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Abstract

Several well-characterized fungal proteins act as prions, proteins capable of

multiple conformations, each with different activities, at least one of which is self­

propagating. We report a protein-based heritable element that confers resistance to

glucosamine, [GAR+]. Genetically it resembles other yeast prions: it appears

spontaneously at a rate higher than mutations and is transmissible by non-Mendelian,

cytoplasmic inheritance. However, [GAR+] is in other ways profoundly different from

known prions. [GAR+] propagation involves Pmal, the plasma membrane protein pump,

and [GAR+] formation is induced by Stdl, a member of the Snf3/Rgt2 glucose signaling

pathway. Also, [GAR+] does not appear to involve the formation of an amyloid template

and the prion state represents only a fraction of the Pmal protein in the cell,· consistent

with the prion form constituting a complex between Pmal and Stdl, a much lower

abundance protein. [GAR+] propagation is subject to a strong species barrier, as

substitution of PMAl from other Saccharomyces species blocks propagation to s..

cerevisiae PMAl. Direct competition between [gar-] and [GAR+] cells indicate that cells

carrying [GAR+] have an advantage under certain environmental conditions. [GAR+]

appears spontaneously in a yeast isolated from a variety of sources and can be induced by

co-culturing yeast and a number ofStaphylococcus species. Overall, [GAR+] expands the

conceptual framework for self-propagating protein-based elements of inheritance to

include non-amyloid, potentially multicomponent systems such as transmembrane

proteins and signal transducers.



Summary 
 
 

Several well-characterized fungal proteins are capable of acting as prions: 

proteins capable of multiple self-propagating conformations, each with different 

activities.  The different prion conformers in cells with identical genotypes exhibit 

multiple different phenotypes.  The most thoroughly characterized phenotypes are [PSI+], 

the prion form of the translation termination factor Sup35, and [URE3], the prion form of 

the nitrogen catabolite repressor Ure2.  Both are well studied in S. cerevisiae but are 

conserved in diverse fungi, including K. lactis and C. albicans.  The Sup35 and Ure2 

proteins enter into an aggregated, amyloid-like conformation in the [PRION+] state.  

Whether many proteins can form prions and whether all prions involve an amyloid-like 

state are points of considerable debate. 

Here I present evidence that the previously unexplained non-Mendelian element, 

[GAR+], is a novel type of prion that does not aggregate or form an amyloid.  [GAR+] 

(glucosamine resistant) was isolated in a screen for resistance to the non-metabolizable 

glucose analog D-(+)-glucosamine.  It showed non-Mendelian inheritance patterns and 

could not be explained by contemporary knowledge (Ball et al., 1976; Kunz and Ball, 

1977).  I found that the genetic attributes of [GAR+] overlap with those of fungal prions: 

it appears spontaneously at a high frequency (~5 in 104 cells), and segregates in a non-

Mendelian 4 [GAR+] to 0 [gar-] pattern following meiosis.  [GAR+] can be inherited by 

cytoplasmic transfer without nuclear exchange (cytoduction).  Also, [GAR+] can be 

converted to [gar-] by altering levels of molecular chaperones (i.e. “cured”). 

I found that [GAR+] results from the association of Pma1, the plasma membrane 

proton pump, and Std1, a member of the Snf3/Rgt2 glucose signaling pathway.  Transient 
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overexpression of STD1 strongly induces [GAR+] but STD1 was not required for [GAR+] 

propagation.  Instead, PMA1, and possibly STD1, are involved in [GAR+] propagation.  

[GAR+] thus presents a marked distinction from known prions in having separable 

induction and propagation elements.  [GAR+] further differs from other yeast prions in 

that it does not cause aggregation of the prion determining protein.  Instead, Pma1 is still 

located at the plasma membrane in [GAR+] but associates with Std1 rather than its 

ortholog, Mth1, which Pma1 associates with in the [gar-] state.  Mutations in 

phosphorylation sites in Pma1 alter the frequency of [GAR+] within a population and 

show defects in signaling down the Snf3/Rgt2 pathway, suggesting that Pma1 is involved 

in glucose signaling. 

Finally, I address the question of whether [GAR+] has any role in wild yeasts.  I 

found that the average rate of appearance of [GAR+] is 20-fold higher in strains isolated 

from fruit than in clinical isolates.  Using quantitative trait locus (QTL) analysis, I found 

that the rate of [GAR+] is influenced by regions on chromosome VIII and chromosome 

XIV.  [GAR+] has an increased growth rate compared to [gar-] when grown in a mixture 

of glucose and other carbon sources, suggesting that it might have a competitive 

advantage under particular conditions as well.  Thus, I conclude that [GAR+] is a protein-

based heritable element that can be induced in non-lab yeast and might confer a 

competitive advantage on its host. 
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Chapter One: 
 

Introduction 
 

Inheritance of biological information across generations is essential for life.  The 

primary example is the temporal heritability of nucleic acids, which carry the information 

necessary for the production of a new organism.  Information can also be passed 

spatially, such as signaling between types of tissue in a multicellular organism and in the 

quorum sensing phenomenon in bacteria and fungi.  However, this type of information is 

not generally heritable. 

Cross-generational inheritance can be either Mendelian or non-Mendelian.  

Mendelian inheritance involves the chromosomal-based inheritance patterns described by 

Mendel’s theories of segregation.  It is the predominant mechanism for information 

transfer between generations and is essential for biological replication.  “Mendelian” was 

historically used to describe only inheritance patterns that follow the simple phenotypic 

segregation predictions of Mendel’s monoallelic traits but was eventually expanded, 

through the work of Bateson and Punnett, to include multigenic, chromosomal traits.  

Chromosomal traits are largely encoded by the sequence of nucleic acid basepairs. 

Epigenetic inheritance is caused by chemical changes to the nucleic acids that do 

not modify the sequence, such as DNA methylation, that changes the way information is 

used but not the basic information recorded.  This can occur on a cellular/organismal 

level or a generational level.  Cellular differentiation, which prevents cells from returning 

to a pluripotent state, is the result of epigenetic modification that inactivates factors 

involved in pluripotency (Reik et al., 2001).  On a generational level, parental imprinting 

can alter the expression of particular regions of chromosomes depending on whether the 
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chromosome originated in sperm or egg (Nafee et al., 2008).  Imprinting can also affect 

the penetrance of alleles.  For example, a particular allele in sheep gives rise to its 

associated phenotype only when the allele is paternally inherited (Cockett et al., 1996). 

Non-Mendelian inheritance refers to traits whose segregation patterns do not 

follow those of chromosomes.  The most salient examples are extranuclear and 

infectious.  Following the reemergence of Mendelism in the late 19th century, a number 

of investigations tested inheritance patterns of easily observable plant phenotypes; some 

of these led to the accidental observation of extranuclear traits.  Carl Correns and Erwin 

Baur, who simultaneously studied leaf color variegation in different plants, showed that 

Mirabilis jalapa and Pelargonium zonale leaf color violates Mendel’s laws; this was the 

first cytoplasmically inherited trait described.  The Mirabilis leaf color variegation trait 

was eventually identified as a chloroplast mutation by Ruth Sager (Goldschmidt, 1950).  

In addition to organelle-based traits, virus- and plasmid-based inheritance was eventually 

categorized as extranuclear (infectious) and non-Mendelian.  This allowed the term “non-

Mendelian” to cover an extremely wide variety of mechanisms of inheritance. 

 

Scrapie, Prions, and the “slow virus” 

The work on the “transforming principle,” first Frederick Griffith (1928) and then Avery, 

McCarty, and MacLeod (1944) established that DNA and not protein is the heritable 

macromolecule.  Therefore, explanations for a group of slow-acting central nervous 

system diseases, now known to be caused by protein, initially centered around the “slow 

virus” hypothesis (Sigurdsson, 1954).  These included scrapie, a disease of sheep and 

goat; kuru, which infected the Fore tribe in New Guinea; and human prion diseases such 
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as Creutzfeldt-Jacob (CJD, which can be either familial or sporadic).  Connections 

between scrapie and CJD  and kuru and scrapie were suggested based on infectivity and 

the pathology of the diseases (Hadlow, 1959; Klatzo et al., 1959). 

 Early studies of scrapie showed that it was caused by a biological factor that was 

capable of reproducing itself.  An infectious agent found in brain homogenate could still 

cause disease following seven serial-dilution passages through sheep, which the authors 

calculated must have diluted the original by agent 10-18 (Stamp et al., 1959).  However, 

the infectious agent was still active after eight hours at 100°C, treatment with 

acetylethyleneimide, treatment with formalin (Stamp et al., 1959), or exposure to UV 

radiation (Alper et al., 1967), all of which had been shown to inactivate viruses.  

Proposed explanations included self-replicating polysaccharides (Field, 1966), a “true” 

virus combined with a heat-resistant agent (Stamp et al., 1959), a completely novel 

macromolecule (Alper et al., 1967), or a protein (Pattison and Jones, 1967). 

Another unusual aspect of diseases such as scrapie and CJD is that patients did 

not mount an immune response, as would be expected in a viral infection (Prusiner, 

1998).  This lack of immune response was one reason why investigators hypothesized 

that these diseases might be caused by a non-viral agent.  However, the conceptual 

framework for an infectious element that did not involve nucleic acid did not exist in the 

1950s. 

 Initial resistance to the idea that scrapie might be caused by a protein-based agent 

was based on two factors: DNA was known to be the hereditary material and a 

mechanism for self-replicated proteins was not known.  There was, as described by J.W. 

Griffith, “fear that the existence of a protein agent would cause the whole theoretical 
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structure of molecular biology to come tumbling down.”  Griffith then proposed several 

mechanisms by which a protein could cause a heritable phenotype.  One of these 

depended on contemporary ignorance concerning the function of the adaptive immune 

system.  The other two, though, are quite impressive.  One involved the scrapie-causing 

protein acting as an inducer for the gene that encodes it.  The other is a kinetic model in 

which the scrapie agent is a multi-subunit oligomer for which dimer formation is highly 

energetically unfavorable but addition of further subunits is very energetically favorable 

(Griffith, 1967). 

 Contemporary proponents of the Central Dogma, including Francis Crick, argued 

that Griffith’s models violated the Central Dogma (Crick, 1970).  However, the 

contemporary discovery of reverse transcriptase established precedent for expanding the 

Central Dogma, albeit only for nucleic acids.  The protein agent model received a further 

boost when work from Stanley Prusiner’s lab demonstrated partial purification of the 

infectious scrapie agent.  The agent was termed “prion” for “proteinaceous infectious 

particle,” and no detectable nucleic acids were found in the purification (Prusiner et al., 

1981).  A nearly homogenous purification (Bolton et al., 1982) identified one particular 

protein, which was named PrP, for prion protein. 

The discovery that PrP was a normal protein in the mammalian brain provided a 

stunning change in the prion concept (Prusiner, 1998).  It was no longer necessary to 

postulate that an exogenous protein had replicative capability.  Rather, the infectious 

agent merely had to change the conformation of a protein that was already present in or to 

replicate infectivity.  Indeed, PrP protein present in normal brain is rich in α-helices and 

the form found in infectious material is β-sheet rich (Harris and True, 2006). 
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PrP, is a small (~27kDa) GPI-linked plasma membrane protein.  Initial evidence 

in favor of PrP being the scrapie agent was mostly correlative.  The PrP proteins of 

patients with familial forms of prion disease carry mutations that are genetically linked to 

the disease (Hsiao et al., 1989; Gabizon et al., 1993).  Mice in which the PrP gene has 

been knocked out do not acquire scrapie when infected with scrapie brain homogenate 

(Weissmann et al., 1994) and mice overexpressing PrP show higher rates of spontaneous 

scrapie disease (Westaway et al., 1994).  The transmissible disease-causing scrapie form 

of PrP is termed “PrPSc,” named after scrapie disease; the non-infectious form of PrP is 

termed “PrPC,” for the normal “cellular” form. 

A few scientists still object to the protein-only theory of scrapie.  One argument is 

that trace amounts of nucleic acids could remain in PrP purifications (Manuelidis et al., 

1995).  Some propose that PrP could be a receptor for a virus that causes scrapie, which 

would explain why homozygous PrP null mice are resistant to scrapie (Chesebro and 

Caughey, 1993).  The best way to resolve this debate would be to induce scrapie 

infectivity following injection of a purified, recombinant, scrapie conformer of PrP into 

wildtype animals.  Researchers have come close, but the acid test has yet to be fully 

realized.  Recombinant PrP in a β-sheet rich conformation was injected into mice and 

caused disease.  However, this has only been seen with very large innocula and in mice 

overexpressing PrP at levels just below those which cause spontaneous disease (Legname 

et al., 2004).  Thus it has been argued that this injection only hastens the natural disease 

process.  Among the most convincing pieces of evidence in favor of the protein-only 

hypothesis is that PrPSc can convert large amounts of PrPC to PrPSc in vitro when PrPC is 

in extreme excess.  The newly converted PrPSc was serially diluted and the conversion of 
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PrPC to PrPSc continued, even after the starting material was so dilute that it could no 

longer be detected (>103-fold dilution) (Saborio et al., 2001).  Indeed, in vitro conversion 

of PrPC to PrPSc can be detected even after the starting PrPSc material has been diluted up 

to 10-55.  Furthermore, in vitro converted PrPSc material has been shown to be infectious 

in a mouse model after 10-20 dilution of the starting material (Castilla et al., 2005).  This 

provides powerful evidence that protein conformational conversion alone is sufficient for 

prion disease. 

 

Non-Mendelian inheritance and fungal prions 

 Protein-based elements with genetic properties that are normally reserved for 

nucleic acids (“prions”) are also found in fungi, where they are both infectious and 

heritable.  In contrast, mammalian prions are only infectious. (Uptain and Lindquist, 

2002; Chien et al., 2004; Wickner et al., 2004; Shorter and Lindquist, 2005).  The first 

genetic elements later realized to be prions found in S. cerevisiae were [URE3] 

(Lacroute, 1971) (caused by the protein Ure2 (Wickner, 1994)) and [PSI+] (Cox, 1965) 

(caused by the protein Sup35 (Chernoff et al., 1993; Ter-Avanesyan et al., 1993; Doel et 

al., 1994; Ter-Avanesyan et al., 1994; Patino et al., 1996)).  Another prion, [Het-s], was 

genetically characterized in the filamentous fungus in Podospora anserina (Rizet, 1952) 

and is now known to be caused by the protein Het-s (Coustou et al., 1997).  Later prions 

identified include [RNQ+] (also called [PIN+]) (Derkatch et al., 2000; Sondheimer and 

Lindquist, 2000; Derkatch et al., 2001) and [SWI+] (Du et al., 2008) in S. cerevisiae and 

[Cin] in S. pombe (Collin et al., 2004). 
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Fungal prions also exhibit diverse phenotypes.  [URE3] is involved in the uptake 

of nitrogen sources (Lacroute, 1971) and [PSI+] showed increased read-through at stop 

codons (Cox, 1965).  [Het-s] causes heterokaryon incompatibility, in which hyphae from 

genetically diverse P. anserina mycelia die after cell-cell fusion (Rizet, 1952).  However, 

all the fungal prions had distinct and similar genetic attributes. 

Early work on fungal prions described their non-Mendelian patterns of 

inheritance.  Naturally this led to comparisons with known mechanisms of infectious or 

non-Mendelian inheritance, such as fungal viruses (mycoviruses) and organellelar traits.  

These prions, however, showed their own distinct inheritance patterns (figure 1.1) that 

did not match the genetic characteristics of any of the other mechanisms of non-

Mendelian inheritance (table 1.1).  Eventually Reed Wickner postulated that that [URE3], 

and by extension [PSI+], were analogous to mammalian prions in that they were caused 

by a protein-based heritable element (Wickner, 1994).  Still, because of study of fungal 

prions began with non-Mendelian inheritance and progressed to protein-based heritable 

elements (prions), the former will be discussed first. 

 

Non-Mendelian Inheritance in S. cerevisiae 

 Prions are one of many mechanisms of non-Mendelian inheritance in S. 

cerevisiae.  These include mitochondrial traits, dsRNA viruses, ssRNA viruses, plasmids, 

retroviral transposons, and retro-transposing mitochondrial introns.  Most of these modes 

of inheritance are infectious, meaning that cytoplasmic transfer is sufficient for 

inheritance.  The genetic characteristics of these non-Mendelian mechanisms overlap to 

some extent with those of yeast prions.  Distinguishing attributes include de novo 
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Figure 1.1: Genetic attributes of yeast prions based on self-propagating amyloid templates 

a) Yeast prions appear and disappear spontaneously (“metastable”).  Molecules of protein 

occasionally assemble into self-templating aggregated conformations.  These can then be 

passed from mother to daughter during mitosis.  The [PRION+] element is stably 

inherited because the daughter cell’s protein is efficiently templated by aggregates 

inherited from its mother.  b) Aggregates are occasionally not passed to daughters, 

resulting in heritable loss of the prion.  c) Prions are dominant and inherited in a non-

Mendelian manner.  When an aggregate-carrying [PRION+] cell is mated to a [prion-] 

cell, the resultant diploid contains heritable [PRION+] aggregates that can seed [prion-] 

protein into the [PRION+] conformation.  The [PRION+] element is therefore dominant.  

[PRION+] aggregates are passed to daughter cells during meiosis, resulting in non-

Mendelian 4 [PRION+] : 0 [prion-] segregation.  d) Prions are passed to mating partners 

by cytoplasmic mixing.  When a mating is performed between a [PRION+] and a [prion-] 

cell, one of which carries a kar1 mutation, cells fuse and the cytoplasm mixes but nuclei 

do not fuse and nuclear material is not exchanged.  Instead the binucleate cell produces a 

monokaryotic bud, which contains mixed cytoplasm but only one parental nucleus 

(“cytoductant”) (Conde and Fink, 1976).  The [PRION+] element is transmitted in these 

“cytoduced” cells that contain cytoplasm from the [PRION+] parent but a nucleus from 

the [prion-] parent.  Prion elements can therefore be inherited independently of the 

nucleus.  e) Changes in levels of chaperones, which are proteins involved in the folding 

and unfolding of other proteins, can prevent [PRION+] aggregate inheritance.  When 

chaperones levels increase, such as in response to heat or chemical stress, protein 

aggregates are no longer efficiently passed down to daughter cells.  This converts cells 

from [PRION+] to [prion-].  Chaperones can block aggregate inheritance by changing 

prion folds or other mechanisms.  Chaperones can also promote prion function by 

shearing aggregates.  In this case loss of shearing results in loss of the prion. 
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 acquisition rates, whether these traits show chaperone-dependent reversible curing, and 

whether the phenotype of interest can be induced by protein-only transformation (table 

1.1). 

Chaperones are proteins that assist in the folding of other proteins.  Perturbations 

in chaperone levels can “cure” prions by preventing the inheritance of [PRION+] protein 

aggregates by daughter cells.  This curing and reappearance of a phenotype is specific to 

fungal prions and is an important feature in distinguishing prions from viruses (Shorter 

and Lindquist, 2005) and other forms of infectious inheritance. 

The [PRION+] form of a protein is induced by transient overexpression of the 

prion-determining protein.  This attribute was fundamental to Wickner’s original 

argument that [URE3] represented an altered state of the Ure2 protein (Wickner, 1994).  

The particularly surprising aspect of this prion attribute is that a temporary change in 

protein levels is sufficient to induce a permanent change in the cell’s phenotype (Uptain 

and Lindquist, 2002; Wickner et al., 2004).  This ability is not observed in any other 

mechanism of non-Mendelian inheritance.  Furthermore, it has been successfully 

exploited many times to aid in the identification of new prions  (Derkatch et al., 2001) 

and prion-determining proteins (Chernoff et al., 1993; Ter-Avanesyan et al., 1993). 

 A defining attribute of prions is protein-only transformation.  As prions are 

heritable proteins, the ultimate proof of protein-based inheritance is inducing a prion  
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Table 1.1: Non-Mendelian inherit  ance in yeast

  

spontaneous, 
frequent 

appearance dominant

non-
Mendelian 
inheritance 

infectious 
(cytoplasmic) 
inheritance 

chaperone-
dependent 

curing 

reversible 
chaperone-
dependent 

curing 
Prion    + + + + + +
organelle trait + sometimes + + - - 
mycovirus       - + + + -* -
plasmid       - + + + - -
transposon       + sometimes - - - -
retro-transposing 
intron + sometimes -    - - -
 *correct folding of the KIL+ toxin requires ER lumen chaperones  

 

 

 

 



phenotype by transformation of prion conformers produced in vitro; this was 

accomplished in 2002 for [Het-s] and in 2004 for [PSI+] (Maddelein et al., 2002; King 

and Diaz-Avalos, 2004; Tanaka et al., 2004).  As the Het-s and Sup35 protein had been 

purified from E. coli and the prion-inducing fibers created in vitro, these data firmly 

establish that protein fibers are sufficient to induce a prion.  This method has since been 

used to indisputably demonstrate protein-only inheritance of [URE2] (Brachmann et al., 

2005), and [RNQ+] (Patel and Liebman, 2007).  Protein-only transformation is always 

sufficient to demonstrate that a phenotype is based on a prion.  The transformation 

procedure necessitates that the infectious protein conformation can be produced in vitro.  

However, this technique only works if the prion-determining protein can be purified from 

E. coli and if it can be converted into the stable prion conformation in vitro.  Because it is 

a relatively new technique and was not used historically to distinguish prions from other 

mechanisms of infectious inheritance and because it is virtually impossible to perform if 

the prion conformation of the protein cannot be stably induced in vitro, protein 

transformation is not discussed in detail in the following section. 

 Yeast prions and organellar traits have a number of genetic attributes in common.  

Yeast has long been used as a model organism to study organelle inheritance, which was 

the first mechanism of extranuclear non-Mendelian inheritance discovered (Goldschmidt, 

1950). The first mitochondrial mutation, petite (ρ0), was isolated in S. cerevisiae 

(Ephrussi et al., 1949).  However, the first mitochondrial mutations to be identified as 

such were isolated in Neurospora (Mitchell and Mitchell, 1952).  Organelle inheritance 

violates Mendel’s laws of segregation and independent assortment because organelles are 

passed on to all progeny, either bi- or uni-parentally, following meiosis. 
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Mitochondrial inheritance 

Yeast mitochondria are inherited cytoplasmically in a polarized, actin-dependent 

manner that is linked to cell cycle control (Boldogh et al., 2001).  Unlike mammalian 

mitochondrial inheritance, yeast mitochondria show biparental inheritance.  Indeed, the 

diploid colony (i.e. several generations downstream of the mating event) formed by 

mating two haploids is highly heterogeneous: markers from both parental cells are 

present in the colony and both or just one are present in individual cells.  Within 20 

generations each diploid cell will contain only a single mitochondrial marker (Dujon et 

al., 1974).  There is some stochasticity in the process, as either marker could be present in 

the end cell tested, but the yeast cells eventually become mitochondrially “pure.” 

Mitochondrial traits superficially resemble yeast prions in that they show 4:0 

segregation and infectious inheritance.  Furthermore, the heterogeneity typical of 

mitochondrial crosses superficially resembles chaperone-dependent curing of prions in 

that the phenotype of interest is lost over the course of generations.  However, “curing” 

of mitochondrial traits is not reversible, as the chaperone-mediated curing of yeast prions 

is, nor does it depend predominantly on chaperones, the protein folding machinery of the 

cell.  Also, once a mitochondrial trait has reached purity, it is no longer be curable.  The 

distinguishing characteristics between yeast prions and mitochondrial traits is thus 

reversible curing. 

 

Mycoviruses 

 It is also important to compare mycoviruses to fungal prions because the 

inheritance patterns of the two are quite similar and can be somewhat difficult to 
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distinguish.  S. cerevisiae contains both dsRNA and ssRNA viruses.  dsRNA viruses in 

yeast belong to two major families, L-A and L-BC, or a subfamily, M.  L-A and L-BC 

each contain two ORFs, one for a coat protein (Gag) and one for an RNA polymerase 

(Pol).  L-A and L-BC are sufficiently widespread that a majority of wild yeast isolates 

contain a member of one or both families (Wickner, 1996a).  These viruses are spread 

horizontally by cell-cell fusion (primarily by mating but sometimes by heterokaryon 

formation) and vertically by mitosis and meiosis; they show 4:0 meiotic segregation.  

Yeast viruses do not have a known mechanism of extracellular spread (i.e. cell lysis), 

presumably due to the difficulty of crossing the yeast cell wall.  They are therefore 

occasionally referred to as “virus-like particles” (VLPs) for historical reasons (Schmitt 

and Breinig, 2006). 

 L-A family of viruses are frequently found in conjunction with a member of the 

smaller M family of dsRNA viruses, which together cause a “killer” phenotype.  Yeast 

that are KIL+ secrete a peptide toxic to kil- yeast.  The M family has three known 

members, M1, M2, and M28.  Each contains a single open reading frame encoding a 

preprotoxin (pptox; K1, K2, and K28, respectively).  M viruses confer both the ability to 

produce the killer toxin and immunity to it.  As M viruses contain neither gag nor pol 

genes, they require the presence of L-A viruses to replicate (Schmitt and Breinig, 2006).  

The presence of particular chromosomal alleles is also necessary for the maintenance of 

dsRNA virus (Wickner, 1980).  Therefore, the phenotype exhibited by these viruses, 

KIL+, requires at least two viruses and one chromosomal genetic element for exhibition.  

The complexity of the KIL+ phenotype has resulted in occasional speculation that it 
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might on some level involve a heritable protein element (Uptain and Lindquist, 2002).  

For this reason KIL+ is discussed in depth here. 

 The “killer” phenotype requires the synthesis and secretion of one of the three 

toxic peptides coded by the M viruses.  These peptides consist of five regions and an 

HDEL-retention sequence (Schmitt and Breinig, 2006).  These regions, N-terminius to C-

terminus, are the secretion signal (“pre”), a middle region (“pro”), α, γ, and β.  Through 

interaction with cytosolic and luminal chaperones and protein modification enzymes, the 

toxin precursor protein is processed in the ER and golgi, then secreted into the culture 

medium (Martinac et al., 1990). 

 Because the processing of killer toxin involves chaperones, KIL+ shows 

inheritance patterns similar to yeast prions.  However, since killer toxin is secreted, it can 

be assayed for in the yeast growth medium.  One can therefore distinguish between yeast 

prions and KIL+ by testing whether phenotypes of interest can be conveyed 

independently of cells. 

 S. cerevisiae also contains ssRNA viruses (genus: narnavirus (Van Regenmortel 

et al., 2000)) that are spread by cytoplasmic exchange (mating) and show 4:0 non-

Mendelian segregation.  20S (Kadowaki and Halvorson, 1971), 23S  ssRNAs, and 

replicative intermediates W and T have so far been characterized (Wickner, 1996b).  20S 

and 23S ssRNA code only for an RNA polymerase and lack capsid proteins.  Without 

capsid proteins, 20S ssRNA (and presumably 23S ssRNA) is protected from degregation 

by interaction with its RNA pol proteins (Fujimura and Esteban, 2007).  20S and 23S are 

highly contagious and found in most yeast laboratory strains (Wickner, 1996b) but their 

phenotypic consequences have not been well characterized.  Neither 20S nor 23S 
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narnaviruses have been shown to be curable (Solorzano et al., 2000).  Therefore, although 

ssRNA viruses show non-Mendelian segregation, they would not resemble prions 

because they would not be susceptible to chaperones, would not be induced by transient 

overexpression of causal genes, and could not be transmitted by transformation with 

protein. 

 Overall, the genetic characteristics of fungal viruses very closely resemble those 

of fungal prions.  Segregation is 4:0 following meiosis and phenotypes are inherited 

independently of the nucleus, as shown by cytoduction.  Some phenotypes caused by 

viruses, such as KIL+, are sensitive to chaperones.  However, KIL+ and viruses in general 

do not reappear in yeast cells from which they have been “cured” due to chaperone 

effects (reversible curing). 

 

Plasmids 

 Inheritance of plasmids and other “selfish” genetic elements is by definition 

extrachromosomal and shows non-Mendelian segregation (Beggs, 1978).  Nonetheless, 

plasmids are not technically infectious, as they do not show efficient cytoplasmic 

inheritance (cytoduction).  2µ plasmids are found in the majority of yeast strains but they 

are intra-nuclear.  Mutations that alter chromosome segregation affect plasmid 

partitioning and plasmids missegregate in tandem with chromosomes (Velmurugan et al., 

2000).  More recent work showed that the cohesin complex, which is involved in sister 

chromatid segregation and is necessary for timely and proper segregation of 

chromosomes, is also found on 2µ plasmids (Mehta et al., 2002).  A 2µ plasmid-
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dependent phenotype, albeit showing non-Mendelian segregation, would be “cured” by 

mutants that affect chromosome segregation and not by chaperones. 

 

Mechanisms of spontaneous phenotypic acquisition: Ty elements and infectious introns 

 Another mechanism for the spontaneous acquisition of new phenotypes is Ty 

transposition.  The Saccharomyces cerevisiae nuclear genome contains five families of 

retrotransposable elements (Ty1-5) that are capable of causing phenotypic change 

(Lesage and Todeschini, 2005).  Ty elements consist of two long terminal repeats (LTR) 

flanking two open reading frames that code for enzymes needed for replication.  Ty 

elements are fairly common in the yeast genome (3.1% of S288C sequence is predicted to 

consist of Ty elements; (Kim et al., 1998)). 

 There are three possible ways that Ty factor integration can induce change: 

altered expression from an adjacent gene; novel regulation of an adjacent gene, or 

genomic rearrangement due to recombination between Ty elements.  When Ty1 is 

inserted in a 5’ upstream region in the same orientation as the downstream gene it results 

in decreased expression from the adjacent gene because the Ty1 element replaced the 

regulatory elements of the gene.  Ty1 has also been shown to result in novel regulation 

when inserted 5’ and within 175bp of an ATG in the opposite orientation of a gene 

(Lesage and Todeschini, 2005) because it contains binding sites for a number of 

transposons (Gray and Fassler, 1993; Baur et al., 1997; Madhani and Fink, 1997). 

 Another mechanism of non-Mendelian inheritance in S. cerevisiae is that of self-

splicing “infectious” introns.  They are found predominantly in the mitochondria but can 

also be nuclear.  Transposition can be either site-specific (group I) (Lambowitz and 
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Belfort, 1993) or random (group II) (Mueller et al., 1993).  Intron insertion can change 

the phenotype of a cell by either altering expression from a gene of by genomic 

rearrangements via recombination between intron copies (Mueller et al., 1993). 

 Overall, retrotransposable elements and infectious introns do not greatly resemble 

yeast prions genetically.  They phenomena are similar to prions, however, in that they 

allow for spontaneous acquisition of new phenotypes.  These novel phenotypes tend to 

appear at rates similar to genetic mutation but sometimes appear at higher rates (Taguchi 

et al., 1984).  However, once the Ty- or intron-induced changes are inserted into the 

genome, the resultant phenotypes show Mendelian segregation.  Therefore, they easily be 

differentiated from fungal prions by analysis of segregation patterns. 

 

Fungal prions 

 Prion-dependent phenotypes in fungi were identified in a manner similar to 

mammalian prions: researchers found phenotypes that could not be explained by 

contemporary knowledge of molecular biology.  The earliest of these was [Het-s], a 

cytoplasmic element in P. anserina involved in mating-type incompatibility (Rizet, 

1952).  Two later-identified, albeit better-studied, phenomena in Saccharomyces 

cerevisiae, [URE3] (involved in uptake of nitrogen sources) (Lacroute, 1971) and [PSI+] 

(which showed stop codon read-through) (Cox, 1965) were described as being 

extrachromosomal, inherited by infectious cytoplasmic exchange (cytoduction), non-

viral, non-mitochondrial, and not due to a known plasmid (Tuite et al., 1982).  All of 

these early prions were defined by their genetic characteristics (see figure 1.1), which are 

unique to prions (Wickner, 1994). 

 30



 In 1994, Reed Wickner suggested that [URE3], and by extension [PSI+], represent 

an S. cerevisiae phenomenon similar to mammalian prions: that a phenotype was caused 

by an alternative conformation of a protein (Wickner, 1994).  There was, however, one 

key difference: fungal prions are heritable and infectious, whereas mammalian prions are 

only infectious.  The heritability of the fungal prion phenotype allowed for the 

elucidation of a distinct set of genetic characteristics, outlined by Wickner, that formed 

the basis for identifying additional fungal prions (figure 1.1) (Derkatch et al., 2000; 

Sondheimer and Lindquist, 2000; Derkatch et al., 2001; Collin et al., 2004; Du et al., 

2008). 

[URE3] showed non-Mendelian segregation and cytoplasmic inheritance 

(Lacroute, 1971), attributes shared by mycoviruses, the non-Mendelian elements that 

most closely resemble prions (table 1.1).  However, what surprised Wickner was that the 

gene URE2 was required for [URE3] maintenance but that a ure2 knockout mutant, 

∆ure2, exhibited the same phenotype as [URE3] (Aigle and Lacroute, 1975; Wickner, 

1994).  This was shocking; Wickner pointed out that one could not expect a heritable 

element to have the same phenotype as a loss-of-function mutation in a gene that is 

required for the maintenance of that heritable element. 

With mycoviruses, the knockout phenotypes of genes required for production of 

L-A and/or M viruses (e.g. TOP1, MAK3, MAK10) are different from the phenotype 

caused by the element they control, the viruses themselves.  The knockout phenotypes of 

∆top1, ∆mak3, and ∆mak10 include sensitivity to DNA-damaging agents, elongated 

telomeres, and a growth defect on non-fermentable carbon sources, respectively.  The 

 31



viral phenotype is the ability to kill yeast cells that do not carry L-A and M viruses 

(“killer” phenotype) (Wickner, 1996a). 

 Wickner’s second observation that [URE3] is inconsistent with a mycovirus was 

that transient overexpression of the URE2 gene product increases the rate of appearance 

of the [URE3] prion.  Fungal viruses have no known mechanism of extracellular spread, 

so in contrast to mammalian prions, the argument cannot be made that Ure2 represents a 

receptor for the [URE3] virus.  However, if [URE3] was an altered, prion, form of Ure2, 

an increase in the amount of Ure2 protein by overexpression of the gene product would 

increase the probability of the protein entering the [URE3] form (Wickner, 1994).  It was 

also intriguing that the overexpression phenotype of URE2 was the same as [URE3] and, 

as mentioned previously, ∆ure2 (Aigle and Lacroute, 1975).  None of these would be 

expected for virus-based heritable elements (Wickner, 1996a, b). 

The final puzzling attribute of [URE3] was that it showed reversible curing.  

Treatment with guanidinium hydrochloride (guanidine or GdHCl) (Wickner, 1994), 

converts [URE3] to [ure3] with almost 100% efficiency.  Wickner was readily able to 

reisolate [URE3] derivatives from cured cells.  The reappearance of [URE3] following 

curing implies that the [URE3] “replicon” is not removed during curing.  When 

mycoviruses are cured, however, the virus phenotype cannot spontaneously reappear in 

the cured strain.  The combination of curing data with data linking the URE2 gene 

product with propagation and induction of [URE3] suggest that [URE3] is an alternative 

state of the Ure2 protein (Cox, 1994b; Wickner, 1994). 

 Wickner’s original yeast prion paper is very interesting and important for what it 

did argue but it is also worth noting what it did not argue.  Primarily, Wickner suggested 
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that [URE3] might be the result of a conformational changes but he was not adamant 

about a precise mechanism.  The definition and the argument were entirely genetic and 

allow for a wide range of physical models.  Possibilities include a purely conformational 

difference between [prion-] and [PRION+] macromolecules, self-propagating covalent 

modification such as glycosylation or phosphorylation causing an “altered” state that 

creates a new phenotype but also causes the proteins to perpetuate the modification, auto-

activating enzymes, or self-maintaining signaling cascades.  Contemporary reviews 

focused on conformational change or auto-activating enzymes as mechanisms (Cox, 

1994a; Wickner et al., 1995).  Notably, the mammalian prion field also did not initially 

make any claim about conformation, modification, structure, etc., and focused solely on 

whether the heritable agent of the infectious scrapie/CJD/kuru pathogen is proteinaceous.  

In any case, proteins in multiple kingdoms of life can perform functions traditionally 

thought to be reserved to nucleic acids (figure 1.1). 

 

[PSI+] and conformational change 

 [PSI+] was identified in 1965 as an permanent, non-Mendelian enhancer of the 

SUQ5 stop-codon suppressor (Cox, 1965).  [PSI+] was originally thought to be caused by 

a plasmid or some unknown nucleic acid determinant, although that was controversial 

(Cox et al., 1988).  The plasmid theory was based on mutagenesis studies showed that 

[PSI+] could be converted to [psi-] by exposure to UV and that this conversion to [psi-] 

could by reduced by induction of DNA repair enzymes. (Later it was shown that Hsp104, 

the protein conformation remodeling factor that cures [PSI+], is induced by many 

stresses, including UV (Sanchez et al., 1992)).  The kinetics were similar to those of 
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mitochondrial mutations, implying a nucleic acid determinant (Tuite and Cox, 1980).  

Claims were made that transformation of DNA from a [PSI+] strain was capable of 

converting [psi-] and that this activity co-purified with a 3µ circle (Dai et al., 1986), but 

this was not reproduced.  (Indeed, since that time it has been shown that aging yeast cells 

characteristically generate episomes of ribosomal DNA and this was likely the origin of 

the circles (Sinclair and Guarente, 1997)). 

 Work relating [PSI+] to a change in protein folding started because the protein 

chaperone Hsp104 was shown to cure [PSI+] to [psi-] (Chernoff et al., 1995).  

Chaperones, which are necessary for the proper folding of proteins, had not been shown 

to act on nucleic acids, thus implying that [PSI+] might be caused by a heritable protein 

fold.  Wickner had presciently suggested in his seminal [URE3] paper that [PSI+] might 

be propagated by a similar protein-based mechanism (1994). 

[PSI+] had been linked to the SUP35 gene prior to Wickner’s publication.  

Specifically, overexpression of either full-length or the N-terminus of SUP35 increased 

the percentage of read-through of stop codons (Ter-Avanesyan et al., 1993) and induced 

[PSI+] (Chernoff et al., 1993).  In fact, the N-terminal region of SUP35 is required for 

[PSI+] maintenance (Ter-Avanesyan et al., 1994).  A dominant point mutant that 

prevented [PSI+] propagation was mapped to the N-terminal region of SUP35 (Doel et 

al., 1994). 

Direct support for the proteinaceous nature came when it was discovered that the 

Sup35 protein in the cell forms large, insoluble aggregates in the [PSI+] form but remains 

soluble in [psi-] (Patino et al., 1996; Paushkin et al., 1996).  Like PrPSc, Sup35 from 

[PSI+] cells is partially resistant to proteinase K digestion.  Finally, changes to the state of 
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Sup35 correlated with the switch between [psi-] and [PSI+].  Sup35 was fused to GFP and 

its localization observed; in [psi-], Sup35-GFP showed diffuse, cytosolic localization.  In 

[PSI+], Sup35-GFP rapidly formed aggregates (Patino et al., 1996).  Curing of [PSI+] to 

[psi-] correlated with the return of Sup35 to a soluble state (Chernoff et al., 1993; Patino 

et al., 1996).  Combined, these data suggested that [PSI+], and by extension [URE3], 

represented an altered aggregated form of the Sup35 (and Ure2) proteins that had an 

infectious character: the ability to recruit newly-made protein to the same aggregated 

conformation. 

 

[Het-s] 

 [Het-s] was the first fungal prion to be described (Rizet, 1952) but one of the 

more recent to be identified as a prion.  This is because the [Het-s] phenotype, which 

causes heterokaryon incompatibility in the [PRION+] form, is among the more 

complicated prion-based phenotypes.  For starters, Podospora anserina carries multiple 

het-s alleles, one of which is capable of forming a prion and one of which is not.  This 

results in three possible “genetic” states: HET-S (protein coded by allele that cannot form 

prion), [Het-s] (prion form of protein), and [Het-s*] (non-prion state of prion-forming 

allele).  Second, the prion state, [Het-s], only results in a phenotype when its organism 

forms heterokaryons with a Podospora strain containing the het-S allele, which cannot 

form a prion.  When a [Het-s] Podospora hypha fuses with a het-S hypha to form a 

heterokaryon, apoptosis is triggered and the heterokaryon dies. 

 [Het-s] fulfils the genetic criteria of prions: reversible curing, induction of the 

[Het-s] phenotype with overexpression of the het-s gene, and a het-s knockout strain (het-
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s0) cannot propagate the [Het-s] prion phenotype (Coustou et al., 1997).  However, het-s0 

does not phenocopy [Het-s].  Het-s protein isolated from a [Het-s] colony is resistant to 

protease-K digestion, whereas Het-s protein from [Het-s*] colony is not protease-K 

resistant.  The Het-s protein itself therefore shows a conformational change, very strongly 

suggesting a prion-based mechanism of inheritance rather than a plasmid (Coustou et al., 

1997).  PrPSc shows a similar protease resistance when compared to PrPC (Bolton et al., 

1984).  With the advent of protein transformation, [Het-s] was shown to be induced by 

the transformation of Het-s protein fibers; [Het-s] is therefore a prion. 

 

Mechanism of prion inheritance 

 All yeast prions identified to date operate by a similar mechanism but involve 

unrelated proteins and result in different phenotypes.  In [PSI+] and [URE3], the prion 

determining protein (Sup35, a translation termination factor, and Ure2, a nitrogen 

catabolite repressor, respectively) is soluble in the [prion-] state and either cytosolic or 

nuclear, respectively.  When in the [PRION+] form, the majority of the Sup35 and Ure2 

protein aggregates in the cytoplasm.  This titrates away soluble protein, resulting in a 

[PRION+] phenotype that phenocopies either a partial ([PSI+]) or complete loss-of-

function ([URE3]) phenotype of the determining protein.  [PSI+] thus results in increased 

readthrough at stop codons and [URE3] causes a defect in nitrogen regulation that results 

in uptake of poor nitrogen sources (ureidosuccinate) in the presence of good nitrogen 

sources (ammonia) (Shorter and Lindquist, 2005).  The phenotypic consequences of 

[PSI+] and [URE3] are thus very different. 
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 [Het-s] has a different mechanism of action.  Specifically, while the het-s protein 

is aggregated in the [Het-s] form and soluble in the non-prion, [Het-s*] form (Coustou-

Linares et al., 2001), the [Het-s] phenotype does not phenocopy a loss-of-function of the 

het-s genetic locus.  Loss of het-s has no known phenotype (Coustou et al., 1997).  [Het-

s] resembles PrP in this property, as the PrPC protein has no known phenotype other than 

an inability to propagate prion disease for many years (Steele et al., 2007).  These data 

imply that the [PRION+] form represents a gain-of-function phenotype.  Still, the het-s 

protein aggregates in [Het-s], and thus all the early fungal prions involved some state of 

heritable aggregation. 

 

Similarities between mammalian and fungal prions: “species barrier,” “strains,” and 

amyloids 

 Fungal and mammalian prions have three major overlapping attributes: the 

species barrier phenomenon; the ability to exist in distinct, self-propagating prion strains; 

and a difference in protein structure associated with the [PRION+] state.  Prion strains 

and the species barrier were particularly puzzling for mammalian prion researchers.  

Viruses also involve “strains” with varying phenotypes and a species barrier to 

infectivity.  The finding that fungal prions also exhibit a species barrier and can 

propagate as distinct prion strains strengthens the connection between seemingly 

disparate phenomenon. 
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Prions and amyloids 

 Perhaps the most important conserved characteristic between PrP and the known 

fungal prions is the ability of these proteins to assume very different structures in 

[PRION+] and [prion-] forms.  The [PRION+] form of all known fungal prion proteins is 

amyloid.  Amyloid is an extremely stable, β-sheet rich protein fold that is also found in 

several late-onset neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and 

Huntington’s diseases (Chiti and Dobson, 2006).  Amyloids do not denature in 1% SDS; 

cause fluorescence or birefringence of the dyes thioflavin T or Congo Red, respectively; 

and are often self-templating in vitro.  It is thought that most proteins can form amyloid 

under some condition, based on the observation that a number of non-aggregating 

proteins unrelated to amyloid diseases spontaneously form amyloid in vitro (Guijarro et 

al., 1998; Litvinovich et al., 1998; Serio et al., 2000).  These were later shown to be a 

generic property of many polypeptides under semi-denaturing conditions (Chiti et al., 

1999).  However, fungal prion-determining proteins are among the few genetically 

tractable amyloids and have been extensively studied for that reason. 

Amyloid and pre-amyloid structures (fibrils, oligomers, etc.) can be heritable and 

infectious because the ends of amyloid fibrils self-template.  This recruits protein of the 

non-prion form into the amyloid deposits (Shorter, 2008).  The rate of fragmentation of 

the amyloid fibers is thought to contribute to whether an amyloid-forming protein is 

heritable (Tanaka et al., 2006).  Fragmentation forms oligomeric seeds; if seeds do not 

form at a sufficient rate to be passed on to daughter cells, the amyloid state is not 
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inherited.  Why oligomers are toxic in mammalian cells but heritable in fungi is poorly 

understood but a major point of investigation (Douglas et al., 2008). 

 

Prion Strains 

 The potential structural diversity of prion-forming proteins results in another 

unusual characteristic of prions: the strain phenomenon.  Different infectious lines, still 

presumably caused by PrPSc, resulted in different incubation times and caused 

spongiform pathology in different regions of the brain.  Incubation times and infected 

brain regions were, however, stable within a line (Aguzzi et al., 2007).  These differences 

can be propagated through serial rodent infections, so the difference in phenotype is 

stable and transmissible (Dickinson and Fraser, 1977).  These data were initially 

interpreted as strong evidence against the protein-only hypothesis because “strains” are 

characteristic of viruses.  Strains were hypothesized to result from mutations within a 

virus, whereas a mechanism by which a protein could accomplish such stable infectious 

specificity was difficult to imagine.  However, it was shown that PrPSc from different 

prion strains showed different digestion patterns by proteinase K (Bessen and Marsh, 

1994).  The strain-associated differences of PrPSc transmit to and convert PrPsen into the 

different PrPres strains in vitro (Bessen et al., 1995). 

 Fungal prions also exhibit “strains” that correlate with [PRION+] protein 

structure.  Fungal prion strains tend to be either “strong” or “weak” version of the 

[PRION+]-associated phenotype (e.g. strong [PSI+] shows more read-through of stop 

codons than weak [PSI+]).  These strains are stably propagated and in a non-Mendelian 

manner  (Derkatch et al., 1996).  The amount of aggregated protein differs between 
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strains, which presumably is what causes differences in strength of the prion phenotype 

(Bradley et al., 2002).  Variances between yeast prion strains appear to be entirely 

structural, as formation of infectious Sup35 fibers at different temperatures is sufficient to 

result in different strains without any difference in sequence or change other than 

temperature of the assembly reaction (Tanaka et al., 2004).  Furthermore, the regions of 

the Sup35 protein forming the “core” of the prion-causing fiber differ between [PSI+] 

strains (Krishnan and Lindquist, 2005), as do the amino acid contacts formed during the 

polymerization (Tessier and Lindquist, 2007).  These data combine to show that, 

analogously to PrP, the proteins that cause fungal prions are capable of entering into 

several different possible prion-causing structures and that structural differences of the 

infectious form of the prion result in strain differences. 

 Overall, the prion strain phenomenon is thought to result from the inherent 

flexibility of the protein causal agent (Morales et al., 2007).  Because the causal protein is 

inherently unstructured, it is capable of entering into a number of related folds.  Some of 

these are self-propagating, which creates prions.  Slight differences in the self-

propagating prion fold results in different prion strains.  This structural flexibility of 

proteins capable of forming prions implies that a large number of different strains are 

possible.  In mammals the self-propagating strains lead to different diseases, many with 

different clinical symptoms.  Understanding the structure of PrPSc and how it differs 

between species and strains is therefore an important epidemiologic question. 
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The species barrier prevents cross-species infectivity 

The “species barrier” refers to the inefficiency of transmission of infectious prion 

material from one species to another.  Inter-species infection occurs at much lower 

frequencies and requires longer incubation times than the infection within a species 

(Moore et al., 2005).  The species barrier can be “crossed” by transmitting the disease to 

a different species than the originating one, but only at low frequency and with long 

incubation times (Zlotnik and Rennie, 1965).  When the species barrier is crossed the 

strain in question then propagates in the new species with increased efficiency that 

eventually stabilizes (Kimberlin and Walker, 1977). 

This species barrier was shown to be attributable to the prion protein itself.  

Transgenic mice carrying copies of the hamster PrP gene acquire prion disease more 

efficiently when infected with prion inoculum from hamsters and disease was then 

transmitted efficiently to hamsters (Scott et al., 1989) but not to mice (Prusiner et al., 

1990).  The neuropathology resembled the originating species rather than the infected 

species (Scott et al., 1989; Prusiner et al., 1990). 

 Differences in the primary sequence of PrP from different species are thought to 

contribute to structure differences within the PrP protein that cause the species barrier 

phenomenon (Morales et al., 2007).  For example, the amino acid residues implicated in 

the mouse/hamster prion species barrier are 138 (Priola and Chesebro, 1995) and 154 

(Priola et al., 2001).  Replacement of one residue with the other prevents the conversion 

of PrPC to PrPSc in a cell-based assay by PrPSc from the origin species (e.g. hamster PrPSc 

cannot convert hamster PrPc that carries the mouse amino acid at position 138 or 154) 

(Priola et al., 1994). 
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Residue 129 in human PrP contributes to susceptibility to the infectious prion 

diseases vCJD and kuru.  Residue 129 is either methionine (M) or valine (V) in all 

populations tested, with approximately 51% of the UK population being M/M 

homozygous (Collinge et al., 1991).  Kuru patients show an over-representation of M/M 

homozygotes (Lee et al., 2001) and all but one of the 130+ vCJD cases are M/M 

homozygotes (Peden et al., 2004).  Sporatic (Palmer et al., 1991) and iatrogenic (Brandel 

et al., 2003) CJD patient populations are enriched for homozygotes at 129 (either M/M or 

V/V).  M/V heterozygotes appear to be protected from kuru (Lee et al., 2001; Mead et al., 

2003).  There has also been selection for heterozygosity at the PrP allele (Mead et al., 

2003), possibly because variation within an individual’s native PrP allele is thought to 

prevent PrP protein polymerization and thus PrPSc formation (Palmer et al., 1991).  A 

very controversial interpretation of this data is that the selection for heterozygosity of PrP 

is indicative of widespread cannibalism in early human populations (Mead et al., 2003). 

 Fungal prions also exhibit a species barrier both in vivo and in vitro (Santoso et 

al., 2000).  The SUP35 genes from fungi such as Candida albicans and Pichia 

methanolica have been engineered into S. cerevisiae and can act as prions in that yeast.  

However, the foreign Sup35 protein does not coaggregate with S. cerevisiae Sup35 

protein or induce S. cerevisiae Sup35 to form [PSI+] (Chernoff et al., 2000; Santoso et al., 

2000).  Similar results were obtained with SUP35 alleles from sensu stricto 

Saccharomyces species, which can mate with S. cerevisiae but do not produce viable 

offspring.  These proteins show between 77% and 94% amino acid identity with the 

prion-causing region of S. cerevisiae Sup35.  However, they still cannot induce S. 

cerevisiae Sup35 into the [PSI+] form, despite coaggregation of the different Sup35 
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proteins within the same cell (Chen et al., 2007).  These data suggest that alterations to 

the primary sequence alone are not sufficient to explain the species barrier and that 

environment, and thus presumably structure, plays some part. 

Sup35 protein from Candida albicans that was converted in vitro into self-

polymerizing fibers cannot induce fiber formation of Sup35 from S. cerevisiae, nor vice 

versa (Chien and Weissman, 2001).  This fiber formation is an attribute of most prion-

causing proteins and has been used extensively to study mechanisms of self-propagation, 

the species barrier phenomenon, and protein infectivity.  A chimeric species that contains 

the N-terminal S. cerevisiae PrDs and C-terminal C. albicans PrD shows seeding of 

soluble S. cerevisiae Sup35 protein under some conditions but C. albicans Sup35 under 

others.  The specific residues involved in the nucleation of polymerization have been 

mapped, differ between C. albicans and S. cerevisiae, and found to contribute to the 

species barrier (Tessier and Lindquist, 2007). 

 

Are all prions amyloid? 

 Some fungal prion proteins, including Sup35 and Ure2, form amyloids in the 

prion-associated forms.  Although amyloids can be prions and prions can be amyloid, an 

amyloid or amyloid-like fold is not required in order to be a prion.  Mammalian prions 

were defined by a protein-based heritable element; the analogous fungal phenomenon 

was defined by genetic attributes.  Any protein-based mechanism that fits the genetic 

criteria could therefore theoretically fit under the definition of “prion.” 

Along these lines, Roberts et al. recently proposed that a self-activating vacuolar 

protease, [β], can be a prion (2003).  This claim has been criticized because [β] is only 
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auto-activating under artificial conditions.  However, it represents an important proof-of-

principle experiment because it is this first example in fungi of a non-amyloid self-

templating protein element. 

The active form of protease B (PrB), is formed when the protease B precursor 

protein (proPrB) is cleaved, first by protease A (PrA, coded by the PEP4 gene) then by 

mature protease B (PrB or [β]).  PrB is capable of self-cleavage in the absence of PrA, 

which results in the [β] (self-processed) form of PrB.  This self-processed form can be 

called a prion because it is auto-activating.  [β] can be cytoduced to [β-o] ([prion-]) cells, 

and [β] can be cured by extended growth under conditions that repress proPrB 

transcription (Roberts and Wickner, 2003).  However, PrB is only self-activating under 

artificial conditions of a ∆pep4 background.  Another aspect of [β] is that its self-

activation requires a covalent modification rather than a change in protein conformation.  

The overall case in favor of [β] is thus a very nuanced argument, as the PrB/[β] 

phenotype is present in wildtype yeast but PrB is only the non-Mendelian element [β] in 

a ∆pep4 mutant background.  However, [β] does demonstrate that non-amyloid prions 

could exist. 

Another putative prion in Podospora anserina, C (crippled growth), is proposed 

to result from a self-activating MAP kinase cascade (Kicka and Silar, 2004; Kicka et al., 

2006).  The MAP kinase changes location (cytosolic to nuclear) in concert with the 

appearance of the C phenotype and the C phenotype requires MAP kinase kinase and 

MAP kinase.  Overexpression of the MAP kinase also increases the appearance of C.  

The authors have shown that C is infectious but they know little about its mechanism of 

inheritance (Kicka et al., 2006). 
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 Overall, both mammalian and some fungal prions enter into an amyloid form but 

amyloids are not necessary and sufficient for prions.  Any type of self-propagating 

protein structure, theoretically including signaling cascades and self-activating enzymes, 

or even an RNA molecule with a self-templated change in folding, could fulfill the 

genetic criteria for being fungal prions.  Because [PSI+] and [URE3] are so well studied, 

they historically provided a yardstick by which to measure putative prions.  This criterion 

biases the discovery of new prions in favor of those such as [RNQ+], which is a self-

templating amyloid that is mechanistically similar to [PSI+] and [URE3]. 

 

Prions and chaperones 

Reversible curing is one of the key distinguishing features of prion-based 

phenotypes.  Curability both establishes that the heritable element is not the result of a 

genetic alteration, which would only rarely be “cured” without mutagenesis under 

nonselective conditions, and demonstrates that the heritable element is not a virus, as 

viruses would not reappear de novo after curing.  It was eventually determined that 

methods for curing prions acted through chaperones (Jones and Tuite, 2005; Shorter and 

Lindquist, 2005).  The study of prion/chaperone interactions has provided rich insight 

into prion formation, phenotypic consequences, and even mechanisms of inheritance. 

 Molecular chaperones are proteins that assist in the proper folding, translocation, 

subunit assembly, and unfolding of the majority of proteins in a cell.  As protein folding 

in a cell takes place under crowded conditions, a small amount of “misfolding” is not 

unusual (Luby-Phelps, 1994).  Several chaperones act constitutively to prevent 

aggregation or unfold misfolded states.  Stress conditions increase the basal misfolding 
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rate.  Many chaperones are induced by cellular stress such as heat shock and thus are also 

termed “heat shock proteins” (Hsps).  This induction is necessary for survival of stressful 

conditions.  Pretreatment under moderate stress conditions (e.g. 37°C for S. cerevisiae, a 

mild heat shock) increases chaperone levels and increases survival under more severe 

stress (e.g. 50°C) (Sanchez and Lindquist, 1990). 

 Chaperones are divided into families by function and molecular weight: Hsp40s 

(DnaJ in prokaryotes), Hsp70s (DnaK in prokaryotes), Hsp100s, small Hsps (sHsps), 

Hsp90s, and Hsp60s/chaperonins (GroE in prokaryotes).  Hsp40s, Hsp70s, and Hsp100s 

are the subclasses predominantly shown to date to be involved in prion formation and 

inheritance.  Hsp90s have only recently been implicated in prion inheritance, and even 

then by an unknown and possibly indirect mechanism (Fan et al., 2007).  Chaperonins 

have not been shown to be involved in prion formation and propagation and so will not 

be discussed. 

 Various eukaryotic chaperones have de novo folding activity and together have 

the abilities to unfold and prevent aggregation.  The predominant chaperones of the 

eukaryotic cytosol are Hsp40s and Hsp70s.  These two combined have “holding” activity 

to prevent aggregation (Hsp40) and ATP-dependent release mechanism that allows 

folding (Hsp70).  Interaction between Hsp70 and substrate-bound Hsp40 transfers the 

unfolded substrate to Hsp70 and stimulates hydrolysis of ATP by Hsp70, which increases 

the affinity of Hsp70 for the substrate.  Nucleotide exchange factor (NEF) binds to 

Hsp70, releasing ADP (Liberek et al., 1991).  Hsp70 and Hsp40 can prevent protein 

aggregation by binding to and “holding” unfolded peptides, which keep them from 
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aggregating.  Hsp70 acts with Hsp90 to complete folding of certain substrates following 

Hsp40 and NEF disassociation (Walter and Buchner, 2002). 

 The chaperone critical to prion inheritance is Hsp104, a member of the 

Hsp100/ClpB family (Shorter, 2008).  Hsp104 was first identified as a protein that 

confers tolerance to extreme stresses (Sanchez et al., 1992; Lindquist and Kim, 1996).  It 

increases survival by as much as 10,000 fold and does so by disaggregating aggregated 

proteins.  This ability of Hsp104 to resolve aggregated protein requires the Hsp70 Ssa1 

and the Hsp40 Ydj1 in vitro.  In the case of prion amyloids, Hsp104 activity also 

increases prion protein seeds by fragmenting them, which are necessary for heritability 

(Shorter and Lindquist, 2004).  Without Hsp104, seeds are not created and a prion is not 

passed on to the daughter cell.  Too much Hsp104 fragments [PSI+] seeds, destroying 

them and curing the prion.  Hsp104 therefore cures prions by either deletion or 

overexpression (Jones and Tuite, 2005; Shorter, 2008). 

The finding that aggregated proteins could be renatured was shocking to the 

chaperone community because aggregated proteins were thought to be dead (reviewed in 

Bösl 2006).  Prior to this work, the most likely mechanisms for thermotolerance had been 

thought to be either prevention of aggregation (Hsp70-like) (Sanchez et al., 1993) or 

proteolysis of aggregated proteins (ClpB-like).  Hsp104 acts particularly efficiently on 

amyloid forms of proteins (Shorter and Lindquist, 2006), including Sup35 in the [PSI+] 

form, Ure2 in the [URE3] form, and some proteins associated with neurodegenerative 

diseases (Shorter and Lindquist, 2004; Vacher et al., 2005; Lo Bianco et al., 2008). 

 Small heat shock proteins (sHsps) are, like Hsp104, involved in rescuing proteins 

from aggregation.  S. cerevisiae contains two sHsps, Hsp26 (Petko and Lindquist, 1986) 

 47



and Hsp42 (Haslbeck et al., 2004), and analogous proteins are found in bacteria.  sHsps 

bind unfolded proteins (Cashikar et al., 2005; Haslbeck et al., 2005).  sHsps are function 

in protein disaggregation by rendering refolding by Hsp104 more efficient (Cashikar et 

al., 2005).  sHsps, however, apparently are not involved in prion propagation and 

inheritance. 

 The disaggregating activity of Hsp104 is critical to the formation of the prion 

seeds that are passed from mother to daughter cell during mitosis or meiosis (Cox et al., 

2003).  Deletion of HSP104 cures all S. cerevisiae prions and decreases the fidelity of 

[Het-s] propagation.  The interplay between Sup35/[PSI+] and Hsp104 is particularly 

tight, since [PSI+] is “cured” to [psi-] by either overexpression or deletion of Hsp104.  

Hsp104 aids prion propagation by promoting formation of critical prion oligomers.  It 

does this by creating [PSI+] “seeds” via interaction with prion protein fibers and 

fragmenting seeds into heritable oligomers (propagons) (Shorter and Lindquist, 2004). 

These propagons are passed from mother to daughter in a cytoskeleton-dependent fashion 

(Ganusova et al., 2006).  A daughter cell that does not inherit a sufficient number of 

propagons becomes [prion-].  Inhibiting the activity of Hsp104 decreases the number of 

propagons and thus cures [PSI+] (Ness et al., 2002; Kryndushkin et al., 2003).  Instead, 

the prion-determining protein forms extremely large cytoplasmic aggregates that are not 

passed on to the daughter.  Overexpression of Hsp104 fragments amyloid fibers formed 

by Sup35, possibly fragmenting them into oligomers (or monomers) smaller than the 

minimum propagon size.  This would cure because few, if any, seeds would be in 

existence to be passed down to the daughter cell (Cox et al., 2003). 
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 Hsp70s and Hsp40s are also involved in prion formation and propagation, change 

in their expression has less drastic effects than change in Hsp104.  Overexpression or 

deletion of various Hsp70s cures [URE3] and [PSI+] (Ness et al., 2002; Shorter and 

Lindquist, 2004; Kryndushkin and Wickner, 2007).  As Hsp40s and Hsp70s act in concert 

with Hsp104 in in vitro disaggregation assays (Glover and Lindquist, 1998), this is 

expected.  However, different Hsp70 isoforms have different affects on the same prion.  

Overexpression of the SSA family of cytosolic Hsp70s increases conversion to [PSI+] but 

overexpression of the SSB family of cytosolic Hsp70s prevents [PSI+] formation (Allen et 

al., 2005).  [URE3] also responds to different Hsp70s: overexpression of SSA family 

member SSA1 cures [URE3] (Schwimmer and Masison, 2002). 

 The dependence of all the early fungal prions on aggregation and chaperones that 

act on aggregated proteins raises the questions of whether all aggregating, amyloid-

forming proteins are prions and whether all prions must aggregate and/or form amyloid.  

Modeling of disease-causing proteins from humans in yeast show that such proteins 

aggregate and are toxic (Lindquist et al., 2001; Meriin et al., 2002; Outeiro and Lindquist, 

2003) but there is no evidence that these aggregates are heritable.  Yeast can therefore 

distinguish between heritable and non-heritable aggregates.  There is growing evidence 

that the heritability of [PSI+]-like aggregates depends on association with the 

cytoskeleton(Ganusova et al., 2006) and might be linked to an aggresome-like structure 

in yeast (Tyedmers and Lindquist, unpublished). 

 Amyloid-based prions oligomerize, aggregate, and then interact with chaperones 

to form prion seeds.  Would prions that do not aggregate show a similar dependence on 

chaperones?  Since all proteins must fold to function, there would presumably be a basic 
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dependence on protein folding.  Prions that involved an alteration in protein conformation 

would probably depend on chaperones, since changing the efficiency of protein folding 

could cause switching between [prion-] and [PRION+].  Whether self-activating, self-

propagating enzymes would require chaperones is more difficult to predict. 

 

Identification of additional fungal prions 

 [PSI+], [URE3], and [Het-s] are phenotypically different but mechanistically 

similar.  How common, then, are fungal prions and what sorts of phenotypes might they 

cause?  Two primary methods were used to identify further prions: finding prions with 

similar sequences or finding phenotypes that act like prions genetically. 

 Prion-determining regions (PrDs) of the Sup35 and Ure2 prion-determining 

proteins have several identifying characteristics: extreme amino acid bias and modularity.  

Sup35 and Ure2 PrDs are strongly enriched in Q/N residues (Harrison and Gerstein, 

2003). This bias is conserved among hemiascomyces (Ure2) and even out to 

basidiomyces and euascomyces, which are estimated to have diverged from the 

hemiascomyces ~1 billion years ago (Harrison et al., 2007).  PrDs are also modular and 

transferable.  When the PrD of SUP35 (termed “NM” for N-terminus and Middle region) 

is fused to the sequence of glucacortacoid receptor (GR) it is sufficient to confer prion 

properties to GR.  NM-GR can switch between [prion-] and [PRION+] forms and is cured 

by chaperones (Li and Lindquist, 2000).  Sup35 PrD contains six imperfect oligopeptide 

repeats that are involved in [PSI+] induction (Liu and Lindquist, 1999) and maintenance 

(Osherovich et al., 2004).  Repeats are also found in the mammalian prion protein but not 

the Ure2 PrD (Tuite, 1994). 
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 Several groups attempted to identify additional prions by sequence (Michelitsch 

and Weissman, 2000; Sondheimer and Lindquist, 2000; Harrison and Gerstein, 2003).  

The RNQ1 gene was found by searching for regions similar to the Sup35 PrD that 

showed approximately constant expression (less than two-fold change) between 

logarithmic and stationary phases (Sondheimer and Lindquist, 2000).  Expression levels 

of candidate genes were considered because [PSI+] and [URE3] are maintained over 

many generations, which would require constant protein levels.  However, neither ∆rnq1 

nor [RNQ+] had a discernible phenotype, so experiments had to be performed on Rnq1-

GFP and other such non-native fusion proteins.  [RNQ+] exhibits all the genetic attributes 

of a prion, including chaperone-dependent curing, cytoplasmic inheritance, and non-

Mendelian inheritance (Sondheimer and Lindquist, 2000). 

 A second protein capable of forming a prion, [NU+], was also discovered by 

searches for Q/N-rich genes (Michelitsch and Weissman, 2000; Osherovich and 

Weissman, 2001).  This search identified the NEW1 and PAN1 genes as prion-forming 

candidates (Osherovich and Weissman, 2001).  New1 showed all the genetic 

characteristics of prions but Pan1 did not.  Although Pan1 aggregates, these aggregates 

are not heritable (Michelitsch and Weissman, 2000).  The distinguishing feature between 

New1 and Pan1 are imperfect repeats in the putative PrD of New1, which resemble those 

in the Sup35 PrD (Michelitsch and Weissman, 2000).  These repeats were later shown to 

be involved in [NU+] maintenance and prion stability (Osherovich 2004).  Like [RNQ+], 

[NU+] did not have a phenotype when first discovered and thus had to be studied as a 

fusion protein (Osherovich and Weissman, 2001). 
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Recent work on the S. cerevisiae chromatin remodeling factor Swi1 suggests that 

Swi1 is capable of acting as a prion, [SWI+] (Du et al., 2008).  Swi1 was identified by 

searching for glutamine and asparagine rich proteins.  A number of members of the 

Swi/Snf complex, including Snf5, also show N- and Q-rich regions but do not act as 

prions.  However, [SWI+] is dominant and shows infectious, cytoplasmic inheritance.  

[SWI+] acts independently of Snf5, as Swi1 but not Snf5 aggregates in [SWI+]. 

 Although searches for Q/N-rich proteins have identified interesting prions, they 

have several limitations.  Neither PrP nor Het-s are Q/N-rich so Q/N predominance is not 

deterministic of prion-forming ability.  Proteins identified in sequence-based searches are 

biased to aggregate but aggregation is not sufficient for heritability.  Some SUP35 

mutants aggregate but do not propagate [PSI+] (Osherovich et al., 2004) and polyQ 

aggregates in yeast but is not heritable (Meriin et al., 2002).  Furthermore, a protein does 

not have to aggregate or form an amyloid to be a prion (Wickner et al., 2007).  While all 

known fungal prions aggregate, there were only three known fungal prions at the time of 

these studies.  Various genetic mechanisms, such as feedback loops or self-activating 

enzymes, might result in the genetic attributes of fungal prions.  Thus searching for 

prions by sequence, while informative, limits the type of prions that one finds. 

 Attempts to identify additional prions based on phenotypes do not bias the 

outcome, as sequence-based attempts do, but require an appropriate starting phenotype.  

One such candidate, [PIN+] (PSI-inducible), was based on the observation that the 

induction of [PSI+] by overexpression of SUP35 requires a non-Mendelian, Hsp104-

dependent element (Derkatch et al., 1997).  [PIN+] arises frequently from previously 

cured ([pin-]) yeast and is necessary for [PSI+] induction but not maintenance.  
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Researchers thus had an intriguing phenotype but no causal agent for [PIN+], a frustrating 

state that lasted until 2001.  A genomic screen for chromosomal regions that induced 

[PIN+] when overexpressed identified 11 candidates, including the prion-causing genes 

URE2, RNQ1, and NEW1 (Derkatch et al., 2001).  The authors then demonstrated that 

[URE3], [RNQ+], and [NU+] could act as [PIN+].  This established a phenotype for 

[RNQ+] and [NU+], showed that prions can interact with each other, and proposed eight 

other putative prions and a phenotype to test them under.  Identifying new prions by 

phenotype can thus be rewarding but is limited by candidate phenotypes. 

 The S. pombe phenotype [Cin] allows cells to survive in the absence of the 

essential chaperone calnexin (Collin et al., 2004).  To perform mutation analysis of 

calnexin, the authors transformed cells deleted for the genomic copy of the essential  

calnexin gene with plasmids carrying wildtype and mutant calnexin genes.  These were 

scored for wildtype or mutant plasmids after six days of growth.  The authors observed 

that cells carrying a mutant form of calnexin from which the highly conserved domain 

(hcd) had been removed showed loss of both wildtype and mutant plasmids.  Assuming 

that the calnexin gene had simply recombined into the genome, they performed 

Southerns, Westerns, and Northerns but could not detect any evidence of calnexin.  This 

state was named [Cin] (calnexin independent). [Cin] is dominant in a mating experiment 

and shows non-Mendelian inheritance by random spore analysis.  The authors 

transformed [Cin] cell extracts into [cin-] S. pombe to induce [Cin].  These extracts were 

not sensitive to DNase, RNase, or UV treatment but could not induce [Cin] when treated 

with UV.  [Cin] is thus probably caused by a proteinaceous factor.  However, this factor 
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has yet to be identified.  The difficulty of identifying factors from such studies is the 

primary difficulty when investigating prions based on phenotype. 

 

Phenotypic consequences and biologic importance of fungal prions 

 An ongoing controversy in the field of prion biology is the relevance of prions to 

the biology of their fungal hosts.  Prion-determining regions in Sup35 and Ure2 are 

conserved to euascomycota (~1 billion years) and hemiascomyces (same order as S. 

cerevisiae; ~700 million years (Hedges et al., 2004)), respectively (Harrison et al., 2007).  

The PrDs of Rnq1 and New1 are less well conserved.  Whether the prion domains are 

conserved for prion-determining properties or other reasons is a point of controversy 

(Wickner et al., 2007).  Sup35 from C. albicans and K. lactis have been tested for prion-

forming ability.  Both can form [PSI+] in S. cerevisiae (Nakayashiki et al., 2005; Tanaka 

et al., 2005) but only K. lactis Sup35 has been tested in its native organism, where it can 

also form a prion (Nakayashiki et al., 2001). 

 One proposal in favor of the relevance of fungal prions is that the read-through of 

stop codons caused by [PSI+] results in new phenotypes.  [PSI+] results in growth 

differences compared to [psi-] under a variety of conditions that vary with genetic 

background (True and Lindquist, 2000).  Over 50 different culture conditions were tested 

in seven genetic backgrounds; [PSI+] and [psi-] showed growth differences approximately 

50% of the time.  In 25% of those cases [PSI+] had an overall growth advantage 

compared to [psi-].  Whether a condition was advantageous differed with genetic 

background and what might be an advantageous condition for [PSI+] in one genetic 
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background was not necessarily advantageous in another.  For example, [psi-] grew better 

than [PSI+] at pH 6.0 in one genetic background (D1142) but worse in another (5V-H19). 

[PSI+]-dependent traits are genetically complex and have not yet been mapped to 

causal loci.  [PSI+]-dependent traits are also polyallelic, as outcrossed phenotypes never 

segregated 2:2 (True et al., 2004).  Phenotypes also were easily fixed, as outcross 

progeny sometimes maintained the [PSI+]-dependent phenotype following curing (True 

2004).  This latter point is especially interesting because it provides a mechanism for 

fixation if a [PSI+]-dependent phenotype is advantageous.  That way the host cell does 

not need to maintain detrimental read-through for long.  These studies suggest that [PSI+] 

might allow for the gain and loss of read-through dependent traits that vary with genetic 

background and thus acts as an agent of phenotypic plasticity. 

 The counterargument to the idea that [PSI+] can provide an advantage under 

specific growth conditions is that [PSI+] appears to be disadvantageous because it has 

never been found in a wild S. cerevisiae strain (Nakayashiki et al., 2005).  This theory 

criticizes many authors for studying [PSI+] only in laboratory strains.  Nakayashiki et al. 

(2005) also argue that True and Lindquist (2000) show that a deletion of the SUP35 PrD, 

∆nm, results in a phenotypic change compared to either [PSI+] or [psi-] in some genetic 

backgrounds and environmental conditions (True and Lindquist, 2000).  ∆nm is 

obligatorily [psi-] (Ter-Avanesyan et al., 1994), so the claim that ∆nm showed a 

phenotype that differed from [psi-] raises the possibility that the PrD of Sup35 could have 

a function other than prion maintenance. 

Nakayashiki et al. (2005) extended the argument against the possible utility of 

yeast prions by testing for [PSI+], [URE3], and [RNQ+] in a variety of “wild” yeast that 
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had never been cultivated in the laboratory.  The logic behind these experiments is that, 

as prions are transferred horizontally like viruses and can arise spontaneously in ~1 in 105 

to 107 cells, they should be widespread unless selected against.  The authors found neither 

[PSI+] nor [URE3] in any of the 70 yeast strains tested but did detect [RNQ+] in 

approximately 16% (11 out of 70 samples).  For comparison, they also tested for 2µ 

plasmids, RNA viruses, and ssRNA replicons.  2µ plasmids, which are mildly detrimental 

to the yeast host cell (Futcher 1983; Mead 1986), were found in 54% of the yeast strains 

tested.  The two RNA viruses and two ssRNA replicons tested varied in frequency from 

1-20% (Nakayashiki et al., 2005).  As 2µ plasmids were more common than [RNQ+], the 

authors concluded that [RNQ+] is more detrimental to the host than the plasmid and that 

[PSI+] and [URE3], which were not found at all, are more toxic than [RNQ+].  Finally, 

Nakayashiki et al. (2005) suggested that a growth advantage for [PSI+] is perhaps less 

relevant than a survival advantage, since no one knows the conditions experienced by 

yeast in the wild.  True and Lindquist had also originally proposed that [PSI+] is usually 

detrimental but very rarely advantageous (2000) and the data from Nakayashiki and 

colleagues (2005) are consistent with this hypothesis. 

Overall, while S. cerevisiae prions other than [RNQ+] have not been found in wild 

yeast, it is difficult to discount prions function when prion-determining regions are so 

well conserved (Harrison et al., 2007).  Even wild and industrial yeasts that are not 

natively [PSI+] carry SUP35 alleles capable of forming [PSI+] (Chernoff et al., 2000), as 

do C. albicans clinical isolates (Handwerger and Lindquist, unpublished).  Recent work 

shows that the rate of [PSI+] appearance increases under a variety of strong stress 

conditions (up to 90% lethality) regardless of whether [PSI+] is advantageous under that 
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condition (Tyedmers et al., unpublished).  [PSI+] induction could therefore be a general 

response to stress which is only occasional advantageous, and thus would not be expected 

to be observed in wild yeasts. 

[Het-s], the prion from the filamentous fungus Podospora anserina, is involved in 

vegetative heterokaryon incompatability and meiotic drive.  The ability of [Het-s] to 

induce apoptosis in the mycelia of P. anserina carrying the non-prion forming het-S allele 

is well documented (Rizet, 1952).  The prion-forming het-s allele is present in a majority 

of P. anserina isolates (60% of 102 strains) (Dalstra et al., 2003); a majority of these 

carry the prion form, [Het-s], (51%) instead of the non-prion form, [Het-s*].  The [Het-s] 

prion is therefore thought to provide some benefit to its host, possibly because [Het-s]-

induced apoptosis would prevent the horizontal spread of fungal viruses to unexposed 

populations (Wickner et al., 2007).  This heterokaryon incompatibility takes place during 

the vegetative cycle of the organism.  [Het-s] was recently shown to be involved in spore 

killing and acts as a meiotic drive element to favor its own inheritance (Dalstra et al., 

2003). 

Several non-infectious (and thus non-prion) amyloids have been shown to have a 

beneficial phenotype that requires the amyloid fold.  Secreted proteins from several 

different bacterial species form amyloids, including E. coli (Chapman et al., 2002) and 

Streptomyces coelicolor (Claessen et al., 2003).  These amyloids are involved in biofilm 

formation or formation of hydrophobic surfaces, respectively.  Neurospora crassa has a 

similar amyloid-like hydrophobin (Mackay et al., 2001) and an amyloid-like protein in 

the silkworm eggshell protects from environmental damage (Iconomidou 2000).  

Intracellular amyloids can also perform novel functions; a prion-like amyloid-forming 
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protein (Si et al., 2003b) in the neurons of the sea slug Aplysia californica is involved in 

mRNA binding and the maintenance of synapses (Si et al., 2003a).  “Functional” 

amyloids are also found in the melanophore organelle Homo sapiens melanocyte and 

retinal pigment epithelial cells, where the protein Pmel17 forms amyloid fibrils following 

protease cleavage (Berson et al., 2003; Fowler et al., 2006).  These amyloids provide a 

scaffold for the formation of melanin pigment (Fowler et al., 2006). 

Overall, amyloids have been shown to provide unique functions to the cells that 

carry them and prions could well do the same (Chiti and Dobson, 2006).  Furthermore, 

prions potentially provide a new level of cellular regulation, with a single protein giving 

rise to multiple phenotypes.  As prions appear at a rate similar to or higher than genetic 

mutation (True and Lindquist, 2000), prion-dependent traits potentially provide a 

phenotypic flexibility not possible through standard genetic changes.  Thus identification 

of new prions and characterization of their functions could provide important information 

on how microorganisms survive and adjust to changing conditions. 

 

[GAR+]: a non-Mendelian phenotype conferring resistance to D-(+)-glucosamine 

 The ultimate goal of my thesis work was to identify new prions in Saccharomyces 

cerevisiae and determine the phenotypic consequences of the [PRION+] form on the host 

organism.  I have attempted to address the two basic questions of interest to the field: 

whether prions are common mechanisms of regulation and whether prions could be 

beneficial for their hosts.  I took a phenotype-based approach to identifying additional 

prions, which did not bias these studies towards identifying prions that necessarily 

resemble the well-characterized prions in sequence and/or mechanism. 
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 Given the tenuous nature of identifying potential prions computationally, 

searching for phenotypes with similar genetic attributes to known prions could be a more 

promising approach.  One could start by investigating dominant phenotypes that 

segregate in a non-Mendelian pattern or permanent phenotypic changes induced by 

transient overexpression of an ORF.  One of the most promising of these a the non-

Mendelian phenotype that confers resistance to D-(+)-glucosamine ([GAR+]), which was 

characterized as independent of mitochondria, cytoplasmically inherited, and described as 

possibly “allelic to [PSI+] and [URE3]” (Kunz and Ball, 1977). 

 D-(+)-glucosamine (glucosamine) is a non-metabolizable glucose mimetic 

(Woodward and Hudson, 1953) that is sufficient to maintain glucose repression in 

Saccharomyces (Hockney and Freeman, 1980).  When glucose is present, S. cerevisiae 

and other yeasts activate genes involved in glucose metabolism and growth and repress 

genes involved in the processing of secondary carbon sources.  Therefore, when both 

glucose and secondary carbon sources are present, many fungi will utilize the available 

glucose before processing the secondary carbon sources such as glycerol or galactose 

(Santangelo, 2006).  Glucosamine, like glucose, blocks growth on alternative carbon 

sources such as galactose and glycerol, probably by activating glucose signaling and/or 

repression pathways (Hockney and Freeman, 1980; Nevado and Heredia, 1996).  

Resistance to glucosamine therefore implies a lack of repression of non-glucose carbon 

pathways and thus confers the ability to process alternative carbon sources in the 

presence of glucose.  This ability might occassionally confer a growth advantage in the 

wild, since under some conditions it could be advantageous to switch rapidly between 

glucose and alternative carbon source utilization (Verstrepen et al., 2004; Santangelo, 
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2006).  Glucosamine can serve as a competitive inhibitor of hexokinase (McGoldrick and 

Wheals, 1989) and is a precursor to N-glucosamine, a component of yeast cell walls 

(Bulik et al., 2003).   

 

 The goal of this work was to identify new prions, specifically by focusing on the 

non-Mendelian phenotype [GAR+].  [GAR+] was selected because it showed cytoplasmic, 

non-Mendelian inheritance and was not mitochondrial (Ball et al., 1976; Kunz and Ball, 

1977).  Furthermore, [GAR+] conveys an interesting phenotype, glucosamine resistance, 

that one could imagine might have some importance for yeast under non-lab conditions.  

When I began my graduate studies only five fungal prions had been identified.  All 

aggregated in the [PRION+] form, involve an infectious amyloid species, and all but 

[Het-s] are rich in glutamines and asparagines.  While every graduate student has some 

hopes for an unusual project, I did not expect [GAR+] to be quite as surprising as it turned 

out to be.  While [GAR+] shows non-Mendelian, cytoplasmically infectious inheritance, 

the causal agents do not form an amyloid, do not aggregate, are not N/Q-rich, act 

independently of Hsp104, and overall represent a novel type of prion.  [GAR+] shows a 

growth advantage over [gar-] in particular environmental conditions and its frequency 

varies with the ecological niche of its host.  Overall, [GAR+] is a novel type of prion that 

shows environmental sensitivity. 
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Chapter Two: 

 

[GAR+], a non-amyloid protein-based inheritance system involved 

in glucose signaling 

 

Introduction 

The stable inheritance of biological information and phenotype across generations 

is a fundamental property of living systems.  Prions, self-perpetuating protein 

conformations that cause multiple phenotypes, represent an unusual mechanism of 

information transfer that occurs via protein instead of nucleic acid (Wickner, 1994).  

Prion proteins can assume multiple conformations and each conformation alters protein 

functionality, resulting in different phenotypes (Wickner et al., 2004; Shorter and 

Lindquist, 2005).  Because these conformational switches are self-templating, prion 

proteins acquire characteristics normally restricted to nucleic acids.  The first prion 

protein identified, the mammalian protein PrP, can behave as a transmissible pathogen 

and causes a neurodegenerative disease in its prion form (PrPSc) (Prusiner, 1998).  The 

prion proteins described in fungi, which are unrelated to PrP and to each other, act as 

non-Mendelian elements of inheritance by switching to the self-perpetuating, 

cytoplasmically transmissible prion conformation (Wickner, 1994). 

Four prions have been identified to date in fungi: [PSI+], [URE3], [Het-s], and 

[RNQ+].  [PSI+] (Cox, 1965) is caused by a change in conformation of the translation 

termination factor Sup35 (Stansfield et al., 1995; Patino et al., 1996; Paushkin et al., 
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1996) that results in increased read-through at stop codons.  [URE3] (Lacroute, 1971) is 

an altered form (Wickner, 1994) of the nitrogen catabolite repressor Ure2 that alters 

transcription (Courchesne and Magasanik, 1988).  [RNQ+] controls the ability of a cell to 

induce the [PSI+] prion, and its causal protein, Rnq1, has no known function other than 

the ability to form a prion and, thereby, influence the rate of appearance of other prions 

(Derkatch et al., 2000; Sondheimer and Lindquist, 2000; Derkatch et al., 2001).  [Het-s], 

found in the filamentous fungus Podospora anserina, causes heterokaryon 

incompatibility and cell death with certain mating partners (Rizet, 1952; Coustou et al., 

1997).  This is thought to serve as a mating isolation system to prevent the spread of 

viruses (Wickner et al., 2007).  All four proteins form a highly insoluble, self-templating 

conformation in the [PRION+] form (Chien et al., 2004). 

The four fungal prions share distinct and unusual genetic characteristics despite 

their disparate functions (Wickner 1994).  They characteristically appear spontaneously 

at a frequency higher than the frequency of genetic mutation.  All show dominant 

inheritance, non-Mendelian 4 [PRION+] to 0 [prion-] (or sometimes 3:1) segregation 

following meiosis, and are transmissible by cytoduction (cytoplasmic transfer).  Further, 

their inheritance is linked to the activities of chaperones, proteins that mediate 

conformational changes in other proteins (Uptain and Lindquist, 2002).  The yeast prions 

also share a distinctive feature of mammalian prions, a species barrier for transmission.  

Due to differences in amino acid sequence, proteins from one species exhibit defects in 

converting the homologous protein from another species to the [PRION+] form, even 

though the homologous protein is itself capable of forming a prion (Aguzzi et al., 2007). 
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Moreover, all four prions share a common mechanism for conformational change 

and propagating that change.  The infectious conformation is a self-templating amyloid 

fiber.  A striking feature of these prions is that transient overexpression of the prion 

protein is sufficient to cause a permanent change in phenotype.  It does so by nucleating 

formation of the amyloid fiber template (Patino et al., 1996; King et al., 1997; 

Sondheimer and Lindquist, 2000; Speransky et al., 2001; Kimura et al., 2003; 

Bagriantsev and Liebman, 2004).  In vitro these amyloids template soluble protein into 

the amyloid state (Glover et al., 1997; Paushkin et al., 1997; Taylor et al., 1999).  These 

amyloids are the sole determinant needed for prion formation because amyloid fibers are 

sufficient to convert [prion-] cells to [PRION+] cells (Maddelein et al., 2002; Tanaka et 

al., 2004; Brachmann et al., 2005; Patel and Liebman, 2007).  The self-templating 

conformation and the [PRION+] phenotype that results from the change in conformation 

are thus stably inherited by daughter cells following mitosis or meiosis (Uptain and 

Lindquist, 2002).  Another striking feature of prions is that transient changes in 

chaperone levels are sufficient to permanently eliminate (or “cure”) cells of the prions by 

altering conformational states of the protein and their transmission to daughter cells. 

The simple and robust character of self-templating amyloids provides a 

compelling framework for protein-based inheritance.  Amyloid structure is therefore 

commonly held to be a critical feature of all naturally occurring systems for protein-based 

inheritance (Chien et al., 2004).  However, Prusiner had initially defined “prion” as “a 

small proteinaceous infectious particle…resistant to inactivation by most procedures that 

modify nucleic acids” but made no restriction as to mechanism (Prusiner, 1982).  

Wickner extended this to proteins other than PrP by outlining genetic criteria for prions in 
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fungi (Wickner, 1994).  These include reversible curing, overexpression of the prion 

protein increasing the frequency of [PRION+] formation, and a phenotypic link between 

the prion-dependent phenotype and a mutation in the causal protein.  But he too did not 

restrict possible mechanisms (Wickner et al., 1999).  Indeed, both Wickner and Cox 

proposed multiple possible modes by which proteins could create heritable phenotypes, 

including self-modifying enzymes or altered conformations that convert the normal 

conformation (Cohen et al., 1994; Cox, 1994; Wickner, 1994). 

Taking an unbiased approach to identifying new prions, we searched the literature 

for phenotypes in S. cerevisiae that had prion-like characteristics of inheritance.  An 

unusual heritable phenotype was described many years ago in a screen for mutants 

resistant to the non-metabolizable glucose mimetic D-(+)-glucosamine (Ball et al., 1976).  

The basis of the screen was the extreme preference of yeast cells for glucose as a carbon 

source.  If glucose is present they will repress the cellular machinery necessary to process 

other carbon sources such as glycerol (Santangelo, 2006).  Glucosamine also mediates 

this repression but it cannot be used to produce energy.  Yeast cells, therefore, cannot 

grow on glycerol in the presence of glucosamine (Hockney and Freeman, 1980; Nevado 

and Heredia, 1996).  Some cells spontaneously acquire the ability to use glycerol in the 

presence of glucosamine, presumably due to defects in glucose signaling and/or the 

response pathways that mediate glucose repression.  Ball and colleagues demonstrated 

that in some cases cells that can grown on glycerol in the presence of glucosamine show 

non-Mendelian inheritance of the phenotype.  Further, the phenotype is not the result of a 

mitochondrial mutation or a plasmid (Kunz and Ball, 1977).  Puzzled, the authors 
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described the factor responsible for this non-Mendelian element of inheritance as 

possibly similar to [PSI+]. 

We show here that this factor, [GAR+], exhibits all of the genetic characteristics 

of a yeast prion but is physically of a very different type.  [GAR+] involves at least two 

factors: the glucose signaling protein Std1 and Pma1, stably associated in an oligomeric 

complex (Schmidt et al., 1999).  Pma1 is a P-type H+-ATPase and is the predominant 

protein at the plasma membrane.  It is a large (100kDa) essential protein with ten 

transmembrane domains.  Its cytoplasmic N- and C-termini are predicted to be 

unstructured or α-helical (Morsomme et al., 2000) and are thought to be important for 

regulation of both its oligomerization and ATPase function (Morsomme et al., 2000; 

Kuhlbrandt et al., 2002).  Pma1 is the major controller of plasma membrane potential and 

cytoplasmic pH (Morsomme et al., 2000) and undergoes a glucose-dependent 

conformation shift (Lecchi et al., 2005) that increases its ATPase activity 10-fold 

(Serrano, 1983). 

Our data indicate that Pma1 acts with Std1 to form [GAR+] by a novel mechanism 

that does not appear to involve protein aggregation or the formation of amyloid.  Instead, 

Pma1 associates with Std1 in [GAR+] cells and Mth1, the homolog of Std1, in [gar-] 

cells; these changes alter signaling through the Rgt2/Snf3 glucose signaling pathway.  

[GAR+] appears spontaneously at a high frequency in many strain backgrounds and 

shows chaperone-dependent non-Mendelian inheritance.  It also exhibits a strong species 

barrier within sibling species.  Replacing the S. cerevisiae Pma1 protein with that of the 

sibling species is sufficient to prevent the propagation of [GAR+].  Because [GAR+] 

involves proteins that are membrane-associated, not cytoplasmic or amyloid-forming, our 
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work suggests that self-perpetuating protein-based elements of inheritance can operate 

outside of the scope of an amyloid template and may be a much broader phenomenon in 

nature than previously surmised. 

 

 

Results 

[GAR+] shows non-Mendelian, infectious inheritance 

 We obtained glucosamine-resistant cells of the type described by Ball and 

colleagues (Ball et al., 1976; Kunz and Ball, 1977) by selecting for cells that could grow 

with 2% glycerol as a carbon source in the presence of 0.05% glucosamine.  Glucosamine 

resistant colonies appeared at a rate of approximately 5 in 104 cells in the W303 genetic 

background (figure S2.01).  Because some loss-of-function mutations can give rise to 

recessive glucosamine resistance (Ball et al., 1976; see table S2.1 table) and the novel 

phenotypes described by Ball and colleagues were dominant, we first crossed 

glucosamine-resistant colonies to wildtype.  All glucosamine-resistant colonies showed 

semi-dominant resistance (figure 2.1a).  Specifically, a cross of glucosamine-resistant to 

glucosamine-sensitive cells invariably yielded a mixed population of diploids, some of 

which showed “strong” (large) glucosamine-resistant colonies and others “weak” 

resistance (small colonies).  Weak glucosamine-resistant colonies invariably converted to 

strong over approximately 25 generations.  “Strong” and “weak” strains are characteristic 

of mammalian and fungal prions. 

In yeast, chromosomally inherited traits show 2:2 segregation following meiosis, tetrad 

dissection, and spore analysis.  All of our dominant glucosamine-resistant variants 
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exhibited non-Mendelian inheritance, segregating 4 resistant spores to 0 sensitive spores 

in each tetrad after meiosis (figure 2.1b).  Both strong resistant colonies and weak 

resistant colonies exhibited 4:0 segregation.  The spores produced by weak diploids 

generally had strong [GAR+] phenotypes (the meiotic products of fig2.1b are from the 

diploids of fig2.1a).  (Interestingly, when cells with a weak [GAR+] phenotype did 

produce weak [GAR+] spores after meiosis, this phenotype was observed in all four 

meiotic progeny (figure 2.1b, bottom)).  We named this genetic element [GAR+] for 

glucosamine resistant, with capitol letters indicating dominance and brackets its non-

Mendelian character. 

To determine whether [GAR+] is “infectious,” we used a mutant defective in 

nuclear fusion (kar1-1).  During mating kar1 cells fuse (with cytoplasmic mixing) but 

nuclei do not (Conde and Fink, 1976).  Selecting for a nucleus and cytoplasm of interest 

after mating effects cytoplasmic exchange without the transfer of nuclear material.  We 

mated a Ura+ His- [GAR+] strain to a kar1-1 Ura- His+ [gar-] strain, then selected for the 

nucleus originally associated with [gar-] (Ura- His+) and against the nucleus originally 

associated with [GAR+] (Ura+ His-).  All ten of the resultant strains tested positive for 

[GAR+] (figure 2.1c), demonstrating the “infectious” character of [GAR+] inheritance. 

 

[GAR+] appears at high frequency in a variety of genetic backgrounds 

We next examined the frequency of [GAR+] appearance in different genetic 

backgrounds.  In the BY background, [GAR+] appeared at a rate of ~9 in 105 cells.  The 

rate was ~1 in 104 cells in 74D, ~5 in 104 cells in W303, and ~7 in 104 cells in Sigma.  In 

the SK1 background, [GAR+] appeared at the astonishingly high rate of ~4 in 103 cells  
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Figure 2.1: [GAR+] shares the genetic characteristics of yeast prions 
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Figure 2.1: [GAR+] shares the genetic characteristics of yeast prions 

a) Mating of [gar-] MATa to [GAR+] MATα in the W303 background.  Resultant 

diploids show semi-dominant [GAR+] with a mixed population of large colonies 

(“strong”) and small colonies (“weak”).  All spot tests shown are five-fold dilutions.  b) 

Tetrad spores from the “strong” [GAR+] (top) and “weak” [GAR+] (middle, bottom) 

diploids in part A show non-Mendelian segregation of [GAR+].  “Weak” commonly 

reverts to “strong” during meiosis (middle) but occasionally stays “weak” (bottom).  c). 

Cytoduction shows cytoplasmic inheritance of [GAR+].  The [GAR+] donor is 10B Ura+ 

His- ρ+ kar1-1 and the acceptor is W303 Ura- His+ ρ0 KAR1.  d). [GAR+] frequency in 

various lab strains.  Data are shown as mean +/- standard deviation (n=6).  e). Tetrad 

spores from a [GAR+] diploid with the genotype hsp104::LEU2/HSP104.  ∆hsp104 

spores are still [GAR+].  f). Tetrad spores from a [GAR+] diploid with the genotype 

ssa1::HIS3/SSA1 ssa2::LEU2/SSA2.  ∆ssa1∆ssa2 spores are no longer [GAR+]. 
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Figure 2.1, continued. 
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(figure 2.1d).  Unlike Ball and colleagues, we did not observe a single incidence of 

Mendelian segregation of the glucosamine-resistant phenotype.  This is presumably 

because, in contrast to that study, we did not start with mutagenized cells. 

 

[GAR+] is curable by transient changes in chaperone protein levels 

 To test the influence of the major chaperone proteins on the inheritance of 

[GAR+], we crossed [GAR+] cells to cells carrying mutations in hsp104 or the Hsp70 

proteins ssa1 and ssa2 (Werner-Washburne et al., 1987).  Hsp104 is required for the 

propagation of [PSI+], [URE3], and [RNQ+], but was not required for [GAR+] 

inheritance, as ∆hsp104 spores were still [GAR+] (figure 2.1e).  However, when 

∆ssa1∆ssa2 cells were crossed to [GAR+] cells, all the meiotic products that were 

∆ssa1∆ssa2 lost the glucosamine-resistant phenotype (figure 2.1f). 

The ability of transient changes in chaperone expression to establish a heritable 

change in phenotype, by curing cells of the self-perpetuating protein conformation, is a 

hallmark of prion-based inheritance.  We tested whether the loss of the [GAR+] 

phenotype was due to an actual curing of the [GAR+] genetic element or whether it was 

retained in ∆ssa1∆ssa2 cells in a cryptic state by crossing them back to wildtype [gar-] 

(figure S2.02a).  Restoration of SSA1 and SSA2 function did not cause reappearance of 

the [GAR+] phenotype.  A transient change in chaperone protein levels was sufficient to 

cure cells of [GAR+].  The [GAR+] phenotype readily reappeared upon selection for 

glucosamine-resistance (figure S2.02b).  Thus, this curing was reversible, another 

hallmark of prion biology (Wickner, 1994).  [GAR+] therefore exhibits the distinguishing 
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characteristics of yeast prions that would indicate it is due to the propagation of an altered 

protein conformation.  

 

[GAR+] is regulated by the Rgt2/Snf3 glucose signaling pathway 

 We performed microarray analysis of [gar-] and [GAR+] to identify transcriptional 

consequences of the [GAR+] phenotype.  The results were surprising: only one gene showed 

a detectable difference between [gar-] cells and [GAR+] cells, and that gene was very strongly 

affected.  Hexose Transporter 3 (HXT3) was approximately 36-fold down-regulated in 

[GAR+] cells compared to [gar-] cells (figure S2.03).  No other transcript exhibited more than 

a two-fold change.  To investigate further, we examined the levels of an Hxt3-GFP fusion 

protein under the control of the endogenous HXT3 promoter.  Hxt3-GFP was readily visible 

at the plasma membrane in [gar-] cells prior to diauxic shift but no signal was detected in 

[GAR+] cells (figure 2.2a).  This result led us to hypothesize that a negative regulator of 

HXT3 expression is the causal agent of [GAR+]. 

 Work by many labs has established the pathways that regulate HXT3 expression 

(Santangelo, 2006).  HXT3 is predominantly silenced by the Snf3/Rgt2 pathway.  Hence, 

to investigate factors underlying the [GAR+] phenotype we first focused on this pathway 

(Kim et al., 2003).  When glucose is present, transmembrane glucose sensors Snf3 and 

Rgt2 transmit a signal to Yck1 and Yck2, which consequently phosphorylate Mth1 and 

Std1, marking them for degradation (figure 2.2b).  When glucose is not present, Mth1 and 

Std1 accumulate and are free to interact with Rgt1.  The Rgt1/Std1/Mth1 complex then 

binds to and represses the upstream region of HXT3.  Std1 and Mth1 are both necessary 

for the binding of Rgt1 to DNA (Lakshmanan et al., 2003). 
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To discover the protein responsible for the [GAR+] state, we took advantage of 

the fact that transient overexpression of the prion protein dramatically increases the 

appearance of the prion, because increased protein concentrations increase the likelihood 

of conformational change (Patino et al., 1996).  We tested each member of the Snf3/Rgt2 

regulatory pathway for induction of the [GAR+] phenotype when overexpressed from a 

plasmid with a strong constitutive promoter, GPD (table 2.I).  The STD1 plasmid caused 

in extraordinary increase in [GAR+] frequency in every strain tested.  In W303, for 

example, this increase in [GAR+] frequency was ~900 fold over that obtained with the 

empty vector; more than one in ten cells in these cultures converted to [GAR+].  No other 

gene in this pathway induced [GAR+].  Overexpression of the STD1 paralog MTH1 

blocked the spontaneous appearance of [GAR+], reaffirming the importance of this 

pathway. 

We also screened the S. cerevisiae haploid deletion library for mutants that are 

incapable of inducing [GAR+] (table S2.2), show a high rate of appearance of [GAR+] 

(table S3), or glucosamine-resistance (table S2.1).  Four of the eight members of the 

Snf3/Rgt2 pathway were found in this screen (p = 8x10-6; Fisher’s exact test).  We also 

did not find many members of other glucose signaling pathways in this screen, 

reaffirming our decision to focus on the Rgt2/Snf3 pathway.  We also screened a library 

of ~5000 ORFs to identify genes that induce [GAR+] following overexpression. and did 

not find any of the genes identified in the deletion library screen (see chapter three, figure 

S3.1). 

Because overexpression of STD1 strongly induced [GAR+], STD1 was identified 

by three different experiments as involved in [GAR+] (microarray, overexpression screen,  
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Figure 2.2: The Snf3/Rgt2 glucose signaling pathway affects [GAR+] 

a) Hxt3-GFP signal in [gar-] and [GAR+] cells by fluorescence microscopy.  Further 

microarray data are deposited at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 

?token=btyhxgeiaauwyji&acc=GSE12479.  b) The Snf3/Rgt2 glucose signaling pathway 

(adapted from (Moriya and Johnston, 2004).  c) [GAR+] frequency of knockouts in the 

Snf3/Rgt2 glucose signaling pathway.  ∆snf3 is completely resistant to glucosamine and 

therefore [GAR+] frequency could not be measured.  This pathway is enriched for genes 

that alter [GAR+] frequency when knocked out relative to the library of nonessential 

genes (p = 8 x 10-6, Fisher’s exact test).  d) Top: tetrad spores from a [GAR+] diploid with 

the genotype std1::kanMX/STD1.  Bottom: spores from top crossed to a [gar-] strain with 

a wildtype STD1 allele.  e) Std1, Mth1, and Rgt1 are required [GAR+]-dependent 

decrease in Hxt3-GFP levels. 
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gene 
[GAR+] frequency relative to 

vector 
vector 1 
SNF3                            0.7+0.3 
RGT2                            1.5+0.5 
YCK1                            1.9+0.6 
YCK2                            1.7+0.5 
STD1                        877+100 
MTH1                            0.03+0.02 
RGT1                            1.3+0.4 
HXT3                            1.2+0.3 

 

Table 2.1: [GAR+] induction following transient overexpression of Snf3/Rgt2 pathway 

members 
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knockout library screen) we hypothesized that Std1 was the [GAR+] prion protein.  To 

test this hypothesis, we asked whether STD1 is required for the maintenance of [GAR+] 

by performing a propagation assay.  This involves measuring whether [GAR+] could be 

transferred (“propagated”) through a strain that does not express STD1, a ∆std1 knockout 

mutant.  If STD1 were required for [GAR+] propagation we would observe a ratio 2 

[gar-]: 2 [GAR+] following mating of spores to [gar-] (see figure S2.02a for a diagram of 

this cross) instead of the 4 [GAR+] to 0 [gar-] segregation we normally observed.  A 

[GAR+] diploid heterozygous for an STD1 deletion was sporulated and dissected.  

Surprisingly, all the ∆std1 progent were glucosamine-resistant.  To determine whether 

∆std1 simply masked the phenotype of [GAR+] or actually carried the heritable [GAR+] 

element, we back-mated them to wildtype [gar-] cells.  Surprisingly, [GAR+] was present 

in all of the diploids.  [GAR+] inheritance therefore does not require STD1 (figure 2.2c).  

This makes [GAR+] unique among yeast prions in appearing to have separable inducing 

and propagating agents. 

We examined all other members of the Rgt2/Snf3 pathway for their ability to 

propagate [GAR+].  None of the other members behaved as would be expected for the 

[GAR+] casual agent.  Knockouts were all capable of propagating [GAR+] (figure S2.04).  

The rgt1 knockout itself did not exhibit glucosamine resistance.  However, RGT1 is not 

the [GAR+] heritable element because [GAR+] was retained in the ∆rgt1 cells in a 

“cryptic” form: the [GAR+] phenotype reappeared when ∆rgt1 cells were crossed back to 

[gar-] RGT1 cells. 
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Pma1 associates with Std1 and is a component of [GAR+] 

Since STD1 acts as an inducing agent for [GAR+], we hypothesized that it would 

physically interact with the unknown propagating agent.  We therefore 

immunoprecipitated HA-tagged Std1p from [gar-] and [GAR+] cells.  A high molecular 

weight band was found in [GAR+] protein lysates but not in [gar-] lysates (figure 2.3a).  

Mass spectrometry analysis identified the protein as Pma1.  To ensure that this 

association was specific to Std1, we also preformed the IP in ∆std1 cells.  Our band of 

interest was not detected in this lane. 

 Pma1, an essential P-type ATPase with ten transmembrane domains, contains 

cytoplasmic N- and C-termini.  The N-terminal domain of Pma1 is predicted to be 

unstructured (a characteristic of yeast prion proteins) while the C-terminal regions is 

predicted to be α-helical (Morsomme et al., 2000).  To test whether Pma1 affects 

[GAR+], we asked if the frequency at which cells were converted to [GAR+] increased 

following transient PMA1 overexpression.  Pma1 is the most abundant plasma membrane 

protein in yeast (Morsomme et al., 2000) and overexpression is not well tolerated (Eraso 

et al., 1987).  We were, however, able to obtain a three-fold transient increase in Pma1 

protein levels and a corresponding increase in [GAR+] frequency (figure 2.3b). 

When an N-terminally truncated (∆40) mutant of PMA1 was transiently overexpressed, 

no increase in [GAR+] appearance was observed despite increases in Pma1 protein levels 

(figure 2.3b).  When a C-terminally truncated PMA1 was overexpressed it did not 

accumulate as strongly as the wildtype protein but still caused a 2.2 fold increase in 

conversion to [GAR+].  These data indicate that the N-terminus of Pma1 contributes to 

the formation of [GAR+].  To ensure that this was due to overexpression of the PMA1 
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Figure 2.3: Pma1 is involved in [GAR+] propagation 
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Figure 2.3: Pma1 is involved in [GAR+] propagation 

a) Immunoprecipitation of Std1-6HA from ∆std1, [gar-], and [GAR+] strains.  One band 

was found in [GAR+] but not [gar-] or ∆std1.  This was analyzed by mass spectrometry 

and found to be Pma1.  Coverage was >25% of the protein. b) [GAR+] induction by 

transient overexpression of PMA1 in a wildtype background.  Data is shown as the mean 

of [GAR+] frequency +/- standard deviation (n=6).  Western is total protein probed with 

αPma1 antibody and quantified using Scion Image.  c) Propagation of [GAR+] is 

impaired in PMA1∆40N ∆std1 double mutants.  Top: tetrad spores from a [GAR+] diploid 

with the genotype GAL-PMA1∆40N/PMA1 std1::kanMX/STD1.  Bottom: spores from top 

crossed to a [gar-] strain with wildtype PMA1 and STD1 alleles.  PMA1∆40N ∆std1 

spores cannot propagate [GAR+] to wildtype [gar-] yeast.  d) Native gel of Pma1, Std1, 

and Mth1 in [gar-] and [GAR+].  Either Std1 (left) or Mth1 (right) was tagged with six 

tandem HA tags and samples were processed as described from [gar-] and [GAR+] strains 

of each background.  Total, supernatant (sup.), digitonin soluble (det. sol.), and digitonin 

insoluble (insol.) fractions were run on SDS gels and probed for Pma1 and Std1 or Mth1 

(lower right).  Blots of the total fraction were stained with Ponceau Red to confirm equal 

amounts of starting material (top right).   

 

 91



protein, we introduced a stop codon at position 23 or 59 on the N-terminal region.  

Neither plasmid increased [GAR+] frequency relative to vector alone (figure S2.05). 

 We could not test the effect of Pma1 deletions on [GAR+] propagation because 

PMA1 is essential.  Indeed, even deletions of the N-terminal domain is lethal (Portillo et 

al., 1989).  Mutations of up to 40aa from the N-terminus are tolerated but only when 

expressed from a very strong promoter such as GAL1 (Liu et al., 2006).  [GAR+] was 

propagated through PMA1∆40N cells (figure S2.06).  Strikingly, however, it was not 

propagated through a PMA1∆40N ∆std1 double mutant (figure 2.3c), suggesting that 

Std1 and the N-terminus of Pma1 are together involved in [GAR+] propagation but that 

each can maintain [GAR+] in the absence of the other. 

 Pma1 functions as an oligomeric complex at the plasma membrane (Kuhlbrandt et 

al., 2002).  Because transient overexpression of STD1 induces [GAR+] and MTH1 

inhibits it we asked if there were heritable changes in association of these proteins with 

Pma1 in [gar-] and [GAR+] cells.  In both [gar-] and [GAR+], Pma1 formed unresolved 

high molecular weight (HMW) oligomers and two lower molecular weight (LMW) 

oligomers when visualized by Blue Native gel analysis (figure 2.3d).  Std1 was more 

strongly associated with the LMW oligomers in [GAR+] than in [gar-].  Mth1, the 

homolog of Std1, showed the reverse: stronger association with LMW oligomers in [gar-] 

than in [GAR+].  Pma1 showed a minor but statistically significant change in protease 

sensitivity between [gar-] and [GAR+]: total Pma1 was digested slightly more rapidly by 

trypsin when vesicles are isolated from [GAR+] cells than from [gar-] (figure S2.07).  

Small differences in protease sensitivity could be consistent with the small amounts of 

Pma1 associated with Std1 in [GAR+]. 
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Pma1 does not change SDS solubility between [gar-] and [GAR+] 

 Other yeast prions exhibit changes in localization and solubility when they enter 

into the prion state (Uptain and Lindquist, 2002).  Neither Pma1 nor Std1 formed an 

SDS-resistant species in [GAR+] (figure S2.08).  The lack of an SDS-resistant Pma1 

species and targeting to the same cellular location in [gar-] and [GAR+] show that Pma1 

does not form amyloid in [GAR+]. 

 

Pma1 is a determinant of [GAR+] 

 In order to strengthen the connection between Pma1 and [GAR+], we investigated 

whether mutations in genes involved in Pma1 oligomerization and trafficking to the 

plasma membrane alter [GAR+] frequency.  We hypothesized that genes involved in 

Pma1 trafficking and oligomerization, as shown by previous studies and Blue Native gels 

would exhibit a change in [GAR+] frequency when knocked out (fatty acid synthase 

SUR4 (Lee et al., 2002) and COPII coat protein LST1 (Roberg et al., 1999)).  Mutants 

that do not affect Pma1 oligomerization (sphingolipid synthesis genes LCB3, LCB4, 

DPL1) (Lee et al., 2002) or affect trafficking of mutant Pma1 but not wildtype (ATG19) 

(Mazon et al., 2007) should have the same [GAR+] frequency.  This was indeed the case: 

mutants that showed changed Pma1 oligomer patterns by Blue Native gel (figure 2.3d) 

also showed decreased [GAR+] frequency (figure 2.3e).  Overall, these data demonstrate 

that alterations in Pma1 oligomers are correlated with alterations in [GAR+] frequency.   
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Figure 2.4: Alterations to Pma1 affect [GAR+] 
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Figure 2.4: Alterations to Pma1 affect [GAR+] 

a) Native gel blotted for Pma1 from knockout mutants of genes previously shown to 

affect (∆sur4, ∆lst1) (Eisenkolb et al. 2002) (Roberg et al. 1999) or not affect (∆lcb3, 

∆lcb4, ∆dpl1) (Gaigg et al. 2005) attributes of wildtype Pma1 (left).  SDS gels of total, 

supernatant (sup.), digitonin soluble (det. sol.), and digitonin insoluble (insol.) fractions 

were probed with αPma1 antibody following blotting (right).  The “total” blot was also 

stained with Ponceau Red to confirm equal amounts of starting material (bottom right).  

b) Measurement of [GAR+] frequency in mutants from part a.  c) Mutants in 

phosphorylation sites at the C-terminus of Pma1 affect [GAR+] frequency.  Starting strain 

is haploid, [gar-], genotype pma1::kanMX with p316-PMA1.  p314-PMA1 carrying 

wildtype PMA1 or mutants of interest were transformed in and then p316-PMA1 plasmid 

selected against by growth on 5-FOA.  Graph represents the mean +/- standard deviation 

(n=6).  P-values are the binomial distribution of the mean.  d) Pma1 mutants that increase 

[GAR+] frequency show decreased levels of Hxt3-GFP.  Graph represents the mean +/- 

standard deviation (n>6) and p-values were determined using the chi-squared test.  Strain 

background is a hybrid of W303 and S288C. 
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Furthermore ∆lst1 and ∆sur4 reduced the frequency of [GAR+] appearance they were not 

required for its propagation (figure S2.09). 

 Pma1 activity is regulated by both glucose and other environmental conditions.  

The addition of glucose to carbon-free medium increases the ATPase activity of the 

enzyme (Serrano, 1983) and results in a conformational shift (Miranda et al., 2002).  

Glucose-dependent phosphorylation contributes to this phenomenon (Lecchi et al., 2005).  

Residues in the C-terminal cytoplasmic tail of the protein, S899 (Eraso et al., 2006), 

S911, and T912 (Lecchi et al., 2007) are phosphorylated in response to carbon source 

conditions and are thought to contribute to the conformational shift in Pma1.  There is 

also evidence that the N-terminal region of Pma1 is phosphorylated but particular sites 

have not been identified (Lecchi et al., 2007).  This is unfortunate, as our previous data 

implicate the N-terminal region in [GAR+] induction (figure 2.3b).  However, we 

hypothesized that if Pma1 causes [GAR+], changing the activity and conformation of 

Pma1 would affect [GAR+] frequency, even if the mutations made were not located in the 

putative prion-determining domain. 

Pma1 has been shown to be responsive to glucose (Serrano, 1983) but has not 

been linked to a particular signaling pathway.  Our observation that Pma1 associates with 

Std1, a member of the Rgt2/Snf3 glucose signaling pathway, implies a connection.  To 

test this, we mutated the well-characterized regulatory sites S899, S911, and T912 to 

alanine, which cannot be phosphorylated, or aspartic acid, which mimics constitutive 

phosphorylation.  We then measured whether these mutants affect [GAR+] frequency or 

HXT3 expression.  The latter serves as a downstream readout of the Rgt2/Snf3 pathway 

and, as demonstrated above, HXT3 is turned off in [GAR+] (figure 2.2a). 
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Two mutations, S911A and S911A/T912A, increased [GAR+] frequency (figure 

2.4c).  These same two mutants also had reduced Hxt3-GFP signal (figure 2.4d).  No 

other mutant showed a significant change, either increased or decreased, although 

T912D, which showed no significant change in [GAR+] frequency or Hxt3-GFP signal 

compared to wildtype, was included as an additional control.  This demonstrates a 

connection between Pma1 and the Rgt2/Snf3 glucose signaling pathway.  Further, the 

fact that mutants in Pma1 affect the frequency of [GAR+] appearance by as much as 10 

fold supports the role of Pma1 in determining the prion state. 

 

[GAR+] is sensitive to a Pma1-dependent “species barrier” 

 To test the relation between Pma1, Std1, and [GAR+] more definitively, we 

performed a classic “species barrier” experiment.  Small differences in amino acid 

sequence cause prions that originate in one species to fail in transmission to another 

species.  Prions cannot even propagate through their originating organism if the prion-

determining gene from the host has been replaced with the prion-determining gene from 

another species.  This has been observed for mammalian prions (Prusiner, 1998) and for 

[PSI+] (Santoso et al., 2000; Bagriantsev and Liebman, 2004; Chen et al., 2007). 

We chose two species, S. bayanus and S. paradoxus, which can acquire 

spontaneous glucosamine-resistance (figure 2.5a).  The sequence differences in Pma1 

between the species are slight (figure S2.10): S. paradoxus Pma1 differs from S. 

cerevisiae Pma1 only at four amino acids, three of them in the N-terminus, and S. 

bayanus Pma1 differs from S. cerevisiae in fewer than a dozen amino acids, most in the 

N-terminus.  In a [GAR+] background, we replaced S. cerevisiae PMA1 with that from  
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Figure 2.5: [GAR+] exhibits a Pma1-dependent species barrier 

a) The frequency of [GAR+] cells in populations of S. bayanus and S. paradoxus were 

measured at 30°C, the optimal growth temperature of S. paradoxus, and 23°C, a preferred 

growth temperature of S. bayanus.  b) Substitution of PMA1 from S. cerevisiae with 

PMA1 from S. bayanus or S. paradoxus prevents [GAR+] propagation.  Starting strain is 

haploid, [GAR+], genotype pma1::kanMX with p316-PMA1 S. cerevisiae as a covering 

plasmid.  p314-PMA1 carrying PMA1 from S. cerevisiae (S.c., top), S. bayanus (S.bay., 

middle), or S. paradoxus (S.par., bottom) was transformed in and p316-PMA1 S.c. 

selected against by replica plating to 5-FOA (S.c. 1N, S.b. 1N, or S.p. 1N).  These 

haploids were mated to a wildtype S. cerevisiae [gar-] background, restreaked two times, 

and tested for [GAR+].  Representative data from three independent experiments is 

shown. 
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the sensu stricto species S. bayanus and S. paradoxus via plasmid shuffle (see plasmids 

table, S2.4).  The S. paradoxus or S. bayanus transgenics were then mated to wildtype 

[gar-] S. cerevisiae to test the ability of the Pma1 protein from S. paradoxus or S. bayanus 

to both hold and propagate S. cerevisiae [GAR+] (figure 2.5b).  In a background where 

the entire genome otherwise remains the same, S. paradoxus PMA1 did not propagate S. 

cerevisiae [GAR+].  S. bayanus PMA1 propagated S. cerevisiae [GAR+] very weakly. 

PMA1 demonstrated a strong species barrier preventing [GAR+] propagation.  

Does [GAR+] induction also exhibit a species barrier?  The spontaneous appearance of 

glucosamine-resistant colonies is much higher in S. cerevisiae and S. bayanus than in S. 

paradoxus, despite S. paradoxus Pma1 being closer to S. cerevisiae in sequence than S. 

bayanus Pma1 is (figure S2.11).  However, the sequence of Std1, the [GAR+] induction 

factor, is much closer in S. cerevisiae and S. bayanus.  We therefore tested whether 

induction of [GAR+] by Std1 exhibits a species barrier.  STD1 from the various species 

was transiently overexpressed in cells carrying Pma1 from the different species (figure 

2.5c).  STD1 from S. cerevisiae and S. bayanus acted as general inducers: in a 

background where the entire genome otherwise remains the same, both STD1 alleles 

induced [GAR+] almost 1000 fold in strains carrying PMA1 from any of the three sibling 

species.  In contrast, STD1 from S. paradoxus did not induce [GAR+] in strains carrying 

any PMA1.  Std1 from S. cerevisiae and S. bayanus therefore acts as an inducer of 

[GAR+] but S. paradoxus Std1 does not.  Std1, like Pma1, contributes to the strong 

species barrier observed in [GAR+] induction and propagation. 
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Discussion 

 The ability of cells to sense and adapt to their nutritional circumstances is crucial 

to survival in the highly competitive and rapidly fluctuating environment.  Here we 

describe [GAR+], a prion-based heritable element involved in glucose sensing and 

signaling.  We demonstrate that [GAR+] involves the plasma membrane proton pump 

Pma1 and the glucose signaling factor Std1.  [GAR+] fulfills the genetic criteria of prions: 

it shows non-Mendelian inheritance, can by transferred via cytoplasmic exchange, is 

metastable, and is semi-dominant.  However, Pma1 and Std1 do not aggregate or form an 

SDS-resistant species (and thus amyloid) in [GAR+].  Instead, Pma1 associates with Std1 

in [GAR+] but the homolog of Std1, Mth, in [gar-], all while remaining at the plasma 

membrane.  Pma1, certainly, and possibly Pma1 and Std1 together, are involved in 

[GAR+] propagation, thus possibly making [GAR+] a prion with multiple determining 

factors.  Mutations in glucose-sensitive phosphorylation sites affect silencing of HXT3, 

demonstrating that Pma1 is involved in glucose signaling.  These same phosphorylation 

site mutants affect [GAR+] frequency, suggesting a method of regulation of [GAR+].  

Overall, the non-Mendelian mechanism that best describes [GAR+] is prion. 

 

[GAR+] is a non-Mendelian element that functions through a prion-based non-amyloid 

mechanism 

[GAR+] fulfills all the genetic characteristics of yeast prions but differs in that it 

does not involve a heritable amyloid conformation.  This likely explains why [GAR+] 

does not require Hsp104, the canonical prion chaperone, for propagation.  Prusiner’s 

original definition of “prion” was simply “proteinaceous infectious particle that lacks 
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nucleic acid” (Prusiner 1998).  This neither proposes a mechanism nor requires that a 

prion-causing protein undergoes a conformational shift.  In fungi, a self-activating 

protease, [β], can act a prion (Roberts and Wickner, 2003).  [β] fulfills all the genetic 

characteristics (Wickner, 1994) of an infectious proteinaceous element: it catalyzes its 

own activity by cleaving the inactive form, thus converting it to the active form, and the 

presence of the active form is therefore self-propagating.  However, [β] does not involve 

a conformational change in the causal protein but instead an enzymic self-catalyzing 

cleavage (?that is only self-activating in the absence of another protease) (Roberts and 

Wickner, 2003).  The use of the term “prion” in this context has been criticized because it 

to date only applies to an artificial situation, not one that occurs spontaneously or is found 

in nature. 

Another non-amyloid prion, Crippled growth (C), found in the filamentous fungus 

Podospora anserina, is thought to result from a self-activating MAP kinase cascade 

(Kicka et al., 2006) but bears some resemblance to conventional prions because one C 

causal protein contains a poly-glutamine region and several of the involved proteins show 

a change in localization between C and normal growth (Kicka and Silar, 2004).  [GAR+] 

also fulfills all the genetic criteria of an infectious proteinaceous element and does not 

form an amyloid.  However, [GAR+] is even more unusual than C because it does not 

cause a change in localization of involved proteins nor includes a glutamine- or 

asparagine-rich protein.  Overall, we propose that [GAR+] acts as a prion regardless of 

whether its infectivity involves a conformational change in Pma1.  Instead, we support 

the idea that “prions” can result from a variety of infective mechanisms, including self-
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activating enzymes and self-sustaining signaling cascades, as long as they are capable of 

acting as heritable genetic elements. 

 

Pma1 is involved in [GAR+] propagation 

 Overall, [GAR+] exhibits a strong species barrier for propagation that depends on 

Pma1 (figure 2.5b).  [GAR+] also exhibits a species barrier for induction that involves 

Std1 (figure 2.5c).  This conclusively demonstrates the importance of Pma1 in [GAR+] 

propagation.  However, these results might not be explained by sequence alone.  It is 

possible that the swap of PMA1 from different Saccharomyces species cures [GAR+] 

because it disrupts interactions between Pma1 and other proteins such as Std1.  Also, we 

have shown that a double mutations in std1 and the N-terminal 40aa of pma1 is sufficient 

to cure [GAR+] (figure 2.3c) even though neither single mutant alone is sufficient (figure 

2.2d, S2.04).  Therefore, it is possible that Std1 plays a role in the propagation of [GAR+] 

and not just the induction, perhaps by stabilizing the [GAR+]-forming Pma1 complex. 

 Are elements in addition to Pma1 and potentially Std1 involved in [GAR+] 

propagation?  Pma1 is the predominant protein at the plasma membrane; quantity alone 

suggests that it has the opportunity to interact with a wide variety of other proteins.  It is 

possible that other elements are involved in the [GAR+] heritable structure in addition to 

Std1 and Pma1.  Furthermore, these proteins are involved in signaling cascades and are 

thus likely to participate in numerous transient associations.  Our work to identify 

additional factors has not yet but successful but this is an interesting area for future 

exploration. 
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Does [GAR+] cause a new signaling complex? 

 [GAR+] exhibits some unusual and intriguing characteristics for yeast prions, 

particularly that it does not involve formation of an amyloid-like conformation.  Instead, 

[GAR+] involves an inducing factor, Std1, which stably associates with Pma1 in the 

[GAR+] form.  Pma1 and Std1 remain at the plasma membrane to cause [GAR+].  

Changes in Pma1 oligomer size correlate with altered [GAR+] frequency, and Pma1 alters 

its association with a signaling protein, from Mth1 in [gar-] to Std1 in [GAR+].  We 

therefore hypothesize that [GAR+] causes its phenotype, glucosamine resistance, by 

altering signaling through a glucose signaling pathway.  This signal does not affect the 

Snf1 pathway, otherwise greater transcriptional differences between [gar-] and [GAR+] 

would be observed in our microarray experiments.  It does, however, affect the Snf3/Rgt2 

signaling pathway as shown by the change in HXT3 expression.  We thus speculate that 

[GAR+] increases the ability of Std1 to silence HXT3, perhaps by increasing its affinity 

for that DNA binding protein Rgt1 (figure 2.6).  The increased association of Std1 and 

Pma1 could allow for this change either directly, by, for example, preventing degradation 

of Std1, or indirectly.  We have also uncovered a novel role for Pma1 in glucose sensing, 

as shown by alterations in Hxt3-GFP signal in Pma1 mutants.  Although Pma1 was 

known to respond to and be controlled by glucose (Morsomme et al, 2000), it has not 

previously been linked to glucose signaling itself. 

 

[GAR+] is semi-dominant 

 [GAR+] is also unusual for being semi-dominant in a mating rather than 

dominant, as [PSI+] are [URE3] are.  Instead, a mixed population of large (strong) and  
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Figure 2.6: Pma1 and the Rgt2/Snf3 glucose signaling pathway 

We propose that Pma1 acts as a part of the Rgt2/Snf3 signaling pathway.  a) In [gar-] 

glucose-grown cells, Pma1 associates with Mth1.  The glucose signal is propagated 

through Snf3 and Rgt2 to Yck1 and Yck2, which phosphorylate Mth1 and Std1.  This 

phosphorylation marks Mth1 and Std1 for degredation, leaving their interacting partner, 

Rgt1, free in the cytosol, where it does not repress transcription at the HXT3 locus.  b) 

Under [GAR+] conditions, HXT3 transcription is repressed, which resembles that of cells 

grown in a carbon source other than glucose.  Pma1 associates with Std1, which 

somehow facilitates the repression of HXT3, possibly by altering the affinity of Std1 for 

Rgt1.  Association with Std1 has previously been shown to facilitate the binding of Rgt1 

to DNA (Lakshmanan et al., 2003). 
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small (weak) colonies appear on glucosamine medium following mating.  Strong [GAR+] 

is very stable in meiosis and weak [GAR+] somewhat so, not because weak [GAR+] 

switches to [gar-] but because it converts to strong [GAR+].  Weak [GAR+] also converts 

to strong [GAR+] under standard mitotic conditions within approximately 25 generations.  

This could be because formation of strong [GAR+] is a multi-step process and weak 

[GAR+] represents an unstable intermediate on the pathway to strong [GAR+].  Std1 

promotes [GAR+], as transient overexpression of STD1 induced [GAR+], and Mth1 has 

an inhibitory affect, as transient overexpression of MTH1 blocked [GAR+] (table 2.1).  

Inhibition of [GAR+] formation by MTH1 is likely due in part to transcriptional 

repression of STD1, which has been observed when MTH1 is overexpressed (Kim et al., 

2006).  The association of Mth1 with Pma1 in the [gar-] state could prevent Std1 from 

associating with Pma1 and thus forming the [GAR+] state.  Another possibility is that 

[gar-] and [GAR+] are both self-propagating states involviong their associations with 

Mth1 and Std1, respectively, and weak [GAR+] is a middle state that can convert to either 

[gar-] or strong [GAR+], which are then self-perpetuating.  Regardless, the opposing 

results from STD1 and MTH1 overexpression are intriguing because MTH1 and STD1 are 

paralogs that are ~61% identical on the amino acid level (Hubbard et al., 1994).  Neither, 

however, have any known enzymatic activity or domains identifiable by BLAST 

analysis. 

 

 

Pma1 is conserved across the fungal kingdom and is even found in some plants.  

Our discovery that an extremely well-conserved transmembrane protein can act as a prion 
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raises questions whether the prion phenomenon is widespread.  Pma1 forms high 

molecular weight oligomers in plants and is regulated by nutrients (Duby and Boutry, 

2008) and might therefore have a [GAR+]-like form.  Because Pma1 is so well-conserved 

it would be extremely interest to investigate whether the [GAR+] prion is found in a 

variety of organisms.  Further, if [GAR+] is common, this lends support to the idea that 

self-propagating protein-based genetic elements might be more common as a mechanism 

of regulation than previously thought. 

 

 

 

Experimental Procedures 

Yeast strains and genetic manipulations 

Strain construction and manipulation followed standard yeast techniques.  A list of strains 

and plasmids used in this study is available in table S1.  Unless otherwise stated, data 

shown is from genetic background W303.  Five-fold dilutions were used for all spotting 

assays.  Growth rate was measured in the Bioscreen C (Growth Curves USA) at 30°C 

with intensive, intermittent shaking with the OD600 measured every 15 minutes. 

 

[GAR+] frequency assays and isolation of [GAR+] 

Cultures for [GAR+] frequency assays were grown overnight in 2% glucose, either YPD 

or SD, subcultured in the same, then grown to early exponential phase (OD600 = 0.2-0.4).  

Cultures plated straight to GGM (1% yeast extract, 2% peptone, 2% glycerol, 0.05% D-

(+)-glucosamine [Sigma G4875]) and diluted 10-4 for plating to YPD.  To isolate [GAR+] 
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for further study, colonies from GGM were restreaked once to GGM then used in 

downstream applications. 

 

Western blotting 

Protein samples were run on 4-12% SDS gels from Invitrogen and blotted to PVDF using 

standard techniques.  All samples to be tested for Pma1 were incubated in loading buffer 

(4% SDS, 50mM Tris pH 6.8, 2% β-mercaptoethanol, 10% glycerol) for 10min at 37°C.  

Monoclonal αPma1 mouse antibody was obtained from EnCor Biotechnology.  

Polyclonal αPma1 rabbit antibody was a gift from Amy Chang.  Polyclonal αSec61 

antibody was a gift from Tom Rapaport.  Immune complexes were visualized by ECL. 

 

Microarray analysis 

PolyA RNA was produced using standard methods (cite).  Samples were labeled and 

hybridized to Affymetrix S98 arrays using standard methods (cite). 

 

Hxt3-GFP analysis 

Hxt3-GFP signal was observed starting at OD600 = 0.7 in an S288C background. 

 

Immunoprecipitation 

IPs were performed using standard in IP buffer (50mM HEPES pH 7.5, 150mM NaCl, 

2.5mM EDTA, 1% V/VTriton X-100, 40mM NEM, 3mM PMSF, 1 Protease Inhibitor 

Cocktail Tablet per 5ml buffer [Roche]).  Cells were lysed either by bead beating (9 x 

30sec with 15sec on ice between) or spheroplasting (30min at 30°C in 1M D-sorbitol, 
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0.1M EDTA, 0.5mg/ml zymolase) with comparable results.  Lysates were adjusted for 

protein concentration, incubated with protein G agarose beads (Roche) for 30min at 4°C, 

centrifuged at 3300 x g for 2min, and the supernatant collected.  The supernatant was 

then incubated with 10µg mouse αHA antibody (Sigma) for 1 hour at 4°C followed by 

incubation with 50µl protein G beads (Roche) for 1 hour at 4°C.  Samples then washed 

six times in chilled IP buffer and run on a 4-12% SDS gel.  Gels were either stained with 

colloidal Coomassie (Invitrogen) or blotted for Pma1. 

 

Native gels 

Midlog cultures (150ml, OD600~0.5) were lysed by bead beating (9 x 30sec with 15sec on 

ice between) into sorbitol buffer (250mM sorbitol, 50mM Tris pH 7.5, 3mM PMSF, 1 

Protease Inhibitor Cocktail Tablet per 5ml buffer [Roche]).  Samples were equalized at a 

concentration of 15µg/µl in 650µl, a “total” sample collected, and centrifuged at 16000 x 

g for 30min at 4°C.  The supernatant was removed, a sample saved for downstream 

analysis, and the pellet washed once in sorbitol buffer.  The pellet was resuspended in 

sorbitol buffer (200µl), and an aliquot (95µl) incubated 20min on ice with digitonin to 

1% (Calbiochem).  These samples were then centrifuged at 16000 x g at 4°C for 30min 

and separated into supernatant (“digitonin soluble”) and pellet (“digitonin insoluble”) 

fractions.  15µl of the soluble fraction was incubated with Coomassie G-250 at a 

detergent to dye ratio of 8:1 for 10min on ice then loaded onto 3-12% Blue Native gel 

(Invitrogen) and run at 4°C as per the manufacturer’s instructions. 
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Trypsin digestion 

Cells were grown to mid exponential phase (OD600~0.5), washed three times in water, 

then lysed by bead beating (9 x 30sec with 15sec on ice between) into sorbitol buffer 

(250mM sorbitol, 50mM Tris pH 7.5, 3mM PMSF, 1 Protease Inhibitor Cocktail Tablet 

per 5ml buffer [Roche]).  Samples were centrifuged at 16000 x g for 30min at 4°C, the 

supernatant removed, then washed three times in sorbitol buffer with protease inhibitors 

and three times in sorbitol buffer without protease inhibitors.  For trypsin reactions, 10µg 

protein and 4µg trypsin (Worthington) were used in a total volume of 20µl.  Reactions 

were incubated at 30°C and stopped after the designated point in time by addition of 2µl 

soybean trypsin inhibitor (10mg/ml stock, from Sigma) then immediately frozen in an 

ethanol/dry ice bath.  Samples were run on gels as described above, probed with 

monoclonal αPma1, stripped, and re-probed with polyclonal αSec61. 
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Figure S2.01: Spontaneous glucosamine resistance 

 Exponential phase yeast grown in YPD (2% glucose) were plate to 2% glucose 

(left) or 2% glycerol + 0.05% glucosamine (GGM; right).  Spontaneous gluocosamine-

resistant colonies are visible on the GGM plate; these are used in [GAR+] studies. 
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Figure S2.02: Hsp70-dependent curing of [GAR+] is reversible 

a) The crosses involved in a [GAR+] propagation assay are shown.  Cells carrying 

[GAR+] were mated to [gar-] cells carrying a mutation of interest (“∆”), here ∆ssa1∆ssa2.  

Diploids were selected for, then sporulated.  These spores (“haploids”) were then crossed 

to wildtype [gar-] cells and we then selected for the resultant diploids (“diploids”).  Both 

haploids and diploids were tested for glucosamine resistance; if diploids were sensitive to 

glucosamine, then the [GAR+] heritable element cannot be propagated through the mutant 

of interest and [GAR+] is therefore “cured” to [gar-]. b) [GAR+] frequency within a 

population of wildtype [gar-] cells or cells “cured” of [GAR+] by deletion of ssa1 and 

ssa2, then crossed to [gar-].  The final cross to [gar-] demonstrates whether [GAR+] can 

propagate through ∆ssa1∆ssa2 mutants, as outlined in part a.  [GAR+] frequency is 

measured in the cells that result from this cross.  Because [GAR+] appears spontaneously 

at the same frequency as wildtype, ∆ssa1∆ssa2 mutants reversibly cure [GAR+].  Also, 

this demonstrates that [GAR+] is not “cryptic” in ∆ssa1∆ssa2 mutants, otherwise all cells 

would be [GAR+] and the measured frequency approaching 1.0. 
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Figure S2.03: Transcriptional profiling of [gar-] and [GAR+] cells 

 A SAM plot of Affymetrix microarrays comparing [gar-] and [GAR+] cells grown 

in glucose.  A single point (green) in the bottom left corner represents the only transcript 

that exhibits a significant change in abundance: YDR345C (HXT3). 

 

 120



 
 

Figure S2.04: Knockout mutants of Rgt2/Snf3 pathway members propagate [GAR+] 

 [gar-] strains in which various members of the Rgt2/Snf3 pathway were knocked 

out were crossed to [GAR+] cells, then sporulated and dissected.  These spores (“1N”) 

were tested for glucosamine resistance and then crossed to [gar-] haploids to determine 

whether [GAR+] can be propagated through these mutants (“2N”) (see S2.02 for outline 

of crosses).  ∆rgt1 1N cells are not glucosamine-resistant but 2N cells are, demonstrating 

that [GAR+] is cryptic in ∆rgt1 haploid cells.  However, RGT1 is not the causal agent of 

[GAR+] because [GAR+] can be propagated from ∆rgt1 to wildtype cells. 
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Figure S2.05: PMA1 nonsense mutations do not induce [GAR+] 

 The PMA1 ORF containing nonsense mutations at Q23 or E59 was transiently 

overexpressed.  This did not induce [GAR+] relative to vector, demonstrating that the 

increase in [GAR+] due to PMA1 overexpression (figure 2.3b) is specific to the Pma1 

protein. 
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Figure S2.06: PMA1∆40N propagates [GAR+] 

Top: tetrad spores from a [GAR+] diploid with the genotype GAL-

PMA1∆40N/PMA1.  The pma1 mutation is marked with His+.  Wildtype spores grown on 

glucosamine-containing medium but pma1 mutants cannot grown on any medium lacking 

galactose, so grown on glycerol-glucosamine cannot be measured.  Bottom: spores from 

top crossed to a [gar-] strain containing a wildtype PMA1 allele.  PMA1∆40N spores grow 

on glycerol-glucosamine medium and therefore can propagate [GAR+] to wildtype [gar-] 

yeast. 
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Figure S2.07: Pma1 from [GAR+] is more sensitive to trypsin than [gar-] Pma1 

Trypsin digestion of Pma1 (left) or Sec61 (right) from [gar-] (top) or [GAR+] 

(middle).  A total of six blots were averaged (bottom) and the amount of uncut Pma1 or 

Sec61 measured and graphed relative to t = 0.  Graph represents mean (n = 6) of 

(t=n)/(t=0) and p-value was calculated using a paired Wilcoxon test.  A red asterisks 

marks statistically significant points ( p = 0.03). 
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Figure S2.08: Pma1 and Std1 do not form SDS-resistant species 

 a) SDS-treated protein samples from [psi-] and [PSI+] (left) and [gar-] and [GAR+] 

(right) were run on Blue Native gels.  Samples were incubated 10min in 4% SDS at 37°C 

before running, transferred by standard Western techniques, then probed with αSup35 

(left) or αPma1 antibodies.  Sup35 shows protein in the well in [PSI+] but not in [psi-], 

indicated a difference in SDS-solubility.  This is expected because Sup35 forms amyloid 

in [PSI+].  Pma1, however, does not show any difference in SDS-solubility between [gar-] 

and [GAR+], indicating that Pma1 does not enter into an amyloid state.  b) Samples run 

on SDS gels and blotted for the protein of interest (top) or stained with Ponceau as a 

loading control (bottom).  [gar-] and [GAR+] samples were probed with αPma1 (far left) 

or αHA (second left; to detect Std1-6HA).  There were no differences in mobility in 

Pma1 or Std1 between [gar-] and [GAR+] samples following incubation in 4% SDS for 

10min at 37°C.  When [psi-] and [PSI+] protein samples were treated this way, however, 

(far right: 37°C for 10min), Sup35 protein from [PSI+] runs higher than that from [psi-] 

and does not resolve well.  When protein samples are boiled, however (second right), 

Sup35 shows no difference in mobility between [psi-] and [PSI+].  Sup35 therefore 

behaves like an amyloid in [PSI+] whereas neither Pma1 nor Std1 exhibit the SDS 

resistance characteristic of amyloids in [gar-] or [GAR+]. 
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Figure S2.09:  ∆lst1 and ∆sur4 both carry [GAR+] 

[gar-] strains in which either lst1 (part a) or sur4 (part b) were knocked out were crossed 

to [GAR+] cells, then sporulated and dissected.  These spores were tested for glucosamine 

resistance.  All spores grown on glycerol-glucosamine plates, demonstrating that ∆lst1 

and ∆sur4 can hold [GAR+]. 
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      1* *****     *   *               *                  50 
Scer  MTDTSSSSSS SS.ASSVSAH QPTQEKPAKT YDDAASESSD DDDIDALIEE 
Spar  MADTSSSSSS SSSASSVSAH QPTQEKPAKT YDDAASESSD DDDIDALIEE 
Sbay  ...MTDNTSS SSSASSASAH QPTQEKPAKT FDDAASESSD DDDIDALIDE 
 
      51  *   ** * **           *    *                   100 
Scer  LQSNHGVDDE DSDNDGPVAA GEARPVPEEY LQTDPSYGLT SDEVLKRRKK 
Spar  LQSNHGVDDE GSDDDGPVAA GEARPVPEEY LQTDPSYGLT SDEVLKRRKK 
Sbay  LQSNPGVDGS ESEDDGPVAA GEARLVPEEL LQTDPSYGLT SDEVLKRRKK 
 
      101    ***    **  *                                150 
Scer  YGLNQMADEK ESLVVKFVMF FVGPIQFVME AAAILAAGLS DWVDFGVICG 
Spar  YGLNQMADEK ESLVVKFVMF FVGPIQFVME AAAILAAGLS DWVDFGVICG 
Sbay  YGLNQMAENN ESLIIKFIMF FVGPIQFVME AAAILAAGLS DWVDFGVICG 
 
      151        *          *                            200 
Scer  LLMLNAGVGF VQEFQAGSIV DELKKTLANT AVVIRDGQLV EIPANEVVPG 
Spar  LLMLNAGVGF VQEFQAGSIV DELKKTLANT AVVIRDGQLV EIPANEVVPG 
Sbay  LLMLNAGVGF IQEFQAGSIV EELKKTLANT AVVIRDGQLV EIPANEVVPG 
 
      201                                              * 250 
Scer  DILQLEDGTV IPTDGRIVTE DCFLQIDQSA ITGESLAVDK HYGDQTFSSS 
Spar  DILQLEDGTI IPTDGRIVTE DCFLQIDQSA ITGESLAVDK HYGDQTFSSS 
Sbay  DILQLEDGTI IPTDGRIVTE ECFLQIDQSA ITGESLAVDK HYGDQAFSSS 
 
      251                              *                 300 
Scer  TVKRGEGFMV VTATGDNTFV GRAAALVNKA AGGQGHFTEV LNGIGIILLV 
Spar  TVKRGEGFMV VTATGDNTFV GRAAALVNKA AGGQGHFTEV LNGIGIILLV 
Sbay  TVKRGEGFMV VTATGDNTFV GRAAALVNKA SGGQGHFTEV LNGIGIILLV 
 
      301*   *                                           350 
Scer  LVIATLLLVW TACFYRTNGI VRILRYTLGI TIIGVPVGLP AVVTTTMAVG 
Spar  LVVATLLLVW TACFYRTNGI VRILRYTLGI TIIGVPVGLP AVVTTTMAVG 
Sbay  LVIITLLVVW TACFYRTNGI VRILRYTLGI TIIGVPVGLP AVVTTTMAVG 
 
      351                                                400 
Scer  AAYLAKKQAI VQKLSAIESL AGVEILCSDK TGTLTKNKLS LHEPYTVEGV 
Spar  AAYLAKKQAI VQKLSAIESL AGVEILCSDK TGTLTKNKLS LHEPYTVEGV 
Sbay  AAYLAKKQAI VQKLSAIESL AGVEILCSDK TGTLTKNKLS LHEPYTVEGV 
 
      401                               *                450 
Scer  SPDDLMLTAC LAASRKKKGL DAIDKAFLKS LKQYPKAKDA LTKYKVLEFH 
Spar  SPDDLMLTAC LAASRKKKGL DAIDKAFLKS LKQYPKAKDA LTKYKVLEFH 
Sbay  SADDLMLTAC LAASRKKKGL DAIDKAFLKS LIQYPKAKDA LTKYKVLEFH 
 
      451                                                500 
Scer  PFDPVSKKVT AVVESPEGER IVCVKGAPLF VLKTVEEDHP IPEDVHENYE 
Spar  PFDPVSKKVT AVVESPEGER IVCVKGAPLF VLKTVEEDHP IPEDVHENYE 
Sbay  PFDPVSKKVT AVVESPEGER IVCVKGAPLF VLKTVEEDHP IPEDVHENYE 
 
      501                                                550 
Scer  NKVAELASRG FRALGVARKR GEGHWEILGV MPCMDPPRDD TAQTVSEARH 
Spar  NKVAELASRG FRALGVARKR GEGHWEILGV MPCMDPPRDD TAQTVSEARH 
Sbay  NKVAELASRG FRALGVARKR GEGHWEILGV MPCMDPPRDD TAQTVSEARH 
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      551                                                600 
Scer  LGLRVKMLTG DAVGIAKETC RQLGLGTNIY NAERLGLGGG GDMPGSELAD 
Spar  LGLRVKMLTG DAVGIAKETC RQLGLGTNIY NAERLGLGGG GDMPGSELAD 
Sbay  LGLRVKMLTG DAVGIAKETC RQLGLGTNIY NAERLGLGGG GDMPGSELAD 
 
      601                                                650 
Scer  FVENADGFAE VFPQHKYRVV EILQNRGYLV AMTGDGVNDA PSLKKADTGI 
Spar  FVENADGFAE VFPQHKYRVV EILQNRGYLV AMTGDGVNDA PSLKKADTGI 
Sbay  FVENADGFAE VFPQHKYRVV EILQNRGFLV AMTGDGVNDA PSLKKADTGI 
 
      651                                                700 
Scer  AVEGATDAAR SAADIVFLAP GLSAIIDALK TSRQIFHRMY SYVVYRIALS 
Spar  AVEGATDAAR SAADIVFLAP GLSAIIDALK TSRQIFHRMY SYVVYRIALS 
Sbay  AVEGATDAAR SAADIVFLAP GLSAIIDALK TSRQIFHRMY SYVVYRIALS 
 
      701                *                               750 
Scer  LHLEIFLGLW IAILDNSLDI DLIVFIAIFA DVATLAIAYD NAPYSPKPVK 
Spar  LHLEIFLGLW IAILDNSLNI DLIVFIAIFA DVATLAIAYD NAPYSPKPVK 
Sbay  LHLEIFLGLW IAILDNSLDI DLIVFIAIFA DVATLAIAYD NAPYSPKPVK 
 
      751             *  *                               800 
Scer  WNLPRLWGMS IILGIVLAIG SWITLTTMFL PKGGIIQNFG AMNGIMFLQI 
Spar  WNLPRLWGMS IILGIILAVG SWITLTTMFL PKGGIIQNFG ALNGIMFLQI 
Sbay  WNLPRLWGMS IILGIVLAVG SWITLTTMFL PKGGIIQNFG AMNGIMFLQI 
 
      801                   *                            850 
Scer  SLTENWLIFI TRAAGPFWSS IPSWQLAGAV FAVDIIATMF TLFGWWSENW 
Spar  SLTENWLIFI TRAAGPFWSS IPSWQLAGAV FAVDIIATMF TLFGWWSENW 
Sbay  SLTENWLIFI TRAAGPFWSS VPSWQLAGAV FAVDIIATMF TLFGWWSENW 
 
      851                                   *      *     900 
Scer  TDIVTVVRVW IWSIGIFCVL GGFYYEMSTS EAFDRLMNGK PMKEKKSTRS 
Spar  TDIVTVVRVW IWSIGIFCVL GGFYYEMSTS EAFDRVMNGK PMKEKKSTRS 
Sbay  TDIVTVVRVW IWSIGIFCVL GGFYYEMSTS EAFDRMMNGK PAKEKKSTRS 
 
      901              919 
Scer  VEDFMAAMQR VSTQHEKET 
Spar  VEDFMAAMQR VSTQHEKET 
Sbay  VEDFLAAMQR VSTQHEKEA 
 

 

Figure S2.10: Pma1 alignment 

Alignment of Pma1 from Saccharomyces cerevisiae, S. paradoxus, and S. bayanus.  

Identical amino acids are marked in blue and different amino acids in red.  Red dots mark 

gaps. 
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Scer  MFVSPPPATA RNQVLGKRKS KRHDENPKNV QPNADTEMTN SVPSIGFNSN 
Sbay  MFVSPPPATA RNQVLGKRKS KRRGSNSKNV QPISNSPDVD KSVSFVPNNH 
Spar  .......... .......... .......... .......... .......... 
 
      51******** ********** ********** ********** ******100 
Scer  LPHNNQEINT PNHYNLSSNS GNVRSNNNFV TTPPEYADRA RIEIIKRLLP 
Sbay  PSYSEQEANT PNHYSLNASP GNSRSN..FV STPPEYADRA RIEIRKRLLP 
Spar  .......... .......... .......... .......... .......... 
 
      101******* ********** ********** ********** *******150 
Scer  TAGTKPMEVN SNTAENANIQ HINTPDSQSF VSDHSSSYES SIFSQPSTAL 
Sbay  TGGNKPISVN SVFLDNANIH QVTSPDSQSF VSDQASSYES SIFSHPSTVL 
Spar  .......... .......... .......... .......... .......... 
 
      151******* ********** ********** ***  *            200 
Scer  TDITTGSSLI DTKTPKFVTE VTLEDALPKT FYDMYSPEVL MSDPANILYN 
Sbay  TRVTTDSSLI DLKTPKFVTE ITLEDALPKT FYDMYTPEVL MSDPANILYN 
Spar  .......... .......... .......... ...MYSPEVL MSDPANILYN 
 
      201                        *        *  *           250 
Scer  GRPKFTKREL LDWDLNDIRS LLIVEQLRPE WGSQLPTVVT SGINLPQFRL 
Sbay  GRPKFTKREL LDWDLNDIRS LLIVERLRPE WGSRLPSVIT SGINLPQFRL 
Spar  GRPKFTKREL LDWDLNDIRS LLIVEQLRPE WGSQLPTVVT SGINLPQFRL 
 
      251  *                  *                          300 
Scer  QLLPLSSSDE FIIATLVNSD LYIEANLDRN FKLTSAKYTV ASARKRHEEM 
Sbay  QLLPLCSSDE FIIATLVNSD LYIEANLDRD FKLTSAKYTV ASARKRHEEI 
Spar  QLLPLRSSDE FIIATLVNSD LYMEANLDRN FKLTSAKYTV ASARKRHEEM 
 
      301* *                                          *  350 
Scer  TGSKEPIMRL SKPEWRNIIE NYLLNVAVEA QCRYDFKQKR SEYKRWKLLN 
Sbay  VGYNETIMRL SKPEWRNIIE NYLLNVAVEA QCRYDFKQKR SEYKKWKQLN 
Spar  TGSNEPIMRL SKPEWRNIIE NYLLNVAVEA QCRYDFKQKR SEYKRWKLLN 
 
      351             ** **   ***          *            *400 
Scer  SNLKRPDMPP PSLIPHGFKI HDCTNSGSLL KKALMKNLQL KNYKNDAKTL 
Sbay  SNLKRPDMPP PSLIPPDFHT HEHISSGSLL KKALMKNLQL KNYKNDTKTL 
Spar  SNLKRPDMPP PSLIPHGFLA HDCANSGSLL KKALIKNLQL KNYKNDAKAL 
 
      401             *     *  *               *   444 
Scer  GAGTQKNVVN KVSLTSEERA AIWFQCQTQV YQRLGLDWKP DGMS 
Sbay  GAGTQKNVVN KVSLTKEERA GIWLQCQTQV YQRLGLDWTP DGMS 
Spar  GAGTQKNVVN KVSLTSEERA AIWFQCQTQV YQRLGLDWKP DKMS 
 

 

Figure S2.11: Std1 alignment 

Alignment of Std1 from Saccharomyces cerevisiae, S. paradoxus, and S. bayanus.  

Identical amino acids are marked in blue and different amino acids in red.  Red dots mark 

gaps.  Note that the N-terminal region of Std1 from S. paradoxus is missing. 
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ORF number 
gene 
name ORF number 

gene 
name 

YAL056W GPB2 YIL148W RPL40A 
YBL079W NUP170 YJL003W COX16 
YCL036W GFD2 YJL179W PFD1 
YCR044C PER1 YJR039W   

YCR050C   YJR055W HIT1 
YCR085W   YJR058C APS2 
YDL006W PTC1 YJR118C ILM1 
YDL160C DHH1 YKL073W LHS1 
YDL194W SNF3 YKR024C DBP7 
YDL232W OST4 YKR055W RHO4 
YDR074W TPS2 YLR402W   
YDR129C SAC6 YML048W GSF2 
YDR521W   YML063W RPS1B 
YER115C SPR6 YML094W GIM5 
YER131W RPS26B YML115C VAN1 
YGL015C   YML129C COX14 
YGL084C GUP1 YMR074C   
YGL127C SOH1 YMR307W GAS1 
YGL197W MDS3 YNL133C FYV6 
YGR036C CAX4 YNL238W KEX2 
YGR071C   YNR052C POP2 
YGR159C NSR1 YOL081W IRA2 
YGR180C RNR4 YOR175C   
YGR229C SMI1 YOR253W NAT5 
YHL019C APM2 YPL090C RPS6A 
YHL033C RPL8A YPL178W CBC2 
YHR075C PPE1 YPL179W PPQ1 
YHR087W   YPR129W SCD6 
YIL040W APQ12 YPR170C   
significant GO categories: signal transduction (p = 
0.013)       

 
Table S2.1: ORFs that exhibit glucosamine-resistance when knocked out 
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ORF 
number 

gene 
name   significant GO terms p-value genes 

YAL013W DEP1  
organelle organization and 
biogenesis 0.002 DEP1 

YBL061C SKT5     MIS1 
YBR084W MIS1     RPP1A 
YBR120C CBP6     RTF1 
YDL081C RPP1A     SUR4 
YDR017C KCS1     RPL13B
YGL244W RTF1     DMA2 
YJL165C HAL5     CSE2 
YKL038W RGT1  protein modification process 0.034 DEP1 
YLR372W SUR4     MIS1 
YMR142C RPL13B     RTF1 
YNL040W       DMA2 
YNL116W DMA2  translation 0.001 MIS1 
YNR010W CSE2     CBP6 
YOL023W IFM1     RPP1A 
YOR333C       RPL13B
YDR277C MTH1     IFM1 
YOR047C STD1  ligase activity 0.039 MIS1 
      DMA2 
   transcription regulator activity 0.005 DEP1 
      RTF1 
      RGT1 
       CSE2 

 
Table S2.2: ORFs that show low [GAR+] levels when knocked out 
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ORF 
number 

gene 
name   significant GO terms p-value genes 

YGL028C SCW11  
carbohydrate metabolic 
processing 0.049 INM1 

YGL041C        KRE6 
YGL138C    cytokinesis 0.02 SCW11 
YGR027C RPS25A      BUD2 
YHR046C INM1  hydrolase activity 0.032 INM1 
YJL198W PHO90      KRE6 
YKL092C BUD2      SCW11 

YLR032W RAD5      RAD5 

YNL168C FMP41     
YOL092W       
YOR108W LEU9     
YOR275C RIM20     
YPR159W KRE6     
YHR046C       

 
Table S2.3: ORFs that show high [GAR+] levels when knocked out 



 
plasmid name backbone contains source 
pPMA1 ura+ pRS316 -1700 to +2950 PMA1 this study 
pPMA1 trp+ pRS314 -1700 to +2950 PMA1 this study 

pPMA1 S. bay. pRS314 
5' UTR of S. cerevisiae PMA1 (to -1700) fused to S. bayanus PMA1 
ORF this study  

pPMA1 S. par. pRS314 
5' UTR of S. cerevisiae PMA1 (to -1700) fused to S. paradoxus 
PMA1 ORF this study 

pPMA1 S899A pRS314 pPMA1 mutated at S899 this study 
pPMA1 S899D pRS314 pPMA1 mutated at S899 this study 
pPMA1 S911A pRS314 pPMA1 mutated at S911 this study 
pPMA1 S911D pRS314 pPMA1 mutated at S911 this study 
pPMA1 T912A pRS314 pPMA1 mutated at T912 this study 
pPMA1 T912D pRS314 pPMA1 mutated at T912 this study 
pPMA1 911A912A pRS314 pPMA1 mutated at S911 and T912 this study 
pPMA1 911D912D pRS314 pPMA1 mutated at S911 and T912 this study 
pRGT2 p413GPD RGT2 ORF under control of a GPD promoter (high expression) this study 
pSNF3 p413GPD SNF3 ORF under control of a GPD promoter this study 
pYCK1 p413GPD YCK1 ORF under control of a GPD promoter this study 
pYCK2 p413GPD YCK2 ORF under control of a GPD promoter this study 
pSTD1 p413GPD STD1 ORF under control of a GPD promoter this study 
pMTH1 p413GPD MTH1 ORF under control of a GPD promoter this study 
pRGT1 p413GPD RGT1 ORF under control of a GPD promoter this study 
pHXT3 p413GPD HXT3 ORF under control of a GPD promoter this study 
pPMA1-OX p414GPD PMA1 ORF under control of a GPD promoter this study 
pPMA1∆40N-OX p414GPD PMA1∆40N ORF under control of a GPD promoter this study 
pPMA1∆104N-OX p414GPD PMA1∆104N ORF under control of a GPD promoter this study 
pPMA1∆40C-OX p414GPD PMA1∆40C ORF under control of a GPD promoter this study 
pPMA1Q23stop p414GPD pPMA1-OX with nonsense mutation at Q23 this study 
pPMA1E59stop p414GPD pPMA1-OX with nonsense mutation at E59 this study 

 
    Table S24: Plasmids used in Chapter 2. 
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strain name purpose source 
W303 [gar-]   R. Rothstein 
W303 [GAR+]   this study 

W303 ∆pma1 pPMA1 
genomic copy of pma1 replaced with KanMX, covered by 
plasmid pPMA1 ura+ this study 

W303 ∆rgt2 [GAR+] propagation studies this study 
W303 ∆snf3 [GAR+] propagation studies this study 
W303 ∆yck1 [GAR+] propagation studies this study 
W303 ∆yck2 [GAR+] propagation studies this study 
W303 ∆std1     [GAR+] propagation studies this study
W303 ∆mth1 [GAR+] propagation studies this study 
W303 ∆rgt1 [GAR+] propagation studies this study 
W303 ∆hxt3 [GAR+] propagation studies this study 
W303 ∆sur4 Pma1 oligomerization studies this study 
W303 ∆lst1 Pma1 oligomerization studies this study 
W303 ∆lcb3 Pma1 oligomerization studies this study 
W303 ∆lcb4 Pma1 oligomerization studies this study 
W303 ∆dpl1 Pma1 oligomerization studies this study 
W303 ∆atg19 Pma1 oligomerization studies this study 
W303 ∆erg5 Pma1 oligomerization studies this study 
W303 GAL-∆40N [GAR+] propagation studies Liu et al., 2006 
W303 GAL-∆40N ∆std1 [GAR+] propagation studies this study 
S288c HXT3-GFP monitoring Hxt3 protein levels in [gar-] and [GAR+] Huh et al., 2003 
S288c/W303 HXT3-GFP 
∆pma1 pPMA1 monitoring Hxt3 protein levels in [gar-] and [GAR+] this study 

 
 

Table S2.5: Yeast strains used in Chapter 2. 
 



 
 

 
 
 
Figure S2.12: Overexpression of STD1 rescues ∆sur4’s inability to form [GAR+] 

a) Constitutive overexpression of STD1 rescues the inability of ∆sur4 to become [GAR+].  

Note that the y-axis is a logarithmic scale. b) Native gel of digitonin-soluble protein 

extracts from wildtype (wt) or ∆sur4 backgrounds carrying an empty vector or a vector 

overexpressing STD1 and probed with α-Pma1.  Note that HMW oligomers of Pma1 are 

not rescued when STD1 is overexpressed.  c) Total protein stained with Ponceau S 

(bottom) and Western of fractions using an α-Pma1 antibody.  Note that the amount of 

Pma1 in the fractions in the ∆sur4 STD1 sample only increased slightly, despite the 

increase in [GAR+] frequency.  Low levels of Pma1 protein therefore do not affect 

[GAR+] formation. 
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Chapter Three: 

 

Natural Variation, the Environment and the [GAR+] Prion 

 

Introduction 

 Microbes live in dynamic environments with widespread competition and limited 

resources.  Among other things, they are subject to changing temperatures, toxins, 

nutrient starvation, and osmotic changes.  The number and variety of competing 

organisms is increased in “easy” niches, so decreased environmental stress begets 

increased competition.  The ability to survive diverse stress and to outgrow competitors is 

therefore crucial to fitness. 

 In order for organisms to survive in fluctuating environments, they must be 

responsive to changes in them.  This is particularly important for plants and fungi, which 

are immobile or relatively immobile and therefore have no choice but to adapt to 

circumstances (Winkelmann, 2007). Two major mechanisms for adaptation are 

phenotypic variation and pleiotropy.  Prions are an unusual source of pleiotropy and 

phenotypic variation that may contribute to environmental adaptation (Eaglestone et al., 

1999; True and Lindquist, 2000; Masel and Bergman, 2003). 

 Fungal prions are protein-based elements of genetic inheritance.  They involve 

proteins with an unusual ability to acquire an altered conformation that is associated with 

an altered function.  Most particularly, these changes in conformation and function are 

propagated to newly synthesized proteins of the same type in an extremely stable manner. 
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Mother cells pass the prion proteins to their daughters perpetuating the change in 

function, and its associated phenotypes, from generation to generation.  Proteins can enter 

the prion state spontaneously at a low rate.  And occasionally the prion state is not passed 

on to daughter cells (Uptain and Lindquist, 2002; Chien et al., 2004; Wickner et al., 2004; 

Shorter and Lindquist, 2005; Tuite and Cox, 2006).  These means that colonies arising 

from cells without the prion, will generally contain some cells that have it, and colonies 

arising from cells with the prion will generally contain some cells that have lost it.  This 

creates a diversity of phenotypes within a colony even though the genome of each cell is 

identical.  By increasing the number of phenotypes associated with that genome, we have 

suggested that prions might increase the chance that that a particular genome will survive 

in a changing environment (Eaglestone et al., 1999; True and Lindquist, 2000; Masel and 

Bergman, 2003; True et al., 2004).  

The work of several groups has shown that the prion known as [PSI+] confers a 

growth advantage compared to [psi-] under a variety of different environmental 

conditions (Eaglestone et al., 1999; True and Lindquist, 2000).  Of about 100 conditions 

tested, 50 showed no difference, [psi-] had a growth advantage in 25%, and [PSI+] had a 

growth advantage in 25% (True and Lindquist, 2000).  The spontaneous appearance of 

PSI therefore provides a temporary survival advantage under some conditions.  The 

[PSI+]-dependent survival advantage can become fixed by genetic change, so that [PSI+] 

can subsequently be lost but the [PSI+]-dependent phenotype maintained (True et al., 

2004). 

[PSI+] is both induced and lost at an increased rate under stressful conditions, 

such as when cells are exposed to changes in osmotic conditions and diverse chemicals 
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((Eaglestone et al., 1999; Tyedmers et al., unpublished).  This is almost certainly due to 

the increase in protein misfolding and the induction of chaperone protein, under these 

conditions (Eaglestone et al., 1999). Thus, the prion-forming ability of Sup35, the causal 

agent of [PSI+], allows it to act as a “contingency locus”.  Under stressful conditions, 

when cells are inherently not well adapted to their environment, the rate at which cells 

switch between prions states increases from one in 106 to one in 104 or 105 cells. This 

increases the likelihood that that might sample and advantageous phenotype, but most 

cells in the culture retain their initial prion state (Tyedmers et al., unpublished).  If [PSI+] 

is advantageous in that environment, then the proportion of [PSI+] in the population can 

increase allowing survival of that genotype.  If it is disadvantageous, only a small number 

of cells will perish. 

 The idea that a prion could be advantageous is, however, fairly controversial.  

Neither [PSI+] nor [URE3] have been found in environmental sampling experiments (n = 

70), although the selfish 2µ plasmid was found in 54% of yeast tested.  The argument 

was that [PSI+] and [URE3] are therefore more detrimental than the mildly detrimental 

2µ plasmid (Nakayashiki et al., 2005).  However, [PSI+] is envisioned as being only 

temporarily advantageous and only in some conditions (True and Lindquist, 2000; True 

et al., 2004).  Thus one could not expect to find [PSI+] or [URE3] in environmental 

isolates.  [PSI+]-dependent phenotypes can also be fixed quite easily (True et al., 2004). 

In this case the loss of [PSI+] would not be disadvantageous, even if the original [PSI+]-

dependent trait is advantageous.  Furthermore, [RNQ+] was found in 16% of these 

isolates (Nakayashiki et al., 2005).  As the only known phenotype of [RNQ+] is to allow 
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the induction of [PSI+], this suggests that a subpopulation of the yeast isolates tested 

maintain the ability to induce [PSI+] even if they do not currently carry [PSI+]. 

Arguing in favor of a beneficial role for this prion, the ability of Sup35 to form 

[PSI+] has been conserved over a billion years of fungal evolution (Nakayashiki et al., 

2001; Tanaka et al., 2005; Harrison et al., 2007).  The precise sequence of the prion-

determining region (PrD) is not conserved but the highly unusual amino acid composition 

of the prion-determining region, which allows it to switch into the prion state has been 

conserved across the basidiomyces (Harrison et al., 2007). Sup35 alleles from K. lactis, 

C. albicans, and other fungi are demonstrably capable of forming [PSI+] in S. cerevisiae.  

K. lactis, S. bayanus, and S. paradoxus Sup35 also form [PSI+] in their species of origin 

(Nakayashiki et al., 2001; Tanaka et al., 2005).  Of course, it might be argued that Sup35 

PrD has been conserved to provide some other function.  However, the nature of its 

conservation, which allows it to assume an amyloid, prion conformation, rather than to 

assume a more normal, globular fold, argues against it.  

 Saccharomyces cerevisiae is used in the production of bread, alcoholic beverages, 

and industrial alcohol.  It has been selected over millennia for such purposes, resulting in 

a variety of strains with vastly different properties.  Indeed, these optimizations have 

resulted in such specialized strains that many breweries and wineries regard them as 

industrial secrets (Landry et al., 2006).  S. cerevisiae can also be isolated from the 

environment; samples have been found in soil and on plant bark, leaves, and fruits.  

Occasionally S. cerevisiae infects immunocompromised patients, although S. cerevisiae 

infection is considerably less common than infection by other fungal species such as 

Candida albicans or Aspergillus fumigatus.  Overall, S. cerevisiae is capable of adapting 
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to a wide variety of ecological niches and their accompanying stressors.  These include 

nutrient starvation, low pH, fluctuating environments, high ethanol (fermentation) 

(Querol et al., 2003), heat stress, and hypoxia (animal infection) (Brown et al., 2007).  

Unsurprisingly, S. cerevisiae isolates from these different environments exhibit a wide 

variety of phenotypes and considerable genetic variation (Fay and Benavides, 2005; 

Landry et al., 2006). 

The phenotype resulting from the presence of the [GAR+] prion, resistance to 

glucosamine, involves changes in the fundamental process of carbon metabolism.  We 

wondered if [GAR+] might play a role in the adaptation of S. cerevisiae to distinct 

biological niches.  We asked whether [GAR+] is found in wild yeast isolates, whether 

[GAR+] can be induced in wild yeasts, and what environmental and genetic factors affect 

the appearance of [GAR+].  We found great variation in [GAR+] frequency between 

isolates with particular enrichment for higher [GAR+] frequency in fruit isolates.  We also 

identified two potential genetic mechanisms that might explain variation in [GAR+] 

frequency: natural variation in PMA1 sequence and genome-wide genetic differences.  

We sequenced PMA1 and upstream regions from 45 different S. cerevisiae isolates.  We 

also performed quantitative trait locus (QTL) analysis on the 103 genotyped progeny 

from a cross between a vineyard isolate and a lab strain, using [GAR+] frequency as a 

quantitative trait (Brem et al., 2002).  From this we hypothesized that we would both 

identify PMA1-independent and PMA1-linked regulators of [GAR+]. 

 Our findings suggest that [GAR+] plays an important role in the S. cerevisiae 

lifestyle.  The frequency of the [GAR+] prion varies with ecological niche.  We tested 

diploid samples of S. cerevisiae used to brew beer (“brewery”) or isolated from fruit, soil, 
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or human patients (“clinical”).  The phenotype of glucosamine-resistance is common in 

one niche, soil, but we have yet to determine whether this is the result of [GAR+].  

Polymorphisms within the PMA1 sequence did not correlate with the [GAR+] frequency 

but we did note a surprisingly high degree of heterozygosity at the PMA1 locus (~45% of 

samples) in diploid isolates of S. cerevisiae. 

Using [GAR+] frequency as a quantitative trait, we identified two genomic 

regions that are correlated with high rate of appearance of [GAR+] by QTL analysis.  A 

difference in copy number of two genes that confer 2-deoxyglucose resistance when 

overexpressed (Randez-Gil et al., 1995), DOG1 and DOG2, are the most likely source of 

increased [GAR+] frequency in one of these regions.  Finally, [GAR+] cells have a 

competitive advantage over [gar-] cells in rich medium.  However, [GAR+] is more 

sensitive to glucose starvation than [gar-] in defined medium.  Overall, these data suggest 

that [GAR+] is beneficial in certain ecological niches and environmental conditions and 

[GAR+] serves as a source of phenotypic flexibility. 

 

Results 

[GAR+] frequency varies with ecological niche 

 Saccharomyces cerevisiae can survive a wide variety of ecological niches and has 

been isolated from a number of different environments.  As utilization of carbon sources 

is fundamental to survival, we hypothesized that [GAR+] could be important for survival 

in particular environments.  We therefore tested a number of S. cerevisiae isolates from a 

variety of environments for resistance to glucosamine.  If isolates were glucosamine-

sensitive, we measured the frequency of appearance of [GAR+]. 
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Table 3.1: Yeast strains and their source 

 

strain name category source sample origin 
Abbey Ale beer brewing White Labs 
Belgian Ale beer brewing White Labs 
English Ale beer brewing White Labs 
Forbidden Fruit 
Ale beer brewing Wyeast 
Irish Ale beer brewing White Labs 
Northwest Ale beer brewing Wyeast 
Trappist Ale beer brewing White Labs 
Urquell Pilsner beer brewing Wyeast 

Y-7327 beer Tibetan beer starter 
Agricultural Research Service 
Collection 

        
YJM521 clinical patient John McCusker 
YJM522 clinical patient John McCusker 
YJM273 clinical patient John McCusker 
YJM310 clinical patient John McCusker 
YJM311 clinical patient John McCusker 
YJM436 clinical patient John McCusker 
YJM440 clinical patient John McCusker 
YJM454 clinical patient John McCusker 
YJM210 clinical patient John McCusker 
YJM455 clinical patient John McCusker 

Y-27806 clinical patient 
Agricultural Research Service 
Collection 

Y-27788 clinical patient 
Agricultural Research Service 
Collection 

Y-502 clinical patient 
Agricultural Research Service 
Collection 

Y-492 clinical patient 
Agricultural Research Service 
Collection 

Y-10988 clinical patient 
Agricultural Research Service 
Collection 

YJM128 clinical patient John McCusker 
YJM309 clinical patient John McCusker 
        

YB-4081 fruit guava 
Agricultural Research Service 
Collection 

Y-5511 fruit coconut 
Agricultural Research Service 
Collection 

YB-399 fruit cherries 
Agricultural Research Service 
Collection 
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strain name category source sample origin 

Y-382 fruit grain 
Agricultural Research Service 
Collection 

Y-1537 fruit grapes 
Agricultural Research Service 
Collection 

Y-7568 fruit papaya 
Agricultural Research Service 
Collection 

YB-210 fruit banana 
Agricultural Research Service 
Collection 

YB-3121 fruit mimosa 
Agricultural Research Service 
Collection 

YB-4082 fruit papaya 
Agricultural Research Service 
Collection 

YB-432 fruit pineapple 
Agricultural Research Service 
Collection 

Y-35 fruit Ilex aquifolium 
Agricultural Research Service 
Collection 

Y-139 fruit grape 
Agricultural Research Service 
Collection 

Y-12657 fruit olive 
Agricultural Research Service 
Collection 

        
OP1 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP2 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP3 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP4 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP6 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP7 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP8 soil Occoneechee Park, VA Dietzmann, Dietrich 
OP9 soil Occoneechee Park, VA Dietzmann, Dietrich 
SM1 soil Stone Mountain, GA Dietzmann, Dietrich 
SM2 soil Stone Mountain, GA Dietzmann, Dietrich 
SM12 soil Stone Mountain, GA Dietzmann, Dietrich 
SM17 soil Stone Mountain, GA Dietzmann, Dietrich 
SM66 soil Stone Mountain, GA Dietzmann, Dietrich 
SM69 soil Stone Mountain, GA Dietzmann, Dietrich 
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Figure 3.1: [GAR+] frequency varies with ecological niche. 

 [GAR+] frequency was measured for each yeast strain listed in table 3.1.  Three 

independent cultures were grown at the temperature specified and each culture was plated 

in duplicate.  Small points represent an individual strain within a category (dark blue: 

clinical, 30°C; light blue: clinical, 37°C; green: fruit, 30°C; purple: beer, 30°C; gray: 

beer, 20°C).  Larger shapes represent the average for the category (peach: clinical, 30°C; 

orange: clinical, 37°C; pink: fruit, 30°C; yellow: beer, 30°C; purple: beer, 20°C).  Error 

bars represent the standard deviation of the [GAR+] frequency for the category as a 

whole.  The average [GAR+] frequency for the set of strains isolate from fruits is 

approximately 20 fold higher than the average for the clinical strains at either 30°C or 

37°C.  The large data point in each series that is the same color as the rest of the series is 

the median point. 
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site variation S288c sequence amino acid heterozygosity 
-1557 G insertion   N/A yes 
-1038 A, G G N/A yes 

-704 C, T T N/A yes 
-611 C, T T N/A yes 
-314 A, G A N/A yes 
-287 C, G, T G N/A yes 
-272 C, T T N/A no 
-257 C, T C N/A yes 
-116 T insertion T N/A yes 
-111 C, T C N/A no 

-13 A, G A N/A yes 
156 C, T T synonymous no 
221 C, T C P-->L yes 
246 C, T T synonymous yes 
348 C, T C synonymous no 
349 C, G G V-->L yes 
426 C, T C synonymous no 
454 A, C A M-->L yes 
625 A, G G V-->I yes 
891 A, G A synonymous yes 
904 A, G A I-->V yes 

1380 C, G, T C synonymous yes 
1563 A, G A synonymous yes 
2055 C, T T synonymous no 
2152 A, G G D-->N yes 
2241 A, C C synonymous yes 
2283 C, T T synonymous yes 
2286 A, G G synonymous yes 
2289 C, T C synonymous yes 
2292 A, T A synonymous yes 
2293 A, G G V-->I yes 
2298 A, G A synonymous yes 
2301 C, T T synonymous yes 
2302 A, G A I-->V yes 
2304 A, C A  yes 
2310 A, T T synonymous yes 
2460 C, T C synonymous yes 
2466 A, C C synonymous yes 
2475 A, G G synonymous yes 
2506 G, T G A-->S yes 

 
Table II: Polymorphisms in PMA1 from -1700 to +2950 
Common polymorphisms found within the PMA1 sequence.  Polymorphism had to be 
found in at least five of 45 total samples to be included in this table.  “Heterozygosity” 
indicates that any single strain was heterozygous at the site in question. 
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We measured [GAR+] frequency from 45 different yeast isolates (table 3.1).  We found 

that the rate of appearance of [GAR+] varied with ecological niche of the host (figure 

3.1).  S. cerevisiae lab strains, brewery strains, and clinical isolates all showed 

approximately the same average [GAR+] frequencies, around 3 in 103 cells.  Samples 

from each niche exhibited high variance in [GAR+] frequency and therefore different 

medians.  The median [GAR+] frequencies of clinical isolates was around 1 in 104 cells, 

whereas the median [GAR+] frequency of beer isolates was around 4 in 105.  Temperature 

did not affect [GAR+] frequency in clinical isolates but it decreased with increasing 

temperatures in brewery isolates.  Yeast samples from fruits showed a much higher 

appearance of [GAR+], on average 20 fold higher than the average [GAR+] frequency and 

five fold higher than the median [GAR+] frequency in clinical isolates.  Fruit yeasts also 

show a greater variance in [GAR+] frequency than clinical and brewery isolates. 

 One possible origin of this variation in [GAR+] frequency is changes in the 

sequence of PMA1 or its surrounding region.  We therefore sequenced the PMA1 locus, 

1700bp 5’ of the gene, and 250bp 3’ of the gene to determine whether any 

polymorphisms correlate with [GAR+] frequency.  Initial data from direct sequencing 

suggested that some samples were heterozygous, so we switched to subcloning our region 

of interest and sequencing four separate samples from each yeast strain.  We did not find 

any single change that is necessary for high [GAR+] frequency (polymorphisms are listed 

in table 3.2) or any clear haplotypes. 

 Sequencing PMA1 from a variety of S. cerevisiae isolates showed that PMA1 

exhibits a surprising degree of heterozygosity.  Because S. cerevisiae is homothallic, it is  
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Figure 3.2: Does [GAR+] exist in wild yeast? 

a) Spot tests of [gar-], [GAR+], and four soil isolates; the remaining ten showed the same 

growth patterns.  Each serial dilution factor is five-fold.  Cultures were diluted and 

spotted to 2% glucose, 2% glycerol, and glycerol-glucosamine medium (GGM). 

 150



known that diploid S. cerevisiae samples are mostly homozygous, since haploids could 

switch mating types then mate with the neighboring, genetically identical cell.  

Population analysis of the closely related S. paradoxus, which is also homothallic, 

predicts a 99% inbreeding rate in the wild (Johnson et al., 2004).  However, PMA1 was 

heterozygous in 20 of our 45 samples, usually at multiple sites in each heterozygous 

strain.  Some of these changes are nonsynonymous, including an alanine to serine change 

at amino acid 835 that is found in nine samples and is heterozygous in three more. 

 

Soil isolates are resistant to glucosamine and an environmental isolate induces [GAR+] 

 We tested 14 S. cerevisiae samples isolated from the soil at two different locations 

in the Southeastern United States.  All of these showed glucosamine-resistance (figure 

3.2).  Whether this is the result of [GAR+] or caused by a genetic mutation we cannot yet 

say because isolates are homothallic and therefore not genetically tractable.  Experiments 

are underway to analyze the segregation patterns of this phenotype. 

 

Various Staphylococcus species induce [GAR+] 

 We serendipitously discovered that a bacterial species is capable of inducing 

glucosamine-resistance in S. cerevisiae when it appeared as a contaminant on an agar 

plate.  [gar-] cells grown on a plate next to the bacterial cells acquired resistance to 

glucosamine over time (figure 3.3a).  When the initially [gar-] samples are removed from 

this plate and grown on glycerol/glucosamine without the bacteria present, they remain 

glucosamine-resistant.  This induced resistance is semi-dominant in a mating test, 

suggesting that its resistance to glucosamine is caused by [GAR+] and not a genetic  
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Figure 3.3: Staphylococcus species induce the conversion of [gar-] to [GAR+] 

a) Induction of glucosamine resistance by Staphylococcus hominis.  Cultures were grown 

in YPD, diluted in five-fold serial dilutions, then spotted to 2% glucose (YPD), 2% 

glycerol, and GGM.  GGM plates were incubated five days before being photographed.  

Note that the [gar-] sample adjacent to the unknown bacteria grew on GGM proportional 

to the plating cell density.  b) Mating of the induced glucosamine-resistant strains in part 

a to [gar-] to test for dominance.  Induced glucosamine-resistance yeast show semi-

dominant glucosamine-resistance, suggesting that the induced strain is [GAR+] rather 

than a genetic change.  c) [gar-] samples grown adjacent to additional Staphylococcus 

species isolates.  Five of nine Staphylococcus species induced the conversion of [gar-] to 

[GAR+].  S. gallinarium induced [GAR+] at high efficiency (top), S. capitis induced 

[GAR+] with medium efficiency (middle), and S. chromogenes did not induce [GAR+] 

(bottom). 
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alteration (figure 3.3b).  The [GAR+]-inducing bacterium was identified as 

Staphylococcus hominis by 16S rDNA sequencing (figure S3.1). 

Staphylococcus is a ubiquitous genus of gram positive bacteria capable of 

growing in a wide variety of ecological niches, particularly on animals.  Staphylococcus 

is even occasionally in the soil (Madigan and Martinko, 2006).  We also tested eight 

other Staphylococcus species (out of a total of 31 species) and found that six of these 

induced [GAR+] when cultured with S. cerevisiae, albeit with varying efficiency (figure 

3.3c). 

 

Genetic factors influence [GAR+] frequency 

 The rate of appearance of [GAR+] varied widely between yeast strains and their 

ecological niche.  As the frequency of appearance of [GAR+] is a quantitative trait, we 

sought to identify factors that influence [GAR+] frequency by quantitative trait locus 

(QTL) mapping.  We used a set of genotyped segregants from a cross between a vineyard 

isolate, RM11, and the lab strain BY4617, which is virtually identical to S288c (Brem et 

al., 2002).  The BY4617 parent showed a higher frequency of [GAR+] appearance than 

the RM11 strain.  Parents and segregants were grown in 2% glucose then plated to 

medium containing glycerol and glucosamine.  Growth on glucosamine medium was 

tracked over the course of twelve days and density of growth was taken as a measure of 

[GAR+] frequency (figure 3.4a). 

As a control to ensure we were working with [GAR+] and not Mendelian genetic 

mutations, glucosamine-resistant samples were mated to a [gar-] strain and diploids 

selected.  [GAR+] is semi-dominant in a mating (see chapter two) but Mendelian 
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mutations would most likely be recessive.  All glucosamine-resistant segregants for 

which we could select diploids showed semi-dominant glucosamine-resistance following 

mating (figure 3.4b).  This demonstrates that the glucosamine-resistance we measured is 

likely the result of [GAR+] and not a Mendelian mutation. 

We identified two regions correlated with high appearance of [GAR+] (figure 

3.4c).  One of these regions associated with a high rate of appearance of [GAR+] is on 

chromosome XIV, bp 412,000 to 450,000 (figure 3.4c, top).  The causal polymorphisms 

are less blatant; there are a number of polymorphisms in a leucine tRNA upstream of 

PHO23 and a number within the 350 bp region 5’ of PHO23.  For these reasons and 

because this region is only slightly above the significance cutoff for LOD scores (figure 

3.4c), we focused on the second significant region. 

The second region is located to bp 180,000 to 220,000 on chromosome VIII (top).  

The region that confers higher [GAR+] frequency corresponded with that from the 

BY4617 parent (bottom).  This region contains genes DOG1 and DOG2, which were 

originally identified from a screen for mutations that confer resistance to the non-

hydrolyzable glucose analog 2-deoxyglucose (Sanz et al., 1994).  The RM11 parents 

lacks DOG2 whereas the BY4617 carries both DOG1 and DOG2 (figure S3.2).  Since 

DOG1 and DOG2 confer 2-deoxyglucose resistance when overexpressed  (Randez-Gil et 

al., 1995), the copy number difference could well account for the difference in frequency 

of [GAR+]. 

Additionally, we screened ~5000 S. cerevisiae ORFs to identify candidates that 

induce [GAR+] following transient overexpression.  Three genes were found to induce  
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Figure 3.4: QTL analysis of [GAR+] frequency 

a) Growth of segregants on GGM after five days.  Samples that grew on GGM were 

mated to a [gar-] strain with appropriate auxotrophies to select for diploids.  Segregants 

marked with a red ‘X’ are completely prototrophic and so were not mated to [gar-]; those 

with a green asterisks contained auxotrophies that allowed for selection of diploids.  

Parental strains were also not mated.  b) Segregants from part a were pinned to GGM 

following mating and selection of diploids.  However, prototrophic segregants were not 

included.  Diploids grew on GGM, demonstrating that the glucosamine-resistant 

phenotype displayed is semi-dominant and therefore is likely caused by [GAR+] rather 

than a genetic mutation.  c) Chromosome map (x-axis, top) with associated LOD scores 

(y-axis, top) from QTL analysis.  A significant peak is visible on chromosome VIII and 

chromosome XIV (top).  The bottom area of the graph shows the extent of association 

with either parent (BY is negative, RM11 is positive) and the trait of interest.  Note that 

the QTL on chromosome VIII is enriched for BY and the QTL on chromosome XIV is 

enriched for RM11. 
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glucosamine-resistance: STD1, DOG2, and SPO23 (figure S3.3).  STD1 was the first 

factor identified to induce [GAR+] (see chapter two).  DOG2 was also identified by QTL 

analysis, suggesting that its affects on [GAR+] are real and important in the natural 

biology of the organism. 

 

[GAR+] cells have a competitive advantage in rich medium but not in minimal medium 

 To determine whether [GAR+] might have a growth advantage over [gar-], we 

measured growth rate (change in OD600) in varying carbon sources (figure 3.5a).  The 

growth rates of [gar-] and [GAR+] were almost identical in 2% glucose and 2% galactose.  

In the mixture of glucose and galactose, [GAR+] reached a high maximum growth rate 

and did not show as much of a decrease in growth rate as [gar-] did when transitioning 

between carbon sources during the diauxic shift.  This suggests that [GAR+] might 

exhibit a competitive advantage under particular environmental conditions.  To test this, 

we co-cultured [gar-] and [GAR+] in both rich and defined media containing 2% glucose; 

a mixture of 0.1% glucose and 1.9% galactose, 2% galactose, and 0.2% glucose.  Co-

culture conditions allow for direct competition, as both [gar-] cells and [GAR+] cells have 

access to the same nutrients.  Throughout the experiments, cells are plated to rich 

medium to determine density (colony-forming units, or cfu) then replica plated to 

glycerol-glucosamine medium to score the number of [GAR+] cfu. 

[GAR+] cells outcompeted [gar-] cells in all conditions involving a rich media 

base (1% yeast extract, 2% peptone).  [GAR+] cells compromise between 60% culture (in 

glucose medium) and 90% (in a mixture of glucose and galactose) of all cfu in the culture  
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Figure 3.5: Do [GAR+] cells have a competitive advantage over [gar-] cells in some 

conditions? 

a) [GAR+] grows faster than [gar-] in a glucose/galactose mixture.  Growth rate, as 

represented by change in OD600, is shown on the y-axis.  [GAR+] and [gar-] cells show 

virtually identical growth rates in 2% glucose and 2% galactose but [GAR+] does not 

decrease growth rate at six hours as [gar-] does.  Data shown are the mean of four 

difference samples  b,c) Pictures (b) and quantification (c) of [GAR+] frequency and 

strain (“large”) following growth in different carbon sources.  “Large” colonies are 

indicative of strong [GAR+] strains.  Large colonies are defined as those having a 

diameter of 1mm or more.  Graph represents the mean +/- the standard deviation.  d) 

Competition between [gar-] and [GAR+] cells in rich (top) or minimal (bottom) media.  

The Y-axis represents the ratio of [GAR+] cfu to [gar-] cfu and the x-axis represents the 

number of generations.  Three separate samples were competed, each was plated in 

duplicate, and all six plates were average for each data point. 
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at the end of the experiment but started at ~35% of cfu (figure 3.5b, top).  [GAR+] did 

less well in 2% glucose than the other conditions; 2% glucose was the only condition in 

which [GAR+] never increased to more than 71% of the total population of yeast in the 

culture from a starting point of approximately 35%. 

 [GAR+] was at best neutral compared to [gar-] in defined medium (yeast nitrogen 

base + amino acids) (figure 3.5b, bottom).  Cultures grown in 2% glucose maintained the 

starting point of approximately 40% [GAR+] cfu for 100 generations.  [GAR+] showed a 

slight advantage in 2% galactose.  It attained about 50% of the S. cerevisiae population 

by 50 generations and maintained that until 100 generations.  However, [GAR+] fared 

poorly in the glucose/galactose mixture; it was less than 5% of total yeast by 100 

generations.  [GAR+] also did not survive limiting glucose conditions well, and 

constituted only 10% of that yeast population after 100 generations.  Data points from 

competition experiments represent the average of three independent cultures.  

Experiments were repeated three times. 

 

The rate of [GAR+] appearance varies with environmental conditions 

 Pma1 conformation and ATPase activity are regulated by environmental 

conditions, particularly carbon source (Morsomme et al., 2000).  Therefore, because 

Pma1 is a causal agent of [GAR+], we hypothesize that the GAR prion would also be 

sensitive to environmental conditions.  To test this, we grew [gar-] yeast in rich media 

with a variety of different carbon sources.  The [GAR+] frequency (figure 3.45) and strain 

(“strong” vs. “weak”) (figure 3.5d) varied with carbon source.  This suggests that GAR, 

like Pma1, responds to the host environment. 
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[GAR+] alters the cell wall architecture and affects susceptibility to anti-fungal drugs 

 The S. cerevisiae cell wall is largely composed of glucose polymers and changes 

in environmental conditions alter the total amount of various components of the wall 

(Klis et al., 2006).  Because [GAR+] alters glucose utilization and is environmentally 

responsive, we hypothezied that [GAR+] might affect the cell wall.  First we stained by β-

glucans using aniline blue, which binds to glucan but not chitin or mannoprotein.  (Paul 

and Johnson, 1977).  As β-glucan is completely masked in a normal cell wall (Klis et al., 

2006) and, as expected, [gar-] cells did not shown aniline glue staining.  Surprisingly, we 

found that [GAR+] cells showed some aniline blue staining, implying exposure of β-

glucan.  [gar-] cells did not show aniline blue staining (figure 3.6a). 

We further investigated differences in the cell walls of [GAR+] cells compared to 

[gar-] cells by measuring responses to cell wall-inhibiting drugs.  The antifungal drug 

caspofungin targets yeasts by inhibit β-glucan synthase (Denning, 2003), and [GAR+] 

was more sensitive to caspofungin than [gar-].  [GAR+] is also more sensitive to 

fluconozole  (figure 3.6b), which permealizes the fungal plasma membrane by inhibiting 

ergosterol synthesis (Odds et al., 2003). 

 

Discussion 

[GAR+] might play a role in yeast ecology 

 We observed a 20-fold higher average rate of appearance of [GAR+] and a 

five-fold higher median rate of appearance in fruit isolates than in clinical or brewery 

isolates, regardless of temperature.  This suggests that [GAR+] might be advantageous in 

conditions resembling those of fruit isolates, such as low pH.  As Pma1, a component of  
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Figure 3.6: The cell wall architecture differs between [gar-] and [GAR+] cells 

a) Aniline blue staining of β-glucans (left).  [GAR+] cells (bottom) exhibit more staining 

than [gar-] cells (top), suggesting that the β-glucan is more exposed in [GAR+] cells.  b) 

[GAR+] cells are more sensitive to antifugal drugs than [gar-] cells.  Cells were grown to 

midlog in YPD, serially diluted 5-fold, then spotted to the drug plates shown.  [GAR+] 

cells are more sensitive to caspofungin than [gar-] cells.  As caspofungin targets β-glucan 

synthase, this supports the data from part a.  [GAR+] cells are also more sensitive to 

fluconazole, implying that [GAR+] cells are extra-sensitive to membrane stress. 
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[GAR+], is a proton pump and is the major controller of cytoplasmic pH (Morsomme), it 

would not be surprising if [GAR+] were sensitive to pH.  We also demonstrated that the 

[GAR+] prion is sensitive to the host environment, as [GAR+] frequency and strain varies 

with carbon source.  The [GAR+] prion phenotype that is environmentally responsive. 

 

PMA1 exhibits high levels of heterozygosity 

Sequencing of PMA1 from these wild yeast isolates did not yield any single 

polymorphism associated with [GAR+] frequency.  However, a large number of our yeast 

samples were heterozygous for PMA1, which was surprising.  S. cerevisiae is 

predominantly homothallic (capable of switching mating type) and is thought to 

frequently inbreed due to intratetrad matings.  Heterozygosity should thus be rare, as 

inbreeding leads to homozygosity (Kirby, 1984).  The probability of obtaining 

homozygosity at a particular locus increases if that locus is centromeric (Zakharov, 

2005).  This is the case with PMA1, which is only 4cM away from the centromere of 

chromosome VII (Capieaux et al., 1991). 

However, we found that 20 of our 45 samples (44%) were heterozygous at the 

PMA1 locus.  In contrast, one group who sequenced 27 samples at four loci found that 2 

(7%) contained heterozygosity (Aa et al., 2006).  Heterozygous samples were observed in 

isolates from all ecological niches, although only one fruit isolate showed heterozygosity.  

Heterozygosity complicated analysis of the PMA1 sequence, however, as heterozygous 

samples were not included in Wilcoxon calculations of the association between 

polymorphisms and rate of appearance of [GAR+]. 
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[GAR+] is influenced by other organisms 

 We demonstrated that Staphylococcus species are capable of switching [gar-] S. 

cerevisiae cells to [GAR+].  This suggests that [GAR+] could well be found in wild yeast, 

as Staphylococcus species are commonly found in a wide variety of ecological niches, 

including in close association with humans (Madigan and Martinko, 2006).  As S. 

cerevisiae is used in a variety of industrial processes, it is certainly possible that yeast 

would encounter Staphylococcus frequently. 

 

[GAR+] has a competitive advantage over [gar-] under some conditions 

 Initial data suggest that [GAR+] has an advantage in rich medium independent of 

carbon source but that [GAR+] is neutral or disadvantageous in defined medium.  

Similarly, the [PSI+] prion is advantageous in some conditions and disadvantageous in 

others (Eaglestone et al., 1999; True and Lindquist, 2000).  Because [GAR+] appears 

quite frequently in yeast strains isolated from fruit and because we have yet to identify an 

S. cerevisiae strain that cannot become [GAR+], it seems likely that [GAR+] occasionally 

serves some advantage. 

 

 Efficient carbon source utilization and energy production are among the most 

important processes for a cell.  [GAR+] alters carbon source utilization by conferring on 

its host the ability to use alternative carbon sources when glucose is present.  Because 

processing of carbon sources is so important for a cell, we suggest that [GAR+] is an 

excellent example prion for addressing the question of whether fungal prions play any 

role in microbe biology.  The observation that an unknown bacterium seems to induce 
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[GAR+] further supports the idea that [GAR+] is environmentally responsive and might 

even be a plasticity factor. 

Overall, our data suggest that [GAR+] could have a competitive advantage under 

certain environmental conditions and that the GAR phenotype is sensitive to its 

environment.  [GAR+] exhibits a faster growth rate compared to [gar-] under certain 

environmental conditions.  Also, since [GAR+] appears at a frequency of up to 1 in 20 

cells in some yeast strains isolated from fruit, [GAR+] could well confer some sort of 

advantage in this niche.  Further experiments will attempt to address these questions. 

 

Experimental procedures 

[GAR+] frequency assays 

[gar-] cells were grown to midlog in YPD (2% glucose unless otherwise stated).  

Samples were diluted appropriately and plated to YPD and medium containing 2% 

glycerol and 0.05% glucosamine (GGM).  Colony forming units (CFU) were counted 

after 2 days on YPD and after 6 days on GGM.  Colony size was measured by using 

Scion Image. 

 

Yeast strains and genetic manipulations 

 Strain construction and manipulation followed standard yeast techniques.  Growth 

rate was measured in the Bioscreen C (Growth Curves USA) at 30°C with intensive, 

intermittent shaking with the OD600 measured every 15 minutes. 
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Sequencing of PMA1 

 PCR products of -1700 to +2950 were amplified using a high fidelity LA taq 

polymerase (Takara).  Samples were subcloned using TA cloning methods into pCR2.1 

(Invitrogen), transformed into DH5α E. coli, and selected for the presence of the insert 

using X-gal as per the manufacturer’s instructions.  A minimum of four plamids from two 

independent transformations were sequenced by the Northwoods DNA facility.  

Sequencing reactions were analyzed in Sequencher 4.7.  Strains were considered 

heterozygous if one of the two conditions were met: two samples showed one nucleotide 

and two another or a single sample consistently differed from the other three at a rate 

higher than the observed error rate.  In the latter case, more samples were usually 

sequenced unless the outlier sample showed heterozygosity only at sites of previously 

observed heterozygous polymorphisms. 

 

QTL analysis 

 Segregants were grown in YPD in 96 well plates to midlog, then spotted to GGM.  

Growth density of spots was determined using Scion Image.  Data were analyzed using 

WinQTLCartographer and JMP 5.0. 

 

Cell wall staining 

 Cells were stained for chitin by growing in YPD or CSM until midlog, washing 

once in water, then incubating 5 minutes in a solution of 1% aniline blue (Sigma).  

Samples were washed twice in water then imaged on a Zeiss axioplan microscope. 
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Staph. hominis  gatgaacgctggcggcgtgcctaatacatgcaagtcgagcgaacagacgaggagcttgct 
Unknown          gatg::acgctggcggcgtgcctaatacatgcaagtcgagcgaacagacgaggagcttgct 
 
Staph. hominis cctttgacgttagcggcggacgggtgagtaacacgtgggtaacctacctataagactggg  
Unknown         cctttgacgttagcggcggacgggtgagtaacacgtgggtaacctacctataagactggg 
 
Staph. hominis ataacttcgggaaaccggagctaataccggataatatttcgaaccgcatggttcgatagt  
Unknown         ataacttcgggaaaccggagctaataccggataatatttcgaaccgcatggttcgatagt 
 
Staph. hominis gaaagatggctctgctatcacttatagatggacctgcgccgtattagctagttggtaagg  
Unknown         gaaagatggctctgctatcacttatagatggacctgcgccgtattagctagttggtaagg 
 
Staph. hominis taacggcttaccaaggcaacgatacgtagccgacctgagagggtgatcggccacactgga  
Unknown         taacggcttaccaaggcaacgatacgtagccgacctgagagggtgatcggccacactgga 
 
Staph. hominis actgagacacggtccagactcctacgggaggcagcagtagggaatcttccgcaatgggcg  
Unknown         actgagacacggtccagactcctacgggaggcagcagtagggaatcttccgcaatgggcg 
 
Staph. hominis aaagcctgacggagcaacgccgcgtgagtgatgaaggtcttcggatcgtaaaactctgtt  
Unknown         aaagcctgacggagcaacgccgcgtgagtgatgaaggtcttcggatcgtaaaactctgtt 
 
Staph. hominis attagggaagaacaaacgtgtaagtaactgtgcacgtcttgacggtacctaatcagaaag  
Unknown         attagggaagaacaaacgtgtaagtaactgtgcacgtcttgacggtacctaatcagaaag 
 
Staph. hominis ccacggctaactacgtgccagcagccgcggtaatacgtaggtggcaagcgttatccggaa  
Unknown         ccacggctaactacgtgccagcagccgcggtaatacgtaggtggcaagcgttatccggaa 
 
Staph. hominis ttattgggcgtaaagcgcgcgtaggcggttttttaagtctgatgtgaaagcccacggctc  
Unknown         ttattgggcgtaaagcgcgcgtaggcggttttttaagtctgatgtgaaagcccacggctc 
 
Staph. hominis aaccgtggagggtcattggaaactggaaaacttgagtgcagaagaggaaagtggaattcc  
Unknown         aaccgtggagggtcattggaaactggaaaacttgagtgcagaagaggaaagtggaattcc 
 
Staph. hominis atgtgtagcggtgaaatgcgcagagatatggaggaacaccagtggcgaaggcgactttct  
Unknown         atgtgtagcggtgaaatgcgcagagatatggaggaacaccagtggcgaaggcgactttct 
 
Staph. hominis ggtctgtaactgacgctgatgtgcgaaagcgtggggatcaaacaggattagataccctgg  
Unknown         ggtctgtaactgacgctgatgtgcgaaagcgtggggatcaaacaggattagataccctgg 
 
Staph. hominis tagtccacgccgtaaacgatgagtgctaagtgttagggggtttccgccccttagtgctgc  
Unknown         tagtccacgccgtaaacgatgagtgctaagtgttagggggtttccgccccttagtgctgc 
 
Staph. hominis agctaacgcattaagcactccgcctggggagtacgaccgcaaggttgaaactcaaaggaa  
Unknown         agctaacgcattaagcactccgcctggggagtacgaccgcaaggttgaaactcaaaggaa 
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Staph. hominis ttgacggggacccgcacaagcggtggagcatgtggtttaattcgaagcaacgcgaagaac  
Unknown         ttgacggggacccgcacaagcggtggagcatgtggtttaattcgaagcaacgcgaagaac 
 
Staph. hominis cttaccaaatcttgacatcctttgacccttctagagatagaagtttccccttcgggggac  
Unknown         cttaccaaatcttgacatcctttgacccttctagagatagaagtttccccttcgggggac 
 
Staph. hominis aaagtgacaggtggtgcatggttgtcgtcagctcgtgtcgtgagatgttgggttaagtcc  
Unknown         aaagtgacaggtggtgcatggttgtcgtcagctcgtgtcgtgagatgttgggttaagtcc 
 
Staph. hominis cgcaacgagcgcaacccttaagcttagttgccatcattaagttgggcactctaagttgac  
Unknown         cgcaacgagcgcaacccttaagcttagttgccatcattaagttgggcactctaagttgac 
 
Staph. hominis tgccggtgacaaaccggaggaaggtggggatgacgtcaaatcatcatgccccttatgatt  
Unknown         tgccggtgacaaaccggaggaaggtggggatgacgtcaaatcatcatgccccttatgatt 
 
Staph. hominis tgggctacacacgtgctacaatggacaatacaaagggcagcgaaaccgcgaggtcaagca  
Unknown         tgggctacacacgtgctacaatggacaatacaaagggcagcgaaaccgcgaggtcaagca 
 
Staph. hominis aatcccataaagttgttctcagttcggattgtagtctgcaactcgactacatgaagctgg  
Unknown         aatcccataaagttgttctcagttcggattgtagtctgcaactcgactacatgaagctgg 
 
Staph. hominis aatcgctagtaatcgtagatcagcatgctacggtgaatacgttcccgggtcttgtacaca  
Unknown         aatcgctagtaatcgtagatcagcatgctacggtgaatacgttcccgggtcttgtacaca 
 
Staph. hominis ccgcccgtcacaccacgagagtttgtaacacccgaagccggtggagtaaccatttggagc  
Unknown         ccgcccgtcacaccacgagagtttgtaacacccgaagccggtggagtaaccatttggagc 
 
Staph. hominis tagccgtcgaaggtgggacaaatgattg  
Unknown         tagccgtcgaaggtgggacaaatgattg 
 

Figure S3.1: 16S rDNA alignment of unknown and Staphylococcus hominis 

16S rDNA was PCR amplified from the contaminating microorganisms that induced 

[gar-] to switch to [GAR+] cells.  The PCR product was sequenced as described and 

BLAST analysis performed against the GenBank database.  The unknown sample was 

99% identical to Staphylococcus hominis (1467 out of 1468 bases, the one difference 

being a gap). 
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S288c ttttattttcatttttaatgatcgcgattattctgttggaaataacg  
RM11 ttttattttcatttttaatgatcgcgattattctgttggaaataacg 
 
S288c ttctgatggagattgttggttacgttgccactcacgtaagaagttc 
RM11 ttctgatggagattgttggttacgttgccactcacgtaagaagttc  
 
S288c aaaggataatggcagaattttcagctgatctatgtctttttgacct 
RM11 aaaggataatggcagaattttcagctgatctatgtctttttgacct 
DOG1               atggcagaattttcagctgatctatgtctttttgacct 
 
S288c agatggtaccatagtgagtacaacagtggccgcagagaaagcatg  
RM11 agatggtaccatagtgagtacaacagtggccgcagagaaagcatg 
DOG1 agatggtaccatagtgagtacaacagtggccgcagagaaagcatg 
 
S288c gaccaagttgtgttacgaatacggtgttgatccttccgagttattt 
RM11 gaccaagttgtgttacgaatacggtgttgatccttccgagttattt 
DOG1 gaccaagttgtgttacgaatacggtgttgatccttccgagttattt 
 
S288c aagcattctcatggtgcaagaacacaagaggttttgagaaggtttt  
RM11 aagcattctcatggtgcaagatcacaagaaatgatgaagaaatttt 
DOG1 aagcattctcatggtgcaagaacacaagaggttttgagaaggtttt 
 
S288c tccctaaattggatgatacagacaataaaggtgttcttgctctaga 
RM11 ttccaaaattggacaataccgataataaaggtgttcttgcgttaga  
DOG1 tccctaaattggatgatacagacaataaaggtgttcttgctctaga 
 
S288c aaaagatat tgcccatagttacttggacacagtaagccttattcct  
RM11 aaaggatatggcagataattatttggacacagtaagccttatccct  
DOG1 aaaagatattgcccatagttacttggacacagtaagccttattcct 
 
S288c  ggtgcagagaacttactgttatcgttagatgtagatactgagactc  
RM11  ggtgcagagaatttattgttatcgttagatgtaaatactgagactc  
DOG1 ggtgcagagaacttactgttatcgttagatgtagatactgagactc 
 
S288c aaaaaaagttacctgaaaggaaatgggctatcgttacctctggttc  
RM11 aaaaaaagttacctgaaaggaaatgggctatcgttacctctggttc  
DOG1 aaaaaaagttacctgaaaggaaatgggctatcgttacctctggttc 
 
 
S288c tccatatttggcattttcatggttcgagacaatattgaaaaatgttg 
RM11 tccctatttggcattttcatggttcgagacaatattgaaaaatgttg  
DOG1 tccatatttggcattttcatggttcgagacaatattgaaaaatgttg  
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S288c gaaagcccaaagttttcattactgggtttgacgtgaagaacggtaa  
RM11 gaaagcccaaagttttcattactgggtttgacgtgaagaacggtaa 
DOG1 gaaagcccaaagttttcattactgggtttgacgtgaagaacggtaa 
 
S288c gcctgatcccgagggttattcaagagctcgtgatttattgcgtcaa  
RM11 gcctgatcccgagggttattcaagagctcgtgatttattgcgtcaa 
DOG1 gcctgatcccgagggttattcaagagctcgtgatttattgcgtcaa 
 
S288c gatttgcaattaactggtaaacaggatctgaagtatgttgtcttcg  
RM11 gatttgcaattaactggtaaacaggatctgaagtatgttgtctttg 
DOG1 gatttgcaattaactggtaaacaggatctgaagtatgttgtcttcg 
 
S288c aagatgcacccgtgggcataaaggccggcaaagcaatgggcgcca  
RM11 aagatgcacccgtgggcataaaggccggtaaagcaatgggcgcaa 
DOG1 aagatgcacccgtgggcataaaggccggcaaagcaatgggcgcca 
 
S288c ttactgtgggtataacatcctcgtatgacaagagcgttttatttgac 
RM11 ttactgtgggtataacatcctcgtatgataagagcgttttatttgac 
DOG1 ttactgtgggtataacatcctcgtatgacaagagcgttttatttgac 
 
S288c gcaggagcagattatgtagtctgtgatttgacacaggtttccgtgg  
RM11 gcaggtgcagattatgtagtctgtgatttgacacaggtttccgtgg 
DOG1 gcaggagcagattatgtagtctgtgatttgacacaggtttccgtgg 
 
S288c ttaagaacaatgaaaacggtattgtcatccaggtaaacaacccttt 
RM11 ttaagaacaatgagaacggtatcgttatccaggtaaacaacccttt 
DOG1 ttaagaacaatgaaaacggtattgtcatccaggtaaacaacccttt 
 
 
S288c gacaagggcctgagtaaacaaaaatgtgacaaaagaacgaatata 
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG1 gacaagggcctga 
 
S288c tatagatgtaaaacatatggacaagcaaaaagtcgaattatgtatg  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::  
 
S288c tcattttaggtactgaagaggtaagattttttttgagtttttcttcg  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c aagatggttgtgtggttatatgttaatcttccttagcgcaaaacact 
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
S288c tccatcaactgtatttcgttggaatgctttgtattcagttttgtatca 
RM11 ::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::: 
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S288c ttatctttaatcacaattgcgtcaggatgtaagaactacgtaatgat  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::  
 
S288c cttattatttctcgtagagaatagttccgtagattgaatacgctccg 
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c tcattatttttaaatgtggggaaggggtaattctcgaggatttttca  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c aaaacttaaaatgcgctggcaacatcttctttggtgaaaacaaatg  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c ctaaaaggagactaagagtactttttgttattcactatagtattagc  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c caacacgttatcgatacatttactgctatatacataaaaaatttacg  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
S288c tcaaaaaaataaaaaaaaaaaatgccacaattttcagtagatcttt  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2                                    atgccacaattttcagtagatcttt 
 
S288c gtctttttgacctagatgggactattgtcagcacaacaactgcagcg  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 gtctttttgacctagatgggactattgtcagcacaacaactgcagcg 
 
S288c gaaagtgcctggaaaaaattatgccgtcagcatggggttgatcctg  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 gaaagtgcctggaaaaaattatgccgtcagcatggggttgatcctg 
 
S288c ttgagttattcaagcattcccatggtgcaagatcacaagaaatgatg  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 ttgagttattcaagcattcccatggtgcaagatcacaagaaatgatg 
 
S288c aagaaattttttccaaaattggacaataccgataataaaggtgttct  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 aagaaattttttccaaaattggacaataccgataataaaggtgttct 
 
S288c tgcgttagaaaaggatatggcagataattatttggacacagtaagcc  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 tgcgttagaaaaggatatggcagataattatttggacacagtaagcc 
 
 
 

 174



S288c ttatccctggtgcagagaatttattgttatcgttagatgtagatactg  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 ttatccctggtgcagagaatttattgttatcgttagatgtagatactg 
 
S288c agactcaaaaaaagttacctgaaaggaaatgggctatcgttacctct  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 agactcaaaaaaagttacctgaaaggaaatgggctatcgttacctct 
 
S288c ggttctccatatttggcattttcatggttcgagacaatattgaaaaat  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 ggttctccatatttggcattttcatggttcgagacaatattgaaaaat 
 
S288c gttggaaagcccaaagttttcattactggatttgacgtgaagaacgg  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 gttggaaagcccaaagttttcattactggatttgacgtgaagaacgg 
 
S288c taagcctgatcccgagggttactcaagagctcgtgatttattgcgtc  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 taagcctgatcccgagggttactcaagagctcgtgatttattgcgtc 
 
S288c aagatttgcaattaactggtaaacaggatctgaagtatgttgtcttt  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 aagatttgcaattaactggtaaacaggatctgaagtatgttgtcttt 
 
S288c gaagatgcacccgtgggcataaaggccggcaaagcaatgggcgcaa  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 gaagatgcacccgtgggcataaaggccggcaaagcaatgggcgcaa 
 
S288c ttactgtgggtataacatcctcgtatgataagagcgttttatttgacg  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 ttactgtgggtataacatcctcgtatgataagagcgttttatttgacg 
 
S288c caggtgcagattatgtggtctgtgatttgacacaggtttccgtggtt  
RM11 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 caggtgcagattatgtggtctgtgatttgacacaggtttccgtggtt 
 
S288c aagaacaatgagaacggtatcgttatccaggtaaacaaccctttgac  
RM11 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
DOG2 aagaacaatgagaacggtatcgttatccaggtaaacaaccctttgac 
 
S288c gagagattaaataaataaggacatcgcagaagcacgaatatata 
RM11 ::::::::: gacgagagattaaataaataaggacatcgcagaagcacga  
DOG2 gagagattaa 
 
S288c agataaaattgtatgtaaaagcaaaagttga::::::::::actgcgtatga 
RM11 agataaaattgtatgtaaaagcaaaagttgattgaactgcgtatga  
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S288c tttcttatagtgagtatgaaatttttttttttttt:::::ggttatctaact  
RM11 tttcttatagtgagtatgaaattttttttttttttttggttatctaact  
 
S288c tatttttctt 
RM11 tatttttctt 
 
 
Figure S3.2: Alignment of S288c and RM11 in the region surrounding DOG1 and DOG2 

Region on chromosome VIII that corresponds with altered [GAR+] frequency by QTL 

mapping (figure 3.4).  The RM11 parent has lost DOG2 and its upstream region, whereas 

BY4716 contains both DOG1 and DOG2.  As the DOG genes confer resistance to 2-

deoxyglucose, this region could be responsible for the difference in [GAR+] frequency 

observed between BY and RM11. 
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Figure S3.3: Screen for inducers of [GAR+] 

A library of ~5000 ORFs was overexpressed as previously described using the inducible 

GAL1 promoter combined with the estradiol system (Louvion et al., 1993; Quintero et al., 

2007).  Following 48 hours growth in inducing medium, cells were plated to glycerol-

glucosamine medium to select for [GAR+] cells.  a) A typical glycerol-glucosamine plate 

from this screen.  Control cells are in the upper left corner in the red box.  STD1 under 

control of the GPD promoter (top left) and the GAL-estradiol system (top right) grew on 

glycerol-glucosamine medium, as expected.  Cells containing empty vectors (bottom left) 

did not grow.  No ORF tested on this plate induced [GAR+].  b) Controls (red box) are the 

same as in part a.  On this plate three ORFs induced [GAR+] following overexpression 

(green circles): STD1 (left), DOG2 (middle), and SPO23 (right).  c) Quantification of the 

increase in [GAR+] frequency following overexpression of STD1, DOG2, or SPO23.  The 

increase in [GAR+] cells is seven fold, 23 fold, or 28 fold relative to vector, respectively.  

Error bars are +/- standard deviation. 
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Chapter Four: 

 

Conclusions and Further Experiments 

 

When we began this work, fungal prions were limited in number, involved an 

amyloid-based structure only, and tended to be rich in glutamines and asparagines.  

[PSI+], [URE3], and [Het-s] were long-standing, previously unexplained phenotypes that 

had been identified as prions based on genetic characteristics.  All three proteins 

aggregated in their [PRION+] form and entered into insoluble, SDS-resistant heritable 

aggregates.  Chaperone activity, particularly that of Hsp104, fragmented aggregates to 

create heritable prion seeds (Shorter and Lindquist, 2005).  To the best of anyone’s 

knowledge, fulfillment of the genetic attributes of prions required an aggregation- and 

amyloid-based mechanism of inheritance. 

Most of the early attempts to identify additional fungal prions were based on 

sequence, particularly looking for N- and Q-rich proteins.  These identified [RNQ+] 

(Sondheimer and Lindquist, 2000) and [NU+] (Michelitsch and Weissman, 2000; 

Osherovich et al., 2004) but pre-disposed the results to amyloid-based prions. 

Prions in general were originally defined only as a protein-based infectious 

element and fungal prions were defined by their genetic characteristics, albeit with the 

suggestion that they could be caused by a conformational change (Wickner, 1994; 

Prusiner, 1998; Shorter and Lindquist, 2005).  However, because the initial set of fungal 

prions aggregated in the [PRION+] form, the first decade or so of work on fungal prions 
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focused on how aggregation was linked to heritability.  Recent work in the fungal prion 

field has considered whether genetic elements that do not involve amyloids might act as 

prions (Wickner et al., 2007).  The first of these was a self-activating protease, [β], which 

under artificial conditions is self-propagating.  However, because [β] is only self-

propagating in a ∆pep4 background, it serves more as a proof-of-principle than a 

physiologically important non-amyloid based fungal prion (Roberts and Wickner, 2003).  

Another putative non-amyloid prion, Crippled growth (C), seems to be caused by a self-

sustaining MAP kinase cascade.  However, data on the mechanism of C propagation or 

even which proteins are involved are limited (Kicka and Silar, 2004; Kicka et al., 2006). 

Our work on [GAR+] advances the prion field by demonstrating the existence of a 

non-amyloid, composite prion consisting of a transmembrane protein and a signaling 

protein that likely alter a signaling cascade in the [PRION+] form.  [GAR+] fulfills all the 

genetic characteristics of a prion: it exhibits semi-dominant, non-Mendelian, infectious 

inheritance, appears spontaneously at a very high frequency, and is susceptible to 

chaperones.  However, [GAR+] is otherwise quite different from the other fungal prions. 

The signaling protein STD1 strongly induces a stable [GAR+] state following 

transient overexpression but is not essential for [GAR+] propagation.  [PSI+] and [URE3] 

are both induced by transient overexpression of their prion-determining proteins but these 

proteins are then necessary for prion propagation (Wickner et al., 1995).  The closest 

situation to that of [GAR+] and STD1 is that [RNQ+] is necessary for [PSI+] induction but 

not propagation (Derkatch et al., 2000; Derkatch et al., 2001). 

[GAR+] is also novel among fungal prions because Pma1, one protein involved in 

[GAR+], is a transmembrane protein.  PrP, the mammalian prion protein, is GPI-
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anchored, but it changes location in the disease-associated form and enters into 

extracellular aggregates (Prusiner, 1998).  [GAR+] therefore expands the category of 

potential prions to include transmembrane proteins and proteins that do not change 

localization or solubility between [prion-] and [PRION+]. 

Finally, [GAR+] appears to be involved in a signaling cascade.  Std1 is part of the 

Rgt2/Snf3 signaling pathway in [gar-] cells (Schmidt et al., 1999) and seems to still be 

associated with that pathway in [GAR+] cells.  When S. cerevisiae is grown in glucose, a 

signal is propagated through the Snf3/Rgt2 pathway that prevents transcriptional 

repression of HXT3.  However, in HXT3 is prematurely silenced in [GAR+].  Mutations in 

Pma1 that alter the rate of appearance of [GAR+] also show increased silencing at HXT3.  

This silencing is greater than can be accounted for by the increased [GAR+] frequency 

alone.  Therefore, we hypothesize that Pma1 is involved in the Rgt2/Snf3 signaling 

pathway and that [GAR+] represents an altered signaling cascade through the Rgt2/Snf3 

pathway.  This is quite different from [PSI+], [URE3], [Het-s], and [RNQ+]. 

There are four outstanding questions about [GAR+] that we find particularly 

interesting: do Pma1 and Std1 act together to create [GAR+]; how is [GAR+] passed from 

mother to daughter cells; is the transition between [gar-] and [GAR+] regulated and if so, 

how; and is [GAR+] found in other species or outside fungi.  These are related to the 

larger question of what sort of proteins can be heritable and how and whether prions are 

common or found in a variety of species. 

 

 

 

 181



How are Pma1 and Std1 involved in [GAR+] propagation and induction? 

PMA1 is sufficient for a species barrier in [GAR+] and replacing PMA1 from S. 

cerevisiae with PMA1 from other Saccharomyces species is sufficient to block [GAR+] 

propagation.  These data demonstrate the importance of Pma1 in [GAR+] propagation.  

Swapping PMA1 between species, however, could also disrupt protein interactions 

involving Pma1.  The species barrier experiment there implicates Pma1 but does not 

eliminate the involvement of other proteins.  Further, mutations in both Pma1 and Std1 

are required for preventing [GAR+] propagation and neither mutation alone is sufficient 

to cure [GAR+].  Is Std1 also involved in [GAR+] propagation? 

Random mutagenesis of Std1 and Pma1 could help determine how the two 

interact and what makes [GAR+] heritable.  If one could isolate a form of Std1 that 

increases the frequency of [GAR+] appearance, whether the mutant Std1 acted by 

increasing association with Pma1 or by some other mechanism would be informative.  

Mutational analysis should be extended to the N-terminal region of Pma1 to determine 

whether association with Std1 or oligomerization of Pma1 is more important for the 

formation of [GAR+].  The N-terminus of Pma1 is thought to be involved in but is not 

sufficient for Pma1 homooligomerization (Kuhlbrandt et al., 2002; Liu et al., 2006).  

Transient overexpression of a PMA1 mutant lacking the N-terminal 40 amino acids does 

not increase [GAR+] frequency, whereas overexpression of wildtype PMA1 increases 

[GAR+] appearance.  Does the N-terminal truncation change Pma1 oligomers or its 

association with Std1?  Blue Native gel analysis could be performed on the N-terminus 

mutant to determine whether it is still capable of associating with Std1 and whether Pma1 

still forms high molecular weight oligomers.  If both oligomers and Std1 association are 
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disrupted, one could create smaller mutations within the N-terminal region of the 

endogenous copy of Pma1 in an attempt to identify mutants that no longer stably 

associate with Std1.  These could then be used to determine whether Std1 is necessary for 

[GAR+] propagation, propagating the signal through the Rgt2/Snf3 pathway, or whether 

the two are irretrievably linked. 

[GAR+] exhibits a strong species barrier, since Pma1 from S. paradoxus cannot 

propagate [gar-] of S. cerevisiae Pma1 origin (see chapter two).  The sequence of Pma1 

differs little between the species but Std1 differs considerably.  Is this “species barrier” 

between S. paradoxus and S. cerevisiae [GAR+] the result of differences in Std1?  This 

could be shown by substituting STD1 from S. paradoxus for the S. cerevisiae version.  

Also, one could test whether S. bayanus Pma1, which weakly propagates S. cerevisiae 

[GAR+] can associate with S. cerevisiae Std1 and vice versa. 

Another way of probing the Std1/Pma1 relationship would be to determine 

whether the association in [GAR+] between individual Std1 and Pma1 molecules is long- 

or short-lived.  Our data suggest that the association overall is stable, but if the turnover is 

high that it suggests a model such Std1 being protected from degradation but still 

interacting with Rgt1, rather than a long-term association between Std1 and Pma1 

creating a new signal or altering the membrane organization through shifting protein 

complexes.  Fluorescent recovery after photobleaching (FRAP) could be used to monitor 

the association between Std1 and Pma1 and such methods have been used to monitor 

membrane protein turnover in the past.  First tagged Std1 could be bleached and 

monitored to determine dynamics and whether its association with Pma1 is long- or 

short-lived.  Tagged Pma1 could then be monitored to determine whether Pma1 in 
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[GAR+] shows different dynamics than Pma1 in [gar-] cells.  This could also show 

whether membrane fluidity is similar in [gar-] cells and [GAR+] cells. 

Std1 is involved in propagating the glucose signal (Schmidt et al., 1999; Kaniak et 

al., 2004) and our data suggest that Pma1 is also involved in signaling through the 

Rgt2/Snf3 pathway.  What role does Mth1, the homolog of Std1 (Hubbard et al., 1994), 

play in [GAR+] propagation?  Mth1 blocks [GAR+] appearance when transiently 

overexpressed, possibly due to transcriptional repression of STD1 (Kaniak et al., 2004), 

and we see Mth1 associating with Pma1 oligomers in the [gar-] form.  Does the 

association of Mth1 physically block the association of Std1, thus preventing the 

formation of [GAR+]?  Or does Mth1 set up a [gar-] state that, like [GAR+], is also self-

supporting?  One could perform mutation analysis of Mth1 and Std1 by domain swapping 

to determine which regions are important for the association with Pma1.  Mth1 and Std1 

have been shown to be degraded when glucose is present but Std1 is then newly 

transcribed, whereas MTH1 transcription is repressed (Flick et al., 2003).  Is this turnover 

of the cellular Std1 somehow important for [GAR+]?  Which regions in Std1 and Mth1 

are involved in their different associations with Pma1?  The N-terminal half is most 

probably, as that is the divergent region; the C-terminal portions are fairly similar to each 

other (supplemental).  Chimeric proteins could be overexpressed to determine which 

promote and which block [GAR+] appearance. 

Finally, the role of the N- and C-termini of Pma1 in formation of the [GAR+] 

heritable element is not completely understood.  Engineering chimeric proteins 

containing either the N- or the C-terminus fused to a stable protein containing a single 

membrane-spanning domain would help address this question.  The constructs could be 
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overexpressed, presumably without the toxicity that results from PMA1 overexpression, 

to definitively establish whether the N- or C-terminus can induce [GAR+].  Random 

mutagenesis of the Pma1 N- and C-terminal regions of these constructs could be used to 

identify contacts important for [GAR+] formation and propagation.  That information 

could then be used to investigate the importance of the Pma2 oligomer for [GAR+] and 

further strengthen the argument that Pma1 is responsible for [GAR+]. 

 

How is [GAR+] heritable? 

Previously described yeast prions form amyloid aggregates in the [PRION+] form; 

transmission of these aggregates from mother cells to daughter cells renders the 

[PRION+] protein conformation heritable (Cox et al., 2003).  However, [GAR+] does not 

form aggregates, so how is it propagated from mother cell to daughter cell?  This 

question would be relatively easy to answer for amyloid-based prions, but no one has 

observed a heritable phenotype dependent on a membrane protein before.  Is [GAR+] 

heritable due to Pma1/Std1 prion “seeds” or is it heritable because it creates a self-

propagating signaling cascade (figure 4.1)? 

The ideal way to answer the mechanism of heritability would be by protein 

transformation.  The transformation of S. cerevisiae cells from [psi-] to [PSI+] by 

transformation of Sup35 protein fibers provided definitive proof of protein-only 

inheritance and thus the prion hypothesis (Tanaka et al., 2004).  Since these experiments, 

researchers have been able to induce [URE3] (Brachmann et al., 2005), [RNQ+] (Patel 

and Liebman, 2007), [Het-s] (Ritter et al., 2005), and [Cin] (Collin et al., 2004) by 

protein transformation.  Protein transformation of [GAR+] by Pma1 would 
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Figure 4.1: How is [GAR+] heritable? 

a) The [GAR+] element could be heritable because it establishes a self-perpetuating 

signaling pathway.  For instance, transcriptional repression caused by Std1 and Rgt1 

could repress genes in addition to HXT3 that, for example, might degrade Std1 protein or 

repress the STD1 gene or a gene involved in the glucosamine-resistant phenotype.  This 

could setup a feedback loop, in which Pma1 and Std1 alter glucose signaling in such a 

way that the new signal strengthens the association between Pma1 and Std1, thus 

sustaining the original signal.  b) A second model for [GAR+] proposes that Pma1 enters 

into a self-propagating protein conformation, possibly due to its association with Std1.  

This conformation could alter signaling through the Rgt2/Snf3 signaling pathway, which 

accounts for the transcriptional repression of HXT3 in glucose-grown [GAR+] cells. 
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incontroversially establish Pma1 as a causal agent of [GAR+] but show whether the 

heritable form is modified, enzymatically active, etc.  These would help determine 

whether [GAR+] is heritable solely because of conformation or because of activity such 

as a self-propagating cascade.  Unfortunately, protein transformation with Pma1 presents 

a number of difficulties.  A large protein with 10 transmembrane domains would be hard 

to purify from E. coli.  One could purify just the N-terminal region, which when deleted 

prevents induction of [GAR+] by transient overexpression of PMA1.  However, one lacks 

a method of inducing this peptide to enter into the [GAR+] conformation, assuming the 

[GAR+] form results from protein conformation and not posttranslational modification.  

If a protein transformation protocol could be established for [GAR+], it could be 

used to determine what is necessary and sufficient for [GAR+].  Is Std1 necessary for 

transformation of Pma1 or does Std1 just make the conversion more efficient?  Do 

posttranslational modifications facilitate the switch between [gar-] cells and [GAR+] 

cells?  The creation of [GAR+] in vitro might also provide enough material for structural 

studies. 

If a protein transformation protocol cannot be established, one could attempt to 

address the question of conformation or signaling cascade using some of the mutational 

analysis described in the previous section.  The question of how posttranslational 

modification affects Pma1 and [GAR+] could be addressed with alanine- and/or glutamic 

acid-scanning mutagenesis of the N-terminal region of Pma1. 
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What causes the switch between [gar-] and [GAR+] and is it regulated? 

It is not known whether or how the switch from [prion-] cells to [PRION+] cells is 

regulated.  Chaperones are necessary for the maintenance and inheritance of prion 

phenotypes and conditions that alter chaperone levels affect the appearance and 

propagation of prions (Jones and Tuite, 2005).  For example, a number of chemical stress 

conditions increase the frequency of [PSI+] appearance (Tyedmers et al., unpublished).  

As all prions are sensitive to chaperones, are all prions similarly sensitive to 

environmental conditions?  If so, this would strengthen the argument that prions can 

occasionally be beneficial, as it would suggest that prions represent an environmentally 

responsive mechanism of phenotypic sampling. 

[GAR+] suggests an additional mechanism of prion regulation: phosphorylation.  

Pma1 enzyme activity is regulated by phosphorylation and serine to alanine mutations in 

phosphorylation sites increase [GAR+] frequency.  Can phosphorylation or 

dephosphorylation induce Pma1 to switch between different prion states?  A number of 

kinases have been shown to phosphorylate Pma1; the expression level of some of these 

could be altered to determine whether they alter [GAR+] frequency.  Several of kinases 

that regulate Pma1 are members of Npr/Hal5 family, which regulate nutrient transporters 

(Goossens et al., 2000).  [GAR+] might therefore have a level of regulation beyond what 

other prions have, and be sensitive both to nutrient-sensitive phosphorylation and changes 

in chaperone levels. 

As Pma1 is already known to be phosphorylated, why would it be subject to the 

additional level of regulation that is this stable, heritable propagation of the [GAR+] prion 

phenotype?  Phosphorylation acts rapidly and responds quickly to environmental 

 189



conditions, which renders [GAR+] seemingly redundant.  However, a possible advantage 

of [GAR+] is that the entire population of cells, or even all of the protein in a single cell, 

does not enter into the [GAR+] form.  Instead, a subset switches to [GAR+] but the 

population as a whole does not suffer from the negative consequences of [GAR+].  This 

would be more difficult to obtain through kinase activity, which tends to have high 

penetrance. 

 

Does the [GAR+] heritable element confer a benefit to its host? 

Whether prions are found in wild yeast and whether they confer any benefit to 

their hosts are points of ongoing debate (True and Lindquist, 2000; True et al., 2004; 

Wickner et al., 2007).  The [GAR+] element provides a particularly interesting subject for 

these questions because glucose metabolism is central to cell survival.  [GAR+] appears 

spontaneously at extremely high frequency, up to one in 100 cells in some strains.  Yeast 

isolated from a particular ecological niche, fruit, showed enrichment for high [GAR+] 

frequency, suggesting that [GAR+] might occasionally be advantageous.  Experiments 

directly competing [gar-] cells and [GAR+] cells suggest the same conclusion.  [GAR+] 

can be induced by a number of Staphylococcus species, making it probable that yeast 

cells carrying the [GAR+] element could be found in the wild. 

However, we do not currently know whether [GAR+] is found in other fungi or 

plants.  If [GAR+] is conserved, it is more likely to be beneficial.  The plant equivalent of 

Pma1 exists in many isoforms, including 11 in Arabidopsis and seven in tomato.  The 

enzyme activity and sometimes expression levels of many of these are sensitive to 
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environmental conditions, including glucose, the hormone auxin, and light (Portillo, 

2000). 

 

How widespread is [GAR+] and, by extension, prions in general? 

Pma1 is a highly conserved protein that is found in both fungi and plants.  

Whether Pma1’s prion-forming ability is also conserved is potentially very interesting, 

particularly since prions have not yet been identified in plants.  Pma1 in other fungi also 

show interesting properties.  For instance, Pma1 from C. albicans species is responsive to 

the clinically important dimorphic switch (Monk et al., 1993). 

One difficulty in assaying for [GAR+] outside of S. cerevisiae is that they 

phenotype of [GAR+] requires glucose repression.  While many fungi exhibit some sort 

of carbon catabolite repression, it is very efficientt in S. cerevisiae and S. pombe.  These 

other fungi do, however, carry PMA1 (Portillo, 2000).  In many cases, the predicted 

Pma1 protein has a long, unstructured, cytoplasmic N-terminal region that resembles the 

S. cerevisiae one necessary for overexpression-induced increase in [GAR+] frequency.  

One therefore should not limit searching for [GAR+] in organisms that have glucose 

repression or STD1 but instead look at a variety of organisms, particularly those in which 

Pma1 has unstructured cytoplasmic regions.  Regulation of enzyme activity of Pma1 

relatives by environmental conditions is found in other fungi and in plants; this could be 

an important property in whether something can for [GAR+]. 

To determine whether PMA1 from other organisms can form a prion, tests can 

first be perform in S. cerevisiae, then developed in the native organism.  This has been 

used before to identify prions; SUP35 from a variety of fungi has been shown to act as a 
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prion in S. cerevisiae.  A gene from the sea slug Aplysia californica was successfully 

tested for prion-like properties in S. cerevisiae (Si et al., 2003).  Our work suggests that 

PMA1 from Saccharomyces paradoxus and Saccharomyces bayanus can maintain 

[GAR+] in S. cerevisiae even though they cannot propagate [GAR+] to S. cerevisiae 

PMA1.  It therefore seems reasonable to test PMA1 alleles from other organisms, even 

those that lack STD1 or MTH1, in S. cerevisiae for prion-like properties. 

If PMA1 from other organisms can act as a prion in S. cerevisiae, it would be 

interesting to test whether PMA1 can form a prion in its organism of origin.  This is more 

difficult because the [PRION+] phenotype is unknown.  Fortunately Pma1 is a well-

studied protein, so one could use known phenotypes of mutants as a starting point to 

identify a possible [GAR+] phenotype.  For example, S. cerevisiae [GAR+] is more 

sensitive to caspofungin in [GAR+] than [gar-]; perhaps C. albicans or C. neoformans 

[GAR+] equivalent would exhibit a similar phenotype. 

[GAR+] is an interesting new prion partly because its causal agent, Pma1, is well 

conserved and could be the basis for identifying prions in plants.  However, because 

Pma1 is a transmembrane protein it also could serve as a starting point for identifying 

transmembrane proteins that can form prions.  Recent work showed that the 

transmembrane protein syntaxin forms large homooligomers via its extracellular regions 

(Sieber et al., 2007).  Pma1 similarly forms large homooligomers through a domain not 

embedded in the membrane.  This leads us to speculate that either the prion phenotype of 

Pma1 is a byproduct of the oligomerization or the oligomerization leads to its prion-

forming ability.  Can proteins that form large oligomers in the membrane form prions?  

One could start by testing transporters in S. cerevisiae that show unstructured 
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cytoplasmic regions for prion-like properties and then perhaps extend the study to other 

organisms. 

 

We described here a new prion, [GAR+], which involves the transmembrane 

protein Pma1 and the glucose signaling molecule Std1.  These two elements associate in 

the [GAR+] but do not aggregate, change localization, or form an amyloid.  [GAR+] 

therefore represents a novel type of prion that functions by an unknown mechanism that 

might involve a signaling cascade.  This expands the pool of potential prions to include 

transmembrane proteins and demonstrates that prions need not aggregate or form 

amyloid.  As Pma1 is a well-conserved protein found in a variety of species it is an 

excellent candidate for testing the commonality of the prion phenomenon.  We also 

suggest that [GAR+] might be beneficial to its host under some conditions and is induced 

by co-culturing S. cerevisiae with a variety of Staphylococcus species.  These data 

suggest that the [GAR+] heritable element could well be found in the wild. 
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