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A B S T R A C T

Quantum Sensors, like atom interferometers (AI), can be employed for

high-precision measurements of inertial forces, including their appli-

cation as gravimeters, gradiometers, accelerometers, and gyroscopes.

Their measurement principle relies on ultracold atoms that are pre-

pared in quantum-mechanical superposition states in external degrees

of freedom. These states can be prepared by a momentum transfer of

a Raman laser. Then the superposition state senses the effect of an in-

ertial force, which induce a corresponding relative phase. The phase is

read out by a final coupling which converts the interferometric phase

into a atom number difference between the two states. The difference

provides an estimate of the interferometric phase and the correspond-

ing quantity of interest. The quantum mechanical noise of the atomic

ensemble cause a fundamental uncertainty of this estimation, which I

analyze for generic AIs. For small atomic densities, the quantum phase

noise of the ensemble limits the interferometric sensitivity. For large

densities, quantum number fluctuations generate density fluctuations,

which generates phase noise. I show that these two competing effects

result in an optimal atom number with a maximal interferometer reso-

lution. Squeezed atomic samples allow for a reduction of the quantum

noise of one quantity at the expense of an increased noise along of a

conjugate quantity. Phase and number are such quantities which obey

to a variant of Heisenberg’s uncertainty principle. Neither phase nor

number squeezing can improve the maximal interferometer resolution.

As one main result of this thesis, I show how an optimal squeezing

in between number and phase squeezing, allows for a fundamental

improvement. I evaluate possible experimental paths to implement

the proposed protocol.

Concepts for a squeezing-enhanced operation of external-degree

AIs have not yet been demonstrated. I propose and implement an

atomic gravimeter, which is designed to accept spin-squeezed atomic

states as input states. The interferometer is designed such that the

interferometer couplings are performed in spin space, while the phase

accumulation is performed in momentum states. For this interferome-

ter, the squeezed input can be directly obtained from spin dynamics

in spinor Bose-Einstein condensates. The main noise contributions in

the experiment are analyzed, which results in a factor of 84 above

the relevant quantum limit, preventing a squeezing enhancement so

far. I outline a suppression of the main noise source, uncontrolled

AC Stark shift on the squeezed mode and propose future important

applications, including test of spontaneous collapse theories and an

improvement of large-scale, high-precision gradiometers.
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1
I N T R O D U C T I O N

The understanding of nature improved a lot in the last decades by

high precision measurements. Two main pillars of our modern under-

standing are quantum mechanics and general relativity which were

founded in the beginning of the 20th century. The description of gen-

eral relativity [1] is relevant for macroscopic scales, where on the other

hand quantum mechanics [2, 3] describe the wave behavior and the

quantized energy on the microscopic scale. The most precise measure-

ments nowadays are conducted with wave interference experiments.

One example would be a long baseline laser interferometer like the

"Laser Interferometer Gravitational Wave Observatory" (LIGO), which

is used to measure gravitational waves predicted by Albert Einstein.

This experiment directly observed a gravitational wave in 2015 [4].

Each of the two detectors measured a differential length variation with

a peak amplitude of ∆L/L = 1.0 ∗ 10−21. The LIGO detectors were

already limited by the quantum projection noise, which they over-

come with the use of squeezed states of light [5, 6]. The Heisenberg

uncertainty principle states that it is not possible to exactly know the

velocity and the position of a quantum particle at the same time. For

an electromagnetic wave this principle also holds with the amplitude

and the phase of the wave. That can be displayed by a classical state, a

coherent state, where both quadratures have the same size, which can

be imagine as a disk in a 2-D coordinate system. The squeezing is now

reducing the quadrature in on direction, by increasing it in the other

one, which turns the disk into an ellipse. The reduced quadrature is

then used for the interferometric measurement.

But interferometers can not only be constructed with light, they

can also be designed with massive particles. This interferometers can

be used to prob a different frequency range of gravitational waves

than light interferometers [7]. Massive particles can also be used

to measure time and inertial quantities to a up to now unreached

precision. The time is nowadays defined in the International System of

Units (SI) by the hyperfine transition between the two ground levels of

Cesium. Optical atom clocks, which are atomic clocks that use optical

transitions in the atoms, already reached a instability of 6.6 ∗ 10−19 [8].

These levels of precision would allow the measurement of local gravity

effects by comparing two clocks, whose frequencies are changed by

gravity, the so called gravitational red-shift. The gravitational red shift

says that a clock runs faster or slower depending on the gravitational

potential that it experience. These clocks are limited by the standard

quantum limit (SQL) if the states are not squeezed which can be

3



4 introduction

overcome by using squeezed states. Squeezing can also be used instead

of other methods to increase the stability of the clocks, like the increase

of the particle number of used particles which may be limited by

technical reasons. An example of a squeezed clock better than the

standard quantum limit was shown earlier in our group [9].

Another way to use an atom interferometer is the measurement

of an acceleration like the g-factor of Earth’s acceleration. In such

an interferometer, the atoms would be the wave and the light would

act as a beamsplitter or mirror, which is like the reverse setup of a

laser interferometer. To improve such an atom interferometer, there are

different ways like the increase of the atom number in the ensemble

or a longer interrogation time. As an example, an atom interferometer

with a baseline of 10m, the "very long baseline interferometer", is built

in Hannover. However, the length of a baseline and other factors can

be technically limited. Then, squeezing could further increase the sen-

sitivity of the atom interferometer. Up to now, it is not experimentally

shown how entanglement can be implemented in an atom gravimeter.

For such a gravimeter, the momentum states of the atom interfer-

ometer need to be squeezed. There is the possibility to generate the

squeezing directly in the momentum states or to transfer it to them

from a generation in the internal states. There are different methods

to generate the squeezing as for example atom-light interactions and

atomic collisions. The creation of entangled pairs in the external degree

of freedom was shown with Helium[10, 11] and Rubidium [12]. As an

alternative, the entanglement can be generated between the two spatial

modes in a double well potential [13, 14]. These techniques are not well

suited for a measurement with a high atom number (entangled pairs)

or have a problem with the individual access (double well potential).

Therefore we can use atom-light interactions. It was used to generate

squeezing in laser-cooled samples [15–17] or gas cells [18, 19]. The

best squeezing of 20.1dB was shown by using atom-light interaction

of an atomic ensemble in a cavity [20]. These results where shown in

thermal atomic ensembles and not in Bose-Einstein condensates (BEC),

which are beneficial for a longer interrogation time due to the lower

expansion rates of the condensate. Therefore, atomic collisions in a

Bose-Einstein condensate, which can be used to generate entangled

states by using non-linear effects, should be used.

The most promising technique for entanglement on internal states

with the necessary parameter for an gravimeter is the creation of

entanglement in the internal states. It can be generated by one-axis

twisting (OAT) by exploiting the different collisional properties of two

spin states [21, 22]. A second way is the use of spin changing collisions

(SCC) to generate twin-Fock states [23, 24] or spin-squeezed states [9,

25–27]. In this work, SCC is considered to be the most beneficial

method for our experimental setup.
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To use the squeezed states in an high precision atom interferometer,

other effects need to be taken into account. At high atom numbers,

that is the density shift of the phase due to a high atom number in

the BEC, which can lead to a relative phase shift between the two

path of the atom interferometer. That can be counteracted by choosing

the right squeezing angle to counteract the twisting caused by the

density shift. I will show how to calculate this optimal squeezing

angle and will also present a scheme that is made to use this optimal

squeezing. Furthermore, i will show a realization of the scheme which

shows the measurement of the acceleration of Earth, with a 3-mode

interferometer approach. This allows us to analyses the influence of

external parameters and noise to the signal. Especially the relative

phase between the 2 of the 3 modes is analyzed, due to their strong

influence on the signal contrast.

This work is structured in the following way: In the second chapter,

the fundamentals of atom interferometry are explained. Furthermore,

the effect of different types of momentum transfer for a beamsplitter is

discussed. In the third chapter the fundamental limits of an atom inter-

ferometer such as the shot noise and density limit are explained. The

noise for a realistic interferometer setup is calculated and discussed,

as well as which generation technique for an entangled state is the

most promising at the moment. The chosen techniques for generation

of entanglement are explained and described theoretically in chapter 4.

Two possible geometries for inertially sensitive atom interferometers

are developed and explained, each for a different entangled input

state. The fifth chapter explains the full experimental setup and the

interferometric setup in detail. The improvements in the setup since

the work of B. Lücke [28] are described and finally the influence of

the different technical noise sources is investigated. In chapter 6 the

results are presented and discussed also in the context of technical

noise and fundamental limits. The final chapter 7 gives a conclusion

of this work and an outlook for what the results in this work can be

used and what could be further possible improvements.





2
F U N D A M E N TA L S O F AT O M I N T E R F E R O M E T RY

For the understanding of entanglement in atom interferometers it is

important to consider the basics of atom-atom and atom-light interac-

tions and the basic structure of different atom interferometers. These

will be explained in this chapter.

Figure 2.1: Classical interferometer

The input port has N particles and the second input port is empty.

The first beamsplitter creates a superposition of state one (upper path)

and state two (right path). In the upper path, a phase shift ϕ is

applied. Due to the second beamsplitter the both path interfere with

each other. That results in a change of the mean atom number in 〈N↑〉
and 〈N↓〉 at the output ports, depending on the relative phase ϕ.

A classical atom interferometer can be understood as an analogon to

the light interferometer. Instead of having N photons at an input port,

we have N particles there. The atoms are than split into two separated

clouds by an beam splitting process. They will accumulate a relative

phase shift to each other, shown by ϕ in Fig. 2.1. After a second beam

splitting, which interfere the two particle clouds, the particle numbers

can be measured at the two output ports. Due to the relative phase

shift, the number difference at the output ports change.

This phase shift can now be caused by different sources. We need to

differentiate between atom interferometers on the internal degrees of

freedom and the external ones. On the internal degrees of freedom a

phase shift can be caused by a detuning between the internal energy

levels, where the transfers are done. This will be explained in Sec. 2.4.

On the external degrees of freedom a relative phase shift can be

caused by a spatial distance between the two particle clouds. Due

to a different momentum of the clouds they can seperate and then

be at different positions. There they can experience different external

7



8 fundamentals of atom interferometry

potentials which cause the phase shift. It is possible to have phase

shifts from external and internal degrees of freedom in the same

interferometer.

2.1 ensembles of 2-mode atoms

First we define an orthonormal basis for a 2-mode particle. The basis

can be a spin-up state (|↑〉) and a spin-down state (|↓〉). They are here

oriented along the z-axis, so |↑〉 on the north pole and |↓〉 on the south

pole of the Bloch sphere, shown in Fig. 2.9. These are the eigenvalues

of a spin measurement of the spin operator sz. The full Bloch sphere

is defined by the expectation value of the three spin operators sx, sy, sz

measuring along the corresponding axes [29]. The operators can be

written as

sx =
1

2
(|↓〉|↑〉+ |↑〉|↓〉) (2.1)

sy =
1

2i
(|↓〉|↑〉 − |↑〉|↓〉) (2.2)

sz =
1

2
(|↑〉|↑〉 − |↓〉|↓〉). (2.3)

They can be also written in dependency of the Pauli matrices σk as

sx =
1

2

(

0 1

1 0

)

=
1

2
σx (2.4)

sy =
1

2

(

0 −i

i 0

)

=
1

2
σy (2.5)

sz =
1

2

(

1 0

0 −1

)

=
1

2
σz. (2.6)

The operators also fulfill the commutator relation

[sk, sl ] = iǫklmsm. (2.7)

Now, the basis of |↑〉 and |↓〉 can be used to describe every possible

superposition of a pure spin state, as a function of θ and ϕ,

|ψ〉 = a|↑〉+ b|↓〉 = eiϕ/2cos

(

θ

2

)

|↑〉+ e−iϕ/2sin

(

θ

2

)

|↓〉, (2.8)

with 0 ≤ ϕ < 2π as the relative phase and 0 ≤ θ < π as the ratio

between |↑〉 and |↓〉. Therefore, the expectation values of the spin

operators are

〈~s〉 =









〈sx〉
〈sy〉
〈sz〉









=
1

2









sin(θ)cos(ϕ)

sin(θ)sin(ϕ)

cos(θ)









. (2.9)
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Figure 2.2: Single spin state representation on the Bloch sphere

A single spin state~s can be described on a Bloch sphere. It is

visualized by a cone around 〈~s〉, which is the mean orientation

(orange vector) of~s. Because the spin length |~s| =
√

s(s + 1) of is

longer than the mean it constructs the cone. The differences between

the mean and the side lengths span the gray disk on the surface of the

Bloch sphere. The mean direction is described in polar coordinates in

dependency of θ and ϕ.

That allows to display every expectation value of~s on the surface of

the Bloch sphere in Fig. 2.9 and is also the same style as a standard

polar coordinate system with a radius of r = 1
2 . The length of these

vectors is |〈~s〉| = 1
2 for a pure spin state and the vectors lie on the

surface of the Bloch sphere. But the length of the spin |~s| defined by

quantum mechanics differs from the length of the expectation value

of the spin . It is

|~s| =
√

〈~s2〉 =
√

s(s + 1) =

√

3

4
, (2.10)

which is longer than the expectation value. Therefore, it is possible

to represent the spin as a cone on the Bloch sphere, where the area

on the sphere is defined by fluctuations of the other spin components.

This is caused by the non-vanishing commutator relations in Eq. 2.7.

This leads to Heisenberg-like uncertainty relation of the operators

(∆sl)
2(∆sm)

2 ≥ 1

4
|〈sn〉|2, (2.11)

with l, m, n can be x, y, z in any permutation.
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+ + =

b)

+ + =

a)

anti-symmetric

Figure 2.3: Order of a collective spin

a) In a pure multi-particle spin state of Bosons, all spins are pointing

in the same direction, they are symmetric and indistinguishable. Then,

the collective spin length is maximal Jmax = N
2 . b) In a mixed state the

spins can be also be ordered anti-symmetrical and be distinguishable,

therefore the collective spin length is in general not maximal.

This description of a single spin can now be extended to a multi-

spin description with a Bloch sphere for the sum of the spins. This

collective spin ~J can be calculated as

~J =
N

∑
k=1

~s(k), (2.12)

with N as the particle number and ~s(k) as the individual spins. The

collective spin operators J also follow the commutator relation Eq. 2.7,

which is

[Jl , Jm] = iǫlmn Jn. (2.13)

Therefore also the uncertainty is Heisenberg related as

(∆Jl)
2(∆Jm)

2 ≥ 1

4
|〈Jn〉|2, (2.14)

with l, m, n as a permutation of x, y, z in the same reference system as

for the single spin. This is now a multi-particle Bloch sphere, where

the length of ~J is approximated by

√

〈~J2〉 =
√

J(J + 1) ≈ J, (2.15)

with the approximation that the particle number N is high, which is

usually the case in our experiment. Calculating now the maximum
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spin length Jmax for a symmetric spin state (shown in Fig. 2.3a) ) leads

to Jmax = N
2 , by using Eq. 2.12 and s = 1

2 . Therefore, the Bloch sphere

has a radius of N
2 . Concluding from the uncertainty relation 2.13, the

collective spin state is described as a cone, similar to the single spin

description. The fluctuations can be described by assuming that they

are uncorrelated, therefore (∆Jx)2 = (∆Jz)2, with the assumption that

the vector is pointing in the direction of the Jy-axis. Then we use

Eq. 2.14 with Jmax = N
2 which leads to

(∆Jz)
2(∆Jz)

2 ≥ 1

4
|〈Jy〉|2 =

1

4

(

N

2

)2

⇒ (∆Jz)
2 ≥ 1

2

N

2

⇒ ∆Jz ≥
√

N

2
, (2.16)

which is a lower bound for the noise, the so-called shot-noise limit. In a

measurement with the employed basis, the Jz-axis is a measurement of

the difference between the spin up and the spin down state. Therefore

is

∆Jz =
1

2
∆(N↑ − N↓). (2.17)

That leads to the minimal noise in a measurement of

∆(N↑ − N↓) = 2∆Jz =
√

N, (2.18)

which shows the particle number dependency of the shot-noise limit.

For a non-symmetric state the spin length can be smaller than Jmax,

therefore the cone can end inside the Bloch sphere and not on the

surface, this shortened cone is depicted in Fig. 2.3b). A perfect BEC

with indistinguishable particles is a symmetric state.

The collective spin operators can be written in the following form [30,

31]:

Jx =
1

2
(a†b + b†a)

Jy =
1

2i
(a†b − b†a)

Jz =
1

2
(a†a + b†b), (2.19)

where a, a† are the bosonic annihilation and creation operators for

a spin up particle |↑〉 and b, b† respectively for a spin down state

|↓〉. This will be helpful for the description of the different entangled

states.

2.2 interferometer input states

In our experimental setup, we have two sorts of interferometer input

states that can be combined with each other. There are the internal
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states in the spin domain and the external states in the momentum

domain. The input states for the momentum domain will be always

a freely falling BEC in this thesis. The different input states will be

generated in the internal degrees of freedom and then transferred

to the external ones. Therefore the internal state can be chosen as a

classical or a non-classical state.

As shown in the section before, the interferometer states can be

displayed on the multi-particle Bloch sphere, where a classical state is

represented by a disk on the surface. As an example the measurement

of the number of particles in |↑〉 and |↓〉 is a projection onto the Jz

axis, therefore the fluctuation in this direction should be as small as

possible, which is ∆(N↑ − N↓) =
√

N for a classical state as shown

in Eq. 2.18. This limit can be overcome with squeezing i.e. reducing

the fluctuations in one direction, e.g. the z-axis at a cost of higher

fluctuations in the y- or x-direction. In the following, a few example

states are shown.

Jz

Jx

Jy

a)
Jz

Jx

Jy

b)

Figure 2.4: Squeezed states at the Bloch sphere

a) Squeezed vacuum state on a multi-particle Bloch sphere. The

coherent state is squeezed around the Jx-axis of the Bloch sphere. b)

Twin-Fock state with vanishing width in Jz direction and undefined

phase, which is displayed by the complete ring around the equator of

the Bloch sphere.

A squeezed vacuum state is a squeezed state where the expectation

value of the quadratures remain zero. It can be employed in interfer-

ometry by coupling it to the empty input port instead of squeezing

the main port with a large number of particles. This has the benefit

that the gain of squeezing can be reached without the challenge of

generating squeezing in a large amount of atoms. For a classical state,

the vacuum port of an interferometer input is empty, for the squeezed

vacuum state this port is weakly populated by squeezed atoms. This

can be displayed by an ellipse on the multi-particle Bloch sphere, as

shown in Fig. 2.4a).

A twin-Fock state have a vanishing width in Jz direction and unde-

fined phase, shown in Fig. 2.4b). This makes a twin-Fock state a highly
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sensitive state for interferometry if the squeezed direction (here Jz) is

used to sample the phase information with a higher sensitivity than a

classical state.

2.3 beamsplitters and phase shifts

2.3.1 Spin domain

The manipulation of states can be shown on Bloch spheres. Here I will

explain a beam splitter and a phase shift on the multi-particle Bloch

sphere as an example.

The beam splitter brings a particle in one of the two starting spin

states (|↑〉 and |↓〉) into a superposition state. This can be understood

geometrically on the Bloch sphere as a rotation around the sx-axis or

sy-axis [30], as an example we will choose here the sx-axis. That leads

to

~s(k) =









s
(k)
x

s
(k)
y

s
(k)
z









=









1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

















s
(k)
x

s
(k)
y

s
(k)
z









(2.20)

for a single particle with the spin~s(k), with θ as defined before. The

description is similar for the multi-particle Bloch sphere because the

collective spin ~J is only the sum of the single spins~s(k) (see Eq. 2.12).

Therefore the beam splitter for the multi-particle spin can be described

as

~J =









Jx

Jy

Jz









=









1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

















Jx

Jy

Jz









. (2.21)

In the interferometer sequence I will use a 50:50 beamsplitter which is

reached at an angle of θ = π
2 .

For our interferometer, a relative phase shift is necessary to measure

the desired quantity which will be imprinted onto the phase. A relative

phase on the multi-particle Bloch sphere is depicted similarly to the

beam splitting by a rotation. This time the rotation is around the

Jz-axis. This can be written as

~J =









Jx

Jy

Jz









=









cos(ϕ) −sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1

















Jx

Jy

Jz









, (2.22)

with ϕ as defined before for the angel in the Jx, Jy plane on the multi-

particle Bloch sphere.

The combination of multiple of these two operations to the full inter-

ferometer sequence will be shown now. To describe the full sequence
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we need a beam splitter operation, a phase shift and again a beam

splitter operation. These matrices multiplied with each other, leads to

~J =









Jx

Jy

Jz









=









cos(ϕ) 0 sin(ϕ)

0 1 0

sin(ϕ) 0 −cos(ϕ)

















Jx

Jy

Jz









. (2.23)

Each of the operation beam splitter and phase shift can consist of

multiple parts in the experimental sequence, e.g. a transfer in the

internal states and on the external states.

2.3.2 Momentum domain

In the previous subsection, the description of a beam splitter and

a phase shift in the spin domain was explained. It is also possible

to describe both in the momentum domain. In Sec. 2.4 the technical

implementation of the beam splitting and phase shifting process will

be explained.

It is possible to describe the operations in the basis of two momen-

tum states similar to Eq. 2.21 and Eq. 2.22. The difference is, that

instead of spin up |↑〉 and spin down |↓〉), two momentum states are

the basis for the description, |0〉 = 0h̄k and |1〉 = +2h̄k. These different

momenta will then lead to a spatial splitting of the two clouds.

They also have the same uncertainty relation as the spin states 2.18

which means that they also need to be displayed as a disk on the

surface of the Bloch sphere. In the phase shift description, the differ-

ence is that the particles could be influenced by an external potential

difference which defines the phase instead of the detuning between

the two spin states. An example would be the potential difference

of gravity, when the the two particle clouds are on different heights

compered to earth. This results then in an extra phase shift. This will

be shown in more detail in Sec. 2.4. These two ways to sample a phase

(detuning of internal energy levels and external potential) need to be

kept in mind if we construct the interferometer sequence.

It is possible that during an interferometer sequence a phase is

sampled from the detuning of the internal states and also from the

gravitational potential difference. If both of these phases are variable,

it would make it more complex to recalculate the external acceleration

back from the phase. For the planed interferometers the internal phase

shift is a fixed value. This cause only an offset to the phase that is

sampled due to the gravitational potential difference.

2.4 implementations

Now we come to a more experimentally focused description of how

to implement a beam splitter or a phase shift in our experiment in the

different domains.
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2.4.1 Microwave beam splitter

F=2

F=1

-2 -1 0 +1 +2m =F

a) b)

|g, n+1> |e, n>

|g, n+1>|e, n>

|δ/2|

0

δ>0δ<0

|δ/2| |δ/2|

|δ/2|

Figure 2.5: Dressed state picture and dressing MW.

a) The energy difference of the bare states |g, n + 1〉 and |e, n〉 is δ

without coupling to a dressing field. The relation of the bare states to

the 0 line depends on the sign of δ (dashed line, only guide to the

eye). b) In our experiment we use a strong detuned microwave field to

couple the |F = 1, mF = −1〉 state with the |F = 2, mF = −2〉 state.

This coupling generate the dressed states which are the eigenstates of

the Hamiltonian with microwave coupling. They can be written as a

superposition of the bare states.

For the implementation of a beam splitter in the spin domain we

can use a microwave coupling pulse. First, the system of dressed and

bare states will be introduced to explain how the transfer and the

dressing works, because the system of dressed states is necessary to

explain the generation of entanglement in Sec. 4.2. Then, it will be

simplified again to explain the case of microwave transfer.

To describe the change in energy difference between two states

due to the influence of a microwave field, the dressed state picture

can be used. This is used in many cold atom experiments [26, 32–

34]. The energy levels of a 87Rb BEC can be shifted by coupling the

hyperfine levels by a detuned microwave signal with a frequency ω.

We use a microwave dressing in the experiment on the |F = 1, mF =

1〉 ↔ |F = 2, mF = 2〉 transition as shown in Fig. 2.5b) to enable spin

dynamics which will be described in chapter 4. There I will also give

an explanation why this transition is chosen. As an example we use

the state of an atom in the Zeeman level F = 1, mF = 1 as the ground

state |g〉 and the excited state |e〉 is in the Zeeman level F = 2, mF = 2.

The energy difference between these two states is ω0 = Ee − Eg and ω

is close to ω0.

For a system without any coupling between the microwave signal

and the atoms, the bare states |g, n〉 and |e, n〉 are the eigenstates

of the system, with n as the number of microwave photons. When

the microwave frequency is exactly the same ω = ω0, the states
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|ψg〉 = |g, n + 1〉 and |ψe〉 = |e, n〉 have the same energy and are

coupled by the microwave. The detuning δ = ω − ω0 of the microwave

frequency results in a corresponding energy difference h̄δ of these two

states. The zero energy is chosen in a way that it is between the two

levels and the states have the energy ± δ
2 as shown in Fig. 2.5a).

With the bare states as a basis, the Hamiltonian [29] of the effective

two-level atom in a microwave field is

H =
1

2

(

δ Ω

Ω −δ

)

(2.24)

with the resonant coupling Ω between the two states, depending on

the microwave power P, because Ω ∝
√

n ∝
√

P. Then the bare states

are not longer the eigenstates of the Hamiltonian, because of the

coupling of the microwave field to the bare states. Instead the new

eigenstates of the system are the dressed states

|ψ+〉 = sin

(

φ

2

)

|g, n + 1〉+ cos

(

φ

2

)

|e, n〉

|ψ−〉 = cos

(

φ

2

)

|g, n + 1〉 − sin

(

φ

2

)

|e, n〉 (2.25)

with φ = tan−1
(

Ω
δ

)

. The energies of these eigenstates are then

E+ = +
1

2

√

Ω2 + δ2

E− = −1

2

√

Ω2 + δ2. (2.26)

This means that the bare states are no longer degenerate and change

to the dressed states which have an energy difference of Ω at δ = 0.

Now we calculate the energy shift for the dressed states ∆Eg and

∆Ee. For this the energies of the corresponding bare states Ee = − δ
2

and Eg = + δ
2 are subtracted from the dressed states, which results in

∆Eg = +
1

2

√

Ω2 + δ2 − δ

2
= +

δ

2

(
√

Ω2

δ2
+ 1 − 1

)

(2.27)

∆Ee = −1

2

√

Ω2 + δ2 +
δ

2
= − δ

2

(
√

Ω2

δ2
+ 1 − 1

)

. (2.28)

The sign of these shifts depends on the sign of the detuning δ, as

depicted in Fig. 2.5a), because the term in the brackets will always

be positive. For a microwave frequency ω < ω0, the detuning is

negative δ < 0, and the energy difference Ee − Eg is increased by

the dressing, because the ground state and the excited state are both

shifted away from the zero line. Contrary, for a detuning δ > 0, the

energy difference is reduced by the dressing.
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microwave transfer It is also possible to transfer atoms be-

tween the internal energy states. During the state preparation in the

experiment, we employ resonant microwave pulses with a detuning

δ = 0. Then, the bare states |ψg〉 and |ψe〉 can be expressed by the

dressed states |ψ−〉 and |ψ+〉 using Eq. 2.25 and zero detuning

sin

(

φ

2

)

= cos

(

φ

2

)

=
1√
2

, (2.29)

because of φ = tan−1
(

Ω
0

)

= tan−1 (∞) = π
2 . This leads to

|ψg(t)〉 = sin

(

φ

2

)

|ψ+(t)〉+ cos

(

φ

2

)

|ψ−(t)〉

=
1√
2
|ψ+(t)〉+

1√
2
|ψ−(t)〉 (2.30)

|ψe(t)〉 = cos

(

φ

2

)

|ψ+(t)〉 − sin

(

φ

2

)

|ψ−(t)〉

=
1√
2
|ψ+(t)〉 −

1√
2
|ψ−(t)〉. (2.31)

The time dependence [29] of the dressed states follows from the

Heisenberg equation of motion

ih̄
∂

∂t
ψ± = Hψ± = ±Ω

2
ψ±, (2.32)

by using Eq. 2.26 and can be then expressed by

|ψ+(t)〉 = e−it Ω
2 |ψ+〉 (2.33)

|ψ−(t)〉 = eit Ω
2 |ψ−〉. (2.34)

Using Eq. 2.25, the bare ground state can be written as

|ψg(t)〉 =
1√
2

e−it Ω
2 |ψ+〉+

1√
2

eit Ω
2 |ψ−〉

=
1√
2

(

e−it Ω
2

1√
2

(

|ψg〉+ |ψe〉
)

+ eit Ω
2

1√
2

(

|ψg〉 − |ψe〉
)

)

=
1

2

(

|ψg〉
(

e−it Ω
2 + eit Ω

2

)

+ |ψe〉
(

e−it Ω
2 − eit Ω

2

))

= cos

(

tΩ

2

)

|ψg〉 − i sin

(

tΩ

2

)

|ψe〉. (2.35)

Respectively, the excited state becomes

|ψe(t)〉 =
1√
2

e−it Ω
2 |ψ+〉 −

1√
2

eit Ω
2 |ψ−〉

= −i sin

(

tΩ

2

)

|ψg〉+ cos

(

tΩ

2

)

|ψe〉. (2.36)

This is also a description for a beamsplitter, which shows that we can

use the microwave transfer as an beamsplitter.



18 fundamentals of atom interferometry

Now, we want to see the time evolution of the population of the

excited state. With a particle starting in the ground state |ψg〉 and a

microwave pulse with the time t, the probability Pe that the particle is

in the excited state |ψe〉 after the pulse is given by

Pe(t) = |〈ψe(t)|ψg〉|2 = sin2

(

tΩ

2

)

, (2.37)

without detuning. This is a Rabi oscillation, which transfers all atoms

from the ground to the excited state with a resonant π-pulse (tπ = π
Ω

).

A 50 : 50 beamsplitter would be a resonant π
2 -pulse (tπ/2 = π

2Ω
). These

will be used in the interferometer sequence in Sec. 4.3. For an existing

detuning δ 6= 0 the probability Pe is

Pe(t) =
Ω2

Ω2
R

sin2

(

tΩR

2

)

(2.38)

with ΩR =
√

Ω2 + δ2, which makes the oscillation faster but also

the maximal transfer probability lower. This prevents a complete

transfer. Therefore, a resonant pulse is necessary for a 100% transfer

as it is desired in our state preparation and for some parts of the

interferometer sequence. That is important for the review on the noise

sources in Sec. 5.3.

2.4.2 Bragg momentum kick

One way to implement a momentum transfer that is required for a mo-

mentum beam splitter is the Bragg deflection. Bragg deflection has the

benefit that a transfer of more than 1008h̄k is possible, which increases

the signal of the interferometer [35]. It is similar to a deflection of light

on a grating, where the light is shifted in frequency and direction,

depending which order of the grating is used.

With a Bragg deflection, the atoms are deflected by a moving light

wave described by

Ekin = nh̄(ω1 − ω2) = nh̄ωr (2.39)

with ωr as the photon recoil frequency an n as the order of diffrac-

tion [35] and ω1/2 as the frequencies of the standing wave in respect

to the two different momentum states |p0〉 = 0h̄k and |p1 = 2h̄k〉.
That can be used as shown in Fig. 2.6b) with a standing wave in an

angle to the direction of the atoms [36, 37] or with two laser beams

with a frequency difference ωn that are retro-reflected. This transition

frequency is described by the sum of the Doppler shift ω0 and the

photon recoil frequency ωr, due to the already existing momentum of

the atoms:

ωn = 2nωr + ω0 (2.40)
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Figure 2.6: Momentum transfer.

a) Level scheme for a 2-photon transfer in 87Rb, that can transfer a

momentum of 2h̄k and only depends on the momentum states. Both

laser couple with the frequencies ω1 and ω2 to a virtual level that is

detuned by ∆ from the 5P3/2 manifold. The difference between ω1

and ω2 is proportional to the energy difference due to the different

momentum of p1 = p0 + 2h̄k. b) Bragg deflection on a standing wave.

The standing wave of the laser acts as a lattice that transfers 2nh̄k

momentum to the atom ensemble, if the atoms move in an angle to

the laser direction.

Bragg deflection is in general independent from the internal state

of the atoms and only depends on the momentum states. That is

beneficial for some experiments, but for the schemes that are used in

this work it is a disadvantage, because the entanglement that should

be used to improve a measurement will be generated in different

internal states. For that reason, another method is used to transfer the

momentum as explained in the following part.

2.4.3 Raman momentum kick

A second possibility to implement a momentum kick is a stimulated

Raman transfer. The Raman transfer is a two-photon process with

two phase-locked lasers to transfer atoms from one hyperfine state

to another. In this work, we want to transfer the atoms from |F =

1, mF = 0〉 to |F = 2, mF = 0〉 or vice versa, because these states

are magnetically insensitive in first order which is beneficial for an

interferometer. For the two-photon process both lasers are detuned to

a virtual level as shown in Fig. 2.6a).

The electric field E(t) of this transition can be described by

E(t) = E1 cos(ω1it + ϕ)ǫ̂1 + E2 cos(ωi2t + ϕ)ǫ̂2 (2.41)

with the laser frequencies ω1i and ωi2. The effective Rabi frequency

between |1〉 and |2〉 is then just the multiplication of the single photon
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Figure 2.7: Multi momentum Raman transfer.

a) Level scheme for a two-photon Raman transfer in 87Rb, that can

transfer a momentum of 2h̄k and change the clock state. Both laser

couple with the frequencies ω1i and ωi2 to a virtual level that is

detuned by δ from the 5P3/2 manifold. δ is the detuning of the two

clock transition states to each other, in an ideal case it is zero. b) By

arranging a setup of alternating co- and counterpropagating Raman

laser beams, multiple 2h̄k can be transferred. The copropagating

beams set the internal level of the atoms back to the starting level.

Rabi frequencies divided by two times the detuning ∆i from the

intermediate level |i〉 [38]:

Ωe f f =
Ω∗

1Ω2

2∆i
(2.42)

This is used to replace the Ω in Eq. 2.38, which leads to the probability

of the two photon transfer of

Pe =
Ω2

e f f

Ω2
R

sin2

(

tΩR

2

)

, (2.43)

with ΩR =
√

Ω2
e f f + δ2 and δ as the detuning from |2〉 to the laser

frequency ωi2. For an ideal Raman transfer, the detuning is δ = 0.

This also displays the similarity of a transfer by a Raman pulse and

a transfer by a microwave pulse, with the difference that the Raman

pulse can transfer a momentum of 2h̄k when counter-propagating

beams are used. From the first laser pulse a momentum is absorbed

and the atom change to the virtual level |i〉 from the ground level |1〉.
The second laser couples then the virtual level with the excited level

|2〉 by stimulated emission, where another momentum is transferred In

the example in Fig. 2.6b), the atom absorb momentum in the upward

direction. Then the stimulated emission emits a photon downward

and due to energy conservation the atom gets a momentum in the

upward direction which leads to a total of 2h̄k momentum transfer.
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The 2h̄k are calculated by the two laser frequencies

∆p = 2h̄k =
ω1i + ωi2

c
(2.44)

with c as the speed of light in vacuum. With co-propagating beams, the

transferred momentum is nearly zero, because the absorbed photon

with the frequency ω1i moves in the same direction as the emitted

photon with the frequency ωi2. For counter-propagating beams both

photons transfer momentum in the same direction.

This can be used to transfer multiple 2h̄k with a row of alternating

co- and counter-propagating beams as displayed in Fig. 2.7b). Another

way to reach the same effect is the use of counter-propagating beams

and microwave transfers instead of the co-propagating beams. The

choice between these two setups depends on the control and quality of

the pulses and the existence of a microwave antenna for the microwave

transfers. Also the different Rabi frequencies need to be taken into

account, which depends on the power of the microwave or the Raman

pulses. The increase of the Raman laser power can be limited by

undesired heating effects.





3
F U N D A M E N TA L S E N S I T I V I T Y L I M I T S O F AT O M

I N T E R F E R O M E T RY

In this chapter we will explore the different fundamental sensitivity

limits for interferometers with atoms and how squeezing can be em-

ployed to surpass these limitations. These limits are also discussed

in a context of a realistic application. At the end of this chapter, an

overview over the different techniques to generate squeezing is shown

and it is discussed which one is the favorite solution for an entangled-

enhanced atom interferometer with inertial sensitivity.

3.1 shot noise and density limit

Figure 3.1: Classical interferometer

a) The input port has N particles and the second input port is empty.

The first beamsplitter creates a superposition of state one (upper path)

and state two (right path). In the upper path, a phase shift ϕ is

applied. Due to the second beamsplitter the both path interfere with

each other. That results in a change of the mean atom number in 〈N↑〉
and 〈N↓〉 at the output ports, depending on the relative phase ϕ. b)

Calculation of the phase from the mean particle number. The black

dashed lines help to display the range of the resulting phase

depending on the noise.

In a classical interferometer, the sensitivity is limited by the shot-

noise limit. The origin of the shot noise can be explained by looking

into a classical interferometer as in Fig. 3.1 with N uncorrelated parti-

cles. In this interferometer, the first beamsplitter transfers a particle

into a superposition of the two paths, where the second input port

only contains vacuum. In one path, the signal aquires a phase shift ϕ

compared to the other path. Then the two states are combined again

23
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at the second beamsplitter and the particle numbers in both output

ports are measured. The phase difference ϕ translates into a particle

number difference in the output ports.

The phase can be caused by different sources and the schemes are

designed in a way that the quantity of interest is proportional to the

phase. Therefore, a better phase estimation corresponds to a more

sensitive interferometer. The phase estimation is based on the particle

difference of the two output ports. The detection probability for the

spin down output port can be expressed as P↓ = cos2( ϕ
2 ). Because this

translates into a particle number difference at the two output ports,

the probability P↓ can be estimated as

P↓ =
〈N↓〉

N
. (3.1)

With this the estimated phase is calculated as

ϕ = 2 cos−1
(√

P↓
)

= 2 cos−1

(
√

〈N↓〉
N

)

. (3.2)

It is important to notice that this is only true modulo 2π. Therefore,

the measurement steps need to be chosen in a way that the result

is between 0 and 2π. However, every particle is randomly measured

in one of the two output ports which causes quantum fluctuations

of N↓ and the estimated phase ϕ. The measurement of N↓ follows

a binomial distribution and therefore has a standard deviation of

∆N↓ =
√

NP↓(1 − P↓). This allows to calculate the phase estimation

error ∆ϕ as

∆ϕ =

∣

∣

∣

∣

∆N↓
∂ϕ〈N↓〉

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√

NP↓(1 − P↓)

−N cos( ϕ
2 ) sin( ϕ

2 )

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√

N cos2( ϕ
2 ) sin2( ϕ

2 )

−N cos( ϕ
2 ) sin( ϕ

2 )

∣

∣

∣

∣

∣

∣

=
1√
N

. (3.3)

This is the fundamental shot-noise limit which depends only on the

particle number of the uncorrelated particles. Due to the fact that

the particles are completely independent, it makes no difference if

a measurement is done one time with N particles or r times with

one particle(, N = r for this example). Therefore a correct description

would be

∆ϕ =
1√
Nr

, (3.4)

for r measurements with N particles. The repetition of measurements

can be employed to improve the stability, on the cost of a longer



3.2 phase , number and optimal squeezing 25

measurement time. It still allows to overcome the technical limitations

due to a limit in the particle number, because the benefit in sensitivity

is higher than the loss through the longer measurement time.

This limit for uncorrelated, classical particles can be overcome by

squeezing. The use of correlated particles can push the limit down to

the Heisenberg limit,

∆ϕ =
1

N
. (3.5)

density dependent shift An atom interferometer can be used

as an inertial sensor, by spatially separating a BEC in two clouds

which experience a different gravitational potential and therefore get a

relative phase shift to each other. For a highly sensitive interferometer

we need the low expansion rate of a BEC and a high amount of

atoms, which leads to a high density. This leads to interactions of the

atoms in a BEC between N atoms in a volume V which leads to a

mean field energy shift of the ground state energy proportional to
N2

V . If a momentum beam splitter is applied, each mode has its own

density dependent shift. Every beamsplitter induces at least quantum

fluctuations in the number of atoms and thus in the densities of the two

clouds which increase ∆ϕ. The effect of the density dependent shift

can be modeled by the one-axis twisting Hamiltonian H = h̄ξ J2
z [39].

The one axis-twisting can be understood as a twisting around Jz with

the strength of J2
z which leads to a stronger twisting as more far the

point on the Bloch sphere is from the equator. For the Bose-Einstein

condensates in this thesis h̄ξ = U
V is valid, with U = 4πh̄2 as

m , where

as is the scattering length of the atoms and m is the mass [40]. The

twisting effect is explained in more detail in the following section and

also shown on the Bloch spheres in Sec. 4.3.

3.2 phase , number and optimal squeezing

In this section, we will analyze the effect of squeezing on the shot

noise limit and the influence of the density dependent shifts. We will

deduce an optimal choice of squeezing to counteract the density effect.

In Fig. 3.2, different states are displayed, the chosen plane is the Jy,

Jz-plane of a Bloch sphere description with the Jx-axis as the rotation

axis. This is the tangential plane to the Jx-axis, which allows us an

approximation of the 3-D surface of the Bloch sphere into a 2-D

description. This is the position of our state after the first beamsplitter

in an interferometer, where it then collects a phase during the evolution

time. The phase is collected in the Jy direction, therefore the fluctuation

∆Jy should be minimal. In this description, the one-axis twisting twists

every point in the Jy, Jz-plane depending on its distance to the Jy-axis,

which can be explained with Fig. 3.2b). There it is shown that the

part of the state with Jz = 0 does not change, but the outer ends
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of the ellipse move the most. The twisting is ∝ J2
z . Now we want

to analyze how that can be used to improve our interferometer in

the presence of a density shift. This can be modeled by the one-axis

twisting Hamiltonian H = h̄ξ J2
z [39], with µ = 2ξT or µ = 2

∫ T
0 dtξ(t)

as the strength of the density effect. For a uniform BEC it is h̄ξ = U
V

and U = 4πh̄2as/m with as as the scattering length of the atoms and

m as the mass of the atoms [40]. This allows to describe the sensitivity

with Eq. 2.14 combined with

e−iHT/h̄|Ψ〉, (3.6)

if H is time independent.

In Fig. 3.2a), a coherent state is shown in blue as a circle. The

uncertainty is equal on both axes for the classical state. The green

dashed line shows the influence of the density effect, which twists

the coherent state into a diagonal ellipse. This increases the phase

measurement uncertainty ∆ϕ which is proportional to the uncertainty

along Jy, with

∆ϕ =
∆Jy

〈Jx〉
=

∆Jy

N
2

. (3.7)

The perfect squeezing for a small phase estimation error without

density effect is now the so-called phase squeezing shown in Fig. 3.2b)

as the blue ellipse. The name comes from the minimal phase estima-

tion error of the generated state. However, due to the density effect,

the ellipse is twisted into the green dashed ellipse which displays the

incoupled noise from the Jz direction. Therefore, the phase measure-

ment uncertainty even increases compared to the values of a twisted

coherent state. To avoid the effect of the density twisting, a number

squeezed state can be used, where the number uncertainty is minimal

as shown in Fig. 3.2c). In this case, the twisting indeed barely affects

the state. However, it is already anti-squeezed in the phase direction

and this extra noise makes it less useful for an interferometer.

By choosing an optimal squeezing phase in between number and

phase direction (Fig. 3.2d)), where the initial phase uncertainty is

not ideal (blue ellipse), the density effect counteracts the original

squeezing rotation and leads to a perfect squeezing orientation (green

dashed ellipse). That leads to an optimal squeezing value with a

minimal phase uncertainty similar to the unaffected phase squeezing

ellipse. If the squeezing phase is θ = 0 for phase squeezing and π for

density squeezing, the optimal phase θopt can be calculated by

tan θopt =
4µN

4 − µ2N2
. (3.8)

This equation is derivated from the density effect, which leads to

the evaluation

U = eA, A = −i
µ

2
J2
z . (3.9)
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Figure 3.2: Different kinds of squeezing

a) Coherent state: the blue line shows the state on the Jy, Jz tangential

plane to the Bloch sphere without density effect, respectively with the

green dashed line for the density effect. The measured phase

uncertainty ∆ϕ is displayed by the horizontal purple dashed lines.

b) Phase squeezing c) Density squeezing d) Optimal squeezing

If all atoms in the mode a, all atoms are in a coherent state along Jx.

Then the mean field approximation for Jz can be written, as

Jz ≈
√

N

2i
(b − b†). (3.10)

In this approximation we can apply the calculus for single-mode

Gaussian states. The matrix elements of B are defined as

B =

(

b2 bb†

b†b (b†)2

)

. (3.11)

Then

J2
z = −N

4
(b2 − b†b − bb† + (b†)2) (3.12)

follows, which leads to

−iKA = −i
µN

8

(

1 −1

1 −1

)

(3.13)
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with

K =

(

1 0

0 −1

)

. (3.14)

We can then use a real symplectic transformation [41] that refers to

the quadrature operators by

L =
1√
2

(

1 1

−i i

)

, (3.15)

with
(

q

p

)

=
1√
2

(

a + ia†

−ia + a†

)

= L

(

a

a†

)

, (3.16)

to gain the symplectic matrix S = LScL†. For that we use the complex

symplectic matrix Sc,

Sc = e−iKA =

(

1 0

0 1

)

− i
µN

8

(

1 −1

1 −1

)

. (3.17)

This leads to

S = LScL†

=

(

1 0

0 1

)

− i
µN

8

(

1 1

−i i

)(

1 −1

1 −1

)(

1 i

1 −i

)

(3.18)

=

(

1 0

0 1

)

+
µN

2

(

0 1

0 0

)

, (3.19)

which is a symplectic matrix, which fulfills the relation

SΩST = Ω, (3.20)

with

Ω =

(

In 0

0 −In

)

, (3.21)

where In is the identity matrix of the size n [41]. In this case we use

n = 1. A squeezed vacuum state

|ψ(t)〉 = S(ξ)|0〉 (3.22)

leads to an operator σ [41], the variance of the Gaussian state,

σ = cosh(2s)

(

1 0

0 1

)

+ sinh(2s)

(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

. (3.23)
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The derivation is shown in the appendix A.1. The squeezed vacuum

state will be explained in detail in the next chapter. This leads together

to

σ̃ = SσST

= cosh(2s)SST + sinh(2s)S

(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

ST (3.24)

= cosh(2s)

((

1 0

0 1

)

+
µN

2

(

0 1

1 0

)

+
µ2N2

4

(

1 0

0 0

))

+ sinh(2s)

((

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

+
µN

2

(

2 sin(θ) − cos(θ)

− cos(θ) 0

)

+
µ2N2

4

(

− cos(θ) 0

0 0

))

(3.25)

The perfect squeezing phase is derived from σ̃11 3.25, which corre-

sponds to ∆2 Jz. Its θ dependend part is

f (θ) = cos(θ)− µ2N2

4
cos(θ) + µN sin(θ). (3.26)

σ̃22 would describe the measurement in Jz-direction. The minimum of

this function is then

d

dθ
f (θ) =−

(

1 − µ2N2

4

)

sin(θ) + µN cos(θ) = 0

⇒ sin(θ)

cos(θ)
=

µN
(

1 − µ2 N2

4

) , (3.27)

which is the optimal squeezing phase. The resulting sensitivity is far

better than for an unsqueezed state. It is slightly worse than for a

phase squeezed state without density effect because the density effect

affects not only the squeezing phase but also its amplitude, as shown

in Fig. 3.2d). The proposed method thus constitutes a viable path to

make use of squeezed atomic samples in the experimentally relevant

cases, where density effects can not be neglected.

3.3 realistic application

In a realistic application, the constraints for an interferometer are not

only set by the fundamental limits, they are also set due to experi-

mental restrictions. By using BECs with delta-kick collimation, the

expansion rates can be held on the level of 100pK and below [42]

which reduces the constraints on the beamsplitting laser diameter and

the detection system. In this analysis, the noise sources taken into

account are quantum phase noise, gravity gradients of the atomic
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ensemble, coupling of rotations and interactions that can affect the

differential signal [43–46]. That is calculated for a shot-noise limited

position ∆r/
√

N and velocity uncertainty ∆v/
√

N. It needs to be taken

into account that the dependency of T3 of the noise sources increase

the noise for longer baseline interferometer, where T as the evolution

time is increased to reach a higher sensitivity.

The density shift depends of the amount of atoms per volume,

therefore also the standard density limit (SDL), the best reachable

limit in the presence of density effects, depends on the amount of

atoms.

4 6 8 10

10-5

10-4

0.001

0.010

0.100

partical number in [log]

2
Δ ᵠ

SDL

Figure 3.3: Density depending squeezing

The blue dots are a coherent state with density effect. The light blue

line shows the coherent state without density effect. The yellow dots

are a number squeezed state which starts with the highest ∆ϕ and the

green dots are a phase squeezed state. The red dots are the optimal

squeezed state in the presence of density effects, the light red line

shows the optimal squeezing without the effect of inhomogeneity.

Calculated with a squeezing of 10dB as an example.

In Fig. 3.3 are four different states displayed, all under the influence

of density effects. Starting with a coherent spin state (blue dots) which

follows the shot noise scaling, by reducing the phase uncertainty ∆ϕ

with an increase in the atom number N at a fixed volume. The increase

of the uncertainty is then the effect of the mean-field interactions,

which fluctuate due to shot-noise. This will be now the limit that

we want to surpass with squeezed states and we call it the standard

density limit (SDL). The scaling without density effect is shown by

the light blue line. If we take a density squeezed state (yellow dots),

it is worse than the classical state for a lower number of atoms but

better than the classical state for a higher number of atoms. That is

clear according to Fig. 3.2c), where it is shown that the density effect

barely effects the state. Nevertheless, the minimal phase uncertainty

is just the same as for a coherent state, only at a higher number of
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atoms. The phase squeezed state (green dots) has the same shape

as the number squeezed state but now starting at the same point as

the optimal squeezing, but the density effect influence the state at a

lower atom number than a coherent state. Therefore, it would be better

for lower atom numbers but also have a minimal phase variance as

the coherent state only at a lower atom number, which is normally

beneficial in experiments with a limited amount of atoms.

Only with the optimal squeezing, it is possible to reach the best

phase uncertainty ∆ϕ below the standard density limit. As shown in

Fig. 3.3, the optimal squeezing (red dots) follows the phase squeez-

ing for low atom number and the density squeezing for high atom

numbers. I will now focus on the intermediate area, where also the

standard density limit is violated. This operation needs a mostly homo-

geneous density profile for the BEC. This limits the noise suppression

below the SDL, as shown in the comparison of the light red line and

the red dots in Fig. 3.3. This can be avoided by restricting the readout

of the interferometer to high-density regions. That will slightly reduce

the number of analyzed atoms, which is equivalent to a small shift to

the left in Fig. 3.3, which would still lead to a better result than with

the inhomogeneity. But even with the inhomogeneity a measurement

below the SDL is possible.

3.4 methods for generating squeezing

For the generation of meteorologically useful entanglement with

atoms, two different paths have been demonstrated experimentally:

atom-light interaction and atomic collisions.

Atom-light interaction was used to generate spin-squeezed states or

W states in laser-cooled samples [15–17, 47] and in gas cells [18, 19].

The current record value in squeezing of 20.1dB below shot noise has

been reached by exploiting the coupling between an atomic ensemble

and the light field of a cavity which is placed around it [20]. All

these methods are only applied to thermal ensembles and not to

Bose-Einstein condensates. BEC sources are favorable for achieving

highest precision in large scale atom interferometers due to the lower

expansion rate. In addition, the use of an optical cavity constrains

the optical and mechanical access to the atoms for the rest of the

experimental setup. Therefore, I will now look deeper into the the

second method of entanglement generation.

The collisional interaction in a BEC can be described as a nonlinear

process for the generation of entangled states. As an example, this

technique can be used to generate entangled states on the external

degrees of freedom, that are desired for an interferometer. The creation

of entangled momentum pairs was demonstrated with Helium [10, 11,

48] and Rubidium [12]. The latter is a more commonly used element

in BEC interferometers. In these experiments, the temporal coherence
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and the mode quality of the entangled states is quite low, because

the entangled states are created as a stream of entangled atom pairs.

Therefore, they will be neglected for the further process. It is also

possible to generate spatial entanglement between the two spatially

separated modes of a double well potential [13, 14]. Such a scheme

has the problem of addressing the two spatial modes independently

from each other to transfer these state into the input ports of an mo-

mentum interferometer without destroying the entanglement during

that process.

Therefore, the most promising approach for inertially sensitive atom

interferometry is the generation of entanglement in spin space and

transferring it to the external degrees of freedom for the momentum

interferometer. This can be done by well-known techniques like Bragg

or Raman laser transfers, as explained in Sec. 2.4.2. For this thesis I

will use the Raman transfer as explained before. Being independent in

the creation process of the interferometer states and the momentum

interferometer itself allows for a greater freedom in the design of the

interferometer scheme. The entanglement in the spin squeezed domain

can be generated in the basis of one-axis twisting (OAT), which uses

the collisional properties of two spin states [21, 22]. An alternative to

this method is the generation of entanglement by using spin changing

collisions (SCC) which can generate spin-squeezed states [9, 25–27] or

twin-Fock states [24, 49].

To use one-axis twisting to generate entangled states, the collisional

interaction needs to be precisely modulated, which can be done by

Feshbach resonances [21]. Therefore, we would need to operate com-

parably high magnetic fields, which is an unwanted complication.

Another method, controlling the mode overlap [22], is not favorable

as a generation method for an entanglement-enhanced interferometer.

The required spacial splitting process can easily destroy the mode

quality of the squeezed atomic clouds. In this thesis, the focus will

be on the second method, the generation of entanglement with spin

changing collisions. The entanglement is generated in three atomic

spin states and then the desired states are selected and manipulated in

a way that they are useful for a momentum-space atom interferometer.

The process of generating spin squeezed states and twin-Fock states is

described in Ch. 4.



4
G E N E R AT I O N O F S Q U E E Z I N G I N S P I N O R B E C S

In this chapter, spin squeezing and the states that are generated by

this will be described theoretically and from an experimental point

of view. We use spin-changing collisions in 87Rb BECs to generate

multi-particle entangled states. This states can be used as squeezed

input states for the interferometer sequences. The introduced states

are the twin-Fock state and the two-mode squeezed vacuum state.

Those can be implemented in an entangled interferometer, as well.

4.1 spinor becs
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Figure 4.1: Spin changing collisions.

a) At long inter atomic distances |r − r’| the internal states of cold
87Rb atoms are described by the hyperfine spins F and F’. At a small

interatomic distance they are described by the total spin G = F + F’.

The molecular potential and the scattering length aG are depending

on the total spin. b) 87Rb energy level scheme. Colliding atoms in

F = 0, mF = 0 can be transferred into mF = ±1 under energy

conservation. The same is possible in F = 2, mF = 0,with the

additional possible transfer into mF = ±2. However, this process is

suppressed by orders of magnitude.

At low magnetic fields of a few Gauss, the internal state of a
87Rb atom can be described by the hyperfine spin ~F with its length

|~F| =
√

F(F + 1). Its projection onto the magnetic field axis is mF, the

magnetic quantum number for the hyperfine states. The 87Rb atom can

be in one of the two hyperfine manifolds F = 1 or F = 2 with the cor-

responding projections onto the magnetic field mF = F, F − 1, . . . ,−F.

The different mF-states split up in a magnetic field due to the Zeeman

effect. If two atoms in the hyperfine states F and F′ approach each

33
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other in an atomic collision this description stops to work. The atoms

are then described by a total spin ~G = ~F + ~F′ with an internal state of

|G, mG〉 as shown in Fig. 4.1a). During that phase, interactions between

the atoms can lead to a coupling of the two hyperfine spins |F, mF〉
and |F′, m′

F〉 to a different output channel |F̄, mF̄〉 and |F̄′, m′
F̄
〉. This

could lead to a change of the quantum numbers

|F, mF〉|F′, m′
F〉 → |F̄, m̄F〉|F̄′, m̄′

F〉. (4.1)

If the interaction changes the hyperfine manifold from F = 2 to F = 1,

a large amount of energy is set free which leads to a loss of atoms from

the ensemble. This loss mechanism can be avoided experimentally by

using the spin dynamics in the F = 1 manifold. Therefore, we assume

that the hyperfine manifold does not change (F = F′ = F̄ = F̄′). Due

to the ultra cold temperature of a BEC, only s-wave scattering can

occur [50], therefore the total orientation of the angular momentum

needs to be preserved, mF + m′
F = m̄F + m̄′

F. After the interaction

during the collision, they can separate and are then described again

by the hyperfine spin ~F for a single atom. We call that then a spin-

changing collision.

If the spin dynamics start with all atoms in the mF = m′
F = 0 state,

only the dynamics shown in Fig. 4.1b) are possible.

Figure 4.2: Parametric down conversion analogue.

a) For the process of parametric down conversion, a strong pump

beam with the frequency νp is passing a nonlinear crystal. The

non-linearity of the crystal generates entangled photons in the signal

and idler beams with frequencies νs and νi. b) Spin changing

collisions is an analogue in the particle domain. The strong pump is

the BEC in mF = 0 and the non-linearity is the spin changing collision.

Then the modes mF = ±1 are populated in analogy to the signal and

idler beam.

As an example for the starting state for the spin dynamics, the

|F = 1, mF = 0〉 state is choosen, which only allow one combination

spin exchange process. This process is pretty similar to the parametric

down conversion from optics and it produces entangled atoms in

the output modes. Parametric down-conversion is one of the most

relevant methods in optics to generate entangled photons [51]. In the

process of parametric down-conversion, a strong pump beam with
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the frequency νp passes a non-linear crystal. The non-linearity leads

to the creation of a signal and an idler beam with the frequencies νs

and νi which have to fulfill the energy conservation νp = νs + νi. As

shown in Fig. 4.2a), the beams also have a geometrically different path.

These two beams are highly entangled and can be used for various

tasks like a quantum repeater, Bell tests and many more applications

in quantum information [51]. Single-mode squeezed light can be

produced by selecting νs = νi =
νp

2 [52], which can be employed for

interferometric measurements beyond the shot-noise limit [53].

An analog for cold atoms is spin dynamics, which allows the cre-

ation of non-classical entangled states in the internal degrees of free-

dom of the atoms, an example for 87Rb is shown in Fig. 4.2b). The 87Rb

BEC with all atoms in mF = 0 (F = 1 or F = 2) can be treated as the

analog of the pump beam. The spin changing collisions are fundamen-

tally non-linear and therefore the analog of the down-conversion pro-

cess in the crystal. As explained before, the atoms are only described

by a total spin G during the collisions. Therefore it is indistingushable

which atoms are transfered to mF = +1 and which to mF = −1. The

atoms that are transferred into the mF = ±1 levels of the correspond-

ing F manifold are then highly entangled and the analog of the signal

and idler beam in the special case of squeezed light.

Like in the optical case, the amplification can be triggered by a seed

in these energy levels or vacuum fluctuations [54, 55], where the seed

would amplify the speed of the spin dynamics.

The vacuum fluctuations in optics stem from fundamental fluctua-

tions in the electromagnetic field, the vacuum fluctuations during the

process of spin dynamics origin from the fundamental fluctuations of

the spin orientation that was explained in Sec. 2.1. In the next section,

it will be shown that spin dynamics can be described by the same

Hamiltonian as parametric down conversion for short times.

4.2 generation of entanglement

In this section, I will explain first the theoretical part of the entangle-

ment generation and then two different experimental ways to generate

entanglement in a BEC.

We will assume that we start the process of spin dynamics in the

|1, 0〉 state and that the atoms are in a BEC in an external trapping

potential. This is needed to reach a sufficient high density that the

spin changing collisions happen. The potential can be described as

Ve f f (r) = Vext(r) + (U0 + U1)n0(r)− µ, (4.2)

with Vext(r) as the external trapping potential (green/black parabola

in Fig. 4.3) and µ as the chemical potential. The chemical potential µ

shifts the energy of two atoms in the mF = 0 state to zero. The term

(U0 + U1)n0(r) describes the mean field interactions of two atoms in
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Figure 4.3: Effective potential.

The effective potential (green line) for the atoms in mF = ±1 is the

sum of the external trap potential(black parabola) and the repulsive

mean field interaction with the atoms in mF = 0. The potential has

many eigenenergies En (dashed lines) with their corresponding

eigenstates (black curves).

mF = 0 with n0(r) as the particle density operator for atoms in mF = 0.

Ul is a 2-particle interaction operator with l = 0, 1, 2. U0 describes the

energy scale of a collision of two atoms in mF = 0 without a change

of the mF state and U1 describes the collisions of two atoms and a

change of the mF state to mF = +1 and mF = −1 from mF = 0 and

vice versa. Calculated example values can be found in Ref. [28]. The

graph shows the repelling effect of the mean field interaction as the

gray area in the graph. Also the eigen energies En as the energies of

the effective trapping potential are shown.

The interactions of spin dynamics can then be described by a many

body-Hamiltonian H, which can be written as

H = (En + q)(N+1 + N−1)+ 2CU1

(

a†
0a†

0a+1a−1 + a†
+1a†

−1a0a0

)

. (4.3)

N+1 and N−1 are the number of atoms in mF = ±1, a†
mF

is the creation

operator for the respective mF state and amF
is the annihilation operator.

The Hamiltonian have two different parts.

The first part (En + q) describes the interaction of the eigenmodes

of the trapping potential and the energy difference 2q between two

atoms in mF = 0 compared to a pair in mF = +1 and mF = −1. q

depends on the quadratic Zeeman effect, therefore is q ∝ B2 with B

as the strength of the magnetic field. This energy difference can be

manipulated experimentally to generate entangled states, which will

be shown in the next subsections.

The second part describes the spin changing collisions. C is the

spatial overlap integral

C =
∫

φ∗
+1(r)φ

∗
−1(r)φ0(r)φ0(r)dr, (4.4)
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with φj as the wave function of the different mF states. The first part

of the bracket describes the annihilation of an atom in mF = +1 and

mF = −1 each and the generation of two atoms in mF = 0. The second

part describes the reverse process.

In the resonance case, with En = −q, the first part of the Hamilto-

nian is zero and only the interacting term

Hint = 2CU1

(

a†
0a†

0a+1a−1 + a†
+1a†

−1a0a0

)

(4.5)

remains. That makes it easier to calculate the time evolution for this

case. By using the approximation a0 =
√

N for large N with N0 ≈ N

we can rewrite the Hamiltonian as

Hint = Ω
(

a+1a−1 + a†
+1a†

−1

)

, (4.6)

with Ω = 2CU1N0 as the spin dynamics rate. That would lead to the

two-mode squeezed vacuum operator

U(t) = e−itHint

= e−iξ(a+1a−1+a†
+1a†

−1) = S(ξ), (4.7)

with ξ = tΩ which is then the same as the one in quantum optics [29].

Now we want to calculate the time evolution of the spin dynamics

for the general case. The Heisenberg equation for time evolution reads

i
d

dt
a+1 = [H, a+1] = −(En + q)a+1 + iΩa†

−1

i
d

dt
a†
−1 = [H, a†

+1] = (En + q)a†
−1 + iΩ∗a+1. (4.8)

with h̄ = 1. These couple of connected equations can be solved by a

Bogoliubov transformation [56] and leads to the new operators

b±(t) = e∓itλb(0) = ua+1(t) + va†
−1(t), (4.9)

with (u, v)T as the eigenvector of the coupled equations. This new

operator can be used to describe the time evolution of a±1. The eigen-

values are

λ = ±
√

(En + q)2 − |Ω|2, (4.10)

following from the solution of

(−En − q − λ)(−En − q − λ) = −|Ω|2. (4.11)

These eigenvalues λ can be completely imaginary and reach the max-

imal instability at resonance En = −q, where the spin changing is

fastest. But the instability Im(λ) is then a half circle around En with a

radius of |Ω|, for every En. That can be understand as an non infinites-

imal small resonance peak, which would allow to start spin dynamics
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with a non-perfect shifting of q. There are an infinity amount of energy

levels and therefore a multi-peak structure of resonances.

This is one explanation why we start in the |1, 0〉 state, because Ω

depends on U1 which smaller in the F = 1 manifold compared to

the F = 2 manifold, which allows a better separation of the different

resonance peaks. This allows a spin dynamic only in the energy ground

state without the excitation of higher modes. The higher modes can

be exited by detuning the q value [57].

4.2.1 Two-mode squeezed vacuum states

Now let’s look more into the details of a squeezed vacuum state. As it

was explained in the section before, the operator for the time evolution

of spin dynamics at resonance is the same as a two-mode squeezing

operator S(ξ).

With all atoms in mF = 0 at the start, there are no atoms in mF = ±1

and there is a vacuum state in both levels |N+1, N−1〉 = |0, 0〉, which

evolves to

|ψ(t)〉 = S(ξ)|0, 0〉 (4.12)

[29]. Be aware that I changed the definition of the BraKet to |N+1, N−1〉
for this section. Now let’s look at the mean number of atoms that are

transferred to the mF = ±1 states, 〈N+ + N−〉 = 〈a†
+1a+1 + a†

−1a−1〉.
As shown before the time evolution of the bosonic operator a(t) can

be obtained through the Bogoliubov transformation with −q = En for

the resonance condition. The time evolution of a+1(t) can be described

by using Eq. 4.9 as

a−1;+(t) =
1

2

(

a+1(t) + a†
−1(t)

)

= e|Ω|ta−1;+(0)

a−1;−(t) =
1

2

(

a+1(t)− a†
−1(t)

)

= e−|Ω|ta−1;−(0). (4.13)

The solution is then

a+1(t) = a−1;+(t)+ a−1;−(t) = cosh(|Ω|t)a+1 + sinh(|Ω|t)a†
−1. (4.14)

Therefore the time evolution of the number operator is

〈N+1(t)〉 = a†
+1(t)a+1(t)

= cosh2(|Ω|t)a†
−1a−1

+ cosh(|Ω|t) sinh(|Ω|t)[a†
+1a†

−1 + a+1a−1]

+ sinh2(|Ω|t)a−1a†
−1. (4.15)

The result for a vacuum state with 〈a†
+1a+1〉 = 〈a†

−1a−1〉 = 〈a+1a−1〉 =
〈a†

+1a†
−1〉 = 0 is then

〈N+1(t)〉 = sinh2(|Ω|t)〉. (4.16)



4.2 generation of entanglement 39

The change in the population for short evolution times t behave to

a exponential growth at the beginning of the evolution time. This

description can be used to approximate the necessary time to generate

the spin squeezed states. Keep in mind that it only works for small

evolution times before the saturation effect starts and not for the

long evolution times necessary for the twin-Fock state. The atoms

in mF = ±1 are produced in pairs which makes it obvious that

〈N+1(t)〉 = 〈N−1(t)〉.
The two mode squeezed state is the same for atoms as for optics [29]

|ψ〉 =
∞

∑
n=0

(−i tanh(ξ))n

cosh(ξ)
|n, n〉, (4.17)

generated with help of Eq. 4.12. We can see here, that it is a superpo-

sition of twin-Fock states with different total atom number, but with

the exact same amount of atoms in the mF = ±1 states.

Pair production can be experimentally realized by tuning the q

parameter. To do that the energy difference between the mF = ±1 and

mF = 0 levels is shifted such that En = −q for n = 0. The shift is done

by microwave coupling as described in Ch. 2, on the F = 1, mF = −1

to F = 2, mF = −2 coupling. This coupling is chosen, for experimental

reasons. Normally no atoms are transferred at this level pair and also

a mislead transfer can easily be observed. The microwave frequency

is ramped to the resonance and then kept there to transfer atoms

by spin dynamics into the mF = ±1 levels, a so called "quench".

For a squeezed vacuum state, only a minor percentage needs to be

transferred. Therefore, the dressing is only active for 675 µs, which

transfers around 0.75 atoms from 10000 atoms by spin dynamics,

which is enough for a two-mode squeezed vacuum state [9]. In this

state the squeezing is between the quadratures of the sum and the

differences of the atom numbers in mF = ±1. We can change the

description by a base change to have again the picture of single mode

squeezing. The new base is the symmetric and the antisymmetric

mode

|S〉 = 1√
2
(|1,+1〉+ |1,−1〉) (4.18)

|AS〉 = 1√
2
(|1,+1〉 − |1,−1〉) . (4.19)

The squeezed vacuum state is observed in an 3-mode system, now

made out of the |0〉, |S〉 and |AS〉 state.

4.2.2 Twin-Fock states

On the twin-Fock time scale, the ensemble is ideally transferred com-

pletely into the mF = ±1 levels with the same amount of atoms in
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each level. In an ideal case, also the total atom number N would be

every time the same, due to fluctuations in the total atom number that

is not the case. This can be described by a superposition of twin-Fock

states due to the different amount of atoms pairs that are generated

during each spin dynamic process. The total atom number after each

sequence is detected, therefore it can be described by single twin-Fock

states with a defined number of atoms.

The generation of entanglement is the same as for the squeezed

vacuum, but now we disregard the atoms in the |0〉 state to have a

pure two-mode system again. The experimental generation can be

done in two slightly different ways. The first way is the same as in

the sequence for the two-mode squeezed vacuum state: The "quench",

only that now the dressing is active for a longer time about 200ms to

generate the maximum amount of atom pairs in the mF = ±1 levels.

The process of a quench is fast compared to the next method but the

resulting amount of atom pairs depends on the vacuum fluctuations

which leads to large variances in the total number of pairs. This

increases the amount of measurements that need to be done if a

certain amount of measurement points of a defined number of atoms

should be measured.

The second way is a ramp of the dressing over the resonance fre-

quency [24, 58]. This is an adiabatic passage which allows for nearly

100% transfer into the mF = ±1 levels and therefore a lower variance

of the atom numbers in the twin-Fock state. The disadvantage of this

method is the rather long time of 3s, which leads to decoherence

due to the limited life time of the BEC and the heating by the dipole

trap. For that reason, a compromise between maximum transfer and

holding time need to be found for our setup. In our experiment, we

normally use a ramp with 1s length. That transfers the majority of the

atoms, reduce the variance in the number of atoms in the twin-Fock

state and still gives us enough coherence to perform the different

interferometer sequences afterwards.

4.3 geometries for entangled atom interferometers

The section before provided the description of producing entangle-

ment with spin dynamics in 87Rb BECs. For a measurement of the

acceleration of earth the atom interferometer have to be in the external

degrees of freedom to have the access to the difference in gravitational

potential. Therefore, the BEC will be free falling during the interferom-

eter sequence, after the preparation of the state on the internal states in

the trapping potential. Now, the experimental restrictions and the as-

sumptions that we make will be explained and two different concepts

of entangled atom interferometers for acceleration measurements will

be presented.
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In an ideal case the state is optimally entangled, the free fall time

is long and the beam splitting pulses transfer as much momentum

in units of h̄k as possible. But in reality, all three parameters have

restrictions that need to be taken into account when planning an

entangled-atom interferometer. For the first point of optimal entan-

glement for the input state, the technical noise needs to be as low as

possible. A detailed view on the noise sources in our experiment is

shown in Sec. 5.3. The evolution time T for the interferometer is lim-

ited in many experiments by the free fall time of the atomic ensemble.

This is directly connected to the length of the vacuum chamber. As

example values, our experiment allows us a free fall time of 11ms, an

experiment with an 1m vacuum chamber for the free fall will have a

free fall time of around 0.45s and a long baseline experiment like the

Very Long Baseline Atom Interferometry (VLBAI) in Hannover with a

Baseline of 10m will have a free fall time of 0.8s to 2.8s depending on

the configuration (free fall vs catapult mode) [59].

A well known source for high-momentum beam splitter pulses is

double Bragg diffraction which requires a strong optical lattice that is

far detuned to the resonance frequency of the atoms. This is a 2-photon

process. This could also be combined with Bloch oscillations for more

momentum transfer, which was shown with up to 1008h̄k [35]. How-

ever, we will use a Raman transfer for the schemes due to our way to

generate entanglement. We can not use Bragg pulses or Bloch oscil-

lations, because the entanglement is generated in the spin space and

needs to be transferred to the momentum space. For an explanation

why it is an advantage to create it in the spin space see Chap. 3. For

that reason the pulses which are used to implement the interferometer

in momentum space need to be state selective. Therefore, the use of

Bragg pulses and Bloch oscillations is not possible, because they act

state-independent.

Another option is the use of 2-photon-Raman transfers for the

momentum transfer. Raman pulses are state selective and can be used

multiple times in a row to transfer multiples of 2h̄k momentum, with a

record of 400h̄k momentum [60]. Such a multiple momentum transfer

is displayed in Fig. 2.7. To this end, two phase-locked lasers with a

frequency difference corresponding to the energy difference of the

two hyperfine levels are required. The lasers need to be aligned in the

direction of the desired acceleration. Each transfer also changes the

internal state of the atoms which is not a problem because the internal

state can also be changed back by a microwave pulse. With this the

entanglement can be transferred from the internal to the external

momentum states.

Now, two different interferometer types will be shown that both

are able to measure the Earth’s acceleration using different squeezed

states.
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4.3.1 Twin-Fock interferometer

Raman

SD
SD

|F=1,m =+1>F

|F=1,m =-1>F

|F=2,m =0>F

Mw

|F=1,m =0>F

Figure 4.4: Level scheme for the twin-Fock interferometer.

Microwave transfer (purple) between different levels and |2, 0〉, the

transfer from |1,−1〉 is only used for preparation purposes. Spin

dynamic (SD) starting in |1, 0〉. The detuned intermediate level for the

Raman transfer is in the 5P3/2 manifold. Notice that the microwave

pulses can be π-pulses or π/2-pulses. Two photon Raman transfer

(blue) between the clock states.

In this interferometer, a twin-Fock state is used as an input state,

with the transitions shown in Fig. 4.4. Notice that the average number

is always the same for a twin-Fock state but the distribution of the

fluctuation is changing. This distribution contains the information.

This is important, because now the variance needs to be measured.

The atoms are prepared in |1, 0〉, that is also shown on the Bloch

spheres in the 0/+1 and 0/-1 basis in Fig. 4.6. Subsequently a twin-

Fock state is generated in the |1, 0/ ± 1〉 levels, with the methods

explained above. Because of the non-100% transfer, the residual atoms

in |1, 0〉 are transferred to |2, 0〉 via a microwave π-pulse and then

removed from the system by a resonant light push. After this process

the BEC is released from the external potential and freely falling. Now

we have only two atomic levels populated which is the twin-Fock

state in the basis of mF = ±1 and disregarded the the mF = 0 level as

described in the last section. It is displayed in the second Bloch sphere

as an infinitesimally small ring on the equator. To access one of the

two atomic ensembles with the Raman laser, minimal one ensemble

has to be in one of the clock states. Clock states are, in first order,

the magnetic insensitive states |1, 0〉 and |2, 0〉. Therefore the atoms

in |1,−1〉 are transferred into the |2, 0〉 level via a microwave π-pulse,

which only changes in which level the twin-Fock state is and not the

state itself as shown in the third Bloch sphere. Now there is a freely

falling cloud in |1, 1〉 as a reference and a second in the |2, 0〉 clock

level and the preparation could be finished. To avoid to measure the

influence of magnetic field noise, the reference state is transferred

from |1, 1〉 to |1, 0〉 via a radio frequency rapid adiabatic passage.

The transfer is possible without coupling to atoms in F = 2 using a
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Figure 4.5: State preparation for the twin-Fock interferometer.

Spin dynamics produce the twin-Fock state. After a base change, the

remaining atoms are transferred from |1, 0〉 to |2, 0〉 and been

removed by a resonant light push. Afterwards, the atoms in |1,−1〉
are transferred to |2, 0〉.

technique explained in Sec. 6.1. Now both states are in clock states,

which are insensitive to magnetic field fluctuations to first order. After

a sufficient free-fall time to distinguish the Raman transitions - they

are shifted by the Doppler effect - the interferometer sequence can

begin.

The interferometer is initiated with an opening microwave π/2-

pulse that couples the two levels of the twin-Fock state and rotates it

on the first Bloch sphere as shown in Fig. 4.6. This state is now highly

sensitive for phase changes that are described as a rotation along the

equator of the Bloch sphere. Up to now, only the internal levels should

be coupled with each other. To achieve a spatial separation, the atoms

in |2, 0〉 will be accelerated by a Raman π-pulse that transfers the 2h̄k.

Because of the internal level change that happens with this transfer,

the atoms are transferred back by a microwave π-pulse. This short

sequence can now be repeated to transfer multiples of 2h̄k momentum.

I present here the sequence with the microwave state change due

to the better control and efficiency compared with a co-propagating

Raman laser pulse for our experimental setup. A similar idea for large

momentum transfer (LMT) is shown in [60, 61] with Raman lasers only.

For a setup with a higher efficiency in the Raman transfers also that

technique can be used. The pulse sequence is then reverted to return

the momentum back to 0h̄k compared to the free falling reference

ensemble, displayed by the second laser symbol in Fig. 4.6. After an

evolution time T in which a phase depending on gravitational acceler-

ation is collected, the two short sequences of accelerating downwards

and the stopping are repeated. The phase shift is depicted on the

second Bloch sphere as the rotated red circle compared to the start in
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Figure 4.6: Scheme of the twin-Fock interferometer

The state is displayed on the Bloch sphere, "Rπ" is a combination of

Raman and microwave pulses. The input state generation is explained

in Fig. 4.5. The dashed lines display the changes of the internal states

during the acceleration and deceleration process. The depicted phases

are chosen to depict the single steps.

light red. Now the two ensembles are spatially overlapped, but the

internal states are not recombined. This is done by another microwave

π/2-pulse that couples |1, 0〉 and |2, 0〉 and therefore closes the inter-

ferometer. The measured atom number as a projection onto the Jz-axis

gives now the measured phase. To measure g, the evolution time is

changed and the measurement sequence repeated. If the starting phase

is know also only one evolution time is sufficient, for an unknown

starting phase there need to be minimal two different evolution times.

Also it need to be ensured that its known if the point is in the range

of 2π of the starting phase or not.

4.3.2 Squeezed vacuum interferometer

The second interferometer type is using a squeezed vacuum state as

an input state. The employed states and transfers are shown in Fig. 4.7.

The detuned intermediate level for the Raman transfer is in the 5P3/2

manifold. For the idea of this scheme, I will assume a free fall time

that is long enough to separate the different Raman transitions by the

Doppler-shift.
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Rf

Raman

SD

Mw

Rf

SD

|F=1,m =+1>F

|F=1,m =-1>F

|F=1,m =0>F

|F=2,m =0>F

Figure 4.7: Level scheme for the squeezed vacuum interferometer.

Radio frequency transfer between the |1,±1〉 and |1, 0〉. Spin dynamic

(SD) starting in |1, 0〉. Two photon Raman transfer (blue) between the

clock states.

As in the twin-Fock interferometer, the atoms are prepared in |1, 0〉.
This is also shown on the Bloch spheres in the 0/+1 and 0/-1 basis.

Then a squeezed vacuum state is generated in the |1,±1〉 states. The

atoms in |1, 0〉 are transferred via a microwave π-pulse to the |2, 0〉
level. Now we have a two-mode squeezed vacuum state in the 0/+1

and 0/-1 basis and we will make a base change into the symmetric and

anti-symmetric base. These bases are then used to display the squeezed

state on the two Bloch spheres in the symmetric/anti-symmetric basis

|S〉 = 1√
2
(|1,+1〉+ |1,−1〉) (4.20)

|AS〉 = 1√
2
(|1,+1〉 − |1,−1〉) . (4.21)

In this basis the state is not longer a disk on the Bloch sphere but an

ellipse. The orientations of the two ellipses are rotated by 90° with

respect to each other and it is single-mode squeezing in the symmetric/

antisymmetric base. The symmetric state can then be transferred to the

|1, 0〉 level via a radio frequency pulse, because the radio frequency

only couples to the symmetric state. The anti-symmetric state remains

unchanged in the |1,±1〉 levels. These atoms are then not further

used and do not interact further with the rest of the atoms during

the interferometer sequence. The symmetric state on the other hand is

now transferred to |1, 0〉 making up a simple two-mode interferometer.

Now all atoms are in the two clock states |1, 0〉 and |2, 0〉 which is the

starting point for the interferometer sequence. Therefore the BEC will

be released from the external trapping potential into free fall to reach

enough Doppler shift to separate the Raman transitions.

The interferometer is equivalent to the twin-Fock case. It begins

again with a microwave π/2-pulse that couples the |1, 0〉 and the |2, 0〉
level. This moves the ellipse on the Bloch sphere from the north pole

to the equator, as shown on the first Bloch sphere in Fig. 4.9. The

light red ellipse is the starting point from where we start after the

preparation phase.
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Figure 4.8: State preparation for the squeezed vacuum interferometer.

Spin dynamics produce the squeezed vacuum state. After a base

change, the atoms are transferred from |1, 0〉 to |2, 0〉. Afterwards, the

symmetric state is transferred to |1, 0〉 via a radio frequency π-pulse.

To now separate and bring the states together again, a series of

Raman pulses and microwave pulses are applied as explained before

in the twin-Fock interferometer.

The interferometer is closed by a microwave π/2-pulse between the

|1, 0〉 and the |2, 0〉 level. That leads to a rotation of the ellipse on the

Bloch sphere which shifts the position of the Jz projection depending

on the sampled phase during the evolution time. This projection onto

the Jz-axis is measured by a state-selective atom number counting.

To now measure g, the evolution time is varied as explained for the

twin-Fock interferometer.

This operation of an interferometer with squeezed vacuum allows

for an implementation of the optimal squeezing protocol of Sec. 3.2

to cancel the effect of fundamental density noise. The purple arrows

showing in opposite directions depending of the sign of Jz display

the density effect in the BEC which leads to a twisting of the state

during the evolution time of the interferometer. By choosing the right

squeezing angle, the twisting of the state during the evolution time in

the interferometer can be counteracted. This is shown in the following

Bloch spheres by twisting the ellipse on each of it for a little bit.

Experimentally the squeezing angle can be choosing by a holding time

after the spin squeezing and before the interferometer sequence starts.

With a well adjusted squeezing angle the measurement of the Jz-

axis projection always uses the squeezed direction of the state and

therefore the measurement can be better than the SQL. The anti-

squeezed direction is then pointing in the non measured directions

in the Jx, Jy plane. The signal here is imprinted onto the number

difference between the two output states, therefore less statistic than

for a measurement of the twin-Fock interferometer is necessary, where

the variance of the measurement is holding the information.
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Figure 4.9: Scheme of the squeezed vacuum interferometer

The state is displayed on the Bloch sphere, LMTs are a combination of

Raman and microwave pulses. The input state generation is explained

in Fig. 4.8. The purple arrows and ellipse show the density shift, the

red arrows the phase shift by gravity.





5
E X P E R I M E N TA L S E T U P

We show how the presented entanglement-enhanced atom interferom-

eter can be implemented experimentally The results are described in

chapter 6.

5.1 general experimental setup

dispensers

MOT glass cell

10 mbar
-9

experiment
glass cell

10 mbar-11

differential
pumping stagefeedthrough

mag. trap
transport coils

Figure 5.1: Experimental setup,modified from Ref.

[62]. A MOT is loaded from the background gas at 10−9mbar. A

magnetic trap is created by movable coils that transport the atoms

into the magnetic trap in the experimental glass cell at a low pressure

of 10−11mbar. After radio-frequency evaporation the atoms are

transferred into a crossed beam optical dipole trap.

Our experiments start with a BEC of 87Rb in the Zeeman level

F = 1, mF = 0, as proposed in chapter 4. The preparation of these

states will be briefly explained, for a more detailed explanation refer

to the publications [63, 64] and theses [62, 65–69].

The experiment starts with a magneto-optical trap (MOT) that traps

109 87Rb atoms. The MOT, in a glass cell, is directly loaded from the

background gas. We use dispensers as a source for the atoms, that are

heated up by applying a current of 3.8 − 4.8A for the loading time of

the MOT (ca. 10s). The current depends on the desired atom flux and

the age of the dispensers. To increase the background gas pressure, we

shine in UV light to dissolve the Rb atoms that stick to the wall of the

glass cell, which is at room temperature where Rb atoms tends to stick.

Therefore spectroscopies glass cells are normally heated which is not

possible here due to the experimental requirements. It is switched off

after the MOT loading phase to reduce the pressure for the rest of the

following sequence.

After a phase of 5ms with optical molasses cooling, the atoms are

optically pumped into the |F, mF >= |2, 2 > state. Then the atoms are

49
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trapped by a magnetic quadropole field generated by two coils in an

anti-Helmholz configuration. The coils are mounted on an electrical

translation stage, which moves the trap with the atoms within 1.3s

from the MOT glass cell into the experimental glass cell. To improve

the vacuum pressure on the experimental side the two glass cells

are connected by a differential pumping state, a small tube shown in

Fig. 5.1. This allows a pressure difference of 2 orders of magnitude

and a ultra-high vacuum pressure of below 2 × 10−11mbar is reached

which is the limit of the hot cathode pressure measurement head

(Varian UHV24P). This allows for minimal heating and loses of the

atomic cloud from collisions with the background gas.

Figure 5.2: interferometer setup.

The beam with the two different

polarizations is vertically adjusted.

The BEC is free falling after relase

from the optical trap (green beams).

The atoms are now trans-

ferred into a magnetic trap in

quadropole configuration in the

experimental glass cell by lower-

ing the current trough the coils

of the first trap and ramping up

the current through the second

trap. The atoms are then cooled

near to quantum degeneracy by

radio-frequency evaporation. For

further evaporation, the atoms

are loaded into a crossed optical

dipole trap at 1064nm by ramp-

ing the optical trap up and the

magnetic trap down. The opti-

cal trap is slightly below the cen-

ter of the magnetic trap to reach

the best loading efficiency. Both

beams are in the horizontal plane

with waists of 50µm and 30µm

and maximum powers of 2.8W

and 0.8W. The trap is then low-

ered down to 60mW and 22mW

to evaporate the ensemble to a

BEC within 1s. To stop the evapo-

ration and reach higher densities,

the trap potential is raised again

to the final trap frequencies of 2π ∗ (150Hz, 160Hz, 220Hz). Finally, we

can produce BECs up to 30000 atoms with nearly no thermal fraction.

To detect non-classical states, the atom number difference in two

or three clouds of atoms has to be measured with sub-shot-noise

resolution. In this setup an absorption detection is used. A camera

(princeton instruments pixis 1024 BR eXcelon) with a high quantum

efficiency of η = 0.98 is used to detect the atoms, which are imaged

onto the camera by a telescope setup of an aspheric and an achromatic
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lens. The laser beam for the absorption detection passes through a

polarization maintaining fiber and is filtered by a PBS and then shone

onto the BEC and the camera. For every measurement there are three

pictures taken: one with atoms, one only with the absorption beam

and one background image. The setup leads to a detection noise of

only 22.3(5) atoms in the atom number difference at N = 10000 total

atoms [28]. The noise is explained in detail in subsection 5.3.4.

The state preparation happen in the optical trap after the evapo-

ration. Then the BEC can be released from the crossed-beam dipole

trap and then followed by a delta kick, see Fig. 5.2. The delta kick is

performed by switching on again the dipole trap for a short time. This

reduce the expansion rate of the BEC and leads therefore to smaller

BECs after a longer free fall time. Then the interferometer sequence

is started. The Raman lasers are orientated in the direction of gravity.

The detection area is big enough to be able to detect the atoms also

after the free fall time.

5.1.1 Improvements of the existing system

In the following subsections I will describe some improvements in this

setup that were done since the last description in the thesis of Bernd

Lücke [28].

5.1.1.1 Diode laser exchange

The cooling laser was changed from a self-built diode laser to a com-

mercial diode laser DL100 from Toptica with commercial temperature

and current control electronics. The new laser has the advantage of a

wide mode-hopping-free range and a better long-term stability. The

laser runs at 150mA and 20.1°C with an output power of 80mW in

an external cavity setup. As an example in our setup the laser holds

the frequency lock on a rubidium spectroscopy for about 1-5 days

in average. Now both lasers, the cooling and the repump laser are

DL100 laser. The rest of the laser setup is unchanged with respect to

the thesis of Carsten Klempt [66].

5.1.1.2 Detection system

The original laser system for the absorption detection included a

self-built diode laser that was stabilized by a saturated absorption

spectroscopy (SAS). This system was installed on an independent

optical table with an aluminum shield for laser protection and tem-

perature isolation. With the improvements that I will explain, the long

term stability of the detection laser increased and a higher flexibility

in the employed frequencies is achieved.

For that reason, the system is installed on the main optical table,

together with the rest of the laser system, which gives a better stability
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against vibrations. Instead of a saturated absorption spectroscopy, a

modulation transfer spectroscopy (MTS) is used to stabilize the laser

frequency. The MTS is an advanced version of the SAS. The SAS

use frequency modulation in the order of 100kHz. The MTS uses a

frequency modulation to generate sidebands with 3MHz on the pump

beam. This pump beam is then superposed with the probe beam in

the spectroscopy cell, where the modulation is transferred to the probe

beam via four-wave mixing. The feature of this spectroscopy is that

the four-wave mixing produces sidebands where the lower and upper

sideband of the carrier show signals of the absorption depending of

their detuning from the transition. This can be used as a control signal.

The four-wave mixing only happens in the natural linewidth of the

hyperfine transitions, which means the background is nearly zero.

Closed transitions produce a stronger signal during the four-wave

mixing than open transitions. Therefore, the signal is not disturbed by

nearby open transitions.

The frequency generation of the carrier frequencies is realized by a

direct digital synthesizer (DDS). The DDS is self-built, and allows to set

a frequency at around 160MHz. The DDS also features a register with

up to 8 frequencies which can be switched by a TTL signal. In contrast

to this register approach, one could also use a voltage-controlled

frequency, which changes the frequency by sending a voltage signal

to the DDS. This is used to change the frequency of the laser to probe

the atomic resonance.

However, this could result in the incoupling of noise. Switching to a

different register can be used in the final setup to remove unwanted

atoms during the interferometer sequence by shining in resonant

light. For more information about the optical setup and the frequency

generation I refer to the bachelor thesis of Janina Hamann [70].

With this setup, the requirements are fulfilled: The system allows

us to run the detection for a week without the need to relock the laser

stabilization. A recalibration of the detection laser frequency is only

needed after a couple of months or a change in the detection magnetic

field.

5.1.1.3 Magnetic field stabilization

The magnetic field stabilization is necessary for the homogeneous

magnetic field that lifts the degeneracy of the 87Rb atoms according to

the Zeeman effect. This needs to be as stable as possible, because also

the q parameter that is introduced in Ch. 4.2 depends on the magnetic

field. One of the main noise sources that exists are 50Hz oscillations

and higher harmonics of these oscillations that stem from the power

line. Their suppression is the main goal of this stabilization.

The old stabilization setup was improved to a higher stability of

57µG from shot to shot [71]. The components of the actual stabilization

are shown in Fig. 5.3. The magnetic field is measured with a Bartington
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Figure 5.3: Magnetic field stabilization.

Schematic of the magnetic field stabilization. bext is the incoupling

external field while bin is the field that is produced by the coils. b is

the sum of them. s is the signal of the fluxgate sensor and ns is the

noise of the signal that is produced by the sensor. For the current

driver, the notation is similar with i and nd. u is the set signal for the

loop, x is the signal after the notch filter and e is the error signal. y is

the signal of the PI controller. Setup from master thesis

M.Quensen [71].

Mag-03IEv1 fluxgate sensor, which is able to measure magnetic field

strength for small magnetic fields. These sensors have low noise but

an internal frequency of 7.813 kHz which limits the maximal speed

of the sensor. That could limit the maximal bandwidth of the control

loop. The sensor outputs the signal s and the noise ns. Those signals

are then filtered by a low pass notch filter and subsequently present

the best estimation of a signal x that can be produced in this setup.

This signal is subtracted by the set point signal u that come from

the experiment control computer. The error signal e is used in a PI

controller to generate a corrected control signal y for the current driver.

The current driver sends a current i through the coils in Helmholtz

configuration, but also generate some noise nd on the signal. Finally,

the coils translate the current into a magnetic field that is then seen by

the sensor and the atomic ensemble.

The notch filter filters out the second harmonic frequency of the

sensor, which is fundamentally produced for this type of sensor. As

shown in the master thesis of Martin Quensen [71], the coils are the

components that are the main limitations followed by the notch filter.

The current coils are wound below and above the optical table which

has a metallic plate. This can be magnetized and therefore slows down

the change of the magnetic field when the current through the coils is

altered. Another parameter is that the components of the control loop

produce noise, indicated by the yellow arrows in Fig. 5.3. However,

the main contributions are the sensor at high frequencies and the

notch filter at low frequencies. It could be possible to improve the
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performance by removing the notch filter and adjust the parameter of

the PI controller.

The improvement that was done is a better PI controller and adjusted

filter in the control loop. Furthermore, the sensor head was placed

closer to the atoms which improves the stabilization. The placement is

now beside the glass cell, fixed to the coils that produce the magnetic

quadrupole field. The notch filter was adjusted to reduce the noise floor

at the second harmonic of the fundamental of the sensor frequency.

The influence of the now improved system to the measurements are

explained in Sec. 5.3. For more information about the setup of the

regulation and a deeper noise analysis I refer to the master thesis of

Martin Quensen [71].

5.1.1.4 Dipole trap
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Figure 5.4: Dipole trap laser distribution system.

The beam should be distributed to two fiber couplers for the left-right

beam (l-r) and the front-back beam (f-b) of the crossed-beam optical

dipole trap. For the switching and power stabilization, AOMs are

used and the unused power is dumped in water cooled beam dumps.

To separate the first order beam from the zero-order beam of the

AOM, d-shaped mirrors are used (D). The first lens (L) is used to

collimate the beam, the two other lenses are used to widen up the

beams before entering the beamdumps.

The original laser that was described in [28] is replaced by a 25W

Mephisto MOPA system from Coherent which provides the opportunity

to have a stronger crossed-beam optical dipole trap. The solid state

laser consists of a seed laser with a Non-Planar Ring Oscillator (NPRO),

which is the main reason for a high frequency stability and low noise.

In a second step, this light is then amplified multiple times. It is

possible to change the laser frequency by up to 30GHz. A water

cooling with a minimum flow of 3 l
min is required to be connected for

the cooling of the laser. The water in our system has a temperature of

22°C which needs to be well above the dew point of the lab air to avoid
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condensation inside the laser. A higher cooling water temperature

reduces the maximal heat reduction per hour but this is not a problem

in this setup.

Due to the increased power, the distribution system for the 1064 nm

light was rebuilt. An external isolator (IO-3-1064-VHP from Thorlabs)

is placed behind the laser output to protect it from unwanted back-

reflections. The position of the isolator is not irrelevant because of

the power density threshold of the isolator. To collimate the beam

at the preferred size, we have to place a lens with f = 300mm at

245mm distance behind the laser output. The isolator should be placed

220mm behind the focus and have a length of 115mm, so we made

a trade off and placed the isolator as far as possible but before the

collimation lens. The collimated beam has a waist radius of 210µm at

1m distance behind the focus. After the collimation, a setup made of a

λ/2 waveplate and a polarizing beam splitter is used to attenuate the

power, shown in Fig. 5.4. Note that it is not an option to decrease the

current in the amplification stage of the laser to decrease the power,

because the beam profile becomes worse below the normal current

setting. The beam is then expanding using a concave lens and dumped

into a water cooled beam dump ( LC -ABD-2C) from laser components

(dotted blue line in the figure). The water cooling is necessary to

avoid a heat source on the experimental table. The attenuated beam is

subsequently split up and each of the beams is sent through an acusto-

optical modulator (AOM) in single pass configuration. The AOMs are

used to change the power of the beam depending on a signal from a

power stabilization proportional-integral-derivative controller (PID).

Finally, each beam is coupled into a polarization-maintaining single-

mode fiber to the existing setup. To switch the power off, the PID

normally sends zero power to the AOMs. However, in the front-back

direction, there is an additional shutter because it is critical to have

no photons at all. If the laser would hit the camera during detection,

this would degrade the detection. For that reason, the shutter is only

closed during our detection sequence. The back reflection from the

closed shutter is dumped into a small beam dump that is passively

cooled to the optical table. The d-shaped mirrors are used to pick up

the zeroth order of the beams and to dump them into a second water

cooled beam dump using again a concave lens to expand the beams.

The black round posts behind the d-shaped mirrors absorb the rest

of the laser light that is transmitted through the mirrors due to the

high power of the beams. The λ/2 waveplates are used to adjust the

polarization to the fast fiber axis. The fiber in the left-right direction

of the dipole trap has an end cap to reduce the power density at the

fiber facet of the in coupling. In the front-back direction a fiber end

cap is not necessary, because there is only 1.2W of power used. The

entire system is placed in an anodized aluminum box to shield the
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experiment from stray light that could affect the atoms and provides

additional laser safety.

For the power stabilization, commercial photo diodes (PDA36A(-EC)

from Thorlabs) are used with a parallel 50Ω resistance connected to

the output, which should have less noise. The photo diodes are then

connected to PID controllers which control the power of the AOMs.

5.1.1.5 Laboratory temperature stability

(a) 24h

(b) 4h

(c) 4h temperature outlet

Figure 5.5: Temperature fluctuations

a,b) The yellow line displays the fluctuations in the lab by a

measurement near the flowbox in the middle of the lab. The green

line displays the temperature on the experimental table and the blue

lime displays the temperature at the laser table. c) Fluctuations at the

temperature outlets of the AC. A clear oscillation is visible.

A new air condition (AC) was installed, to provide a better temper-

ature stability in the lab. The AC has a compressor for cooling and an
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electrical heating. For the best result in temperature stability both are

running at the same time. The compressor is running between 31Hz

and 49Hz. The temperature set point is 20°C and shows peak to peak

fluctuations of 0.4°C in the lab. The fluctuations at the outlets of the

AC is 2.0°C.

We also measured the temperature on our laser table and the ex-

perimental table. The laser table is completely boxed into anodized

aluminum which reduces all fast oscillations of the temperature. This

leads to a temperature fluctuation of 0.03°C peak to peak fluctuations

which is near to the sensitivity of our sensors. The experimental table

has a filtered flow box on top which couples the temperature on the

table to the temperature in the lab. The sides of the experiment are

shielded with removable anodized aluminum shields such that the airs

flows only from the top to the bottom and leaves the table through the

space between the shields and the table. This results in temperature

fluctuations of 0.1°C on a similar period as in the lab. Three example

curves for one day and for four hours are displayed in Fig. 5.5. On the

laser table a slow oscillation over 24h is visible which could depend

on the environment around the lab (other rooms/ outside) which cool

down in the night. The cooling is here only passive over the table

and not active compared to the experimental table with the flowboxes.

Therefore the fluctuations on the laser table are slower but the overall

drift is bigger than on the experimental table.

5.1.2 State manipulation with microwaves
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Figure 5.6: Schematic of the microwave setup

From top to bottom there are 3 different microwave chains displayed.

They are used for the dressing microwave field as well as for the state

preparation. The 3rd microwave chain with the ring antenna is only

used when the other antenna is occupied with a microwave dressing.

The circulators are connected to appropriate 50Ω termination to

protect the other components from back reflection.
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As stated in chapter 2 and 4, we use microwaves to manipulate the

internal states of the atoms. We need to use two different microwave

frequencies at the same time, one for the dressing frequency and one

for the pulses. For that reason, we use two different microwave chains.

I will briefly explain how they work and what the characteristics are.

For a more detailed explanation look into [28].

All signal generators that are used here are referenced by a ultra

stable 100MHz reference oscillator (the same as for the Raman laser

system) which is then divided to 10MHz by one of our self-built direct

digital synthesizer (DDS). This is necessary because the frequency

generators (Marconi 2024) do not accept 100MHz reference inputs. On

the first antenna we have the option to use the frequency of a signal

generator that is tripled to ~6.83GHz and mixed with a dc voltage

allowing for intensity stabilization. It is then amplified to 7W and

sent to the directional antenna. With this antenna, the efficiency of

the power output is increased with respect to a loop antenna. That

reduces the pulse duration of microwave pulses at the same output

power of the microwave chain. The other option is to use the tripled

frequency of 6.705GHz from another signal generator and then mix it

with ~135MHz from a DDS. This final signal is then filtered and sent

to the same amplifiers and antenna as for the first path. Compared

to the first signal, the signal of this second path has a lower spectral

purity. This spectral purity is required for long irradiation times of

the microwave dressing, where unwanted residual frequencies could

cause transfer of atoms into other Zeeman levels. On the other hand,

the DDS allows for a fast switching of the frequency and an amplitude

shaping of the microwave pulse. That enables the preparation of BEC

in the desired hyperfine state in less than 500µs. The pulse shaping

reduces the overall spectral width but increases the width of the central

peak which makes the transfer more insensitive to frequency jitter. We

use 5µs shaped edges on our microwave pulses to benefit from the

shaping effect but still achieving fast transfers. The microwave chain

also features a power stabilization where a PID controller uses the

output signal passed through a Schottky diode as an input signal and

regulates a DC signal at the last mixer before the antenna to stabilize

the power.

To be able to drive microwave transfers during an active microwave

dressing, there is a third microwave that is similar to the second one,

just without the possibility of pulse shaping and with a maximum

output power of 7W as shown in Fig. 5.6. The Schottky diode in

this setup is only used for monitoring because it is not necessary to

stabilize the power for short pulses.

Another interesting point is the existence of cross transfer pulses.

Due to the finite width of the energy levels and the microwave pulses

in the frequency domain, a resonant microwave pulse that should

transfer atoms from |1,−1〉 to |2, 0〉 also affect the transition from
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|1, 0〉 to |2,−1〉 as shown in Fig. 5.7. This cross transfers would limit

the ability to transfer atoms between the states when one of the both

other states are populated, which limits the options to design an

interferometer sequence. It is most of the time sufficient to compensate

one of the cross transfers to have a wide possibility of interferometers

sequences because the states can be shifted in a way that they end

most of the time on one of the two shown cross transfer positions.

It is important to kept that in mind, because the interferometers

normally using the clock states, that could be affected. These cross

transfers depend on the Zeeman splitting caused by the magnetic field

and by the phase caused by the pulse length and the detuning. A

way to overcome this problem is to choose the pulse length and the

magnetic field in a way, that the unwanted cross transfer has a full

Rabi oscillation back into the initial state and the wanted transfer is a

π pulse.

F=2

F=1

-2 -1 0 +1 +2m =F

Figure 5.7: Microwave cross transfer.

Examples for microwave cross

transfers, with the solid line as a

resonant 100% transfer, the dashed

line is a detuned transfer. The rot

and blue pair of transfers have

different frequencies.

I calculated that by using the

Clebsch-Gordan coefficients for

the coupling between the energy

levels. The starting parameters

are the pulse durations for the

σ+, σ− and π transfers, which are

45µs, 45s and 34µs respectively.

As shown in Fig.5.8, it is possible

to find various combinations of

magnetic fields and pulse lengths

to be able to suppress one of the

cross transfer pulses. The most

interesting values for our cur-

rent setup are the values around

1.5G with a pulse length around

110µs. For higher magnetic fields

there are multiple more solutions.

The slightly noisy looking signal

is due to the calculation of the

pulse time of the pi-pulse, which

is a little bit unstable in mathematica, but the changes are minimal. In

our experiment we are limited at the moment to magnetic fields up to

3G. On the other hand, it is not possible to reduce the magnetic field

too much, due to external frequency noise which would couple into

the magnetic field.

5.2 interferometer setup

As explained in chapter 2, two lasers with a frequency difference on

the order of the hyperfine splitting of rubidium are required for a

Raman transfer. I will explain here the experimental setup in detail.
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Figure 5.8: cross transfer pulse simulation.

Cross transfer calculated for a resonant transfer from |1,−1〉 to |2, 0〉.
The pulse duration for the π-pulse is calculated in dependency of the

magnetic field. The maxima displays the combination where 0% of

the atoms are transferred by the cross transfer pulse due to a full Rabi

oscillation back to the initial state. The orange line is a guide to the

eye for 100% transfer.

The Raman lasers are self-built diode lasers, (a master and a slave

laser) that are superposed with each other before they are emitted from

the laser housing. The master laser is an interference-filter-stabilized

diode laser with external cavity (ECDL), that is sent through an isolator

to protect the diode from unwanted back reflections. A small portion

of light is transmitted through a mirror and used for a rubidium

spectroscopy setup and a frequency stabilization with respect to a Rb

reference laser.

For this lock, the light is coupled into a fiber to guide it close to

the cooling laser. The two beams are then superposed by a PBS and

sent to a photo-diode. The photo-diode is supplied via a bias tee that

is connected to a 9V battery. The signal is amplified by two Mini

Circuit amplifiers (ZJL-7G) and split into two paths. One path is used

to directly monitor the beat signal on a spectrum analyzer, the other

one is mixed with a 1GHz signal from a frequency synthesizer (the

synthesizer that is also the frequency reference). In a last step, the

signal is filtered by a low pass at 520MHz and transformed into a

voltage by a frequency-to-voltage element. This voltage is used as a

direct input for the proportional–integral–derivative controller (PID)

of the master laser which generates the error signal for the master

laser piezo element. With this setup, the detuning of the Raman laser

to the cooling transition of 87Rb is set and can be adjusted.

The main part of the master laser beam is then amplified by a ta-

pered amplifier and sent through another isolator to a PBS to combine
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Figure 5.9: Experimental interferometer setup.

a) The Raman laser emits two linear polarized beams with 90 °

rotated polarization (blue and red beam). The beam is guided

through a filter and a switching setup. Finally it is coupled into a

fiber from the optical table to the experimental table. b) The beam

with the two different polarizations is vertically adjusted to gravity

and the light is circular polarized by a λ/4 waveplate. On a PBS, one

beam is coupled out and the other is reflected back.

it with the slave laser. The slave laser setup is similar, without the beam

that is used for a offset lock. The main part of the combined beam

at the PBS is the output laser beam, but a small portion is coupled

out through the second exit port of the PBS and focused onto a GaAs

photo diode (Hamamatsu G-4176) for the phase lock of the two lasers.

For the phase lock, the photo diode is supplied by a bias tee (Mini-

Circuits ZX85-12G-S). The signal is amplified with a low noise amplifier

(MITEQ AMF-3B-067069-30) and converted to 166MHz by mixing the

signal with a highly stable microwave reference at 7GHz. A 100MHz

quartz oscillator that is phase-stabilized to a 5MHz quartz oscillator is

the base of this reference frequency and multiplied to output the 7GHz.

The mixed signal is sent to a phase detector where it is compared to

the reference signal of 166MHz from a self-built DDS that is stabilized

to the same 100MHz reference. The generated error signal is used
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for two different control paths. For the fast control path with a high

bandwidth, the current through the laser diode is modulated by a

direct AC coupling to the output of the laser diode current driver. The

slow control path uses the signal as an input into a PID controller that

is sending an error signal to the modulation input of the laser diode

driver. It is limited to a bandwidth of up to 100kHz. This combination

reduces the influence of the low-frequency noise on the fast regulation

path. This system stabilizes the Raman laser beat frequency, which can

be changed between each Raman pulse with a minimal dead time of

less than 100µs. Now, all frequencies of the Raman system are defined

and ultimately reference stabilized to the reference oscillator.

After leaving the Raman laser the superposed beam is sent into a

switching and stabilization setup that is shown in Fig. 5.9a with its

main components. The output beam is coupled into a polarization

maintaining fiber through two mirrors and a λ/2 wave plate. This is

necessary to transform pointing fluctuations in the beam into power

fluctuations, which can be stabilized afterwards and do not affect the

rest of the setup. After the first fiber, the beam is sent through an

AOM for switching and shaping the laser pulses that are used in the

interferometer. After the AOM, another set of mirrors and a λ/2 wave

plate are used to couple the beam into a second fiber that transfers the

light onto the experimental table. The shutter is used to ensure that

no light reaches the atoms during the time they are in the dipole trap

while still being able to work with a warmed-up AOM. The power of

the master and the slave are monitored by measuring the transmitted

signal on PDs behind two mirrors, using PBSs to only measure the

master or the slave laser. These signals can be used in a digital PID

that modulates the current through the tapered amplifier to regulate

the power in both laser beams.

We chose a setup with back-reflection of the laser beams to have a

better phase lock. The Raman lasers are stabilized with the phase lock,

every phase that couples into only one of the lasers after that point

worsen the phase stability of the Raman lasers. If we use one laser

from the bottom and one laser from the top, we would have longer

independent laser paths, where the phase could change individually.

Therefore, we chose the setup with a back reflected beam, which have

the same laser path. The goal of this setup is to have only one pair

of counterpropagating Raman laser beams, as shown in Fig. 5.9b. For

that reason we have to couple one of the Raman laser beams out to be

not back-reflected. To adjust the Raman beams parallel to gravity, we

use the mirrors above the glass cell and a small bowl with ethanol at

the place of the back-reflection mirror. The surface is used as a mirror

that is referenced to g. For the best possible result, it is important to

use a liquid with a low surface tension, to be not influenced by the

size of the bowl and to block the back reflections from the ground of

the bowl. The back reflections are blocked by a black metal piece on
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the bottom of the bowl. To get the best adjustment, the beam that is

reflected from the liquid’s surface is coupled back into the fiber and

the power is measured. After this adjustment, the rest of the setup is

implemented. The λ/4 wave plate changes the linear polarized light

into σ+ and σ− light that can now interact in the two-photon process

with the atoms. Behind the glass cell, a λ/4 wave plate converts the

circular polarized light back into linear polarized light. The slave

laser beam (blue beam) is then coupled out by a PBS and the red

beam in the graphic is transmitted and reflected with a phase jump

of π. When it passes the λ/4 wave plate it is again σ+ polarized,

which gives us the desired pair of σ+ master laser light and σ− slave

laser light. Depending in which state (|2, 0 > or |1, 0 >) we want to

start the polarization of the coupled beams into the second fiber is

changed by 90°, which decides if the master or the slave is outcoupled.

The 10m polarization maintaining fiber transmits the Raman laser to

the interferometer setup at the experimental glass cell. This makes

it even more important to not use a setup with two individual laser

path, because the phase accumulated in a individual polarization

maintaining fiber is different.
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Figure 5.10: Raman laser pulse shaping

a) Frequency vs transfer, with a pulse duration of 29µs for a block

pulse. b) sin2-pulse for pulse time of 14µs

pulse shaping Pulse shaping is also used in the interferometer.

The AOM in the Raman laser setup allows for a shaping of the ampli-

tude of the Raman pulses. The shaping of the pulses as a Blackman

pulse would yield a good compromise between the width in the time

and frequency domain. This would be beneficial to make the transfer

less sensitive to frequency fluctuations in the Raman transfers. Because

our frequency generator can already generate sin2 pulses we will use

them. sin2-pulses favor a wide pulse maximum and suppress higher

order peak, as seen in Fig. 5.10b. Compared to that, a rectangular pulse

is shown in Fig. 5.10a, where the second and third order maxima are

clearly visible. The frequency width is then together with its second

and third order maxima wider than the shaped pulse, which demands
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a stronger separation of the energy levels in the BEC by a Doppler shift.

This is an unwanted feature because this effect can excite undesired

transitions. The method to normally negate that is a longer free fall

time which is not an option for our setup. The only disadvantage of

the shaped pulses are that the pulse time is nearly doubled due to the

reduced total transferred power.

Both graphs were measured below the optimal pulse time, therefore

the transfers do not reach 100%. That reduces only the maximal

transfer and does not effect the shape of the pulses.

5.3 noise sources in the interferometer and the state

preparation

The different experimental components contribute to the noise in the

state preparation and the interferometer. In the following section the

different noise contributions are explained and discussed.

5.3.1 Raman laser

The Raman lasers are among the most crucial parts in the interferome-

ter setup. The Raman transfer efficiency is a limit for the sensitivity of

the interferometer. There are two important time scales for the noise

of the Raman laser: long term drifts and shot-to-shot fluctuations

including fluctuations between the single Raman laser pulses during

the sequence. Both are associated with fluctuations in the absolute and

relative Raman laser power and the polarization of the two Raman

laser beams.

This leads to an influence of the AC Stark shift. The AC Stark

shift stems from the influence of an off resonant light field on the

level structure of an atom. It shifts the energy level depending on the

detuning ∆ and the Rabi frequency Ω of the light field.

ωAC =
Ω2

4∆
(5.1)

For the calculation of the shift, all couplings with a higher multiplet

level need to be summed up. For our case of a two photon light field

with the frequencies ω1, ω2 and the frequency difference ω12 between

them, the frequency is

ωAC,j = ∑
k

Ω2
1,k

4δ1,k
+ ∑

k

Ω2
2,k

4δ2,k
(5.2)

with δ1,k and δ2,k as the detunings of a multiplet level |k〉 and the

Rabi frequencies weighted by the corresponding Clebsch-Gordon

coefficients. That leads in this case to a relative AC Stark shift of the

resonance frequency of ωAC,di f f = ωAC,e −ωAC,g. If the two levels shift
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Figure 5.11: Relative AC Stark shift.

Relative AC Stark shift over the ratio between master and slave laser

for an example parameter set in the experiment. The shifts are shown

with respect to |1, 0〉 for the levels |1,±1〉 (dark and light green) and

|2, 0〉 (blue line).

exactly by the same amount, fluctuations of the total power do not

change the resonance frequency of the transition.

In Fig. 5.11, the relative AC Stark shift is shown for 3 important

transitions. The ratios are calculated at the position of the atom cloud.

Therefore, the power ratio of the lasers after the fiber outcoupler needs

to be different, because the slave laser is outcoupled and only counts

once and the master laser is retro reflected and counts double at

the position of the atoms. In addition, also the imperfect behavior of

the polarization has to be taken into account, therefore the optimal

experimental measured ratio is only close to the calculated values. The

clock transition |1, 0〉 → |2, 0〉 is displayed in blue in the graph. It is

visible that the slope of this transition is magnitudes higher than the

ones for the levels in the F = 1 manifold. The shifts of these levels are

important when a coupling between these levels is planned.

Furthermore, polarization fluctuations before the second fiber (see

Fig. 5.9) translates into power fluctuations for the back-reflected beam

and the outcoupled beam, due to the PBS before the back-reflection

mirror. These fluctuations will lead to an imperfect power ratio at

the position of the atoms which decreases the effectiveness due to a

mismatched AC-Stark compensation. These short-term fluctuations of

the polarization and the power generate shot-to-shot noise fluctuations

of the Raman signal. On longer time scales, the power fluctuations

are caused by the pointing fluctuation of the laser system before

the first fiber, which translate into power fluctuations. That limits the

maximal time, where the interferometer performs well and reduces the

statistics of the measurements. For that reason, a power stabilization is

implemented, which stabilizes the power behind the first fiber between

the different experimental runs. It is a digital PID that uses the signal of
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two photodiodes to regulate the current through the tapered amplifiers,

as described earlier in this chapter. This stabilization does not interfere

with the phase lock, because the regulation signal is only uploaded

every 10ms. That is slow compared to the phase lock, but reduce the

bandwidth of this stabilization. The bottleneck for a faster stabilization

is the realization of the digital PID with LabView.

Other parameters that have an influence on the Raman transfer

efficiency are the pulse width in time and the frequency width of

the pulse. The noise in these parameters is not a limiting factor, they

only have to be adjusted to avoid unwanted transfers from the two

parallel Raman beams. The noise of the phase lock does not seem to

be a limiting factor for the frequency, because the frequency shift that

it could cause is way smaller than the shifts that are caused by the

power fluctuations when the pulse time is fixed. But the phase noise

can change the rotation axis on the Bloch sphere for our interferometer

sequence which then couples into our interferometer signal. This is

only significant if the frequency of the noise is high, in the order of

the phase lock frequencies.

5.3.2 Microwave

The microwave amplitude can fluctuate in polarization or power, but

it is hard to differentiate these effects. Moreover, the most precise

measurements can only be done with atoms which are on the other

hand also affected by the magnetic field. Our setup shows in total

a fluctuation below 0.2% in the number of transferred atoms for a

microwave π
2 -pulse. The microwave frequency noise is on the order

of a few Hertz, which makes it negligible compared to the magnetic

field noise. More information on the microwave noise in our setup is

found in [28].

5.3.3 Magnetic field

The magnetic field fluctuations have a direct influence on our state

preparation and the interferometer. When the magnetic field is fluc-

tuating slowly, i.e. between two measurements, we have a different q

value for our squeezing and a non-perfect efficiency for our transfer

pulses between the Zeeman and hyperfine levels. The most sensitive

measurement method that we can use is a Ramsey measurement [72,

73] of the transfer from |2, 2 > to |1, 1 > with two microwave pulses.

This transition has the highest magnetic sensitivity. The Ramsey mea-

surement consist of two π/2 pulses with an evolution time in between

where the pulse duration is short against the evolution time. For that

reason, the measurement is more stable against influences like a spa-

tially inhomogeneous field or fluctuations of the microwave power

or frequency. Nevertheless, the influence of the microwave instability
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Figure 5.12: Magnetic field noise.

The average magnetic field noise is 72µG over a time of 19h.

noise can not be fully neglected, so that the measurement in Fig. 5.12

is a measurement of both noise sources. We measured an upper limit

of the magnetic field noise of ∆B = 72µG over 19 hours, which is

sufficient to generate entanglement and to operate an interferometer.

The measurement includes a slow drift, therefore the shot-to-shot

fluctuations are lower. For an overview of the detailed noise in the

magnetic field stabilization, please refer to 5.1.1.3, and for more details

to the corresponding thesis [71].

5.3.4 Detection noise

We use an absorption detection in our setup, that has the photon shot

noise and the quantum efficiency of the camera as main fundamental

noise sources plus the technical noise. The assumption is that the

power of the laser beam is chosen such that the non-linearity in the

atom light scattering is small. The camera converts the photons with

a quantum efficiency η into electrons that are subject to shot noise.

Therefore, the fundamental noise ∆N(i) for a pixel i is

∆N(i) =

√

√
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√
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(5.3)

with Apx as the area of the pixel, t the illumination time, I
(i)
a the

intensity with atoms, I
(i)
b the intensity without atoms and nc the atom

column density [28]. Because the fluctuations in the camera pixels
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are independent from each other, this leads to a fluctuations of the

estimated atom number of

∆Nest =

√

∑
i

(

∆N(i)
)2

. (5.4)

The minimal detection noise calculated for our system with for-

mula 5.4 is ∆Nest ≈ 10 atoms. It is calculated with our optical parame-

ters and an imaging intensity of I ≈ 40 W
m2 . The noise is nearly inde-

pendent from the number of atoms and is between ∆Nest = 10.6 and

∆Nest = 9.3 atoms for N = 0 to N = 10000 atoms in one cloud [28].

The technical noise is around 17 atoms which is added up to the

fundamental noise. The total noise is measured and then the technical

noise is calculated by subtracting the fundamental photo electron

shot noise. The main technical noise sources are imperfections of the

optics, dust that leads to diffraction of the beam and small laser beam

displacements, which thereupon leads to an intensity fluctuations on

the camera [28].

5.3.5 BEC life time

The lifetime of the BEC can be a limiting factor for the measurement

with entangled ensembles. The lifetime of the BEC can be reduced by

different effects. One effect would be collisions from the background

gas which would limits the lifetime to 80s [66], that is reached through

the pressure difference through the differential pumping state which

is shown in chapter 5. A second effect is the heating of the BEC during

the holding time in the dipole trap through the laser. A third effect

are the three-body losses in the BEC due to a high density. This losses

limits the lifetime of the BEC to 5s. That is the main limitation for the

BEC.

5.3.6 Laboratory temperature effects

The temperature fluctuations in the lab and close to the experiment

could influence multiple components. Example values for the tempera-

ture stability in the lab and on the optical table are given in the section

before. Main components that could be influenced by the temperature

are the frequency locks of the lasers, the electronic controllers of mi-

crowave components and laser locks and the mirrors of the dipole trap

setup. There were no correlations seen that the temperature influences

these parameters and overall the thermal noise is a minor noise source

for the measurement. Nevertheless, the adjustments of the experiment

start to deteriorate after days of measurements which could still be

caused by long-term temperature fluctuations.
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6.1 results

In this section, I will present the experimental results and discuss

possible improvements for a realistic interferometer. Spin-depending

collisions can provide squeezed vacuum in the symmetric superpo-

sition |S〉 of the states |1,±1〉. Here, I present the realization of an

atomic gravimeter which includes this state as an input state. I show

that a future reduction of the so far dominant technical noise will

allow for operation of this gravimeter with a sensitivity beyond the

shot noise limit.

6.1.1 Classical-interferometer
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Figure 6.1: Raman laser pulse duration measurement

The duration on the x-axis is the time from the begin of the pulse to

the maximum. For the full pulse time it need to be multiplied by 2.

The black line is a fit through the data points. The black dashed line is

only a guide to the eye. The employed pulses have a sin2 shape.

The Raman transfer is one of the critical components, because the

transfer efficiency fluctuates in time. Therefore, it is analysed before

the interferometer sequence. For a spectroscopy of the Raman laser, a

transfer efficiency of 93% was measured, see Fig. 6.1. This efficiency

depends strongest on the AC-Stark shift compensation and the correct

69
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Figure 6.2: Interferometer sequence

The Rf π/2 pulses together with the Raman pulse act as a

beamsplitter. The orange color displays the |2, 0〉 level, the blue one

the |1, 0〉 and the dashed dark and bright green line displays the

|1,±1〉 level, which contains the symmetric state. The interferometric

signal is measured by measuring the atom number in the output

ports.

choice of the pulse lengths. The chosen pulse length of 14µs for the

complete sin2 shaped pulse is the trade off that we made between a

short pulse that excite other modes and a long pulse that is velocity

selective for the distribution in the falling BEC. It is already possible

to see in the measurement in Fig. 6.1 that for longer pulse times the

fluctuations in the transferred fraction of atoms increases. This can

be understand as a influence of the power fluctuations of the Raman

lasers. The 2π pulse still transfer a minor amount of atoms due to this

fluctuations, also a slowly decay in the maximal transferred fraction

can be noticed for longer pulse times. The efficiency can fluctuate and

drift during the measurement over all single runs as shown. Therefore

this needs to be monitored during the measurement.

The scheme for a squeezed vacuum interferometer is introduced in

Sec. 4.3. Before the implementation of squeezed vacuum, the protocol

is tested with unsqueezed vacuum in the same state. Therefore, the

preparation step as shown in Fig. 4.8 vanishes and we start with all

atoms in the |1, 0〉 level. If we use the symmetric and anti-symmetric
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basis states of Sec. 4.3, the interferometer is described as a 2-mode

interferometer with the symmetric state and the mF = 0 state as a

basis.

The employed protocol is shown in Fig. 6.2. At the beginning, all

atoms are in the |1, 0〉 level (displayed on the first Bloch sphere by the

transparent red disk) Subsequently, one is transferred to the symmetric

state via a radiofrequency transfer to the |1,±1〉 level, as displayed by

the red disk on the Bloch sphere. Because this is a classical state, the

uncertainties along Jx and Jy are the same, as represented by a disk. For

the squeezing-enhanced operation, spin dynamics can be employed to

generate a squeezed vacuum state in |S〉 prior to this protocol. This

would lead to an ellipse that is squeezed along Jz at this point. Now,

the ensemble is in a superposition of the symmetric state and the zero

state, displayed on the equator of the Bloch sphere. A momentum of

2h̄k is transferred by the Raman pulse in the upward direction. After

a waiting time of 70µs to separate the two clouds, the second Raman

pulse decelerates the cloud in Port 1. The following waiting time is

varied to sample different phases, started with a waiting time of 1µs

up to 1.001ms in steps of 50µs. The following π-pulse is necessary to

change the internal state for downward acceleration with the same pair

of Raman beams, (see Sec. 5.2). Then, the two Raman pulses accelerate

and decelerate the cloud again and both clouds are overlapped again.

After these pulses, another short waiting time is applied that fills up

the time of the phase collection to a constant duration of 1.002ms.

For the first measurement point the duration is 1µs + 1.001ms and

for the last point, it is 1.001ms + 1µs. It is necessary to have always

the same time between the two radio-frequency pulses that open also

an interferometer on the internal states. The quadratic Zeeman effect

shifts the energy levels of |1,±1〉 compared to |1, 0〉 by 70 Hz
G2 , which

cause a phase shift between the symmetric and the zero state. If this

duration does not change, this part only generates a phase offset

which can easily be subtracted to calculate the g-factor. But if the time

between the radio-frequency pulses is varied, an additional phase

variation is generated which disturbs the phase signal generated by

gravity. In theory, that can be calculated and subtracted but it is more

precise to avoid a second time dependent signal in the first place.

The phase ∆φ sampled by gravity results in a rotation around the

equator as shown on the second Bloch sphere. The presented shift is

only an example and depends on the evolution time. Now, the final

microwave π/2-pulse couples the symmetric state with the zero mode

and closes the interferometer. This is displayed by a rotation around

the Jy-axis on the third Bloch sphere. The projection onto the Jz-axis is

then measured. This measurement is the atom number in the different

states counted by the state selective absorption detection.

The time difference between the third and the fourth Raman pulse

is the same as for the first and the second. Between all radio-frequency,
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Figure 6.3: Mask placement on the absorption detection picture

microwave or Raman pulses a minimum waiting time of 1µs is induced

to be ensure that the pulses are well separated by each other. The

waiting times between the two Raman pulses are large enough to

separate both pulses in the frequency domain.

Now, I will present the detection analysis after a full interferometer

sequence. A non-perfect transfer can be observed by detecting atoms

on the absorption picture, where they should not appear. I will explain

this on an example picture of a rare incomplete Raman transfer, shown

in Fig. 6.3. The green lines are the margins of the detection masks, in

which the atoms are counted. The picture is taken with a logarithmic

color scale, with white for a high atom number and red for a low atom

number. In the left-right direction, the states are separated by their

magnetic field number and in up-down direction by the momentum,

that result from the Raman transfer. The first mask from the top (mask

number 4) correspond to +2h̄k momentum, it collects the magnetic

states mF = 0,±1. This mask only contains atoms when a transfer

is imperfect and the atoms do not interact with a +2h̄k and a −2h̄k

momentum kick. For the same reason also the lowest mask (mask

number 7) with −2h̄k is only populated when the transfer is imperfect.

The lower masks are more often populated, the corresponding atoms

there are transferred by the third Raman pulse, that act one the leftover

atoms in the starting state. The atoms that are transferred by the first

or the second Raman pulse can be decelerated accidentally by the third

or fourth Raman pulse. They are then not distinguishable from atoms

in the 0h̄k states due to the not visible spacial difference on the camera.

Masks 6 and 8 identify atoms in |2,+2〉 and |2,−2〉, respectively. If

they are populated, this is a sign for a real rare malfunction of the

experiment. The reason can be a changed magnetic field or a delay in

the experimental timing. This is a really rare event that can occur and

mixed up the timings of the different components in the experiment.

The masks 1, 2 and 3 are the masks for the desired interferometer

states, they show the atoms with 0h̄k momentum in |1,−1〉, |1, 0〉
and |1,+1〉. At the same position also the atoms in |2, 0,±1〉 are

shown, only with reverted sign, so for example in mask 1 the atoms in

|2,+1〉. That needs to be kept in mind for further investigations of loss
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(a) Good Raman transfer (b) Bad measurement

Figure 6.4: Absorption pictures interferometer.

a) Normally looking absorption picture for a good Raman transfer

efficiency. b) Post selected picture with bad Raman transfer efficiency

and extra undesired transfers.

channels and noise analysis. Due to the interferometer sequence, it is

very unlikely to have atoms at all in the F = 2 manifold. Therefore,

the masks are analyzed as there are no atoms in the F = 2 manifold.

As you can see in Fig. 6.4a, a normal sequence produces atoms in

masks 1, 2, 3 and only a negligible number in mask 7. On the other

hand, during a sequence where a non perfect Raman transfer occurs,

there is a bigger percentage of atoms in mask 7 which shows a worse

Raman transfer and another problem that produces atoms in |2,±2〉
(Fig. 6.4b). The process is clearly a influence of a bad Raman laser

and are not dependent on the measurement scheme, therefore a post

selection is a valid choice. The ratio of atoms outside of the masks

1, 2, 3 is used to choose only transfers with a high-efficient Raman

transfer and no other disturbance that can be seen on the absorption

images.

Fig. 6.5 displays an evaluation of the gravimeter sensitivity. As

explained before, the measurement is postselected on experimental

time jumps and minimal 97% of all atoms in the desired masks for an

efficient Raman transfer. The red dots are the result for the different

evolution times with one standard deviation error bars. The orange

line show a sinusoidal fit with contrast, amplitude offset and phase

offset as fitting parameters. The phase offset of 0.88π results from

the fixed phase that is sampled due to the energy offset between |S〉
and |1, 0〉. The amplitude offset is 0.65. Resulting from the inefficient

Raman transfer, which reduces the number of atoms in |1, 0〉 compared

to the atoms in |S〉. The fitted contrast is C = 0.4, which reduces the

sensitivity. The reduced contrast is a main technical problem, because a

close-to-ideal contrast is required to exploit the effect of entanglement

in the interferometer.

For a further analysis, we have to look at the bare data of the

fraction of atoms in |1,±1〉. In Fig. 6.6, the fraction of atoms in |1,+1〉
is displayed in blue, |1,−1〉 in green. The contrast (C = 0.25) is the
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Figure 6.5: measurement of the gravitational acceleration

The y-axis is the ratio between the sum of atoms in |1,+1〉 and

|1,−1〉 and the total number of atoms. The orange line is a sinusoidal

fit for an ideal g value, yielding a contrast of 0.4 and a amplitude

offset of 0.65 and a phase offset of 0.88π. The black line shows a

example value, where the fluctuation in the transferred fraction

∆N f rac is used to calculate the fluctuation in phase ∆ϕ. That can be

then used to calculate the fluctuations in g.

same for both. The amplitude offset for both is similar, the differences

can be explained by a slightly suboptimal dressing. As explained

before, a reason for the common amplitude offset could be the Raman

momentum transfer, here we can see, that the maximal transfer is

around 0.42 for the |1,−1〉 and 0.47 for the |1,−1〉, which is near

to the expected maximum of 50%. That fits with the assumption,

because a full transfer would also be possible with a steady amount of

atoms transferred to the |1,±1〉 states, but a fraction of 0% would be

impossible. The data shows a phase difference of 0.43π between the

two states. The phase difference between the two states explains the

reduction of the contrast in Fig. 6.5. If the phase difference was close

to π, no signal could be extracted because the sum would be constant.

We could prove this interpretation by shifting the dressing frequency

by a small amount of 5.1kHz. This leads to a close to zero contrast.

The error margin of the calibration measurement for the microwave

dressing is bigger than the precision that would be needed for a

zero phase shift in the interferometer. This complicates the calibration

procedure. Further sources for the phase difference are discussed in

Sec. 6.2.

To simulate how much the contrast of the signal would be improved

without the phase offset between the states, the phase offset is arti-

ficially corrected by shifting the data points. The result is displayed
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Figure 6.6: single state g measurement

The blue line is the fit for |1,+1〉 and the green line is the fit for

|1,−1〉 compared to the total number of atoms.

in Fig. 6.7, where the data points are shifted and summed up. Com-

pared to the original measurement, the contrast of 0.55 improved by

40%. This means a perfectly set dressing frequency for the microwave

dressing is fundamental for a good measurement result. This is still

not a contrast near 1, which is necessary to detect entanglement in an

interferometer. But the artificial phase shift also destroys the correla-

tion between the |1,+1〉 and |1,−1〉 mode, because the data is from

different experimental realizations. Therefore, a real measurement

could have a higher sensitivity due to the correlations, which could

reduce the fluctuations in the sum.

However, we want to calculate the sensitivity of the measurement

without the artificial phase shift. Therefore, the fluctuations in the

transferred fraction of |S〉 and |1, 0〉 can be calculated into fluctuations

of the evolution time as shown in Fig. 6.5. This value leads then

to phase fluctuations which can be used to calculate the standard

deviation of the phase which can be compared to the shot noise limit.

I will now evaluate the gravimeter’s sensitivity at mid-fringe position,

where the sensitivity should be optimal.

Fig. 6.8 shows a histogram of the 551µs measurement point as a

exemplary point.

Now, we can use the distribution near the mid fringe position to

calculate the standard deviation of this distribution. The mid-fringe

measurement shows no measured points below 0.2 or above 0.9 trans-

ferred fraction. Therefore, I will assume that no fringe hopping was

happening and all points are only measured on one slope. The calcu-

lated standard deviation is a factor of 84 ± 7 larger than shot-noise.

The most relevant source for the increased noise is the phase shift
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Figure 6.7: g measurement with post correction

The y-axis is the ratio of the sum of |1,+1〉 and |1,−1〉 to the total

number of atoms. The orange line is the sinusoidal fit for an ideal g

value, yielding a contrast of 0.55 and an amplitude offset of 0.65. The

phase offset is adjusted. The single measurement points are shown as

gray dots. Take into account that the phase offset between |1,+1〉 and

|1,−1〉 is shifted and the ratios are summed up, which can lead to

results larger than 1. The shown evolution time is shorter due to the

shift of the data points.

shown before, that leads to a reduced contrast. We believe that fluc-

tuations in the Raman laser intensities lead to strong fluctuations of

this phase shift, as I will discuss in the following section. A further

contribution is magnetic field noise, that couples to the symmetric

state, but the calculated contribution is well below shot-noise.

6.2 discussion

Because this phase difference between |1,+1〉 and |1,−1〉 levels was

a major problem, I will describe two experimental causes which lead

to such a phase shift. Firstly the phase shift stems from incorrect

dressing, which would affect the radio frequency transfers and lead

to a constant phase accumulation during the interferometer sequence.

This effect was experimentally reproduced by a second measurement

with only a small change of 5.1KHz in the dressing frequency which

results in a relative phase shift near π between the |1,+1〉 and |1,−1〉
levels. Such small changes are beyond the resolution of our calibration

procedure. Therefore another technique needs to be developed to

adjust the microwave dressing. Normally the dressing is tuned with a

BEC in the crossed optical dipole trap and the spin dynamic resonance

is observed. This dynamics have a huge variance due to there source
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Figure 6.8: Histogram of the transferred fraction

Histogram at 551µs evolution time of the transferred fraction. The

measurement is done near mid fringe.

in the vacuum fluctuations, the measurement has therefore an error

in the same order of magnitude as the change. An obvious approach

would be a calibration with the full interferometer sequence without

the Raman pulses.

Secondly, the Raman lasers produce an AC Stark shift of the |1,±1〉
levels. The 2-photon transfer is very narrow in the range of a few

kHz, while the normal light field is broad to couple all internal states

to the intermediate level. For that reason, the offset-lock is 1.1GHz

detuned to the intermediate level, but the difference between |1, 0〉 and

|1,±1〉 is only in the order of hundreds of kHz at the given magnetic

field of 0.8G. Therefore, also the side levels are affected by the AC

Stark shift. The different shifts of the different levels are shown in the

Raman noise Sec. 5.3. That could be avoided by using the transfer of

the squeezed vacuum to the clock states.

Another point that could be caused by the coupling of the detuned

light field, is an increase of the fluctuations during the measurement.

Because the AC Stark shift for the |1,±1〉 levels cannot be compen-

sated, every fluctuation in the power of the coupling laser is translated

into a phase shift with a different strength. Even worse is that the

coupling strength is not the same for the |1,+1〉 level and |1,−1〉 level.

Therefore, they experience a differential phase shift, which cannot be

suppressed by common mode rejection as in the difference variance

analysis, used in Sec. 6.1.
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6.2.1 Improvements

To improve the interferometer, there are two points to take into consid-

eration. One is the technical implementation. The intensity fluctuations

on the Raman lasers are a major problem for the interferometer. There-

fore, the stabilization of the Raman laser system need to be improved.

That could be done by completely rebuilding the Raman laser system,

but with diode laser and without tapered amplifiers. This could in-

crease the power stability, the pointing stability and also the speed

of the laser power reacting on the stabilization. Both polarizations

would be transferred through individual fibers, thereby improving

the polarization stability. The phase lock should then be set-up with

a as short as possible control loop, with the photo diodes behind the

individual fibers. The only disadvantage of this setup would be that

the light path between laser and phase lock detector is longer and

also the signal from the lock back to the laser takes longer. This could

lead to an increased length of the control loop by 2 − 3m but that

should be a really small disadvantage compared to the gain in stability.

That would also allow to integrate a power stabilization with AOMs

behind the phase lock. These changes together should lead to a more

stable Raman laser system with a higher average transfer. Another

possible improvement is an even better magnetic field stabilization

which allows to hold the corresponding microwave dressing values for

a longer time and also reduce the unwanted phase shifts that can come

from this as shown above. These are the most promising technical

improvements that can be done.

F=2

F=1

-2 -1 0 +1 +2m =F

Figure 6.9: measurement of the gravitational acceleration

Figure 6.10: Selective radio frequency transfer.

Radio frequency transfer between the |1,±1〉 and |1, 0〉, without

transfer atoms in the F = 2 manifold.

The second point is a change in the interferometric scheme to the

scheme that was shown in Fig. 4.9. This would transfer the single

mode squeezed state from the symmetric state |S〉 to the |1, 0〉 level.
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This has the benefit that the problem of the phase offset between

|1,±1〉 no longer exist, because the atoms do not sample the phase

there during the evolution time. Another benefit is that then all atoms

are in clock states which makes them less sensitive for magnetic field

fluctuations and shifts through off resonant Raman laser coupling. For

this, a special technique of radio-frequency coupling [74] by using

circular polarization is necessary to transfer the atoms in the F=1

manifold and without transferring the atoms in the F=2 manifold (see

Fig. 6.10).

6.3 squeezed vacuum vs . twin-fock interferometer

The first big difference between the two different interferometer types

is the state preparation. The generation of a squeezed vacuum state

is faster, which reduces the heating during the holding time in the

trap. This is beneficial to have less noise on the signal. The quasi-

adiabatic ramping to generate the twin-Fock state leads to heating

due to the long holding time. If the ramping is performed faster, the

resulting variance of the transferred atoms becomes larger. This is

a disadvantage, because the state should have a similar number of

atoms for each cycle. For the longer holding time, the variance of

the transferred atoms is smaller, which reduces possible fluctuations

that are caused by fluctuations of the total number of atoms, such as

density shifts. The squeezed vacuum state can be generated with less

noise, mainly due to the smaller duration of spin dynamics. When

the heating in the dipole trap could be reduced, the twin-Fock state

could also be generated with less noise for smaller atom numbers.

This would need a technical improvement of the dipole trap. But also

there are still losses from the 3-body losses in the dipole trap which

are density dependent, which would be not reduced by this technical

improvement.

Another difference is the amount of energy levels that needs to be

handled throughout the interferometer sequence. For the twin-Fock

interferometer, there are just a few leftover atoms left in the |1, 0〉 level,

which can be easily removed. Only two energy levels corresponding

to the two states are handled during the interferometer sequence.. For

the squeezed vacuum interferometer, there are still atoms in |1,±1〉
during the interferometer sequence which may not interact during the

rest of the sequence with the other states.

In a squeezed vacuum state, the strength of the entanglement can

be adjusted, whereas in the twin-Fock state it is set by the generation

process and its noise. This is an advantage if a defined amount of

squeezing should be reached. Moreover, the density effect compensa-

tion that is shown in the scheme for the squeezed vacuum interferom-

eter is only working close to the equator of the Bloch sphere, which

is not possible for the twin-Fock state because it covers also the poles
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in the phase sensitive time (Bloch sphere 2, Fig. 4.6). Therefore, the

squeezed vacuum interferometer has an advantage if the technical

noise is reduced sufficient to approach the density limit.

After the state preparation phase, the interferometer schemes are

pretty similar, but one big difference that needs to be noticed is that

the signal in the squeezed vacuum interferometer is obtained from

the atom number difference between the two ports. In the twin-Fock

interferometer, the signal is obtained from the squared difference,

which requires an adjusted interferometer readout.



7
C O N C L U S I O N A N D O U T L O O K

7.1 conclusion

In this thesis, I presented two different schemes of entanglement-

enhanced atom interferometers for a measurement of gravitational

acceleration. The schemes and the results of a first, classical version

were discussed and evaluated. I have identified uncontrolled AC Stark

shifts as a main source of the fluctuations. This leads to the result

that the technical noise needs to be reduced before an entanglement-

enhanced atom interferometer can surpass its classical counterpart.

In a theoretical analysis, the boundaries for a perfect entanglement-

enhanced interferometer in the parameters of squeezing and atom

number density were discussed and it was shown that there is an ideal

number of atoms where the density effect can be reverted by choosing

the appropriate squeezing phase.

7.2 outlook

The implementation of these schemes in an experiment can lead to

a first realization of an entanglement-enhanced atom interferometer.

This could pave the way to more sensitive atom interferometers when

the increase of other parameters is not possible anymore or too chal-

lenging. These measurements would also show where technical noise

sources occur and if one of the two schemes has an advantage.

The use of these schemes in experiments with single-atom detection

would allow the use of stronger entangled states, like Schrödinger-cat

states, which could improve the sensitivity of the interferometer even

more.

Also the implementation of the optimal squeezing protocol can lead

to a further improvement of an a entanglement-enhanced interferome-

ter in the presents of density shift.

Further improvements could be the use of two inverted interferome-

ters behind each other to gain a common mode noise rejection to noise

caused by the reference mirror.

technical outlook The implementation of a more stable Raman

system will also allow to demonstrate the use of LMT with multiple h̄k.

But for that, the two clouds need to be well separated in the frequency

domain due to the Doppler shift. This requires a sufficient free fall

time before the interferometer sequence. This is not possible in our

current setup, because our vacuum chamber is not long enough and
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the detection system is not in an optimal position. It is possible to move

the detection system to reach a sufficient free fall time. In principle,

the Raman system could also be used to change the internal states of

the atoms instead of a microwave system if the transfer becomes more

efficient than a microwave transfer. A higher stability also elongates

the total measurement time which will allow to measure more data

points. This elongation of the possible averaging time will improve

the resolution of the measurement.

A further improvement of the magnetic field stabilization is the

second major point that would improve the long term stability and

also the noise during the interferometer. Therefore, it is desirable

to improve this first. A further technical improvement could be the

increase of the dipole trap depth to increase the evaporation time and

with that also the cycle time. The improvement of the temperature

stabilization on the experimental table and on the reference resistors

for the laser locks and magnetic field stabilizations could improve

the experiment in terms of the described diffuse drift behavior of the

complete experiment over days.

It needs to be investigated how much the wavefront of the Raman

laser influences the transfer of the atoms and if the intensity gradient

may be a problem when the now existing noise sources are reduced.

A beneficial improvement for all our experiments with entangled

atoms would be the generation of a stronger squeezed state by reduc-

ing the noise during the state generation process.

possible long term goal The long term goal could be to enable

an entanglement-enhanced atom gravimeter, whose absolute value

is better than a classical interferometer with the same parameters

and also reach the best sensitivity. Therefore, the schemes that will

be tested, should be implemented in VLBAI. The VLBAI is a long

baseline atom interferometer which is build in Hannover and features

a excellent magnetic shielding, a free fall distance of 10m, a catapult

mode and BEC source with a high repetition rate. This will allow for a

free fall distance of 10m for the interferometer or longer for sequences

that are using the catapult mode. In this setup, the order of magnitude

in sensitivity is reached where entanglement instead of other less

practical parameters will be useful to further increase the sensitivity.

A possible use of such a setup would be the generation of macro-

scopic entangled states, on the meters distance scale with evolution

times in the range of seconds. Due to the large possible splitting of the

state, it would be possible to test local collapse theories [75]. Another

possibility would be the test of the characteristics of an entangled state

in an macroscopic appearance. Also it would allows test of quantum

information protocols in entangled BECs over the distance of meters.

Atom interferometer can also be employed to measure gravitational

waves on earth and in space [7, 76]. These detectors would be highly
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sensitive in frequency ranges, where laser interferometer as gravita-

tional wave detectors are less sensitive. They assume in both papers

extreme high sensitivities, where they already including squeezing, to

reach sensitivities below the shot-noise limit. Therefore, we could build

such an source for entanglement, which then could be implemented

in such a gravitational wave detector.
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A
C A L C U L AT I O N S

a.1 optimal squeezing

We are starting with a squeezed vacuum state and the two mode

squeezing operator S(ξ).

|ψ(t)〉 = S(ξ)|0, 0〉 (A.1)

The squeezing operator is

S(ξ) = e
1
2 (ζ(b

†)2−ζ∗b2), (A.2)

with ζ = s ∗ eiθ and s as the squeezing strength.

We chose Sc = e−iKH, S = LScL† and σ = S

(

1 0

0 1

)

ST [41] as

before, with

L =

(

1 1

i −i

)

K =

(

1 0

0 −1

)

.

Now we compare the Hamiltonian with the exponent of Sc which

leads to

H =
1

2

(

0 −iζ

−iζ∗ 0

)

. (A.3)

Following this, the full exponent is

−iKH =

(

0 ζ

ζ∗ 0

)

. (A.4)

By writing Sc now as a row and calculate the matrix exponential, we

get

Sc = e−iKH =
∞

∑
j=0

1

(2j)!
|ζ|2j

(

1 0

0 1

)

+
∞

∑
j=0

1

(2j + 1)!
|ζ|2j

(

0 ζ

ζ∗ 0

)

= cosh(|ζ|)
(

1 0

0 1

)

+ sinh(|ζ|)





0 ζ
|ζ|

ζ∗

|ζ| 0





= cosh(s)

(

1 0

0 1

)

+ sinh(s)

(

0 eiθ

e−iθ 0

)

(A.5)
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From that we follow [41]

S = cosh(s)

(

1 0

0 1

)

+ sinh(s)

(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

. (A.6)

Now everything is together to calculate σ

σ =
(

cosh2(s) + sinh2(s)
)

(

1 0

0 1

)

(A.7)

+ 2 sinh(s) cosh(s)

(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

= cosh(2s)

(

1 0

0 1

)

+ sinh(2s)

(

cos(θ) sin(θ)

sin(θ) − cos(θ)

)

. (A.8)

This is used in Sec. 3.2.

a.2 artificial phase shift

Here I will explain in more detail how the artificial phase shift is

performed. Let me first explain how the data is stored. Lets describe

them by a matrix, where the rows are the different evolution times

and the column stands for the different measurement point. As an

example

D =















m1t1 m2t1 . . . mkt1

m1t2 m2t2 . . . mkt2
...

...
. . .

...

m1tl m2tl . . . mktl















(A.9)

If the data would be always in a shape like that the calculations would

be more easy. However, the amount of the used data points tl does

not need to be the same due to post selection for bad measurement

points or errors.

Now I construct the artificial phase shift, in the way that I take the

data for the atoms in |1,−1〉 from data point m1t1 and the data for

the atoms in |1,+1〉 from the data point m1t8, with is the explained

shift,

Sum = |1,−1〉(mkt1) + |1,+1〉(mkt1+s), (A.10)

with s as the amount of steps that the signal should be shifted. Now

there is the possibility that k have a different length for different l,

therefore I use the shorter row for the calculation and dismiss the

measurement points which do not have a counterpart.

To avoid the problem of the different total atom number for different

measurements the relative values are used.
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