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ABSTRACT 
 
Due to the high non-linearity and incompressibility constraint of rubber materials, the 
predictive capability and stability of rubber material models require specific attention 
for practical engineering analysis. 
 
 In this thesis, the predictive capability of various rubber material models, namely 
the Mooney-Rivlin model, Arruda-Boyce model, Ogden model and the newly 
proposed Sussman-Bathe model, is investigated theoretically with continuum 
mechanics methods and tested numerically in various deformation situations using the 
finite element analysis software ADINA. In addition, a recently made available 
stability criterion of rubber material models is re-derived and verified through 
numerical experiments for the above four models with ADINA. Thereafter, the 
predictive capability and stability of material models are studied jointly for 
non-homogenous deformations.  
 
 The Mooney-Rivlin model, Arruda-Boyce model, Ogden model have difficulties 
in describing the uniaxial compression data while the Sussman-Bathe model can fit 
both compression and extension data well. Thus, the Sussman-Bathe model has the 
best predictive capability for pure shear deformations. Furthermore, with respect to 
more complex non-homogenous deformations, a conclusion is drawn that all three 
major deformations, namely uniaxial deformation, biaxial deformation and pure shear 
deformation, must satisfy the stability criterion to obtain physically correct 
non-homogenous simulation results.  
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Chapter 1   
 
Introduction 
 

1.1 Motivation  

 

Rubber materials, also referred as hyperelastic materials, are typically subjected to 

large deformations and they usually remain nearly incompressible1. Correspondingly, 

they have a relatively low elastic shear modulus and a high bulk modulus.  

 Rubber and rubber-like materials are widely used in different industries, in the 

established automotive and aerospace industries as well as in the rapidly emerging 

biomedical industry. For instance, various human soft tissues and artificial organs are 

hyperelastic in nature and can be modeled as rubber-like materials 2 , 3 . Also, 

hyperelasticity material models form the basis for more complex nonlinear material 

models, like elastoplasticity, viscoelasticity and viscoplasticity.  

  However, as the elasticity of a rubber material is highly nonlinear, accurately 

describing its mechanical property has always been a great challenge. Although 

various rubber material models have been proposed, they are mostly limited to a very 

small validity scope or are only valid for a certain type of deformation. Furthermore, 

due to rubber’s incompressibility, rubber material models are often not stable, which 

induces great numerical difficulty when implemented numerically, for example using 

the finite element method. 
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 Thus, a thorough study on the predictive capability and stability of rubber 

material models is very valuable. 

 

1.2 Previous works 
 

There are two main approaches in studying rubber materials: continuum mechanics 

and statistical mechanics. Both approaches generally derive the strain energy density 

as a function of strain or deformation tensors. The derivative of strain energy density 

with respect to a particular strain component determines the corresponding stress 

component. Thereafter, the established stress-strain relationship can be applied during 

the finite element analysis. 

 Among various rubber material models, the most commonly used models in 

practice are the Mooney-Rivlin model4,5 and Ogden model6, which are based on the 

phenomenological description of observed behavior as well as the Arruda-Boyce 

model7 which is derived from arguments about the underlying structure of the rubber 

materials. In late 2007, Sussman and Bathe8 proposed a new rubber material model 

based on the separability of strain energy density. The Sussman-Bathe model does not 

produce an explicit expression of the strain energy density but uses cubic splines to 

describe it. The model could attain high accuracy in predicting rubber material 

mechanical behavior and it is easy to implement numerically using the finite element 

method. 

 After these rubber material models were proposed, various researchers have 

studied and compared the predictive capability of the above models. Arruda and 
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Boyce9 gave an excellent literature review of several important rubber material 

models. They first built material models using uniaxial extension data and then 

compared their pure shear deformation predictive capability. P.A.J. van den Bogert 

and R. de. Borst10 also determined constants of different rubber material models 

through curve-fitting of uniaxial extension data and compared the performance of 

different material models undergoing non-homogenous deformations. Lastly, 

Przybylo and Arruda11 used only compression experimental data to fit constants of 

the Arruda-Boyce model and got a comparably accurate response. 

 A proposed rubber material model with good predictive capability should be able 

to accurately describe the mechanical behavior of rubber. However, the stability of the 

proposed rubber material model is also required and is the key criterion in generating 

a physically and reasonable numerical result. Previous researchers mainly focused on 

the predictability of rubber material models and not much literature has addressed the 

stability issue. In addition, the structural stability and material stability are not clearly 

distinguished. Some researchers studied the stability problem mathematically12 and 

employed the concept of Drucker stability13 to study the stability with respect to the 

Green-Lagrange strain. However, in fact, the stability with respect to incremental 

displacements is more essential for finite element analysis1. 

 

1.3 Thesis scope 
 

The main goal of this thesis is to determine the predictive capability and stability of 

the Mooney-Rivlin, Ogden, Arruda-Boyce and Sussman-Bathe models. The predictive 
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capability and stability of these rubber material models are mathematically studied 

with continuum mechanics and further tested numerically using the finite element 

analysis software ADINA.  

 Both extension and compression data are necessary to obtain an accurate 

prediction8. Hence, rubber material models were built using both extension and 

compression experimental data simultaneously and thereafter their predictive 

capability for both pure shear and non-homogenous deformations is analyzed. 

 The stress-strain relationship is studied and its first derivative should be 

well-behaved14. A stability criterion with respect to incremental displacements is 

derived and tested numerically. Lastly, the results of the non-homogenous 

deformations are analyzed together with the stability of rubber material models. 

 

1.4 Thesis outline 
 

In chapter 2, the continuum mechanics theories and assumptions of the rubber 

material models are first reviewed, followed by the theoretical comparison of the 

advantages and constraints of different rubber material models. In chapter 3, the 

predictive capability for pure shear and non-homogenous deformations of various 

rubber material models is analyzed. In chapter 4, the stability criterion used in ADINA 

is re-derived, tested and employed to analyze the non-homogenous shear deformation 

test results. At the same time, improvements of the different rubber material models 

are suggested. Lastly, conclusions together with suggestions for future work are given 

in chapter 5. 
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Chapter 2 
 
Rubber material models 
 

As described in references1, 9, 19, 34, the mechanical behavior of rubber materials can be 

presented by the strain energy density function, from which the stress-strain 

relationships can be derived. 

 

2.1  Invariant based strain energy density function 

 

Regarding the expression of strain energy density W , it should be quasi-convex and 

more likely poly-convex with respect to the deformation gradient X  at its 

minimum 15 , 16 . Furthermore, the strain energy density function of an isotropic 

hyperelastic material must satisfy the principles of frame indifference with respect to 

the tensor coordinates and thus is only a function of invariants of the right 

Cauchy-Green deformation tensor TC X X= . Thus, generally, the strain energy 

density function W  of an isotropic hyperelastic material can be expressed in 

polynomial terms of the invariants of the Right Cauchy-Green deformation tensor C: 

 1 2 3( ) ( , , )W W C W I I I= =             (2.1) 

 where 

1

2 2
2

3

( )
1 ( ( ) ( ) )
2
det( )

I tr C

I tr C tr C

I C

=⎧
⎪⎪ = −⎨
⎪

=⎪⎩

. 

A typical invariant based rubber material model is the Mooney-Rivlin model4 with the 



20 

strain energy density function expressed as: 

 1 2 1 1 2 2( , ) ( 3) ( 3)W I I C I C I= − + −           (2.2) 

where C1 and C2 are constants fitted from experimental data. 

The Mooney-Rivlin model is simple and straight forward. However, experiments 

by Obata, Kawabata and Kawai17 showed that 1C  and especially 2C  in fact vary 

with both 1I  and 2I  instead of staying constant. Further experiments demonstrated 

that the Mooney-Rivlin model only works well with rubber materials for strains up to 

200%. Hence, Rivlin5 enhanced the expression to  

 1 2
, 0

( 3) ( 3)i j
ij

i j
W C I I

∞

=

= − −∑            (2.3) 

However, using higher order polynomials to fit experimental data can cause huge 

oscillations outside the experimental data range. Furthermore, there is hardly any 

physical meaning for the higher order constants. 

 

2.2  Principal stretch based strain energy density function 

 

When the deformation gradient X  is expressed in the principal strain directions, the 

Right Cauchy-Green deformation tensor C  can be expressed with its 

eigenvalues 2 2 2
1 2 3, ,λ λ λ  and the invariants of the Right Cauchy-Green deformation 

tensor C  are related in the following manner:  

 

2 2 2
1 1 2 3

2 2 2 2 2 2
2 1 2 2 3 3 1

2 2 2
3 1 2 3

I

I

I

λ λ λ

λ λ λ λ λ λ

λ λ λ

⎧ = + +
⎪

= + +⎨
⎪ =⎩

            (2.4) 

Therefore, the expression of total strain energy density function can be expressed in 
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terms of 2 2 2
1 2 3, ,λ λ λ  

 2 2 2
1 2 3 1 2 3( , , ) ( , , )W W I I I W λ λ λ= =           (2.5) 

 However, Ogden questioned the necessity of restricting the form of the strain 

energy density function W  to even-power functions of the extension ratioλ , as 

embodied in Rivlin’s representation using the strain invariants. From the 

mathematical standpoint, it is also reasonable to use 2 2 2
1 2 3, ,λ λ λ  instead of 1 2 3, ,λ λ λ . 

Assuming separability of the strain energy density expression18, Ogden expanded the 

polynomial expressions of the principal stretches 1 2 3, ,λ λ λ  and proposed the Ogden 

model6, whose strain energy density function is: 

 1 2 3 1 2 3
1

( , , ) ( 3)p p p
N

p

p p

W α α αμ
λ λ λ λ λ λ

α
−

=

= + + −∑         (2.6) 

For particular values of material constants 1 2( 2, 2, 2)N α α= = = − , the Ogden model 

reduces to the Mooney-Rivlin material. 

 The Ogden model works well for incompressible rubber materials for strains up 

to very large values. It captures the state of rubber material deformations for the entire 

stretching range, except near the limiting stretch region.  

 However, to fit the experimental data curve, the Ogden model normally requires 

at least six parameters completely devoid of any physical insight into the mechanics 

governing that state of deformation. Furthermore, similar to Rivlin’s formula, huge 

oscillations outside the experimental data range may be experienced if the Ogden 

model is employed. In addition, another disadvantage of the Ogden model, in fact of 

any hyperelastic rubber material model expressed in principal stretch directions, is the 

difficulty in properly implementing the model in a general three-dimensional context. 
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Difficulties arise when two or more principal stretch directions become equal, where 

the denominator of the derivatives of the principal stretch direction with respect to the 

invariants becomes zero10. 

 

2.3 Statistical mechanics based strain energy density function 

 

Using statistical mechanics is another approach to derive the strain energy density 

function. Instead of treating the rubber material as an assembly of particles, the 

statistical mechanics approach assumes that rubber material is a structure of 

randomly-oriented long molecular chains19.  

(a) Gaussian treatment  

 For small deformation, Gaussian treatment20,21 is employed and the distribution 

of the end-to-end length r  of a molecular chain is given by  

 
3 2

22
2 2

3 3( ) 4 ( ) exp( )
2 2

rP r r
nl nl

π
π

= −           (2.7) 

where n  is the number of links in the chain and l  is the length of each link. 

Assuming that the chain length r  does not approach its fully extended length nl , 

the strain energy density function W  can be derived from the change in 

configurational entropy, 

 2 2 2
1 2 3

1 ( 3)
2GW NKθ λ λ λ= + + −           (2.8) 

where k  is the Boltzmann’s constant and θ  is the absolute temperature.  

(b)  non-Gaussian statistical treatment 

 For large deformations, the non-Gaussian statistical effect must be considered and 
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Langevin chain statistics was employed to derive the force-extension relationship for 

a chain9: 

 1 1( ) ( )k r kf L L
l nl l n
θ θ λ− −= =            (2.9) 

where 1coth ( )r L
nl

β β
β

= − = .  

 To relate the above individual chain stretching with the whole body deformation, 

different network models such as the three chain model22, four chain model23, 24, full 

chain model25 and eight chain model7 were proposed. Each network model results in 

a different strain energy density function.  

 The Arruda-Boyce model7, a non-Gaussian eight-chain molecular network model 

as shown in figure 2.1, is the most successful statistical mechanics model so far. The 

chains are located along the diagonals of the unit cell and deform with the cell. The 

interior junction point remains centrally located throughout the deformation and the 

stretching on each chain in the model is found to be the root mean-square of the 

applied stretching. 

  
Figure 2.1 Eight-chain network model in its undeformed (left), uniaxial tension 

(center), and biaxial extension state (right) 7 

The strain energy density function W  of the Arruda-Boyce model is derived as 

 
8 ln( )

2 sinh
chain

ch chain chain
chain

NkW n βθ β λ
β

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
        (2.10) 
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 where 

1
2

1

1

1( ) ;
3

.

chain

chain
chain

I

L
n

λ

λβ −

⎧
=⎪⎪

⎨
⎛ ⎞⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

 

 To implement the above formula in numerical analysis, the above function of 

strain energy density is converted into polynomial form as: 

 8 12 2
1
[ ( 3 )]

n
i ii

ch i
i m

CW Iμ
λ −

=

= −∑            (2.11) 

Practically, the fifth order approximation of the expression is accurate enough, 

 
5

8 12 2
1
[ ( 3 )]i ii

ch i
i m

CW Iμ
λ −

=

= −∑            (2.12) 

 
1 2 3 4 5

1 1 11 19 519, , , ,
2 20 1050 7050 673750

C C C C C= = = = =
 

where μ  is the initial shear modulus and mλ  is the locking stretch. 

 The experiment by Arruda and Boyce proved that this model is well suited for 

rubber materials such as silicon and neoprene with strain up to 300%. Furthermore, 

this model has no issue with curve-fitting even when the test data are limited7.9. 

 One constraint of the Arruda-Boyce model is that in the small deformation range, 

it does not accord well with experimental data and needs to be combined with the 

Flory-Erman model9. Furthermore, the Arruda-Boyce model assumes a particular 

microscopic structure of rubber material. Hence, it only works well for rubber 

materials that have the corresponding microscopic structure. Some researchers26 

found that some rubber materials do not fit that particular microscopic structure 

assumption and hence the model does not work very well with such rubber materials. 
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2.4  Sussman-Bathe model 

 

Sussman and Bathe8 utilized the assumption that the strain energy density function 

W  is a sum of separable strain energy density functions w  and employed the true 

strain e  instead of the principal stretch λ  to express the total strain energy density 

function W .  

 First, cubic splines are employed to fit the uniaxial stress-strain curve and thus 

stress τ  could be expressed as a function of true strain e . Subsequently, the relation 

between stress τ  and the first derivative of the strain energy density function 'w  

for uniaxial deformation  

 
0

1 1 1'( ) [ (( ) ) ( ( ) )]
4 2 4

k k

k
w e e eτ τ

∞

=

= + −∑          (2.13) 

is utilized to express 'w  in terms of the true strain e . Thereafter, the first derivatives 

of the strain energy density function 'w  could be simply integrated to get the values 

of the strain energy density function w and the strain energy density function W  

expressed as  

 
3

1

( )i
i

W w e
=

= ∑               (2.14) 

At last, instead of proposing an explicit analytical expression, uniform cubic splines 

are employed to calculate the values of the strain energy density functionW . 

 No material constants need to be fitted for Sussman-Bathe model. In addition, 

given correct and enough experimental data, it can produce very accurate 3D 

simulation results. On the other hand, one constraint of the Sussman-Bathe model is 
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that the uniaxial tension and compression data must be supplied and the compression 

data is typically obtained from the biaxial tension data. Another restriction is that the 

separability of strain energy density function W  which the model is built on (like the 

original Mooney-Rivlin and Ogden models) must be applicable. However, this 

restriction may not hold when the strain gets very large27. Similar to other models, the 

accuracy of this model relies on the accuracy of experimental data; if the test data 

have been obtained over a sufficient large range of strain values, the Sussman-Bathe 

model will be able to represent the behavior of the rubber material well. However, if 

only limited data or even error data is supplied, the model may become both 

inaccurate and unstable. 

 

2.5  Effects of compressibility 

 

In the above four rubber material models, the deformations are assumed to be 

isometric. However in reality, rubber material is not completely incompressible under 

large strain. Meanwhile, to avoid numerical difficulties in finite element procedures1, 

rubber materials are more readily implemented as nearly incompressible materials: a 

small measure of volumetric deformation is incorporated28.  

 The total strain energy density function W  can be decomposed into the 

deviatoric strain energy density DW  and the volumetric strain energy density VW . To 

get the deviatoric strain energy density DW , the volumetric part should be factored out. 

If 1/3
3C I C−=  is employed as new purely deviatoric Right Cauchy-Green deformation 
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tensor, then  

 1/3 1
3 3

0

det( ) det( ) det( ) 1V C I C I C
V

− −= = = =         (2.15) 

which means no change in volume, thus the volumetric part of C is eliminated . The 

deviatoric strain energy density DW  becomes 

 1/3
3( ) ( ) ( )D D D DW W C W C W I C−= = =          (2.16) 

Correspondingly, the invariants of tensorC  become 

 

1/3 1/3
1 3 3 1 1

1/3 2/3
2 3 3 2 2

1/3
3 3

( )

( )

( ) 1

I I C I I J

I I C I I J

I I C

− −

− −

−

⎧ = =
⎪

= =⎨
⎪ =⎩

            (2.17) 

Hence to obtain the expression for the deviatoric strain energy density DW , 1 2,  I I  

need to be substituted by new invariants 1J , 2J  in the original strain energy density 

function DW  and the corresponding expression is: 

 1 2( , )D DW W J J=               (2.18) 

which coincides with the procedure in ADINA29. For example, the deviatoric strain 

energy density function of the Mooney-Rivlin model is expressed as 

1 1 2 2( 3) ( 3)DW C J C J= − + −            (2.19) 

 Meanwhile, with κ as the bulk modulus, the expressions for volumetric strain 

energy density VW  are29: 

 21 ( 1)
2vW Jκ= − for Mooney-Rivlin model and Ogden model;    (2.20) 

 
2( 1)[ ]

2 2v
JW lnJκ −

= − for Arruda-Boyce model       (2.21) 

 [ ( 1)]vW JlnJ Jκ= − − for Sussman-Bathe model.       (2.22) 
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Chapter 3  
 
Predictive capability of material models 
 

3.1  Pure shear deformation predictive capability analysis 

 

3.1.1  Model building with Treloar’s data in ADINA 

(a). Experimental data from Treloar 

Treloar’s experimental data30 of 8% sulphur rubber material at a temperature of 20oC, 

shown in figure 3.1, has been intensively used in the analysis of rubber-like materials.  
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Figure 3.1 Treloar experimental data 

As discussed in Sussman and Bathe’s paper 31 , the uniaxial compression 
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experimental data is required to build a reasonable model. Due to the lack of original 

uniaxial compression data, the biaxial extension data is converted into uniaxial 

compression data as they are equivalent in nature32. Let the rubber materials be fully 

incompressible, and the conversion formulas are 

2 2
u 0 u 0 b

3
u b 0 0

2 ,  = ,  e =(1+ e ) 1

= ,   
u b b

u b b

e e λ λ

τ τ σ σ λ

− −⎧ = − −⎪
⎨

− = −⎪⎩
         (3.1) 

where ue  is the equivalent uniaxial true strain ( 0)< , be  is the equibiaxial true 

strain ( 0)> , uλ is the equivalent uniaxial stretch, bλ is the equibiaxial stretch, 0 ue  

is the equivalent uniaxial engineering strain, 0 be  is the equibiaxial engineering strain, 

uτ  is the equivalent uniaxial true stress, bτ  is the equibiaxial true stress, 0 uσ  is the 

equivalent engineering stress, 0 bσ  is the equibiaxial engineering stress.  

The converted uniaxial compression data combined with given extension data is 

shown in table 3.1 and figure 3.2. 
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Table 3.1 Compression-extension experimental data from Treloar27 

Engineering strain Engineering stress
-0.95208 -231.306 
-0.94772 -182.065 
-0.94206 -139.154 
-0.93266 -97.6023 
-0.9178 -61.5612 
-0.89524 -35.8418 
-0.83626 -14.5029 
-0.73935 -5.63367 
-0.65665 -3.12989 
-0.40084 -0.83984 

0 0 
0.2887 0.1966 
0.4064 0.2835 
0.6097 0.3795 
0.8945 0.4851 
1.1549 0.5955 
1.448 0.6626 
2.0502 0.8593 
2.6364 1.0078 
3.1326 1.2191 
3.8647 1.5696 
4.4419 1.9251 
4.8317 2.2904 
5.2214 2.6509 
5.5052 3.0212 
5.6994 3.3915 
5.9914 3.7377 
6.1857 4.0936 
6.2331 4.4641 
6.3377 4.8393 
6.5318 5.2048 
6.5957 5.5705 
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Figure 3.2 Extension and compression uniaxial data from Treloar27 

 

(b). Constitutive relation curve fitting with Treloar data 

As seen from the strain energy density functions of various rubber material models 

introduced in chapter 2, each model requires many constants from curve-fitting 

(except the Sussman-Bathe model). ADINA has a corresponding user interface to fit 

the experimental data and obtain these constants. Within ADINA user interface, there 

are two adjustable parameters for curve fitting. One parameter is the “Least square 

solution method”, which has two options: Singular value decomposition (SVD) and 

Gaussian Elimination (GE). The other parameter is “Approximation order”, ranging 

from 1 to 9. With different parameter settings, various curve-fitting results can be 

achieved and thereafter the most appropriate parameters for each material model can 

be chosen. 

 

(i) Mooney-Rivlin model 
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 The best fitted curve for the Mooney-Rivlin model is obtained using GE as the 

“Least square solution method” together with the order 3 approximation. Order 9 

approximation produces similar result, but high order curves usually are more 

unstable, especially for the range beyond the experimental data. The constants of this 

model are shown in figure 3.3. 

 

Figure 3.3 Constants of the Mooney-Rivlin model fitted by ADINA 

The entire curve fitting for extension-compression experimental data is shown in 

figure 3.4 while only the curve fitting of the extension part is shown in figure 3.5. 

Although the extension part of curve-fitting is in good agreement with the 

experimental data, all the curve fitting settings produce poor curve-fitting results for 

the compression experimental data. Furthermore, high order approximation does not 
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help at all. 

 
Figure 3.4 Mooney-Rivlin model curve fitting with Gaussian Elimination and order 3 

approximation (both extension and compression parts shown) 

 
Figure 3.5 Mooney-Rivlin model curve fitting with Gaussian Elimination and order 3 

approximation (only extension part shown) 

 

(ii) Arruda-Boyce model 

The results from all the different adjustable parameters do not produce any significant 

difference for Arruda-Boyce model. Hence, SVD is chosen as the “least square 

solution method” and again the order 3 approximation is employed. The constants of 

Arruda-Boyce model resulting from curve fitting are shown in figure 3.6. 
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Figure 3.6 Constants of the Arruda-Boyce model fitted by ADINA  

The best stress-strain curve fitted from the extension-compression experimental 

data is shown wholly in figures 3.7 while only the extension part is shown in figure 

3.8 respectively. Furthermore, the extension part shows fairly good agreement with 

the experimental data. As Mooney-Rivlin model, the compression part departs from 

experimental data largely. 

 
Figure 3.7 Arruda-Boyce model curve fitting with Singular value decomposition and 

order 3 approximation (both extension and compression parts shown) 
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Figure 3.8 Arruda-Boyce model curve fitting with Singular value decomposition and 

order 3 approximation (only extension part shown) 

 

(iii) Ogden model 

The default setting of α  is “1 to 9” in ADINA. However, the experimental data can 

not be fitted well, even for small strain deformation. Hence, as recommended by the 

ADINA AUI Primer33, the various α s are set as  

1 0.5; 2 1; 3 1;  4 2;  5 2;
6 3;  7 3;  8 4;  9 4

α α α α α
α α α α

= = − = = − =⎧
⎨ = − = = − =⎩

  

and the corresponding best fit curve is obtained using GE and order 9 approximation. 

The constants are shown in figure 3.9.  

The best fitted curve for the extension-compression experimental data is wholly 

shown in figure 3.10 and the extension part is shown in figure 3.11, which indicates 

good agreement with experimental data. 
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Figure 3.9 Constants of the Ogden model fitted by ADINA 

 
Figure 3.10 Ogden model curve fitting with Gaussian Elimination and order 9 

approximation (both extension and compression parts shown) 
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Figure 3.11 Ogden model curve fitting with Gaussian Elimination and order 

9.approximation (only extension part shown) 

On the other hand, Ogden34 himself proposed a set of constants which is shown 

in table 3.2. The resulting uniaxial shear and biaxial deformation stress-strain curves 

are compared with Treloar’s data in figure 3.12 and figure 3.13 respectively, and both 

curves are relatively close to experimental data. 

Table 3.2 Ogden’s constants 

 α  μ  
1 1.3 0.6173486
2 5 0.0012422
3 .2 .0.009813

 
Figure 3.12 Ogden model uniaxial stress-strain relation (green curve) compared with 

experimental data (green dot/red curve) 
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Figure 3.13 Ogden model biaxial stress-strain relation (green curve) compared with 

experimental data (green dot/red curve) 

 

(iv) Sussman-Bathe model 

There is no parameter to fit in Sussman-Bathe model. However, this model gives a 

perfect fit to the experimental data, ranging from compression to extension. 

Furthermore, it gives a good fit for small strain deformation. 

 

Figure 3.14 Sussman-Bathe model curve fitting (full strain range) 
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Figure 3.15 Sussman-Bathe model curve fitting (strain from 0 to 5) 

From above fitting results, it is clearly shown that only the Sussman-Bathe model 

produces an accurate curve fit. This is evident in the compression experimental data 

where all other models, except the Sussman-Bathe model, fail to produce appropriate 

approximations. 

 

3.1.2  Verification of predicted pure shear deformation curve 

In order to verify the correctness of the rubber material models, except the capability 

to fit the uniaxial compression and extension experimental data, the predictability of 

pure shear deformation and other general deformations must be considered as well. 

Only if all the deformations can be predicted accurately, the model can be considered 

as correctly proposed.  

 Here first the predictive capability of pure shear deformation is studied. The pure 

shear experimental data from Treloar are used as shown in Table 3.3. In all cases, the 

constants for the models determined in the previous section 3.1.1 are used. 
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Table 3.3 Pure shear experimental data from Treloar 

Engineering strain Engineering stress
0 0 

0.4874 0.4133 
0.8697 0.591 
1.3498 0.7734 
1.9848 0.9219 
2.522 1.0898 
3.0021 1.2529 
3.4332 1.4545 
3.7505 1.6034 
4.0187 1.786 

 

(a) Mooney-Rivlin model 

The shear curve using the Mooney-Rivlin model is plotted in figure 3.16 and it is 

close to the experimental data when the strain is small and obviously quite different 

from experimental data when the strain becomes larger. 

 
Figure 3.16 Mooney-Rivlin model shear stress-strain relation curve (green curve) vs 

experimental data (green dot/red curve) 

 

(b) Arruda-Boyce model 

As shown in Figure 3.17, compared to the Mooney-Rivlin model, the Arruda-Boyce 
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model is able to predict the shear curve better, although it is still steeper than the 

experimental data.  

 
Figure 3.17 Arruda-Boyce model shear stress-strain relation curve (green curve) vs 

data (green dot/red curve) 
 

(c) Ogden model 

The shear curve from the Ogden model using both ADINA’s and Ogden’s constants 

are compared with the experimental data, as shown in figure 3.18. 

 
Figure 3.18 Ogden model shear stress-strain relation curve (green curve: ADINA’s 

constants; purple curve: Ogden’s constants) compared with experimental data (green 
dot/red curve) 

 

 From the comparison in figure 3.18, the Ogden model using Ogden’s constants 
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offers a better fit for shear deformations. As shown in figure 3.12, 3.13 and 3.18, 

using the same experimental data, different stress-strain curves could be produced by 

selecting different approximation order, least square solution method and values ofα s. 

Hence, different individual preferences of curve fitting parameters will result in 

different model constants and thus different simulation results for the same problem. 

A good fitting result is therefore difficult to obtain. On the other hand, with the 

Sussman-Bathe model, a very good result can be obtained easily.  

 

(d) Sussman-Bathe model 

The most accurate result is achieved from the Sussman-Bathe model, whose shear 

curve is very close to the experimental data, even when the strain is large. 

 
Figure 3.19 Sussman-Bathe model shear stress-strain relation curve (green curve) vs 

experimental data (green dot/red curve) 
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3.2  Non-homogenous deformation investigation  

 

3.2.1 Experiment and numerical model settings 

The experimental specimens and finite element model are built as shown in figure 

3.20. 

 
Figure 3.20 experimental setting of P.A.J. van den Bogert and R. de. Borst 10 (upper 

part) and FEM model in ADINA (lower part) 

 

(a) Descriptions of non-homogenous shear deformation experiment  

A composition of four identical specimens (A, B, C and D) through a rigid connection 

upper steel member 

lower steel member 

Steel Steel

10mm 

20mm 

Fx 

X, Ux 

Z, Uz 

Fx 

P 

Symmetry plane 

A 

B 

C 

D 

A 

line 1 
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with steel members at the upper and lower faces is built as shown in upper part of 

figure 3.20. In the middle of the steel members, a horizontal displacement has been 

imposed. In addition, these specimens are free to deform in Z-direction. Each of the 

four experimental specimens (A, B, C, D) has a dimension of 20mm by 20mm by 

20mm. 

 

(b) FEM model Geometry and boundary condition descriptions 

Exploiting the symmetry of the experimental settings, only half of the lower right 

block (A) is meshed as the computational domain in the FEM model whose 

dimension now is 20mm by 10mm by 10mm. 

Corresponding to the experimental setting, the boundary and loading conditions 

for the computational domain are as follow: the bottom plane is subjected to Dirichlet 

boundary condition in all three directions; the y-displacements of both the top and 

symmetry plane (y=10mm) are similarly subjected to Dirichlet boundary condition 

due to symmetry; the top plane is allowed to move rigidly in both the x and 

z-directions as they are constrained by the upper right corner node P where the shear 

force xF  is applied. The point force xF  on point P, together with the displacement 

constraint of top plane to the loading point P, is equivalent to a line force on line 1 as 

shown in figure 3.20. 

 

(c) Material model settings 

The Mooney-Rivlin, Arruda-Boyce, Ogden and Sussman-Bathe models are employed 
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to carry out the numerical analysis. As discussed in previous chapter, the uniaxial test 

data are needed to build these models in ADINA. The data of a uniaxial elongation 

experiment, first carried out by P.A.J. van den Bogert and R. de. Borst10, is shown in 

figure 3.21. 
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Figure 3.21 Uniaxial experimental results of P.A.J. van den Bogert and R. de. Borst 

  

 Because of the theoretical limitation of the Mooney-Rivlin model, P.A.J. van den 

Bogert and R. de. Borst limited its valid scope to 0.15 0.5ε≤ ≤  when the constants 

are fitted for the Mooney-Rivlin model. For the Ogden model, a larger range of 

0 1ε≤ ≤  was used. Since the experimental error is relatively large in the 

neighborhood of 0ε = , it is reasonable to use the data ranging from 0.15 1ε≤ ≤ . The 

model constants, reproduced from P.A.J. van den Bogert and R. de. Borst’s paper10 

and P.A.J. van den Bogert’s PhD thesis35, are given in table 3.4.  
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Table 3.4 Constants of various models  

  Mooney-Rivlin model C1 C2   Bulk 
modulus

a-fit 5th cycle 0.15 0.5ε≤ ≤  0.1486 0.4849   1.267 

 Ogden model μ 1 α 1 μ 2 α 2 Bulk 
modulus

a-fit 0.15 1ε≤ ≤  .1.443 .1.787 2.741e.3 9.581 1.303 

b-fit 0.15 1ε≤ ≤  .0.9952 .2.713 2.053e.3 9.905 1.360 

c-fit Pos. powers 0.15 1ε≤ ≤ 3.164 0.5 0.0486 5.5 0.925 

e-fit 0.15 1ε≤ ≤  .2.784 .0.8632 3.114e.3 9.411 1.2205 

  

 For Mooney-Rivlin model, a much better uniaxial curve fitting could be achieved 

with ADINA by employing the Gaussian Elimination least square solution, as shown 

in figure 3.22. It clearly fits the experimental data much better than P.A.J. van den 

Bogert and R. de. Borst’s (green line in figure 3.22). However this curve performs 

poorly if the range is extended to 0 3ε≤ ≤ , as shown in figure 3.23. The stress value 

actually decreases and becomes negative when strain is increased from 1 to 2, which 

is not physically possible. 
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Figure 3.22 Mooney-Rivlin model uniaxial curve fitting compared with experimental data 

 
Figure 3.23 Mooney-Rivlin model with constants fitted by Gaussian Elimination 

shown in a larger scope 

 If the Singular Value Decomposition least square method is employed instead, a 

worse stress-strain curve, as shown in figure 3.24 is achieved. Thus for the 

Mooney-Rivlin model, P.A.J. van den Bogert and R. de. Borst’s constants produce a 

better fitting compared to constants fitted directly from ADINA with either Gaussian 

Elimination or Singular Value Decomposition, and are directly employed in the 

following analysis.  
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Figure 3.24 Stress-strain relation for Mooney-Rivlin model with constants fitted by Singular 

value decomposition 

 With P.A.J. van den Bogert and R. de. Borst’s uniaxial experimental data, an 

Ogden material model (material no. 4 in figure 3.25) is built directly with ADINA. Its 

uniaxial curve fitting is compared with other models given in P.A.J. van den Bogert 

and R. de. Borst’s paper: Mooney-Rivlin model with “a-fit” is built as material no. 2; 

Ogden model with “a-fit” as material no. 5, “b-fit” as material no. 6, “c-fit” as 

material no. 7, and “e-fit” as material no. 8. 

 

Figure 3.25 Fitting of stress-strain data with different models 
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 From figure 3.25, Ogden model directly fitted by ADINA (no. 4) gives the best 

fitting of the experimental data with a strain from 0 to 1. a-fit, b-ftt and e-fit Ogden 

models (no. 5,6,8 curves) give acceptable fitting, Ogden model (no. 7 curve) with 

all-positive α s gives a larger departure while Mooney-Rivlin model (no. 2 curve) 

produces the largest error. However, regarding the uniaxial compression part as shown 

in figure 3.26, large differences between various curves are observed even for Ogden 

material model no. 5, no. 6 and no. 8 which are quite close for extension part. 

 

Figure 3.26 Fitting of stress-strain data with different models in a larger scope 

 Furthermore, the predicted pure shear stress-strain relation, as shown in figure 

3.27, is quite different when the strain increases above 1 or when the material is under 

compression.  
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Figure 3.27 Ogden model shear stress-strain curve 

 P.A.J. van den Bogert and R. de. Borst’s experiment is quite limited; especially 

there is no experimental data for compression. Building a Sussman-Bathe model is 

meaningless if there is no compression data. From previous discussion, generally, 

Ogden modes give better curve-fitting for experimental data. It is evident that, except 

Ogden model with c-fit (no. 7 curve), all Ogden models fit experimental data well 

within the valid range of 0.15 1ε≤ ≤ . However, although the c-fit Ogden model with 

all positive powers produces the worst fitting, it is the only Ogden model which is 

stable for all three deformations (referring to chapter 4). Hence, the c-fit Ogden model 

is still used to build another Sussman-Bathe model for comparison. Therefore, data 

from the uniaxial curve of a-fit Ogden model (no. 5 curve), c-fit Ogden model (no. 7 

curve) and Ogden model (no. 4 curve) are used to build the Sussman-Bathe model as 

no. 11, 12 and 10 models respectively. Their uniaxial and shear deformation 

stress-strain curves are plotted in figure 3.28 and 3.29. 
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Figure 3.28 Uniaxial deformation stress-strain curves of the Sussman-Bathe models 

 

Figure 3.29 Shear deformation stress-strain curves of the Sussman-Bathe models 

Comparing the curves of Sussman-Bathe models with their corresponding Ogden 

models, it’s obvious that they are quite similar.  

Furthermore, with the uniaxial elongation experimental data, an Arruda-Boyce 

model is built and it fits the experimental data well, as shown in figure 3.30. 
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Figure 3.30 Stress-strain relation of the Arruda-Boyce model 

 

3.2.2 Non-homogenous shear deformation simulation results 

A stress distribution plot in figure 3.31 shows the general deformation results of the 

non-homogenous shear deformation. 

 

Figure 3.31 Non-homogonous shear deformation simulation results 

 

(a) Mooney-Rivlin model 

The x-displacement and z-displacement of the Mooney-Rivlin model with respect to 

applied force xF are shown in figure 3.32. 
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Figure 3.32 X-displacement (top) and z-displacement (bottom) with respect to applied 

force; Mooney-Rivlin model: green curve, experimental data: red curve 

 For x-displacement, although the Mooney-Rivlin model produces a correct 

deformation trend, there is a large difference between the simulation and experimental 
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results, especially when the strain becomes larger. 

 For z-displacement, experimental results indicate that it should always be 

negative. However, Mooney-Rivlin model produces positive z-displacement at the 

beginning and then the positive strain increases till 0.4, which is obviously not a 

physically correct result. Although z-displacement of the Mooney-Rivlin model turns 

into negative at last, its value is much higher than the experimental data. 

 

(b) Ogden model  

The x-displacement and z-displacement of the Ogden models with respect to the 

applied force are shown in figure 3.33. 
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Figure 3.33 X-displacement (top) and z-displacement (bottom) with respect to the 

applied force. Ogden a-fit model: black curve; Ogden b-fit model: red curve 
Ogden c-fit model: yellow curve; Ogden e-fit model: blue curve 

Ogden model fitted by ADINA: green curve; experimental data: orange curve 

experimental results 

experimental results 
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 It is observed that all the Ogden models predict the x-displacement trend correctly. 

Among five Ogden models, the model with all positive powers (c-fit) produces a 

simulation result which is closest to the experimental data for the x-displacement. 

Furthermore, it is also the model with all positive powers (c-fit) that represents a 

physically correct z-displacement which should always be negative. The e-fit Ogden 

model generates similar results as Mooney-Rivlin model for z-displacement. It is 

positive at the beginning and ends up with a negative value which is much higher than 

experimental data. Other three Ogden models produce completely wrong 

z-displacement which is always positive within the whole loading range. 

 

(c) Sussman-Bathe model 

The x-displacement and z-displacement of the Sussman-Bathe models with respect to 

the applied force are shown in figure 3.34.  
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Figure 3.34 X-displacement (top) and z-displacement (bottom) with respect to applied force 
of Sussman-Bathe model with a-fit data: Green curve; c-fit data: red curve; data fitted from 

Ogden model 4: blue curve; Experimental data: orange curve 

 The Sussman-Bathe model which was built through the Ogden c-fit data gives the 

closest simulation result for x-displacement. In addition, it is also the only model 

which produces physically correct z-displacements. Especially as the external force 

increases, the predicted z-displacement gets closer to the experimental data. On the 
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other hand, the z-displacements of the other two Sussman-Bathe models, which are 

built from a-fit Ogden model and no. 4 Ogden model, are still physically not 

reasonable. 

 There are large differences for the compression stress-strain curve for the three 

Ogden models which Sussman-Bathe models are built from. Although their extension 

curve is similar, the differences in compression curve introduce great divergence 

between three Sussman-Bathe models. It also proves the idea of Sussman and Bathe 

that both extension and compression data are required to build a correct model8. 

 

(d) Arruda-Boyce model 

The x and z-displacement with respect to the applied force for the Arruda-Boyce 

model and experimental data are shown in figure 3.35.  
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Figure 3.35 X-displacement (top) and z-displacement (bottom) with respect to applied 
force of Arruda-Boyce model with blue curve for simulation results and orange curve 

for experimental data 
 

It is observed that Arruda-Boyce model produces correct results for both 
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x-displacement and z-displacement. Furthermore, their values are also quite close to 

experimental data. 

From the above comparison, while all models produce x-displacement with 

correct trend but only the c-fit Ogden model, Arruda-Boyce model and 

Sussman-Bathe (built from c-fit Ogden model) produce reasonable z-displacement. 

The x-displacement and z-displacement simulation results of above three models are 

shown in figure 3.36, together with experimental data.  
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Figure 3.36 X-displacement (top) and z-displacement (bottom) with respect to the 

applied force 
Ogden c-fit model: olive curve; Arruda-Boyce model: green curve;  
Sussman-Bathe model: red curve; Experimental data: orange curve 

It is observed that these three models predict similar x-displacement which is 
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close to experimental data. For z-displacement, when the strain is relatively large, the 

Sussman-Bathe model will produce a better z-displacement simulation result. On the 

other hand, when the external force is small, the Ogden and Arruda-Boyce model 

achieve a better z-displacement simulation result. 

 

3.2.3  Similar simulation with Treloar’s experimental data 

 

The same non-homogenous shear deformation simulations as described in chapter 

3.2.1 were carried out for the material models built with Treloar’s data in chapter 3.1. 

Although there is no experimental data available for non-homogenous shear 

deformation using the same rubber material as Treloar, the trend of deformation 

should be similar to P.A.J. van den Bogert and R. de. Borst’s experimental results.  

 In addition to the Mooney-Rivlin model, Arruda-Boyce model and the 

Sussman-Bathe model, the Ogden model with constants given by Ogden34 which 

produces good closeness to Treloar’s pure shear data, is employed. The 

x-displacement and z-displacement simulation results are shown in figure 3.37. 
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Figure 3.37 X-displacement (top) and z-displacement (bottom) with respect to the 

applied force 
Mooney-Rivlin model: Red curve; Arruda-Boyce model: Olive curve;  

Ogden model: blue curve; Sussman-Bathe model: Magenta curve 

 As shown in figure 3.37, the x-displacements of all four models are similar and 



65 

have correct trend. Furthermore, negative z-displacement which is physically true is 

produced by all four models. It is important to note that not all the α s of the Ogden 

model are positive but it still predicts the correct z-displacement. Therefore, it cannot 

be simply concluded from chapter 3.2.2 that for Ogden model, it must have all 

positive α s to produce correct simulation results.  

 

3.3  Conclusions 

 

The predictive capability of various rubber material models is thoroughly studied in 

this chapter with pure shear numerical tests and non-homogenous shear numerical 

tests.  

 A good curve fitting of the material constants is difficult to obtain even with the 

convenient interface of ADINA. The newly-proposed Sussman-Bathe model for 

which no constants are needed is a significant shift in direction of studying strain 

energy density. Furthermore, the Sussman-Bathe model predicts the most accurate 

pure shear deformation curve based on uniaxial experimental data.  

 Both extension and compression data are required for rubber material model 

building. When only the uniaxial extension experimental data is given, there could be 

multiple good curve fits. For instance, the a-fit, b-fit and e-fit Ogden models all fit the 

extension experimental data well. However, for larger strain or compression 

deformation the difference of predicted stress-strain curves between these models 

becomes very large.  
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 Even when the uniaxial experimental data is well fitted, the material model may 

not be able to predict the non-homogenous deformation correctly. For example, 

although the a-fit, b-fit and e-ft Ogden models all fit the uniaxial experimental data 

well, they are not able to attain reasonable z-displacement in the non-homogenous 

deformation numerical tests. 

 The performance of the Sussman-Bathe model depends on the data used to build 

the model. In the above research, the Sussman-Bathe model fitted from different 

Ogden models present different simulation results. When the c-fit Ogden model 

produces a physically correct z-displacement, the corresponding Sussman-Bathe 

model generates a similar physically correct z-displacement. On the other hand, when 

the Ogden models (a-fit or e-fit) can not produce reasonable results, neither could the 

corresponding Sussman-Bathe model.  

 Finally, all four models fitted with the Treloar’s experimental data achieve 

reasonable simulation results for non-homogenous deformation.  
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Chapter 4  
  
Stability of material models 
 

4.1  Stability criterion deduction 

 

4.1.1 Incremental deformation with respect to true strains 

Consider a unit rubber cube under incompressible deformation, as shown in the figure 

4.1.  

 
Figure 4.1 Unit cube under deformation 

 Assuming the strain energy density is expressed as 1 2 3( , , )e e eϕ ϕ= , where 

1 2 3, ,e e e are the true strains and related to the principal stretches and displacement as: 

ln( )
1

i i

i i

e
u
λ

λ
=⎧

⎨ = +⎩
.               (4.1) 

where iλ is the stretch in i direction and iu is the displacement in i direction. 

 For incompressible rubber material, there is a constraint that its volume does not 

change during deformation. This means that 1 2 3 1λ λ λ = or 1 2 3 0e e e+ + = . Hence, to 

include this constraint into consideration, a Lagrange multiplier k  is introduced and 

λ 1 
λ 2 

λ 3 

u1 
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the strain energy density is modified as: 

 1 2 3( )k e e eϕ ϕ= + + + .            (4.2) 

 There is no energy dissipation for elastic material. Therefore, the variation of 

strain energy is equal to the variation of work done by the external force: Rδϕ δ= , 

where R stands for the external work, 

 
1 2 3( ) ( )

( )

∂
= + + + +

∂
∂

= +
∂

∑

∑

i
i i

i
i i

k e k e e e
e

k e
e

ϕδϕ δ δ

ϕ δ
         (4.3) 

 i i i i i
i i

R R u R eδ δ λδ= =∑ ∑             (4.4) 

where iR  are the deformation independent loads per unit original area in i direction. 

Therefore, from Rδϕ δ= , we obtain that: 

( ) i i i i
i ii

k e R e
e
ϕ δ λδ∂
+ =

∂∑ ∑            (4.5) 

(4.5) can be simplified to the equilibrium equations: 

1 2 3 0

i i
i

k R
e

e e e

ϕ λ∂⎧ + =⎪∂⎨
⎪ + + =⎩

              (4.6) 

Further, taking the variation of (4.6) with respect to 1 2 3, ,e e e , we obtain that: 

 

2

1 2 3

( )

0

j i i i i
i j

e k R R
e e

e e e

ϕ δ δ δ λ δλ
⎧ ∂

+ = +⎪ ∂ ∂⎨
⎪ + + =⎩

 

2

1 2 3

( )

0

⎧ ∂
− + =⎪ ∂ ∂⇒ ⎨

⎪ + + =⎩

∑ j i i i i i
j i j

e R e k R
e e

e e e

ϕ δ λδ δ δ λ

δ δ δ
        (4.7) 

Expressing the above equations in matrix form, 
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1

1

2 2

3

3

2 2 2

1
1 1 1 2 1 3

1 12 2 2

2 2 2
2 1 2 2 2 3

3 32 2 2

3
3 1 3 2 3 3

1

1

1 0

1 1 1 0

e

e

e e

e

e

e R
e e e e e e

e e R
e R e e R

e e e e e e
e e R
ke R

e e e e e e

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

⎡ ⎤∂ ∂ ∂
−⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ Δ ⎡ ⎤Δ⎡ ⎤⎢ ⎥∂ ∂ ∂ ⎢ ⎥⎢ ⎥− Δ⎢ ⎥ Δ⎢ ⎥⎢ ⎥× =∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ⎢ ⎥⎢ ⎥ Δ− ⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥
⎣ ⎦

 (4.8) 

Using the Mooney-Rivlin model for instance, the strain energy density function is 

 
3 2 3 1 31 2 1 2

1 1 2 2
2 2 2 2 2 2 2 2 2

1 1 2 3 2 1 2 2 3 1 3
2 2 2 2 22 2 2 2

1 2

( 3) ( 3)

( 3) ( 3)

( 3) ( 3)+ ++

= − + −

= + + − + + + −

= + + − + + + −e e e e ee e e e

c I c I

c c

c e e e c e e e

ϕ

λ λ λ λ λ λ λ λ λ     (4.9) 

This leads to  

 

2 2 2 2 2
1 1 2 1 2 2 1 3

1

2 2 2 2 2
1 2 2 1 2 2 2 3

2

2 2 2 2 2
1 3 2 1 3 2 2 3

3

2 2 2

2 2 2

2 2 2

c c c
e

c c c
e

c c c
e

ϕ λ λ λ λ λ

ϕ λ λ λ λ λ

ϕ λ λ λ λ λ

⎧∂
= + +⎪∂⎪

⎪ ∂
= + +⎨∂⎪

⎪∂
= + +⎪

∂⎩

          (4.10) 

and  

2
2 2 2 2 2

1 1 2 1 2 2 1 3
1 1
2

2 2 2 2 2
1 2 2 1 2 2 2 3

2 2
2

2 2 2 2 2
1 3 2 3 2 2 1 3

3 3
2

2 2
2 1 2

1 2
2

2 2
2 2 3

1 3
2

2 2
2 1 3

2 3

4 4 4

4 4 4

4 4 4

4

4

4

c c c
e e

c c c
e e

c c c
e e

c
e e

c
e e

c
e e

ϕ λ λ λ λ λ

ϕ λ λ λ λ λ

ϕ λ λ λ λ λ

ϕ λ λ

ϕ λ λ

ϕ λ λ

⎧ ∂
= + +⎪∂ ∂⎪

⎪ ∂
= + +⎪

∂ ∂⎪
⎪ ∂⎪ = + +
∂ ∂⎪

⎨
∂⎪ =⎪∂ ∂

⎪
∂⎪ =⎪∂ ∂⎪

⎪ ∂
=⎪∂ ∂⎩

         (4.11) 

Substituting equations (4.11) back to (4.8), the matrix can be simplified into 
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1

2

2 2 2 2 2 2 2 2 2
1 1 2 1 2 2 1 3 1 1 2 1 2 2 1 3

2 2 2 2 2 2 2 2 2
2 1 2 1 2 2 1 2 2 2 3 2 2 2 2 3

2 2 2 2 2 2 2 2 2
2 1 3 2 2 3 1 3 2 1 3 2 2 3 3 3

1 1

2

3

4 4 4 4 4 1
4 4 4 4 4 1
4 4 4 4 4 1

1 1 1 0
e

e

c c c R c c
c c c c R c
c c c c c R

e e R
e e
e
k

λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ

⎡ ⎤+ + −
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥+ + −
⎢ ⎥
⎣ ⎦
Δ Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥× =
⎢ ⎥Δ
⎢ ⎥Δ⎣ ⎦

3

2

3

                                                                                                                                        

0

(4.12)e

R
e R

⎡ ⎤
⎢ ⎥Δ⎢ ⎥
⎢ ⎥Δ
⎢ ⎥
⎣ ⎦

Substituting equation (4.10) back to (4.6), 

2 2 2 2 2
1 1 2 1 2 2 1 3 1 1

2 2 2 2 2
1 2 2 1 2 2 2 3 2 2

2 2 2 2 2
1 3 2 1 3 2 2 3 3 3

2 2 2

2 2 2

2 2 2

⎧ + + + =
⎪

⇒ + + + =⎨
⎪ + + + =⎩

c c c k R

c c c k R

c c c k R

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

         (4.13) 

 

(1) Uniaxial deformation 

Substituting  

2 3

1
2 3

0

2

R R
ee e

= =⎧
⎪
⎨

= = −⎪⎩

 

into equation (4.12), 

12
11 1 2 1 1 1 2 1 2 1 1

1 2 2
22 1 1 1 2 1 2 1 2 1

2 1 2
32 1 2 1 1 1 2 1 2 1

4 8 4 4 1
4 4 4 4 4 1 0

  
4 4 4 4 4 1 0

1 1 1 0 0

eec c R c c e R
ec c c c c
ec c c c c
k

λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ

− − −

− − −

Δ ⎡ ⎤⎡ ⎤+ − Δ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ+ + ⎢ ⎥⎢ ⎥ ⎢ ⎥× =
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ+ +
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ⎣ ⎦⎣ ⎦ ⎣ ⎦

(4.14) 

Substitute 2 3 0R R= =  into equation (4.13), the equilibrium equations (4.6) become: 

 

2 2 2 2 2
1 1 2 1 2 2 1 3 1 1

2 2 2 2 2
1 2 2 1 2 2 2 3 2 2

2 2 2 2 2
1 3 2 1 3 2 2 3 3 3

1/2
2 3 1

2 2 2

2 2 2 0

2 2 2 0

c c c k R

c c c k R

c c c k R

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ−

⎧ + + + =
⎪

+ + + = =⎪
⎨

+ + + = =⎪
⎪ = =⎩

 

2 1 2
1 1 2 1 1 1 2 1 1 12 2 2 2− −⇒ + − − =c c c c Rλ λ λ λ λ  

2 3
1 1 1 2 1 1 2 12 2 2 2− −⇒ = + − −R c c c cλ λ λ          (4.15) 

Substituting 1R  into equation (4.14), the stability matrix is obtained: 
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2 1 2
1 1 2 1 1 1 2 1 2 1 2 1

1 2 2
2 1 1 1 2 1 2 1 2 1

2 1 2
2 1 2 1 1 1 2 1 2 1

2 6 2 2 4 4 1
4 4 4 4 4 1
4 4 4 4 4 1

1 1 1 0

− −

− − −

− − −

⎡ ⎤+ + +
⎢ ⎥+ +⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

c c c c c c
c c c c c
c c c c c

λ λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ

 

(2) Biaxial deformation 

Substituting  

1 2

3

1 2

3 1

0

2

R R
R
e e
e e

=⎧
⎪ =⎪
⎨ =⎪
⎪ = −⎩

  

into equation (4.12), 

1

2

3

2 4 2 4 2
1 1 2 1 2 1 1 1 2 1 2 1

4 2 4 2 2
2 1 1 1 2 1 2 1 1 1 2 1

2 2 4 2
2 1 2 1 1 1 2 1

1 1

2 2

3 3

4 4 4 4 4 1
4 4 4 4 4 1
4 4 4 8 1

1 1 1 0

                  

0

e

e

e

c c c R c c
c c c c R c
c c c c

e e R
e e R
e e R
k

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ

− −

− −

− − − −

⎡ ⎤+ + −
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦
Δ ⎡ ⎤Δ⎡ ⎤

⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥⎢ ⎥× =
⎢ ⎥⎢ ⎥Δ Δ
⎢ ⎥⎢ ⎥Δ⎣ ⎦ ⎣ ⎦

                                                                          (4.16)

 

Substituting  

1 2

3 0
R R
R
=⎧

⎨ =⎩
  

into equation (4.13), the equilibrium equation becomes  

 

2 2 2 2 2
1 1 2 1 2 2 1 3 1 1

2 2 2 2 2
1 2 2 1 2 2 2 3 2 2

2 2 2 2 2
1 3 2 1 3 2 2 3 3 3

1 2
2

3 1

2 2 2

2 2 2

2 2 2 0

c c c k R

c c c k R

c c c k R

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ
λ λ

λ λ−

⎧ + + + =
⎪

+ + + =⎪
⎪ + + + = =⎨
⎪ =⎪
⎪ =⎩

 

2 4 2 4
1 1 2 1 2 1 1 1 1 12 2 2 2− −⇒ + − − =c c c c Rλ λ λ λ λ         (4.17) 
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Substitute 1R  into equation (4.16), the stability matrix becomes 

2 4 2 4 4 2
1 1 2 1 2 1 1 1 2 1 2 1

4 2 4 2 4 2
2 1 1 1 2 1 2 1 1 1 2 1

2 2 4 2
2 1 2 1 1 1 2 1

2 2 6 2 4 4 1
4 2 2 6 2 4 1
4 4 4 8 1

1 1 1 0

− − −

− − −

− − − −

⎡ ⎤+ + +
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

c c c c c c
c c c c c c
c c c c

λ λ λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ

 

(3) Pure Shear deformation 

Substituting  

3

2

3 1

0
0

R
e
e e

=⎧
⎪ =⎨
⎪ = −⎩

 

into equation (4.12), 

1

2

2 2 2
1 1 2 1 2 1 1 2 1 2

2 2 2 2
2 1 1 2 1 2 1 2 2 1

2 2 2
2 2 1 1 1 2 1 2

1 1

2 2

3

4 4 4 4 4 1
4 4 4 4 4 1
4 4 4 4 4 1
1 1 1 0

                                    
0
0

e

e

c c c R c c
c c c c R c
c c c c c

e e R
e e R
e
k

λ λ λ λ
λ λ λ λ

λ λ λ

− −

− − −

⎡ ⎤+ + −
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦
Δ ⎡ ⎤Δ⎡ ⎤

⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥⎢ ⎥× =
⎢ ⎥⎢ ⎥Δ
⎢ ⎥⎢ ⎥Δ⎣ ⎦ ⎣ ⎦

                                                      (4-18)

 

Substituting  

3

2

3 1

0
0

R
e
e e

=⎧
⎪ =⎨
⎪ = −⎩

  

into equation (4.13), the equilibrium equation becomes  

2 2 2 2 2
1 1 2 1 2 2 1 3 1 1

2 2 2 2 2
1 2 2 1 2 2 2 3 2 2

2 2 2 2 2
1 3 2 1 3 2 2 3 3 3

2
1

3 1

2 2 2

2 2 2

2 2 2 0
1

c c c k R

c c c k R

c c c k R

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ
λ

λ λ−

⎧ + + + =
⎪

+ + + =⎪
⎪ + + + = =⎨
⎪ =⎪
⎪ =⎩

 



73 

2 2 2 2
1 1 2 1 1 1 2 1 1 1

2 2
1 2 1 1 1 2 2 2

2 2 2 2

2 2 2 2

− −

−

⎧ + − − =⎪⇒ ⎨
+ − − =⎪⎩

c c c c R

c c c c R

λ λ λ λ λ

λ λ λ
        (4.19) 

Substituting 1R  and 2R  into equation (4.18), the stability matrix obtained is  

2 2 2 2 2
1 1 2 1 2 1 1 2 1 2 1 2

2 2 2 2 2
2 1 1 2 1 2 1 1 1 2 2 1

2 2 2
2 2 1 1 1 2 1 2

2 2 4 2 2 4 4 1
4 2 2 4 2 2 4 1
4 4 4 4 4 1
1 1 1 0

− −

− − −

− − −

⎡ ⎤+ + + +
⎢ ⎥+ + + +⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

c c c c c c c
c c c c c c c
c c c c c

λ λ λ λ λ
λ λ λ λ λ

λ λ λ

 

4.1.2  Stability analysis 

Based on the above analysis of incremental deformation, the incremental formula can 

be generalized as  

1

2

3

11 12 13 1 1

21 22 23 2 2

331 32 33 3

   1
   1
   1

1     1     1    0 0

e

e

e

K K K e e R
K K K e e R

eK K K e R
k

Δ ⎡ ⎤⎡ ⎤ Δ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎢ ⎥ ⎢ ⎥× =
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ⎣ ⎦⎣ ⎦ ⎣ ⎦          (4.20) 

where component of stability matrix ijK  varies with different rubber material models 

and different deformation types. If a rubber material is stable, then physically the 

external work, which is 

[ ] [ ]

1
1

2
1 2

3
3

1
1

2
1 2 3 2 1 2 3

3
3

        

0

e
e

e
e e

i i i i e
e

e R
e R

e R
u R e e R e e e e R e e e k

e R
e R

⎡ ⎤Δ
⎡ ⎤Δ ⎢ ⎥
⎢ ⎥ Δ⎢ ⎥Δ Δ = Δ Δ = Δ Δ Δ Δ = Δ Δ Δ Δ⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎢ ⎥⎣ ⎦

i i

(4.21) 

should always be positive. The external work is equal to the right hand side of 

equation (4.20) multiplied by [ ]1 2 3  e e e kΔ Δ Δ Δ  as shown in equation (4.21). Hence, 

the left hand side of equation (4.10) multiplied by[ ]1 2 3  e e e kΔ Δ Δ Δ , should also 

always be positive as shown in (4.22) 
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[ ]

11 12 13 1

21 22 23 2
1 2 3

331 32 33

   1
   1

     0
   1

1     1     1    0

i i

K K K e
K K K e

e e e k u R
eK K K
k

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥Δ Δ Δ Δ = Δ Δ >
⎢ ⎥ ⎢ ⎥Δ
⎢ ⎥ ⎢ ⎥Δ⎣ ⎦⎣ ⎦

i i

     (4.22) 

Hence, from the definition of positive definite matrix, the above 4 by 4 matrix 

should be positive definite if [ ]1 2 3  e e e kΔ Δ Δ Δ is independent. However, from the 

constraint of incompressibility, there is a constraint for 1 2 3, ,Δ Δ Δe e e  requiring 

that 1 2 3+ + 0Δ Δ Δ =e e e , which implies that 1 2 3, ,Δ Δ Δe e e are not independent. This 

constraint needs to impose on the above 4 by 4 matrix to ensure that equation (4.22) is 

always positive. 

With 1 2 3+ + 0Δ Δ Δ =e e e , we have hat 1 2 3= - -e e eΔ Δ Δ , which then is substituted into 

equation (4.22) 

[ ]

[ ]

11 12 13 1

21 22 23 2
1 2 3

331 32 33

11 12 13

21 22 23
1 2 1 2

31 32 33

   1
   1

    
   1

1     1     1    0

   1
   1

    ( )  
   1

1     1     1    0

K K K e
K K K e

e e e k
eK K K
k

K K K
K K K

e e e e k
K K K

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥Δ Δ Δ Δ
⎢ ⎥ ⎢ ⎥Δ
⎢ ⎥ ⎢ ⎥Δ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢
⎢= Δ Δ −Δ −Δ Δ
⎢
⎢
⎣ ⎦

i i

i

[ ]

1

2

1 2

11 33 13 12 33 23 13 1
1 2

21 33 23 13 22 33 23 2

( )

+ 2             +
  

+      + 2  

e
e

e e
k

K K K K K K K e
e e

K K K K K K K e

Δ⎡ ⎤
⎥ ⎢ ⎥Δ⎥ ⎢ ⎥
⎥ ⎢ ⎥− Δ − Δ
⎥ ⎢ ⎥Δ⎣ ⎦

− − − Δ⎡ ⎤ ⎡ ⎤
= Δ Δ ⎢ ⎥ ⎢ ⎥− − − Δ⎣ ⎦⎣ ⎦

i

i i
   (4.23) 

Therefore, to make equation (4.22) positive, the above 2 by 2 matrix in equation (4.23) 

must be positive definite, which means that its eigenvalues are always positive. For 

pure shear deformation, there is no strain in y-direction: 2 0Δ =e . Hence, the stability 

matrix is simplified to a 1 by 1 matrix.  

 Thus the stability matrix could be expressed in terms of true strain e , so are its 
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eigenvalues. With the plot of eigenvalues with respect to true strain e , the stability of 

material model could be clearly shown. If the eigenvalues of a certain type of 

deformation are always positive throughout the entire strain range, then the material 

model will always be stable for this kind of deformation. Otherwise if the eigenvalue 

becomes negative at certain strain e , the material will be become unstable at that 

strain. Only if eigenvalues of all three deformations: uniaxial, biaxial and pure shear 

are always positive, the material model is regarded as always stable.  

 

4.2  Stability criterion verification 
 

4.2.1  Stability curves verification with different material models 

A 2D model with a four node plane stress element is built in ADINA as shown in 

figure 4.2. The z-translation of line 4L  and the y-translation of line 1L  are fixed. 

The y-translation of line 3L  and the z-translation of line 2L  are constrained to the 

upper-right corner point 3P  where the force is applied.  

 

Figure 4.2  4-node plane stress model in ADINA 
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(1) Mooney-Rivlin model with constants 1C =1 and 2C =1 

In upper part of figure 4.3, the stability curves show that the uniaxial and shear 

deformations are always stable while the biaxial deformation becomes unstable when 

the strain gets large. Low part of figure 4.3 shows clearly that the criterion point 

where the material becomes unstable is approximately 0.33. 
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Figure 4.3 Stability curves with 1C =1 and 2C =1 by matlab (upper part: entire strain 

range; lower part: strain near criterion point) 

 Compared with the newly-available stability curves in ADINA, the eigenvalues 

calculated from Matlab have different values but have same signs, which are more 

important and determine the stability of material models. In fact, the criterion points 

are both 0.33 as shown in figure 4.3 and 4.4, which further illustrates the correctness 
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of the re-derived stability criterion. 

 

Figure 4.4 Stability curves with 1C =1 and 2C =1 by ADINA 

 

(a) Test 1 

When a biaxial force with a magnitude of 9.5N is applied on point 3P , the whole 

element undergoes homogenous deformation and results are shown in table 4.1: 

Table 4.1 Results of test 1 (biaxial) 

 YY ZZ XX 

Engineering Strain 0.372 0.372 .0.4685 

Engineering Stress 9.214 N/m2 9.214 N/m2 0 N/m2 

The corresponding true strain in Y direction is: 

 ln( ) ln(1.372) 0.316e λ= = =  

 The material model is still within the stable range and a correct result is achieved. 

However, the strain is fairly close to the criterion value (0.33). If the force is further 

increased, there is the possibility that the material will become unstable. 
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(b) Test 2 

When a biaxial force with a magnitude of 11 N is applied on point 3P  with 100 time 

steps, ADINA reports“stiffness matrix not positive definite, boundary conditions or 

model collapsed and the grogram stops abnormally”. In the output file, an error 

message in the 91st time step is found as shown below:  

 
*** STIFFNESS MATRIX NOT POSITIVE DEFINITE *** 

NODE=4 EQUATION=2   DOF= Z-translation  PIVOT= .3.74084103E.02 
 

The largest true strain achieved by the above test is 0.3284 which coincides with the 

stability criterion predicted by the biaxial deformation stability curve. 

 
(c) Test 3 

When a uniaxial force with a magnitude of 100 N is applied on point 3P , the results 

are shown in table 4.2. It can be seen that even though the strain becomes very large, 

the uniaxial deformation is still stable, which is consistent with the prediction of the 

uniaxial deformation stability curve. 

Table 4.2 Results of test 3 (uniaxial) 

 YY ZZ XX 

Engineering Strain 48 0.1429 0.8571 

Engineering Stress 4900N/m2 0 N/m2 0 N/m2 

 

(d) Test 4 

When a pure shear force with a magnitude of 100N was applied on point 3P , the 
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results produced are summarized in table 4.3. When the strain becomes very large, the 

pure shear deformation is still stable, which is consistent with the prediction of the 

uniaxial deformation stability curve. 

Table 4.3 Results of test 4 (pure shear) 

 YY ZZ XX 

Engineering Strain 24 0 .0.96 

Engineering Stress 2500N/m2 1250N/m2 1250N/m2 

 

(2) Mooney-Rivlin model built with Treloar’s data 

The Mooney-Rivlin model is built as described in chapter 3.1 and the corresponding 

stability curves are shown in figure 4.5. It seems that it is stable for all three types of 

deformations. However, if the strain range is enlarged as shown in figure 4.6, the 

biaxial deformation will become unstable.  

 

Figure 4.5 Stability curves of Mooney-Rivlin model built with Treloar’s data 
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Figure 4.6 Stability curves of Mooney-Rivlin model built with Treloar’s data 

(enlarged range)  
 

 As predicted by the stability curves, this material model is quite stable for 

uniaxial and shear deformation. Even when the loading is increased to 100N, resulting 

in a stretch ratio of around 14, correct results can still be achieved. The corresponding 

results are summarized in table 4.4.  

Table 4.4 Results of uniaxial test with Mooney-Rivlin model 

  force stress Stretch XX Stretch YY Stretch ZZ J 

MR model uniaxial 100 1472 0.2607 14.72 0.2607 1.000437

 However it is clearly shown from figure 4.6 that for biaxial deformation, when 

the strain is relatively large (true strain 2.8e > ), the material model becomes 

unstable. In addition, the ADINA numerical experiment proves this prediction as well. 

When a large force is applied in biaxial directions, the material becomes unstable and 

the simulation can not converge. 
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(3) Ogden model built with Treloar data 

With Ogden’s constant, the stability curve is shown in figure 4.7. All three 

deformations of this material model are always stable, even when the loading is 

increased to 100N which results in a stretch ratio around 15. Some test results are 

shown in table 4.5.  

 

Figure 4.7 Stability curves of Ogden model built with Treloar’s data 

Table 4.5 Results of uniaxial and biaxial tests with Ogden model 

  stress Stretch XX Stretch YY Stretch ZZ J 

Uniaxial test 1678 0.2441 16.78 0.2441 0.999833 

Biaxial test 1511 0.00438 15.11 15.11 1.000007 

 

(4)  Arruda-Boyce model with Treloar data 

The stability curve of the Arruda-Boyce model is shown in figure 4.8. All three 

deformations of this material model are always stable, even when the loading is 
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increased to 100N which results in a stretch ratio around 12. Some test results are 

shown in table 4.6. 

 

Figure 4.8 Stability curves of Arruda-Boyce model built with Treloar’s data 

Table 4.6 Results of uniaxial and biaxial tests with Arruda-Boyce model 

  stress Stretch XX Stretch YY Stretch ZZ J 

Uniaxial test 1289 0.2785 12.89 0.2785 0.999777 

Biaxial test 954.8 0.01097 9.548 9.548 1.000072 

 

(5) Sussman-Bathe model with Treloar data 

As discussed earlier, the Sussman-Bathe model produces the most accurate material 

stress-strain relationship with given experimental data. Its stability curves are shown 

in figure 4.9. All three deformations of this material are always stable, even when the 

loading is increased to 100N which results in a stretch ratio around 10. Some test 

results are listed in table 4.7.  
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Figure 4.9 Stability curves of Sussman-Bathe model built with Treloar’s data 

Table 4.7 Results of uniaxial and biaxial tests with Sussman-Bathe model 

  stress Stretch XX Stretch YY Stretch ZZ J 

Uniaxial test 1017 0.3135 10.17 0.3135 0.99953 

Biaxial test 1008 0.00985 10.08 10.08 1.000823 

 

(6) Stability curve discussion 

From the above numerical tests, it is observed that the stability curve is quite accurate. 

If the stability curve is positive, the corresponding deformation is stable and vice 

versa. 

 Using different methods to deal with the incompressibility constraint during the 

calculation of the stability matrix can result in different stability curves. For instance, 

at the step of imposing the incompressibility constraint (formula 4.23), the 
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incremental true strain 3e  can be eliminated while reserving 1e  and 2e . On the other 

hand, the incremental true strain 1e  can be eliminated while keeping 2e  and 3e . 

This minor change will induce different final stability matrices and consequently 

different eigenvalues. However, the stability curve trends and signs of the eigenvalues 

are always the same. For example, if 1e  instead of 3e  is eliminated, the result for 

the Mooney-Rivlin model with 1C =1 and 2C =1 is shown in figure 4.10 as follows. 

 

Figure 4.10 Stability curves with 1C =1 and 2C =1 ( 1e  eliminated) 

Comparing figure 4.10 with figure 4.5 and figure 4.6, these three figures are not 

completely the same but the curve trends are similar and most importantly, the signs 

of eigenvalues are all the same. Thus they all have the same criterion value 0.33. 

If the matrix basis is changed to a new orthogonal set, the eigenvalues will not 

change. However, changing to a new independent but not orthogonal basis (for 

example, changing from “ 1 2 3,  ,  e e e ” to “ 1 2 1 2 3,  ,  e e e e e+ + ”) will change the 

eigenvalues of a matrix, although the signs of eigenvalues, and consequently the 
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criterion value will not change. In fact different matrices can stand for same stability 

criterion. Giving a simple example, if matrix A  is positive definite, *a A  (let “a” 

be a positive scalar) is also positive definite. The eigenvalues of A  and *a A are 

different but their signs remain the same. Thus, both matrix A  and matrix *a A  

can present the stability of a material model correctly. 

 Hence, different stability matrices can be derived using different methods. 

However, the signs of their eigenvalues will always be same.  

 

4.2.2  Stability analysis of the non-homogenous shear deformations  

(1) Models using Treloar’s data  

From the above stability curve analysis, the four models fitted from the Treloar data in 

chapter 3.1 are all always stable, except for the biaxial deformation of the 

Mooney-Rivlin model. Correspondingly, above four models all produce physically 

reasonable x-displacement and z-displacement during the non-homogenous 

deformation as shown in chapter 3.2.3. On the other hand, the value of z-displacement 

predicted by the Mooney-Rivlin model is significantly different from the other three 

models as shown in figure 3.37. 

 

(2) Mooney-Rivlin model using P.A.J. van den Bogert and R. de. Borst’s data 

In chapter 3.2.1, two relatively accurate curve fittings by the Mooney-Rivlin model 

were discussed. One was directly fitted through ADINA by the Gaussian Elimination 

least square method (material model no.1), while the other was suggested by P.A.J. 



87 

van den Bogert and R. de. Borst (material model no.2). Corresponding to the 

physically impossible stress-strain curve produced by material model no.1 in figure 

3.23, the stability curves of the three deformations are all negative as shown in figure 

4.11.  

 

Figure 4.11 Stability curves of Mooney-Rivlin model with constants fitted by ADINA 

On the other hand, for the P.A.J. van den Bogert and R. de. Borst’s 

Mooney-Rivlin model, the uniaxial and shear deformations are always stable as 

shown in figure 4.12, although its biaxial deformation is still unstable, which is a 

limitation experienced by all Mooney-Rivlin models with 2 constants. Although there 

is no explicit biaxial deformation during the non-homogenous deformation tests, the 

simulation results of non-homogenous deformation is affected by the biaxial 

instability. Hence, as expected, the Mooney-Rivlin model no. 2 also does not produce 

a correct z-displacement at the beginning of deformation and generate a much larger 

z-displacement compared with experimental data as shown in figure 3.32. 
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Figure 4.12 Stability curves of Mooney-Rivlin model with P.A.J. van den Bogert and 

R. de. Borst’s constants 

 

(3) Ogden model using P.A.J. van den Bogert and R. de. Borst’s data 

Four Ogden models (a-fit, b-fit, e-fit, ADINA-fit) are unstable for biaxial deformation 

as shown in figure 4.13, 4.14, 4.16 and 4.17. As expected, they produce physically 

unreasonable positive z-displacement as shown in chapter 3.2. On the other hand, the 

c-fit Ogden model, which is always stable as shown in figure 4.15, attains a negative 

z-displacement which is physically correct.  
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Figure 4.13 Stability curves of a-fit Ogden model  

 

Figure 4.14 Stability curves of b-fit Ogden model 
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Figure 4.15 Stability curves of c-fit Ogden model 

 

Figure 4.16 Stability curves of e-fit Ogden model  
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Figure 4.17 Stability curves of Ogden model directly built in ADINA  

 However it can not be concluded that α s of Ogden model should all be positive 

because in fact theα s of ADINA-fit Ogden model are also all positive but the model 

is not always stable. By careful examination of the values of α s and μ s, it is 

observed that, in these simulation results, if the products of each pair of α  and μ  

are positive, then the material was stable. For the ADINA-fit Ogden model, although 

all α s are positive, there is a negativeμ , which makes the material unstable in 

biaxial deformation. On the other hand, all α s and μ s of c-fit Ogden model are 

positive, and correspondingly the c-fit Ogden material is always stable. 

 

(4) Arruda-Boyce model using P.A.J. van den Bogert and R. de. Borst’s data 

As observed in chapter 3.2, Arruda-Boyce model produces correct z-displacement 

during the non-homogenous deformation. Correspondingly all the stability curves of 
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Arruda-Boyce model are positive as shown in figure 4.18, which makes it always 

stable. 

 

Figure 4.18 Stability curves of Arruda-Boyce model directly built in ADINA 

 

(5) Sussman-Bathe model using P.A.J. van den Bogert and R. de. Borst’s data 

The stability curves of the three Sussman-Bathe models built in chapter 3.2 are not 

always positive as shown in figures 4.19, 4.20 and 4.21 and their stability curves are 

fairly similar to corresponding Ogden models which they are built from. The 

Sussman-Bathe model which was built from c-fit Ogden model is always stable as 

shown in figure 4.20. During the simulation carried out in chapter 3.2, it is also the 

only Sussman-Bathe model which produces correct z-displacement. This implies that 

the stability of Sussman-Bathe model relies on the uniaxial data from which the 

Sussman-Bathe model is built.  
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Figure 4.19 Stability curves of Sussman-Bathe model build from a-fit Ogden model 

 

Figure 4.20 Stability curves of Sussman-Bathe model build from c-fit Ogden model 
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Figure 4.21 Stability curves of Sussman-Bathe model build from ADINA-fit Ogden model 

 

 Compared with stability curves of Ogden models in figure 4.13, 4.15 and 4.17, 

there are wiggles for Sussman-Bathe model. Indeed, there is no smooth function for 

the Sussman-Bathe model. The Sussman-Bathe model is so close to the experimental 

data that if there are some uncertainties in the experimental data, it will propagate to 

the Sussman-Bathe model. 

 

 From the stability analysis of rubber material models which are employed in the 

non-homogenous shear deformation tests in chapter 3.2, it can be concluded that the 

stability of material models affect their predicative capability greatly. Only when the 

material model is always stable, a correct simulation result for non-homogenous 

deformation could be achieved. 
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Chapter 5 
 
Conclusions 
 

The predictive capability and stability of a rubber material model should be 

considered jointly to achieve a physically correct numerical simulation result. 

The predictive capability, ranging from the uniaxial extension and compression, 

biaxial deformation, pure shear deformation to more general non-homogenous 

deformations, is essential for rubber material models. Both extension and compression 

experimental data are required to build a correct material model. Hence, in this thesis, 

rubber material models are built with Treloar’ s experimental data of compression and 

extension, and further used to analyze all other forms of deformations, like pure shear 

and 3-D non-homogenous shear deformations.  

The four commonly used rubber material models: Mooney-Rivlin model, Ogden 

model, Arruda-Boyce model and Sussman-Bathe model are analyzed theoretically and 

tested numerically. Among these four rubber material models, only the 

Sussman-Bathe model can fit both extension and compression experimental data 

perfectly while for the other three models, there are significant departures from the 

experimental data, which is even more evident for the compression experimental data.  

Regarding the predictive capability of rubber material models, only the 

Sussman-Bathe model predicts a perfect pure shear deformation stress-strain curve 

which coincides with the experimental data. Both the Ogden model and Arruda-Boyce 

model produce slightly higher curves while the result from the Mooney-Rivlin model 
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departs significantly. Furthermore, a non-homogenous shear deformation simulation 

with the various rubber material models was carried out and the results show that 

Arruda-Boyce model, Ogden model with certain constraint toward its parameters, and 

Sussman-Bathe model could produce correct simulation results. 

The stability of the rubber material models can affect their predictive capability 

greatly. Therefore, the newly available stability criterion in ADINA is re-derived and 

numerically verified through simulation tests in ADINA. If the material model is not 

stable, its corresponding parameters must be adjusted to achieve correct simulation 

results. 

The stability of all three major deformations is required to ensure a correct 

non-homogenous deformation. The stability of Mooney-Rivlin model is not good and 

it seems to be impossible to stabilize all three major deformations at the same time, no 

matter how the model constants are adjusted. For the Ogden model, the stability 

depends on the characteristics of its parameters. If all the products of α  and μ  are 

positive, then the Ogden model will be stable. However this is only a sufficient 

requirement and sometimes even when the products are not all positive, the Ogden 

model is still stable by numerical test results. Hence, the development of a sufficient 

and necessary condition to have a stable Ogden model is suggested for future study. 

Arruda-Boyce model has good stability because of its physical background. The 

stability of Sussman-Bathe model is greatly influenced by the uniaxial experimental 

data which the model is built on.  

The Sussman-Bathe model is so close to the experimental data that any noise in 
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experimental data will cause oscillation in the Sussman-Bathe model. Furthermore, 

due to the characteristics of cubic spline curve-fitting, which is employed in the 

Sussman-Bathe model, wiggles in stress-strain curves and stability curves may appear. 

Therefore, a smoothing algorithm is suggested to be included into the Sussman-Bathe 

model in future studies. 
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