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Abstract

The present work is aimed at introducing new characterization techniques in filled rubber compounds.

Rubber fillers such as carbon black are often used to enhance the physical properties of rubber

compounds. With a sufficient amount of carbon black, a percolated filler network is formed, spanning

the volume of the rubber compound. This phenomenon not only significantly improves the mechanical

material behaviour, but also introduces a more complex mechanical response. Further enhancement

is possible with the addition of reinforcing resins such as Novolaks, phenol–formaldehyde resins with

a formaldehyde-to-phenol molar ratio of less than one. Based on the systematic studies performed,

the two reinforcing materials are observed to exhibit synergistic behaviour resulting from their

physical and chemical interaction.

The reinforcing resin modifies the activity of the filler surface creating a more compact filler network.

This leads to a lower filler network percolation threshold as well as increasing the reinforcing

behaviour. This conclusion was derived from various thermo-mechanical measurements such as

temperature stress scanning relaxation (TSSR) and dynamic mechanical analysis (DMA). The

findings were also validated with advanced microscopical techniques such as atomic force microscopy

(AFM) and transmission electron microscopy (TEM).

A direct consequence of the filler network is a strain dependent behaviour such as the dynamic and

quasi-static strain dependent softening effects known as Payne and Mullins effects, respectively.

Within the conventional dynamic mechanical analysis (DMA) of rubber compounds, the mechanical

response signal is often assumed to be rheologically linear (sinusoidal function) since in Fourier space,

the first harmonic is more pronounced than the subsequent higher harmonics. However, valuable

information contained in the higher harmonics can be utilised in order to further characterise the

compound properties. One such approach is the large amplitude oscillatory shear (LAOS) technique

which analyses the harmonics as a function of large strain deformation. While several studies have

contributed to the understanding of this strain dependent nonlinearity, less emphasis was placed

on the nonlinearity of the frequency domain. Utilising a resonance-based high frequency DMA,

nonlinearities in the frequency domain were established by the observation of the superharmonic

resonance, for the first time in rubber technology.

Two distinct nonlinearities were observed, polymer induced nonlinearity and filler induced nonlin-

earity. The new method based on the superharmonic resonance has been successfully applied to

characterise the filler network through the evaluation of the microdispersion of carbon black and its

interaction with reinforcing resins.

Keywords: Superharmonic resonance, HF DMA, filler network
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Kurzzusammenfassung

Die vorliegende Arbeit hat das Ziel, innovative Methoden zur Charakterisierung von gefüllten

Kautschukmischungen einzuführen. Füllstoffe, wie Ruß, werden in Kautschuk eingesetzt, um seine

physikalischen Eigenschaften zu verstärken. Mit einer ausreichenden Menge an Ruß wird ein

perkolierendes Netzwerk erzeugt, das das Volumen der Kautschukmischung durchdringt. Diese

Erscheinung verstärkt nicht nur das mechanische Materialverhalten, sondern führt zu einer komplex-

eren mechanischen Reaktion. Eine weitere Verstärkung ist durch den Einsatz netzwerkbildender

Harze möglich, z.B. von Novolaken, Phenolharzen mit einem Formaldehyd-Phenol-Verhältnis kleiner

eins. Auf der Basis von systematischen Studien wird ein synergistisches Verhalten der beiden

verstärkenden Materialien infolge ihrer physikalischen und chemischen Wechselwirkung beobachtet.

Das Verstärkungsharz verändert die Aktivität der Füllstoffoberfläche und erzeugt damit ein kom-

pakteres Füllstoffnetzwerk. Dies führt zu einer reduzierten Perkolationsschwelle sowie zu einer

zusätzlich höheren Verstärkung. Diese Schlussfolgerung wurde aus Messungen mit verschiedenen

thermomechanischen Verfahren abgeleitet, wie der anisothermen Spannungsrelaxation (TSSR) und

der dynamisch-mechanischen Analyse (DMA). Die Ergebnisse wurden auch mit anspruchsvollen

mikroskopischen Techniken validiert, wie der Rasterkraftmikroskopie (AFM) und Transmissionse-

lektronenmikroskopie (TEM).

Eine direkte Folge des Füllstoffnetzwerks ist die Entstehung eines dehnungsabhängigen Verhaltens,

das als dynamischer oder quasi-statischer Erweichungseffekt beobachtet und jeweils als Payne- oder

Mullins-Effekt bezeichnet wird. Bei der dynamisch-mechanischen Analyse (DMA) von Kautschuk-

mischungen wird häufig eine Linearität der Antwort in Bezug auf das angelegte Verformungssignal

angenommen, da die Stärke der ersten Harmonischen viel höher ist als die der nachfolgenden

Harmonischen. Es gibt jedoch wertvolle Informationen in den höheren Harmonischen, die verwendet

werden könnten, um die Materialeigenschaften weiter zu charakterisieren. Ein solcher Ansatz

ist die LAOS-Technik (engl. Large Amplitude Oscillatory Shear), mit der die Harmonischen als

Funktion der Dehnung analysiert werden. Während einige Studien bereits zum Verständnis dieses

dehnungsabhängigen Phänomens beigetragen haben, wurde weniger Wert auf die Nichtlinearität im

Frequenzbereich gelegt. Unter Verwendung einer resonanzbasierten Hochfrequenz-DMA wurden

erstmals in der Kautschuktechnologie Nichtlinearitäten im Frequenzraum durch Beobachtung von

superharmonischen Resonanzen festgestellt.

Zwei unterschiedliche Typen von Nichtlinearitäten wurden beobachtet, die polymerinduzierte und die

füllstoffinduzierte Nichtlinearität. Die neue Methode auf der Basis der superharmonischen Resonanz

wurde zur Charakterisierung des Füllstoffnetzwerkes durch Bewertung der Mikrodispersion von Ruß

und dessen Wechselwirkung mit verstärkenden Harzen erfolgreich eingesetzt.

Keywords: Superharmonische Resonanz, HF DMA, Füllstoffnetzwerk
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Chapter 1

Introduction

1.1 General Introduction

Cured rubber was invented by both Charles Goodyear and Thomas Hancock in 1840s [1], marked

the first time at which raw rubber products are able to withstand high mechanical load while

retaining its elasticity. This was done through a process known as vulcanization whereby a mixture

of raw rubber material and sulfur is heated to form chemical crosslinks within the rubber compound.

These chemical crosslinks could also be introduced via peroxide-based vulcanization.

In the early 18th century, most rubber based products were made from natural rubber, most of

which originated from the rubber tree Hevea Brasiliensis. The latex produced from these trees were

composed of polyisoprene with a very high (>99%) content of 1,4-cis-isomer [2]. The quality of

raw natural rubber such as polymer chain length and inorganic contents, varies with respect to the

climate and soil.

Driven by the demands of the automobile industry, the first synthetic rubber was invented by Fritz

Hofmann in 1909. This invention would play a large role in the subsequent decades as war led to

severe shortages of natural resource. In the 1930s, Walter Bock had invented Styrene-Butadiene

Rubber (SBR or formerly known as Buna-S) which was meant as a replacement for natural rubber

[3]. All synthetic rubber however is not as mechanically durable as natural rubber and therefore

natural rubber remains an important ingredient in the industry.

Fast forward to the present day, rubber remains one of the predominant material in our daily lives.

Its wide range of applications includes tires, seals, hoses, electrical insulators and many more. It is

a class of material that is able to deform and retain its original shape after the force is unloaded.

There are various ways of modifying this property, one of which is the addition of reinforcing fillers.

The most common example of reinforcing fillers are carbon blacks. Chemically made of more than

95% of elemental carbon, they are produced by either thermal-oxidative decomposition or thermal

decomposition [4, 5]. The former is the most widely used process due to the high production output

and could generate a wide range of carbon black grades by water quenching. When a rubber matrix

1
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is coupled with reinforcing fillers, a significant mechanical improvement are made with respect to

elongation at break, stiffness, abrasion and others [5]. In addition, these properties can be further

enhanced by the use of reinforcing resins [6].

One key feature of filled rubber compound is the nonlinear mechanical response to large deformations.

This is a non-trivial matter as it infers that the mechanical processes involved are operating at a

certain frequency and temperature ranges. While it is known from rheological studies in Fourier

space, that fillers induce nonlinearity within the large amplitude of deformation [7], little is known

within the frequency response of the material. Thus, an investigation of the mechanical nonlinear

response for rubber compounds is presented here. Within the scope of this dissertation, we limit

ourselves to the investigation of rubber nonlinearity at relatively high frequencies, within kilohertz’s

range and under ambient conditions.

1.2 Experimental Approach

In the present work, various experimental methods were performed in order to characterise the

mechanical impact of fillers in rubber compounds. Three broad experimental approaches were

used; microscopic techniques, quasi-static thermo-mechanical deformation and dynamic mechanical

measurements. The latter two are the main focus in this dissertation.

The recently approved standard ASTM D8363 Stress Relaxation in Tension Under Non-Isothermal

Conditions, also known as Temperature Scanning Stress Relaxation (TSSR) [8], is the main focus

for the quasi-static thermo-mechanical experiment as it was used to investigate the rate of stress

decay on the resin reinforced filler network. The basis of this experimental setup is the measurement

of the stress relaxation of a pre-stretched sample, undergoing a defined temperature ramp. The

outcome is the relaxation spectrum which can be decomposed to different relaxations processes due

to polymer and filler network properties.

A novel approach in material characterization is presented by analysing the vibrational response

of rubber compounds. The VHF104 by Metravib, Lyon, France is able to measure a dynamic

mechanical response up to 10 kHz by utilizing the resonance of the material. Within Fourier space,

a superharmonic resonance phenomenon is observed which has not been discussed elsewhere in the

field of rubber science. The superharmonic resonance can also be modelled in real space with a

nonlinear Kelvin-Voigt viscoelastic model. In the present investigation, the Duffing oscillator model

was used with cubic nonlinear term α in the elastic component [9].

1.3 Thesis Structure

The present work is arranged as a cumulative dissertation at which three peer-reviewed publications

are compiled on the basis of the aforementioned title, ”Advanced Filler Network Characterization in

Rubber”. In the subsequent second chapter, a quick revision on several rubber science concepts are
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presented which serve as a foundation for the thesis. This is followed by the methodology chapter,

whereby the experimental setup is described. In chapter four, all three peer-reviewed publications

are compiled with a short intermediary. In the final chapter, a summary of the current findings are

explicitly stated as well as the a future outlook of the topic.



Chapter 2

Literature Review

2.1 Rubber

Figure 2.1: Three of the most commonly used monomers in rubber today; isoprene (left), butadiene
(middle) and styrene (right).

First proposed by Hermann Staundinger in the 1920s [10], polymers are macromolecules that are

compose of smaller identical molecular sub-units, called monomers. Polymers can exist in either

semi-crystalline state or amorphous state. Apart from polymers with a high degree of crystallinity,

all polymers are able exhibit the glass transition temperature, Tg. On the molecular level, it is the

temperature at which large segmental motions of polymer chains are observed within the time scale

of the experiment [11]. Polymers with Tg lower than room temperature are called rubber [12].

The biggest consumer of rubber is the tire industry[13]. The four main general purpose elastomers

are natural rubber (NR), polyisoprene (IR), polybutadiene (BR) and Styrene-Butadiene (SBR)

rubber. The corresponding monomers are shown in figure 2.1. Note that even though NR and IR

and chemically similar, but their tacticity and molecular weight differs significantly. NR is a form

of bio-polymer and it typically has a molecular weight between 104 - 106 g/mol [14] with a high

degree of either cis-1,4-polyisoprene or trans-1,4-polyisoprene [15]. This is mainly attributed to the

polymerization process [16, 17]. Synthetic IR however is often polymerised with the Ziegler-Natta

catalyst and has a lower molecular weight.

In material science, modulus (= stress, σ
strain, ε ) is used to refer to the intrinsic stiffness of a material.

Several common material modulus is summarised in table 2.1 and can be typically interrelated with

the poisson’s ratio ν, which is the ratio of transverse and longitudinal strains in tension [12]. Note

4



5

Figure 2.2: Master curve schematics for amorphous polymer materials. The dashed line indicates
a crosslinked material.

Table 2.1: Modulus definition commonly used in material science

Symbol Deformation mode

Young’s modulus, E Uniaxial extension
Shear modulus, G Shearing mode
Bulk modulus, K Compression

Longitudinal modulus, L Wave propagation

that for incompressible material such as rubber, ν = 0.5. For visco-elastic material, the modulus

can be separated into two parts; real and imaginary:

M∗ = M ′ + iM” (2.1)

The real part is termed as the storage modulus and is related to the elastic property of the material,

while the imaginary part is termed as the loss modulus, representing the damping magnitude of the

material. The ratio of loss to storage modulus is defined and the loss tangent:

tan φ =
M”

M ′
(2.2)

Further explanation of these parameters are presented in section 2.4 and 2.5.

One method of representing the visco-elastic behaviour of rubber is the so-called master curve as

shown in figure 2.2. Based on the time-temperature superposition (TTS) principle, the applied

frequency ω axis is inversely proportional to the applied temperature onto the material. At very

high frequencies, the material is said to be in a glassy state as the polymer chains are immobile.

At the rubber plateau, the high mobility of the polymer chains enables the amorphous polymer

material to deform over relatively large strain. For polymer melts, the terminal region is visible

since the polymer chains are able to slide with each other and henceforth, a diminishing mechanical
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response can be observed [18]. This region is absent in a crosslinked rubber material as the polymer

chains are chemically bonded with each other.

The rubber plateau modulus is a function of both entanglement density, the polymer chain length

between two physically restricted points, and the crosslink density, the polymer chain length between

two chemically restricted points [12]. In addition to the polymer chain modification, fillers could be

added to further improve the mechanical properties of rubber material.

2.2 Fillers

There are two kinds of rubber fillers; reinforcing and non-reinforcing fillers. Fillers that does not

significantly contribute to the mechanical properties of rubber are called non-reinforcing fillers.

They are typically used to reduce the manufacturing cost of the final product by increasing its

volume, reduce the stickiness behaviour and for pigmentation. Reinforcing fillers on the other hand,

are able to create a network by clustering the filler-filler aggregates, and thus, significantly improve

the mechanical properties of rubber. The three scales of filler morphology are shown in figure 2.3:

primary particles, aggregates and agglomerates.

Figure 2.3: Filler morphology indicating primary particles (left), aggregates (middle) and agglom-
erates (right).

The primary particles are the smallest unit of filler morphology that constitutes the primary

aggregates [4]. The degree of branching within the primary aggregates represents the filler structure,

the first of two important filler morphology properties. The second filler property is the filler surface

area. These properties dictate the interaction magnitude between the rubber and filler component.

The primary aggregates are then clustered to form agglomerates.

The volume fraction of filler needed to obtain a filler network (i.e. filler agglomerates spanning the

whole system) is defined as the filler percolation threshold φc. Hence, the mechanical behaviour of

filled rubber can be generally separated into two regions, below the percolation threshold φ < φc

and above percolation threshold φ > φc. In the former case, the rubber is mechanical reinforced by

hydrodynamics effects imposed by the isolated filler aggregates. The hydrodynamic effect concept



7

was introduced by Einstein with his work on fluid viscosity with dispersed rigid particle. In rubber

science, the Einstein-Guth-Smallwood equation is often used to describe the mechanical behaviour

under low deformation [19]:

G′(φ) = G′unfilled(1 + 2.5φ+ 14.1φ2), (2.3)

where G′ is the storage shear modulus, G′unfilled is the storage shear modulus without fillers and φ

is the filler volume fraction.

Above φc, the filler network plays a dominant role in the mechanical properties of rubber. Essentially,

the mechanical load applied on the rubber is directly transmitted through the filler network. Based

on the Cluster-Cluster Aggregation (CCA) concept introduced by Klüppel and Heinrich, a universal

scaling behaviour can be obtained by the fractal dimension of the filler aggregates [20].

The addition of filler in rubber introduces a strain-dependent mechanical response. There are

two important phenomena related to this: the Payne and Mullins effect. Named after the British

scientist A. R. Payne for his investigation in carbon black filled rubber, a strain dependency was

observed in rubber samples under cyclic deformation within small strains. The drop in storage

modulus corresponds to the break down of filler network and is often assumed to be fully reversible.

The strain-dependent measurement of storage modulus can be separated into two regimes, the

linear visco-elastic (LVE) and the nonlinear visco-elastic (NVE) region [7]. Figure 2.4 illustrate the

different components contributing to the Payne effect. Mullins effect is similar to the Payne effect

with the exception that it occurs in a quasi-static deformation with large strains. In contrast to the

Payne effect, the Mullins effect is irreversible [21].

Figure 2.4: The Payne effect. [22]

2.3 Reinforcing Resins

Further mechanical improvements of a rubber compound can be made with the addition of reinforcing

resin. Reinforcing resins are phenol-based chemical which is able to create a three dimensional resin
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network with the aid of a methylene donor such as formaldehyde. The resin structure is a function

of catalyst used, the ratio of phenol and formaldehyde, and the synthesizing temperature [23–26].

A common reinforcing resin reaction used in the tire industry is shown in figure 2.5. Consequently,

the reinforcing resins improves the hardness of the compound as well as improve the compound

mixing processibility since it acts as a softener prior to the curing step.

Figure 2.5: Reaction of diphenol and amine. [26]

In rubber compounds, the presence of hydroxyl groups leads to the reinforcing resins to be more

polar than the rubber matrix. The difference in polarity would thus generate a binary-phase system

at which the resins are immiscible with the rubber matrix [27]. The presence of carbon black

improves the homogeneity of the compound by adhering the resin onto its surface. The combination

of resin and carbon black thus leads to the lowering of the percolation threshold for the filler

network. Hence, a synergistic effect between the two components [28, 29].

2.4 Mechanical Relaxation in Polymers

There are two fundamental relations used to describe the Hookean and the Newtonian flow behaviour:

σ = Eε , (2.4)

where σ is the applied linear stress, E is the Young’s modulus and ε is the strain.

σshear = ηγ̇ , (2.5)

where σshear is the applied shearing stress, η is the shear viscosity and γ̇ is the shear rate.

It should be noted that equation 2.4 is similar to the equation 2.6 with the exception that the latter

is often used to describe a shearing experiment while the former is used for uni-axial deformations.

σshear = Gγ (2.6)

The mechanical relaxation can be separated into two categories, under quasi-static and dynamic

conditions.
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2.4.1 Quasi-static deformation

An instantaneous application of either stress or strain can be defined by the quantity eo describes

the relaxation and retardation of visco-elastic systems.

eo(t) =

{
0 for t < 0

1 for t > 0
(2.7)

Figure 2.6: The three retardation components of creeping. [30]

Hence, in a quasi-static system of an instantaneous applied stress σo to a sample, the stress σ(t) is

defined as follows:

σ(t) = σoeo(t), (2.8)

In the time-dependent strain variable ε(t), the applied stress thus induces a time-dependent creep:

ε(t) =
1

M(t)
σo = J(t)σo, (2.9)

Where the compliance J(t) is the reciprocal of the modulus M(t).

There are three main regions within the creeping response of material under deformation as shown

in figure 2.6.

ε1 = Joσo (2.10)

ε2 =
∑

k

∆Jk(1− e(− t
τεk

)
)σo (2.11)

ε3 =
t

η
σo (2.12)
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The three creep elements are strain Hookean deformation, ”Highly elastic” deformation and

Newtonian flow as designated by ε1, ε2 and ε3 respectively. The highly deformation region is

composed of a spectrum of relaxation times τεk. This discrete retardation spectrum can be replaced

by a continuous retardation spectrum L(ln τ) [30, 31]:

J(t) = Jo +

∫ ∞

−∞
L(ln τ)(1− e− t

τ )d ln τ +
t

η
(2.13)

Now let us describe stress relaxation behaviour. Consider the applied strain to be instantaneous

and constant:

ε(t) = εoeo(t) (2.14)

Hence, the the time-dependent stress from Hooke’s law gives:

σ(t) = M(t)εo (2.15)

For a simple visco-elastic system with a single relaxation time, the modulus for the stress relaxation

is described as follows:

M(t) = Moδ(t) +M∞ +
∑

k

∆Mk(e
− t
τεk ) (2.16)

The generalised continuous relaxation time spectrum is thus:

M(t) = M∞ +

∫ ∞

−∞
H(ln τ) e

−t
τ d lnτ (2.17)

By assuming that the pure viscous flow processes are negligable, the system experience only the

elastic and relaxation component. Thus, when t → ∞, the fundamental equation for a simple

relaxing body can be obtained:

σ∞
ε∞

= M∞ (2.18)

ε̇ =
1

τε
(ε∞ − ε) (2.19)

σ̇ =
1

τσ
(σ∞ − σ) (2.20)
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σ + τσσ̇ = M∞(ε+ τεε̇) (2.21)

2.4.2 Dynamic deformation

Figure 2.7: Periodic sinusoidal deformation with the corresponding strain response.

The working principle of a typical dynamic deformation experiment is shown in figure 2.7. For

a visco-elastic system, there is an inherent phase lag δ between the applied stress and the strain

response. For a period system of frequency ω, the stress and strain can be defined as follows:

σ(t) = σoe
iωt (2.22)

ε(t) = εoe
iωt−δ (2.23)

Substituting the periodic stress and strain definition in equation 2.22 and 2.23 respectively into the

equation of a simple relaxation body of equation 2.21, the following relation is obtained:

σ(1 + iωtσ) = Moε(1 + iωτε) (2.24)

Assuming that the system goes into an equilibrium state at t→∞, the modulus at infinity M∞ is

given as:

M∞ =
σ(ω →∞)

ε(ω →∞)
= Mo

τε
τσ

(2.25)

Note that M∞ > Mo, hence τε is always larger than τσ. Resolving equation 2.24, the complex

expression of the modulus is obtained:

M∗(ω) =
σ(ω)

ε(ω)
= M ′(ω) + iM”(ω) (2.26)
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Table 2.2: Dimension comparison between RLC circuit and mechanical oscillator[33].

RLC circuit Mechanical oscillator

Charge, q Amplitude, x
Current, I Velocity, v

Inductance, L Mass, m
Resistance, R Damping constant, γ

Capacitance, C Inverse spring constant, k−1

EMF, ε Driving force, F(t)

M ′(ω) = Mo + ∆M
ω2τ2

1 + ω2τ2
(2.27)

M”(ω) = ∆M
ωτ

1 + ω2τ2
(2.28)

2.5 Harmonic Oscillator

A body is said to exhibit simple harmonic motion when the force acting on it is directly proportional

to the displacement from the mean position and is always directed to the mean position [32].

In nature, the magnitude of the restoring force continuously decays as the body loses energy to

the environment. Hence, in classical mechanics terms, the harmonic oscillation of system can be

represented by a spring and dash-pot system. The former is representative of the restoring force

and the latter as a means to introduce a damping behaviour.

This is a universal concept and is also found in electrical systems such as an RLC circuit, the

simplest form of electrical harmonic oscillator. The capacitor, C, and inductor, L, serves as the

restoring force, transforming from an electric to a magnetic field. The resistor, R provides a damping

characteristic, similar to the dash-pot of the aforementioned mechanical system. A summary of the

physical units are shown in table 2.2.

Figure 2.8: The Kevin-Voigt model (left) and Maxwell model (right).

For a visco-elastic material like rubber, there are two fundamental visco-elastic model used: the

Maxwell model and the Kevin-Voigt model. The setup of these models are shown in figure 2.8. The

Maxwell model is able to exhibit the stress relaxation due to the force being constant across the two

visco-elastic component, and the strain deformation is distributed. This equal strain distribution
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however leads to a strain or extension of the system to be intrinsically linear which does not occur

in reality. The Kevin-Voigt model resolves this by having the applied strain as invariable and

henceforth the stress distributed. This allows the observation of the creep behaviour, but at the

cost of exhibiting an instantaneous stress response.The two subsequent sub-chapters are dedicated

to further elaborate model description.

2.5.1 Maxwell Model

σ = σspring = σdashpot (2.29)

ε = εspring + εdashpot (2.30)

Combining the first order time derivative of equation 2.30, σ = Eε and τ = ηγ̇, the following

equation is obtained:

ε̇ =
σ̇

G
+

σ

ηdashpot
(2.31)

Note that the modulus G replaces the modulus E as dynamic experiments are often performed in

shear deformation mode. Defining the stress and strain periodically as in equation 2.22 and 2.23,

equation 2.31 then becomes:

iωε = σ

(
iω

G
+

1

η

)
(2.32)

Finally, using the complex modulus definition in equation 2.26, the real, imaginary and loss tangent

is given as:

G∗(ω) =
iωη

1 + iωτ
with τ =

η

G
(2.33)

G′(ω) = G
ω2τ2

1 + ω2τ2
(2.34)

G”(ω) = G
ωτ

1 + ω2τ2
(2.35)

tan δ =
1

ωτ
(2.36)

As previously stated, this model is unable to account for the time-dependent creep behaviour.
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2.5.2 Kevin-Voigt Model

ε = εspring = εdashpot (2.37)

σ = σspring + σdashpot = ηε̇+Gε (2.38)

As was the case for the Maxwell model, defining the stress and strain periodically as in equation

2.22 and 2.23, the equation then becomes:

σ = (iωη +G)ε (2.39)

Hence, the real, imaginary and lost tangent equation can be easily extracted in combination with

the definition of modulus in equation 2.26:

G′(ω) = G (2.40)

G”(ω) = ωη (2.41)

tan δ = ωτ (2.42)

Since the complex compliance J is the reciprocal of the complex modulus, J∗ = 1
G∗ , the real and

imaginary part of the compliance is as follows:

J ′ =
J

1 + ω2τ2
(2.43)

J” = J

(
ωτ

1 + ω2τ2

)
(2.44)

As previously stated, this model is unable to account for the stress relaxation.

2.6 Transmissibility ratio

The transmissibility of a given system can be defined as the ratio of the output and input signal

[34]. Let the equation of motion for the Zener model (a combination of Kevin-Voigt and Maxwell

model) as shown in figure 2.9 be defined as follows:
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Figure 2.9: The Zener model

d2x

dτ2
+ x+ 2ξ(

dx

dτ
− dxd

dτ
) =

F (Ω)

k

2ξ(
dx

dτ
− dxd

dτ
) = γxd

(2.45)

where τ = ωnt, γ = k1/k, Ω = ω/ωn, ω is the excitation frequency and F (Ω)
k is a type of forcing

(only Kevin-Voigt is shown):

a) Mass Excitation:

Figure 2.10: Single degree-of-freedom system for mass excitation

F (Ω)

k
= g1(Ω)eiΩτ where g1(Ω) =

Fo
k

(2.46)

b) Base Excitation:

F (Ω)

k
= yo(1 + i2ξΩ)eiΩτ = g2(Ω)eiΩτ

where g2(Ω) = yo
√

1 + (2ξΩ)2eiφb , φb = tan−1(2ξΩ)

(2.47)

c) Rotating Unbalanced Mass:
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Figure 2.11: Single degree-of-freedom system for base excitation

Figure 2.12: Single degree-of-freedom system for rotating unbalance mass

F (Ω)

k
= g3(Ω)eiΩτ

where g3(Ω) =
moε

M +mo
Ω2 , ωn =

√
k

M +mo

(2.48)

Assume that the solution of the differential equation for equation 2.45:

x(τ) = Xp(Ω)eiΩτ

xd(τ) = Xp,d(Ω)eiΩτ p = 1, 2, 3
(2.49)

Substituting equation 2.49 into equation 2.45 (subscript p represents the excitation mode described

above) and solving Xp and Xp,d:

Xp(Ω) =
γ + i2ξΩ

ao + ibo
gp(Ω)

Xp,d(Ω) =
i2ξΩ

ao + ibo
gp(Ω) p = 1, 2, 3

where ao = γ(1− Ω2)

bo = 2ξΩ(1 + γ − Ω2)

(2.50)

Expressing the above formula in exponential form:

Xp(Ω) = HM (Ω)gp(Ω)eiθM (Ω)

Xp,d(Ω) = HdM (Ω)gp(Ω)eiθdM (Ω) p = 1, 2, 3
(2.51)
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Where

HM (Ω) =

√
γ2 + (2ξΩ)2

a2
o + b2o

=

√
γ2 + (2ξΩ)2

γ2(1− Ω2)2 + (2ξΩ)2(1 + γ − Ω2)2

HdM (Ω) =
2ξΩ√
a2
o + b2o

=
2ξΩ√

γ2(1− Ω2)2 + (2ξΩ)2(1 + γ − Ω2)2

θM (Ω) = tan−1(
2ξΩao − γbo
γao + 2ξΩbo

) = tan−1(
−2ξΩγ2

γ2(1− Ω2)2 + (2ξΩ)2(1 + γ − Ω2)2
)

θdM (Ω) = tan−1(
ao
bo

) = tan−1(
−γ(1− Ω2)

2ξΩ(1 + γ − Ω2)
)

(2.52)

As γ →∞ (whereby k1 is considered rigid), the Maxwell model is thus reduced to the Kelvin-Voigt

model:

lim
x→∞

HM (Ω)→ 1√
(1− Ω2)2 + (2ξΩ)2

lim
x→∞

HdM (Ω)→ 0

(2.53)

Therefore based on the method of excitation, a specific amplitude and phase response can be

obtained:

a) Mass excitation

d2x

dt2
+ ω2

nx+ 2ξωn
(dx
dt

+
dxd
dt

)
=
Fo
m
sin ωt

2ξ
(dx
dt
− dxd

dt

)
= γωnxd, where ωn =

√
k

m

(2.54)

∴ x(t) =
Fo
k
HM sin (ωt− θM ) (2.55)

b) Base excitation

d2x

dt2
+ ω2

nx+ 2ξωn
(dx
dt

+
dxd
dt

)
= 2ξyoωωn cosωt+ yoω

2
n sin ωt

2ξ
(dx
dt
− dxd

dt

)
= γωnxd, where ωn =

√
k

m

(2.56)

∴ x(t) = yo
√

1 + (2ξω/ωn)2HM sin (ωt− θM + tan−1 2ξω/ωn) (2.57)

c) Rotating unbalance mass

d2x

dt2
+ ω2

nx+ 2ξωn
(dx
dt

+
dxd
dt

)
=

moε

M +mo
ω2 sin ωt

2ξ
(dx
dt
− dxd

dt

)
= γωnxd, where ωn =

√
k

M +mo

(2.58)
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∴ x(t) =
moε

M +mo

ω2

ω2
n

HM sin (ωt− θM ) (2.59)

In the current experimental setup, the base excitation mode (2.57) was utilised.

2.7 Nonlinearity in rubber compounds

As shown in the typical Payne curve (log G’ vs log ω), the are two distinct region of material

response with respect to strain, the linear viscoelastic (LVE) region, where the modulus is invariant

to the applied strain, and the nonlinear viscoelastic (NVE) region. Experimentally, the latter is due

to the appearance of higher harmonics embedded in the material response to deformation. It could

be approximated by Taylor series expansion:

G∗ = a0 + a1γ + a2γ
2 + a3γ

3 + a4γ
4 + ...

where ai are complex numbers
(2.60)

As a general case, the stress measurement with respect to the shear amplitude can be described as

follows:

σ = G∗γ0e
i(ωt) with γ = γ0e

i(ωt)

= [a0 + a1γ + a2γ
2 + a3γ

3 + a4γ
4 + ...]γ0e

i(ωt)

= a0γ0e
i(ωt) + a1γ

2
0e
i(ωt) + a2γ

3
0e
i(ωt) + a3γ

4
0e
i(ωt) + ...

(2.61)

Large amplitude oscillatory shear (LAOS) technique was designed to characterise the degree of

nonlinearity while obtaining physically meaningful interpretation. There are several analytical

approaches such as: the moduli as a function of strain amplitude, the stress shape (e.g. Lissajous-

Bowditch curve) and via Fourier analysis [7]. The latter is known as FT-Rheology and was developed

by Wilhelm et al.

In FT-Rheology, only odd higher-order terms are theoretically obtainable from equation 2.61. This

is due to the nature of shearing deformation and therefore the symmetry criteria for LAOS is given

in equation 2.62. The even higher-order terms could still arise from the experimental setup such

as inhomogeneous material flow in the measuring cavities (wall-slip) and the imperfections of the

mechanical excitation.

σ[−γ(t),−γ̇(t)] = −σ[γ(t), γ̇(t)] (2.62)

Wilhelm et al. had used the relative intensity of the third harmonic I3/1 to characterise the material

nonlinearity that could arise from the degree of branching for polymer chains, dispersion of colloid

system to name a few [7].
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I3/1 =
I3

I1
(2.63)

The influence of carbon black in rubber compounds has been investigated by Schwab and Wilhelm

via LAOS method [35]. Three different carbon black grades with various specific surface area were

investigated as a function of concentration in an unvulcanised SBR. When normalising the carbon

black with its corresponding oil adsorption number, the three I3/1 curves could be normalised into

a single filler-induced curve. This suggests the direct influence of filler aggregate properties in the

compound’s nonlinear response.

All the description above pertains to samples under high deformation and low frequency as this

gives the best experimental resolution. In the current investigation, the nonlinearity effects under

relatively high frequency and low deformation is explored since it is known from rubber science

that its property is a function of strain, deformation mode and frequency/temperature. This is

performed with the aid of a resonance-based measurement technique, which would give the best

signal to noise ratio when compared to a conventional dynamic mechanical analysis (DMA).



Chapter 3

Methodology

3.1 TSSR

Figure 3.1: An example of experimental unfilled NR results obtained from TSSR. The inset is the
isothermal result with the abcissa as temperature.

The temperature scanning stress relaxation (TSSR) is essentially a temperature-dependent me-

chanical creep experiment. Developed by Brabender, Duisburg, Germany, the device is able to

apply strain levels up to 100% while the temperature ramp has a maximum heating rate of 4K/min.

The sample type is based on the standard S2 specimen as specified by DIN53504. As shown

in figure 3.1, the experiment is separated into two stages, the isothermal and anisothermal step.

The first step is essentially performed to allow the system to relax with the user-defined strain

conditions at isothermal conditions, in order to have the same baseline values when compared to

other systems. Once a baseline value is obtained, a temperature ramp is applied and the stress

relaxation is recorded. These stress relaxations could be distinguished between the polymer-filler

and the polymer network interactions which contributes to the stress response of the rubber sample.

20
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Based on the relaxation spectrum of a quasi-static experiment (see chapter 2.4.1), the time dependent

modulus can be written as follows:

Eiso(t) = E∞ +

∫ ∞

−∞
H(τ) e

−t
τ d lnτ (3.1)

Where Eiso(t) is the isothermal Young’s modulus at time t, H is the relaxation spectrum and τ is

the relaxation time constant.

According to Alfrey’s law [36], differentiating Eiso(t) with respect to ln τ , the relaxation spectrum

time constant is equivalent to the time decay, H(τ) at τ = t:

H(τ) = −
(
dEiso
d lnt

)

t=τ

= −t
(
dEiso
dt

)

t=τ

(3.2)

In the experimental setup, a heating rate β is applied and the final relaxation spectrum description

is as follows:

H(T ) = −∆T

(
dEnon−iso

dT

)

β= ∆T
t

=constant

(3.3)

When plotting the relaxation spectrum against temperature, material response from different

components can be observed such as polymer network and filler network [37–40].

3.2 Conventional DMA

First proposed by Poynting in 1909 [18, 41], the dynamic mechanical analysis DMA is a technique

that measures the viscoelastic behaviour of a material. In the simplest experimental setup, a disc-

shaped sample is placed in between an actuator and a force sensor. The actuator then perturbates

the sample sinusoidally either in terms of a force or strain constant. The mechanical signal that

passes through the material is received at the sensor and is then compared to the original signal

that was induced by the actuator. The comparison between the input and the corresponding

output signals is the basis of the material characterization (see chapter 2.4.2). In the present work,

DMA-Eplexor 2000N by Netzsch Gabo Instruments, Ahlden, Germany were used.

3.3 High Frequency DMA

The high frequency DMA measurements were performed on the VHF104 device (Metravib, Lyon,

France). The measurable frequency window is between 100 Hz to 10 kHZ, with the maximum

acceleration of 200 m/s2. Since it is a resonant vibration approach, the resonance of the sample
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(disc-shaped) must be tuned in order to fully realise the wide frequency window. The resonance

frequency fo can be determined with following equation:

fo =
1

2π

√
E · S
l ·M (3.4)

Where E is the Young’s modulus in N/m2, S the cross-sectional contact area in m2, l the height of

the sample in m and M is the added top mass in kg.

As previously mentioned, the forced resonant vibration approach is based analysing the resonance

peak from the transmissibility curve. The experimental setup is based on the base excitation of the

system (see chapter 2.6). Therefore from equation 2.57, the transmissibility ratio from the VHF

machine is given as equation 3.5:

Transmissibility =
Ftransmitted
Fexcited

=

√√√√√√
1 +

(
2 · ξ · Ω

)2

(
1− Ω2

)2
+
(

2 · ξ · Ω2
)2 (3.5)

Where Ftransmitted and Fexcited are transmitted and excited force respectively, ξ is the damping

coefficient and Ω is the resonance-normalised frequency.

3.4 Microscopy

In the present work, two types of microscopy techniques were used to characterise the filler network.

The following subsections are dedicated to the Transmission Electron Microscope (TEM) and

Atomic Force Microscope (AFM).

3.4.1 Transmission Electron Microscope

TEM operates with the same principle as a light microscope but instead utilises an electron beam

as oppose to a visible light beam. Based on the wave-particle dualism, an electron particle can be

described with the de Broglie wavelength λdeBroglie:

λde Broglie =
h

meνe
(3.6)

This infers that the velocity of the electron νe has a direct influence on λdeBroglie since the mass of

the electron me and Planck constant h are invariants. Hence increasing the voltage of the electron

emission, different wavelengths are generated. These wavelengths dictates the smallest distance dd

(theoretical resolution) that can be resolved is described by the Rayleigh criterion:
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dd = 1.22
λ

α
(3.7)

where α is the convergence beam and λ is the wave length.

In TEM, there are two fundamental approaches in creating an image contrast: amplitude and phase

contrast. As the name implies, the amplitude contrast deals with the number of scattered electron,

while the phase contrast is a measurement of the phase shift due to the difference in wave path

length. Within amplitude contrast, there are two principle types: mass-thickness contrast and

diffraction contrast [42–44]. The latter uses scattering designated at special Bragg angles, whereby

the incident electron beam experiences constructive interference. In the current investigation,

mass-thickness contrast was utilised.

The basis of the mass-thickness contrast is the incoherent elastic scattering of electrons. This mode

is often used in amorphous samples as there are no diffraction contrast that could arise due to lack

periodicity/crystallinity. Rutherford scattering function is given as follows:

f(θ) =
(1 + Eo

moc2
)

8π2ao
(
λ

sin θ2
)2(Z − fx) (3.8)

where Z is the atomic number of the sample, excitation energy Eo and de Broglie’s wavelength λ is

a function of voltage, and fx is the scattering factor of X-rays.

The image contrast C, which is the ratio of the changes of intensity ∆I with respect to beam source

intensity I, is given as:

C =
∆I

Iinput
= 1− exp−σρt (3.9)

Here, ρ is defined as the material density, t is the sample thickness and σ is the scattering cross

section, which is a function of atomic number Z and acceleration voltage.

The TEM analysis was performed on a JEM1400 instrument (Jeol, Tokyo, Japan) using a voltage

of 100 kV. The CB network structures were investigated by measuring the sample in both swollen

as well as the bulk state. For the swollen state, the sample is first extracted with acetone in

order to remove any unbound additives via soxhlet extraction. After drying at 70°C for two hours,

the extracted sample is then swollen to equilibrium in a styrene/benzoyl peroxide solution being

polymerised at 70°C [45]. Finally, ultramicrotomic slices of approximately 60 nm are prepared

from both the swollen and bulk state by using a cryo-ultramicrotome (Leica EM UC6/EM FC6)

equipped with a diamond knife.

3.4.2 Atomic Force Microscope

An AFM is a mechanical imaging instrument that measures the three dimensional topography as

well as physical properties of a surface with a sharpened probe at the end of a flexible cantilever.



24

The radius of the cantilever probe is in the range nanometer, and is guided along a defined grid

(raster-like) over the surface of the sample. When the probe head is positioned closed enough to the

sample surface, it is able to interact with the force fields associated with surface. These interactions

would then deflect the cantilever with respect to the forces it experiences. With the aid of a laser

system that is positioned independently to the cantilever, the position of the cantilever can be

acquired with the reflected laser beam onto photo-sensitive diodes.

In terms of precision, the AFM is able to detect the force interactions in the order of 10−6 and 10−11

N [46]. The cantilever probe is able to experience either attractive interactions (Van der Waals,

dipole dipole or electrostatic interactions) or a repulsive forces (Coulomb interactions) [47] based

on the distance with the sample surface. This phenomena is explained using the Lennard-Jones

potential as shown in figure 3.2. Therefore based on the area of interest, three standard operating can

be used to characterise the surface interactions: Contact mode, Non-contact mode and Intermittent

contact mode.

Figure 3.2: The schematic of the Lennard-Jones potential with the corresponding regions of AFM
modes.

In the AFM Contact mode, the probe is in constant contact with the surface and is essentially

dragged over the surface of the sample with a fixed deflection. The height of the probe is adjusted

through a force feedback system which enables a topography imaging. Due to the nature of

this mode, the probe tip deteriorates relatively quick and henceforth a degradation of the image

resolution after prolong usage [48].

In the AFM Non-contact mode, the probe oscillates with a small amplitude near the sample surface,

without coming into contact with it. The change in amplitude is compensated by the measuring

device and is used to construct the topography. This enables a higher image resolution without

destroying the tip, under high vacuum. If performed in ambient conditions, the probe tends to

crash into the sample surface due to capillary force and could potentially damage both the probe

head and sample surface.

In an Intermittent contact mode, the cantilever oscillates at a larger amplitude, with the aim of

experiencing both attractive and repulsive forces. When compared to the contact mode, the probe
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is in contact with the surface for a significantly shorter time and thus experiences lower lateral

shear forces. This enables a higher image resolution[48]. The drawback of this mode is that the

force between the probe and the sample surface cannot be controlled directly.

In the present work, a special Intermittent contact mode called ”Peak Force Quantitative Nanome-

chanical Mapping” (PF-QNM) was used. In this mode, the cantilever oscillates with a maximum

amplitude at a defined frequency between 1 to 10 kHz. As the cantilever approaches and retracts

from the sample surface, a force-displacement curve is generated as shown schematically in figure

3.3. From this plot, various material properties such as modulus, adhesion and dissipation can be

extracted.

Figure 3.3: A schematic of the force-displacement curve acquired by PF-QNM mode.

The modulus is determined by fitting the linear portion of the retraction curve and utilising the

Derjaguin-Muller-Toporov (DMT) model [49]:

F =
4

3
E∗
√
Rδ3 + FAdh (3.10)

The DMT model is an extension to the Hertzian model, with addition the adhesion force, FAdh.Taking

into consideration the radius of the probe tip, R and the indentation depth of the sample δ, the

reduced modulus E* can be obtained. E* can be then transformed into the sample modulus Es

utilising the following equation:

Es =
3(F − FAdh)(1− ν2

s )

4
√
Rδ3

(3.11)

Note that the Poisson’s ratio of the sample νs is often taken as 0.5 for incompressible material such

as rubber.

In the present work, the AFM measurements were performed on a Dimension Icon AFM instrument

provided with a NanoScopeV controller from Bruker (Santa Barbara,California, USA). Similar

to the sample preparation for TEM, the samples were extracted beforehand to avoid blooming

effects on the sample surface and sample slices were made with the cryo-ultramicrotome.A constant
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oscillating frequency were used under ambient conditions using a cantilever (RTESPA-150) probe

with a nominal spring constant of 6 N/m and a tip radius of 8 nm. Finally, A scanning area of 5×5

µm2 was used for an overview of the sample properties, and an area of 2 × 2 µm2 was chosen for a

detailed view. In both cases, the image resolution was set to 256 × 256 pixels.



Chapter 4

Results and Discussion

This section is separated into three parts based on the peer-reviewed publications; characterization

of the reinforcing resin mechanism, the Fourier analysis of the vibrational resonance and the material

nonlinearity of filled systems.

4.1 Characterizing the influence of reinforcing resin on the struc-

ture and the mechanical response of filled isoprene rubber

The article [50] was published with the focus of utilizing various experimental approaches to develop

a deeper insight in the reinforcing resin mechanism in rubber compounds. Resorcinol was used as a

model ingredient since it is widely used in the tire industry.

The main outcome from this investigation is that the reinforcing resin reacts with the interface of

the carbon black, hence making the filler network more compact. This is reflected in the lowering of

the filler percolation threshold and the enhancement of the Payne effect, whereby the breakdown of

the filler network due to strain is significantly reduced. Images obtained from the AFM and TEM

were utilised to reaffirm the main statement of the investigation.

Due to copyright, the article can be accessed at https://doi.org/10.1080/1539445X.2018.1509872

27
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4.2 Nonlinearity in the Mechanical Response of Rubber as Inves-

tigated by High-Frequency DMA

The second paper [51] introduces a novel method of characterising the nonlinearity of a rubber

compound. It is the first instance of the superharmonic resonance phenomenon reported in the

Fourier space of the transmissibility curve of rubber.

In the first section, the data processing step is reported with the emphasis of extracting relevant

Fourier data points. The subsequent section elaborates the appearance of the superharmonic

resonances within the experimental data after the data processing step is performed. Two distinct

nonlinearities in terms of filler dependencies were observed, polymer induced nonlinearity below

the filler percolation threshold, and filler induced nonlinearity above the percolation threshold.

Finally, the appearance of the foldover effect was noted and modelled with cubic nonlinear system

derived from the Kelvin-Voigt model. The α-parameter extracted from the aformentioned model,

was then used to compare with the nonlinearity observed from the superharmonic resonances. Both

approaches had shown similar results, though the latter is deemed to be more sensitive due to the

quantification of the polymer induced nonlinearities.
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Abstract: Nonlinear material response is analysed with the Fourier transform (FT) of the raw
signal measured by a high-frequency dynamic mechanical analyzer (HF DMA). It is known from
rheological behaviour of elastomers that reinforcing fillers additionally induce nonlinearity in an
already inherently nonlinear system. This behaviour is often described in terms of a mechanical
response of strain sweeps, essentially the transition from the linear viscoelastic (LVE) to the nonlinear
viscoelastic (NVE) region. In the current investigation, the NVE region could be observed with
respect to frequency under low-amplitude deformation. A foldover effect was observed, whereby the
material exhibited a nonlinear dependency in relation to the increment of the filler amount above the
percolation threshold. In addition, an apparent superharmonic resonance was observed within higher
orders of vibrational modes which is further indication of nonlinearity. In this paper, the analytical
approach is presented as a novel method to characterise the behaviour of the polymer–filler interaction
by HF DMA.

Keywords: nonlinearity; superharmonic resonance; foldover effect; HF DMA

1. Introduction

Rubber is one of the most prevalent among the materials in our daily life that exhibit mechanical
nonlinearity. Even with this familiarity, deep understanding of this material remains a substantial
challenge to this very day. A common way to characterise rubber is with the dynamic mechanical
analyzer (DMA). The basic principle behind this technique is the measurement of the difference
between the excitation signal and the material’s response as a function of both deformation and time.
A material is defined as more viscous (or rubbery) when the difference between these parameters
is large [1].

All elastomers have a region whereby the modulus of the system is independent of the strain
applied. However, after a certain strain threshold the modulus drops significantly with respect to
the applied amplitude. This is mainly due to the rearrangement of the polymer chains with respect
to the external applied force, and is also reflected in the stress–strain curve, where the mechanical
response portrays a non-Hookean behaviour [2]. The introduction of fillers lowers the critical strain
threshold and is caused by a combination of the hydrodynamic reinforcement of the filler particles and
the formation of a filler network [3]. The breakdown of this filler network is described as the so-called
“Payne effect” [4].

In a routine DMA measurement, a simple linear viscoelastic material is assumed, whereby only
the absolute amplitude and phase shift of the signals are taken into consideration. In reality, however,
these signals are rarely ideally sinusoidal and are a convolution of both the imperfection derived
from the oscillator as well as the nonlinearity of the material. Assuming that the imperfection of the

Polymers 2019, 11, 581; doi:10.3390/polym11040581 www.mdpi.com/journal/polymers
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oscillator is minimal, these signal distortions can be used to describe the material in greater detail.
This method is known as Fourier transform (FT) rheology and has been developed by various research
groups [5–7].

Recently, systematic investigations of the influence of fillers in rubber have been performed
by Wilhelm et al. whereby the experimental raw signals from amplitude variation up to very large
deformations were converted into Fourier space, hence decomposing the distortion into quantifiable
signals. These decomposed signals show a strong dependency on the amount and types of reinforcing
fillers present in the material [8,9]. The main parameter used to distinguish the filler-induced
nonlinearities is the intensity ratio of the third to the first harmonic response in Fourier space, I3/1 [10].

In analogy, instead of amplitude variation, the raw data obtained by frequency variation was
analysed in Fourier space under low-amplitude deformation. While the strain dependency of
nonlinearity has been extensively investigated, the frequency behaviour at low strain amplitude
is often assumed to be completely linear, and some clarification is therefore needed. In addition,
the current method based on strain sweeps requires uncured rubber, while cured rubber is utilised in
the present investigation, as it is the state linked to the final application of rubber products. Henceforth,
this paper can be categorised into three sections: the data treatment, where all the analytical steps are
shown; the vibrational superharmonics; and the foldover effect. These effects are the consequence of
the nonlinearity effects of the material [11].

2. Materials and Methods

A VHF104 high-frequency DMA (Metravib, Lyon, France), as shown in Figure 1, was used in the
current investigation. The sample was glued between two metal cylinders, one acting as a base and
the other to deliver a preload force onto the sample. The main advantage of this device is the ability to
measure frequencies up to 10 kHz, which is not possible with a traditional DMA device (typically up
to 100 Hz). This DMA is a type of forced vibration resonant system, according to ASTM D5992 [12],
essentially using the resonance principle to evaluate the mechanical response of the material. The data
are presented in a transmissibility plot as shown in Figure 2. The figure was generated by using the
transmissibility formula in Equation (1), where ξ is the damping ratio of the system and Ω is the
resonance-normalised frequency of the system:

Transmissibility =
Ftransmitted

Fexcited
=

√√√√√√
1 +

(
2 · ξ ·Ω

)2

(
1−Ω

)2
+
(

2 · ξ ·Ω
)2 . (1)

Figure 1. The experimental setup for the VHF104 dynamic mechanical analyzer.

The experimental setup was essentially comprised of two components: the base excitation input
and the top transmission output, as illustrated in Figure 3. The viscoelastic properties of a material can
be approximated in terms of a spring (elastic component) and a dashpot (viscous component) [13].
The base excitation generates a defined, constant excitation that passes through the sample, and the
transmitted signal is received on the accelerometer located at the head of the top mass.
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Figure 2. An example of the transmissibility curve generated from Equation (1), with various
damping factors.

Figure 3. Basic schematic for the current experimental setup.

Resonance occurs when a perturbation frequency matches a system with its natural frequency.
Under resonance, the system is able to exhibit dynamics with a larger amplitude than the initial
perturbation state. The transmissibility curve, which is a measure of the maximum amplitude response
normalised to the maximum amplitude of the input, is one of many ways to represent resonance-based
data. The abscissa is often normalised to the natural frequency, which means that the resonance peak
occurs when the normalised frequency is equal to 1. In theory, the transmissibility of the resonance
peak should increase asymptotically, but is limited by the damping behaviour of the material. In the
current investigation, the transmissibility curve will be further investigated with Fourier analysis. [14]

Since this method uses the resonance phenomenon, the experimental setup must be calibrated in
terms of sample geometry and added mass, in order to obtain the material resonance in the desired
frequency window. The resonance frequency fo in tension–compression mode can be estimated with
the following equation:

fo =
1

2π

√
E · S
l ·M , (2)

where E is the Young’s modulus in N/m2, S is the cross-sectional contact area in m2, l is the height of
the sample in m and M is the added top mass in kg.

The temperature range of operation for the VHF104 is given from −50 to 100 ◦C, however in
the present work, only ambient conditions were considered for simplicity. In terms of excitation,
the transducer was able to perturbate up to 200 m/s2. The deformation amplitude was operating in the
micrometer range in order to probe the strain-dependent linear viscoelastic region of the rubber sample.
In the current setup, tension–compression mode was used due to the geometric simplicity. While
it is known that this deformation mode induces nonlinearity due to geometrical effects, the current
setup used a small deformation amplitude, hence minimising the aforementioned effect. In addition,
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the sample diameter (8 mm) was sufficiently larger than the height (6 mm) of the sample, therefore
reducing the risk of transverse bending with respect to the deformation axis.

The material chosen for the investigation was a simple solution-polymerised styrene-butadiene
rubber (SSBR) compound with various amounts of carbon black N339 fillers, and is summarised in
Table 1.

Table 1. Recipe series used in this study.

Ingredients Amount (phr) *

SSBR a 100.0
N339 0.0–55.0

IPPD b 1.5
Zinc Oxide 3.0
Stearic acid 1.0

CBS c 2.0
Sulphur 1.4

* Parts per hundred rubber; a solution-polymerised styrene-butadiene rubber—styrene content 24%,
vinyl content 34%, molecular weight 472.65 kg/mol, Tg −40 ◦C, PDI 1.65; b N-Isopropyl-N′-phenyl-1,4-
phenylenediamine; c N,N′-Dicyclohexyl-2-benzothiazole sulfenamide.

3. Results and Discussion

3.1. Data Processing

Analog acceleration-time signals were sampled and directly transformed into frequency data
using synchronous detection algorithms. For this device, up to three harmonics were observed with
significant signal-to-noise ratio with several orders of magnitude. For simplicity, the raw signals will
be denoted as input and output signal.

Both the input and output signals were extracted via the built-in option of the standard evaluation
software, Dynatest, made for VHF104. The resultant file from each measured frequency fexpt contained
512 time-independent points of acceleration amplitude denoted by the incremental value of n, hence a
time variable tn was assigned with the known frequency:

tn =
( n

512

)( 1
fexpt

)
. (3)

These time-domain signals were then transformed into Fourier space, and the result of this
procedure is shown in Figure 4. This procedure obeys all three fundamental Fast Fourier Transform
(FFT) prerequisites, and therefore the analysis is representative of the real data [14]. The first
prerequisite is that the signal was periodic and continuous. Secondly, the sample size was sufficiently
large to be representative of the real signal. Finally, the spectral leakage of the signal was minimised
by taking values of 2n. The lowest frequency point (i.e., the first data point) in Figure 4b indicates the
first harmonic of the system, which is essentially the main signal used to characterise the viscoelastic
behaviour of the material. Apart from spectral leakage, whereby the signal is superficially distorted
due to sampling issues from the Fourier transformation, a single peak is expected from a linear or
homogeneous system. Evidently, this was not the case as higher harmonics were observed, provided
that the frequency range did not exceed the VHF104 excitation limitation of 10 kHz. It should be noted,
however, that since the input waveform becomes more erratic as the harmonics increase, only the first
three harmonics should be considered for further analysis.

Since the output signal contained residues from the input, normalising the signal gave the theoretical
pure signal of the sample. Performing this on each experimental point produced a transmissibility or
transfer function curve when plotted against frequency.

Transmissibility =
Output signal
Input signal

(4)
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The final outcome of the process is shown in Figure 5. The vibrational modes were defined
as the transmissibility of the vibrational harmonics. For example, the intensity-normalised second
harmonic of a sample measurement was denoted as the second vibrational mode. Interestingly, all the
vibrational modes coincided with one another at certain frequency ranges, which indicates that the
first vibrational mode was affecting the subsequent higher-order vibrational modes. Note that the
higher vibrational modes were multiple integers of the first vibrational mode. Further discussion will
follow in the next section.
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Figure 4. (a) Time-domain signal of a 10 phr filled SSBR sample at the resonance frequency of 300 Hz
and (b) the corresponding Fourier space of the signal. Note that the first three harmonics were several
orders of magnitude higher than the background noise.

Figure 5. The transmissibility (output normalised to input) curve of the first three vibrational modes.

3.2. Vibrational Superharmonic

The term vibrational superharmonic resonances was first quoted by Yang et al. [15] in order to
describe the appearance of higher-order resonances seen in nonlinear systems. Their investigation is
mostly focused on the frequency response of a bistable system, whereby the system is perturbated
with two excitation signals, one being a significantly lower frequency than the other. Nevertheless,
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it was noted that a high-frequency perturbation on a nonlinear system can induce both vibrational
superharmonic resonance and vibrational subharmonic resonance.

The existence of higher vibrational modes was a unique trait from this experimental setup and
could lead to hints on the nonlinearity of the system. In order to probe these higher vibrational modes,
a baseline has to be defined as to remove the influence of the prior vibrational mode. In the VHF104,
a harmonic vibration was applied at the base of the sample and the so-called reaction mass was bonded
at the top of the sample. Assuming a linear system, the equation of motion where the first three terms
are defined as the inertia, damping and elastic components of the system is defined as:

mẍ + c(ẋ− ẋe) + k(x− xexcitation) = 0. (5)

Equation (5) can be further simplified by combining the excitation terms and defining them as an
equivalent excitation force, Fecos(ωt) with ω = 2π f , the pulsation of the applied vibration:

mẍ + cẋ + kx = Fecos(ωt). (6)

The resultant transmissibility is given in Equation (7) [16], where f is the measured frequency,
fo =

√
(k/m)/2π is the natural frequency of the dynamical system composed of the sample and the

reaction mass, and ξ = c/cc is the damping ratio of the system—essentially the percentage of measured
damping with respect to the critical damping, cc = 2

√
km. As a first approximation, this equation was

able to fit the first vibrational mode and was therefore used as a baseline for the subsequent steps.

|TLinear| =
Ftransmitted

Fexcited
=

√√√√√√
1 +

(
2 · ξ f

fo

)2

(
1− f 2

f 2
o

)2
+
(

2 · ξ f
fo

)2 (7)

Normalising the second vibrational mode to the fitted first vibrational mode led to a pure
signal response of the mode, as shown in Figure 6. A similar procedure can be done for the third
vibrational mode. At this point, the maximum of the normalised vibrational modes were defined as
the superharmonic resonances. The normalised second vibrational mode for the selected filler loading
is shown in Figure 7.
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Figure 6. The transmissibility curve for SSBR10CB (a) before and (b) after normalising to the fitted linear
vibration equation. The first superharmonic resonance was defined as the resonance of normalised
second vibrational mode.
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Taking the amplitude of the superharmonic resonances for all measured samples, the results are
plotted in Figure 8a. The second superharmonic resonance had a lower intensity and was more prone
to noise as seen in Figure 4b. Therefore, the first superharmonic resonance was the focus of the current
investigation. Interestingly, the amplitude of the first superharmonic resonance was a function of the
filler amount present in the sample. Its amplitude was reduced with increasing amount of filler, up to
the point where the filler percolation threshold φc occurred. This seems to indicate that the filler was
suppressing the intrinsically nonlinear behaviour of the elastomer, up to a point where a filler network
was formed (φc ≈ 0.16 for N339). Beyond this point, the system exhibited a relatively weak nonlinear
behaviour, which could be attributed to the aggregation of the filler network. This observation is
similar to the maxima observed in elongation at break with the variation of filler amount [17] . At this
point, a conclusive statement requires a more thorough investigation as well as the consideration of
other possible methods, such as normalising the higher harmonic with the first (see Figure 8b). Such is
the case for the Fourier analysis of the rheological test in large-amplitude oscillatory shear (LAOS),
whereby the third harmonic is normalised to the first (I3/1) [8].
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Figure 7. The normalised second vibrational mode as a function of frequency for selected filler loading.
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Figure 8. (a) The intensity of the first and second superharmonic resonance and (b) the intensity of the
first superharmonic resonance normalised to the maximum of the first vibrational mode, I2/1.
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3.3. Foldover Effect

Another consequence of the nonlinear resonance response is the foldover effect, whereby the
transmissibility of the resonance is seen to be more asymmetric with respect to the frequency and
amplitude of the oscillation. One of the earliest mathematical descriptions of the nonlinear resonance
response was made by Landau and Lifschitz, whereby they assumed that the nonlinearity could
be described as higher-order terms of the viscous and elastic components of a system [11]. In the
present work, only the additional third-order spring term was considered as a first approximation of
the foldover effect. Therefore, it was assumed to be a double-potential well system, which is more
physically relevant [18]—that is, there was an energetic minimum for the integral of nonlinear spring,
x + x3. As a first approximation, the emphasis was placed on the influence of the nonlinearity of the
elastic component to characterise the asymmetry of the resonance peak, in analogy to the previous
observation in micro-electro-mechanical systems (MEMS) [19].

The first vibrational mode is presented in Figure 9. It can be clearly seen that as the filler amount
increased, the resonance peak got progressively more asymmetric. One possible explanation here is
that the mechanical response of the filler was vastly different from that of the rubber matrix. Hence,
the filler network was not easily deformable as the rubber matrix counterpart. A simple nonlinear
response model for a forced oscillation is given in Equation (8). This equation is also known as the
Duffing’s equation [18].

mẍ + cẋ + k1x + k2x3 = Fecos(ωt) (8)

The consequence of this equation in terms of transmissibility is given by Equation (9) [20], where X̂
is the amplitude of the output signal, α is the cubic nonlinear coefficient, ξ is the damping ratio and Ω
(= fexpt/ fresonance) is the resonance-normalised frequency:

|TNonlinear| = X̂

√
(1 +

3
4

αX̂2)2 + 4ξ2Ω2. (9)

Using the aforementioned formula, the degree of nonlinearity of the material response can be quantified
with the α parameter. The influence of the α parameter and the damping factor is depicted in Figure 10.
For the linear example, the α parameter was set to a very small value to avoid an undefined solution.
Comparing Equations (7) and (9) with a small α parameter values led to the same solution.
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Figure 9. The transmissibility curve of the first vibrational mode with N339 CB.
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The outcome of the fitting procedure is shown in Figure 11. All of the samples had a
fitting tolerance of 4%, which was calculated from the residual (=|(Texperiment − Tf it)|/Texperiment).
The magnitude of the α parameter was observed to increase with higher CB amounts. This means
that the filler induced the higher elastic term, and was therefore making the system more nonlinear.
Note that only a negative α parameter value was observed, which indicates a softening behaviour.
In micro-electro-mechanical systems (MEMS), a similar cubic nonlinearity is also observed but with a
positive α parameter, which is referred to as a hardening phenomenon [19].
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Figure 10. The influence of the cubic nonlinearity coefficient, α-parameter, and the damping factor on
the transmissibility curve generated from Equation (9).

The influence of filler amount on the α-parameter values is shown in Figure 12. In contrast to
the behaviour of the superharmonic resonance, the α parameter was negligible below the percolation
threshold. Its apparent small increase below the percolation threshold was not significant, as it was
subjected to the low sensitivity of the first vibrational mode. The α parameter below percolation is to
be considered as a numerical artefact obtained by fitting. The increase of the α-parameter was more
pronounced beyond the percolation threshold and was in line with the previously observed behaviour
of the superharmonic resonance.

Hence, it does seem that the analysis of the superharmonic resonance was the appropriate
method of evaluating the nonlinearity since it was able to cover the complete range of filler loading,
below and above percolation. While the α parameter is only a fitting parameter for the bending
of the transmissibility curve, the superharmonic resonance is a value measured with an excellent
signal-to-noise ratio.
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Figure 11. The cubic nonlinearity fit with the corresponding residual values for the current investigation.
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Figure 12. The nonlinear cubic coefficient values for the current investigation. The percolation threshold,
φc, is the value obtained from Figure 8.

4. Conclusions

The nonlinear material response induced by the nanocomposite fillers was analysed by a
high-frequency DMA. Firstly, the basis of the device was introduced, as well as the analytical steps
for the experimental signal. By transforming the signal into Fourier space, several higher harmonics
were observed. Normalising these harmonics with the respective input signal led to vibrational modes
that contained superharmonic resonances, which are essentially a harmonic oscillation generated by
the nonlinearity of the resonance peak. An apparent correlation was observed between the first
superharmonic resonance and the filler amounts, which is a strong indication of filler induced
nonlinearity since there seemed to be a crossover point at the percolation threshold φc. In fact,
the resonance peak beyond the percolation threshold exhibited a foldover effect, whereby the resonance
peak displayed an asymmetrical behaviour. This behaviour could be described with a nonlinear cubic
model with an α parameter that denotes the nonlinearity term. This model, however, is limited to
filled compounds which are above the percolation threshold, whereby the filler-induced nonlinearity is
dominant. Therefore, the superharmonic resonance seemed to be more sensitive, as both the intrinsic
nonlinearity of the elastomer and the filler-induced nonlinearity could be observed. Hence, it is more
appropriate to evaluate the nonlinearity based on the superharmonic resonance. Future investigations
will involve different filler grades and polymer types so as to give a more universal statement on the
current findings.
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4.3 Superharmonic resonance in carbon black filled rubber by

High-Frequency DMA

The final paper [52] is meant to bind the first two papers together. The superharmonic resonance

method described in the previous paper was used to investigate the resin impact on the the filler

network. The paper is separated into 3 sections.

In the first section, a prefactor is introduced to the superharmonic resonance data in order to

compensate the various displacement excitations that the sample undergoes. This new term is

called the normalised superharmonic resonance, nSHR.

In the following section, three systematic studies of carbon black grades N121, N339 and N550 of

various concentrations were analysed. It was concluded that the onset of the percolation threshold,

which was measured independently with the RPA, did indeed affect the nonlinearity of the compound.

However, when coupled with TEM images, the filler dispersion within the rubber matrix also plays a

large role in the material nonlinearity. A well percolated network would result in a highly nonlinear

response due to the pronounced stress gradient between the filler network and polymer system.

The final section revisits the first paper, whereby the reinforcing resin is seen to modify the surface

of the carbon blacks, which in turn affect the filler network morphology. The increase of reinforcing

resin concentration makes the filler network more compact, and thus, introduces higher nonlinearity

to the sample.
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Abstract: A systematic study of several SBR compounds filled with carbon black of various grades
were analysed with the high-frequency Dynamic Mechanical Analyzer (HF DMA) in order to quantify
the degree of nonlinearity induced by fillers in rubber compounds. These filler grades indirectly reflect
different degrees of microdispersion, which seems to be the main influence on the superharmonic
resonance phenomenon observed in HF DMA. This statement arises from the comparison of the
microdispersion observed in TEM images. In the second part of the paper, a model compound
filled with carbon black is enhanced with a standard reinforcing resin, which leads to a more
compact filler network. This induces a higher superharmonic resonance response as well as a higher
transmissibility behaviour.

Keywords: nonlinearity; superharmonic resonance; HF DMA

1. Introduction

Fillers are introduced into rubber compounds to improve their mechanical properties such
as elongation at break, shore hardness, and abrasion [1–3]. It is known from Fourier Transform
(FT) rheology that carbon black enhances the nonlinear mechanical behaviour of the compound.
The nonlinearity here is referring to the appearance of higher harmonics within the DMA response
signal for a sample that is under defined deformation conditions. Nonlinearity is known to be
quantified by the ratio of the third to the first harmonic amplitude, I(3/1) in FT Rheology [4–8]. While
FT rheology is a strain dependent analysis of the Fourier response, the high-frequency Dynamic
Mechanical Analyzer (HF DMA) allows for a resonance-based, frequency dependent analysis of
the Fourier response. The outcome of this frequency analysis is the appearance of the vibrational
superharmonic resonance.

Vibrational resonance was first reported by Landa and McClintock [9] in order to describe a
nonlinear signal response which is weakly perturbated by a secondary, significantly weaker oscillator
into the system. Following this work, Yang et al. [10] observed higher resonance response from the
same system. In order to describe this behaviour, the terms vibrational superharmonic resonance
(VsupR) and vibrational subharmonic resonance (VsubR) were proposed to represent the presence of
higher-order and lower-order resonances, respectively.

In the previous investigation, a superharmonic resonance phenomenon was observed in rubber
compounds using the Fourier analysis of the resonance peak from HF DMA [11]. There exists a
transition between polymer-related nonlinearity and filler-induced nonlinearity. This transition
coincides with the percolation threshold of the filler network and gives a hint on the origins of
the observed superharmonic resonance. The present work is aimed at elucidating the correlation
between the filler network and the superharmonic resonance.

Polymers 2019, 11, 1653; doi:10.3390/polym11101653 www.mdpi.com/journal/polymers
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In another investigation, it was concluded that novolac-type phenolic resin changes the interfacial
properties of the carbon black (CB) filler network [12]. This was concluded based on thermomechanical
as well as microscopical measurements on filled isoprene rubber compounds with various resin
concentrations. The reinforcing resin reduces the percolation threshold of filled compounds by creating
interfaces between the carbon black aggregates.

The current investigation is divided into two parts; the influence of polymer types and carbon
black grades, and the influence of reinforcing resins. In the first part, an isoprene rubber (IR) filled with
N339 carbon black is compared with a solution-polymerized styrene-butadiene rubber (SSBR)-type
of the same filler grade. Then, using the SSBR compound as a base, three different filler grades,
N121, N339, and N550 are used to compare the filler grade influence on the superharmonic resonance.
The second part of the paper aims to further elucidate the superharmonic resonance by introducing
reinforcing resin which has been proven to reduce the percolation threshold by modifying the carbon
black interfaces.

2. Materials and Methods

The main tool for this investigation is the high-frequency DMA, VHF104 by Metravib, Lyon,
France. The general concept of the device is the measurement of the resonance peak on a system
comprising of the sample and two metal cylinders; one acting as the excitation base and the other as
the preload force onto the sample. The fundamental advantage of this device is the ability to directly
measure the mechanical response of a material up to 10 kHz, as opposed to other traditional DMA
devices which typically have a maximum frequency of 100 Hz. In terms of absolute deformation
amplitude, the latter can achieve values of 9 mm at low frequencies (e.g., DMA Gabo Eplexor 2000N®,
Netzsch, Alhden, Germany), while the high-frequency DMA is able to reach values of around 300 µm.
This value however is highly dependent on the applied top mass of the system.

This DMA is a type of forced vibration resonant system [13], which indicates that the experimental
setup must be calibrated in terms of sample geometry and added mass in order to obtain the material
resonance in the desired frequency window. The resonance frequency fo in tension–compression mode
can be estimated with the following equation:

fo =
1

2π

√
E · S
l ·M , (1)

where E is the Young’s modulus in N/m2, S is the cross-sectional contact area in m2, l is the height of
the sample in m, and M is the added top mass in kg.

The VHF104 is able to operate at temperature ranges between −50 ◦C to 100 ◦C, however,
the focus of the present work will be limited to ambient conditions. The excitation displacement was
set to 0.1 mm, however, when the value cannot be achieved after certain frequencies, a maximum
excitation acceleration of 200 mm/s2 is used instead due to the limitations of the oscillator acting on
the excitation base. Therefore, a correction procedure is applied in the evaluation in the next section.
Finally, the tension–compression deformation modes were selected due to the relative simplicity of the
sample geometry.

For an independent determination of the percolation threshold, dynamic strain-dependent
measurements were performed on the Rubber Process Analyzer RPA 2000 by Alpha Technologies,
Hudson, NY, USA. The applied strain amplitudes were chosen from 0.3% up to 100% at 70 ◦C.

The transmission electron microscopy (TEM) analysis was performed on a JEM1400 Instrument
(Jeol, Tokyo, Japan) using a voltage of 100 kV. In order to investigate the CB network structure, samples
were measured in the bulk state. Thin slices of approximately 60 nm were prepared by using a
cryo-ultramicrotome (Leica EM UC6/EM FC6) equipped with a diamond knife.

The samples chosen for the investigation are solution-polymerized styrene-butadiene rubber
(SSBR) compounds with three different grades of carbon black; N121, N339, and N550, at
various concentration levels. Additionally, isoprene rubber (IR) compounds with various
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concentrations of CB N339 and reinforcing resin were investigated. These recipes are summarised in
Tables 1 and 2, respectively.

Table 1. Recipe for the carbon-black-type series used in this study (all values in parts per hundred rubber).

Ingredients N121 N339 N550

SSBR a 100.0 100.0 100.0
Filler 0.0–55.0 0.0–55.0 0.0–75.0

IPPD b 1.5 1.5 1.5
Zinc Oxide 3.0 3.0 3.0
Stearic Acid 1.0 1.0 1.0

CBS c 2.0 2.0 2.0
Sulphur 1.4 1.4 1.4

a Microstructure: styrene content 24%, Vinyl content 34%, molecular weight 472.65 kg/mol, Tg = −40 ◦C.
b N-isopropyl-N′-phenyl-1,4-phenylenediamine. c N-cyclohexyl-2-benzothiazole sulfenamide.

Table 2. Recipe for the reinforcing resin series used in this study (all values in parts per hundred rubber).

Ingredients Reinforcing Resin

IR d 100.0
N339 20.0–60.0

Resorcinol 0.0/0.7/4.6
HMMM e 0.0/0.7/4.6

6PPD f 2.0
TMQ g 1.0

Zinc Oxide 6.0
Stearic Acid 1.0

Processing Oil 3.0
DCBS h 1.0
Sulphur 4.0

d Microstructure: 97% cis, molecular weight 1300 kg/mol, Tg = −65 ◦C. e hexamethoxymethyl-melamine.
f N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylene diamine. g 2,2,4-trimethyl-1,2-dihydroquinoline. h N,N′-
dicyclohexyl-2-benzothiazole sulfenamide.

3. Results and Discussion

3.1. The Superharmonic Resonance

The analytical approach for the extraction of superharmonic resonance values has been discussed
elsewhere [11]. The first vibrational mode is fitted with the linear transmissibility formula, which
is then used to normalise the 2nd vibrational mode. The resonance peak of the normalised 2nd
vibrational mode is defined as the 1st superharmonic resonance. In the current investigation, the term
is simplified to superharmonic resonance since higher superharmonic resonances are more prone to
measurement noise.

In the same investigation, the amount of N339 carbon black was varied in SSBR and measured
with HF DMA. Two distinct nonlinearities were observed; the nonlinearity originating from the
polymer, and the filler-induced nonlinearity. Above the percolation threshold, the latter becomes more
dominant than the former. In the aforementioned investigation, the applied strain was assumed to be
constant throughout the measurement range. This assumption was sufficient within the experimental
setup as to understand the nonlinear behaviour observed. Increasing the level of compound complexity
requires a more rigorous consideration of the strains.

When considering different compounds, it is important to note that the excitation input of the
experiment is a function of both amplitude and frequency. There is, however, an instrumental limitation
on the excitation since a substantial amount of power would be required to have a large amplitude at
higher frequencies. As shown in Figure 1, the displacement excitation is reduced at higher frequency
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ranges. When the desired excitation amplitude cannot be achieved, a constant base acceleration of
200 m/s2 is used. The drop in amplitude with respect to frequency can be formulated as follows:

Excitation displacement, xinput = 100.7 · f requency−2
input. (2)
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Figure 1. The excitation relation between the displacement and acceleration.

Since the resonance frequency fo is shifted due to the difference in sample modulus, the sample
does not experience the same level of excitation. This can be accounted for by using fo as a
prefactor for the subsequent normalised superharmonic resonance (nSHR). Hence, for simplicity,
a new term is introduced to accommodate both the superharmonic resonance as well as the
aforementioned corrections:

normalised superharmonic resonance, nSHR =
( fo)(1st superharmonic resonance)

resonance amplitude
. (3)

The nSHR values between SBR-filled compounds and IR-filled compounds are shown in
Figure 2. Above the percolation threshold, the slopes of nSHR for both polymer compounds
are similar, and henceforth, indicates a similar filler-induced nonlinearity of the CB. Below the
percolation threshold however, the gradient is different, hence, an indication of a polymer-dependent
nonlinear response.

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
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Figure 2. The normalised superharmonic resonance for carbon black (CB)-filled styrene-butadiene
rubber (SBR) and isoprene rubber (IR) compounds. The percolation thresholds were obtained by
Rubber Process Analyzer (RPA).
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3.2. Carbon Black Grades

The three variants of CB grades are known to have different filler structure and size. It is also
known that the CB structure plays an important role in the nonlinearity of the compound within FT
Rheology [14]. Therefore, a similar approach is used in the present work to decouple the filler influence
and the polymer matrix response.

When comparing the resonance frequency in HF DMA with respect to the CB volume fraction, as
shown in Figure 3, the onset of the filler network reinforcement as indicated by the percolation threshold
can be estimated in analogy to the RPA whereby the deviation of the hydrodynamic reinforcement
of the sample determines the percolation threshold. It should be noted from Equation (1) that the
resonance frequency is a function of both modulus and geometry. Nevertheless, when comparing the
same geometry, the resonance frequency shows a similar strain dependency with respect to CB volume
fractions, such is the case for the dynamic strain sweep measurements from the RPA.
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Figure 3. The (a) resonance frequency and (b) the corresponding storage modulus at low strain of the
solution-polymerized styrene-butadiene rubber (SSBR) compounds, as described in Table 1. The dotted
lines in (b) indicate the corresponding percolation thresholds obtained by RPA measurements.

The normalised superharmonic resonance as a function of CB volume fraction is shown in
Figure 4. Similar to Figure 3, the onset at the percolation threshold can be observed. For N121 and
N339 compounds, the nSHR value as an indicator of nonlinearity shows a similar CB volume fraction
dependency, while the N550 compound shows a much weaker dependency. One plausible explanation
of this behaviour is the relatively poor microdispersion of N550 present in the rubber matrix. Images
from TEM in Figure 5 seem to justify the hypothesis, especially when compared to the other two carbon
black grades. It is possible that the filler particles are scattering the mechanical wave propagation
through the sample from the input to the output sensor. Above the percolation threshold however,
a secondary wave propagation is induced by the filler structure due to the large modulus difference
between the viscoelastic matrix and the filler network. This implies that the slope of nSHR might be an
indication of filler distribution within the compound.
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Figure 4. The normalised superharmonic resonance (nSHR) values for three carbon black grades; N121,
N339, and N550 within a SSBR matrix. The dashed vertical lines represent the percolation threshold
obtained by RPA for each compound.

Figure 5. TEM images for N121 (top row), N339 (middle row), and N550 (bottom row) in SSBR
compounds with filler concentrations below, around, and above percolation threshold.
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3.3. Reinforcing Resin

In the previous investigation, it was concluded that novolac-type phenolic resin changes the
interfacial properties of the CB filler network [12]. This resin-mediated filler network enhances the
mechanical properties of the material. This was inferred when the percolation threshold of the polymer
was reduced with the introduction of resin as well as the higher mechanical softening behaviour with
respect to the applied strain deformation and temperature dependency. Therefore, the filler-induced
nonlinearity should be affected by the modification of the filler network interphase by resin.

The resonance amplitude is inversely proportional to the damping coefficient. Looking at the
resonance amplitude of the first vibrational mode in Figure 6b, the damping coefficient is seen to
be reduced for the compound with substantial amount of resin. This means that the polymer has a
stronger elastic behaviour with a higher amount of filler and resin combinations. This behaviour was
not observed in the aforementioned CB variation studies, as indicated in Figure 6a. In other words,
the resin-mediated compounds are able to channel the mechanical wave more effectively through the
sample without heavy signal attenuation.
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Figure 6. The resonance amplitude as a function of resonance frequency for (a) different carbon black
grades within a SSBR matrix without resin and (b) carbon-black-filled IR with three resin concentrations;
0.0, 1.4, and 9.2 parts per hundred rubber.

Observing the normalised superharmonic resonance (nSHR) values in Figure 7, the nonlinearity
of the resin compound is significantly higher than the nonresin analogue. Utilising the conclusion
from the previous studies, the nonlinearity induced by the filler network is enhanced by the resin and
is attributed to a more compact network formed in the polymer.
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Figure 7. The nSHR values for the three resin concentrations in a N339-filled IR compound. Dashed
lines indicate percolation threshold values obtained by RPA measurements. Note that the scaling is
twice the scale in Figure 4.

4. Conclusions

A systematic study of three variants of SBR matrix filled with either N121, N339, or N550 carbon
black grades was performed in order to elaborate the superharmonic resonance effects in terms of filler
volume fractions. The filler-induced nonlinearity in the N550 compound is much weaker than the other
two counterparts, indicating that the microdispersion of the filler plays a role in the superharmonic
resonance effects, as validated by TEM images. Following this, reinforcing resin was introduced
in an IR matrix in order to investigate the effects of a compact filler network. The compactness of
the filler network leads to the compounds with high resin content to exhibit a significantly high
normalised superharmonic resonance, further consolidating the hypothesis that the filler network is
indeed inducing a secondary mechanical propagation wave which leads to the nonlinearity effects of
filled compounds.
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Chapter 5

Summary and Outlook

5.1 Summary

The present work introduces various novel methods of characterising filler network in rubber

compound. The most significant finding is the observation of the superharmonic phenomenon in

rubber compounds for the first time. More commonly seen in micro-electro-mechanical systems

(MEMS) such as accelerometers and gyroscopes, the superharmonic resonance in rubber is seen to

be mainly affected by the filler network and microdispersion. Therefore, any modifications to the

filler network would be reflected in the rheologically nonlinear, non-sinusoidal mechanical response

of the compound. This statement is derived from the following peer-reviewed publications.

In the first publication, the effects of resorcinol-based reinforcing resin on the carbon black filler

network is investigated via various experimental approaches. From the cyclic tensile tests, it was

shown that a percolated filler network is required in order to observe the reinforcing effects of the

resins. With dynamic mechanical experiments, it was concluded that the percolation threshold is

reduced with the addition of reinforcing resin, and the filler network interphase exhibits a higher

temperature sensitivity with the addition of resins. TSSR measurements were then performed to

validate the impact of reinforcing resin on a higher magnitude, both in terms of the temperature

and strain dependency. These results are inline with the previous mechanical experiments. Finally,

microscopical techniques were able to validate the compactness of the filler network via the resin

mediated networks.

The second published article introduces a novel technique of analyzing the Fourier space of a

resonance-based DMA measurement. The input and output signals of the HF DMA measurement

are transformed into Fourier space and normalized to obtain a transmissibility curve of the mechanical

response of the compound. The outcome of this procedure is the observation of the superharmonic

resonance, which is connected to the nonlinearity induced by the presence of fillers within a rubber

compound. This was concluded from the systematic study of filler loading which coincides with the

percolation threshold obtained by an independent DMA method. In addition, a Duffing’s nonlinear

cubic model based on the Kelvin-Voigt visco-elastic model, was used to quantify the apparent
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foldover effect observed in the transmissibility curve of the measurements. The fitted nonlinear

elastic term α in the Duffing’s model, seems to correlate with the observed superharmonic resonance

since a different filler concentration dependency is obtained below and above the filler percolation

threshold.

Finally, the third paper utilizes the analytical technique introduced in the second paper to evaluate

the impact of polymer types, filler types and reinforcing resin concentration on the superharmonic

resonance. Below the percolation threshold, a polymer dependent nonlinearity is observed while

above the percolation threshold, the micro-dispersion of carbon black dominates the nonlinearity

behavior. This was further consolidated with the addition of reinforcing resin, whereby the degree

of nonlinearity is further increased due to the existence of a resin mediated filler network. In

addition, a pre-factor was introduced in the quantification of the superharmonic resonance to take

into account the excitation amplitude differences imposed on the sample. It was noted here that

the excitation amplitude is a function of the applied frequency.

The current investigation was all performed at ambient temperature in order to simplify the design

of experiment. Extending the understanding of the superharmonic resonance in rubber compounds,

a more extensive study of the temperature dependency should be performed. Since the mechanical

response of rubber compounds is based on the glass transition temperature, this infers that the

nonlinearity behavior of rubber would have a significant impact on the measured superharmonic

resonance.

Additionally, the Duffing’s model was briefly used to describe the rheologically nonlinear response

seen within the transmissibility curve of filled rubber compounds above the percolation threshold.

The fundamental assumption of the model is that the nonlinearity is originating from the higher

orders of the elastic term of the Kevin-Voigt system. The model could be further developed with a

higher ordered damping term, in order to derive a more precise material description.

Finally, additional material aspects should be considered in future investigations. In the present

work, carbon blacks of different grades and concentrations coupled with reinforcing resin were

investigated. More complex compounds, such as silica filled rubber, would be an interesting research

topic due to the different reinforcing mechanism. The former having a physically adsorbed interface

with the rubber matrix and the latter through a covalent bonds created via the addition of silanes.

Softeners would be another interesting topic as they change the polymer chain mobility, and

thus, would impart an influence on the apparent polymer induced nonlinearity observed in the

superharmonic resonances.
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