
ORIGINAL RESEARCH
published: 17 June 2020

doi: 10.3389/feduc.2020.00080

Frontiers in Education | www.frontiersin.org 1 June 2020 | Volume 5 | Article 80

Edited by:

Robbert Smit,

University of Teacher Education St.

Gallen, Switzerland

Reviewed by:

Ann Dowker,

University of Oxford, United Kingdom

Gavin T. L. Brown,

The University of Auckland,

New Zealand

Jack Pun,

City University of Hong Kong,

Hong Kong

Anthony M. Li,

University of Oxford, United Kingdom,

in Collaboration with Reviewer JP

*Correspondence:

Miriam Balt

miriam.balt@ifs.uni-hannover.de

Specialty section:

This article was submitted to

Assessment, Testing and Applied

Measurement,

a section of the journal

Frontiers in Education

Received: 13 October 2019

Accepted: 18 May 2020

Published: 17 June 2020

Citation:

Balt M, Fritz A and Ehlert A (2020)

Insights Into First Grade Students’

Development of Conceptual

Numerical Understanding as Drawn

From Progression-Based

Assessments. Front. Educ. 5:80.

doi: 10.3389/feduc.2020.00080

Insights Into First Grade Students’
Development of Conceptual
Numerical Understanding as Drawn
From Progression-Based
Assessments
Miriam Balt 1*, Annemarie Fritz 2,3 and Antje Ehlert 4

1Department Humanities, Institute Special Education, Leibniz University Hanover, Hanover, Germany, 2Department

Educational Studies, Institute Psychology, University Duisburg-Essen, Essen, Germany, 3Centre for Education Practice

Research, University of Johannesburg, Johannesburg, South Africa, 4Department Human Sciences, Institute Inclusive

Education, University of Potsdam, Potsdam, Germany

Early numeracy has been found to be one of the strongest predictors for later success

in learning. Equipping children with a sound conceptual numerical understanding should

therefore be a focus of early primary school mathematics. Assessments that are aligned

to empirically validated learning progressions can support teachers to understand

their students learning better and target instruction accordingly. This study examines

numeracy learning of 101 first grade students over the course of one school year

using progression-based assessments. Findings show that the students’ performance

increased significantly over time and that the initial conceptual numerical understanding

had a positive effect on the students’ learning progress as well as their end of school

year performance. Analyzing the performance data based on the levels of the underlying

developmental model uncovered an increasing elaboration of conceptual numerical

understanding over time, but also individual differences within this process that need

to be addressed through targeted intervention.

Keywords: early numeracy, development, assessment, learning progression, primary school

INTRODUCTION

Research suggests that children’s mathematical knowledge varies quite substantially when
commencing formal schooling in Grade 1 (Bodovski and Farkas, 2007; Dowker, 2008), and that
without appropriate teaching, differences in mathematical performance tend to be consistent over
time (Aunola et al., 2004;Morgan et al., 2011;Missall et al., 2012; Navarro et al., 2012). Furthermore,
early numeracy concepts were found to be the strongest predictor for later learning (Duncan
et al., 2007; Krajewski and Schneider, 2009; Romano et al., 2010; Claessens and Engel, 2013). Early
knowledge in numeracy predicted not only success in mathematics, but also success in reading
(Lerkkanen et al., 2005; Duncan et al., 2007; Romano et al., 2010; Purpura et al., 2017) and was a
stronger predictor for later academic achievement than other developmental skills, such as literacy,
attention, and social skills (Duncan et al., 2007). In a similar vein, the initial numeracy skills of
children at the transition to school do not only predict later achievement but also the learning
growth children are likely to show.
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A number of recent studies examining the development
of math performance in primary school suggest a cumulative
growth pattern (Aunola et al., 2004; Bodovski and Farkas, 2007;
Morgan et al., 2011; Geary et al., 2012; Missall et al., 2012;
Salaschek et al., 2014; Hojnoski et al., 2018). For a detailed
synthesis of early numeracy growth studies, see Salaschek et al.
(2014). Cumulative development, also known as Matthew effect
(Stanovich, 1986), is characterized by a gradual accumulation of
knowledge and skills over time. Children who start with good
skills and sophisticated knowledge increase their performance
more than those who start with lower levels of proficiency.
This growth pattern was found among unselected populations
of primary school students (Aunola et al., 2004; Salaschek et al.,
2014) as well as for specific groups of students, such as children
with learning difficulties (Geary et al., 2012), speech language
impairments (Morgan et al., 2011) and disability (Hojnoski et al.,
2018). Further, studies examining the effects of learning progress-
related predictors found a significant effect of the initial learning
status (intercept) as well as the learning growth (slope) on later
math performance (Keller-Margulis et al., 2008; Kuhn et al.,
2019).

In accordance with these research findings, we propose that
the acquisition of early numeracy in first grade is exceedingly
crucial for children’s later performance at school. To support
teachers in providing early numeracy instruction that is tailored
to the student’s individual levels of understanding, we designed
a formative assessment tool—hereafter called Learning Progress
Assessment (LPA)—based on a learning progression approach.
In this study, we used the LPA to shed more light onto
first grade students’ development of conceptual numerical
understanding and simultaneously further investigate the quality
of the instrument.

DEFINING EARLY NUMERACY AND
CONCEPTUAL KNOWLEDGE

Mathematics represents a complex construct that is composed
of various skills which are usually organized within five
domains: numbers and operations, geometry, measurement,
algebra, and data analysis (Clements and Sarama, 2009). These
domains are also described in the German National Educational
Standards (KMK, 2004) which are applied in the mathematics
curricula of the different federal states of Germany. A significant
amount of research has been conducted in the domain of
numbers and operations covering the field of arithmetic. In
early primary school (first and second grade), numbers and
operations, also referred to as early numeracy (Aunio and
Niemivirta, 2010) or symbolic number sense (Jordan et al., 2010),
encompasses the skills of number knowledge, verbal counting,
basic calculations, and quantity comparison. Early numeracy has
been found to be the area of early mathematics most predictive
for later success in mathematics (Mazzocco and Thompson,
2005). In this paper the terms numeracy and arithmetic are
used interchangeably.

Early numeracy skills, such as basic operations, are
underpinned by conceptual knowledge that assigns meaning to

the procedures and arithmetic facts. In contrast to procedural
knowledge that involves knowing how to perform a calculation,
conceptual knowledge involves understanding why arithmetical
problems can be solved in a certain way (Hiebert and Lefevre,
1986). Conceptual understanding of early numeracy skills is
considered the foundation for developing sound mathematical
skills later on (Gelman and Gallistel, 1978). Hence, one objective
of the German National Educational Standards is to initiate a
change in German mathematics education away from focusing
on the pure knowledge of arithmetic facts and the performance
of routine procedures toward conceptual understanding (KMK,
2004). However, conceptual knowledge and procedural skills
should be considered as iterative, each prompting the learning of
the other (Rittle-Johnson et al., 2001).

LEARNING PROGRESSIONS IN EARLY
NUMERACY

Learning progressions, also known as learning trajectories,
conceptualize learning as “a development of progressive
sophistication in understanding and skills within a domain”
(Heritage, 2008, p. 4). In other words, learning progressions
describe how knowledge, concepts and skills within a certain
domain typically develop and what it means to improve in that
area of learning. Black et al. (2011) describe learning progression
as a pathway, or “road map” (p. 4) that presents knowledge and
skill development as sequential in its increase in complexity.

According to Clements and Sarama (2009) learning
trajectories consist of three parts: a mathematical goal,
often given by the curriculum, a developmental path “along
which children develop to reach that goal” (p. 3), and a
set of instructional activities matched to each level of the
developmental path that help children to develop higher levels
of understanding. By applying this 3-fold approach, Clements
and Sarama (2009) created and empirically investigated learning
progressions for a variety of mathematical areas, including
early numeracy skills, such as counting, comparing numbers,
composing numbers, and addition and subtraction. Empson
(2011) pointed out that the idea of learning progressions as a
“series of predictable levels” (Sarnecka and Carey, 2008, p. 664) is
not new within mathematics research. For example, Gelman and
Gallistel’s (1978) description of children’s acquisition of counting
skills and Fuson’s (1988) model of children’s development of
number concepts are well-established and broadly recognized.
Such historical approaches built the theoretical foundation for
more recent empirically-supported models that aim to describe
development through the concept of learning progressions.

For example, in their model of number-knower levels
Sarnecka and Carey (2008) describe the developmental process
that occurs between being able to recite the counting list while
pointing at objects to being able to understand the “cardinal
principle” (Gelman and Gallistel, 1978). The number-knower
levels framework is supported by studies using the “Give-N”
or “Give-A-Number” task (Le Corre and Carey, 2007; Lee and
Sarnecka, 2011). In this task, children were requested to generate
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subsets of a particular number from a larger set of objects that is
placed in front of them (e.g., “Give me three marbles”).

Fritz et al. (2013) published a model that aims to map the
development of early numeracy, with a particular focus on
conceptual understanding. This model of conceptual numerical
development has been empirically validated in cross-sectional as
well as longitudinal studies (Fritz et al., 2018) and builds the
theoretical foundation of the LPA introduced in this study. The
model describes six successive, hierarchical levels of increasing
numerical sophistication, with each level characterized by a
central numerical concept. The model emphasizes a conceptual
progression, in which less sophisticated concepts build the
foundation for more sophisticated concepts and understands
development in the sense of “overlapping waves” (Siegler and
Alibali, 2005). This means, the levels describe an increasing
elaboration of conceptual understanding, rather than distinct,
exclusive stages of ability. Table 1 shows the central numerical
concept for each level and a short description of the associated
skills. For a detailed description of the model, see Fritz et al.
(2013).

LEARNING PROGRESSION-BASED
ASSESSMENTS

Internationally, the learning progression approach has been
applied to inform educational standards, national curricula,
and large scale assessments, as well as formative assessment
practices (e.g., Daro et al., 2011; ACARA, 2017). To serve
these different purposes, learning progressions differ in their
scope (i.e., the amount of instructional time and content) and
their grain size (i.e., the level of detail provided about changes
in student thinking) (Gotwals, 2018). For example, a learning
progression with a larger scope and grain size may be more
appropriate to inform educational standards than formative
assessment practices because standards need to describe students’
understanding over a longer period of time. To be useful
for formative assessment purposes, learning progressions with
a smaller scope and grain size would be more suitable to
support teachers in their instructional decision making, as these
types of progressions describe “nuances in the shifts in student
thinking” (Gotwals, 2018, p. 158). Research on the quality of
instruction has suggested that formative assessment is important
practice for teachers to support their students’ learning best
(Black and Wiliam, 1998; Wiliam et al., 2004; Kingston and
Nash, 2011). However, in a meta-analysis Stahnke et al. (2016)
findings suggest that mathematics teachers tend to struggle
with choosing adequate tasks to support their students learning
and have difficulties interpreting tasks and identifying their
potential for instruction. As learning progressions describe how
the development in a certain domain typically looks like, we
support the premise of Clements et al. (2008), which stated
that assessments that are aligned to learning progressions are
important tools to support formative assessment practices. Such
assessments can inform instruction that is targeted to the
students’ individual levels of understanding.

To our knowledge, however, there are only few progression-
based numeracy assessments available in Germany. Even fewer
have been empirically validated. Most of the German formative
mathematics assessments, which are also psychometrically tested,
aim to monitor how well students progress in learning the
content specified in a certain year level curriculum, but do not
take the developmental perspective into account (Strathmann
and Klauer, 2012; Salaschek et al., 2014; Gebhardt et al., 2016;
Kuhn et al., 2018).

RATIONALE OF THE STUDY AND
RESEARCH QUESTIONS

The present study sought to add to previous research by
examining the LPA for use within the German school context
which was designed in alignment to the model of conceptual
numerical development by Fritz et al. (2013). The goal
of this study was to provide insights into the first grade
students’ conceptual numerical development as well as to
further investigate the quality of the LPA, but not to evaluate
the effectiveness of the interventions. Therefor four research
questions were addressed.

Research question 1: To what extent does numerical
performance (assessed through the LPA) change over time? In
line with other mathematical growth studies in early primary
school (e.g., Bodovski and Farkas, 2007), a significant increase in
performance over time was expected.

Research question 2: To what extent does the numerical
knowledge prior to school predict change in numerical
performance over time? Based on previous studies examining
the effects of domain specific predictors on math learning, such
as those by Krajewski and Schneider (2009) a positive effect
of the numerical pre-knowledge on the children’s numerical
development was expected. A cumulative growth pattern
predicted by the numerical knowledge prior to school was also
anticipated, in line with findings by Salaschek et al. (2014).

Research question 3: To what extent do numerical knowledge
prior to school and change in numerical performance over time
predict numerical performance at the end of Grade 1? It was
hypothesized that the numerical knowledge prior to school would
explain a relatively high share of the variance of the numerical
performance at the end of the school year.With regard to findings
from Kuhn et al. (2019) it was further expected that the LPA
would also be a significant predictor for numeracy performance
at the end of the school year.

Research question 4: How does the conceptual numerical
understanding change over the course of Grade 1? As suggested
by findings of Fritz et al. (2018) it was expected that most
children would start school at Level III (concept of cardinality).
Over the course of Grade 1 the students are expected to
gain about one conceptual level, reaching Level IV or V
(concept of part-part-whole relations or concept of equidistant
number line intervals) by the end of the school year. Given
the considerable heterogeneity of mathematical knowledge in
German first graders (e.g., Peter-Koop and Kollhoff, 2015), it was
also postulated that a wide range of levels would be found.
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TABLE 1 | Development model of conceptual numerical understanding by Fritz et al. (2013).

Level Numerical concept Description

I Counting Children recite the count list starting at “one” and enumerate sets of items with the help of object representations

(e.g., counters or their fingers) using one-to-one correspondence.

II Ordinal number line Children realize that numbers align in an order which gradually increases with succeeding numbers being larger

and preceding numbers being smaller. Children compare numbers regarding their position within the number word

sequence and solve simple addition and subtraction tasks by moving along the mental number line using the

“count-all” strategy.

III Cardinality Children understand that each number represents a certain quantity which contains a specific number of objects

and that the quantity of smaller numbers is included in the quantity of larger numbers (e.g., three is included in

five). They can solve simple addition and subtraction tasks by using the “count-on” strategy.

IV Part-part-whole relations Children understand numbers as composite units that can be decomposed into different and/or several partial

quantities. They reflect the relationship between partial quantities and the whole quantity as a determined triad.

This enables them to solve addition and subtraction tasks in which the second summand or the subtrahend, or

the sum or difference is missing.

V Equidistant number line intervals Children understand that the difference between consecutive numbers is the same (+1/−1) and that numbers can

specify counting steps on the number line as well as the relationship between two quantities. Children can quantify

the difference between two numbers and are able to count in steps. Children now solve addition and subtraction

tasks independently of the missing part, may it be the sum/difference or one of the summands/the minuend or

subtrahend.

VI Units in numbers Children comprehend numbers as composite units of equally sized partial quantities. They can form segments of

the same size (bundling) on the number line (e.g., 4 × 3) and can decompose a number into partial quantities of

the same size (unbundling) (e.g., 12:4).

TABLE 2 | Item fit statistics of the measurement instruments.

MARKO-D tests

(N = 78 items)

LPA tests

(N = 83 items)

M (MSQ) 0.98 0.94

SD (MSQ) 0.11 0.11

Min (MSQ) 0.73 0.62

Max (MSQ) 1.26 1.17

MSQ, mean square values.

METHOD

Participants and Procedure
As part of a longitudinal Response-to-Intervention study, a total
of 101 (55% female) first grade students (MAge = 78.24 months,
SD= 3.89) from six classes of two German primary schools were
examined over the course of one school year. The schools were
located in an urban area with a higher socioeconomic status. The
data was collected by trained Master students of the Inclusive
Education program of the local university.

The first grade students’ conceptual numerical knowledge
was assessed at the beginning of school using the “Mathematics
and arithmetical concepts in preschool age” (MARKO-D; Ricken
et al., 2013) as a pre-test, and re-assessed at the end of the
school year using the “Mathematics and arithmetical concepts of
first grade students” (MARKO-D1; Fritz et al., 2017) as a post-
test. Between the two MARKO-D tests, the Learning progress
assessment (LPA) was applied over nine measurement points
(LPAt1 to LPAt9) starting at about 12 weeks after the beginning of
school with∼4 weeks in between eachmeasurement. All students
received general teaching according to the requirements of
the German curriculum (Landesinstitut für Schule und Medien

TABLE 3 | Descriptive statistics of person parameters from MARKO-D tests and

LPA.

Variable M SD Range (Min–Max)

MARKO-DPre 0.19 1.05 −2.48–2.77

MARKO-D1Post 1.87 1.05 −0.56–4.72

LPAt1 0.77 1.44 −3.28–5.45

LPAt2 1.12 1.19 −2.38–4.26

LPAt3 1.20 1.40 −2.12–4.11

LPAt4 1.99 1.32 −0.58–5.42

LPAt5 2.02 1.72 −3.31–5.14

LPAt6 2.34 1.53 −1.27–5.20

LPAt7 2.75 1.65 −0.43–5.83

LPAt8 2.84 1.65 −0.55–5.98

LPAt9 3.04 1.79 −0.42–6.07

Person parameters obtained from MARKO-D Rasch scale and LPA Rasch scale (Rasch,

1960).

Berlin-Brandenburg (LISUM), 2015). Some students participated
in additional mathematical interventions as part of the Response-
to-Intervention study (e.g., Gerlach et al., 2013).

Instruments
MARKO-D Test Series
The MARKO-D (Ricken et al., 2013) and MARKO-D1 (Fritz
et al., 2017) tests are standardized, Rasch scaled diagnostic
instruments that have been designed based on the development
model of arithmetical concepts by Fritz et al. (2013) described
previously (see Table 1). Based on the levels of the model, the
tests aim to capture children’s understanding of arithmetical
concepts for different levels and age groups (MARKO-D: Levels
I to V, Age: 48–87 months; MARKO-D1: Levels II to VI, Age:
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71–119 months). The test items are presented in a randomized
order. The MARKO-D tests are linked by 22 anchor items spread
over different developmental levels. Both tests are conducted as
individual tests in a one-on-one situation and take∼30min each.
The children’s performance data can be analyzed quantitatively
(based on raw scores, transferred into T-scores and percentile
ranks), as well as qualitatively (based on response patterns,
transferred into individual conceptual levels).

Learning Progress Assessment (LPA)
The LPA aims to assess the children’s performance within the
different levels of the same developmental model (see Table 1).
In contrast to the MARKO-D tests (Ricken et al., 2013; Fritz
et al., 2017), the LPA, however, does not assess all levels in one
test. Instead, it uses shorter tests that are targeted to the student’s
current numerical understanding and applied formatively within
group settings.

In this study the short tests were targeted to the students’
current level of proficiency based on their performance on the
previous test. For the first measurement point of the LPA, the
performance on the MARKO-D test served as decision criterion
for assigning the appropriate test version. The short tests of

TABLE 4 | Descriptive statistics of item parameters of the LPA items per

developmental level.

Level M SD Range (Min–Max)

I −3.50 0.40 −3.82–(−3.00)

II −2.32 1.10 −3.66–(−0.79)

III −1.23 0.77 −2.10–0.34

IV 0.29 0.84 −1.46–1.72

V 0.42 0.68 −0.79–1.46

VI 1.59 0.57 0.42–2.58

VI+ 1.96 1.08 0.32–3.36

Item parameters obtained from LPA Rasch scale (Rasch, 1960).

the LPA were conducted in small groups of students at the
same developmental level and took ∼15min. The instructions
were read aloud by trained Master students whilst the first
grade students solved the given assessment tasks in individual
test booklets.

Each short test consisted of 15 items covering three levels
(five items per level): the student’s current level of proficiency,
the previous level and the subsequent level. As a result, at each
measurement point up to five different test versions were used
(Levels I to III, Levels II to IV, Levels III to V, Levels IV to VI,
Levels V to VI+). The test items were drawn from a pool of
items operationalizing the levels of the model. The item pool
consisted of 90 dichotomous items (I:12, II:17, III:10, IV:12, V:14,
VI:13, VI+:12). The hypothesized developmental levels of the
items had been empirically evaluated in previous cross-sectional
and longitudinal studies (Balt et al., 2017). Subsets of five items
per level, including one linking item per level, were drawn from
the item pool and randomly assigned to each measurement time.
In a multi-matrix test booklet design (Johnson, 1992), linking
items are items all tests have in common. As such, they provide
a reference point for evaluating the difficulty of the remaining
items and enable a concurrent scaling of all items within the
Rasch model (von Davier, 2011). With the exception of the
linking items, there was no repetition of the same items in
consecutive measurements to avoid memory effects.

Please note that the twelve VI+ items did not relate to
the developmental model. These items were introduced at
measurement point seven to cater for students who performed
above Level VI at the time. The items were expected to be more
difficult as they assessed the concepts of Levels V and VI but
within a higher number range.

Data Analysis
The Raschmodel was used as the underlyingmathematical model
to build the progression-based assessments used in this study
(MARKO-D tests and LPA). Within the Rasch model item and
person parameters are mapped on a joint scale. The numerical

TABLE 5 | Fixed effects for mixed models predicting LPA performance (N = 99a).

Unstandardized estimate b (SE)

Model 1 Model 2 Model 3 Model 4 Model 5

PARAMETER

Intercept 1.99* (0.12) 0.79* (0.13) 0.79* (0.11) 0.79* (0.08) 0.79* (0.08)

Time 0.30* (0.01) 0.30* (0.02) 0.30* (0.02) 0.30* (0.02)

MARKO-DPre 0.80* (0.07) 0.77* (0.08)

Time x MARKO-DPre 0.02 (0.02)

MODEL INDICES

AIC 3007.77 2596.49 2571.57 2495.51 2496.34

BIC 3021.99 2615.46 2600.02 2528.71 2534.27

R2
m 0 0.21 0.21 0.46 0.47

R2
c 0.45 0.68 0.71 0.70 0.71

*p < 0.05; R2
m, marginal R

2; R2
c , conditional R

2. Model 1: Random-intercept only; Model 2: Random-intercept + Time (fixed effect); Model 3: Random-intercept + Time (random slopes);

Model 4: Random-intercept + Time (random slopes) + MARKO-DPre; Model 5: Random-intercept + Time (random slopes) + MARKO-DPre+ Time x MARKO-DPre.
aTwo students were excluded from this analysis as they did not participate in the pre-test.
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performance data of the students obtained through theMARKO-
D tests and the LPA were scaled applying simple dichotomous
Rasch models (Rasch, 1960). MARKO-D and MARKO-D1
were combined onto one scale and calibrated simultaneously
based on linking items, and the short tests of the LPA were
mapped on another scale based on their linking items. Thus,
numeracy performance was measured on two separate scales
(MARKO-D/D1 and LPAt1 to LPAt9). The item parameters
of the measurement models were fitted using Conditional-
Maximum-Likelihood (CML) estimation and person parameters
were determined based on the Maximum-Likelihood estimation
(ML). The specification of the measurement models as well as its
goodness of fit were evaluated using the eRM package (Mair and
Hatzinger, 2007) within R software (R Core Team, 2017, Version
1.2.1335). The goodness of fit to the Rasch model was assessed
through item-fit analyses. The assumption of sample invariance
of the LPA scale was tested through Andersen Likelihood Ratio
Tests (LRT) (Andersen, 1973). For the LRT tests, the median was
used as an internal split criterion to compare the item parameter
estimations for students with higher and lower test scores.

TABLE 6 | Parameters for multiple regression models predicting MARKO-D1Post
(N = 97a).

Parameter Standardized estimate β (SE)

Model 1 Model 2

Intercept −0.01 (0.08) −0.01 (0.06)

MARKO-DPre 0.66* (0.08) 0.24* (0.09)

LPA Int 0.40* (0.11)

LPA Sl 0.25* (0.08)

R2 0.43 0.63

*p < 0.05; LPA Int, Individual intercepts of LPA, and LPA Sl, Individual slopes of LPA, both

retrieved from the ‘Random-Intercept-Random-Slope’-model estimated via lme() function

using empirical Bayes estimator.
aFour students were excluded from this analysis as they did not participate in either the

pre- or the post-test.

Gender was used as an external split criterion to determine
whether the item parameter estimation differed significantly
between male and female students. No systematic difference
between different subgroups of the sample should be found if the
Rasch model is valid (van den Wollenberg, 1988).

After fitting and testing the Rasch model, the person
parameters of both numeracy scales (MARKO-D tests and LPA)
were used to investigate the student’s numerical development
over the course of Grade 1. To account for the characteristics of
the longitudinal design of the study (e.g., time as an independent
variable), linear Mixed Models were used to address research
question 1 (the effect of time on numeracy performance)
and research question 2 (the effect of numerical knowledge
prior to school on numeracy development in first grade).
Competing models were compared using log likelihood tests,
with the more complex model retained if that fitted the data
significantly better (Bliese and Ployhart, 2002). To address
research question 3 (the effect of numerical knowledge prior
to school and change in numerical performance over time on
numerical performance at the end of the school year), the
“Random-Intercept-Random-Slope” model from the previous
linear Mixed Models analysis was used to estimate intercept and
slope parameters for each student based on the LPA (compare
Kuhn et al., 2019). The individual intercepts and slopes served
as learning progression related predictors for end of school
year numeracy performance (MARKO-D1Post) analyzed through
hierarchical multiple regression. To address research question 4
(change in conceptual numerical understanding), the students’
performance on the MARKO-D tests as well as on the LPA
tests was allocated to the levels of the developmental model
following the reporting standards of the MARKO-D test series.
The standards propose that full understanding of the numerical
concept of a level can be assumed when at least 75% of the
items within this level were solved correctly, given that (a) each
test item could be reliably assigned to the theoretically founded
developmental levels and their associated underlying numerical
concepts, and (b) the hierarchy of the levels was valid (Ricken
et al., 2013). For this study we assumed that the items of the LPA

TABLE 7 | Level-based analysis of MARKO-D tests and LPA tests (relative frequencies in %).

Level Measurement point

MARKO-D tests (N = 99) LPA tests (N = 101)

Pre Post 1 2 3 4 5 6 7 8 9

I 0 0 1.0 2.0 0 0 0 0 0 0 0

II 19.2 0 4.1 4.1 8.0 3.0 2.0 2.0 0 0 0

III 29.3 5.1 14.3 26.5 10.0 10.9 8.9 11.9 2.0 5.0 4.0

IV 22.2 28.3 55.1 41.8 44.0 36.6 36.6 19.8 31.0 18.0 10.0

V 25.3 38.4 13.3 18.4 16.0 14.9 29.7 13.9 11.0 22.0 15.0

VI 4.0 27.3 11.2 7.1 19.0 20.8 5.9 23.8 20.0 27.0 36.0

7a 0 1.0 1.0 0 3.0 13.9 16.8 28.7 22.0 11.0 13.0

8b 0 0 0 0 0 0 0 0 14.0 17.0 22.0

aLevel 7 is not a level of the developmental model. Level 7 includes students who mastered at least 75% of the items at Level VI.
bLevel 8 is not a level of the developmental model. Level 8 includes students who mastered at least 75% of the items at Levels V and VI in a higher number range.
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met both conditions and therefore the application of the 75%
criterion was valid (see also Balt et al., 2017).

RESULTS

Item Fit Analysis
Mean square values (MSQ) were used to assess the Rasch model
fit on the item level. MSQ values represent the residuals between
the Rasch model expectations and the observed responses (Wu
andAdams, 2013). Ideally, MSQ scores have a value of 1, however
a range between 0.75 ≤ MSQ ≤ 1.30 is considered acceptable
(Bond and Fox, 2007).Table 2 shows that theMSQ values of both
scales (MARKO-D tests and LPA) were close to 1 on average with
a small standard deviation of 0.11 which indicates a reasonable
item fit. For single items, the MSQ values were also reasonable as
none exceeded the range of an acceptable fit. Please note that the
number of items within each scale is reduced due to the common
linking items.

Person Parameter Analysis
Table 3 shows the descriptive statistics of the person parameters
of the two scales (MARKO-D tests and LPA) based on the Rasch
model (Rasch, 1960).

The person parameters significantly increased from the
beginning (MARKO-DPre) to the end of the school year
(MARKO-D1Post), t(96) = −19.03, p < 0.001, r = 0.89. The
significant increase in performance over time was also captured
in between the pre-and the post-test through the LPA tests
(LPAt1-LPAt9), t(747) = 23.47, p < 0.001, r = 0.65 (compare
Model 2 in Table 5).

Item Parameter Analysis
Table 4 shows the descriptive statistics of the item parameters of
the LPA item pool for each level of the developmental model (see
Table 1). The mean difficulty of the items significantly increased
from Level I to VI+, F(6, 82) = 52.63, p < 0.001, r = 0.89.

Sample Invariance Analysis
Median Split
The Andersen LRT (Andersen, 1973) with median as the internal
split criterion showed a non-significant result (χ ² = 59.86; df
= 57; p = 0.37), indicating that the estimations of the item
parameters did not differ significantly between students with low
and high scores in the LPA.

Gender Split
The Andersen LRT (Andersen, 1973) with gender as the external
split criterion showed a significant result (χ ² = 112.76; df =

69; p = 0.001), indicating that some item parameter estimations
differed significantly between male and female students. As
recommended by Koller et al. (2012) a Wald test was applied to
identify the items that show a bias toward a certain gender. The
Wald test found that the statistic item parameter estimations of
three items showed significant differences between genders (p <

0.05). Rerunning the Andersen LRT after excluding these three
items from the analysis led to a non-significant result (χ ²= 79.67;
df = 66; p= 0.12).

Growth Analysis
We started the growth model building process with the “Random
intercept only” model (Model 1) as the baseline model and
subsequently added more complexity. In Model 2, “Time”
was added as a fixed effect (independent variable) to model
its relationship with the students’ performance in the LPA
(dependent variable). The first measurement of the LPA was
conducted about 12 weeks after the beginning of school. Each
step in “Time” represents 4 weeks of schooling. In Model
3, “Random slopes” were introduced to account for possible
differences in growth patterns over time. In Model 4, the grand
mean centered person parameters (Enders and Tofighi, 2007) of
the variable MARKO-DPre were added to the previous model
as a predictor for possible intercept variation. In Model 5 the
interaction term “Time x MARKO-DPre” was added to test for
potential effects of numerical knowledge prior to school on
numeracy development.

Table 5 displays the model parameters of the linear Mixed
Models. The model comparison suggests that adding the
fixed effect of “Time” significantly improved the fit of Model
2 compared to the Baseline model. Introducing “Random
slopes” further improved the fit of Model 3. The average
growth predicted through the “Random-Intercept-Random-
Slope” model (Model 3) was 0.30 (SE = 0.02, p < 0.01) with a
SD of 0.10. The average intercept was 0.79 (SE = 0.11, p < 0.01)
with a SD of 0.98. Adding “MARKO-DPre” as a second predictor
to the model improved the fit of Model 4 compared to Model 3.
However, adding the interaction term “Time×MARKO-DPre” in
Model 5 did not significantly improve the model fit. The model
indices in Table 5 also indicate that model fit and explained
variance increase with increasing complexity up to Model 4.

Prediction Analysis
The small intraclass correlation (ICC) of 0.01, estimated as part of
the growthmodel building process, indicates that the hierarchical
structure of the data is not likely to affect the subsequent
regression analysis. Multicollinearity between the predictors,
tested through variance inflation factors, also appeared to be
unproblematic as all factors were smaller than 3.5 (Meyers, 1990).

Model 1 in Table 6 shows that the performance in the pre-
test (MARKO-DPre) explains 43% of the variation in the post-
test performance (MARKO-D1Post). Introducing the individual
intercept and slope parameters from the LPA to the model
(Model 2) adds 20% of explained variance. Themodel parameters
indicate that the LPA related predictors make a significant
contribution to the model.

Level-Based Analysis
Drawing on the 75% criterion (see section Data Analysis of this
paper) the students were allocated to the different levels of the
developmental model (see Table 1). Table 7 displays the relative
frequencies of the level allocations based on the students’ pre- and
post-test performance (MARKO-D tests) and their LPA results
over the nine measurement points. Inferential statistics indicate
significant differences in level distributions between the pre- and
the post-test, χ ²(6) = 57.41, p < 0.001, rSp = 0.48, as well as
between the LPA tests, χ ²(56) = 351.37, p < 0.001, rSp = 0.46.
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FIGURE 1 | Level-based analysis of the LPA (N = 101). aLevel 7 is not a level

of the developmental model. In this figure, Level 7 includes students who

mastered at least 75% of the items at Level VI. bLevel 8 is not a level of the

developmental model. In this figure, Level 8 includes students who mastered

at least 75% of the items at Levels V and VI in a higher number range.

The results of bothmeasures (MARKO-D tests and LPA) show
that the number of students at Levels I to IV decreased, whereas
the number of students at Levels V, VI, and above increased as
the school year progressed. From pre- to post-test the students
gained one conceptual level on average (Mdn = 1) with 40%
of the students gaining even more than one level. The students’
conceptual change in numerical understanding over the course
of Grade 1 assessed through the LPA is visualized in Figure 1.

DISCUSSION

The purpose of the study was to investigate the extent to
which progression-based assessments can be used to describe the
development of conceptual numerical understanding of children
at the transition to school. The overarching goal was to build a
progression-based formative assessment tool that is empirically
tested and supports teachers in their everyday practice of teaching
students at different levels of numerical understanding.

Prior to addressing the research questions, we would like
to briefly discuss the results of the Rasch scaling. The item fit
analysis, as well as the sample invariance tests, indicate that the
Rasch model was valid for the purpose of this study. All items
showed an acceptable fit and no systematic difference could be
found between high and low performing students within the
sample. Three items were identified to have a gender bias, which
was resolved by removing these items from the analysis. This
procedure may constitute a methodological limitation of this
study as the χ ² statistic is known to be highly sensitive to large
df (Wheaton et al., 1977).

This study was guided by four research questions. The first
research question considered the effect of time on the students’
performance in the LPA to examine the extent to which the

assessment is able to detect changes in performance over time.
The results of the linear Mixed Models analysis show that the
students’ performance increased significantly over the course
of Grade 1. In accordance with studies using curriculum-based
formative assessments (Salaschek et al., 2014; Kuhn et al., 2019)
these findings suggest that the progression-based LPA, used
in this study, was also able to detect changes in performance
over time.

The second research question concerned the effect of
numerical knowledge prior to formal schooling (assessed
through MARKO-D in the pre-test) on numeracy learning over
the course of Grade 1 (as assessed through the LPA). In line
with recent studies examining early numeracy as predictor for
successful numeracy learning (e.g., Krajewski and Schneider,
2009; Claessens and Engel, 2013; Nguyen et al., 2016), this study
further supports the positive effect of numerical pre-knowledge
on the subsequent acquisition of more sophisticated numeracy
skills. However, a cumulative growth pattern, as described in
several studies (see Salaschek et al., 2014), is not reflected in
this study, as shown by the lack of significant interaction of
“Time x MARKO-DPre.” Considering the profound conceptual
understanding many of the students in this study’s sample
showed in the pre-test at the beginning of school (almost 30% on
Levels V andVI), this finding is not surprising. The LPA is aligned
to a developmental model that covers a clearly defined number
of developmental levels. Children who already start at the higher
levels of the model, consequently, cannot be reliably assessed
beyond the scope of the model as their learning progresses.
To reduce this effect, more difficult items were introduced at
measurement point seven, but it is still likely that the actual
growth of students beyond Level VI was larger than reflected by
the LPA. This may have skewed the results as over the course
of Grade 1, a larger number of students exceeded the levels
described by the model and assessed through the LPA. In future
studies it would be interesting to examine whether a cumulative
growth pattern could be found in a sample of low and average
performing students. Another reason for the lack of interaction
may be the context of the data collection, as the LPA data
was gained as part of a longitudinal Response-to-Intervention
study. Though the assessment has not been linked to a specific
type of intervention yet, the intervention the students received
within this study may have affected their individual growth.
Nonetheless, we assume that this was not problematic for the
purpose of this study, as the goal was to investigate the extent
to which the LPA can be used to describe numerical development
independent of the type of intervention the students received.

The third research question examined the predictive effect of
the LPA on numerical performance at the end of the school year
(assessed through MARKO-D1 in the post-test). As expected,
the student’s pre-test MARKO-D performance explained a fair
share of the MARKO-D1 post-test performance (43%). However,
introducing the LPA parameters into the model significantly
increased the explained variation of the student’s post-test
performance by 20%. This finding may be interpreted as an
indicator for the prognostic validity of the LPA. It should,
however, be considered that all measures used in this study
(MARKO-D tests and LPA) built on the same developmental
model. Hence, further evidence should be collected by using
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different types of assessment to support the assumption of the
(prognostic) validity of the LPA.

The fourth research question sought to provide a more
detailed picture of how the conceptual change of numerical
understanding appears over the course of Grade 1. The use
of progression-based assessments in this study, suggested a
heterogeneity of children’s numerical understanding at the
beginning of school. The students did not only differ significantly
in their overall test scores, but also in their individual levels
of conceptual numerical knowledge. The MARKO-D test (pre-
test) indicated that 19% of the students demonstrated a
conceptual understanding of the ordinal number line (Level II).
Approximately 50% showed an understanding of the concepts
of cardinality (Level III) or part-part-whole relations (Level IV),
which can be considered average according to the norming
sample of the MARKO-D test (Ricken et al., 2013). The pre-
test results further revealed that almost 30% of the students
demonstrated an extensive informal numerical knowledge at the
beginning of school in the form of a conceptual understanding
of equidistant number line intervals (Level V) or units in
numbers (Level VI). The MARKO-D1 (post-test) indicated that
the number of students at the lower levels decreased whereas the
number of students at the higher levels increased with an average
gain of one conceptual level over the course of the school year.
Similar results had been reported by Fritz et al. (2018).

The analysis of the LPA based on the 75% criterion also
showed an increase of the share of students with more
sophisticated concepts over time, while the number of students
with lower conceptual knowledge decreased. At the first two
measurement points, there were 1 to 2% of the children at Level
I, who at the time were developing their number word sequence
and counting skills. The LPA data suggested that all children of
the sample had fully acquired the concept of counting by the
third measurement point. 2% of the children, however, spent
an extended period of time, up to the sixth measurement point,
developing the ordinal number line concept characteristic for
Level II. Compared to their classmates the students at Levels I or
II were lacking important conceptual prerequisites that build the
foundation for the acquisition of more sophisticated numeracy
skills. More importantly, these prerequisites are demanded by
the curriculum that usually introduces addition and subtraction
during the first half of Grade 1. This means, these students
may be at risk for developing mathematical learning difficulties,
as their conceptual understanding and procedural skills (e.g.,
error-prone counting strategies) are not likely to be viable for
more complex arithmetic problems and the larger number range
they will encounter later on in Grade 1 and in Grade 2. To
prevent that the gap between their current numerical knowledge
and the curriculum expectations gets bigger, these students
should immediately receive intervention that is targeted to their
individual level of conceptual understanding.

The level-based analysis of the LPA tests further showed that
after 12 weeks of schooling (first measurement point of the LPA)
55% of the children were working toward understanding the
concept of part-part-whole relations (Level IV) and 25% had
an even more sophisticated conceptual understanding associated
with Levels V (concept of equidistant number line estimations) or
VI (concept of units in numbers). These children demonstrated a

sound understanding of the concept of part-part-whole relations
(within the number range up to 20) and were able to master
arithmetical problems flexibly without necessarily depending on
counting strategies. By the end of the school year, 14% of the
students were allocated at Levels III or IV, while 86% of the
students were working at Level V or above. The latter number
was larger based on the LPA test (86%) than based on the
MARKO-D1 test (67%). This discrepancy may be explained by
differences in the time of the assessment (∼6 weeks in between
the two measurements), the type of assessment (MARKO-D1 as
an individual test vs. the LPA as a group test), and the number of
items (MARKO-D1 with 48 items vs. LPA test with 15 items).

These insights into the developmental process of conceptual
numerical understanding of first grade students highlight
the importance of progression-based assessments to support
mathematics teachers. The current version of the LPA was
particularly suitable to describe the development of low and
average performing students. The development of students
beyond Level VI could, however, not be reliably assessed with
the LPA due to the limitations of the underlying developmental
model. By using this type of assessment, teachers stand to not
only gain a deeper insight into their students’ learning, but
also a better understanding of how numeracy learning typically
progresses and a student’s location within this learning pathway
(Black et al., 2011), enabling teachers to derive and target
intervention accordingly. The progression-based assessments
used in this study (MARKO-D tests and LPA) come along with an
empirically validated pathway description of numeracy learning
(Fritz et al., 2018) as well as instructional activities for targeted
interventions (e.g., Gerlach et al., 2013).

Given the importance of early numeracy for future learning,
progression-based assessments seem especially important for
early primary school mathematics. For this reason, further
empirical research is needed to provide teachers with this
approach to assessment, thereby adding to the curriculum-based
instruments that are currently available in Germany. This study
is one step toward the goal of designing such an instrument.
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