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ABSTRACT: 

 

This study investigates the ongoing postseismic deformation induced by two moderate mainshocks of Mw 6.1 and Mw 6.0, 2017 

Hojedk earthquake in Southern Iran. Available Sentinel-1 TOPS C-band Synthetic Aperture Radar (SAR) images over about one year 

after the earthquakes are used to analyze the postseismic activities. An adaptive method incorporating Independent Component 

Analysis (ICA) and multi-temporal Small BAseline Subset (SBAS) Interferometric SAR (InSAR) techniques is proposed and 

implemented to recover the rapid deformation. This method is applied to the series of interferograms generated in a fully constructed 

SBAS network to retrieve the postseismic deformation signal. ICA algorithm uses a linear transformation to decompose the input 

mixed signal to its source components, which are non-Gaussian and mutually independent. This analysis allows extracting the low rate 

postseismic deformation signal from a mixture of interferometric phase components. The independent sources recovered from the 

multi-temporal InSAR dataset are then analyzed using a group clustering test aiming to identify and enhance the undescribed 

deformation signal. Analysis of the processed interferograms indicates a promising performance of the proposed method in determining 

tectonic deformation. The proposed method works well, mainly when the tectonic signal is dominated by the undesired signals, 

including atmosphere or orbital/unwrapping noise that counts as temporally uncorrelated components. 

In contrast to the standard SBAS time series method, the ICA-based time series analysis estimates the cumulative deformation with no 

prior assumption about elevation dependence of the interferometric phase or temporal nature of the tectonic signal. Application of the 

method to 433 Sentinel-1 pairs within the dataset reports two distinct deformation patches corresponding to the postseismic 

deformation. Besides the performance of the ICA-based analysis, the proposed method automatically detects rapid or low rate tectonic 

processes in unfavorable conditions. 

 

1. INTRODUCTION 

The study of the crustal deformation induced by earthquakes 

provides insight into the rheology of the Earth’s crust and active 

tectonic processes on faults. Understanding the transient 

response of the lithosphere to the stress changes caused by large 

or moderate earthquakes could also be useful for the earthquakes 

prediction and seismic hazard analysis. 

Synthetic Aperture Radar (SAR) interferometry is a popular 

technique to remotely detect centimetric to millimetric 

deformation over extensive coverage Earth’s surface associated 

with various phenomena including earthquakes, volcanic activity 

and landslide movements (Bagnardi and Hooper, 2018; Hooper 

et al., 2004; Huang et al., 2017; Moreno et al., 2018; Wang et al., 

2017; Wasowski et al., 2011). One of the main problems facing 

SAR interferometry is the presence of heterogeneous propagation 

delays due to atmospheric fluctuation between the two 

acquisition times. Atmospheric phase delay degrades the quality 

of SAR interferometry to detect centimetric or millimetric 

deformation.  The temporally uncorrelated components of the 

atmosphere obscure the weak geophysical signals. It is the issue 

facing the estimation of deformation in interseismic or 

postseismic processes (Tarayre and Massonnet, 1996). 

There are several methods to mitigate the atmospheric signal, 

involving stacking a set of short-baseline and long-time span 

interferograms (Walters et al., 2013), spatiotemporal filtering 

including applying high-pass and low-pass filtering in time and 

space, respectively (Ferretti et al., 2001), statistical method to 

identify and removing the correlated topographic component at 

single scale (Cavalié et al., 2007), multi scales (Lin et al., 2010), 

direct estimating of atmospheric delays using independent 

prediction of water vapor from external sources such as GPS 

(Onn and Zebker, 2006) or multispectral satellite data, including 

Moderate Resolution Imaging Spector radiometer (MODIS) and 

Medium Resolution Imaging Spectrometer (MERIS) (Li et al., 

2009). 

However, multi-temporal approaches, e.g., stacking or 

spatiotemporal filtering based methods, are no longer useful 

where deformation period is much shorter than the measurement 

interval. It's due to the dominance effects of temporally 

uncorrelated components, mostly caused by atmosphere error. 

On the other hand, using the statistical method based on 

removing the elevation-dependent component from the 

interferometric phase is not effective where the tectonic signal 

correlates with topography. Performing direct methods is also 

limited by the availability of those external sources that predict 

water vapor content. An adaptive method is proposed here to 

retrieve the rapid deformation signal. The method includes three 

steps: first decomposing the multi-temporal signal to its 

independent sources, second splitting the extracted independent 

sources into two separate groups, third identify the source 

containing deformation based on the cluster analysis. The 

reconstructed interferograms are then generated based on the 

selected sources resulted from clustering analysis. Finally, a time 

series map is produced using a modified Small BAseline Subset 

(SBAS) time series analysis. 

 

2. MATERIALS AND METHOD 

2.1 Study area and available data 

On December 1, 2017, an Mw6.1-earthquake struck a region 

between Central Iran and Lut block in Southeastern Iran. The 

mainshock followed by two moderate aftershocks (Mw 5 and 

Mw 6) occurred on December 12, positioned in close spatial 

proximity to each other. The area has been hit continuously by 
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the ten tremendous events (Mw > 5) over the eight months. The 

epicenters of the sequence events were located 25 km Northeast 

of the town of Hojedk, with a population of 3,000 people in 

Kerman Province of Iran. Here is this study, available SAR data 

acquired from Sentinel-1 C-band are collected to examine early 

near field postseismic deformation ~1 year after the earthquakes. 

 

2.2 Independent Component Analysis 

Independent Component Analysis (ICA) is an algorithm that 

aims to decompose a randomly mixed signal to a linear 

combination of individual components. The decomposition is in 

the was that the resultant signals are mutually independent, and 

each of them has a non-Gaussian probability distribution 

(Comon, 1994; Hyvärinen and Oja, 1997). ICA, as a Blind 

Source Separation (BSS) algorithm, is widely used to extract 

blind sources from the mixed-signal (Amato et al., 2008; Barnie 

and Oppenheimer, 2015; Liu et al., 2015) 

Suppose there are series of sources, s(t), t=1, …, N where each 

of them has a fixed probability distribution and the signals were 

observed indirectly using M individual sensors through M 

observations, x(t), t=1, …, M. The general objective is to model 

the mixing process that generates sources through a linear basis 

transformation as follow: (Hyvärinen and Oja, 1997). 

 

𝑥(𝑡) = 𝐴 𝑠(𝑡)                    (1) 

 

Where x(t) and s(t) are observed and unknown source signal, 

respectively. The matrix A is an unknown mixing matrix 

consisting of the coefficients describing the relation between 

individual source and particular mixed observation. For 

simplicity let’s assume A is a square matrix then independent 

components (ICs),𝑠, are estimated by its inverse, 𝑊 as: 

 

𝑠(𝑡) = 𝑊 𝑥(𝑡)                           (2) 

 

Mixing matrix transforms observed feature vectors to their 

independent sources such that transformation maximizes the non- 

gaussianity of the resultant ICs. 

 

Before applying ICA, two pre-processing steps, including 

centering, and whitening, are performed on the observations. The 

first step, centering, allows simplifying ICA by subtracting the 

signal’s mean value, 𝑚 = 𝐸(𝑥), from the original signal. The 

whitening step transforms the mixed signal to uncorrelated 

variables with variance equal to 1 as satisfies the following 

equation. 

 

𝐸(𝑥𝜔𝑥𝜔
𝑇 ) = 1                  (3) 

 

where 𝑥𝜔 is whitened vector achieved based on Eigen Value 

Decomposition (EVD) of x by : 

 

𝑥𝜔 = 𝑉𝐷−1/2𝑉𝑇𝑥             (4) 

 

where V is eigenvectors matrix of  𝐸(𝑥𝑥𝑇 ) and D is a diagonal 

matrix consists of eigenvalues. The whitening step minimizes the 

complexity of ICA by reducing the number of unknown 

parameters through converting mixing matrix A to an orthogonal 

matrix 𝐴𝜔(Hyvärinen and Oja, 2000). 

   

2.3 Clustering analysis 

Identifying real source (s) related to deformation signal among 

other resultants ICs is difficult, especially in a case of blind or 

poorly constrained deformation signal. One can identify the 

desired source, e.g., tectonic signal in this study, by visual 

inspection of independent signals, s, or mixing matrix A. Still, the 

visual inspection requires prior knowledge about the temporal 

and spatial distribution of deformation. On the other hand, due to 

the iterative nature of ICA and using a random starting point in 

estimating each row of the unmixing matrix, 𝑊, the order of 

resultant ICs is different in each iteration. It’s then difficult to 

detect the desired component automatically. 

Automatic detection of deformation source is of interest in 

Interferometric SAR (InSAR) studies as hundreds to thousands 

of pairs are produced to retrieve the tectonic signal. 

Automatically solving the source identification can be done by 

testing the statistical significance of the retrieved ICs sources 

(Hyvärinen and Ramkumar, 2013). The testing process is done 

over multiple ICs groups that are produced by randomizing the 

input data and estimating ICs for each random set (Hyvärinen and 

Ramkumar, 2013). Testing a group of ICs provides suggestions 

for identifying blind or poorly constrained signal.   

In this study, a modified method inspired by that proposed by 

Ebmeier (2016), is introduced. The proposed method, (Ebmeier, 

2016), was based on using the ICA test that was first developed 

by (Hyvärinen and Ramkumar, 2013) to examine consistency 

either in inter-subject or inter-session in neuroscientific research. 

The method was based on the following steps. First, it divides a 

series of interferometric pairs into two groups. The division is 

done either randomly or systematically, depending on the nature 

of the source. Second, two sets of IC components are constructed 

by performing ICA analysis individually on each group. The third 

cluster of similar components is identified, and finally, in the last 

step, a set of interferograms is constructed based on the identified 

cluster corresponds to the deformation signal. 

One of the issues associated with the study area is related to the 

significant contribution of atmospheric noise, mostly the 

turbulent mixing component. Therefore, the representation of the 

consistent deformation signal may be affected by the atmospheric 

noise. For instance, if the turbulent mixing phase delay exists in 

one image, it may act as a dominant signal in all the single-master 

interferometric pairs produced by that image. 

Therefore, the following procedure is pursued in this study. First, 

a fully connected SBAS network is constructed. SBAS network 

is then divided into multiple single-master interferometric 

subsets. Each of these subsets is further split into two groups. As 

the rapid postseismic deformation being studied here persists 

over the whole period of the InSAR observations. Therefore, the 

splitting step is done such that the interferograms spanning 

subsequent and separated periods are divided into two different 

groups. The analysis proceeds with running the ICA separately 

over each group and identifying clusters with consistent sources. 

Two clusters with the highest rate of the similarity are selected 

for each single-master interferometric subset. Here, one can 

assume, spatially correlated components related to the 

atmospheric phase delay, of the master image, might cover all the 

single-master interferometric pairs and act as the undesired 

dominant component. The process continues for each single-

master interferometric subset yields to collect all the clusters 

representing the authoritative sources, either desired or unwanted 

components under the study. The resultant ICs components are 

separated again in two groups, and the final ICA test is done over 

the groups of ICs to distinguish the real tectonic signal from the 

undesired dominant signal. 

 In the last steps, all the InSAR subsets are reconstructed based 

on the recovered clusters to form modified SBAS interferograms. 

Reconstruction is done by calculating the outer product of the 
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relevant row of the unmixing matrix and the identified source (s) 

obtained from the clustering analysis. The reconstructed SBAS 

interferograms are used through SBAS analysis to produce the 

final time series map. 

2.4  SBAS analysis 

The semi-arid condition of the study area increases the 

probability of producing high-coherence interferograms that 

allows constructing a fully connected SBAS network. Figure 1 

shows the SBAS network that consists of connecting lines 

representing each interferometric pair. Connections in the SBAS 

network are differently colored based on the average coherence 

value of the corresponding interferometric pairs. Figure 1 shows 

most of the interferograms involved in the time series processing 

have high coherence with values larger than 0.3, which is related 

to the semi-arid condition of the study area. 

 As discussed in session 2.3, SBAS interferograms are first 

divided into a number of subsets, each of which has a single 

master date and it is then used as an input for ICA decomposition 

analysis. 

 
Figure 1. SBAS network representing interferometric pair colored based 

on the average coherence value of each interferogram. Horizontal and 

vertical axes correspond to the temporal and perpendicular baseline, 

respectively. 

 

After reconstructing SBAS interferograms, SBAS time series 

analysis is done over the reproduced interferograms. Time series 

analysis was individually applied for each PS point. It means 

every point could have its own SBAS network, and it allows 

increasing the number of observations as high as possible during 

the time series analysis of each point. It also helps to accurate the 

time series analysis by using a dense SBAS network as increasing 

the number of observations could reduce uncorrelated 

atmospheric effects. 

   

3. RESULTS AND DISCUSSION 

Figure 2 illustrates an example showing the result of the 

clustering analysis applied to one of the InSAR subsets. Fig. 2a 

shows components that are separately estimated by performing 

spatial ICA over two input groups. Based on the visual 

inspection, IC1, IC7 resulted from group 1 are similar to IC2, IC4 

from the second group (Fig. 2a). 

Fig. 2b indicates two clusters showing the most similar 

independent sources retrieved from each group. Fig. 2c 

represents the original interferograms, including 28 

interferometric pairs versus the reconstructed interferograms. A 

dominant pattern is related to the turbulent mixing noise of the 

master image, which covers all the original interferograms, the 

pattern hides the postseismic signal. But when postseismic 

deformation is accumulated over time, the geophysical signal 

gets large enough to overcome atmospheric noise. For instance, 

despite the large atmospheric error, a distinguishable postseismic 

signal is obvious from the interferogram associated with date 28 

(Date number 28 in Fig. 2c).    
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Figure 2. Illustration of ICA cluster analysis. a: represents the ICs estimated from the first and second group of the input data. b: Identified clusters of 

independent components obtained from ICA clustering analysis.  c: Comparison of two subsets first includes all the original interferograms produced by 

a single master and second the subset made of the reconstructed interferograms. Reconstructed interferograms are reproduced based on the optimum 

cluster that represents best the postseismic signal. 
 

The reconstructed interferograms, illustrated in Fig. 2c, are 

estimated based on the identified cluster correspond to the 

tectonic signal. Comparing the original and reconstructed 

interferograms indicates that applying ICA cluster analysis can 

monitor the evolution of the cumulative postseismic deformation 

early after the earthquake.  

The resultant SBAS time series maps are represented in Fig. 3. 

The figure illustrates the comparison of two sets of time series 

maps. The first subset is derived from the original interferograms 

(Fig. 3a) and the second one estimated from the constructed 

interferograms (Fig. 3b). 

 

  
Figure 3. a: Time series maps resulted from the original interferograms correspond to 30 dates that span 1 year after the earthquake. b: Time series maps 
calculated by reconstructed interferograms.  

 

Fig. 3a slightly shows the accumulation of the postseismic signal 

even for the early dates after the earthquake, which is not possible 

to identify based on the time series maps obtained from single-

master interferograms (shown in Fig. 2c). It’s a benefit of using 

the SBAS technique that could roughly overcome the 

atmospheric effect. The stacking of a large number of 

interferograms could reduce the impact of noises; those are 

temporally uncorrelated.  However, some undesired patterns still 

exist in the cumulated postseismic map (Fig. 4b) that might be 

misinterpreted as a tectonic signal. As the presence of any 

undesired signal could affect the seismic modeling analysis, it’s 

better to clean the postseismic deformation map from any 

undesired effects before performing the postseismic modeling 

process. 

 

 
  
Figure 4. a: Topographic map. b: Cumulative displacement map as a 

result of time series analysis performed on the original dataset. c: 

Cumulative displacement map applied to the reconstructed 
interferograms obtained from ICA based analysis. The black isocontours 

are superimposed on the cumulative deformation maps that represent 

coseismic signal resolved from two events of 1 and 12 December 2017.  
d,e: Scatter plots showing strong and week correlation between 

topography and cumulative displacements represented in (b) and (c), 

respectively.   

The time series maps estimated based on the reconstructed 

interferograms, represented in Fig. 3b, clearly shows the 

evolution of postseismic deformation over one year after the 

earthquake. Despite the time series results based on the original 

interferogram, two distinct patches, corresponding to the 

postseismic deformation, are recovered (blue and white patterns). 

Fig. 4b,c compares the cumulative displacement maps retrieved 

from original and constructed interferograms. Black contours 

superimposed on the plots (Fig. 4b,c) indicate the coseismic 

signal with the rate of 0.16 and 1 meter related to the first and the 

second earthquakes, respectively. It shows the retrieved 

postseismic patches surround the coseismic signal caused by the 

first (December 1, 2017) and second (December 12, 2017) 

earthquakes occurred in the area. 

Fig. 4d shows the relationship between topography and the 

cumulative displacement map. It indicates cumulative 

deformation derived from original interferograms correlates well 

(with a correlation coefficient of 0.69) with topography that is 

due to the nature of tectonic signal in case of reverse faulting 

event. However, topographic dependence is decreased for the 

resultant cumulative displacement (with a correlation coefficient 

of 0.002) obtained from the reconstructed interferograms. It 

proves the ability of ICA based analysis in extracting the valid 

tectonic signal among the other involved contributions (e.g., 

elevation-dependent component), considering no prior 

assumption about elevation dependence of the interferometric 

phase. 

To evaluate the resultant cumulative displacement maps , time 

series plots are drawn over two points selected in the near-field 

area of the first (occurred on December 1) and second earthquake 

(occurred on December 12). P1 and P2 mark the location of the 

points in Fig. 3b. 

The time series plots are depicted in different colors of red and 

blue corresponding to the time series plot estimated based on 

original and reconstructed interferograms, respectively (Fig. 5). 

The geophysical signal is assumed to be temporally correlated; it 

means it varies smoothly over time. Comparing the time series 

plots (Fig. 5a,b) confirm increasing the signal to noise ratio after 

applying the proposed method as the blue graph have smoother 

variation over time. However, red lines showing jumps in some 
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dates that indicate the existence of the atmospheric noise in the 

original interferograms. 

 
Figure 5. Time series plots illustrating the time-dependent evolution of 

postseismic deformation on points P1 (a) and P2 (b), which are depicted 

in Fig. 3b. 

The last evaluation is done by calculating the RMS of the 

unmodelled phase delay (RUPD) for each interferogram. It 

allows defining the effectiveness and reliability of the ICA based 

analysis proposed here. RUPD obtained for each interferogram 

by calculating the RMS of the residual, the difference between 

observed and estimated interferometric phase (in SBAS time 

series model). Fig. 6 shows RUPD estimated for the original and 

reconstructed interferograms in which red bars correspond to the 

RUPD error of the time series analysis obtained based on the 

reconstructed interferogram and blue is related to the original 

interferogram. The improvement after reducing atmospheric 

noise can be seen in this figure, Fig. 6. as most of the RUPD 

errors (showing in blue bars) are decreased by 62 % when time 

series runs over reconstructed interferograms (red bars in Fig. 6). 

 

Figure 6. Representation of RUPD error calculated for each 

interferogram. Blue corresponds to the time series analysis 

applied on the original interferograms, red to the time series 

analysis performed on the reconstructed interferograms. 

4. CONCLUSION  

This study uses ICA analysis to automatically explore the rapid 

postseismic signal by using multi-temporal InSAR data. An 

adaptive method is proposed here to retrieve the undescribed 

deformation source by maximizing the independence of the 

source component. Analysis of 433 sentinel-1 interferograms 

using incorporation of ICA and SBAS analysis is able to retrieve 

two distinct deformation patches corresponding to the 

postseismic deformation. Placing the coseismic pattern over the 

postseismic deformation map indicates two patches retrieved as 

the postseismic deformation surround the coseismic patches 

associated with the first (December 1) and second (December 12) 

mainshocks. 

The results from SBAS time series analysis show that applying 

ICA analysis leads to better retrieval of the consistent signal even 

in the presence of atmospheric noise. ICA based analysis is also 

able to reduce the elevation-dependent component as topographic 

dependence of the cumulative displacement is decreased by 

considering the reconstructed interferograms as input for the time 

series analysis. The RUPD error of the improved interferograms 

reconstructed based on cluster analysis decreased by 62 % 

compared to the original interferograms. 
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