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Abstract. A large amount of data accommodated in knowledge graphs
(KG) is metric. For example, the Wikidata KG contains a plenitude
of metric facts about geographic entities like cities or celestial objects.
In this paper, we propose a novel approach that transfers orometric
(topographic) measures to bounded metric spaces. While these meth-
ods were originally designed to identify relevant mountain peaks on the
surface of the earth, we demonstrate a notion to use them for metric
data sets in general. Notably, metric sets of items enclosed in knowledge
graphs. Based on this we present a method for identifying outstand-
ing items using the transferred valuations functions isolation and promi-
nence. Building up on this we imagine an item recommendation pro-
cess. To demonstrate the relevance of the valuations for such processes,
we evaluate the usefulness of isolation and prominence empirically in
a machine learning setting. In particular, we find structurally relevant
items in the geographic population distributions of Germany and France.

Keywords: Metric spaces · Orometry · Knowledge graphs ·
Classification

1 Introduction

Knowledge graphs (KG), such as DBpedia [15] or Wikidata [24], are the state
of the art for storing information and to draw knowledge from. They represent
knowledge through graphs and consist essentially of items which are related
through properties and values. This enables them to fulfill the task of giving
exact answers to exact questions. However, their ability to present a concise
overview over collections of items with metric distances is limited. The number
of such data sets in Wikidata is tremendous, e.g., the set of all cities of the world,
including their geographic coordinates. Further examples are celestial bodies and
their trajectories or, more general, feature spaces of data mining tasks.

One approach to understand such metric data is to identify outstanding ele-
ments, i.e., outstanding items. Based on such elements it is possible to compose
or enhance item recommendations to users. For example, such recommenda-
tions could provide a set of the most relevant cities in the world with respect
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Fig. 1. Isolation: minimal horizontal distance to another point of at least equal height.
Prominence: minimal vertical descent to reach a point of at least equal height.

to being outstanding in their local surroundings. However, it is a challenging
task to identify outstanding items in metric data sets. In cases where the metric
space is equipped with an additional valuation function, this task becomes more
feasible. Such functions, often called scores or height functions, are often natu-
rally provided: cities may be ranked by population; the importance of scientific
authors by the h-index [12]. A näıve approach for recommending relevant items
in such settings would be: items with higher scores are more relevant items. As
this method seems reasonable for many applications, some obstacles arise if the
“highest” items concentrate into a specific region of the underlying metric space.
For example, representing the cities of the world by the twenty most populated
ones would include no western European city.1 Recommending the 100 highest
mountains would not lead to knowledge about the mountains outside of Asia.2

Our novel approach shall overcome this problem: we combine the valuation
measure (e.g., “height”) and distances, to provide new valuation functions on the
set of items, called prominence and isolation. These functions do rate items based
on their height in relation to the valuations of the surrounding items. This results
in valuation functions on the set of items that reflect the extend to which an item
is locally outstanding. The basic idea is the following: the prominence values an
item based on the minimal descent (w.r.t. the height function) that is needed
to get to another point of at least same height. The isolation, sometimes also
called dominance radius, values the distance to the next higher point w.r.t. the
metric (Fig. 1). These measures are adapted from the field of topography where
isolation and prominence are used in order to identify outstanding mountain
peaks. We base our approach on [22], where the authors proposed prominence
and dominance for networks. We generalize these to the realm of bounded metric
space.

We provide insights to the novel valuation functions and demonstrate their
ability to identify relevant items for a given topic in metric knowledge graph
applications. The contributions of this paper are as follows: • We propose promi-
nence and isolation for bounded metric spaces. For this we generalize the results
in [22] and overcome the limitations to finite, undirected graphs. • We demon-
strate an artificial machine learning task for evaluating our novel valuation func-
tions in metric data. • We introduce an approach for using prominence and iso-

1 https://en.wikipedia.org/wiki/List of largest cities on 2019-06-16.
2 https://en.wikipedia.org/wiki/List of highest mountains on Earth on 2019-06-16.

https://en.wikipedia.org/wiki/List_of_largest_cities
https://en.wikipedia.org/wiki/List_of_highest_mountains_on_Earth
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lation to enrich metric data in knowledge graphs. We show empirically that this
information helps to identify a set of representative items.

2 Related Work

Item recommendations for knowledge graphs is a contemporary topic of high
interest in research. Investigations cover for example music recommendation
using content and collaborative information [17] or movie recommendations using
PageRank like methods [5]. The former is based on the common notion of embed-
ding, i.e., embedding of the graph structure into d-dimensional real vector spaces.
The latter operates on the relational structure itself. Our approach differs from
those as it is based on combining a valuation measure with the metric of the
data space. Nonetheless, given an embedding into an finite dimensional real vec-
tor space, one could apply isolation and prominence in those as well.

The novel valuation functions prominence and isolation are inspired by topo-
graphic measures, which have their origin in the classification of mountain peaks.
The idea of ranking peaks solely by their absolute height was already deprecated
in 1978 by Fry in his work [8]. The author introduced prominence for geographic
mountains, a function still investigated in this realm, e.g., in Torres et al. [23],
where the authors used deep learning methods to identify prominent mountain
peaks. Another recent step for this was made in [14], where the authors inves-
tigated methods for discovering new ultra-prominent mountains. Isolation and
more valuations functions motivated in the orometric realm are collected in [11].
A well-known procedure for identifying peaks and saddles in 3D terrain data
is described in [6]. However, these approaches rely on data that approximates
a continuous terrain surface via a regular square grid or a triangulation. Our
data cannot fulfill this requirement. Recently the idea of transferring orometric
functions to different realms of research gained attention: The authors of [16]
used topographic prominence to identify population areas in several U.S. States.
In [22] the authors Schmidt and Stumme transferred prominence and dominance,
i.e., isolation, to co-author graphs in order to evaluate their potential of identi-
fying ACM Fellows. We build on this for proposing our valuation functions on
bounded metric data. This generalization results in a wide range of applications.

3 Mathematical Modeling

While the Wikidata knowledge graph itself could be analyzed with the promi-
nence and isolation measures for networks, this paper focuses on bounded metric
data sets. To analyze such data sets is more sufficient, since real world networks
often suffer from a small average shortest path length [26]. This leads to a low
amount of outstanding items: an item is outstanding if it is “higher” than the
items that have a low distance to it. This leads to a strict measure for many real-
world network data when the shortest path length is used as the metric function.
Hence, we model our functions for bounded metric data instead of networks.
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We consider the following scenario: We have a data set M , consisting of a set
of items, in the following called points, equipped with a metric d and a valuation
function h, in the following called height function. The goal of the orometric
(topographic) measures prominence and isolation is, to provide measures that
reflect the extent to which a point is locally outstanding in its neighborhood.

More precisely, let M be a non-empty set and d : M × M → R≥0. We call
d a metric on the set M iff • ∀x, y ∈ M : d(x, y) = 0 ⇐⇒ x = y, and
• d(x, y) = d(y, x) for all x, y ∈ M , called symmetry, and • ∀x, y, z ∈ M :
d(x, z) ≤ d(x, y) + d(y, z), called triangle inequality. If d is a metric on M , we
call (M,d) a metric space and if M is finite we call (M,d) a finite metric space.
If there exists a C ∈ R≥0 such that we have d(m,n) ≤ C for all m,n ∈ M , we
call (M,d) bounded. For the rest of our work we assume that |M | > 1 and (M,d)
is a bounded metric space. Additionally, we have that M is equipped with a
height function (valuation/score function) h : M → R≥0,m �→ h(m).

Definition 1 (Isolation). Let (M,d) be a bounded metric space and let h :
M → R≥0 be a height function on M. The isolation of a point x ∈ M is then
defined as follows:

– If there is no point with at least equal height to m, than iso(m) :=
sup{d(m,n) | n ∈ M}. The boundedness of M guarantees the existence of
this supremum.

– If there is at least one other point in M with at least equal height to m, we
define its isolation by:

iso(m) := inf{d(m,n) | n ∈ M \ {m} ∧ h(n) ≥ h(m)}.

The isolation of a mountain peek is often called the dominance radius or
sometimes the dominance. Since the term orometric dominance of a mountain
sometimes refers to the quotient of prominence and height, we will stick to the
term isolation to avoid confusion. While the isolation can be defined within
the given setup, we have to equip our metric space with some more structure
in order to transfer the notion of prominence. Informally, the prominence of
a point is given by the minimal vertical distance one has to descend to get
to a point of at least the same height. To adapt this measure to our given
setup in metric spaces with a height function, we have to define what a path
is. Structures that provide paths in a natural way are graph structures. For
a given graph G = (V,E) with vertex set V and edge set E ⊆ (

V
2

)
, walks

are defined as sequences of nodes {vi}n
i=0 which satisfy {vi−1, vi} ∈ E for all

i ∈ {1, ..., n}. If we also have vi �= vj for i �= j, we call such a sequence a path.
For v, w ∈ V we say v and w are connected iff there exists a path connecting
them. Furthermore, we denote by G(v) the connected component of G containing
v, i.e., G(v) := {w ∈ V | v is connected with w}.

To use the prominence measure as introduced by Schmidt and Stumme
in [22], which is indeed defined on graphs, we have to derive an appropriate
graph structure from our metric space. The topic of graphs embedded in finite
dimensional vector spaces, so called spatial networks [2], is a topic of current
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interest. These networks appear in real world scenarios frequently, for example
in the modeling of urban street networks [13]. Note that our setting, in contrast
to the afore mentioned, is not based on a priori given graph structure. In our
scenario the graph structure must be derived from the structure of the given
metric space.

Our approach is, to construct a step size graph or threshold graph, where we
consider points in the metric space as nodes and connect two points through an
edge, iff their distance is smaller then a given threshold δ.

Definition 2 (δ-Step Graph). Let (M,d) be a metric space and δ > 0. We
define the δ-step graph or δ-threshold graph, denoted by Gδ, as the tuple (M,Eδ)
via

Eδ := {{m,n} ∈
(

M

2

)
| d(m,n) ≤ δ}. (1)

This approach is similar to the one found in the realm of random geometric
graphs, where it is common sense to define random graphs by placing points
uniformly in the plane and connect them via edges if their distance is less than
a given threshold [21]. Since we introduced a possibility to derive a graph that
just depends on the metric space, we use a slight modification of the definition
of prominence compared to [22] for networks.

Definition 3 (Prominence in Networks). Let G = (V,E) be a graph and
let h : V → R≥0 be a height function. The prominence promG(v) of v ∈ V is
defined by

promG(v) := min{h(v),mindescG(v)} (2)

where mindescG(v) := inf{max{h(v) − h(u) | u ∈ p} | p ∈ Pv}. The set Pv

contains of all paths to vertices w with h(w) ≥ h(v), i.e., Pv := {{vi}n
i=0 ∈ P |

v0 = v ∧ vn �= v ∧ h(vn) ≥ h(v)}, where P denotes the set of all paths of G.

Informally, mindescG(v) reflects on the minimal descent in order to get to a
vertex in G which has a height of at least h(v). For this the definition makes use
of the fact that inf ∅ = ∞. This case results in promG(v) being the height of v.
A distinction to the definition in [22] is, that we now consider all paths and not
just shortest paths. This change better reflects the calculation of the prominence
for mountains. Based on this we transfer the notions above to metric spaces.

Definition 4 (δ-Prominence). Let (M,d) be a bounded metric space and h :
M → R≥0 be a height function. We define the δ-prominence promδ(m) of m ∈ M
as promGδ

(v), i.e., the prominence of m in Gδ from Definition 2.

We now have a prominence term for all metric spaces that depends on a
parameter δ to choose. For all knowledge procedures, choosing such a parameter
is a demanding task. Hence, we want to provide in the following a natural choice
for δ. We consider only those values for δ such that corresponding Gδ does not
exhibit noise, i.e., there is no element without a neighbor.
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Definition 5 (Minimal Threshold). For a bounded metric space (M,d) with
|M | > 1 we define the minimal threshold δM of M as

δM := sup{inf{d(m,n) | n ∈ M \ {m}} | m ∈ M}.

Based on this definition a natural notion of prominence for metric spaces
(equipped with a height function) emerges via a limit process.

Lemma 1. Let M be a bounded metric space and δM as in Definition 5. For
m ∈ M the following descending limit exists:

lim
δ↘δM

promδ(m). (3)

Proof. Fix any δ̂ > δM and consider on the open interval from δM to δ̂ the
function that maps δ to promδ(m): prom(.)(m) : ]δM , δ̂[→ R, δ �→ promδ(m). It
is known that it is sufficient to show that prom(.)(m) is monotone decreasing and
bounded from above. Since we have for any δ that promδ(m) ≤ h(m) holds, we
need to show the monotony. Let δ1, δ2 be in ]δM , δ̂[ with δ1 ≤ δ2. If we consider
the corresponding graphs (M,Eδ1) and (M,Eδ2), it easy to see Eδ1 ⊆ Eδ2 . Hence,
we have to consider more paths in Eq. (2) for Eδ2 , resulting in a not larger value
for the infimum. We obtain promδ1(m) ≥ promδ2(m), as required.

Definition 6 (Prominence in Metric Spaces). If M is a bounded metric
space with |M | > 1 and a height function h, the prominence prom(m) of m is
defined as:

prom(m) := lim
δ↘δM

promδ(m).

Note, if we want to compute prominence on a real world finite metric data
set, it is possible to directly compute the prominence values: in that case the
supremum in Definition 5 can be replaced by a maximum and the infimum by a
minimum, which leads to prom(m) being equal to promδM

(m). There are results
for efficiently creating such step graphs [3]. However, for our needs in this work,
in particular in the experiment section, a quadratic brute force approach for
generating all edges is sufficient. We want to show that our prominence definition
for bounded metric spaces is a natural generalization of Definition 3.

Lemma 2. Let G = (V,E) be a finite, connected graph with |V | ≥ 2. Consider
V equipped with the shortest path metric as a metric space. Then the prominence
promG(·) from Definition 3 and prom(·) from Definition 6 coincide.

Proof. Let M := V be equipped with the shortest path metric d on G. As G
is connected and has more than one node, we have δM = 1. Hence, (M,EδM

)
from Definition 2 and G are equal. Therefore, the prominence terms coincide.
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4 Application

Score Based Item Recommending. As an application we envisage a general app-
roach for a score based item recommending process. The task of item recom-
mending with knowledge graphs is a current research topic [17,18]. However,
most approaches are solely based on knowledge about preferences of the user
and graph structural properties, often accessed through KG embeddings [19].
The idea of the recommendation process we imagine differs from those. We stip-
ulate on a procedure that is based on the information entailed in the connection
of the metric aspects of the data together with some (often naturally present)
height function. We are aware that this limits our approach to metric data in
KGs. Nonetheless, given the large amounts of metric item sets in prominent KGs,
we claim the existence of a plenitude of applications. For example, while consid-
ering sets of cities, such a system could recommend a relevant subset, based on
a height function, like population, and a metric, like geographical distances. By
doing so, we introduce a source of information for recommending metric data in
relational structures, like KGs. A common approach for analyzing and learning
in KGs is embedding. There is an extensive amount of research about that, see
for example [4,25]. Since our novel methods rely solely on bounded metric spaces
and some valuation function, one may apply those after the embedding step as
well. In particular, one may use isolation and prominence for investigating or
completing KG embeddings. This constitutes our second envisioned application.
Finally, common item recommending scores/ranks can also be used as height
functions in our sense. Hence, computing prominence and isolation for already
setup recommendation systems is another possibility. Here, our valuation func-
tions have the potential to enrich the recommendation process with additional
information. In such a way our measures can provide a novel additional aspect to
existing approaches. The realization and evaluation of our proposed recommen-
dation approach is out of scope of this paper. Nonetheless, we want to provide
some first insights for the applicability of valuation functions for item sets based
on empirical experiments. As a first experiment, we will evaluate if isolation and
prominence help to separate important and unimportant items in specific item
sets in Wikidata. In detail, we evaluate if the valuation functions help to differen-
tiate important and unimportant municipalities in France and Germany, solely
based on their geographic metric properties and their population as height.

4.1 Resulting Questions

Given a bounded metric space M which represents the data set and a given
height h. The following questions shall evaluate if our functions isolation and
prominence provide useful information about the relevance of given points in the
metric space. If (M,d, h) is a metric space equipped with an additional height
function, let c : M → {0, 1} be a binary function that classifies the points in the
data set as relevant (1) or not (0). We connect this to our running example using
a function that classifies municipalities having a university (1) and municipalities
that do not have an university (0). We admit that the underlying classification
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is not meaningful in itself. It treats a real geographic case while our model could
also handle more abstract scenarios. However, since this setup is essentially a
benchmark framework (in which we assume cities with universities to be more
relevant) we refrain from employing a more meaningful classification task in favor
of a controllable classification scenario. Our research questions are now: 1. Are
prominence and isolation alone characteristical for relevance? We use
isolation and/or prominence for a given set of data points as features. To which
extend do these features improve learning a classification function for relevance?
2. Do prominence and isolation provide additional information, not
catered by the absolute height? Do prominence and isolation improve the
prediction performance of relevance compared to just using the height? Does
a classifier that uses prominence and isolation as additional features produce
better results than a classifier that just uses the height? We will evaluate the
proposed setup in the realm of a KG and take on the questions stated above in
the following section and present some experimental evidence.

5 Experiments

We extract information about municipalities in the countries of Germany and
France from the Wikidata KG. This KG is a structure that stores knowledge
via statements, linking entities via properties to values. A detailed description
can be found in [24], while [9] gives an explicit mathematical structure to the
Wikidata graph and shows how to use the graph for extracting implicational
knowledge from Wikidata subsets. We investigate if prominence and isolation of
a given municipality can be used as features to predict university locations in a
classification setup. We use the query service of Wikidata3 to extract points in
the country maps from Germany and France and to extract all their universities.
We report all necessary SPAQRL queries employed on GitHub.4

– Wikidata provides different relations for extracting items that are instances
of the notion city. The obvious choice is to employ the instance of (P31)
property for the item city (Q515). Using this, including subclass of (P279),
we find insufficient results. More specific, we find only 102 French cities and
2215 German cities.5 For Germany, there exists a more commonly used item
urban municipality of Germany (Q42744322) for extracting all cities, while
to the best of our knowledge, a counterpart for France is not provided.

– The preliminary investigation leads us to use municipality (Q15284), again
including the subclass of (P279) property, with more than 5000 inhabitants.

– Since there are multiple french municipalities that are not located in the
mainland of France, we encounter problems for constructing the metric space.
To cope with that we draw a basic approximating square around the mainland
of France and consider only those municipalities inside.

3 https://query.wikidata.org/.
4 https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data.
5 Queried on 2019-08-07.

https://query.wikidata.org/
https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data
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– We find the class of every municipality, i.e, university location or non-
university location as follows. We use the properties located in the admin-
istrative territorial entity (P131) and headquarters location (P159) on the
set of all universities and checked if these are set in Germany or France. An
example of a University that has not set P131 is TU Dortmund (Q685557).6

– We match the municipalities with the university properties. This is necessary
because some universities are not related to municipalities through P131, e.g.,
Hochschule Niederrhein (Q1318081) is located in the administrative location
North Rhine-Westphalie (Q1198) (See footnote 6), which is a federal state
containing multiple municipalities. For these cases we check the university
locations manually. This results in 2064 municipalities (89 university loc.) in
France and 2986 municipalities (160 university loc.) in Germany.

– While constructing the data set we encounter twenty-two universities that are
associated to a country having neither located in the administrative territorial
entity (P131) nor headquarters location (P159). We check them manually and
are able to discard them all for different reasons.

5.1 Binary Classification Task

Setup. We compute prominence and isolation for all data points and normalize
them as well as the height. The data that is used for the classification task
consists of the following information for each city: The height, the prominence,
the isolation and the binary information whether the city has a university. Since
our data set is highly imbalanced, common classifiers tend to simply predict the
majority class. To overcome the imbalance, we use inverse penalty weights with
respect to the class distribution. We want to stress out again that the goal for the
to be introduced classification task is not to identify the best classifier. Rather
we want to produce evidence for the applicability of employing isolation and
prominence as features for learning a classification function. We decide to use
logistic regression with L2 regularization and Support Vector Machines [7] with
a radial kernel. For our experiment we use Scikit-Learn [20]. As penalty factor for
the SVC we set C = 1, and experiment with C ∈ {0.5, 1, 2, 5, 10, 100}. For γ we
rely on previous work by [1] and set it to one. For all combinations of population,
isolation and prominence we use 100 iterations of 5-fold-cross-validation.

Evaluation. We use the g-mean (i.e., geometric mean) as evaluation function.
Consider for this denotations TN (True Negative), FP (False Positive), FN (False
Negative), and TP (True Positive). Overall accuracy is highly misleading for
heavily imbalanced data. Therefore, we evaluate the classification decisions by
using the geometric mean of the accuracy on the positive instances, acc+ :=

TP
TP+FN and the accuracy on the negative instances acc− := TN

TN+FP . Hence,
the g-mean score is then defined by the formula gmean :=

√
acc+ · acc−. The

evaluation function g-mean is established in the topic of imbalanced data mining.
It is mentioned in [10] and used for evaluation in [1]. We compare the values for

6 Last checked on 2019-10-26.
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Table 1. Results of the classification task. We do 100 rounds of 5-fold-cross-validation
and shuffle the data between the rounds. For all rounds we compute the g-mean value
and then compute the average over the 100 rounds.

Country France Germany

Classifier SVM LR SVM LR

Mean Std Mean Std Mean Std Mean Std

iso 0.7416 0.0059 0.7703 0.0034 0.7463 0.0028 0.7761 0.0035

pro 0.4861 0.0053 0.6362 0.0055 0.3998 0.0068 0.5750 0.0049

pop 0.6940 0.0031 0.7593 0.0086 0.5982 0.0038 0.7134 0.0043

iso+pro 0.7329 0.0067 0.7657 0.0066 0.7320 0.0042 0.7642 0.0041

iso+pop 0.7668 0.0086 0.7812 0.0039 0.7971 0.0041 0.8068 0.0038

pro+pop 0.7011 0.0040 0.7496 0.0051 0.6134 0.0050 0.7108 0.0065

iso+pro+pop 0.7653 0.0078 0.7778 0.0052 0.7947 0.0042 0.8006 0.0042

po = population, pr = prominence, is = isolation
SVM = Support Vector Machine, LR = Logistic Regression

g-mean for the following cases. First, we train a classifier function purely on
the features population, prominence or isolation. Secondly, we try combinations
of them for the training process. We consider the classifier trained using the
population feature as baseline. An increase in g-mean while using prominence
or isolation together with the population function is evidence for the utility of
the introduced valuation functions. Even stronger evidence is a comparison of
isolation/prominence trained classifiers versus baseline.

In our experiments, we are not expecting high g-mean values, since the place-
ment of university locations depends on many additional features, including
historical evolution of the country and political decisions. Still, the described
evaluation setup is sufficient to demonstrate the potential of the novel features.

Results. The results of the computations are depicted in Table 1. • Isolation is
a good indicator for structural relevance. For both countries and classifiers iso-
lation outperforms population. • Combining absolute height with our valuation
functions leads to better results. • Prominence is not useful as a solo indicator.
We draw from our result that prominence solely is not a useful indicator. Promi-
nence is a very strict valuation function: recall that we constructed the graphs by
using distance margins as indicators for edges, leading to a dense graph structure
in more dense parts of the metric space. Hence, a point in a more dense part
has many neighbors and thus many potential paths that may lead to a very low
prominence value. From Definition 3 we see that having a higher neighbor always
leads to a prominence value of zero. This threshold is about 34 km for Germany
and 54 km for France. Thus, a municipality has a not vanishing prominence if it
is the most populated point in a radius of over 34 km, respectively 54 km. Only
75 municipalities of France have non zero prominence, with 40 of them being
university locations. Germany has 104 municipalities with positive prominence
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with 72 of them being university locations. Thus, prominence alone as a feature
is insufficient for the prediction of university locations. • Support vector machine
and logistic regression lead to similar results. To the question, whether our valu-
ation functions improve the classification compared with the population feature,
support vector machines and logistic regressions provide the same answer: iso-
lation always outperforms population, a combination of all features is always
better then using just the plain population feature. • Support vector machine
penalty parameter. Finally, for our last test we check the different results for
support vector machines using the penalty parameters C ∈ {0.5, 1, 2, 5, 10, 100}.
We observe that increasing the penalty results in better performance using the
population feature. However, for lower values of C, i.e., less overfitting models,
we see better performance in using the isolation feature. In short, the more the
model overfits due to C, the less useful are the novel valuation functions we
introduced in this paper.

6 Conclusion and Outlook

In this work, we presented a novel approach to identify outstanding elements in
item sets. For this we employed orometric valuation functions, namely promi-
nence and isolation. We investigated a computationally reasonable transfer to
the realm of bounded metric spaces. In particular, we generalized previously
known results that were researched in the field of finite networks.

The theoretical work was motivated by the observation that KGs, like Wiki-
data, do contain huge amounts of metric data. These are often equipped with
some kind of height functions in a natural way. Based on this we proposed in
this work the groundwork for a locally working item recommending scheme.

To evaluate the capabilities for identifying locally outstanding items we
selected an artificial classification task. We identified all French and German
municipalities from Wikidata and evaluated if a classifier can learn a meaningful
connection between our valuation functions and the relevance of a municipal-
ity. To gain a binary classification task and to have a benchmark, we assumed
that universities are primarily located at relevant municipalities. In consequence,
we evaluated if a classifier can use prominence and isolation as features to pre-
dict university locations. Our results showed that isolation and prominence are
indeed helpful for identifying relevant items.

For future work we propose to develop the conceptualized item recommender
system and to investigate its practical usability in an empirical user study. Fur-
thermore, we urge to research the transferability of other orometric based valu-
ation functions.
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