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Abstract
This paper explores the idea of enriching maps with features predicted from GPS trajectories. More specifically, it proposes 
a method of classifying street intersections according to traffic regulators (traffic light, yield/priority-sign and right-of-way 
rule). Intersections are regulated locations and the observable movement of vehicles is affected by the underlying traffic rules. 
Movement patterns such as stop events or start-and-stop sequences are commonly observed at those locations due to traffic 
regulations. In this work, we test the idea of detecting traffic regulators by learning them in a supervised way from features 
derived from GPS trajectories. We explore and assess different settings of the feature vector being used to train a classifier 
that categorizes the intersections based on traffic regulators; also, we test several experimental setups. The results show 
that a Random Forest classifier with oversampling and Bagging booster enabled can predict the intersection regulators with 
90.4% accuracy. We discuss future research directions and recommend next steps for improving the results of this research.

Keywords  Intersection classification · Traffic regulator detection · GPS trajectories · Random forest

Zusammenfassung
In diesem Paper wird die Idee vertieft, eine Karte mit zusätzlichen Merkmalen zu erweitern. Dazu werden, auf Basis von 
GPS Trajektorien, Verkehrsregulatoren an Straßenkreuzungen prädiziert. Straßenkreuzungen sind regulierte Bereiche in 
denen das Verhalten von Fahrzeugen maßgeblich durch die zugrunde liegenden Verkehrsregeln beeinflusst werden. Durch 
diese Verkehrsregeln können spezifische Bewegungsmuster, wie z.B Stop-Ereignisse oder Start-Stop-Sequenzen, beobachtet 
werden. In dieser Arbeit werden Verkehrsregulatoren erkannt indem Merkmale aus GPS Trajektorien abgeleitet und auf eine 
überwachte Weise gelernt werden. In diesem Zusammenhang werden verschiedene Einstellungen in der Trainingsphase der 
Klassifikation getestet. Die Ergebnisse zeigen, dass ein Random Forest Klassifikator mit Oversampling and Bagging Booster 
eine Genauigkeit von 90,4 % bei der Klassifikation von den betrachteten Kreuzungsregulatoren erzielt. Anschließend werden 
weitere Forschungsrichtungen und mögliche nächste Schritte zur Verbesserung der Ergebnisse dieser Forschung diskutiert.

1  Introduction

Navigation maps are thematic maps that depict digitized 
information from city environment and are created to enable 
the fastest possible spatial orientation and navigation in the 
urban space both for humans and for autonomous vehicles. 

Obviously, a map can best serve such a purpose when it 
is accurate and the features depicted on it are semantically 
correct and up-to-date. A question that naturally arises is 
how maps can be updated at optimal time and cost. One 
idea is to utilize information from volunteers that agree to 
share their geo-footprints, created while using the infrastruc-
ture. These can then be collectively processed for extracting 
information that can either update current map features or 
enrich the map with new ones. With the increasing usage of 
mobile smart devices, the joint collection of information by 
volunteers—either opportunistic or participatory—known 
as crowd-sourcing has an increasing relevance and potential 
(Heipke 2010). Examples of crowd-sourced information are 
the measurement of atmospheric data (Muller et al. 2015), 
the measurement of rainfall (Fitzner and Sester 2016), or 
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the availability of parking spaces in an area (Urra and Ilarri 
2019; Rybarsch et al. 2017) as well as the detection of road 
traffic congestion (Dimri et al. 2019).

The regulation type of an intersection is important 
information for navigation to determine the path with the 
shortest travel time. Autonomous vehicles would also need 
such intersection-context information for using it during 
the complex decision making process at highly interactive 
locations, from a traffic participant point of view. Neverthe-
less, this information is yet largely missing in open-source 
maps, such as OpenStreetMap (OSM). The work presented 
in this paper is motivated exactly by this observation. In 
particular, the research question that is explored here is, how 
accurately can the traffic rules of intersections be detected 
by using “lightweight” crowd-sourced information such as 
GPS trajectories. We are especially interested in detecting 
regulator types, which so far remain underexplored, namely 
traffic lights (TL), yield (YS), priority (PS) and stop signs 
(SP), as well as uncontrolled intersections (UC). Priority 
signs indicate that a traffic participant is on a road of higher 
priority and all crossing roads are of minor priority. This 
regulation is always coupled with yield or stop signs at the 
crossing roads of the same intersection. Our approach inves-
tigates those regulator types for the different roadways of 
intersections.

We explore the research question stated above in the fol-
lowing way: in Sect. 2, we present related work, in Sect. 3, 
we describe the data and the method we used for the clas-
sification task, and in Sect. 4 we present the results. Discus-
sion of the results and future directions are given in Sects. 5 
and 6, respectively.

2 � Related Work

Recently, Zourlidou and Sester (2019) conducted a system-
atic literature review on methods that detect and identify 
traffic regulators from crowd-sourced data. By analyzing 
relevant articles, they underline the predictive ability of the 
detection methods (over 80% accuracy), the low diversity of 
the predicted classes within each study (i.e. mainly regulator 
types traffic lights and yield/priority) and the low percentage 
of studies that examine the cross-city applicability of their 
proposed methods (i.e. train in city X and test in city Y, to 
show the transferability of the learned models).

Meneroux et al. (2019) addressed the problem of detect-
ing traffic lights by suggesting a speed-profile-based method 
under a classification perspective. By testing three different 
ways of deriving features, they demonstrate that a functional 
description of speed profiles with wavelet transformation 
outperforms the other approaches (raw speed measure-
ments and image recognition technique). Additionally, they 
tested six different classification methods (Naiver–Bayes, 

K-Nearest Neighbors, Decision Tree, SVM, Random Ferns 
and Random Forest) and found that Random Forest yielded 
the best accuracy score (95%).

Zourlidou et al. (2019) proposed a supervised method 
(C4.5 Decision Tree) for intersection classification accord-
ing to traffic regulators based on the associated speed pro-
files at regulated locations. Each speed profile consisted 
of a sequence of speed logs in either constant time (every 
sec) or space (every meter) intervals. As speed logs they 
use accurate measurements of vehicle’s real speed acquired 
from vehicle’s CAN-BUS. The classifier is trained at inter-
sections of different regulation controls assigning uniformly 
the same label for all trajectories that cross an intersection 
of certain type of regulation. Then for predicting the label 
of an intersection, each trajectory’s speed profile is classi-
fied with the trained classifier and the predicted labels of all 
crossing trajectories per intersection are finally aggregated 
(major voting) to a single predicted label. The results show 
high recall (100%) for prediction of traffic light category; 
however, low precision (31%) and F measure (45.1%) mainly 
resulted from low performance on priority/yield category 
instances.

Qiu et al. (2018) detect stop signs, based on a prevalent 
characteristic of stopping at a stop sign: a deceleration fol-
lowed by an acceleration. Also, to distinguish between four-
way and two-way stop signs and between stop signs and 
traffic lights, they use crowd-sourcing and some heuristics: 
if there exists a stop segment S at intersection I, but do also 
exist k other traces with the same heading as S (where k is 
a small integer) and they do not contain a stop segment at 
I, no stop sign is located at I in that direction. For evalu-
ating the regulator detection, they examined two different 
scenarios: using on-board car sensors (yaw rate, steering 
wheel angle, brake/throttle position and inertial sensors) and 
mobile phone inertial sensors (gyroscope, magnetometer and 
accelerometer). Interestingly, they found that although the 
car-sensing approach uses more special sensors such as the 
brake and throttle (precision 93.24%, recall 83.78%), the 
phone-sensing has comparable precision (90.32%) and recall 
(85.71%). The lower precision of phone sensing is observed 
when a vehicle passes through a green light at speeds lower 
than a certain speed threshold, yielding false positives. Car-
sensing does not suffer from this problem as it uses the addi-
tional information from brake and throttle sensors. However, 
crowd-sensing regulators with phone-sensing gave qualita-
tively similar results to car-sensing data.

Carisi et al. (2011) propose a simple heuristic method to 
enrich digital maps with the location of stop signs and traffic 
lights, as well as the timing of the latter, using a small number 
of traces per road segment (five traversals per road segment 
for locating stop signs and seven traversals for locating traf-
fic lights and estimating their associate timing). They report 
accuracy of 90%. Moreover, Saremi and Abdelzaher (2015) 
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exploit map-based features derived from OSM, such as the 
speed rating of road segments, distance of one intersection 
to the next closest one, end-to-end distance, and category of 
street segments such as motorway, trunk, primary, secondary, 
tertiary, motorway link, primary link, unclassified, road, resi-
dential, or service. They use a Random Forest classifier to pre-
dict traffic regulators, examining two different feature-vector 
settings: using only map-based features and a combination of 
map-based features with trace-derived attributes (number of 
stops, traverse speed and stop duration). Their findings shows 
that using the richer feature vector, the classification accuracy 
increased to (97%).

The earliest relevant study has been proposed by Pribe 
and Rogers (1999) and concerns a method that uses a Neural 
Network (NN) for learning to associate the driver behavior 
with two types of traffic rules: traffic lights and stop signs. As 
input to the NN, they use the average and standard deviation 
of stop-event related features: the number of vehicle stops, 
total duration of all stops and last three stops (closest to the 
intersection). They also compute the percentage of traversals 
that include at least one stop for each road segment. A similar 
methodology is suggested by Hu et al. (2015). We consider 
this work as the most complete on the research domain we 
examine here and methodologically closest to the method we 
propose in this paper. In particular, they describe a supervised 
approach (Random Forest) as well as an unsupervised method 
(spectral clustering) for a three-class classification problem 
(stop signs, traffic lights and uncontrolled intersections). Both 
methods use a physical feature vector (final stop duration, 
minimum crossing speed, number of deceleration, number 
of stops, and distance from intersection) and a statistical one 
(minimum, maximum, mean and variance of the physical fea-
ture values) for describing the crossing behavior of vehicles 
at intersection locations. The reported accuracy is greater than 
90% in different feature, training and testing settings (various 
features subsets, proportions of available training/testing data).

The majority of studies focus mainly on traffic lights, stop 
signs and uncontrolled intersections; turning restrictions are 
a separate category. There is only one study (Zourlidou et al. 
2019), which investigates additional regulation types. The 
focus of the study presented here is the so-far underexplored 
subset of traffic rules, composed of traffic lights (TL), yield 
(YS), priority (PS) and stop signs (SP), as well as uncontrolled 
intersections (UC) where the right-of-way rule regulates the 
traffic. In Sect. 3, we introduce the methodological framework 
for detecting the aforementioned regulators, as well as the 
dataset used for testing the proposed method.

3 � Data and Methodology

3.1 � Dataset

The trajectories used in our study were self-collected with 
a mobile Android application (Geo Tracker). In total, 700 
trajectories were recorded during everyday car journeys 
in the period from December 2017 to March 2019. Our 
research area is located in Hannover (Germany), mainly 
focused at the northern part of the inner city and surround-
ing area (see Fig. 1). Each trajectory has a length between 
5 and 14 kilometers and the total length of all of them is 
3,748 kilometers.

In total, 1064 traffic road intersections are included in 
the used dataset. 717 of them are three-way intersections 
and 335 are four-way intersections. It is obvious that there 
is an imbalance in the number of examples for the different 
types, which influences the later processing steps. Priority-
signs are always observed together with either yield-signs 
or stop signs at the same intersection. However, due to the 
fact that not all approaching roadways are sampled equally 
with trajectories, the dataset has very few examples from 
yield- and stop sign regulated roadways. The distribution 
of samples according to the regulation type they sample 
and their membership to the complete/no-turnings dataset 
can be seen in Table 1.

We divided the dataset into two training datasets. The 
first set contains all trajectories (complete dataset), while 
the second one discards the turning trajectories (no-turn-
ings dataset) to eliminate a possible impact of the turn-
ings. Furthermore, we also investigated the influence of 
the number of traversals of an intersection. This parameter 
mainly has an effect on the number of contained samples, 
as well as the overall performance of the classification 
process. To include as many samples in the analysis as 
possible, we experimentally tuned this number to be small 
enough to keep the corresponding classification accuracy 
high. Nevertheless, as we show later, this procedure fur-
ther reduced the number of intersection roadways of the 
dataset that qualifies this minimum requirement.

3.2 � Learning Traffic Regulators

The flow diagram depicted in Fig. 2 shows the processing 
steps of the traffic regulation detection, from data selec-
tion to regulation prediction. In the first step, the GPS 
trajectories within a 100-m buffer around the intersections’ 
center are selected. For each intersection and for each trip 
(trajectory) that crosses that intersection, a set of differ-
ent physical features is computed. These physical features 
describe the behavior of vehicles when approaching the 
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intersection (compare description in Table 2). In addition, 
we have divided the intersections into their roadways to 
separate the regulations of each intersection entrance. 
The statistical features of each intersection roadway are 
extracted by analysing all the trajectories that cross that 
certain intersection approach. A more detailed explanation 
of the different physical and statistical features and their 
relationship is shown in Table 2. We adopt the distinction 
of features into these two categories from Hu et al. (2015).

Regarding the classification process, we tested different 
classifiers (Decision Tree, Random Forest, Support Vector 
Machine and Neural Network). For this purpose, we utilized 
the Python implementation in Scikit-learn (Pedregosa et al. 
2011). Without elaborate parameter adjustments (default 

Fig. 1   Research area in the 
northern part of Hannover 
showing the recorded trajecto-
ries (blue). Basemap: Open-
StreetMap (2019)

Table 1   Distribution of trajectories according to the regulator type 
they sample

a Priority-sign co-exists with either yield-sign or stop sign at an inter-
section

Type Complete dataset No-
turnings 
dataset

Traffic light 390 262
Uncontrolled 370 226
Priority-signa 568 449
Total 1328 937
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settings), the Random Forest outperformed the other clas-
sification techniques (compare Table 3) and was, therefore, 
selected for further experimentation of different condi-
tions and settings. Random Forest is an ensemble of Deci-
sion Trees where, once all predictors (Decision Trees) are 
trained, the ensemble makes a prediction for a new instance 
by simply aggregating the predictions of all predictors (see 
Fig. 3). The aggregation function is typically the most fre-
quent prediction among predicted classes by the predictors. 
The key concept behind the Random Forest classifier is that, 

instead of using a single predictor (a single Decision Tree on 
the training set), it trains several Trees on different random 
subsets of the training set via the bagging method (sampling 
from the training set with replacement) or sometimes pasting 
(sampling without replacement). That way each individual 
predictor has a higher bias than if it was trained on the origi-
nal training set, but by aggregating the results of all predic-
tors, the ensemble reduces both bias and variance, making 
Random Forest a very efficient classifier. To fine-tune Ran-
dom Forest’s hyperparameters, the grid search was used.

Due to the large imbalance in our dataset regarding the 
regulator types, we applied different oversampling meth-
ods in order to counter this effect. The three oversampling 
methods are random oversampling (Freund and Schapire 
1996), SMOTE—synthetic minority oversampling technique 
(Chawla et al. 2002) and ADASYN—adaptive synthetic 
sampling approach (He et al. 2008). The first one, random 
oversampling, performed better than others and was selected 
for our experiments in this paper. Additionally, we used the 
Bagging and the AdaBoost booster to further improve the 
accuracy of our results.Fig. 2   Workflow of the methodology consisting of the input data, pre-

processing and the classification process

Table 2   Overview of physical and statistical features as well as their definition

Name Definition Physical features Statistical features

Percentage standstill phases Percentage of traversals with at least one standstill phase – PctSP
Number standstill phases Number of standstill phases as a counter of stops and zero 

speed blocks of the trajectory while approaching the inter-
section center point

NumSP min, max, mean, var (NumSP)

Duration standstill phases Total duration of all standstill phases represented as the 
amount of time in seconds in which the trajectory contains 
a stop or zero speed block

DurSP min, max, mean, var (DurSP)

Distance standstill phases Mean of all distances to the intersection center point in case 
of the appearance of a standstill phase

DistSP min, max, mean, var (DistSP)

Duration last standstill phases Duration of the last standstill phase before crossing the inter-
section center point

DurLSP min, max, mean, var (DurLSP)

Distance last standstill phases Distance to the intersection center point during the last 
standstill phase before crossing the intersection center point

DistLSP min, max, mean, var (DistLSP)

Mean speed Mean speed of the trajectory while approaching the intersec-
tion

MeanS min, max, mean, var (MeanS)

Maximum speed Maximum speed of the trajectory while approaching the 
intersection

MaxS min, max, mean, var (MaxS)

Table 3   Overview of the performance of different classification 
methods using their default hyperparameter settings

a Mean k-fold accuracy with k = 5

Method Accuracy (%) k-Fold (%)a

Decision tree 60.65 60.47
Random Forest 69.92 69.11
Support Vector Machine 38.35 38.42
Neural network 56.64 56.77
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Additionally, we investigated the impact of the minimum 
number of crossing traversals per intersection roadway based 
on different accuracy measures. We experimentally found 
the optimal value for the minimum number of needed tra-
versals for both datasets, complete (14) and no-turnings (16). 
These values were found by iterating the minimum number 
of traversals and choosing the one with the highest accuracy 
and k-fold score having the smallest gap between them.

4 � Results

4.1 � Overview of the Results

When it comes to the results, only TL, PS and UC samples 
were analyzed based on the achieved accuracy score and 
the k-folds accuracy. The accuracy score is the relation of 
correctly classified samples and the total number of samples 
(Sokolova and Lapalme 2009). The k-fold cross-validation 
is a less biased measure and considers all slices of avail-
able data during the training and testing phases (Witten et al. 
2017).

An overview of the experimental setups and resulting per-
formance can be seen in Table 4. Overall, the experiments 
show that the accuracy is improved when omitting turning 

trajectories from the classification process. Moreover, the 
application of the random oversampling method as well as 
the application of booster methods, such as Bagging and 
Adaboost, further increase the accuracy by 3–4%.

When comparing the initial results of both datasets (see 
experiments A and B in Table 4), the difference is approxi-
mately 2% for the overall accuracy score (82.3% and 84.6%) 
and the mean k-folds accuracy (83.2% and 85.3%). The 
application of random oversampling (see experiment C and 
D in Table 4), leads to an increase in accuracy, whereas the 
mean k-folds accuracy remains the same for both datasets. 
Moreover, while the overall accuracy drops by 0.6% for the 
complete dataset, it does increase by 1.9% when using the 
no-turnings dataset. Thus, the difference between analyzing 
only straight intersection crossings vs all trajectories leads to 
an increase in accuracy of 5.5%. The applied booster meth-
ods only increase one of the respective accuracy measures: 
while the Bagging booster increases the overall accuracy to 
a maximum of 90.9%, the AdaBooster maximizes the mean 
k-folds accuracy at 88.0%.

In most cases the TL regulated intersections are success-
fully recognized. In contrast, PS is the most often misclassi-
fied regulator type since a minimum of 12% of the samples 
is misclassified as TL/UC intersection (compare Tables 5 
and 6). Additionally, using a bagging booster the correctly 
classified samples are increased.

4.2 � Feature Importance

The feature importance is derived through the impurity 
measure of each feature during the training process of the 
Random Forest. It is a measure of how well the subdivi-
sions at the single nodes of the Decision Tree of the Random 
Forest are executed. Therefore, the feature importance is a 
score indicating how valuable a feature is for the decision 
making process.

The feature importance histograms, depicted in Figs. 4 
and 5, for both datasets without random oversampling, 
show a distribution with similar peak features. These 
features are the percentage of trajectories with at least 
one stop (PcTSP), the mean of the total number of stops 

Fig. 3   A schematic depiction of the classification flow of Random 
Forest with three Decision Trees as predictors

Table 4   Experiment setups and 
resulting performances

a Random oversampling
b Mean k-fold accuracy with k = 5

Experiment Dataset Oversamplinga Booster Accuracy (%) k-Folds (%)b

A Complete No No 82.3 83.2
B No turnings No No 84.6 85.3
C Complete Yes No 81.0 83.2
D No turnings Yes No 86.5 85.3
E No turnings Yes Bagging 90.4 79.9
F No turnings Yes AdaBoost 84.8 88.0
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(meanNumSP) and the mean of the maximum speed 
(meanMaxS), additionally for the no-turnings dataset 
the mean of the mean speed (meanMeanS). Throughout 
all experiments, the features minimum number of stops 
(minNumSP), minimum duration of stops (minDurSP) and 
minimum duration of the last stop (minDurLSP) are the 
least important features.

After the application of the random oversampling meth-
ods, these histograms change for the complete data-set, 
while the no-turnings dataset keep the previous distribution, 
but with an importance gain for the predominant features 
and a loss for the inconspicuous features (see Figs. 6 and 7). 
This leads to the fact that the complete dataset has the domi-
nant features PctSP, min-DistSP, MeanDistSP, minDistLSP, 

Table 5   Confusion matrix of the no-turnings dataset using a minimum required number of 16 traversals for the classifier training (Experiment B, 
left) and additionally using the random oversampling (Experiment D, right)

In % PS TL UC

PS 85 10 5
TL 15 85 0
UC 16 0 83

In % PS TL UC

PS 85 10 5
TL 15 85 0
UC 8 0 92

Table 6   Confusion matrix of the no-turnings dataset using a minimum required number of 16 traversals for the classifier training, as well as 
using random oversampling and Bagging booster (Experiment E, left) or AdaBoost booster (Experiment F, right)

In % PS TL UC

PS 85 10 5
TL 5 95 0
UC 8 0 92

In % PS TL UC

PS 88.5 12.5 0
TL 20 80 0
UC 14 0 86

Fig. 4   Feature importance his-
tograms for complete dataset
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varMeanS and meanMaxS. This distribution differs when 
using the no-turnings dataset. Here the features related to the 
distance have lower impact. Furthermore, the speed-related 
features (meanMeanS and maxMaxS) as well as the mean 
number of stops (meanNumSP) show a higher importance.

5 � Discussion of the Results

A surprising finding of this study is that the speed-related 
features have a higher importance than the stop duration 
or stop-distance-related features. This might originate from 
the influence of the traffic flow during the data collection 

process. We assume that stops are not only enforced by 
intersection regulations but also by the interaction with 
other traffic participants (parking or turning maneuvers, 
etc). Therefore, the characteristics of stop events can partly 
lose their significance in the classification. This finding also 
makes this study distinct from other related studies, which 
are methodologically similar, e.g. (Hu et al. 2015), however, 
do not use such speed related features (mean and maximum 
crossing speed).

The increased accuracy when using only no-turning sam-
ples can have various explanations as well. Often intersec-
tions have separate lanes for turning vehicles. Such intersec-
tions may have a different regulator type for the turning right 

Fig. 5   Feature importance his-
tograms for no-turnings dataset.

Fig. 6   Feature importance 
histograms for complete dataset 
with oversampling enabled
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lane (YS for the turning lane and TL for the rest). We assume 
that this special setup influences the behavior at the intersec-
tions. Moreover, when a vehicle is turning, it may need to 
stop to give priority to bicycles or pedestrians (according 
to the German Traffic Code). This could lead to a change 
in the movement behavior of the entering vehicle (having 
priority over other participants). As a result the movement of 
the vehicle could reflect a non-priority movement behavior.

When we investigate the correlation of the TL and PS 
regulated samples we need to recapitulate the fact that a TL 
regulated intersection has two phases. The first phase is the 
red light phase which indicates a similar behavior as for a SP 
regulated intersection. The second phase is the green light 
phase where the same vehicle behavior can be expected as 
for a PS regulated intersection. This allows us to explain the 
higher correlation of TL and PS. One could argue to treat the 
TL as two different regulator types. One for the traffic light 
green (TL-G) and the other for the traffic light red (TL-R). 
However, such treatment would require ground truth data 
which are difficult to obtain.

In conclusion, comparing our result with the only existing 
study that detects the same regulator types (Zourlidou et al. 
2019), our proposed method performs better (accuracy score 
90.4% vs 83%).

6 � Conclusions and Outlook

In this paper, we presented a method to classify more than 
two intersection regulator types based on features which can 
be derived from GPS trajectory data. For the regulator types 
PS, TL and UC, the achieved accuracy is over 90%.

To further improve our approach, additional samples 
especially for the highly undersampled regulator types 
(namely, YS and SP) need to be collected. Moreover, 
it should be further explored whether a more dynamic 
approach for the data point selection can improve the per-
formance (our method selects to process GPS trajectories 
within a fixed buffer around the intersection locations). By 
considering only GPS points from the previous to the current 
intersection, we can ensure that only relevant data points 
for a current intersection will be used in the classification 
process.

Additionally, by exploring features’ importance, features 
of low importance can be dropped from the analysis. Moreo-
ver, we can use specific feature combinations implemented 
by other authors (Hu et al. 2015) to compare the results.

The current approach classifies each incoming intersec-
tion roadway independently from the other roadways of the 
same intersection. The regulation of a whole intersection, 
however, follows certain rules, which can be used to vali-
date (and possibly correct) an individual classification. In the 
case of an intersection where three of four roadways are pre-
dicted as TL, the last one should be corrected to TL. In our 
experiments this could not be applied due to data limitations.

Concerning the challenges of the approach, we identify as 
such the sparsity of the trajectory data as the most prominent 
aspect of the problem as they were collected in an opportun-
istic way (no instructions were given to the driver regarding 
where and how to drive). Instead, the collected data rep-
resent a natural driving behaviour and route preferences 
selected from the driver himself. Characteristic of the latter 
is the uneven sampling of the road segments. Nevertheless, 
our findings show that a minimum number of traversals per 
intersection approach must be met to achieve high accuracy.

Fig. 7   Feature importance his-
tograms for no-turning dataset 
with oversampling enabled
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Due to the sparsity of the trajectory data we have not 
explored possible time dependencies that may be valid 
between the sampled data and the classification result. A 
larger set of samples might uncover stop-duration (or num-
ber of stops) vs. time dependencies, but we do not expect 
such patterns to influence the classification.

As an interesting direction for future exploration, we sug-
gest to include map-based information as additional features 
to improve the classification results for the intersection regu-
lators. One example could be the distance between the cur-
rent and the previously crossed intersection. This distance 
may add extra contextual information of the surrounding 
area, which can be a distinctive indicator for regulator types 
(e.g. a low distance between intersections could be indicative 
of non traffic light regulations).

Moreover, vehicle cameras could be included to receive 
visual information of the surrounding area. The problem of 
traffic sign recognition is a widely explored research topic. 
Therefore, visual information could be used as support or 
validation evidence of our approach’s findings. That way 
the accuracy might be raised up close to 100% to make it 
suitable for applications relevant for autonomous driving.

Last we mention as an extra aspect for consideration, 
the idea to examine (crowd-sourced) pedestrian trajectories 
complementary to vehicle trajectories, so that the problem 
of resolving the traffic regulation of a location to be tackled 
using evidence from different types of traffic-participants.
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