components of RSC, Swi/Snf, and the SAGA complex, 
visualized by serial dilutions of PFLO10-URA3 expressing strains grown on selection 
media (-Ura and 5-FOA) and by FACS analysis of PFLO10-GFP strains. 
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Figure 7 | Mutations in components of the RSC, Swi/Snf, and SAGA complexes 
affect FLO10 and FLO11 promoter activity to different degrees, continued. 
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Figure 8 | Effects of mutations in components of the RSC, Swi/Snf, and SAGA 
complexes on haploid adhesion and diploid pseudohyphal growth.  (A) Haploid 
adhesion to YPD-agar in the rsc2, swi1, and ada2 mutants correlates well with levels of 
FLO11 promoter activity detected using transcriptional reporter strains. Plate washing 
assays were performed after 4 days growth on YPD at 30 degrees C.  (B) Diploid 
pseudohyphal growth under nitrogen starvation conditions is severely impaired in all 
three mutants, however, suggesting a possible diploid-specific or condition-specific role 
for SAGA in activating the FLO11 promoter, or a FLO11-independent cause for these 
phenotypes. 6 days on SLAD media at 30 degrees C.  
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Figure 9 | Mutations in components of the yeast Srb/Mediator abolish metastable 
silencing at the FLO11 promoter and desilence the FLO10 promoter in a wild type 
background.  (A) Serial dilutions of PFLO11-URA3 expressing strains on selection media 
(-Ura and 5-FOA) demonstrate that Tn3 mutations in components of the yeast Mediator 
middle module (med1, med4), tail module (nut1), and Srb corepressor complex (srb8-11) 
abolish metastable silencing at the FLO11 promoter.  The med1Δ mutant also exhibits 
this phenotype.  (B) Serial dilutions of PFLO10-URA3 expressing strains on selection 
media (-Ura and 5-FOA) demonstrate that Srb/Mediator mutants have no effect on 
FLO10 promoter activity in a genetic background in which Ras-cAMP signaling is 
enhanced by ira1 mutation, suggesting a possible genetic interaction between the Ras-
cAMP pathway and the Srb/Mediator complex.   The med1 and srb11, but not the nut1, 
mutants exhibit loss of the repression normally seen at the FLO10 promoter in an IRA+ 
background.  This finding suggests a role for Srb/Mediator in silencing the FLO10 
promoter in wild type strains.  (C) Comparison by fluorescence microscopy of 
populations of PFLO11-GFP expressing cells in wild type and med1 backgrounds also 
reveals loss of metastable silencing at the FLO11 promoter.  The increased cell-to-cell 
adherence seen in the med1 population may be due to derepression of the intact FLO10 
gene in this strain. 
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Figure 9 | Mutations in components of the yeast Srb/Mediator abolish metastable 
silencing at the FLO11 promoter and desilence the FLO10 promoter in a wild type 
background, continued. 
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Figure 10 | Enhanced FLO11-dependent colony morphology and adhesion 
phenotypes are observed in Srb/Mediator mutants.  A)  Mutations in med1, nut1, and 
srb11 in haploid strains reveal crinkly ira (Halme et al., 2004) and sfl1-likeFLO11-
dependent colony morphologies after 3 days growth on YPD plates.  The addition of a 
flo11 mutation abolishes these phenotypes.  (B) This crinkly colony phenotype extends to 
med1/med1 homozygous diploids after 6 days growth on YPD plates.  (C)  Haploid 
adhesion to YPD-agar depends on FLO11 even in the med1 mutant.  The derepression of 
the FLO10 promoter (demonstrated by serial dilutions of PFLO10-URA3 expressing strains in 
Figure 11) is not sufficient to promote adhesion to YPD-agar in the med1 flo11 strain.  
Homozygous med1/med1 diploids adhere to YPD-agar as well as a haploid strain adheres. 
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Figure 11 |  Mutations in components of the COMPASS Histone Methyltransferase 
Complex abolish metastable silencing at the FLO11 promoter, but have no effect on 
FLO10 promoter activity.  (A) Tn3-insertion mutations in components of the COMPASS 
complex result in loss of metastable silencing at FLO11 promoter, visualized by serial 
dilutions of PFLO11-URA3 strains grown on selection media (-Ura and 5-FOA).  The clean 
deletion mutant set1Δ phenocopies the Tn3-insertion mutant, confirming a null phenotype 
in the Tn3 mutants.  Deletion of SET2, another yeast methyltransferase, has no effect on 
FLO11 promoter activity, demonstrating a specific role for the COMPASS complex at the 
FLO11 promoter.  (B) COMPASS mutants show no change in activity from the FLO10 
promoter, visualized using PFLO10-URA3 expressing strains.  The set2Δ mutant exhibits no 
change in FLO10 promoter activity either.   
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Figure 12 | COMPASS mutants resemble the wild type strain with respect to 
Flo11-dependent haploid invasive growth and diploid pseudohyphal growth.  
Indistinguishable from a wild type strain, the COMPASS mutants (A) adhere to YPD-
agar after 4 day growth at 30 degrees C, followed by plate washing assay, and (B) 
undergo the transition to filamentous growth under nitrogen starvation conditions. 6 days 
growth on SLAD at 30 degrees C. 
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Figure 13 |  The loss of silencing at the FLO11 promoter can be rescued with 
plasmids carrying SET1 gene sequence.   Transforming a set1Δ strain with an 
expression  plasmid carrying either the full-length SET1 gene (nucleotides 1-1080) or a 
fragment of the SET1 gene (nucleotides 829-1080), which maintains the mono- and di-, 
but not the trimethylation function of Set1 (Fingerman et al., 2005), rescues metastable 
silencing at the FLO11 promoter.  
 
 

  

 

1    

2    

3  
 
 

1   PFLO11-URA3 set1Δ + empty vector   
 

2   PFLO11-URA3 set1Δ + SET1(1-1080)  
 3   PFLO11-URA3 set1Δ + SET1(829-1080)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 134 



Figure 14 |  Double mutant analyses reveal epistasis of med1 and sfl1 phenotypes 
over cti6, ste12, and flo8 phenotypes.  (A) Serial dilutions of PFLO11-URA3 expressing 
cells reveal that the med1 and sfl1 phenotypes are epistatic to the cti6 and ste12 
phenotypes.  The med1 mutation activates the FLO11 promoter in a larger population of 
cells than is normally seen in a flo8 background.  (B)  The epistasis of the med1 
phenotype to the cti6 phenotype is also apparent in the haploid colony morphologies of 
strains with an intact FLO11 gene (after 3 days growth on YPD at 30 degrees C), and (C) 
in YPD-agar adhesion assays in these strains (after 4 days growth on YPD at 30 degrees 
C, followed by plate washing assay).   
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Table 1 |  Saccharomyces cerevisiae strains used in this study.   
Strain Genotype Source

10560-4A MATa ura3-52 leu2::hisG trp1::hisG his3::hisG Fink lab collection
10560-6B MATx ura3-52 leu2::hisG trp1::hisG his3::hisG Fink lab collection
AHY764 MATa ura3-52 Halme et al., 2004
AHY783 MATa URA3 Halme et al., 2004
SBY001 MATx ura3-52 leu2::hisG his3::hisG ira1::KanR flo11::HIS3 trp1::hisG flo10::pFLO10-GFP-TRP1 Halme et al., 2004

SBY022 MATa ura3-52 leu2::hisG his3::hisG ira1::KanR flo11::HIS3  flo10::pFLO10-URA3 Halme et al., 2004
SBY170 MATx ura3-52 leu2::hisG FLO11+ trp1::hisG sfl1::kanR IRA1+ his3::hisG This study
SBY206 MATx flo11::pFLO11::GFP::kanMX6 his3^ ura3^ leu2^ This study
SBY251 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG Halme et al., 2004
SBY305 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG This study
SBY384 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG ada2::Tn3::LEU2 This study

SBY385 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 trp1::hisG flo10::pFLO10-URA3 
ada2::Tn3::LEU2

This study

SBY395 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 trp1::hisG flo10::pFLO10-URA3 
ssn8::Tn3::LEU2

This study

SBY406 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 trp1::hisG flo10::pFLO10-URA3 
sin3::Tn3::LEU2

This study

SBY409 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG pho23::Tn3::LEU2 This study
SBY411 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG cti6::Tn3::LEU2 This study
SBY413 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 trp1::hisG flo10::pFLO10-URA3 

cti6::Tn3::LEU2
This study

SBY415 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG rxt2::Tn3::LEU2 This study
SBY488 MATa ura3-52 leu2::hisG his3::hisG  IRA1+ flo11::HIS3   flo10::pFLO10-URA3   med1::Tn3::LEU2 This study

SBY491 MATx ura3-52 leu2::hisG his3::hisG  ira1::kanR flo11::HIS3   flo10::pFLO10-URA3   
med1::Tn3::LEU2

This study

SBY492 MATa ura3-52  leu2::hisG  his3::hisG  IRA1+ flo11::HIS3   flo10::pFLO10-URA3   
bre2::Tn3::LEU2

This study

SBY495 MATx ura3-52  leu2::hisG  his3::hisG  ira1::kanR flo11::HIS3   flo10::pFLO10-URA3   
bre2::Tn3::LEU2

This study

SBY496 MATa ura3-52 leu2::hisG  his3::hisG  IRA1+ flo11::HIS3   flo10::pFLO10-URA3   swi1::Tn3::LEU2 This study

SBY497 MATa ura3-52 leu2::hisG  his3::hisG  ira1::kanR flo11::HIS3   flo10::pFLO10-URA3   
swi1::Tn3::LEU2

This study

SBY508 MATa ura3-52  leu2::hisG  his3::hisG  IRA1+ flo11::HIS3   flo10::pFLO10-URA3   nut1::Tn3::LEU2 This study

SBY509 MATa ura3-52  leu2::hisG  his3::hisG  ira1::kanR flo11::HIS3   flo10::pFLO10-URA3   
nut1::Tn3::LEU2

This study

SBY519 MATa ura3-52 leu2::hisG trp1::hisG flo11::pFLO11::URA3 set1::LEU2 pADH1::TRP1 This study

SBY522 MATa ura3-52 leu2::hisG trp1::hisG flo11::pFLO11::URA3 set1::LEU2 pADH1::SET1 1-
1080::TRP1

This study

SBY527 MATa ura3-52 leu2::hisG trp1::hisG flo11::pFLO11::URA3 set1::LEU2 pADH1::SET1 829-
1080::TRP1

This study

SBY558 MATx ura3-52 trp1::hisG leu2::hisG his3::hisG ada2::Tn3::LEU2 This study
SBY561 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG swi1::Tn3::LEU2 This study
SBY564 MATx ura3-52 trp1::hisG leu2::hisG his3::hisG swi1::Tn3::LEU2 This study
SBY566 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG rsc2::Tn3::LEU2 This study

SBY569 MATx ura3-52 trp1::hisG leu2::hisG his3::hisG rsc2::Tn3::LEU2 This study
SBY572 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG bre2::Tn3::LEU2 This study
SBY575 MATx ura3-52 trp1::hisG leu2::hisG his3::hisG bre2::Tn3::LEU2 This study
SBY578 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG med1::Tn3::LEU2 This study
SBY581 MATx ura3-52 trp1::hisG leu2::hisG his3::hisG med1::Tn3::LEU2 This study
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Table 1 |  Saccharomyces cerevisiae strains used in this study, Continued…  
 Source

SBY588 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG cti6::Tn3::LEU2 This study

SBY590 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG cti6::Tn3::LEU2 This study

SBY591 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG cti6::Tn3::LEU2 This study
SBY594 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG rxt2::Tn3::LEU2 This study

SBY594 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG rxt2::Tn3::LEU2 This study

SBY597 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG rxt2::Tn3::LEU2 This study
SBY600 MATa ura3-52 flo10::pFLO10::URA3 IRA1+ his3::hisG flo11::HIS3 leu2::hisG pho23::Tn3::LEU2 This study

SBY603 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG pho23::Tn3::LEU2 This study
SBY634 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  

his3::hisG
This study

SBY635 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG ada2::Tn3::LEU2/ada2::Tn3::LEU2

This study

SBY637 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG rsc2::Tn3::LEU2/rsc2::Tn3::LEU2

This study

SBY639 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 trp1::hisG/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG set1:LEU2 / set1::LEU2

This study

SBY641 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG bre2:Tn3::LEU2 / bre2::Tn3::LEU2

This study

SBY643 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG cti6:Tn3::LEU2 / cti6::Tn3::LEU2

This study

SBY645 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG rxt2:Tn3::LEU2 / rxt2::Tn3::LEU2

This study

SBY646 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG pho23:Tn3::LEU2 / pho23::Tn3::LEU2

This study

SBY648 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG med1::Tn3::LEU2 / med1::Tn3::LEU2

This study

SBY654 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG swi1::Tn3::LEU2 / swi1::Tn3::LEU2

This study

SBY725 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 set1::LEU2 trp1::hisG 
flo10::PFLO10::URA3 + pADH1::TRP1

This study

SBY729 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 set1::LEU2 trp1::hisG 
flo10::PFLO10::URA3 + pADH1::SET1 1-1080::TRP1

This study

SBY734 MATa ura3-52 leu2::hisG his3::hisG ira1::kanR flo11::HIS3 set1::LEU2 trp1::hisG 
flo10::PFLO10::URA3+ pADH1::SET1 829-1080::TRP1

This study

SBY741 MATa ura3-52 leu2::hisG his3::hisG  IRA1+ flo11::HIS3   flo10::pFLO10-URA3  flo8::kanR 
med1::Tn3::LEU2

This study

SBY778 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG set2::kanR This study
SBY779 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG set2::kanR This study
SBY782 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG flo8::kanR This study
SBY786 MATa ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG eaf3::kanR This study
SBY797 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 trp1::hisG/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  

his3::hisG set1:LEU2 / set1::LEU2
This study

SBY847 MATa rpd3::KanR can1-^::ste2pr-HIS3 ura3^ leu2^ his3^::hisG lyp1-^::ste3pr-LEU2 Owen Ryan
SBY849 MATx set1::KanR This study
SBY850 MATa set1:KanR This study
SBY852 MATa/x set1::KanR /  set1::KanR This study
SBY853 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG + / leu2::hisG his3::hisG /  his3::hisG pTEF-

URA3
This study

SBY856 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG + / leu2::hisG his3::hisG /  his3::hisG pTEF-
FLO11-URA3

This study

SBY859 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG cti6:Tn3::LEU2 / cti6::Tn3::LEU2 pTEF-URA3

This study



Strain Genotype Source

SBY862 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG cti6:Tn3::LEU2 / cti6::Tn3::LEU2 pTEF-FLO11-URA3

This study

SBY871 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG rxt2:Tn3::LEU2 / rxt2::Tn3::LEU2 pTEF-URA3

This study

SBY874 MATa/x +/ FLO11::HA ura3-52 /  ura3-52 +/ trp1::hisG leu2::hisG / leu2::hisG his3::hisG /  
his3::hisG rxt2:Tn3::LEU2 / rxt2::Tn3::LEU2 pTEF-FLO11-URA3

This study

SBY883 MATx rpd3::KanR lyp1-^::ste3pr-LEU2 his3^::hisG ura3^ leu2^ can1-^::ste2pr-HIS3 + pTEF-URA3 This study

SBY886 MATx rpd3::KanR lyp1-^::ste3pr-LEU2 his3^::hisG ura3^ leu2^ can1-^::ste2pr-HIS3 pTEF-FLO11-
URA3

This study

SBY891 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG rxt1::Tn3::LEU2 pTEF-FLO11-URA3 This study

SBY892 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG rxt1::Tn3::LEU2 pTEF-URA3 This study
SBY898 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG rxt2::Tn3::LEU2 pTEF-URA3 This study
SBY901 MATx ura3-52 his3::hisG leu2::hisG trp1::hisG rxt2::Tn3::LEU2 pTEF-FLO11-URA3 This study

SBY979 MATa ura3-52 leu2::hisG trp1::hisG his3::hisG med1::Tn3::LEU2 cti6::Tn3::LEU2 
flo11::pFLO11::URA3

This study

SBY985 MATx ura3-52 leu2::hisG trp1::hisG  med1::Tn3::LEU2 cti6::Tn3::LEU2 This study
SBY1024 MATa swi1::Tn3::LEU2 ura3-52 trp1::hisG leu2::hisG his3::hisG This study
SBY1065 MATa cti6::KanR ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY1075 MATa med1::KanR ste12::KanR ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY1083 MATa med1::KanR ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY1087 MATa ste12::KanR ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY1090 MATa sfl1::KanR ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
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Table 2 |  Plasmids used in this study.   
 

     Plasmid                                    Insert                     Reference
pQF328.2 PTEF-FLO11; URA3 Fink Laboratory Collection 

p416TEF PTEF- (empty vector); URA3 Mumberg et al., 1995 

pFA6a KanMX deletion cassette Longtine et al., 1998  

pRS405 LEU2 deletion cassette Sikorski and Hieter, 1989 

pRS416-SET1(1-1080) Full length SET1 ORF (1-1080); TRP1 Briggs et al., 2001 

pRS416-SET1 (829-1080) SET1 fragment (829-1080); TRP1 Fingerman et al., 2005 

pRS416 TRP1 Sikorski and Hieter, 1989 
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Table 3 |  Primers used in this study.   
Primer Sequence (5' to 3') Description
PSB069 TAACATTCCTTATTTGTTGAATCTTTATAAGAGGTCTCTGCGTTTAGAGAA

GATTGTACTGAGAGTGCAC
To generate set1::LEU2

PSB070 AGCAACGATATGTTAAATCAGGAAGCTCCAAACAAATCAATGTATCATCG
CTGTGCGGTATTTCACACCG

To generate set1::LEU2

PSB073 AGTCGTGCTGTCAAACCTTTCTCCTTTCCTGGTTGTTGTTTTACGTGATCAG
ATTGTACTGAGAGTGCAC

To generate set2::LEU2

PSB074 CTTTGGGACAGAAAACGTGAAACAAGCCCCAAATATGCATGTCTGGTTAA
CTGTGCGGTATTTCACACCG 

To generate set2::LEU2

PSB110 ACAGCGAAGGCATAGAATCG To amplify ada2::Tn3
PSB111 ACATCCAATTCTGGCTCTGG To amplify ada2::Tn3
PSB112 AAAATAATTTTTCTCTAATCACCCTCCATTTTCGATAAAATATCAGCGTAG

TCTGAAAATATATACATTAAGCAAAAAGAAGATTGTACTGAGAGTGCAC
To generate ada2::LEU2

PSB113 TAAAATCGAGACAAGGTCCCTTTATGACTTGGCCAATAATAACTAGTGAC
AATTGTAGTTACTTTTCAATTTTTTTTTTGCTGTGCGGTATTTCACACCG

To generate ada2::LEU2

PSB122 GCGCATTATACAAGGACCTG To amplify rsc2::Tn3
PSB123 CATCTGGTGTCTTCCATAGCC To amplify rsc2::Tn3
PSB124 TAACAGTTCAATACGTGATCAAATATACAGCACGTCGCGCAGAACCAGAC

GAAGCGGAGAATATTCTACA TTGACAGTGCAGATTGTACTGAGAGTGCAC 
To generate rsc2::LEU2

PSB125 TTTGAAGTTTGACTCTGCTCGCGGAGGGTAATGCGCAATGGGAAGATATT
ATGCTGCCATTGCTTTTACAATAAAGGTGACTGTGCGGTATTTCACACCG 

To generate rsc2::LEU2

PSB134 CGAAGCCTCTGCTAATGGAG To amplify spt8::Tn3
PSB135 CCACACAGGCATTCCTTCTC To amplify spt8::Tn3
PSB146 GCAGCAAGTGTTATCGCAATC To amplify swi1::Tn3
PSB147 GCGCTCTTCCGACTGTATTG To amplify swi1::Tn3
PSB148 TTCTTTCTTTTCGTGTCTTATAATAATAATAATAATAATAATAATAAAAAT

AGTAATAATAAAAATAGTA ATAAATAAAGAGATTGTACTGAGAGTGCAC 
To generate swi1::LEU2

PSB149 ATTTTATATAGGTTTATAAAAAGAAAATAGTGCGCAAGGAAGAAATAAGC
AGTAAAAGAATATTGTTTAAAAAAATCGCACTGTGCGGTATTTCACACCG

To generate swi1::LEU2

PSB152 CCTGCAATAGAGGTACCAGGTC To amplify ssn8::Tn3
PSB153 TCCATTGTTCGTGGTACTTGTC To amplify ssn8::Tn3
PSB154 ACTCATATTGTTCGAACAAAAAATGCCCTCTCAAACTTTAGTTGAAGAGC

GATAAGGCATCTGAATCTCAAAAGTTAGACAGATTGTACTGAGAGTGCAC
To generate ssn8::LEU2

PSB155 AACATTTCCAAAACGGATCATCACCACCATAATGATTGAATTTACAGGCTT
AACGGTTTTTAAATTTATTCTTCGCATGACTGTGCGGTATTTCACACCG

To generate ssn8::LEU2

PSB197 TCCAATTGTGAGTGGCAAAC To amplify pho23::Tn3
PSB198 TTCTAACCGGGACGTCAATC To amplify pho23::Tn3
PSB201 GTAAACCGCACAGCACAATC To amplify cti6::Tn3
PSB202 TTGCTTCGCCAGTATCTGTG To amplify cti6::Tn3
PSB205 TTCGAATGGAGAGGCATAGG To amplify rxt2::Tn3
PSB206 CTCGACGTTGATGTCAGGTG To amplify rxt2::Tn3
PSB209 TCTGCCACATCCAACAGAAG To amplify sin3::Tn3
PSB210 GGATGCAGGCAGTACACTTG To amplify sin3::Tn3
PSB217 TACCACAGATGGAAGCAACG To amplify bre2::Tn3
PSB218 GCAGGACGCTATTTCTCCAG To amplify bre2::Tn3
PSB229 TTGGGTCTCGAGTCCTTCAC To amplify med1::Tn3
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Primer Sequence (5' to 3') Description
PSB230 CGAGTGTACGGTCCACAATG To amplify med1::Tn3
PSB233 TTCCACACGGCTGTACTGAG To amplify nut1::Tn3
PSB234 AGAACCAGGGACCCCATAAG To amplify nut1::Tn3
PSB237 GCATAATTCACTCGCGTTGG To amplify set1::Tn3
PSB238 AAACCCCAGTTGTGAATTGC To amplify set1::Tn3
PSB332 TAGCATCTGTGAGGCCTCGTCACTGGATTTACCCTATTGAAGAACGTATAA

GATTGTACTGAGAGTGCAC
To generate eaf3::LEU2

PSB333 TACGGAAGAACTAAATACTAGAAATAATCCCAAGCTAGAATATAAACGTC
CTGTGCGGTATTTCACACCG

To generate eaf3::LEU2

PSB522 AATATTGTAATTCGACACTATTTGGTACATTCAGAGGGTCCTAAGACAGC
ACAAATCAGTCGGATCCCCGGGTTAATTAA

To generate sfl1::KanMx 

PSB523 AATAAACATACAGTGAGGTGCTTTGAACTTTTAGACAATTAGAGATTAAA
AAGGCAAAGAGAATTCGAGCTCGTTTAAAC

To generate sfl1::KanMx 

PSB528 AGAACTCCTAATCAAAAGCAAAGAAAACATAGAACAAAAGCCAACAAAA
CTCTTTTGGAGCGGATCCCCGGGTTAATTAA 

To generate med1::KanMx 

PSB529 AAACCTAAACTCCATCGAGTGTACGGTCCACAATGTGTATTTGAGCCACT
CCGTACCTCCGAATTCGAGCTCGTTTAAAC

To generate med1::KanMx 

PSB532 TTTACTTTGCGTAACCTTACTAAAAGATAGCATAAACATATAGGAGTATA
GAGAAGAGTACGGATCCCCGGGTTAATTAA

To generate cti6::KanMx 

PSB533 TGTTTGTTCGCCTCATTACAGTTATACTTTGGTTGAGAATAATATTGCAGT
GTTTTGCGTGAATTCGAGCTCGTTTAAAC

To generate cti6::KanMx 

PSB536 AGAAAACACACTTTTATAGCGGAACCGCTTTCTTTATTTGAATTGTCTTGT
TCACCAAGGCGGATCCCCGGGTTAATTAA

To generate ste12::KanMx 

PSB537 TGTAGTTTTGGAGGTCATGTTAAGAAACTCATTGATATTTATATTACATAC
TGTGACGCTGAATTCGAGCTCGTTTAAAC

To generate ste12::KanMx 

 

Table 3 |  Primers used in this study, Continued… 
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FLO11 promoter activitTable 4 |   Mutants with reduced y identified in Tn3 insertion 
screen.   See Figure 2 for information regarding qualitative assessment of strength of 
phenotype.  (#) indicates the number of unique Tn3 insertions identified at the indicated locus,
if greater than one.  

A. MILD PHENOTYPES:
GENE        (#) BIOLOGICAL PROCESS
ECM17 Cell wall organization and biogenesis
IME2 Regulation of meiosis
LRG1 Cell wall biogenesis
RRN9 Transcription from RNA polymerase I promoter
SIN3          (2) Histone deacetylation (Rpd3L complex)
UBP9 Protein deubiquitination
YGR071C Unknown

B. MODERATE PHENOTYPES:
GENE        (#) BIOLOGICAL FUNCTION
ASC1 Invasive growth, G-protein coupled receptor protein signaling
CTI6/RXT1 Histone deacetylation (Rpd3L complex)
DBR1         (2) Pseudohyphal growth; RNA catabolic process
FAR7 Cell cycle
FMO1 Protein folding
GPG1 Invasive growth; Signal transduction
HMT1 Protein amino acid methylation; RNA export from nucleus
HRP1 mRNA processing 
KIN4 Cell Cycle
MF(ALPHA)1 Mating
MKC7 Cell wall organization and biogenesis
MSN1 Invasive and pseudohyphal growth; Activation of transcription
OST6 Protein modification; Glycosylation
PHO23 Histone deacetylation (Rpd3L complex)
RXT2 Histone deacetylation (Rpd3L complex)
TEP1 Cell wall organization and biogenesis
TPK1 Invasive and pseudohyphal growth; Ras-cAMP signaling
YVC1 Vacuolar function
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Table 5 |   Mutants with increased FLO11 promoter activity identified in Tn3 insertion 
screen.   See Figure 2 for information regarding qualitative assessment of strength of 
phenotype.  (#) indicates the number of unique Tn3 insertions identified at the indicated locus,
if greater than one.  

A. MILD PHENOTYPES:
GENE         (#) BIOLOGICAL PROCESS
APL5 Protein sorting and transport
AVL9 Protein sorting and transport
MSH1 Mitochondrial function
PET111 (2) Mitochondrial function
PET56 Mitochondrial function
TAT2 Membrane transport

B. MODERATE PHENOTYPES:
GENE         (#) BIOLOGICAL FUNCTION
ADA5/SPT20 Histone acetylation (SAGA complex)
AIM8 Mitochondrial function
ATP25 Mitochondrial function
GRR1 (2) Protein ubiquitination
IFM1 Mitochondrial function
IMG1 Mitochondrial function
MAM33 Mitochondrial function
MRM1 Mitochondrial function
PPH22 Signal transduction

C. STRONG PHENOTYPES:
GENE         (#) BIOLOGICAL FUNCTION
AKR1 Protein sorting and transport
ATG18 Protein sorting and transport
ATP1          (3) Mitochondrial function
BRE2          (7) Histone methylation (COMPASS complex)
CDC5/MSD2 Cell Cycle; Cytokinesis
COX11       (2) Mitochondrial function
COX15       (2) Mitochondrial function
COX18 Mitochondrial function
COX4 Mitochondrial function
DNF3 Protein sorting and transport
FLC3 Membrane transport
GIS4 Signalling from the plasma membrane
GPB1         (4) Invasive and pseudohyphal growth; Ras-cAMP signaling 
HDA1         (4) Histone deacetylation (Hda1 complex)
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Table 5, continued.  Mutants with increased FLO11 promoter activity identified in 
Tn3 insertion screen.

C. STRONG PHENOTYPES, continued:
GENE         (#) BIOLOGICAL FUNCTION
HDA2         (7) Histone deacetylation (Hda1 complex)
HDA3       (11) Histone deacetylation (Hda1 complex)
HSC82 Protein folding
IML1 Vacuolar function
IOC3 Chromatin remodeling (Isw1a complex)
IPK1          (2) Inositol phosphate biosynthesis
IRA1           (4) Invasive and pseudohyphal growth; Ras-cAMP signaling
IRC3 Mitochondrial function
IRA2           (3) Invasive and pseudohyphal growth; Ras-cAMP signaling
MCK1        (4) Cell Cycle
MED1        (5) Transcription from RNA polymerase II promoter (Mediator complex)
MED4 Transcription from RNA polymerase II promoter (Mediator complex)
MET18 Transcription from RNA polymerase II promoter
MON2 Protein sorting and transport
NTO1         (4) Histone acetylation (NuA3 complex)
NUT1/MED5 Transcription from RNA polymerase II promoter (Mediator complex)
PCP1         (2) Mitochondrial function
CSR2 Cell wall organization and biogenesis
PDE1         (2) Ras-cAMP signaling
PET100 Mitochondrial function
PET54 Mitochondrial function
PIL1 Endocytosis
PIN4 Cell Cycle
PAU7 Unknown; Regulated by anaerobiosis
RDN25-1    (2) Translation
REG1         (2) Regulation of transcription from RNA polymerase II promoter
RGT1 Regulation of transcription from RNA polymerase II promoter 
RRF1 Mitochondrial function
RRI2 Protein deneddylation
RSE1 mRNA processing
SCH9 Pseudohyphal growth; Regulation of transcription from RNA polymerase 
SET1          (4) Histone methylation (COMPASS complex)
SLG1 Cell wall organization and biogenesis
SNT1 Histone deacetylation (Set3C complex)
SRB8/SSN5 Transcription from RNA polymerase II promoter (Mediator complex)
SRB9/SSN2 Transcription from RNA polymerase II promoter (Mediator complex)
SRB10/SSN3 (2) Transcription from RNA polymerase II promoter (Mediator complex)
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Table 5, continued.  Mutants with increased FLO11 promoter activity identified in 
Tn3 insertion screen.

C. STRONG PHENOTYPES, continued:
GENE         BIOLOGICAL FUNCTION
SRB11/SSN8 (4) Transcription from RNA polymerase II promoter (Mediator complex)
SRY1 Amino acid catabolism
TRM10 tRNA methylation
TRX1 Protein sorting and transport
UBC8 Protein ubiquitination
VAC8 Protein sorting and transport
YDJ1 Protein folding
YGL242C Unknown
YIL077C Mitochondrial function
YLR030W Unknown
ZUO1 Protein folding
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Table 6 |  Mutants with reduced FLO10 promoter activity identified in Tn3 insertion 
screen.   See Figure 2 for information regarding qualitative assessment of strength of 
phenotype.  (#) indicates the number of unique Tn3 insertions identified at the indicated locus,
if greater than one. *Indicates ambiguity due to sequence identity.  

A. MILD PHENOTYPES:
GENE        (#) BIOLOGICAL PROCESS
AFR1 Cellular morphogenesis
ASN1 or ASN2* Asparagine biosynthesis
AXL1 (2) Cellular morphogenesis
CIN8 Chromosome segregation
ECM7 Cell wall organization and biogenesis
GCN2 Translation
MCH1 Plasma membrane transport
MRN1 (4) Unknown; Putative RNA binding
ASH1 Regulation of Transcription from RNA polymerase II promoter 
PRE9 Ubiquitin-dependent protein degradation
RDN25-1 (3) Translation
RVS161 Cellular morphogenesis
SED4 Protein sorting and transport
TEP1 Cell wall organization and biogenesis
YOL036W Unknown

B. MODERATE PHENOTYPES:
GENE         (#) BIOLOGICAL FUNCTION
BUD3 Cellular morphogenesis
CRM1 Nuclear membrane transport
MOG1 Nuclear membrane transport
RPN9 Ubiquitin-dependent protein degradation
SHO1 Pseudohyphal growth; Ras-cAMP signaling 
UBP6 (2) Ubiquitin-dependent protein degradation
YDJ1 Protein sorting and transport
YGP1 Cell wall organization and biogenesis

C. STRONG PHENOTYPES:
GENE         (#) BIOLOGICAL FUNCTION
ACS1 Histone acetylation
ADA2 Histone acetylation (SAGA complex)
ATH1 Cell wall organization and biogenesis
CSF1 Fermentation
ECM33 Cell wall organization and biogenesis
FLO8 Invasive and pseudohyphal growth; Ras-cAMP signaling
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Table 6, continued.  Mutants with reduced FLO10 promoter activity identified in 
Tn3 insertion screen.

C. STRONG PHENOTYPES, continued:
GENE         (#) BIOLOGICAL FUNCTION
GUP1 Plasma membrane transport
KTI11 (2) Metal ion binding (Zinc)
MET17 Methionine biosynthesis
OPY2 (2) Signalling from the plasma membrane
DLD3 Pseudohyphal growth
PPS1 Cell Cycle
SRY1 Amino acid catabolism
ZRC1 Metal ion transport (Zinc)
RIM13 Protein degradation
RIM21 Cell wall organization and biogenesis
RPL43A Translation
RPS19A Translation
RSC2 (3) Chromatin remodeling (RSC complex)
SAS5 Histone acetylation (SAS complex)
SFI1 Cell cycle
SLX4 DNA replication
SPT8 Transcription from RNA polymerase II promoter (SAGA complex)
STE7 (2) Invasive and pseudohyphal growth; Ras-cAMP signaling
SWI1 Chromatin remodeling (SWI/SNF complex)
UBP14 Ubiquitin-dependent protein degradation
YPR091C Unknown
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Table 7 |  Mutants with increased FLO10 promoter activity identified in Tn3 insertion 
screen.   See Figure 2 for information regarding qualitative assessment of strength of 
phenotype.  (#) indicates the number of unique Tn3 insertions identified at the indicated locus,
if greater than one.

A. MILD PHENOTYPES:
GENE        (#) BIOLOGICAL PROCESS
COA1 Mitochondrial function
ERG3 Ergosterol biosynthesis
MID1 Ion transport (Calcium)
SCH9 Pseudohyphal growth; Regulation of transcription from Pol II promoter 

B. MODERATE PHENOTYPES:
GENE        (#) BIOLOGICAL PROCESS
ACB1 Fatty acid transport
ELM1 (2) Cellular morphogenesis
NAS2 Ubiquitin-dependent protein degradation
SSD1 (2) Cell wall organization and biogenesis

C. STRONG PHENOTYPES:
GENE        (#) BIOLOGICAL PROCESS
AKR1 Protein sorting and transport
CAK1 (2) Cell cycle
CSR2 Cell wall organization and biogenesis
GRR1 Protein ubiquitination
IRA2 (3) Invasive and pseudohyphal growth; Ras-cAMP signaling
MAM33 Mitochondrial function
OLE1 Mitochondrial function; Fatty acid synthesis
REG1 Regulation of transcription from RNA polymerase II promoter
RNH203 Ribonuclease activity (Ribonuclease H2 complex)
ROT2 Cell wall organization and biogenesis
SDC25 Ras-cAMP signaling
SEC1 Exocytosis
SRB11/SSN8 Transcription from RNA polymerase II promoter (Mediator complex)
TEC1 Invasive and pseudohyphal growth; Ras-cAMP signaling
VMA2 Vacuolar function
YOR296W Unknown
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Chapter 4  
 
The Generation of Cell-Surface Diversity in Yeast 

by Rpd3L- and Sfl1-Regulated Noncoding RNAs 

 
 
Abstract |  Histone deacetylases are generally considered repressors of transcription due 

to their ability to stimulate the condensation of chromatin structure by modifying 

histones.  In the yeast Saccharomyces cerevisiae, however, the histone deacetylase 

complex Rpd3L, which is known to act as a repressor of transcription at some target 

promoters, plays an apparently direct role in activating transcription elsewhere in the 

genome.  In this chapter, I argue that this seemingly paradoxical observation points to the 

existence of an additional mechanism of transcriptional regulation at work for some 

protein-encoding genes: the chromatin-regulated transcription of noncoding RNAs from 

within the promoters of these genes.  We have found that net activation of FLO11 

transcription by Rpd3L results from Rpd3L-mediated repression of a noncoding RNA 

ICR1 (Interfering Crick RNA) that initiates within and is transcribed in the Crick 

direction through most of the FLO11 promoter region.  In the absence of Rpd3L function, 

increased levels of ICR1 transcript correlate with decreased FLO11 expression, loss of 

TATA binding protein (TBP) binding, and decreased nucleosome ejection from the core 

promoter of FLO11.  These findings suggest that transcription of ICR1 interferes with 

binding of basal transcription machinery and chromatin remodelers that promote 

transcription initiation at the FLO11 core promoter.  A transcription terminator that 

disrupts ICR1 results in recovery of FLO11 expression in an Rpd3L- null mutant.  The 

direct role of Rpd3L at the FLO11 locus is repression of ICR1, which itself negatively 

regulates FLO11 expression.  Thus, the net effect of Rpd3L on FLO11 expression is 

positive.  We have also detected a second noncoding RNA, PWR1 (Promoting Watson 

RNA), that initiates within the FLO11 promoter and is transcribed in the Watson 

direction convergently and overlapping with the ICR1 transcript.  Transcription of PWR1 

is repressed by Sfll1, a transcriptional repressor of FLO11.  When SFL1 is deleted, 

elevated levels of PWR1 transcript correlate with increased FLO11 expression.  I 

hypothesize that PWR1 promotes FLO11 expression by competing with ICR1 for its 
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template region, thereby preventing ICR1 transcription from proceeding along the FLO11 

promoter region.  Our data suggest that the well established role of Sfl1 in repression of 

FLO11 expression is an indirect effect of its role in regulating PWR1 transcription.   Our 

findings also point to a new model for the mechanism underlying transcriptional 

variegation of FLO genes.  This model involves regulatory noncoding RNAs, bistable 

changes in local chromatin structure resulting from recruitment of histone deacetylases, 

and competitive binding to DNA by proteins that determine whether histone deacetylases 

are present or absent at local regions within the FLO promoters. 

 

 
 
Introduction 

 
In his principles for sound scientific reasoning, Sir Isaac Newton advised fellow 

scientists to propose no more causes of natural things than are both “true and sufficient” 

to explain their appearances (Newton, 1687).  This rule of parsimony proves very useful 

in guiding the formation of scientific hypotheses.  But the most parsimonious hypotheses 

regarding the relationship between chromatin structure and transcription have in recent 

years fallen short of explaining the entire set of observed phenomena.  The canon that 

histone deacetylases repress transcription owing to their ability to catalyze the 

condensation of chromatin structure has been called into question by observations that 

these enzymes also appear to play a direct role in activating transcription at some loci.  In 

particular, the yeast Rpd3L histone deacetylase complex, which has been soundly 

demonstrated to repress transcription at many target promoters, has recently been shown 

to play an apparently direct role in activating transcription at other target promoters 

(Carrozza et al., 2005; Kadosh and Struhl, 1997, 1998; Rundlett et al., 1998; Sertil et al., 

2007; Sharma et al., 2007; Xin et al., 2007; De Nadal et al., 2004), thus raising an 

apparent paradox regarding the effect of histone deacetylase function on transcription.  In 

 158 



this chapter, I explore a resolution to this apparent paradox and propose that there is an 

additional “cause” at work that explains these apparently contradictory appearances 

regarding Rpd3L function.   

Within clonal populations of Saccharomyces cerevisiae Sigma 1278b, some cells 

exhibit active transcription of FLO11 whereas other cells in the same population are 

silenced at the FLO11 promoter (Halme et al., 2004).  A similar phenomenon is observed 

at the FLO10 promoter (Halme et al., 2004) in this yeast.  We have previously reported 

that this variegated silencing of FLO gene expression is directly dependent on the activity 

of histone deacetylases.  Hda1 functions in the epigenetic silencing of both the FLO11 

and the FLO10 promoters (Halme et al., 2004).  Hst1 and Hst2 also function in the 

epigenetic silencing of the FLO10 promoter (Halme et al., 2004).  Deletion of any of 

these histone deacetylases results in a loss of silencing of the FLO promoter(s) under 

their control (Halme et al., 2004).   Thus, Hda1, Hst1, and Hst2 each plays the expected 

role for a histone deacetylase in regulating gene expression: repression of transcription.   

In a screen conducted to identify transcriptional regulators of the variegating FLO 

gene family in S. cerevisiae, I found that the Rpd3L histone deacetylase complex is a 

strong transcriptional activator, rather than a transcriptional repressor, of FLO gene 

expression.  In the absence of Rpd3L function, a clonal population of Sigma 1278b yeast 

cells is pushed into a more silenced state at the FLO11 and FLO10 promoters.  This 

reduction of FLO11 promoter activity in Rpd3L- mutants has phenotypic effects, 

including total loss of the ability of diploids to initiate pseudohyphal growth under 

appropriate stress conditions and the loss of the ability of haploids to adhere to and 

invade inert surfaces (discussed in Chapter 3).  Specific disruption of the alternative 
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Rpd3-containing histone deacetylase complex in yeast, Rpd3S (Carrozza et al., 2005a; 

Carrozza et al., 2005b), had no effect on expression of FLO genes, indicating a specific 

role for the Rpd3L complex in this process.   

My finding that loss of Rpd3L function results in decreased FLO transcription is 

seemingly at odds with reports supporting a role for Rpd3L as a transcriptional repressor 

at many target promoters in the yeast genome.  The catalytic component of the Rpd3L 

histone deacetylase complex, Rpd3 itself, was originally discovered as a transcriptional 

repressor of genes involved in a diverse set of biological processes including meiosis, 

cell-type specificity, potassium transport, phosphate metabolism, methionine 

biosynthesis, and phospholipids metabolism (Hepworth et al., 1998; Jackson and Lopes, 

1996; Kadosh and Struhl, 1997; McKenzie et al., 1993; Stillman et al., 1994; Vidal and 

Gaber, 1991; Vidal et al., 1991).   

Despite these many reports that Rpd3L functions as a transcriptional repressor, 

my finding that Rpd3L also has an important role in activating transcription adds the FLO 

genes to a growing list of stress-responsive genes that have been shown to be 

transcriptionally activated by this histone deacetylase complex.   In recent years, the 

Rpd3L complex has been reported to play apparently direct roles in transcriptional 

activation at several target promoters within the yeast genome.  The DAN/TIR genes 

induced during anaerobic growth (Sertil et al., 2007), the DNA damage-inducible gene 

RNR3 (Sharma et al., 2007), the HAP1 gene which encodes a transcription factor 

involved in oxygen and heme regulation (Xin et al., 2007), and osmoresponsive genes 

such as HSP12 (De Nadal et al., 2004) are all transcriptionally activated by Rpd3 

localizing to their promoters.  Epitope-tagged Rpd3 or epitope-tagged Sin3 (a subunit 
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specific to the Rpd3L complex) have been shown to localize to the promoters of RNR3 

and HSP12 by chromatin immunoprecipitation (ChIP), suggesting a direct role for Rpd3 

in activating transcription of these genes (De Nadal et al., 2004; Sharma et al., 2007).   

Furthermore, Rpd3-mediated histone deacetylation accompanies transcriptional 

activation at DAN4 (Sertil et al., 2007), RNR3 (Sharma et al., 2007), and HSP12 (De 

Nadal et al., 2004), suggesting a mechanism of transcriptional activation by Rpd3 that is 

in apparent conflict with the general rules of chromatin structure-mediated transcriptional 

regulation and the predictions of an elegant “histone code” hypothesis (Grunstein, 1997; 

Sertil et al., 2007; Sharma et al., 2007; De Nadal et al., 2004; Jenuwein and Allis, 2001; 

Taverna et al., 2007).   

I argue that this apparent paradox in Rpd3L function reflects a fundamental 

mechanism in transcriptional regulation that has until very recently remained 

underappreciated, especially where the yeast Saccharomyces cerevisiae is concerned.  

This mechanism is the transcriptional regulation of protein-coding genes by noncoding 

RNAs located within their promoters, and I propose this mechanism as a “cause” to 

explain the apparent paradox regarding Rpd3L function. 

S. cerevisiae, which lacks key components of the conserved machinery required 

for RNAi-mediated regulation of gene expression, was long thought to lack mechanisms 

of transcriptional regulation involving noncoding RNAs.   Over the past few years, 

however, a flurry of publications has reported various examples of noncoding RNAs that 

regulate transcription in yeast (Camblong et al., 2007; Hongay et al., 2006; Martens et al., 

2004; Martens et al., 2005; Uhler et al., 2007).  The reported mechanisms do not require 

the RNAi machinery.  Rather, noncoding RNAs are shown to regulate transcription in cis 
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by mechanisms that include (i) remodeling chromatin structure, (ii) competing for 

template sequence by running antisense into the transcript that they regulate, and (iii) 

occluding transcription factor binding sites within promoters by the act of transcription 

itself (Berretta et al., 2008; Camblong et al., 2007; Hongay et al., 2006; Martens et al., 

2004; Martens et al., 2005).   

The mechanism by which the yeast SER3 gene is repressed during growth in rich 

media (Martens et al., 2004; Martens et al., 2005) is of particular interest with respect to 

the work I present in this chapter, because the regulatory mechanism observed at SER3 

seems most closely to resemble the regulatory mechanism that we observe at the FLO11 

locus.  During growth in rich media, a noncoding RNA is transcribed from within the 

promoter sequence of SER3.  This noncoding RNA, called SRG1, is required for 

repression of SER3.  The SRG1 transcript is transcribed by RNA polymerase II promoted 

by a canonical TATA box sequence located upstream in the SER3 promoter.  SRG1 

terminates just upstream of the SER3 ORF.  When SRG1 is transcribed, binding of 

transcriptional activators, such as RNA polymerase II, is reduced at the SER3 core 

promoter.  Thus, this example of noncoding RNA-mediated repression seems to occur by 

a regulated transcription-interference mechanism in which transcription across the SER3 

promoter interferes with the binding of transcriptional activators to core promoter 

elements.  

In this chapter, I show by chromatin immunoprecipitation that Rpd3L associates 

directly with the promoter of FLO11, suggesting that Rpd3L’s role in activating FLO11 

expression is a direct effect of its localization to the FLO11 locus.  Furthermore, whole-

genome expression assays comparing mRNA levels in wild type versus an Rpd3L- 
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mutant did not reveal differential expression of known transcriptional regulators of 

FLO11, again supporting a direct role for Rpd3L in regulating FLO11 expression.    

I propose that Rpd3L’s role as an activator of FLO11 expression is an indirect 

effect of its chromatin-mediated transcriptional repression of a noncoding RNA 

transcribed from a region upstream of the FLO11 ORF.  We have identified a noncoding 

RNA transcript, ICR1 (for Interfering Crick RNA), that initiates within and is transcribed 

through most of the length of the FLO11 promoter region (Figure 1).  When components 

of the Rpd3L histone deacetylase complex are deleted, we find that the resulting 

elevation in steady-state levels of the ICR1 transcript correlates with loss of FLO11 

expression, loss of TATA binding protein (TBP) association at the core promoter of 

FLO11, and decreased nucleosome ejection from the core promoter of FLO11.  These 

findings suggest that transcription of ICR1 somehow interferes with the binding of basal 

transcription machinery and chromatin remodelers that promote transcription initiation at 

the core promoter of FLO11.  Thus, ICR1 inhibits expression of FLO11.  A transcription 

terminator placed within ICR1 results in the recovery of FLO11-dependent phenotypes in 

an Rpd3L- mutant, suggesting a causal role for the ICR1 transcript in inhibiting FLO11 

expression.  I conclude that, although the indirect effect of Rpd3L histone deacetylase 

activity is the activation of FLO11 expression, its local direct effect on transcription of 

the regulatory noncoding RNA ICR1 is repressive, thus resolving the apparent paradox 

regarding Rpd3L function.   

The DNA-binding protein Sfl1 is a well documented repressor of FLO gene 

transcription.  Sf11 has been shown to interact directly with the FLO11 promoter, and the 

Sfl1 binding region has been narrowed to a 250-bp window located between -1400 and    
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-1150 relative to the FLO11 ORF (Pan and Heitman, 2002 and Figure 1).  Studies of the 

FLO11-like STA1 promoter in the yeast S. diastaticus have confirmed Sfl1 binding in this 

region, which is contained within the UAS2 element of FLO11 promoter (Kim et al., 

2004a; Kim et al., 2004b).  This is also the region of the FLO11 promoter reported to be 

bound competitively by the transcriptional activator of FLO11, Flo8 (Pan and Heitman, 

2002 and Figure 1).  At the STA1 promoter, however, Sfl1 reportedly competes with the 

transcriptional activators Ste12 and Tec1 for binding to the UAS2 element, and Flo8 

reportedly binds to the UAS1 element located further upstream (-1760 to -2175  relative 

to the FLO11 ORF) (Kim et al., 2004a; Kim et al., 2004b; Figure 1).  We and others have 

previously reported that Sfl1 is important for the recruitment of histone deacetylases, 

such as Hda1, Hst1, and Hst2, to target promoters in yeast (Halme et al., 2004; Conlan 

and Tzamarias, 2001; Davie et al., 2003; Figure 1).  Consequently, the transcriptional 

repression of FLO genes by Sfl1 proceeds, at least in part, by chromatin-mediated 

mechanism. 

In this chapter, I report our discovery of a new component in the mechanism 

through which Sfl1 mediates transcriptional repression of FLO11.  We have identified a 

second regulatory noncoding RNA transcript, PWR1 (for Promoting Watson RNA), that 

also initiates within the FLO11 promoter and is transcribed in the Watson direction 

convergently and overlapping with the ICR1 transcript (Figure 1).  Transcription of 

PWR1 is repressed by the DNA-binding protein Sfl11.  When SFL1 is deleted, elevated 

steady-state levels of the PWR1 transcript correlate with increased FLO11 expression.  I 

hypothesize that PWR1 promotes FLO11 expression by competing with ICR1 for its 

template region and preventing ICR1 transcription from proceeding along the length of 
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the FLO11 promoter, thereby inhibiting the ICR1-mediated transcriptional repression of 

FLO11 expression.  The findings I report here suggest that the long-known role of Sfl1 in 

repression of FLO11 expression may be an indirect effect of its repression of PWR1 

transcription.    

I also report in this chapter that we have discovered a similar pair of convergent, 

overlapping noncoding transcripts initiating within the FLO10 promoter.  This finding 

suggests that transcriptional regulation by noncoding RNAs may be a mechanism that 

extends to other members of the variegating FLO gene family, and perhaps to other genes 

that exhibit net-positive transcriptional regulation by Rpd3L.   

Our findings also point to a new model for the mechanism underlying 

transcriptional variegation of FLO genes that I will present at the end of this chapter.  

This model involves regulatory noncoding RNAs, bistable changes in local chromatin 

structure resulting from recruitment of histone deacetylases, and competitive binding to 

DNA by proteins, such as Sfl1 and Flo8, that may determine whether histone 

deacetylases are present or absent at local regions within FLO promoters. 

 

Materials and Methods 

Strains, media, microbiological techniques and growth conditions |  Yeast strains 

utilized in these studies are listed in Table 1 of this chapter.  All strains were derived 

from the Σ1278b genetic background (also known as MB1000 (Brandriss and Magasanik, 

1979; Grenson et al., 1966) and MB758-5B (Siddiqui and Brandriss, 1988)).  Standard 

yeast media, yeast transformations and genetic manipulations were performed as 

described in Guthrie and Fink (2001).  For analysis of PFLO10-URA3 or PFLO11-URA3, 
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strains were grown overnight in YPD liquid media, then diluted 1:50 in YPD liquid 

media and grown to OD600 0.8-1.2 at 30 degrees C.  Cell densities were adjusted to OD600 

1, then cultures were serially diluted (10-fold dilutions for PFLO10-URA3 stains and 2-fold 

or 5-fold dilutions for PFLO11-URA3 strains) and plated on synthetic complete (SC), SC-

Ura, and SC+5-FOA (0.1%) agar plates.  For visualization of PFLO10-GFP or PFLO11-GFP 

by fluorescent microscopy or FACS, cells were streaked onto YPD plates and harvested 

after one day of growth at 30 degrees C.  Haploid adhesion assays were performed as 

described (Guo et al., 2000).  For northern analysis, real time PCR analysis, chromatin 

immunoprecipitation, RACE, and microarray expression analysis, cells were grown 

overnight in YPD liquid media, diluted 1:50 into 50 ml liquid YPD media, grown to 

OD600 0.8-1.2, and then harvested for use in the experiments. 

 
Yeast strain construction |  Yeast strains carrying gene deletions were constructed by 

PCR amplification of a PTEF promoter-driven yeast LEU2 or bacterial kanamycin-

resistance gene (Longtine et al., 1998) with flanking sequences that would direct the 

deletion cassette to the appropriate locus via homologous recombination.  All deletions 

remove the full ORF (ATG to Stop codon).    

To generate the Rpd3-Myc strains, an 18-Myc epitope-tagged allele was 

generated through homologous integration of a TRP1-tagged 18-MYC epitope into the 

carboxy terminus coding region of the RPD3 gene.  The Rpd3-18-Myc protein is 

functional, as assessed by YPD-agar adhesion tests and in tests of FLO11 promoter 

activity by serial dilutions onto SC–Ura and SC+5-FOA selection media of strains 

carrying both the epitope-tagged Rpd3 allele and the PFLO11-URA3 construct.    
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The K. lactis URA3-terminator construct was generated by PCR amplification of 

this reporter gene with its endogenous promoter and terminator from plasmid pUG72 

template (Gueldener et al., 2002) with homologous flanking sequence to the target site 

3041 basepairs upstream of the FLO11 ORF, within the FLO11 promoter region. 

Plasmids used in this study are listed in Table 2.  Table 3 provides a list of 

oligonucleotide primers used in this study.   

  
Poly-A RNA Purification |  Total RNA was obtained by standard acid phenol extraction 

from 10 ml aliquots of 50 ml YPD cultures grown to OD600 0.8-1.2, then harvested.   

Poly-A RNA was purified from the total RNA using oligo-dT cellulose columns from 

MRC, Inc.  The RNA was diluted into lithium chloride binding buffer to a final 

concentration of 1 mg/ml, incubated for 5 minutes at 70 degrees to remove secondary 

structure, and then loaded onto an oligo-dT column that had been pre-washed with 

binding buffer.  Columns were washed and poly-A RNA was eluted and precipitated with 

lithium chloride and polyacryl carrier plus one volume of isopropanol.  After 

centrifugation and washing with 70% ethanol, the RNA pellets were dried briefly and 

then resuspended in DEPC-treated water.  RNA concentrations were determined by OD 

260/280 spectrophotometry. 

 
Northern Blot Analysis |  For the northern blot shown in Figure 2, total RNA was 

DNase-treated to remove any residual genomic DNA and 10 ug of this DNase-treated 

RNA were loaded per sample.  For all other northern blots, Poly-A RNA was purified 

from total RNA and 3ug of this Poly-A RNA were loaded per sample.  RNA samples 

were run on formaldehyde-agarose denaturing gels at 100 volts for four to six hours.  The 
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electrophoresed RNA was transferred to Hybond-N nylon membranes using 20X SSC 

buffer.  After UV cross-linking, these membranes were hybridized with 32P (exo-) 

Kleenow-labeled  DNA probes (for the northern blot in Figure 1 and for all SCR1 load 

controls) or 32P-labeled strand-specific RNA probes generated using the Ambion T7 

Maxiscript Kit (for all other northern hybridizations).  Hybridizations were performed at 

65 degrees C overnight in sodium phosphate buffer containing 7% SDS and 1% BSA. 

Membranes were washed three times at 65 degrees C for 20-30 minutes with 0.2X SSC, 

0.1% SDS and exposed on a phosphoimager screen.  Before hybridizing the membranes 

with SCR1 load control probes, the original radioactive probe was twice stripped from the 

membranes by pouring boiling 0.1% SDS onto them and rocking them at room 

temperature in this solution for 30 minutes.   

 
Microarray Design |  Custom microarrays were designed and used in the ChIP-chip and 

whole genome expression assays.  Sigma 1278b genomic probes were designed to be as 

unique as possible across the Sigma 1278b genome and to avoid repetitive or low 

complexity sequences.  Potential probes were assigned a score that reflected how well the 

probe's predicted melting temperature (Tm) matched the target Tm, a measure of 

sequence complexity, and the ratio of the intensities expected by the intended match 

relative to unintended matches.  Probes were then selected for inclusion on the array by 

balancing their score with the probe's distance to the previous probe, attempting to 

achieve the target average probe spacing of 25 basepairs.  The resulting two array set was 

utilized for expression analysis. A one array design, used for Chip-chip analysis, was 

generated by dropping every other probe from the set, resulting in probes spaced 
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approximately 50 basepairs apart.  For both designs, strand specificity is obtained by 

utilizing the reverse complement of every other probe on the array. 

 

Chromatin Immunoprecipitations |  Protocols describing all materials and methods 

have been previously described (Lee et al., 2006).  Briefly, 50 ml cultures of cells were 

grown in YPD liquid to an OD600 of 0.8 - 1.  Cells were chemically crosslinked for 30 

minutes at room temperature by the addition of formaldehyde to a final concentration of 

1%.  Cells were washed with PBS, harvested, and flash frozen in liquid nitrogen.   

Cells were resuspended, lysed in lysis buffers, and sonicated to solubilize and 

shear crosslinked DNA.  An aliquot of whole cell extract (WCE) was reserved as a 

control for input.  500 ul of WCE from each sample were incubated overnight at 4 

degrees C with Dynal Protein G magnetic beads that had been preincubated with 

antibodies against the Myc-epitope (Covance 9E-11 MMS-164P), the histone H4-pan 

(Upstate Millipore 05-858), or yeast TBP (Santa Cruz SC-33736).  Beads and 

immunoprecipitated chromatin were washed according to protocol.  The chromatin was 

eluted from the magnetic beads.  The crosslinks were reversed for both the 

immunoprecipitated chromatin samples (IPs) and the control WCE samples.  IPs and 

WCEs were purified by phenol-chloroform extraction and were ethanol precipitated.  

Enriched chromatin IPs and WCEs were analyzed using either gene-specific or 

genome-wide approaches.  For gene-specific ChiP, SYBR Green Real Time PCR 

(Applied Biosystems) reactions were performed on the IP and WCE (input) templates, 

using gene-specific primers that amplified specific regions of the FLO11 promoter or 

other control regions in the yeast genome.  For genome-wide ChIP, Cy-5 labeled 
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immunoprecipitated chromatin and Cy-3 labeled WCE samples were assayed using S. 

cerevisiae Sigma 1278b custom genomic tiling microarrays (Agilent, one-array set with 

50 bp probe spacing).  Cy-labeling of samples was achieved by treatment with T4 DNA 

polymerase to generate blunt ends, followed by ligation to annealed JW102/103 primers 

by overnight incubation with T4 DNA ligase.  Ligation-mediated PCR was performed 

using either Cy-3 or Cy-5 dyes.   The amount of incorporated dye was quantified and 

equal amounts were hybridized to arrays for 42-to-60 hours at 65 degrees C.  Arrays were 

washed and scanned with an Agilent scanner.  Array data was normalized using a three 

step process.  First, cross talk normalization provided coefficients for Cy5->Cy3 and 

Cy3->Cy5 to generate corrected intensities for each channel.  The resulting values were 

then median normalized.  The final step of the normalization procedure assumes 

Cy3=Cy5 is a good fit for the data and transforms the data accordingly.  The joint binding 

deconvolution (JBD) algorithm was utilized on the normalized data to identify binding 

events (Qi et. al., 2006). 

 
Whole genome expression analysis |  Poly-A RNA was treated with DNase I.  Cy-3 or 

Cy-5 labeled cDNA was generated using Superscript II reverse transcriptase, which 

generates single-stranded DNAs complementary to the RNA templates.   Cy-5 labeled 

and Cy-3 labeled cDNA was hybridized at 65 degrees C for ~16 hours to S. cerevisiae 

Sigma 1278b custom genomic tiling microarrays (Agilent, two-array set with 25 bp probe 

spacing).  Arrays were then washed according to standard protocol and scanned with an 

Agilent scanner.  The expression values were normalized using a three step process.  

First, cross talk normalization provided coefficients for Cy5->Cy3 and Cy3->Cy5 to 

generate corrected intensities for each channel.  The resulting values were then median 
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normalized.  The final step of the normalization procedure assumes Cy3=Cy5 is a good 

fit for the data and transforms the data accordingly.  Differential expression between 

samples on the same array was determined by the difference in median intensity of the 

probes that cover a given transcript.   

 
RNA Analysis by Real Time PCR |  Total RNA was obtained by standard acid phenol 

extraction from 10 ml aliquots of 50 ml YPD cultures grown to OD600 0.8-1.2, then 

harvested.  The Qiagen QuantiTect Reverse Transcription Kit was used to remove any 

residual genomic DNA and to reverse transcribe the RNA templates to generate cDNAs.  

Aliquots of cDNA were used in Real Time PCR analyses with reagents from Applied 

Biosystems and the ABI 7500 real-time PCR system.  Normalization was to SCR1, a gene 

transcribed by RNA polymerase III. 

 
Rapid Amplification of cDNA Ends (RACE) |  Mapping of 5’ and 3’ ends of Poly-A 

RNA was carried out using the GeneRacer Kit from Invitrogen.  Total RNA was purified 

using standard acid phenol extraction from cultures harvested at OD600 0.8-1.2.  The 

RNA was then treated with calf intestinal phosphatase to remove 5’ phosphates from 

non-mRNAs and truncated mRNAs, and was then treated with tobacco acid 

pyrophosphatase to decap the full length mRNA.  GeneRacer RNA Oligo was ligated to 

the RNA and RACE PCR was performed using either (1) the GeneRacer 5’ primer and a 

reverse primer specific to the target RNA to clone the 5’ end of the transcript or (2) the 

GeneRacer 3’ primer and a forward primer specific to the target RNA to clone the 3’ 

end of the transcript.   This treatment was sufficient to obtain a clean band for the 3’ end 

of the ICR1 noncoding transcript.  However an additional round of PCR using 
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GenerRacer nested primers and a second target-specific primer nested internal to the 

first amplified region was required to obtain the 5’ end of ICR1 and both the 5’ and 3’ 

ends of the PWR1 noncoding transcript.  The target-specific primer sequences used in 

these assays are included in Table 3.  The RACE products were cloned into pCR 4-TOPO 

plasmids and were transformed into One Shot Top 10 chemically competent E. coli cells.  

Plasmid DNA was purified from individual clones and sequenced to obtain the 5’ and 3’ 

ends of the target RNAs.  

 
TATA Box Search |  We scanned the FLO11 promoter sequence using the yeast TATA 

motif from Transfac v9.4 (Motif # 713) to identify putative TATA box locations (Matys 

et al., 2003).  Each position of the sequence was scored on both the forward and reverse 

strands.  We used a threshold of 60% of the maximum positive score (MacIsaac et al., 

2006).    

 

 
Results 

 

The Rpd3L complex has a net activating effect on FLO promoter activity |  Mutants 

with defects in the Rpd3L complex have a net silencing effect on FLO11.  In populations 

of Sigma 1278b cells, more cells within the population are silenced at the FLO11 

promoter when components of the Rpd3L histone deacetylase complex are disrupted 

compared to the number of silenced cells observed in variegating wild type populations.  

Mutation in RpdL subunits Rpd3, Cti6, Pho23, or Rxt2 result in significantly reduced 

transcription from the FLO11 promoter, as visualized by promoter fusions to the reporter 

genes GFP or URA3 at the endogenous FLO11 locus (Chapter 3 of this thesis and Figure 
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2 of this chapter).  Similar phenotypes are observed at the FLO10 promoter (Chapter 3 of 

this thesis).  Deletion of eaf3, a subunit specific to the alternative Rpd3-containing 

histone deacetylase complex Rpd3S had no effect on FLO11 expression in variegating 

populations of cells, indicating a specific role for the Rpd3L complex in this process 

(Chapter 3 and Figure 2D).  For the remainder of this chapter, the cti6 mutant, which is 

specific to the Rpd3L complex, is used to examine the role of Rpd3L in regulating FLO 

gene expression.  In contrast to the effects of Rpd3L disruption, deletion of the gene-

specific DNA binding protein Sfl1 or the histone deacetylase Hda1 disrupts the 

epigenetic silencing of FLO11 such that all cells within the population exhibit a 

transcriptionally active FLO11 promoter (Halme, et al., 2004 and Figure 2E).  Taken 

together, these results demonstrate a net activating effect on transcription from the 

FLO11 promoter by the Rpd3L histone deacetylase complex, in contrast to the net 

repressive effect on transcription from the FLO11 promoter by Sfl1 and Hda1.   

 The effects on transcription observed with the URA3 and GFP reporter constructs 

driven by the FLO11 promoter are reinforced by direct measurements of FLO11 mRNA 

levels (Figure 3).  Northern blot analysis using a 32P labeled DNA probe specific to a 

region near the 3’ end of the FLO11 ORF (bp +3502 to 4093) shows that, relative to wild 

type levels, FLO11 RNA is more than five-fold reduced in the cti6 mutant but, as 

expected, is upregulated in the sfl1 mutant.   

Changes in FLO11 mRNA levels result in morphological and developmental 

phenotypes in the cti6 and sfl1 mutants.  The cti6 mutant has lost the FLO11-dependent 

abilities to adhere to and invade inert surfaces and to undergo the developmental switch 

to pseudohyphal growth under conditions of nitrogen starvation (Chapter 3 of this thesis).  
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The sfl1 mutation, on the other hand, results in enhanced FLO11-dependent phenotypes, 

owing to the desilencing of the FLO11 promoter.  Colonies of sfl1 cells have a wrinkled 

morphology, an enhanced adhesion to inert surfaces, and a hyperfilamentous phenoytype 

under appropriate inducing conditions (Chapter 3 of this thesis; Pan and Heitman, 2002).       

 
Rpd3 localizes to the FLO11 promoter |  To determine whether the role of Rpd3L in 

regulating FLO11 promoter activity is due to a direct or indirect effect of its histone 

deacetylase function, we used both gene-specific and whole-genome microarray-based 

chromatin immunoprecipitation (ChIP) assays to determine whether the catalytic 

component of the Rpd3L complex, Rpd3 itself, localizes to the FLO11 promoter.  An 18-

Myc epitope-tagged allele was generated through homologous integration of a TRP1-

tagged 18-MYC epitope into the carboxy terminus coding region of the RPD3 gene.  The 

Rpd3-18-Myc protein is functional as assessed by YPD-agar adhesion tests and in tests of 

FLO11 promoter activity by serial dilutions onto –Ura and 5-FOA selection media of 

strains carrying both the epitope-tagged Rpd3 allele and the PFLO11-URA3 construct 

(Supplemental Figure 1).  Immunoprecipitation of Rpd3-associated chromatin was 

performed using anti-Myc antibodies on whole cell extracts (WCEs) obtained from 

strains carrying either the Myc-tagged or the untagged allele (negative control).  

In the gene-specific ChIP assays, immunoprecipitated chromatin and WCEs 

(input) were analyzed by real-time PCR using primers specific to the FLO11 promoter.  

We observed enrichment of FLO11 promoter chromatin in the immunoprecipitated 

samples (Figure 4A and 4B).  Enrichment of Rpd3-Myc at the FLO11 promoter was even 

greater than that detected at the INO1 promoter, where enrichment of Rpd3 has been 

previously shown (Robert et al., 2004; Figure 4A and 4B).   Rpd3-Myc is enriched at the 
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FLO11 promoter more than four-fold over the unbound genes, APL2 and ARG2, 

identified in whole genome Rpd3 binding studies (Figure 4A).    Whole-genome 

microarray-based chromatin immunoprecipitation (ChIP-chip) results corroborate the 

gene-specific ChIP results, identifying a region of Rpd3-localization to the FLO11 

promoter located at approximately -1250 and another located at approximately -2850 

relative to the beginning of the FLO11 ORF (Figure 4C). 

 
Rpd3L does not indirectly regulate FLO11 transcription through known regulators  

|  Because Rpd3L is a histone deacetylase complex, we expect it to behave as a 

transcriptional repressor owing to its catalytic ability to condense chromatin structure by 

removing acetyl marks on nucleosomal histones (Kadosh and Struhl, 1998).  Our Rpd3 

localization data, however, suggests a direct role for Rpd3L in activating FLO11 

transcription.  As a further test to check whether loss of FLO11 expression in the cti6 

mutant could be an indirect result of Rpd3L-mediated repression of a transcriptional 

activator of FLO11 transcription, we conducted whole genome poly-A RNA expression 

analysis using Sigma 1278b genomic high-density tiled microarrays.     

The first set of arrays compares expression in wild type cells to expression in the 

cti6 mutant cells.  We compared the list of differentially expressed genes from the array 

data to a list of 75 published (confirmed or putative) regulators of FLO gene transcription 

compiled from the literature ((Cullen et al., 2004; Gancedo, 2001; Halme et al., 2004; 

Kim et al., 2004a; Kim et al., 2004b; Palecek et al., 2002; Pan and Heitman, 2002; Rupp 

et al., 1999) and Supplemental Table 1).  Only one gene from the list of published 

regulators appears in the group of differentially expressed genes from this set of arrays: 

MSB2 just makes the cutoff for being significantly downregulated in cti6 relative to wild 
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type (Figure 5A and Table 4).  MSB2 encodes a cell-surface signaling mucin reported to 

promote the filamentation MAP kinase pathway (Cullen et al., 2004).  In the second set 

of arrays, we compared expression in the cti6 mutant to expression in the sfl1 mutant.  

Since FLO11 expression is variegated within a wild type population of cells and the 

arrays offer a glimpse only at the average expression profile across the entire population, 

the measurement of transcription in this mixed population is not maximally informative.  

However, comparing a mutant (cti6) that is shifted into a more silent promoter state to a 

mutant that is more desilenced at FLO11 (sfl1) could reveal differences.  None of the 75 

published FLO11 regulators was differentially expressed in these array data (Figure 5B 

and Table 4).  The MSB2 result was not reproduced in these data (Figure 5B and Table 

4).  SFL1 itself appears as an artifact of experimental design on the list of differentially 

expressed genes in the cti6 versus sfl1 mutant comparison because it is deleted in the sfl1 

strain and is therefore not expressed (Figure 5B and Table 4).     

Interestingly, the most downregulated gene in cti6 compared to wild type is 

FLO11 itself, confirming that the Rpd3L histone deacetylase complex plays a very 

important role in activating FLO11 expression (Figure 5A and Table 4).  In the cti6 

versus sfl1 mutant comparison, the most differentially expressed gene is FLO10, 

followed by FLO11 (Figure 5B and Table 4).  Both genes are downregulated in the cti6 

mutant compared to the sfl1 mutant.  The enrichment of FLO genes (“mannose binding”) 

among the differentially expressed genes in the cti6 versus sfl1 mutant comparison is 

significant (p = 1.27e-05) according to GO enrichment analysis (Table 5). 

 
The Rpd3L- mutant cti6 has elevated levels of noncoding transcription in the FLO11 

promoter region |  We speculated that FLO11 expression could be regulated by an 
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Rpd3L-repressed noncoding transcript, similar to SRG1-regulation of SER3 expression in 

yeast (Martens et al., 2004; Martens et al., 2005).  To test this hypothesis, we isolated 

RNA from WT, cti6, and sfl1 strains, reverse transcribed the samples to generate cDNA 

from each genotype, and assayed for transcripts originating from within the FLO11 

promoter by quantitative real time PCR.  We initially used two pairs of real time primers 

specific the FLO11 promoter sequence.  One pair of primers was designed to detect 

transcription at a region located -600 from the beginning of the FLO11 ORF.  The other 

pair of primers was designed to detect transcription at a region located -1300 from the 

beginning of the FLO11 ORF.  Both sets of primers detected transcription deriving from 

FLO11 promoter sequence.  The highest steady-state levels of noncoding transcription 

from within the FLO11 promoter region were detected in the cti6 mutant, which is also 

the most silenced in terms of FLO11 expression of the three genotypes tested (Figure 6).  

In the sfl1 mutant, the level of detected noncoding transcription from within the FLO11 

promoter region was less than half of the amount detected in the cti6 mutant (Figure 6).  

In the wild type strain, which exhibits variegated expression of FLO11 within 

populations of cells, an intermediate level of these noncoding transcripts deriving from 

FLO11 promoter sequence was detected (Figure 6).  Rather than an intermediate steady-

state level of noncoding transcription in every wild type cell, we suspect that this 

intermediate level of transcription represents the average level deriving from the FLO11 

promoter region in a variegating population in which transcriptionally silenced cells have 

higher levels of noncoding transcription from within the FLO11 promoter region and 

transcriptionally active cells have little or no noncoding transcription from within the 

FLO11 promoter region.  Because both sets of primers detected similar transcription 
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profiles (Figure 6), we conjectured that both sets of primers were detecting a single long 

transcript that spanned the regions assayed by both primer sets.   

To obtain a higher density view of noncoding transcription occurring within the 

FLO11 promoter region, we utilized real time primer pairs designed to amplify 100-mer 

regions tiled every 30 base pairs from +120 inside the FLO11 ORF to -2280 upstream of 

the FLO11 ORF within the FLO11 promoter region.  Because these primers were not 

optimized, only those that amplified a genomic DNA template with efficiency 1.5 times 

that of the SCR1 control primers on the same template were used in the final data 

analysis.  This experiment was repeated several times using independent isolates of RNA 

from biological replicates of wild type, cti6, sfl1, and a strain in which the FLO11 

promoter has been deleted (pflo11) to ensure specificity of the signal.  Figure 7 shows two 

representative sets of results.  In each experiment conducted, the data indicate that 

noncoding transcription from the FLO11 promoter template in the cti6 mutant is always 

elevated relative to levels in the sfl1 mutant.  The wild type strain generally exhibits 

intermediate levels of noncoding transcription from within the FLO11 promoter region 

relative to cti6 and sfl1, but also shows more variability, likely owing to variegation of 

FLO11 in wild type populations of cells.  The cti6 and sfl1 mutants, however, show a 

clear inverse correlation between the amount of noncoding transcription occurring within 

the FLO11 promoter and the amount of expression of the FLO11 ORF itself.   

 
Strand-specific northern blot analyses reveal the ~3.2-kb Crick-strand noncoding 

RNA ICR1 transcribed from within the FLO11 promoter sequence |  We performed 

northern blot analysis using poly-A selected RNA from wild type, cti6, sfl1, and pflo11 

cells (Figure 8).  For probing, we used 32P-labeled strand-specific RNA probes that 
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hybridize to three different regions of the FLO11 promoter sequence.  Probes 1, 2, and 3 

hybridize to regions located -284 to -819, -1653 to -2255, and -2631 to -3226 relative to 

the beginning of the FLO11 ORF, respectively.  The results obtained using Crick strand-

specific probes are shown in Figure 8.  All three probes detect a specific transcript of 

approximately 3.2 kb that is most highly expressed in the cti6 mutant and is hardly 

expressed at all in the sfl1 mutant.  These results indicate that a single ~3.2 kb noncoding 

transcript ICR1 (Interfering Crick transcript) is indeed being transcribed in the Crick 

direction along nearly the entire length of the ~3.6 kb FLO11 promoter.  The steady-state 

levels of this ICR1 transcript are inversely correlated with expression of the FLO11 

coding sequence in cti6, sfl1, and wild-type strains.  The results obtained using Watson-

strand specific probes will be discussed later in this chapter (Figure 14). 

To test whether the ICR1 transcript runs significantly into the FLO11 coding 

sequence, we performed northern blot analysis using poly-A selected RNA from wild 

type, cti6, sfl1, and pflo11 cells and probed using a Crick strand-specific 32P-labeled RNA 

probe that hybridizes to the region +93 to +568 of the FLO11 ORF sequence.  This probe 

detected the ~4.1 kb FLO11 transcript itself in wild type, and sfl1, but it detected nothing 

at all in the cti6 lane (data not shown).  This result indicates that either the ICR1 

transcript doesn’t run into the FLO11 ORF as far as +93 or that there is an insufficient 

length of complementary sequence between the ends of the transcript and the probe to 

allow for efficient hybridization and detection. 

 
5' and 3' RACE indicates that ICR1 transcription initiates ~3.4 kb upstream of the 

FLO11 ORF and is transcribed along much of the length of the FLO11 promoter |  

We used rapid amplification of cDNA ends (RACE) to map the 3’ and 5’ ends of the 
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ICR1 transcript in wild type, cti6, sfl1, and pflo11 cells.  The 3’ ends of ICR1 identified 

by RACE in wild type, cti6, and sfl1 cells are represented as blue lollipops in Figure 9 

and are summarized by their location in Table 6.  No 3’ends were obtained from the pflo11 

negative control cells.  In the other genotypes, a strong stop is detected at -209, which is 

located approximately 120 basepairs upstream of the putative FLO11 TATA box present 

at -92.  Interestingly, only the cti6 strain, in which FLO11 is transcriptionally silenced, 

and in the wild type strain, in which FLO11 expression variegates, do we detect some 

3’ends that extend up to and even running as far as 24 bases into the FLO11 coding 

sequence.   

The 5’ ends of ICR1 that we identified are represented by blue arrows in Figure 

9.  Of the cloned 5’ ends that mapped to the FLO11 promoter sequence, the cti6 mutant 

exhibits the highest number (50%) of cloned 5’ICR1 sequences that map to a region of 

the FLO11 promoter (+3421 to +3197) that is sufficiently far away from the identified 3’ 

ends to produce the ~3.2 kb band observed in the northern blots (Figure 9 and Table 7).  

We also identified 5’ICR1 ends in this region for wild type and sfl1, but these occurred 

at much lower frequency than in cti6.  No 5’ends were obtained from the pflo11 negative 

control cells (Figure 9 and Table 7).   Some additional 5’ends were detected at various 

locations (indicated by the blue tick marks on the diagrams in Figure 9) along the FLO11 

promoter sequence, but none of these additional 5’ends corresponds in size to any 

abundant transcripts observed by northern analysis, suggesting that these may be artifacts 

of the sensitivity of the RACE assay or the products of incomplete RACE amplification.  

Rather than a single strong 5’start site for ICR1, we identified transcripts initiating over 

a range of ~200 basepairs, a finding that is apparently not unusual for noncoding RNAs. 
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Loss of TATA binding protein association and decreased nucleosome ejection from 

the core promoter of FLO11 are observed when ICR1 transcript levels are elevated |  

We examined yeast TATA binding protein (TBP) localization to the FLO11 promoter by 

performing ChIP-chip analyses using anti-TBP antibody on whole cell extracts derived 

from wild type, cti6, and sfl1 cells (Figure 10).  TBP localization to the FLO11 core 

promoter is abolished in the cti6 mutants in which steady-state ICR1 transcript levels are 

elevated, a finding reminiscent of the mechanism of promoter occlusion proposed for 

SRG1-regulation of SER3 (Martens et al., 2004; Martens et al., 2005).  Conversely, TBP 

localization to the FLO11 core promoter in the sfl1 mutant appears to be elevated well 

above wild type levels.   

Chromatin remodeling at the FLO11 core promoter in wild type, cti6, and sfl1 

cells was assayed by performing ChIP-chip analyses using an anti-H4 antibody on whole 

cell extracts derived from these three genotypes.  Nucleosome eviction fails to occur at 

the FLO11 core promoter in the cti6 mutant (Figure 11).  This result suggests that 

chromatin remodelers, such as Swi/Snf and RSC (discussed in Chapter 3 of this thesis), 

may not have access to the FLO11 core promoter in the cti6 mutant in which ICR1 

transcription is elevated.  Conversely, nucleosome eviction at the FLO11 core promoter is 

elevated over wild type in the sfl1 mutant in which ICR1 transcription is low.   

Taken together, the observations described above suggest that ICR1 inhibits 

FLO11 expression by interfering with the ability of basal transcription machinery and 

chromatin remodeling complexes to access the core promoter of FLO11 in a manner 

similar to that observed at the SER3 locus (Martens et al., 2004; Martens et al., 2005).   
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Termination of ICR1 in the Rpd3L- mutant cti6 results in the recovery of FLO11-

dependent haploid adhesion |  To test the model that ICR1 has a causal effect in  

repressing FLO11 expression by the act of its being transcribed through the FLO11 

promoter, we performed an experiment to determine whether termination of ICR1 

transcription could recover FLO11 expression, as assayed by the recovery of FLO11-

dependent haploid adhesion.   

 Computational approaches using yeast genome conservation analysis and motif 

discovery tools (Matys et al., 2003; MacIsaac and Fraenkel, 2006) revealed canonical 

TATA box sequences only in the core promoters of FLO11 and MRS1 (the next upstream 

gene); therefore, there are no obvious candidate TATA sequences to mutate in order to 

disrupt ICR1 transcription.  Our inability to identify a canonical TATA box for ICR1 

suggests that noncoding transcription across the FLO11 promoter proceeds by a non-

canonical TATA element or by TATA-less initiation, a phenomenon that has been 

described in eukaryotes from yeast to human (Singer, et al., 1990; Smale, 1996; Weis and 

Reinberg, 1997; Joazeiro et al., 1994).   

  In lieu of this approach, we constructed wild type, cti6, and sfl1 strains in which 

ICR1 is disrupted by a eukaryotic transcriptional terminator.  We inserted a 1.4-kb 

construct containing the K. lactis URA3 gene under its own promoter and with its 

transcriptional terminator intact in the Crick direction at -3041 within the FLO11 

promoter region.  This insertion places the construct downstream of the ICR1 

transcription initiation region.   

Wild type, cti6, and sfl1 strains, with and without this URA3-terminator construct, 

were patched onto YPD-agar plates and grown for four days at 30 degrees C before being 
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subjected to the standard plate washing assay for yeast haploid adhesion (Guo et al., 

2000).  The phenotypes resulting from insertion of the URA3-terminator construct in 

ICR1 supports the model in which this noncoding RNA regulates FLO11 expression.  As 

previously observed, the cti6 mutant without the URA3-terminator construct fails to 

adhere to the YPD-agar, but the cti6 strain carrying the URA3-terminator construct, by 

contrast, shows a rescue of the non-adherent cti6 phenotype (Figure 12).  Most of the cti6 

cells carrying the URA3-terminator construct adhered to the YPD-agar.   

 
A second noncoding transcript, PWR1, is repressed by Sfl1 and is transcribed in the 

Watson direction covergently and overlapping with ICR1 |  To characterize further the 

transcription occurring within the FLO11 promoter, we performed expression analysis 

using  S. cerevisiae Sigma 1278b genomic high-density tiling microarrays with Crick and 

Watson strand specificity.  For these arrays, Superscript reverse transcriptase is used to 

generate Cy-labeled single strands of cDNA complementary to the isolated collection of 

RNA templates.  A comparison of the transcriptional profiles in sfl1 cells versus cti6 cells 

revealed the presence, not only of the ICR1 transcript, but also of a second noncoding 

transcript PWR1 (for Promoting Watson RNA) that initiates approximately 2.3 kilobases 

away from the beginning of the FLO11 ORF and is transcribed in the Watson direction 

convergently with the ICR1 transcript (Figure 13).  In these data, transcription of PWR1 

is observed in the sfl1 mutant, but not at all in the cti6 mutant.   

 
Strand-specific northern blot analyses confirm the existence of a ~1.2-kb Watson-

strand noncoding RNA PWR1 transcribed from within the FLO11 promoter 

sequence |  We performed northern blot analysis using poly-A selected RNA from wild 
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type, cti6, sfl1, and pflo11 cells.  For probing, we used 32P-labeled strand-specific RNA 

probes that hybridize to three different regions of the FLO11 promoter sequence.  Probes 

1, 2, and 3 hybridize to regions located -284 to -819, -1653 to -2255, and -2631 to -3226 

relative to the beginning of the FLO11 ORF, respectively.  The results obtained using 

Watson strand-specific probes are shown in Figure 14.  Probes 2 and 3 detect a specific 

transcript of approximately 1.2 kb that is most highly expressed in the sfl1 mutant and is 

not expressed in the cti6 mutant.  An intermediate level of this transcript is observed in 

the variegating wild type cells.  The steady-state levels of this PWR1 transcript are 

positively correlated with expression of the FLO11 coding sequence in cti6, sfl1, and 

wild-type strains.   

Transcription of PWR1 appears to be repressed by the DNA-binding protein 

Sfl11.  In the sfl1 mutant, elevated steady-state levels of the PWR1 transcript correlate 

with increased FLO11 expression.  This observation suggests that the long-known role of 

Sfl1 in repression of FLO11 expression may be an indirect effect of its repression of 

PWR1 transcription.    

 
5' and 3' RACE indicates that the PWR1 transcript initiates ~2.3 kb upstream of the 

FLO11 ORF and terminates near the transcription initiation site of ICR1 | We used 

rapid amplification of cDNA ends (RACE) to map the 3’ and 5’ ends of the PWR1 

transcript in wild type and sfl1 cells.  Because PWR1 is not expressed in cti6 cells, we did 

not perform the RACE assay on this genotype.    

The 3’ ends of PWR1 identified by RACE in wild type and sfl1 cells are 

represented as red lollipops in Figure 15 and are summarized by their location in Table 8.  

The termination sites cluster between -3155 and -3409 relative to the beginning of the 
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FLO11 ORF.  Thus, the termination site for PWR1 is in the same region of the FLO11 

promoter as the initiation site for ICR1.   

The 5’ ends of the PWR1 transcript are represented as red arrows in Figure 15 

and summarized by their location in Table 9.   Rather than a single strong 5’start site for 

PWR1, we identified transcripts initiating over a short range of ~150 basepairs, clustered 

around -2300 relative to the beginning of the FLO11 ORF.  This places the start site of 

PWR1 just upstream of the UAS1 region, located between -1760 and -2175. 

 
The PWR1 transcript interferes with expression of a convergent and overlapping 

Crick-strand reporter construct |  I hypothesize that PWR1 promotes FLO11 

expression by competing with ICR1 for its template region and preventing ICR1 

transcription from proceeding along the length of the FLO11 promoter, thereby inhibiting 

the ICR1-mediated transcriptional repression of FLO11 expression.   

This model is supported by our observation that transcription of PWR1 can 

interfere with expression of the K. lactis URA3 reporter construct integrated at position    

-3041 in the FLO11 promoter (Figure 16).  The URA3 reporter is transcribed in the Crick 

direction convergently and overlapping with PWR1 in an ICR1-like manner.   

Using the size of colonies growing on SC-Ura media as an indicator of URA3 

reporter expression, our results demonstrate that the URA3 gene is expressed most highly 

in cti6 cells, in which no PWR1 transcript is detected (Figure 16A and Figure 14).  In the 

sfl1 mutant background in which PWR1 transcript levels are elevated, URA3 reporter 

expression is very low, resulting in only microcolonies growing on the SC-Ura media 

(Figure 16A and Figure 14).  Wild type cells, which exhibit an intermediate level of 
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PWR1 expression, also exhibit a level of URA3 reporter expression that is intermediate 

between cti6 and sfl1 (Figure 16A and Figure 14).   

Serial dilutions of these strains onto SC+5-FOA and SC–Ura also confirm these 

findings (Figure 16B).   More cells in the cti6 background are actively expressing the 

URA3 reporter construct, therefore more cells of this genotype are able to grow on SC–

Ura and fewer on SC+5-FOA.  Conversely, more cells in the sfl1 background are silenced 

for URA3 reporter expression as a result of elevated PWR1 transcription, therefore more 

of these cells are able to grow on SC+5-FOA and fewer on SC–Ura.   The URA3 

construct effectively variegates in the wild type cells.        

 
A similar pair of a convergent and overlapping noncoding RNAs are transcribed 

within the FLO10 promoter region |  Expression analyses using  S. cerevisiae Sigma 

1278b genomic high-density tiling microarrays with Crick and Watson strand specificity, 

also reveal the presence of a similar pair of convergent, overlapping noncoding 

transcripts initiating within the FLO10 promoter region (Figure 17).  A comparison of the 

transcriptional profiles in sfl1 cells versus cti6 cells demonstrates that FLO10 expression 

is upregulated in the sfl1 mutant, and that this upregulation is correlated with the 

transcription of a noncoding transcript that is (i) derepressed in the sfl1 mutant (ii) 

transcribed divergently from the protein-coding FLO10 gene (which is transcribed in the 

Watson direction), and (iii) transcribed convergently and overlapping with a second 

noncoding transcript that is detected in both the sfl1 and cti6 mutants.  These 

observations suggest that transcriptional regulation by noncoding RNAs may be a 

mechanism that extends to other members of the variegating FLO gene family.  
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A new model to inform the mechanism underlying variegated transcription of FLO 

genes |  Our findings provide new insight into a model for the mechanism underlying 

transcriptional variegation of FLO genes.  This model involves regulatory noncoding 

RNAs, bistable changes in local chromatin structure resulting from recruitment of histone 

deacetylases, and competitive binding to DNA by proteins, such as Sfl1 and Flo8, that 

may determine whether histone deacetylases are present or absent at local regions within 

FLO promoters.  The model is summarized in Figure 18 and is discussed below. 

 

DISCUSSION 

 

In this chapter, I have presented results that form the basis for an explanation of 

how a histone deacetylase, i.e., a canonical repressor of transcription, can play a direct 

role in activating expression of the FLO11 gene.  We have shown that the Rpd3L histone 

deacetylase complex represses the transcription of the noncoding ICR1 transcript that is 

transcribed across the FLO11 promoter in the Crick direction.  When components of the 

Rpd3L histone deacetylase complex are deleted, we find that steady-state levels of the 

ICR1 transcript are elevated and FLO11 is not expressed.  A transcription terminator 

placed within ICR1 results in recovery of FLO11-dependent phenotypes in the Rpd3L- 

mutant, suggesting a causal role for the ICR1 transcript in preventing FLO11 expression.  

Thus, although the indirect effect of Rpd3L histone deacetylase activity is the activation 

of FLO11 expression, its local direct effect on transcription of the regulatory noncoding 

RNA ICR1 is repressive, thus resolving the apparent paradox regarding Rpd3L function.   

Our discovery that transcription of ICR1 initiates ~-3400 basepairs from the 

beginning of the FLO11 ORF expands the regulatory region of the FLO11 promoter 
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beyond that identified in previous studies (Rupp et al., 1999).  The region of the FLO11 

promoter dissected by Rupp et al. did not extend sufficiently far upstream of the FLO11 

ORF to identify the ICR1 transcription initiation region (Rupp et al., 1999). 

I have also reported that the well documented transcriptional regulator of FLO 

genes Sfl1 represses the transcription of a second regulatory noncoding RNA PWR1 that 

also initiates within the FLO11 promoter region and is transcribed in the Watson 

direction convergently and overlapping with the ICR1 transcript.  This observation 

suggests that Sfl1-mediated repression of FLO11 expression involves its regulation of a 

noncoding RNA.  The fact that Sfl1 is important for the recruitment of the Hda1 histone 

deacetylase to target promoters and that Hda1 is also required for epigenetic silencing of 

FLO11 suggests that Hda1 may also play a role in repressing PWR1 transcription, but 

more experiments are required to test this hypothesis.  

Transcription of PWR1 has a positive effect on FLO11 expression.  I believe that, 

by competing with the ICR1 transcript for its DNA template region, PWR1 prevents the 

ICR1 noncoding transcript from proceeding through the FLO11 promoter and thereby 

prevents ICR1-mediated repression of FLO11 expression.  The fact that the PWR1 

transcript is capable of interfering with the expression of a URA3 reporter gene inserted 

in its path supports this hypothesis.   The transcription start site of PWR1 is located just 

upstream of the UAS1 region of the FLO11 promoter.  This observation suggests the 

following hypotheses:  (i) PWR1 ma

T

y have evolved to prevent ICR1 from proceeding into 

the UAS1 region and (ii) proteins that bind to the UAS1 region, such as Flo8, may be 

directly involved in regulating transcription of PWR1. 
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Based on the findings reported in this chapter, I propose a new model that helps to 

explain the transcriptional variegation observed at FLO11 (Figure 18).  Although the 

model is based on the transcriptional analysis of chromatin binding mutants, the 

identification of the opposing noncoding transcripts provides a window into events 

occurring in wild type populations of cells.  The promoter of FLO11 is under dynamic 

targeting by DNA-binding proteins and chromatin modifying complexes.  Competitive 

binding of proteins, such as Sfl1 and Flo8, may determine whether histone deacetylases 

are present or absent at local regions within the FLO11 promoter and could result in 

bistable switching of local chromatin structure.  If Rpd3L binds to the FLO11 promoter, 

preventing ICR1 transcription, then FLO11 will be transcribed.  Similarly, if Flo8 and or 

Ste12/Tec1 bind and thereby prevent Sfl1 from associating with the promoter, PWR1 is 

transcribed; PWR1 transcription then interferes with ICR1 transcription, thereby allowing 

FLO11 to be transcribed.  However, if Sfl1 binds to the promoter and recruits Hda1, 

PWR1 transcription is repressed, ICR1 is transcribed, and FLO11 transcription is 

repressed.   

The new model proposes that transcriptional activity from the core promoter of 

FLO11 is ultimately regulated by the opposing actions of the two noncoding RNAs, ICR1 

and PWR1.  The transcription of ICR1 somehow results in the core promoter of FLO11 

becoming inaccessible to chromatin remodelers, such as Swi/Snf, and the basal 

transcription machinery, including TBP.   Transcription of PWR1 likely interferes in cis 

with ICR1 transcription by competing for its DNA template region, and thereby promotes 

FLO11 core promoter activity.  Experiments to test whether PWR1 and ICR1 have any 

trans-acting effects on FLO11 expression are underway.   
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Competitive binding of transcription factors that generate different outputs to the 

same regulatory site in DNA has been shown to form the basis of a simple exclusive 

toggle switch between two transcriptional states (Warren and Rein ten Wolde, 2004).  At 

the FLO11 locus, competitive binding of trans-acting protein factors that cause a switch 

between two chromatin states, one permissive of noncoding transcription and the other 

repressive of noncoding transcription, could be the basis of exactly such a simple toggle 

switch between an active or inactive core promoter state.  The percentage of active versus 

inactive FLO11 core promoters within a population of wild-type variegating yeast cells 

may reflect the likelihood of binding for each of the two trans-acting proteins competing 

for the same binding region at each FLO11 promoter within the population. 

If competitive binding of proteins is sufficient to bring about a toggle between 

alternative chromatin states, which in turn change the transcription profiles of cis-acting 

regulatory noncoding RNAs, then we have moved a step forward in understanding the 

mechanisms that might underlie transcriptional variegation of FLO genes.  But, the 

mechanism of transcriptional memory observed in chains of filamentous cells, all of 

which express FLO11 (Halme et al., 2004), remains a mystery at this point in our 

research.  Our model requires components that could facilitate a feedback loop that would 

lead to a persistence of one local chromatin state or the other.  As yet, the components 

necessary for such a feedback loop have not been identified.     

 Although we have identified histone deacetylases that act at the FLO11 promoter, 

the manner in which local chromatin states are “reset” to allow continuing 

interconversion between repressive and permissive structure at the FLO11 promoter also 

remains a mystery.   A progression through the cell cycle and new histone deposition may 
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be required.  Further experiments are required to test this hypothesis.  Further 

characterization of the molecular roles of the trans-acting factors that function at various 

sites within the expansive FLO11 promoter may also shed light on this question.   

Our findings at FLO11 reveal a mechanism of transcriptional control that is likely 

soon to be accepted as a common regulatory strategy in yeast.  A number of other recent 

publications also report cases of regulation of gene expression by noncoding transcripts 

in S. cerevisiae.  The genes IME4, SER3, PHO5, and PHO84 have all been found to be 

transcriptionally regulated by noncoding RNAs (Camblong et al., 2008; Hongay et al., 

2006; Martens et al., 2004; Martens et al., 2005; Uhler et al., 2007).  Furthermore, 

genome-wide analysis has lead to the discovery of 667 transcripts occurring in intergenic 

regions, as well as antisense transcripts detected at 367 confirmed genes in yeast (Miura 

et al., 2006).   The very recent deep sequencing of the yeast transcriptional landscape has 

revealed the presence of potential regulatory secondary transcripts within 6% of yeast 

promoter regions and has also shown that 11.8% of yeast transcripts have overlapping 3’ 

ends that could allow genes to influence the transcription of their neighbors 

(Nagalakshmi et al., 2008).  Thus, the regulatory mechanisms described for the FLO11 

locus in this thesis, along with other recent reports of such phenomena, are likely a 

harbinger of new view of transcriptional control.   
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Figures and Tables 
 
Figure 1 |  A summary of the regulators of FLO11 transcription discussed in this 
chapter.  Net activators of FLO11 expression are shown in light blue.  Net repressors of 
FLO11 expression are shown in red.  Both Sfl1 and Flo8, the downstream effectors of 
PKA signaling, have been shown to bind competitively to the same region of the FLO11 
promoter located between  -1150 to -1400 relative to the beginning of the FLO11 ORF 
(Pan and Heitman, 2002; Rupp et al., 1999; Gancedo, 2001; Palecek et al., 2002).  Sfl1 
has also been shown to recruit the Hda1 histone deacetylase to promoters, suggesting the 
participation of Sfl1 in chromatin-mediated repression of FLO11 expression (Halme et 
al., 2004; Conlan and Tzamarias, 2001; Wu et al., 2001).  Studies of the FLO11-like 
STA1 promoter in the yeast S. diastaticus have identified two UAS regions that are likely 
functional in the FLO11 promoter, as well (Kim et al., 2004a; Kim et al., 2004b); UAS1 
spans the region -1760 to -2175 and UAS2 spans the region -1000 to -1498 relative to the 
beginning of the FLO11 ORF.  In the STA1 promoter studies, Sfl1 was shown to compete 
with the Ste12-Tec1 activator complex, the downstream effector of the filamentation 
MAPK pathway, for binding of the UAS2 region (Kim et al., 2004b; Rupp et al., 1999;  
Gancedo, 2001; Palecek et al., 2002).  The Ste12-Tec1 complex then recruits the Swi-Snf 
chromatin remodeling complex (Kim et al., 2004a; Kim et al., 2004b).  The Swi-Snf 
complex and Flo8, in turn, facilitate recruitment of the basal transcription machinery to 
the core promoter (Kim et al., 2004a; Kim et al., 2004b).  We have found that 
components of the Rpd3L histone deacetylase complex, including Rpd3, Cti6, Rxt2, and 
Pho23, behave as net activators of FLO11 expression.  In this study, we report the 
discovery of two noncoding RNAs that also regulate FLO11 expression.  Rpd3L 
represses the ICR1 noncoding transcript which, itself, represses FLO11 expression, 
perhaps by interfering with the access of Swi-Snf, other chromatin remodelers, and the 
basal transcription machinery to the core promoter of FLO11.  Sfl1, perhaps through its 
recruitment of the Hda1 histone deacetylase, represses the PWR1 noncoding transcript 
which, itself, promotes FLO11 expression. 
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Table 1 |  Saccharomyces cerevisiae strains used in this study.   

Strain Genotype Source
10560-4A MATa ura3-52 leu2::hisG trp1::hisG his3::hisG Fink lab collection
10560-6B MATx ura3-52 leu2::hisG trp1::hisG his3::hisG Fink lab collection
SBY170 MATx sfl1::kanR ura3-52 leu2::hisG  trp1::hisG  his3::hisG This study
SBY251 MATa flo11::pFLO11::URA3 ura3-52 leu2::hisG trp1::hisG Halme et al., 2004
SBY408 MATa pho23::Tn3::LEU2 ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY411 MATa cti6::Tn3::LEU2 ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY415 MATa rxt2::Tn3::LEU2 ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY591 MATx cti6::Tn3::LEU2 ura3-52 his3::hisG leu2::hisG trp1::hisG cti6::Tn3::LEU2 This study
SBY786 MATa eaf3::Tn3::LEU2 ura3-52 flo11::pFLO11::URA3 leu2::hisG trp1::hisG This study
SBY847 MATa rpd3::KanR can1-^::ste2pr-HIS3 ura3^ leu2^ his3^::hisG lyp1-^::ste3pr-LEU2 Owen Ryan

SBY910 MATx Rpd3-18myc-TRP1 ura3-52 trp1::hisG leu2::hisG This study
SBY931 MATa Rpd3-18myc-TRP1 flo11::pFLO11::URA3 ura3-52 trp1::hisG leu2::hisG This study
SBY934 MATx Rpd3-18myc-TRP1 flo11::pFLO11::URA3 ura3-52 trp1::hisG leu2::hisG This study
SBY946 MATa Rpd3-18myc-TRP1 ura3-52 trp1::hisG leu2::hisG This study
SBY1062 MATa pflo11::KanMx ura3-52 trp1::hisG leu2::hisG NUP49-GFP-HIS3MX6 Chia Wu
SBY1065 MATa cti6::KanR flo11::pFLO11::URA3  ura3-52 leu2::hisG trp1::hisG This study
SBY1091 MATx pFLO11::I::K.l.URA3-term ura3-52 his3::hisG leu2::hisG This study
SBY1097 MATx cti6::Tn3::LEU2 pFLO11::I::K.l.URA3-term ura3-52 his3::hisG leu2::hisG This study
SBY1103 MATx sfl1::KanR pFLO11::I::K.l.URA3-term ura3-52 his3::hisG leu2::hisG This study
AHY959 MATa hda1::kanr  flo11::pFLO11::URA3  ura3Δ0 Halme et al., 2004
AHY960 MATa sfl1::kanr  flo11::pFLO11::URA3  ura3Δ0 Halme et al., 2004

 
 
Table 2 |  Plasmids used in this study.   
 

Plasmid Insert Reference

pQF382.2 PTEF -FLO11; URA3 Fink Laboratory Collection 

p416TEF PTEF -(empty vector); URA3 Mumberg et al., 1995 

pUG72 K. lactis URA3 under its own promoter 
and terminator sequence 

Gueldener et al., 2002 

Y1p365-FLO11::lacZ Sigma 1278b PFLO11-lacZ-LEU2 Fink Laboratory Collection 

 
 
 

Table 3 |  Oligos used in this study.   
 

Primer Sequence (5' to 3') Description
CW352 CTGCCGCGAAAGTTTAATTTG Real time primer for PFLO11 Opt-1 For
CW353 CCTAGTGATCTTTTCCTGACTCCAA Real time primer for PFLO11 Opt-1 Rev
CW354 CGTACTGGGACATCGCATACC Real time primer for PFLO11 Opt-2 For
CW355 TTGTGCCCGTATTGTTGCA Real time primer for PFLO11 Opt-2 Rev
PSB322 AGCTAGTGGCCGCTTCGAT pINO1 real time primer
PSB323 TTCCGGCTTTTTCAAGTCAAG pINO1 real time primer
PSB366 CTGCAATGATTATGTGGTATGATCAG PFLO11 real time primer: -2800 For
PSB367 CGGTCCCATTGAGCCAAA PFLO11 real time primer: -2800 Rev
PSB368 TGCACTCGTTTTCCATGTTCTT PFLO11 real time primer: -2400 For
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Table 3 |  Oligos used in this study: Continued … 

Primer Sequence (5' to 3') Description
PSB369 GGCCCTGAGATGCTCAACTG PFLO11 real time primer: -2400 Rev
PSB370 AAGCTGTGCGGGAAAACG PFLO11 real time primer: -1800 For
PSB371 TTCATGTGGTGGAAATACCGATT PFLO11 real time primer: -1800 Rev
PSB372 CGCCGGCAGGCAAAT PFLO11 real time primer: -1400 For
PSB373 GAGAAACTGAAAGGCAAAAAAGAAA PFLO11 real time primer: -1400 Rev
PSB374 TGCAACAATACGGGCACAA PFLO11 real time primer: -700 For
PSB375 TCACACCACCGATAGGCAATAG PFLO11 real time primer: -700 Rev
PSB376 CGGATAACTCATAGACTTACCAGTACAAG PFLO11 real time primer: -300 For
PSB377 GATGAATAGGGTGCTTTTTATACGTTT PFLO11 real timeprimer: -300 Rev
PSB450 CGGGTTATTTCGAACTCATGTTT ARK1 real time primer
PSB451 GGCTTAGAATTCGGACCCTATTG ARK1 real time primer
PSB460 TGCATGGCAATCAGAACGAT APL2 real time primer
PSB461 GGCGGAGTGGTGTTTCAATG APL2 real time primer
PSB464 GCGCATGAACTCAAGTATGATCA ARG2 real time primer
PSB465 CGTTTTGTAGCGGTTGTATTCAGA ARG2 real time primer
PSB495 GCTGCCGGTGAAACTACATC To generate 3' FLO11 probe
PSB496 TGGAAGAGCGAGTAGCAACC To generate 3' FLO11 probe
PSB501 GGACATCGCATGCCTTGGGATTCCGTAA 3’ RACE ICR1-specific primer
PSB503 CGGGCACAACTCATTCTGCGCTAT 3’ RACE Nested ICR1-specific primer
PSB516 CCTATACTCTTAAACAGATCAGTCATTCAT To generate Crick Riboprobe 1
PSB517 TCCTCAGATAAGACAAGTCTAACAGTTAAT To generate Watson Riboprobe 1
PSB518 ccaagcttctaatacgactcactatagggagCCTATACTCTTAAACAGATCAGTCATTCAT To generate Watson Riboprobe 1
PSB519 ccaagcttctaatacgactcactatagggagTCCTCAGATAAGACAAGTCTAACAGTTAAT To generate Crick Riboprobe 1
PSB557 TGTTAGGGTCCGTTTTCCCGCACAGCTT 5’ RACE ICR1-specific primer
PSB558 AATGTCCCGTCTGCGTCAGCAGCTCAGA 5’ RACE Nested ICR1-specific primer
PSB561 CGCTGGCCCTGAGATGCTCAACTGTAAG 5’ RACE ICR1-specific primer
PSB562 CAGTTTGACCAGTGCTACTTGGCGCTGT 5’ RACE Nested ICR1-specific primer
PSB565 TCCGAAGGAACTAGCTGTAATTCTA To generate 5' FLO11 ORF probe (Crick)
PSB566 ccaagcttctaatacgactcactatagggagGTTTGAGAGTAGCCTTGATTGTCAT To generate 5' FLO11 ORF probe (Crick)
PSB571 CTAATGTATCCCTCATTTCATACCG To generate Crick Riboprobe 2
PSB572 ccaagcttctaatacgactcactatagggagGAGTCTAAGTTGACAAGGCTACGAA To generate Crick Riboprobe 2
PSB577 CTATCTCCACATACCAATCACTCG To generate Crick Riboprobe 3
PSB578 ccaagcttctaatacgactcactatagggagCCCTGAGATGCTCAACTGTAAGTA To generate Crick Riboprobe 3
PSB579 CTTAGCGTGGGTGCTTCTGCTCAGTCTTCGTTTCCTATCTCCACATACCAATCAC

TCGTTggtctagagatcccaatacaacaga
To generate K. lactis URA3-term construct

PSB580 TATTCAGATTTAGTTGGCGGTACGACTCCTTACAGCAGTAAATTATTCGAATTAG
TAACAgggttctcgagagctcgttt

To generate K. lactis URA3-term construct

PSB637 ccaagcttctaatacgactcactatagggagCTAATGTATCCCTCATTTCATACCG To generate Watson Riboprobe 2

PSB638 GAGTCTAAGTTGACAAGGCTACGAA To generate Watson Riboprobe 2
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Table 3 |  Oligos used in this study: Continued … 
 

Primer Sequence (5' to 3') Description
PSB643 ccaagcttctaatacgactcactatagggagCTATCTCCACATACCAATCACTCG To generate Watson Riboprobe 3
PSB644 CCCTGAGATGCTCAACTGTAAGTA To generate Watson Riboprobe 3
PSB649 GAACAGCGCCAAGTAGCAACTGGTCAA 5’ RACE Nested PWR1-specific primer

PSB649 GAACAGCGCCAAGTAGCAACTGGTCAA 5’ RACE Nested PWR1-specific primer
PSB650 CCCTCTTCCTCTCACTGCACTTCAA 5’ RACE PWR1-specific primer
PSB651 GCGGTACGACTCCTTACAGCAGT 3’ RACE PWR1-specific primer
PSB652 ACTGAGCAGAAGCACCCACGCTAA 3’ RACE Nested PWR1-specific primer

P1D11-P2D11 ATCGGTATTTCCACCACATGAA/TGGAACTGAGTCTAAGTTGACA HiDensity PFLO11 real time pair @ -1620

P1E1-P2E1 AAAATTCATTCGTAGCCTTGTC/AACATAGAACAAATCTCGCCCG HiDensity PFLO11 real time pair @ -1560

P1E3-P2E3 TATGAATAAAAGGATCCACGGG/CTGGCGTAGGCACACAATCCGG  HiDensity PFLO11 real time pair @ -1500

P1E5-P2E5 CACAAAACTTTAGGAATACCGG/TTCCTATTGGAGCCAGGAAAAG HiDensity PFLO11 real time pair @ -1440

P1E7-P2E7 GCTGTAATTCCTCGTGATCTTT/GAAAGGCAAAAAAGAAAAGCCT HiDensity PFLO11 real time pair @ -1380

P1E8-P2E8 CCAATAGGAACGCCGGCAGGCA/TGCTTATGTAATGCCACATTCC HiDensity PFLO11 real time pair @ -1350

P1F2-P2F2 AATGTCGCCCAAAGAGTTTCGG/AGCCTAATTTTGCAGTGATCGC HiDensity PFLO11 real time pair @ -1170

P1F7-P2F7 GGGCTAAGAATGGACTTCCCTT/CACCTTCTAAACGCTCGGACTG HiDensity PFLO11 real time pair @ -1020

P1G10-P2G10 CATTGTCCAACCCTAAAAGTGC/CAATCGTACCCTAATAGTTGCT HiDensity PFLO11 real time pair @ -840

P1G1-P2G1 GCACAAACTTTTTTATTTCTGC/CGGAATCCCAAGGCATGCGATG HiDensity PFLO11 real time pair @ -750

P1G4-P2G4 TGGGATTCCGTAATTAGGTGCA/AATTGTTAATCACACCACCGAT HiDensity PFLO11 real time pair @ -720

P1G5-P2G5 GGCACAACTCATTCTGCGCTAT/TTGAAAATCCATTCCAAGCTCT HiDensity PFLO11 real time pair @ -690

P1G6-P2G6 ACAGAACTTCTATTGCCTATCG/AAACAAACGAATACCTCCAAAT HiDensity PFLO11 real time pair @ -570

P1H2-P2H2 CAATCGTACCCTAATAGTTGCT/GAAGTATATTGCGATGATGCCT HiDensity PFLO11 real time pair @ -450

P1H7-P2H7 CTTGTCTTATCTGAGGAATGTC/AGCGCAGTAACCTACATGCTTG HiDensity PFLO11 real time pair @ -300

P3A2-P3D2 CACCCTATTCATCAGTATACTC/GTCTTTGCATAGTGTGCGTATA HiDensity PFLO11 real time pair @ -90

P3A4-P3D4 GTAGGCCTCAAAAATCCATATA/TTGGAAAACCCAAAGCTGAGTA HiDensity PFLO11 real time pair @ -30

P3A5-P3D5 ATGCAAAGACCATTTCCATTCG/CTTCGGAGGATCCTCTAGGAAC HiDensity PFLO11 real time pair @ +1

P3A6-P3D6 GTCCTTTCGCTTCTATTTTACT/AGCCATTAACGATAGAATTACA HiDensity PFLO11 real time pair @ +30
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Figure 2 | The Rpd3L histone deacetylase complex has a net activating effect on 
FLO11 expression, whereas Sfl1 and the Hda1 histone deacetylase have net 
repressing effects.  (A)  FLO11 promoter activity was monitored using two different 
reporter genes, GFP or URA3, driven at the endogenous FLO11 locus.  (B) In wild type 
Sigma 1278b cells, transcription from the FLO11 promoter variegates as a result of  
reversible epigenetic silencing in a subset of cells, as seen by fluorescence microscopy of 
a clonal population of PFLO11-GFP cells.  (C) FACS analysis of cells carrying the GFP 
construct shows a decrease in the percentage of cells with an active FLO11 promoter 
when components of the Rpd3L complex, including cti6, rxt2, and pho23, are mutated.  
The positive control was a PURA3-GFP strain.  The negative control was a strain carrying 
no GFP gene.  (D) Serial dilutions of strains expressing the PFLO11-URA3 construct onto 
SC–Ura and SC+5FOA selection media show that mutation of components of Rpd3L 
results in more cells having a silent FLO11 promoter, and are therefore able to grow on 
SC+5-FOA compared to wild type.  (E) Mutation of sfl1 or hda1 results in loss of 
epigenetic silencing at the FLO11 promoter (Halme et al., 2004), thus no cells of these 
genotypes are able to grow on SC+5-FOA. 
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Figure 3 | Northern blot analysis confirms that FLO11 mRNA levels are reduced 
in an Rpd3L- (cti6) mutant and elevated in an sfl1 mutant.  (A)  Total RNA was 
DNase-treated to remove any residual genomic DNA and 10 ug of this DNase-treated 
RNA were loaded per sample.  Northern blot analysis using a 32P-labeled DNA probe 
specific to a region near the 3’ end of the FLO11 ORF (bp +3502 to 4093) shows that, 
relative to wild type levels, FLO11 RNA is more than five-fold reduced in the cti6 mutant 
and, as expected, is upregulated in the sfl1 mutant. (B Signal was quanitified and 
normalized to the SCR1 load control using ImageQuant software.  (C) A map of the 
probe location. 
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Figure 4 | Rpd3L localizes to the FLO11 promoter.  (A)  Gene-specific ChIP was 
performed using a functional 18-Myc epitope-tagged allele of Rpd3.  WCEs were 
precipitated using an antibody against the Myc-epitope.  Real time PCR was performed 
on the immunoprecipitated chromatin and WCE input using primers specific to the 
FLO11 promoter region and control primers specific to the INO1 promoter, previously 
shown to be bound by Rpd3 (Robert et al., 2004), and the unbound genes, APL2 and 
ARG2, identified in whole genome Rpd3 binding studies.  The data were normalized 
relative to another unbound region (ARK1).  For the FLO11 promoter region, the results 
using a primer pair that amplifies a region located -1400 relative to the FLO11 ORF are 
shown below.  Enrichment of Rpd3-Myc at the FLO11 promoter was greater than that at 
the INO1 promoter.  (B) Immunoprecipitations were also performed on untagged strains 
to ensure specificity of the signal.  (C) Whole genome ChIP-chip was performed using S. 
cerevisiae Sigma 1278b custom genomic tiling microarrays.  These assays identified a 
region of Rpd3-localization spanning approximately -900 to -1400, and another located at 
approximately -2850 relative to the beginning of the FLO11 ORF.     
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Figure 5 | Rpd3L does not indirectly regulate FLO11 expression through known 
regulators.  (A) Whole genome poly-A RNA expression analyses using Sigma 1278b 
genomic high-density tiled microarrays as a further test to check whether loss of FLO11 
expression in the cti6 mutant could be an indirect result of Rpd3L-mediated repression of a 
transcriptional activator of FLO11 transcription. The first set of arrays compared expression 
in wild type versus cti6. We compared the list of differentially expressed genes from the 
array data to a list of 75 published (confirmed or putative) regulators of FLO gene 
transcription compiled from the literature ((Cullen et al., 2004; Gancedo, 2001; Halme et al., 
2004; Kim et al., 2004a; Kim et al., 2004b; Palecek et al., 2002; Pan and Heitman, 2002; 
Rupp et al., 1999) and Supplemental Table 1). Only one gene from the list of published 
regulators appears in the group of differentially expressed genes from this set of arrays: 
MSB2 just makes the cutoff for being significantly differentially expressed at a lower level in 
cti6 relative to wild type.  (B) The second set of arrays compared expression in cti6 versus 
the sfl1.  None of the 75 published FLO11 regulators was differentially expressed in these 
data. The MSB2 result was not confirmed. SFL1 itself appears as an artifact of experimental 
design because it is deleted in the sfl1 strain and is therefore not expressed. 
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Table 4 |  Differential Expression of FLO genes and published regulators.   
WT vs. cti6 : sfl1  vs. cti6 : 
Rank Score Gene Rank Score Gene
5698 -1.158 MSB2 1 3.656 SFL1  (b/c deleted  in sfl1 strain)
5784 -3.108 FLO11 5775 -3.116  FLO11

5776 -3.301  FLO10
ranking = 1 (most upregulated in cti6 ) to ranking = 1 (most upregulated in cti6 ) to

  5784 (most downregulated in cti6)  5776 (most downregulated in cti6)

score = difference in median log intensity between the Cy5 and Cy3 channels at locus
cutoff scores for differential expression = 1.62 (upregulated) & -1.12 (downregulated)
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Table 5 |  GO enrichments for all differentially expressed genes (genome-wide). 

WT vs. cti6 : sfl1  vs. cti6 : 

Upregulated in cti6  relative to WT: Upregulated in cti6  relative to sfl1 :

Biological Process unknown (61/74 genes) No enrichment

Downregulated in cti6  relative to WT: Downregulated in cti6  relative to sfl1 :

Transmembrane transporter (p =0.005) Mannose binding (p =1.27e-05) (FLO10 , 11 )    
 

 

Figure 6 |  Quantitative Real Time PCR detects differential levels of transcription 
from within the FLO11 promoter region in cti6 and sfl1 mutants. Quantitative real 
time PCR (with 2-fold dilutions) was performed using two pairs of real time primers 
specific to the FLO11 promoter region, and normalized to levels of SCR1 (an RNA PolIII 
-transcribed housekeeping RNA).  Both sets of primers detected transcription products 
deriving from FLO11 promoter sequence.  These transcription products were elevated in 
the cti6 mutant, which has the most silent FLO11 promoter of the strains tested.  In the 
sfl1 mutant, the level of detected transcription was less than half the amount detected in 
the cti6 mutant.  In the variegating wild type strain, an intermediate level of transcription 
was detected.  Both sets of primers detected similar transcription profiles, suggesting the 
detection of a single long transcript species rather than two separate transcripts. 
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Figure 7 |  Real time PCR using primer pairs tiled along the FLO11 locus reveals an 
inverse correlation in the cti6 and sfl1 mutants between the amount of transcription 
occurring within the FLO11 promoter and the amount of expression of the FLO11 ORF 
itself.  We used real time PCR to examine transcription in biological replicates of wild type, 
cti6, sfl1, and a strain in which the FLO11 promoter has been deleted (pflo11) over a region 
extending from +120 inside the FLO11 ORF to -2280 of the FLO11 promoter.  Data was 
normalized to levels of SCR1 (an RNA PolIII-transcribed housekeeping RNA).  Two 
representative sets of results are presented below.  In each experiment performed, 
transcription deriving from the FLO11 promoter sequence was elevated in the cti6 mutant 
relative to levels in the sfl1 mutant.  Conversely, expression of the FLO11 ORF itself is 
vastly downregulated in the cti6 mutant relative to the sfl1 mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 201



Figure 8 |  Strand-specific northern blot analyses reveal a ~3.2-kb Crick-strand 
noncoding RNA ICR1 transcribed from within the FLO11 promoter sequence.  Northern 
blot analysis was performed using poly-A selected RNA from wild type, cti6, sfl1, and pflo11. 
For probing, we used 32P-labeled strand-specific RNA probes that hybridize to three different 
regions of the FLO11 promoter sequence, as indicated in the diagram below.  Probes 1, 2, 
and 3 hybridize to regions located -284 to -819, -1653 to -2255, and -2631 to -3226 relative 
to the beginning of the FLO11 ORF, respectively.  The results obtained using Crick strand-
transcript specific probes are shown below. All three probes detect a specific transcript of 
approximately 3.2 kb that is most highly expressed in the cti6 mutant and is expressed only at 
very low levels in the sfl1 mutant.  Signal was quantified and normalized to the SCR1 loading 
control using ImageQuant software; histograms above each blot indicate the amount of 
transcript detected relative to the SCR1 load control.  These results indicate that a single ~3.2 
kb noncoding transcript ICR1 (Interfering Crick transcript) is indeed being transcribed in the 
Crick direction along nearly the entire length of the ~3.6 kb FLO11 promoter. The steady-
state levels of this ICR1 transcript are inversely correlated with expression of the FLO11 
coding sequence in cti6, sfl1, and wild-type strains. 
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Figure 9 |  The ICR1 transcript initiates at ~ - 3400 and terminates near or within 
the FLO11 ORF.  Rapid amplification of cDNA ends (RACE) was used to map the 3’ 
and 5’ ends of the ICR1 transcript in wild type, cti6, sfl1, and pflo11 cells.  The 3’ ends 
of ICR1 identified by RACE in wild type, cti6, and sfl1 cells are represented as blue 
lollipops.  In wild type, cti6, and sfl1, a strong stop was detected at -209, which is located 
approximately 120 basepairs upstream of the putative FLO11 TATA box present at -92.  
Some 3’ends that extend up to or run into the FLO11 coding sequence were detected in 
cti6 and in wild type. No 3’ends were obtained from the pflo11 negative control cells.  The 
detected 5’ ends of ICR1 are represented by blue arrows. Of the cloned 5’ ends that 
mapped to the FLO11 promoter sequence, the cti6 mutant exhibits the highest number 
(50%) of cloned 5’ICR1 sequences in a region of the FLO11 promoter (-3421 to -3197) 
that is sufficiently far away from the identified 3’ ends to produce the ~3.2 kb band 
observed in the northern blots.  We also identified 5’ICR1 ends in this region for wild 
type and sfl1, but these occurred at much lower frequency than in cti6.  No 5’ends were 
obtained from the pflo11 negative control cells. Some additional 5’ends were detected at 
various locations (indicated by the blue tick marks) along the FLO11 promoter sequence, 
but none of these additional 5’ends corresponds in size to any abundant transcripts 
observed by northern analysis.  Rather than a single strong 5’start site for ICR1, we 
identified transcripts initiating over a range of ~200 basepairs.  Black arrows indicate the 
binding locations of target-specific oligos used; oligo sequences are included in Table 3. 
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Table 6 |  Summary of 3' ends of the ICR1 transcript detected by RACE.  A strong 
stop was detected at -209 (highlighted in royal blue).  Only in cti6 and in wild type do we 
observe ICR1 transcripts that extend to within a few base pairs of, and sometimes into, 
the FLO11 ORF sequence (highlighted in light blue). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 |  Summary of 5' ends of the ICR1 transcript detected by RACE. Rather 
than a single strong 5’start site for ICR1, we identified transcripts initiating over a range 
of ~200 basepairs.  50% of cloned 5’ends from cti6 map to a region of the FLO11 
promoter (+3421 to +3197) that is sufficiently far away from the identified 3’ ends to 
produce the ~3.2 kb band observed in the northern blots.   
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Figure 10 |  Elevated ICR1 levels correlates with loss of TBP binding to the 
FLO11 core promoter in the cti6 mutant. Examination of yeast TATA binding protein 
(TBP) localization to the FLO11 promoter was performed by ChIP-chip analyses using anti-
TBP antibody on whole cell extracts derived from wild type, cti6, and sfl1 cells. TBP 
localization to the FLO11 core promoter is abolished in the cti6 mutants, in which steady-
state ICR1 transcript levels are elevated, a finding reminiscent of the mechanism of promoter 
occlusion proposed for SRG1-regulation of SER3 (Martens et al., 2004; Martens et al., 2005). 
TBP localization to the FLO11 core promoter in the sfl1 mutant appears to be increased 
above wild type levels of localization. 
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Figure 11 |  Elevated ICR1 levels correlate with decreased nucleosome ejection 
from the FLO11 core promoter in the cti6 mutant. (A) Gene-specific ChIP using anti-
H3 and anti-H4 antibodies on wild type cells provides a baseline for nucleosome 
positioning along the FLO11 promoter.  (B) ChIP-chip analyses using an anti-H4 antibody 
on whole cell extracts derived from wild type, cti6, and sfl1 cells reveals that nucleosome 
eviction fails to occur at the FLO11 core promoter in the cti6 mutant.  Conversely, 
nucleosome eviction at the FLO11 core promoter is elevated over wild type in the sfl1 
mutant, in which ICR1 transcription is low. 
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Figure 12 |  Termination of ICR1 in the Rpd3L- mutant cti6 results in the 
recovery of FLO11-dependent haploid adhesion. To test the model that ICR1 has a 
causal effect in repressing FLO11 expression by the act of its being transcribed through 
the FLO11 promoter, we performed an experiment to determine whether termination of 
ICR1 transcription could recover FLO11 expression, as assayed by the recovery of 
FLO11-dependent haploid adhesion. (A) We inserted a 1.4-kb construct containing the K. 
lactis URA3 gene under its own promoter and with its transcriptional terminator intact in 
the Crick direction at -3041 within the FLO11 promoter region. This insertion places the 
construct downstream of the ICR1 transcription initiation region. (B) Wild type, cti6, and 
sfl1 strains, with and without the URA3-terminator construct, were patched onto YPD-agar 
plates and allowed to grow for four days at 30 degrees C before being subjected to the 
standard plate washing assay for yeast haploid adhesion (Guo et al., 2000).  As previously 
observed, the cti6 mutant without the URA3-terminator construct fails to adhere to the YPD-
agar, but the cti6 strain carrying the URA3-terminator construct shows a rescue of the non-
adherent cti6 phenotype. 
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Figure 13 |  A second noncoding transcript, PWR1, is repressed by Sfl1 and is 
transcribed in the Watson direction covergently and overlapping with ICR1. To 
characterize further the transcription occurring within the FLO11 promoter, we performed 
expression analysis using S. cerevisiae Sigma 1278b genomic high-density tiling microarrays 
with Crick and Watson strand specificity.  Crick strand transcription is indicated by a minus 
(-) sign and Watson strand transcription is indicated by a plus (+) sign.  A comparison of the 
transcriptional profiles in sfl1 cells (Cy-5 labeled strand-specific cDNA reverse-transcribed 
from Poly-A RNA, shown in red) versus cti6 cells (Cy-3 labeled strand-specific cDNA 
reverse-transcribed from Poly-A RNA, shown in green) revealed the presence, not only of the 
ICR1 transcript, but also of a second noncoding transcript PWR1 (for Promoting Watson 
RNA) that initiates approximately 2.3 kilobases away from the beginning of the FLO11 ORF 
and is transcribed in the Watson direction convergently and overlapping with the ICR1 
transcript. In these data, transcription of PWR1 is observed in the sfl1 mutant, but not at 
all in the cti6 mutant. 
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Figure 14 |  Strand-specific northern blot analyses confirm the existence of a ~1.2-
kb Watson-strand noncoding RNA PWR1 transcribed from within the FLO11 promoter 
sequence.  Northern blot analysis was performed using poly-A selected RNA from wild type, 
cti6, sfl1, and pflo11. For probing, we used 32P-labeled strand-specific RNA probes that 
hybridize to three different regions of the FLO11 promoter sequence, as indicated in the 
diagram below.  Probes 1, 2, and 3 hybridize to regions located -284 to -819, -1653 to -2255, 
and -2631 to -3226 relative to the beginning of the FLO11 ORF, respectively.  The results 
obtained using Watson strand-transcript specific probes are shown below.  Signal was 
quantified and normalized to the SCR1 loading control using ImageQuant software; 
histograms above each blot indicate the amount of transcript detected relative to the SCR1 
load control.   Probes 2 and 3 detect a specific transcript of approximately 1.2 kb that is most 
highly expressed in the sfl1 mutant and is not expressed in the cti6 mutant. An intermediate 
level of this transcript is observed in the variegating wild type cells. The steady-state levels of 
this PWR1 transcript are positively correlated with expression of the FLO11 coding sequence 
in cti6, sfl1, and wild-type strains.  Transcription of PWR1 appears to be repressed by the 
DNA-binding protein Sfl11.  In the sfl1 mutant, elevated steady-state levels of the PWR1 
transcript correlate with increased FLO11 expression. 
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Figure 15 |  5' and 3' RACE indicates that the PWR1 transcript initiates ~2.3 kb 
upstream of the FLO11 ORF and terminates near the transcription initiation site of 
ICR1.  RACE was used to map the 3’ and 5’ ends of the PWR1 transcript in wild type 
and sfl1 cells. The identified 3’ ends of PWR1 are represented as red lollipops. The 
termination sites cluster between -3155 and -3409 relative to the beginning of the FLO11 
ORF, indicating that PWR1 terminates near the transcription start site of ICR1.  The 5’ 
ends of the PWR1 transcript are represented as red arrows.  Rather than a single strong 
5’start site for PWR1, we identified transcripts initiating over a short range of ~150 
basepairs, clustered around -2300 relative to the beginning of the FLO11 ORF.  Black 
arrows indicate the binding locations of target-specific oligos used; oligo sequences are 
included in Table 3. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 |  Summary of 3' ends of the PWR1 transcript detected by RACE.  The 
termination sites of PWR1 cluster between -3155 and -3409 relative to the beginning of 
the FLO11 ORF, indicating that PWR1 terminates near the transcription start site of 
ICR1.   
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Table 9 |  Summary of 5' ends of the PWR1 transcript detected by RACE.  The 
transcription start sites of PWR1 cluster around -2300 relative to the beginning of the 
FLO11 ORF.  This places the start site of PWR1 just upstream of the UAS1 region. 
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Figure 16 |  The PWR1 transcript interferes with expression of a convergent and 
overlapping Crick-strand reporter construct.   Transcription of PWR1 interferes with 
expression of the K. lactis URA3 reporter construct integrated at position -3041 in the FLO11 
promoter. The URA3 reporter is transcribed in the Crick direction convergently and 
overlapping with PWR1 in an ICR1-like manner.  (A) The size of colonies growing on SC-
Ura media, used an indicator of URA3 expression, demonstrates that the URA3 gene is 
expressed most highly in the cti6 mutant, in which no PWR1 transcript is detected. In the sfl1 
mutant background, in which PWR1 transcript levels are elevated, URA3 reporter expression 
is very low, resulting in only microcolonies growing on the SC-Ura media. Wild type cells, 
which exhibit an intermediate level of PWR1 expression, also exhibit a level of URA3 
reporter expression that is intermediate between cti6 and sfl1.  (B)  Serial dilutions of these 
strains onto SC+5-FOA and SC–Ura also confirm these findings. More cells in the cti6 
background are actively expressing the URA3 reporter construct, therefore more cells of this 
genotype are able to grow on SC–Ura and fewer on SC+5-FOA. Conversely, more cells in 
the sfl1 background are silenced for URA3 reporter expression, therefore more of these cells 
are able to grow on SC+5-FOA and fewer on SC–Ura.  
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Figure 17 |  A similar pair of a convergent and overlapping noncoding RNAs are 
transcribed within the FLO10 promoter region.   We performed expression analysis using 
S. cerevisiae Sigma 1278b genomic high-density tiling microarrays with Crick and Watson 
strand specificity.  Crick strand transcription is indicated by a minus (-) sign and Watson 
strand transcription is indicated by a plus (+) sign.  A comparison of the transcriptional 
profiles in sfl1 cells (Cy-5 labeled strand-specific cDNA reverse-transcribed from Poly-A 
RNA, shown in red) versus cti6 cells (Cy-3 labeled strand-specific cDNA reverse-transcribed 
from Poly-A RNA, shown in green) reveal the presence of a similar pair of convergent, 
overlapping noncoding transcripts initiating within the FLO10 promoter region.  FLO10 
expression is upregulated in the sfl1 mutant and this upregulation is correlated with the 
transcription of a noncoding Crick-strand RNA that is (i) derepressed in the sfl1 mutant (ii) 
transcribed divergently from the protein-coding FLO10 gene (which is transcribed in the 
Watson direction), and (iii) transcribed convergently and overlapping with a second 
noncoding Watson-strand transcript that is detected in both the sfl1 and cti6 mutants. 
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Figure 18 |  A new model to inform the mechanism underlying variegated 
transcription of FLO genes.  Components shown in light blue have net positive effects 
on FLO11 transcription.  Components shown in red have net negative effects on FLO11 
transcription.  Components represented as ovals are confirmed trans-acting protein 
factors involved in the regulation of FLO11 transcription.  Question marks (?) indicate 
unknown components. 
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Supplemental Table 1 |  The list of 75 published (confirmed or putative) 
regulators of FLO11 transcription used in differential expression analysis summarized in 
Figure 5 of this chapter.    

ADH1 GND1 RAS2
ARO7 GPA2 RGA1
AXL1 GPR1 RIM1
BCY1 GTR1 RIM13
BEM2 HDA1 RIM8
BMH1 HDA2 RIM9
BMH2 HDA3 SFL1
BPL1 HSC82 SKN7
BUD10 HSL1 SRB10
BUD3 HSL7 SRB11
BUD4 HSM2 SRB9
CDC24 IME2 SSN6
CDC42 IRA1 STE11
CDC53 IRA2 STE12
CSE2 KSS1 STE20
CYR1 MED1 STE50
DIA1 MEP2 STE7
DIA2 MGA1 TAF25
DIA3 MSB2 TEC1
DIA4 MSN1 TPK1
DIG1 MSN5 TPK2
DIG2 MSS11 TPK3
ELM1 OPI1 TUP1
FLO8 PGI1 YDJ1
GCR1 PLC1 ZUO1

Note: DIA3  was removed from the final analysis b/c of outliers, 
but was not expressed above background.

 

 

 

 

 

 215



 

Supplemental Figure 1 |  The Rpd3-Myc epitope-tagged allele maintains wild 
type Rpd3 function.   (A) Haploid-adhesion tests were performed to ensure that the Myc-tag 
did not compromise Rpd3 function.  Wild-type (10560-6B), rpd3 (SBY847), and strains 
carrying the Rpd3-Myc allele (SBY910 MATx and SBY946 MATa) were patched onto YPD-
agar plates and allowed to grow for four days at 30 degrees C before being subjected to the 
standard plate washing assay for yeast haploid adhesion (Guo et al., 2000).  The Rpd3-Myc 
strains adhered to the agar as well as wld-type, indicating that the epitope tag has not 
compromised Rpd3 function.  (B) Serial dilutions onto SC, SC-Ura, and SC+5FOA of strains 
carrying the reporter PFLO11-URA3 construct as well as the Rpd3-Myc allele (SBY931 
MATa and SBY934 MATx) also indicate that this epitope-tagged allele is functional.  The 
Rpd3-Myc strains variegate in their expression from the FLO11 promoter 
indistinguishably from the strain carrying unmodified Rpd3 (SBY251), as determined by 
their ability to grow on the selective media.   
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Chapter 5 
 
Summary, Discussion, and Future Directions 

 

Summary and Discussion 

The FLO11 promoter is one of the largest promoters in yeast, a characteristic that 

sets apart the promoters of all members of the yeast FLO (Flocculin) gene family.  These  

promoters receive a complex combination of signals from upstream signaling pathways 

and the DNA binding factors and chromatin remodelers that associate with them.  The net 

effect of the regulatory stimulus on FLO11 promoters within a population of yeast cells is 

variegated silencing that results in phenotypic variation within the clonal population of 

yeast cells (Halme et al., 2004).  A similar silencing phenomenon is observed at the 

FLO10 promoter.  Variegated transcription of FLO10 and FLO11 results in yeast cells 

that, at the population level, exhibit variability in their behavior regarding flocculation 

(cell-to-cell adhesion), adhesion to and invasion of inert surfaces and, in diploids, the 

formation of long filaments called pseudohyphae (Halme et al., 2004).     

In Chapter Two, I presented our characterization of the variegated transcription 

that is observed from the promoters of the FLO gene family in S. cerevisiae and our 

finding that, as is the case in other examples of variegated expression observed across 

biological kingdoms, chromatin structure at FLO promoters is a critical component in the 

mechanism underlying the observed variegation (Halme et al., 2004).  We identified 

several trans-acting regulators of the epigenetic silencing observed at FLO10 and FLO11 

that function in the modification of nucleosomal histones, important in determining 

chromatin structure (Halme et al., 2004).  We found that the histone deacetylase Hda1, 
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along with the DNA binding protein Sfl1, functions in the silencing observed at FLO11.  

Hdal also plays a role in silencing FLO10, but the histone deacetylases Hst1 and Hst2, 

which are homologs of Sir2, have a more important role in the silencing at this locus and 

are recruited to the FLO10 promoter by a Sfl1-dependent mechanism (Halme et al., 

2004).   

In Chapter Three, I presented the results of two genome-wide screens that I 

conducted to identify additional effectors of the variegated transcription at FLO 

promoters.  The screens identified chromatin remodelers and other transcriptional 

regulators not previously known to affect FLO gene transcription.  Among candidates 

identified in the screens were components of the Rpd3L histone deacetylase complex, the 

Srb/Mediator complex, the COMPASS histone methyltransferase complex, and other 

chromatin remodeling factors such as Rsc2, Ada2, and Swi1.  Many of these mutants 

behaved as would be expected, according to contemporary knowledge of the effects of 

chromatin modification and remodeling on transcription.  Others presented phenotypes 

that were unanticipated given their particular function in chromatin modification.  One 

complex stood out as being particularly curious: the Rpd3L histone deacetylase complex.  

Because histone deacetylation is known to mediate transcriptional repression (Grunstein, 

1997), the observation that Rpd3L behaves as a net transcriptional activator of FLO 

promoters seemed initially paradoxical.  

In Chapter Four, I presented findings that resolve the apparent paradox of 

Rpd3L’s net activating effect on FLO gene transcription.  At the FLO11 locus in yeast, 

the Rpd3L histone deacetylase complex represses a regulatory noncoding RNA ICR1 

(Interfering Crick RNA) that initiates more than 3 kilobases away from the FLO11 ORF, 
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is transcribed in the Crick direction across the FLO11 promoter, and prevents FLO11 

expression by somehow interfering with the binding of transcriptional activators and 

chromatin remodeling at the core promoter.  The net effect of Rpd3L action is positive on 

FLO11 expression, but its local effect on the transcription of ICR1 is negative, thus 

resolving the paradox regarding Rpd3L’s role in regulating transcription via chromatin 

modification.  A transcription terminator that disrupts ICR1 has the predicted effect of 

rescuing FLO11-dependent phenotypes, supporting our hypothesis that ICR1 has a causal 

role in preventing FLO11 expression.  Sfl11, likely accompanied by the histone 

deacetylase Hda1, acts to repress the transcription of a second regulatory noncoding RNA 

PWR1 (Promoting Watson RNA) that initiates approximately 2 kilobases from the 

FLO11 ORF and is transcribed in the Watson direction convergently and overlapping 

with the ICR1 transcript.  When SFL1 is deleted, elevated levels of PWR1 transcript 

correlate with increased FLO11 expression.  I hypothesize that PWR1 promotes FLO11 

expression by competing with ICR1 for its template region, thereby preventing ICR1 

transcription from proceeding along the FLO11 promoter region.  The fact that the PWR1 

transcript is capable of interfering with the expression of a URA3 reporter gene inserted 

in its path supports this hypothesis.    

We have detected an apparently similar pair of noncoding transcripts initiating in 

regions of the FLO10 promoter, suggesting that regulation by cis-acting noncoding RNAs 

may be a mechanism that extends to other members of the FLO gene family, and perhaps 

to other genes that exhibit net-positive transcriptional regulation by Rpd3L (Sertil et al., 

2007; Sharma et al., 2007; Xin et al., 2007; De Nadal et al., 2004).   
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In summary, I have examined the chromatin modifying proteins that localize to 

the FLO10 and FLO11 promoters and that act in trans to affect their transcription and 

epigenetic silencing.  I describe the results of genome-wide screens to identify additional 

trans-acting chromatin modifying factors that play a role in transcriptional regulation of 

the FLO promoters.  Some of the candidates identified in the screens, the components of 

the Rpd3L histone deacetylase complex in particular, had effects on FLO11 transcription 

that initially seemed paradoxical because their net effect on FLO11 transcription was the 

opposite of that anticipated given the known functions of these complexes.  Careful 

analysis of these mutants, their phenotypes, the transcription of FLO11, and most 

importantly, the noncoding transcripts that we have detected in the promoter region of 

FLO11, have revealed the basis for this paradox. 

Our findings point to a new model for the mechanism underlying transcriptional 

variegation of FLO genes.  This model incorporates the findings reported in Chapter Four 

and involves dynamic and competitive binding to promoter DNA by proteins that may 

determine alternate chromatin structures via recruitment of histone deacetylases.  These 

alternate chromatin structures regulate transcription of cis-acting regulatory noncoding 

RNAs, which in turn regulate FLO gene expression.  Competitive binding of transcription 

factors that generate different outputs to the same regulatory site in DNA has been shown 

to form the basis of a simple exclusive toggle switch between two transcriptional states 

(Warren and Rein ten Wolde, 2004).  At the FLO11 locus, competitive binding of trans-

acting protein factors that cause a switch between two chromatin states, one permissive of 

noncoding transcription and the other repressive of noncoding transcription, could be the 

basis of exactly such a simple toggle switch between an active or inactive core promoter 
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state.  The percentage of active versus inactive FLO11 core promoters within a 

population of wild-type variegating yeast cells may reflect the likelihood of binding for 

each of the two trans-acting proteins competing for the same binding region at each 

FLO11 promoter within the population. 

Our discovery that Rpd3L- and Sfl1-regulated noncoding RNAs play a role in 

regulating FLO11 expression is likely a harbinger of a new view of transcriptional 

control.  In addition to our findings at the FLO11 locus, there has been a recent flurry of 

reports of cases of regulation of gene expression by noncoding transcripts in S. cerevisiae 

(Camblong et al., 2007; Hongay et al., 2006; Martens et al., 2004; Martens et al., 2005; 

Uhler et al., 2007).  The existence of many more, as yet uncharacterized, noncoding 

RNAs in the yeast transcriptome suggests that noncoding transcripts play a more 

important role in transcriptional regulation in yeast than has been previously appreciated 

(Miura et al., 2006; Nagalakshmi et al., 2008; David et al., 2006; Davis and Ares, 2006; 

Samanta et al, 2006; Steinmetz et al., 2006).   Thus, the regulatory mechanisms that we 

describe here at the FLO11 locus, along with other recent reports of such phenomena, are 

likely to be just the tip of an iceberg of regulation by noncoding RNAs in yeast.   
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Future Directions 

 

 Future experiments that follow from these studies can be divided into three 

categories:  

1. Experiments to test further our model for noncoding RNA regulation at the 

FLO11 promoter. 

2. Experiments to test whether this model extends to the regulation of other 

members of the FLO gene family. 

3. Genome wide experiments to examine whether our model is informative 

regarding the mechanisms by which other genes, especially those that exhibit net-

positive regulation by Rpd3L, are transcriptionally regulated.  

 

There are a number of experiments that should be conducted to test further our model 

for noncoding RNA regulation of FLO11 expression.  First, Northern blot analysis should 

be conducted to test, at the molecular level, that termination of the ICR1 transcript has 

occurred in the Rpd3L- (cti6) mutant that carries the transcriptional terminator construct 

which rescues the FLO11-dependent haploid adhesion phenotype in this strain (Figures 

12 of Chapter 4).   

 The K. lactis URA3-terminator construct used in our study is fairly large (1.4 kb).  

It is possible that this construct rescues haploid adhesion in the cti6 mutant, not by 

terminating ICR1, but by interfering with some necessary tertiary structure of the FLO11 

promoter or by disrupting an undiscovered binding site for a repressor that lies very far 

upstream (> 3kb) of the FLO11 ORF.  We will address this concern in at least two 

experiments.  In the first experiment, we will replace the 1.4 kb URA3-terminator 
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construct with the HIS3 terminator sequence, which is fewer than 300 base pairs in 

length.  This shorter DNA fragment should be less disruptive to any FLO11 promoter 

tertiary structure that might be required for its regulation.  In the second experiment, we 

will replace the URA3-terminator construct with the HIS3 ORF sequence without its 

terminator.  If ICR1 transcription is truly important for FLO11 regulation, then the 

insertion of the HIS3 ORF sequence, which is predicted to be transcribed as part of the 

ICR1 transcript without disrupting its procession through the FLO11 promoter sequence, 

will not rescue the cti6 haploid adhesion phenotype.  This result would also confirm that 

the insertion site is not disrupting the binding of a trans-acting repressor.  The HIS3 ORF 

is approximately 600 base pairs long and has been used analogously in other studies as a 

control for transcriptional termination experiments (Martens et al., 2004).   The effects of 

all of these constructs will also be examined at the molecular level by Northern blotting. 

 It would be very informative to examine the transcriptional profile of the three 

transcripts that we have detected at the FLO11 locus (ICR1, PWR1, and FLO11 itself)  on 

a cell-by-cell basis to determine whether our prediction is correct that the FLO11 

transcript will be present in cells that also have PWR1 transcript but not in cells that have 

ICR1 transcript.  To this end, a new technology called StarFISH might prove useful.  This 

technology utilizes a large number of fluorescently labeled DNA probes that are 

complementary to a target RNA molecule.  The probes are used to hybridize and 

fluorescently label target RNAs still contained within fixed cells.  It is possible to utilize 

sets of probes for multiple RNA molecules.  The number of RNAs that can be examined 

in any given cell is limited only by the number of distinct fluorophores available for 

labeling.   The coexpression of two or more RNAs can readily be examined on a cell-by-
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cell basis using fluorescence microscopy and FACS.  This technology will enable us to 

examine the transcriptional profiles of the three transcripts that we have detected at the 

FLO11 locus on a cell-by-cell basis in a wild type strain in which FLO11 expression 

variegates.  The fact that steady state ICR1 transcript levels are low (according to our 

northern blot, microarray, and real time PCR analyses) might present difficulties for this 

approach, but the additional fact that this transcript is ~3.2 kb in length suggests that we 

might be able to overcome low RNA transcript levels by using a larger number of 

complementary fluorescently labeled probes for this transcript. 

Examination of ICR1 and PWR1 transcript levels in additional mutants that affect 

FLO11 expression should also prove useful in furthering our understanding of regulatory 

control at the FLO11 promoter.  For example, we suspect that the histone deacetylase 

Hda1 represses PWR1 transcription via its recruitment to the FLO11 promoter by Sfl1, 

but this has yet to be tested by northern analysis of transcripts derived from the hda1 

mutant strain. 

It will be interesting to determine whether regulation by noncoding RNAs extends 

to other members of the FLO gene family.  Our strand-specific genome-wide microarray 

expression data strongly suggest that a pair noncoding transcripts analogous to those that 

act at FLO11 may be regulating FLO10 expression, as well.  Careful examination of 

FLO10 regulation using the same experimental methods that we have employed to 

examine FLO11 regulation will provide further insight.  

Finally, it will be very interesting to take a genome-wide approach in determining 

the extent to which noncoding RNAs, such as those that we observe at the FLO11 

promoter, regulate protein-coding gene expression across the yeast genome, with special 
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attention to genes already known to be under net-positive regulation by Rpd3L.  We will 

use genome-wide strand-specific microarrays to examine transcription in promoter 

regions, comparing wild type transcript levels to transcript levels in the Rpd3L- (cti6) 

mutant.  We will search for noncoding transcripts that, when elevated, correlate with a 

concomitant decrease in expression from the associated protein-coding gene.  We will 

also search for the presence of transcripts running convergently in a manner that might 

indicate competition in cis in these array data.  A potential caveat to this approach is that 

the steady state levels of the noncoding transcripts that we are interested in may place 

them very near the noise boundary in the array data.  We are hopeful that, by training our 

analysis algorithms on other noncoding regulatory RNAs, such as those detected at the 

FLO11 promoter and at other genes including SER3 and IME4, we may be able to 

overcome this hurdle in genome-wide detection.  These experiments will be very useful 

in determining the extent to which the mechanism that we have discovered at FLO11, 

which resolves the paradox of RpdL-dependent activation at this promoter, applies to 

other genes across the yeast genome. 
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