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Abstract

Models based on factors such as size or value are ubiquitous in asset pricing.
Therefore, portfolio allocation and risk management require estimates of the
volatility of these factors. While realized volatility has become a standard tool
for liquid assets, this measure is difficult to obtain for asset pricing factors such
as size and value that include smaller illiquid stocks that are not traded at a
high frequency. Here, we provide a simple approach to estimate the volatility of
these factors. The efficacy of this approach is demonstrated using Monte Carlo
simulations and forecasts of the market volatility.
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1 INTRODUCTION

Volatility permeates finance. It is central for everything
from risk management to asset allocation. The fact that
volatility is unobserved therefore poses a special challenge
to practitioners that has been alleviated by the increased
availability of high-frequency data and the advent of real-
ized volatility, which led to major improvements of volatil-
ity estimates relative to GARCH models. For economy
wide risk factors, such as the size and value factors used
in asset pricing, however, obtaining high-frequency data
proves to be difficult, so that one still relies on models
based on squared returns (cf. e.g. He, Zhu, & Zhu, 2015;
Moreira & Muir, 2017).

In this paper we propose a methodology to overcome
this issue and estimate factor volatility with a precision
comparable to that of realized volatility estimates. This
is achieved by constructing approximate high-frequency
returns of the respective risk factors.

There is a wide consensus that the cross section of asset
returns is best described by factor models that proxy for
economy wide risk factors. In addition to the established

market, size, and value factors of Fama and French (1993),
and the momentum factor of Carhart (1997), a plethora of
anomalies has been uncovered in the literature that largely
failed to attain the status of additional factors (cf. Stam-
baugh & Yuan, 2016). Recently, Fama and French (2015),
Hou, Xue, and Zhang (2015), and Stambaugh and Yuan
(2016) suggest investment, profitability, and mispricing
factors that subsume a large proportion of these anomalies.

In a simplified form these factors are constructed
as follows. First, all stocks in the asset universe are
sorted according to some firm characteristic. Then, two
value weighted portfolios are formed from those stocks
whose firm characteristics fall into the highest and low-
est x%-quantile. The factor return is then obtained as the
return from buying one of these portfolios and selling the
other.

For risk management and portfolio formation purposes
it is, however, not only the return but also the volatility
of these factors that is of interest. Return volatility is a
key variable for the pricing of options, speaks directly to
the risk-return trade-off central to portfolio allocation, and
even finds its way into government regulations.
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For liquid individual assets the unobservability of
volatility has been alleviated through the increased avail-
ability of high-frequency data and the advent of realized
volatility. Given that returns of the asset can be observed
frictionless in arbitrarily small time intervals, realized
volatility provides a consistent estimate of the quadratic
variation of the stock return. For a review of these concepts
cf. Andersen and Benzoni (2009).

While this approach is straightforward for individual
assets, the calculation of realized volatilities for empiri-
cal asset pricing factors is challenging. This is because
the COMPUSTAT and CRSP data bases that are typi-
cally used to construct the factor returns do not provide
high-frequency data. To calculate realized factor volatili-
ties, it would therefore be necessary to match the stocks
in these data bases with those from a high-frequency data
provider.

This is the approach considered by Aït-Sahalia, Kalnina,
and Xiu (2019). It is, however, not straightforward.
High-frequency data is typically only available for the
most liquid stocks that are traded regularly in short
time intervals. The CRSP portfolios that are used to con-
struct empirical factor models, on the other hand, con-
tain much more illiquid stocks that are simply not traded
often enough to calculate realized volatilities. Further-
more, high-frequency data bases are not necessarily free of
survivorship bias, and finally — even if these hindrances
would not exist — the matching of data bases typically con-
stitutes a large effort and there tend to be non-negligible
matching errors.

Practitioners or researchers that need to estimate factor
volatilities therefore either use squared returns as a volatil-
ity measure as for example in Moreira and Muir (2017),
or estimate the underlying volatility process through a
GARCH model as for example in He et al. (2015). Both
approaches have major drawbacks. Squared returns pro-
vide an unbiased but inconsistent estimate of the true
variance and were the standard measure considered in
the GARCH literature prior to the emergence of realized
volatility. It is, however, well known that squared returns
are extremely noisy. Andersen and Bollerslev (1998) show
that, despite the high degree of persistence in stock return
volatility, even the true model is only able to explain five
to ten percent of the daily fluctuation in squared returns.
Volatility estimates based on GARCH models, on the other
hand, have a lower variance, but they are biased and incon-
sistent if the model is misspecified.

The main contribution of this paper is therefore to pro-
pose an estimation method for factor volatility that is close
in precision to realized volatility. Our approach is appli-
cable whenever the researcher has access to daily factor
return series and some high-frequency data base. The idea
is to approximate the factor return using a linear combi-

nation of the returns in the data base. In the first step, an
appropriate linear combination is estimated using ridge
regression. In the second step, the bias of the approxi-
mate factor is corrected, before the realized volatility of this
approximate factor is calculated and used as an estimate
for the volatility of the actual factor.

The details of this procedure are discussed in Section 2.
We demonstrate the validity of our approach in a Monte
Carlo study in Section 3. The empirical validity and use-
fulness of this approach for the estimation and prediction
of volatility is demonstrated in Section 4. First, we ana-
lyze the relationship between our estimate and the squared
returns for the factors considered by Fama and French
(2015) and Carhart (1997) and show that both are esti-
mates of the same underlying volatility process. Second,
we consider the example of the market factor where we
can use the realized volatility of the S&P 500 to evaluate
the accuracy of volatility forecasts. Here, we find that using
our measure improves forecasts of the factor volatility con-
siderably compared to squared returns and GARCH-type
models. Conclusions are discussed in Section 5.

2 ESTIMATING FACTOR
VOLATILITY

If asset returns are driven by a given factor model, then it
holds true that the return of each asset is a linear combi-
nation of the returns of these factors and an idiosyncratic
error term. Since our procedure is based on daily and
high-frequency data, we assume that expected stock and
factor returns are zero, so that they do not contain risk
premia.

According to this model, the return of asset i at time t,
rit = Pit

Pit−1
− 1 with Pit being the price of the asset at t, is

given by

rit =
K∑

k=1
Λik𝑓kt + 𝜀it. (1)

Here, fkt is the return of factor k = 1, … ,K at time t, Λik
is the loading of the ith asset on the kth factor, 𝜀it ∼ (0, 𝜎2

𝜀 ),
and i = 1, … ,N. It is assumed that the 𝜀it have limited
cross-sectional and serial dependence and that they are
independent of all the Λik and fkt.

Conversely, it follows that the return of each factor can
be approximated by a linear combination of the asset
returns. For suitable 𝛽 ik, we therefore have

𝑓kt =
N∑

i=1
𝛽ikrit + 𝜈kt, (2)

where 𝜈kt represents the approximation error which can
be expected to be small for large N, since the idiosyncratic
errors 𝜀it in (1) average out.
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The rationale behind this approach becomes clear if we
rewrite model (1) for a vector of N assets. With Rt =
(r1t, … rNt)′, Ft = (f1t, … , fKt)′, Λi = (Λi1, … ,ΛiK)′, 𝜀t =
(𝜀1t, … , 𝜀Nt)′ and Λ = (Λ1, … ,ΛN)′, we obtain Rt = ΛFt+
𝜀t. If Λ was known (and Λ′Λ invertible), we could estimate
Ft, by (Λ′Λ)−1Λ′Rt = Ft + (Λ′Λ)−1Λ′𝜀t = Ft + 𝜀∗t .

Since Λ is N × K, and 𝜀t is N × 1, 𝜀∗t is K × 1. Therefore,
every element of 𝜀∗t is a weighted average of the innova-
tion terms 𝜀1t, … , 𝜀Nt and the vector 𝜀∗t converges to zero
by a suitable law of large numbers (cf. Stock & Watson,
2011 for a related discussion of cross-sectional averaging
and statistical factor models).

The coefficient vector 𝛽k = (𝛽1k, … , 𝛽Nk)′ in (2) cor-
responds to the kth row of the matrix (Λ′Λ)−1Λ′. Since
the returns fkt of the observed factors are readily available,
the problem in estimating 𝛽k is that it is N dimensional
and therefore potentially very variable if the number of
observed days T is not large enough. In fact, it is likely
that N > T in empirical applications, so that standard
estimation methods cannot be applied.

Our objective is not to recover which stocks are part of
the portfolios that are used to derive the factor returns.
Instead, we want to obtain a good approximation of the
factor returns in terms of mean squared error (MSE). We
therefore resort to regularization and estimate 𝛽k using
ridge regression. The estimator is given by

𝛽k = arg min
𝛽1k ,… ,𝛽Nk

⎧⎪⎨⎪⎩
T∑

t=1

(
𝑓kt −

N∑
i=1

𝛽ikrit

)2

+ 𝛾

N∑
i=1

𝛽2
ik

⎫⎪⎬⎪⎭ , (3)

with 𝛾 > 0. This is a least squares estimator with an addi-
tional penalty term that shrinks the coefficients towards
zero. The size of the penalty term depends on the param-
eter 𝛾 that can be selected using cross validation. Here,
we select 𝛾 so that the out-of-sample mean squared error
between the observed and estimated factor is minimized
in 10-fold cross-validation. While the introduction of the
penalty term introduces some bias, the rationale behind
ridge regression is that for suitable 𝛾 , the reduction in vari-
ance outweighs the size of the bias, so that 𝛽k is more
accurate than the OLS estimator in terms of the mean
squared error. Moreover, 𝛾 lowers the effective degrees of
freedom, so that N > T is permitted if 𝛾 is sufficiently large.

Holding the weights 𝛽k in the linear combination con-
stant then allows to obtain approximate high-frequency
factor returns. Denote the m-th of M intraday returns of
stock i on day t by r(m)

it , then the m-th intraday return of
factor k on day t is given by

𝑓
(m)
kt =

N∑
i=1

𝛽ikr(m)
it . (4)

This allows for a realized-volatility-type estimation of
the daily factor volatility Vkt.

The approach is subject to two sources of bias. On the
one hand, regularization shrinks the coefficients towards
zero so that the volatility is underestimated. On the other
hand, the variance of the coefficient estimates can be trans-
lated to the volatility estimate, which causes a positive bias.
To correct for these biases, we include an auxiliary regres-
sion step. We calculate the predicted daily values of the
factors 𝑓kt = 𝛽′kRt based on (2) and then use ordinary least
squares to estimate 𝑓kt = 𝛿𝑓kt + 𝜂kt, where 𝜂kt is assumed
to be a mean-zero martingale difference sequence. Since
Vkt = 𝛿2Var(𝑓kt) + 𝜎2

𝜂k
, we can use the estimated coeffi-

cient 𝛿 and the residual variance estimate 𝜎̂2
𝜂k

to correct for
the bias.

Consequently, an unbiased estimator for Vkt analogous
to realized volatility (RV) is given by

V̂kt = 𝛿2
M∑

m=1

(
log𝑓 (m)

kt + 1
)2

+ 𝜎̂2
𝜂k
. (5)

We refer to V̂kt as the Ridge-RV estimator.1

To summarize, our method proceeds as follows:

1. Regress the daily factor return fkt on the daily returns
of the N stocks in the data base to obtain the coefficient
vector 𝛽k from (3).

2. Estimate the auxiliary regression model 𝑓kt = 𝛿𝑓kt + 𝜂kt.
3. Obtain estimates 𝑓 (m)

kt of the intraday returns of the fac-
tors using (4).

4. Estimate the volatility of the factor from the estimated
intraday returns 𝑓

(m)
kt and the estimated coefficients 𝛿

and 𝜎̂2
𝜂k

using the Ridge-RV estimator in (5).

It should be noted that it is not necessary to have
high-frequency returns of all stocks that are part of the
original portfolios used to construct the asset pricing fac-
tors. As long as the assumed empirical asset pricing model
is a linear factor model and it is a good approximation
of the true underlying process, a large number of stocks
should have non-zero loadings on the factor. For example,
the return of the size factor can be estimated from large
stocks that have negative loadings on the size factor.
High-frequency observations of small illiquid stocks are
not required.

1Note that when speaking of volatility, some researchers refer to the vari-
ance and others to the standard deviation of asset returns. By defining
V̂kt as in (5), we implicitly follow Andersen and Benzoni (2009) and
Aït-Sahalia, Mykland, and Zhang (2011) and refer to volatility as the vari-

ance of asset returns. Performing the analyses in Section 3 and 4 for
√

V̂kt

leads to qualitatively similar results.
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3 MONTE CARLO SIMULATION

To demonstrate the validity of the Ridge-RV estimator, we
conduct a simulation study that is tailored to resemble the
setup in the empirical applications in Section 4.

It is well known that stock volatilities tend to have long
memory and are well described by fractionally integrated
processes (cf. Andersen, Bollerslev, Diebold, & Labys,
2001). A fractionally integrated process Xt is given by

(1 − B)dXt = vt, (6)

where B defined by BXt = Xt−1 is the lag operator, vt is a
short memory process, and −1∕2 < d ≤ 1. The fractional
difference operator (1 − B)d is defined in terms of general-
ized binomial coefficients. For details confer the original
contributions of Granger and Joyeux (1980) or Hosking
(1981). A process that fulfills (6) — such as the well known
ARFIMA model — is referred to as I(d). Standard short
memory processes are included for d = 0 and unit root
processes are obtained for d = 1.

To resemble these long-memory patterns in the daily
volatilities Vkt of the K factors, we use the long-memory
stochastic volatility framework of Breidt, Crato, and De
Lima (1998) and simulate T daily observations (with 250
burn-in observations) for each factor using

Vkt = exp(Xkt), with Xkt ∼ ARFIMA(0, d, 0).

The log-volatilities therefore follow a fractionally inte-
grated model. Applying the exponential function guaran-
tees that all volatilities are positive. The Vkt obtained this
way are used as the true daily volatilities.

Based on these, we subsequently draw M intraday fac-
tor returns 𝑓 (m)

kt
iid∼ N (0,Vkt∕M) for each day and factor. The

daily factor returns are obtained as
∑M

m=1 𝑓
(m)
kt , so that they

have volatility Vkt. Using these intraday factor returns, we
can simulate intraday returns of N stocks. In analogy to
Equation (1), the mth return of stock i at day t evolves as

r(m)
it =

K∑
k=1

Λik𝑓
(m)
kt + 𝜀

(m)
it ,

with 𝜀
(m)
it

iid∼ N
(
0, 𝜎2

𝜀∕M
)

being a noise component. As for
the daily factor returns, daily stock returns are obtained as
the sum over the M intraday returns so that rit =

∑M
m=1 r(m)

it .
All parameters are chosen such that the situation in our

empirical application in Section 4 is replicated as closely
as possible. This means we consider K = 6 factors whose
correlation matrix matches the correlation matrix of the
market, size, value, profitability, investment, and momen-
tum factors considered there, we chose the memory
parameter d to be 0.6 for all factors as the literature sug-
gests the memory parameter of volatility to be in this
region (cf. Wenger, Leschinski, & Sibbertsen, 2018), we

simulate M = 78 intraday returns which corresponds to
five minute stock data, the factor loadings Λik used for the
simulation of stock returns are given by regression esti-
mates of the factor loadings of N = 500 randomly chosen
stocks that were in the S&P 500 at some point in the last
20 years, and 𝜎2

𝜀 evolves as the residual variance of this
regression. Moreover, we set T = 750.

Based on this simulated data we then apply the proce-
dure described in Section 2 based on Equations (3) to (5).
Using the intraday factor returns 𝑓

(m)
kt , we can also com-

pute the actual realized volatility. As a comparison, we
further fit a GARCH(1,1) and a FIGARCH(1,d,1) model
and we consider the squared daily factor returns as an
estimate of Vkt, too.

The results from 1,000 Monte Carlo repetitions can be
found in the upper panel of Table 1 that shows the bias
compared to the true volatility Vkt and the root mean
squared error (RMSE) of all the procedures considered.
The results are qualitatively similar for all factors and indi-
cate RV and Ridge-RV to be the best estimators of the true
volatility process. They are both unbiased and exhibit a
similar degree of variance resulting in comparable RMSEs.

The squared returns are unbiased, but their large vari-
ance leads to an RMSE that is several times larger than
that of the Ridge-RV estimator. The GARCH model cannot
remedy the noise problem, and is biased since it does not
allow for long memory but the data generating process is
I(d). The FIGARCH model achieves an improvement since
it allows for long memory, but it is still too noisy resulting
in a RMSE six times that of the Ridge-RV estimator.

As a robustness check we repeat the same simulation
but with a stochastic volatility ARMA(1,1) process, since
it is still often assumed that short-memory GARCH-type
models allow for an accurate description of the volatility
process. The parameter values used for the simulation are
obtained via estimation of an ARMA(1,1) for the respective
Ridge-RV series.

The results are shown in the lower panel of Table 1. It
can be seen, that Ridge-RV still performs comparable to the
infeasible RV estimate and it is considerably better than
the competitors. In situations where the intraday returns
of a portfolio cannot be observed, the Ridge-RV estimator
is therefore the best available choice.

4 VOLATILITY ESTIMATION AND
FORECASTING

In the following, we consider the market (MKT), size
(SMB), and value (HML) factors included in the 3-factor
model of Fama and French (1993), the profitability (RMW)
and investment (CMA) factors added in the 5-factor model
of Fama and French (2015), and the momentum factor
(MOM) included by Carhart (1997). These factors are com-
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TABLE 1 Simulation results: RMSE × 1000 and Bias × 1000 for different volatility estimation approaches

F1 F2 F3 F4 F5 F6
ARFIMA(0,d,0)

RV RMSE 1.042 1.195 1.088 1.278 1.612 1.238
Bias 0.002 -0.005 0.007 0.000 -0.011 -0.006

Ridge-RV RMSE 1.046 1.202 1.082 1.322 1.611 1.235
Bias 0.002 -0.011 0.001 0.016 -0.016 -0.014

Squared Return RMSE 8.383 9.787 8.708 12.188 12.486 10.163
Bias 0.000 0.014 -0.041 0.073 0.103 -0.010

GARCH(1,1) RMSE 8.337 10.401 8.717 13.266 14.237 10.738
Bias 0.998 1.234 1.042 1.440 1.708 1.234

FIGARCH(1,d,1) RMSE 6.257 7.424 6.460 8.207 9.079 7.811
Bias 0.020 0.019 -0.039 0.053 0.113 0.002

ARMA(1,1)
RV RMSE 0.440 0.440 0.435 0.440 0.439 0.439

Bias 0.001 -0.000 -0.001 0.000 0.001 0.001
Ridge-RV RMSE 0.435 0.463 0.440 0.477 0.452 0.450

Bias 0.005 -0.022 -0.021 -0.013 0.021 -0.020
Squared Return RMSE 3.792 3.838 3.735 3.760 3.709 3.752

Bias 0.002 0.012 -0.005 0.002 -0.008 -0.002
GARCH(1,1) RMSE 2.215 2.212 2.201 2.225 2.212 2.216

Bias 0.007 0.016 -0.001 0.006 -0.005 0.000
FIGARCH(1,d,1) RMSE 2.221 2.224 2.207 2.232 2.217 2.220

Bias 0.010 0.021 0.002 0.011 -0.002 0.004

Note. The true volatility processes of the six factors (F1, F2,..) evolve as Vkt = exp(Xkt),with Xkt ∼ ARFIMA(0, d, 0) respectively
Xkt ∼ ARMA(1, 1). Moreover, the correlation matrix of the simulated processes matches the correlation matrix of the six factors
considered in the empirical application.

monly used in the asset pricing literature and their validity
is widely accepted. Daily returns of these factors are freely
available on the homepage of Kenneth R. French.

In addition to the daily factor returns we require daily
stock returns rit and high-frequency returns r(m)

it for the
estimation of (2) and the calculation of approximate
5-minute factor returns 𝑓 (m)

kt from (4).
Since it is common to calculate realized volatilities from

5-minute returns, we extract five-minute prices of all
stocks that were part of the S&P 500 at some point between
1996 and 2017 from the Thomson Reuters Tick History data
base. This results in a total amount of 1,367 stocks that
are considered. Since high-frequency data is often sub-
ject to minor recording mistakes, it is common practice
to apply some form of data cleaning. Here, we adopt the
approach of Barndorff-Nielsen, Hansen, Lunde, and Shep-
hard (2009), which comprises, among other things, the
removal of observations with negative stock prices and
abnormal high or low entries in comparison to other obser-
vations on the same day.

Due to the long time span, it cannot be expected that
the coefficients 𝛽 ik stay constant over time. The loading
of individual stocks on factors can change as competitors
are acquired that have a different exposure to market risk,
small firms grow into large firms, and growth stocks turn
into value stocks as companies mature. We therefore con-
duct the estimation of the coefficient vector 𝛽k according

to (3) in a rolling window of size W. For the factors MKT,
SMB, HML, and RMW which are based on firm charac-
teristics that are relatively stable over time we set W =
750. The factors MOM and CMA that are based on more
dynamic features are estimated in a window of size W =
125. Results for other values of W are qualitatively similar
and available upon request.

To demonstrate the empirical validity of our factor
volatility estimates, the next section shows a number of
model diagnostics. Afterwards, Section 4.2 demonstrates
that volatility forecasts can be improved by using our mea-
sure.

4.1 In-sample volatility estimates
and model diagnostics
When trying to evaluate the performance of the Ridge-RV
estimator, we face the problem that the true volatility pro-
cess is unobserved and realized volatilities are not available
for the factors. Only squared returns can be observed. We
therefore consider a number of model diagnostics that
demonstrate the satisfactory performance of our proce-
dure, before turning to the application in Section 4.2.

Figure 1 plots the logarithms of the squared returns and
our volatility estimate over time. Two main observations
can be made. First, our measure is comoving with the
squared factor returns, which is a first indication that both
measures estimate the same underlying volatility process.
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FIGURE 1 Time series plots of the logarithms
of Ridge-RV and squared returns for the six
factors [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Ridge regression results: coefficient of
determination R2 in percent for the ridge regression as
considered in (2)

MKT SMB HML MOM RMW CWA
R2 98.63 88.68 88.78 90.10 88.42 89.71

Larger values of the squared factor returns are associ-
ated with larger values of the Ridge-RV and vice versa.
This holds for all factors and all time periods. Second, the
Ridge-RV appears to be far less perturbed than the squared
returns.

The Ridge-RV estimate is based on the approximation
of the factor of interest by a linear combination of stock
returns. If this approximation in (2) is sufficiently accu-
rate, so are those in (4) and (5). A first indication of the
quality of the estimate can therefore be obtained from the
coefficients of determination R2 in a regression of fkt on
𝑓kt. Table 2 shows that the measure is above 88% for all of
the six considered factors indicating a high precision of the
estimates.

Since squared returns and Ridge-RV are both estimates
of the same unobserved volatility process, they can both
be understood as differently perturbed versions of it. An
approach to test the validity of the Ridge-RV estimator in
this empirical setup is therefore to test for fractional coin-
tegration between the squared returns and V̂kt. Fractional
cointegration is a natural generalization of cointegration
to fractionally integrated series. Two time series Xt and Yt
are said to be fractionally cointegrated, if both are I(d) and
there exists a linear combination Xt − 𝛼 − 𝛽Yt = ut, so that
ut is I(d − b) for some 0 < b ≤ d. As in standard cointe-
gration, both series must be highly persistent and they are
(fractionally) cointegrated if a linear combination of them
has reduced persistence. The extension lies in the fact that
the reduction of persistence does not have to be from I(1)
to I(0), but can be from I(d) to I(d − b).

When modeling volatility time series it is common prac-
tice to work with the log of the volatility series since it is
better approximated by the normal distribution (cf. Ander-
sen et al. 2001). If log Vkt denotes the true volatility process,
then log 𝑓 2

kt = log Vkt+𝜔kt and log V̂kt = log Vkt+𝜂kt, where
𝜔kt and 𝜂kt are the respective estimation errors. Therefore,
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TABLE 3 Fractional cointegration test results: test statistics and critical values for the tests by Chen and
Hurvich (2006) (CH) and Souza et al. (2018) (SRF)

MKT SMB HML MOM RMW CMA
CH 4.438 2.542 3.673 4.923 1.897 4.780 (1.697)
SRF 3.807 1.381 3.020 3.263 2.751 3.770 (1.960)

Note. Here, the null of no fractional cointegration between log-squared returns and log-Ridge-RVs is tested against the
alternative of fractional cointegration. The values in brackets are critical values at the five percent level,

if log Vkt is I(d), then V̂kt can only be a reasonable estima-
tor of log Vkt, if it is fractionally cointegrated with log𝑓 2

kt,
so that log V̂kt − log 𝑓 2

kt = 𝜂kt − 𝜔kt is I(d − b).
To formally test the hypothesis of fractional cointegra-

tion between both volatility measures, we apply the tests
of Chen and Hurvich (2006) and Souza, Reisen, Franco,
and Bondon (2018) for the null hypothesis of no fractional
cointegration. Under the alternative a fractional cointegra-
tion relationship exists.

Table 3 reports the results of the tests. As expected from
Figure 1, the test by Chen and Hurvich (2006) rejects
the null of no fractional cointegration for all factors and
the test by Souza et al. (2018) rejects the null for all fac-
tors, except for the size factor. Therefore, we can conclude
that squared returns and Ridge-RV are fractionally cointe-
grated.

All of the statistics presented so far show that our
Ridge-RV estimator works well. However, as discussed
above, the evidence provided is indirect, since the actual
volatility process is unobserved. For the market factor,
we can, however, conduct one experiment that provides
insight into the actual accuracy of the Ridge-RV estimate.
Even though we do not have realized volatilities for the
market factor, it is well known that the value weighted
CRSP return, which is generally regarded as the best avail-
able market proxy, is highly correlated with the return of
the S&P 500. The correlation coefficient is about 99 per-
cent, meaning that the direction of the variation and its
scaling over time is essentially the same. For the S&P 500 it
is possible to obtain intraday prices, meaning that we can
calculate realized volatilities. Consequently, we can com-
pare our estimate of the market volatility with the realized
volatility of the S&P 500. As Andersen and Benzoni (2009)
stress, the realized volatility is the natural ex post measure
of the underlying volatility process to consider. Figure 2
shows that the two measures are close to identical. In fact,
they have a correlation of 91.4 percent, are fractionally
cointegrated, and regressing our volatility estimate on the
realized volatility yields a slope of 0.99, even though it is
significantly different from 1.

We therefore conclude that our estimate is appropri-
ate for describing the volatility of the market factor. Even
though the results in Tables 2 and 3 indicate that the pro-
cedure works slightly better for the market factor than for
the other factors, the degree of precision obtained for the

market implies that the Ridge-RV should still be a good
estimate for the volatility of the other factors.

It should be noted, however, that the procedure is based
on the assumption that the factors under consideration are
actually relevant for the cross section of stock returns. This
may be an issue if one wishes to apply the procedure to any
of the many weak factors discussed in the literature.

4.2 Out-of-sample forecasts of market
volatility
For portfolio allocation and risk management purposes,
accurate forecasts are needed in addition to ex post and
on-line estimates of the factor volatility. In this section
we therefore compare the performance of forecasts using
squared returns and GARCH-type models with those using
Ridge-RV.

When trying to evaluate these forecasts, we again face
the problem that the true factor volatility is unobserved.
As shown by Andersen and Bollerslev (1998), consider-
ing squared returns as a proxy for the true factor volatility
when evaluating volatility forecasts is not suitable since
the tremendous amount of noise in the return generating
process inevitably causes a poor performance of the fore-
casting models. On the other hand, it seems tautological
to show superior performance of our Ridge-RV measure
when considering it as the true factor volatility. We there-
fore proceed as in the previous section and conduct a
forecast comparison for the volatility of the market factor,
where we can use realized volatilities of the S&P 500 to
proxy for the true factor volatility. This makes for a fair
comparison, since both types of models (Ridge-RV and
models based on squared returns) do not use the realized
volatilities of the S&P 500 in any way.

The Ridge-RV is predicted using the HAR model of Corsi
(2009). We refer to this forecast as the HAR-Ridge-RV
model. As a benchmark, we also consider the standard
HAR-RV model, which is possible for the market but
not for the other factors. It can thus be interpreted as
the “infeasible” model that we try to approximate when
predicting factors such as SMB, HML, or others. As fea-
sible benchmark models we include a GARCH(1,1) and
due to the long range dependence in factor volatility we
also use a FIGARCH(1,d,1) model, as proposed by Baillie,
Bollerslev, and Mikkelsen (1996), fitted to the squared

275



BECKER AND LESCHINSKI

FIGURE 2 Both plots display the Ridge-RV
estimate of market factor volatility and the true
volatility of the market factor approximated by
the realized volatility of the S&P 500. While the
left plot shows the two measures over time, the
right plot displays a scatter plot [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 4 Forecast results: RMSE ×103, QLIKE, and R2 from Mincer-Zarnowitz regressions for the competing
models and different forecast horizons

1-Step 5-Step 22-Step
RMSE QLIKE R2 RMSE QLIKE R2 RMSE QLIKE R2

GARCH(1,1) 0.211 0.298 0.492 0.171 0.238 0.596 0.181 0.259 0.513
FIGARCH(1,d,1) 0.222 0.299 0.444 0.168 0.230 0.606 0.175 0.250 0.535
HAR-RV 0.175 0.215 0.603 0.120 0.195 0.745 0.113 0.248 0.710
HAR-Ridge-RV 0.175 0.220 0.608 0.123 0.196 0.731 0.120 0.240 0.664

Note. GARCH and FIGARCH use squared returns to forecast the market factor volatility, HAR-Ridge-RV uses the Ridge-RV estimate,
and HAR-RV uses the true volatility given by the realized volatility of the S&P 500.

returns. All estimations are carried out in a rolling window
of 750 observations.

For the evaluation of the forecasts, we consider the
RMSE and the QLIKE loss function, since Patton (2011)
shows that these are the only commonly used measures
that preserve the true ordering of the forecasts if they
are evaluated on a perturbed volatility proxy. Further-
more, we report the coefficient of determination R2 from
Mincer-Zarnowitz Mincer and Zarnowitz (1969) regres-
sions given by

1
h

h∑
𝑗=1

RVt+𝑗 = b0 + b1
1
h

h∑
𝑗=1

V̂t+𝑗 + ukt.

Here, RVt+j is the observed volatility approximated by the
realized volatility of the S&P 500, V̂t+𝑗 is the predicted
volatility based on all information available in t, h is the
forecast horizon, and ukt is an error term. Consequently,
larger values of R2 imply that the forecasts are performing
better in predicting the true volatility.

Table 4 shows the results of this forecasting exercise for
1-step, 5-step, and 22-step forecasts. It can be seen that for
all forecasting horizons and for all evaluation measures,
the HAR-Ridge-RV model performs better than all of the
models based on squared daily returns. For 1-step fore-
casts, for example, the RMSE ×103 of the HAR-Ridge-RV
model is 0.175, QLIKE is 0.220, and the R2 is 0.608, while
for the GARCH(1,1) model, which is the best model using
squared returns, the RMSE ×103 is 0.211, QLIKE is 0.298,
and the R2 is 0.492. Due to the averaging, the forecast-
ing performance of the models becomes slightly better on

longer horizons. The ranking of the models, however, stays
the same.

When comparing the forecasts based on our volatility
estimate with the HAR-RV forecasts based on the realized
volatility of the S&P 500, it can be seen that the two models
deliver qualitatively similar results.

Consequently, forecasts based on Ridge-RV achieve their
objective to approximate those that are obtained if real-
ized volatilities are available and they strongly outperform
forecasts of the market volatility compared to models using
squared returns. For factors other than the market, where
realized volatilities are not available, they can therefore be
expected to provide results that are far better than standard
approaches.

5 CONCLUSION

Although the volatilities of economy wide risk factors such
as the size and value factors of Fama and French (1993)
are of importance for risk management and portfolio allo-
cation purposes, the development of methods for their
estimation has lagged behind that for liquid individual
assets or indices, where intraday returns are available.

The Ridge-RV approach suggested in this paper circum-
vents the lack of high-frequency data for factor returns
and provides a volatility measure that is closely related to
realized volatility. This is achieved by approximating the
daily factor returns by a linear combination of the returns
of assets for which intraday returns are available. Holding
the weights in the linear combination constant then allows
to obtain approximate high-frequency factor returns that
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are the basis for the estimation of the factor volatility. Due
to the large number of parameters in the linear combina-
tion that have to be estimated, it is necessary to apply a
regularized estimation method such as ridge regression.

This approach to estimate the factor volatility is subject
to two sources of bias. On the one hand, regularization
shrinks the coefficients towards zero so that the volatil-
ity is underestimated. On the other hand, the variance of
the coefficient estimates can be translated to the volatility
estimate, which causes a positive bias. To correct for these
biases, we include an auxiliary regression step.

The subsequent applications to the market, size, value,
momentum, investment, and profitability factors demon-
strate that the proposed measure performs well in prac-
tice and outperforms competing approaches such as
GARCH-type models. We therefore find that adopting
the proposed approach has the potential for significant
improvements in asset allocation decisions and risk man-
agement.
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