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ABSTRACT: 
 

In recent years, the determination of global image orientation, i.e. global SfM, has gained a lot of attentions from researchers, mainly 

due to its time efficiency. Most of the global methods take relative rotations and translations as input for a two-step strategy comprised 

of global rotation averaging and global translation averaging. This paper by contrast presents a hybrid approach that aims to solve 

global rotations and translations simultaneously, but hierarchically. We first extract an optimal minimum cover connected image triplet 

set (OMCTS) which includes all available images with a minimum number of triplets, all of them with the three related relative 

orientations being compatible to each other. For non-collinear triplets in the OMCTS, we introduce some basic characterizations of the 

corresponding essential matrices and solve for the image pose parameters by averaging the constrained essential matrices. For the 

collinear triplets, on the other hand, the image pose parameters are estimated by relative orientation using the depth of object points 

from individual local spatial intersection. Finally, all image orientations are estimated in a common coordinate frame by traversing 

every solved triplet using a similarity transformation. We show results of our method on different benchmarks and demonstrate the 

performance and capability of the proposed approach by comparing with other global SfM methods. 
 

 

1. INTRODUCTION 

Image orientation (also known as Structure-from-Motion - SfM 

or pose estimation) plays a key role in the field of photo-

grammetry and computer vision. Although this topic has been 

very well studied in the last several decades, it recently again 

caught the interest of photogrammetrists due to the increasing 

number of images (e.g., images shared through websites) and 

images taken without proper acquisition planning. Today, 

according to the procedure in which images are oriented, there 

are typically three different strategies to solve this problem: 

incremental, hierarchical and global methods. Incremental SfM 

(Snavely et al., 2006; Agarwal et al., 2009; Schönberger and 

Frahm, 2016; Wu, 2013; Wang et al, 2018 and 2019a) starts with 

an initial subset of images, e.g., initializing a small recon-

struction, and iteratively adds further images to the block with 

repetitive intermediate bundle adjustment. Farenzena, et al. 

(2009), Mayer (2014) and Toldo, et al. (2015) present a so called 

hierarchical method, which improves the incremental idea by 

first dividing the images into overlapping subsets, and then 

processing all subsets individually by incremental SfM, finally 

merging them in a hierarchical way with a number of bundle 

adjustments. Both of these strategies are relatively slow because 

of the repeated use of bundle adjustments. To overcome this pro-

blem, Martinec & Pajdla (2007), Arie-Nachimson et al (2012), 

Jiang et al. (2013), Moulon et al. (2013), and Wang et al. (2019a 

and 2019b) present global SfM methods which first estimates all 

available image pose parameters, and then perform only one final 

bundle adjustment for refinement. All above mentioned global 

methods have a common limitation: they work in two individual 

steps. Only after image rotations have been solved, the translation 

parameters can be estimated. This can create problems, if rota-

tions are incorrectly estimated. In addition, many researchers 

(Wilson and Snavely, 2014; Shah et al, 2018) also found that 

global methods are sensitive to outliers of relative orientations, 

since outliers are difficult to detect in global computations. 

                                                                 
  Corresponding author 

 

Figure 1. The workflow of our hybrid image orientation method, 

where in this figure τi denotes the i-th selected triplet. 
 

We are most interested in those time efficient strategies, and thus 

present a novel hybrid global image orientation approach. To 

improve the time efficiency and robustness, among the 

overlapping image pairs and their corresponding relative 

orientations we first extract an optimal minimum cover 

connected triplet set (OMCTS) such that it not only includes all 

available images with a minimum number of triplets, but also 

makes the corresponding relative orientations within extracted 

triplets as compatible as possible. Then, we apply a hybrid 

method by considering non-collinear and collinear triplets 

separately, where collinear means the three image projection 

centres are collinear (see Fig. 1 for the workflow of our method). 

For the non-collinear triplets, we make use of algebraic 

constraints of the corresponding essential matrices and derive 

eligible essential matrices, subsequently image pose parameters 

are computed by essential matrix averaging. For collinear triplets, 

this method is invalid, thus their image pose parameters are 

recovered by using relative orientations with the depth of object 

points from individual local spatial intersection. As the estimated 
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image pose parameters are given in local coordinate systems of 

each individual triplet, we need to transform them into a global 

unified system. We do so by traversing image poses of each 

individual triplet using similarity transformations. Finally, we 

run one single bundle adjustment to refine our results.  
 

Our main contributions are threefold: First, we present an idea to 

build an optimal minimum cover connected triplet set that can 

combine both, collinear and non-collinear triplets. Second, we 

introduce a hybrid method to solve the image pose parameters for 

both non-collinear and collinear triplets separately, from which 

global pose parameters in a unified coordinate system are 

estimated. Finally, via testing various settings for solving non-

collinear triplets, a very reasonable set is suggested, and our 

hybrid method is then evaluated by comparing the results with 

other global SfM methods using various benchmarks. 

 

2. RELATED WORK  

Recently, research of image pose estimation or SfM has become 

very active, since more and more complicated datasets have 

become available, e.g. images downloaded from the Internet and 

images with repetitive structures and critical configurations 

(Wang et al., 2019c). In this section we review some state-of-the-

art works in global SfM research. Typically, global SfM methods 

are conducted in two separate steps, global rotation estimation 

and the subsequent global translation estimation. However, there 

are also some works, called integrative global methods, which 

estimate global rotations and translations simultaneously. 
 

Global rotation estimation. The problem of global rotation 

estimation from relative rotations of image pairs have been 

studied by many researchers. Govindu (2001) use quaternions to 

represent rotations, global quaternions are determined by a 

constrained least squares optimization. Martinec and Pajdla 

(2007), Arie-Nachimson et al (2012) and Moulon et al. (2013) 

first relax the constraints on rotation parameters and present a 

linear homogeneous equation system, which is solved using SVD 

(singular value decomposition). Hartley et al. (2011) present a 

robust iterative method using L1 norm optimization based on the 

Lie algebra of SO(3). Chatterjee and Govindu (2013) present a 

two-stage approach: they first calculate initial global rotation 

using a minimum spanning tree and then refine the solution with 

an iterative reweighting scheme combining the Lie algebra of 

SO(3). Reich et al. (2016, 2017) present a method which extends 

the approach of Chatterjee and Govindu (2013), they studied the 

algebraic characterization of relative rotations in multi-image 

settings and apply a convex relaxed semidefinite program to 

obtain a more robust initial solution which is further refined by 

using Lie algebra of SO(3).  
 

Global translation estimation. Unlike global rotation 

parameters, global translation parameters cannot be directly 

estimated, since the baseline of an image pair has an arbitrary 

length. Nevertheless, many methods have been studied for global 

translation estimation. Govindu (2001) present an iterative 

reweighting scheme to obtain global scale unified translation 

vectors; however, this method is invalid in degenerate cases, e.g., 

when projection centres of images are (nearly) collinear. Jiang et 

al. (2013) present a solution which can solve degenerate cases by 

using depth information of tie points; a global linear equation 

system is built by concatenating connected triplets. Since the 

triplets are required to be well connected, this method normally 

recovers fewer images. It was extended by Cui et al. (2015) and 

Wang et al. (2019b), they first solve for the global scale factor for 

each eligible relative translation and then resize all relative 

translations such that they are all in the same global scale unified 

system, and finally global translations are estimated by using 

those resized relative translations.  Wilson and Snavely (2014) 

propose a method called 1DSfM, to robustify their result, they 

first detected blunders of relative translations by projecting the 

3D relative translation into different 1D direction vectors. 

Typically, the blunders clearly stand out in some directions of the 

1D vectors. Then, a non-linear method based on inliers of relative 

translations and tie points is proposed, this non-linear method is 

not guaranteed to converge when outliers exist. By using 

collinearity equations and the information of tie points, Wang et 

al. (2019a) propose a linear global method. Given the global 

rotation and tie point information, they first selected some robust 

tie points that can connect all available images into the same 

photogrammetric block. Then, the translation parameters and 

selected 3D tie point coordinates are solved simultaneously. But, 

as the number of images increases, so does the number of 

unknown tie points, which brings much more computational 

burden for the linear global method. 
 

Integrative global method. Recently, ideas were published to 

avoid having to compute rotation and translation separately. 

Bourmaud et al. (2014) derive the image pose parameters as a Lie 

group SE(3), they propose a generative model based on the 

formulation of a concentrated Gaussian distribution on the matrix 

Lie group and solve an iterated extended Kalman filter on that 

group to compute the elements of SE(3). Kasten et al. (2019a) 

propose a method to globally recover the projection matrix of 

each image by using fundamental matrices of image pairs. 

However, as the projection matrix yields a projective recon-

struction, information on interior orientation parameters cannot 

be introduced. Later, the authors extended their work. Exploring 

the algebraic characterizations of essential matrices, they intro-

duced a method to simultaneously solve for rotation and trans-

lation of each image from essential matrices (Kasten et al., 

2019b). The disadvantage is that this method cannot deal with 

projection centres that are all (nearly) collinear. 
 

The remainder of this paper is structured as follows: In Section 3 

we introduce some basics of essential matrices in multi-image 

settings. Section 4 describes our method of estimating image pose 

parameters by using the information of triplets. In Section 5, we 

report results of experiments on various benchmarks to evaluate 

our method. Finally, Section 6 concludes our work. 

 

3. THE N-IMAGE ESSENTIAL MATRIX  

Following partial content of Kasten et al. (2019b) to make this 

paper more self-contained, we next give some definitions and 

corollaries with respect to the so called N-Image essential matrix. 

Given a set of n images which are denoted as 1, 2, 3,…, n, 

let ti ϵ ℝ3and Ri ϵ SO(3) be the translation and rotation 

parameters of image i in a global coordinate system. The 

essential matrix of two images i and j can be derived as 

Eij=Ri
T(Ti-Tj)Rj, where Ti=[ti]× is the skew-symmetric 

matrix of vector ti. 
 

Definition 1. A matrix E ϵ Sym3n (Sym3n denotes the space of all 

the 3n×3n symmetric matrices), whose 3×3 block matrices are 

denoted by Eij, is called a N-Image essential matrix if ∀ i≠j, 

rank(Eij)=2, and the corresponding two eigenvalues are equal,  ∀ 

Eii=0, where 0 denotes the corresponding zero matrix.  
 

Corollary 1. A N-Image essential matrix E is scale consistent, if 

there exist n rotation matrices {Ri}i=1, ..., n, n projection centres 

{ti}i=1, ..., n and n non-zero scalars {αi} i=1, ..., n such that Eij=αiRi
T(Ti-

Tj)Rjαj. Given the constraint that not all projection centres of 

{ti}i=1, ..., n are collinear, the SVD of E can be then derived as E=[�̂� 

�̂�][
Σ+  
 Σ+

] [�̂�
𝑇

�̂�𝑇
] and rank(E)=6, where �̂�, �̂� ϵ ℝ3n×3 and Σ+ ϵ 
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ℝ+
3×3 

. What’s more, the following conditions are sufficient and 

necessary conditions: First, E is a scale consistent N-Image 

essential matrix; Second, The SVD of E can be written as E=[�̂� 

�̂�][
Σ+  
 Σ+

] [�̂�
𝑇

�̂�𝑇
] with �̂�, �̂� ϵ ℝ3n×3  and Σ+  ϵ ℝ+

3×3 
, such that 

each block of �̂� denoted as �̂�𝑖,  is a scaled rotation matrix, i.e., 

�̂�𝑖=�̂�𝑖�̂�𝑖
  and �̂�𝑖

 ϵSO(3). �̂� is called scaled block rotation matrix; 

Third, Σ+=−Σ− and the spectral decomposition of E reads E=[A 

B][
Σ+  
 Σ−

] [𝐴
𝑇

𝐵𝑇] with A, B ϵ ℝ3n×3 , Σ+=−Σ− and Σ+ , Σ− ϵ ℝ+
3×3 

, 

where √0.5 (𝐴 + 𝐵)  is a scaled block rotation matrix (see the 

corresponding proofs in Kasten et al. (2019b)). 
  

A scale consistent N-image essential matrix thus is a matrix 

representation of the orientation parameters of the N images, 

coding them in a similar way that the essential matrix does for 

two images, so that rays of conjugate points intersect. 
 

Corollary 2. Again following Kasten et al. (2019b), it is possible 

to determinate all image rotation matrices {Ri}i=1, ..., n, projection 

centres {ti}i=1, ..., n (in a global coordinate system) and n non-zero 

scalars{αi}i=1, ..., n, given a scale consistent N-Image essential 

matrix E, where the camera projection centres are not all 

collinear, in the following way. 
 

1. Do spectral decomposition of E and obtain the eigenvectors A, 

B of E together with the corresponding eigenvalues to be found 

in Σ+  and Σ− . SVD decomposition is not used, because a 

standard SVD method has multiplicity of singular values on E 

with the corresponding rank being equal to 6 and typically sorts 

the singular values in a descending order, which doesn’t produce 

the specific SVD form as corollary 1 explains. 
 

2. There are in total eight possibilities of √0.5(𝐴 + 𝐵𝐼𝑡) with 𝐼𝑡 

= (
±1 0 0
0 ±1 0
0 0 ±1

) , because of the sign ambiguity of each 

eigenvector which can be solved by equation (6), see below. 
 

3. �̂�=√0.5 (𝐴 + 𝐵𝐼𝑡), the scalar of each block �̂�𝑖 can be computed 

by �̂�𝑖=(det(�̂�𝑖))
1/3, and Ri= (�̂�𝑖/�̂�𝑖)

T. 
 

4. Eij=�̂�𝑖Σ+�̂�𝑗
𝑇
+ �̂�𝑖Σ+�̂�𝑗

𝑇
, as Eii = 0 we see that �̂�𝑖Σ+�̂�𝑖

𝑇
 is skew 

symmetric; we can derive the projection centre [ti]×= �̂�𝑖
-1�̂�𝑖Σ+. 

 

The N-Image essential matrix can thus be regarded as a tool to 

estimate rotations and translations simultaneously from pairwise 

essential matrices. However, three practical difficulties exist: 

First, we can’t compute every essential matrix for each pair, 

because many image pairs do not overlap; second, calculated 

essential matrices are typically normalized, e.g., when employing 

the 5-Point algorithm (Nistér, 2004), thus it is very difficult to 

guarantee for a N-Image essential matrix to be scale consistent if 

N>3, because the non-zero scalars cannot be set arbitrarily; third, 

the case that all projection centres are (or nearly are) collinear 

does exist in many applications, e.g., images captured by mobile 

mapping car moving along a straight line or aerial images within 

one strip. 

 

4. METHODOLOGY 

To solve these three practical difficulties, we investigate triplets 

instead of larger sets of images, which overcome the first two 

points and then present a hybrid method to separately deal with 

collinear and non-collinear triplets to avoid the third difficulty.  
  

We first introduce corollary 3. 
 

Corollary 3. Given a non-collinear triplet, the corresponding 

scale consistent 3-Image essential matrix is invariant to scales 

(see our proof in the appendix). 
 

4.1 Generation of an optimal minimum cover connected 

image triplet set 

We use three images with mutual overlap and extract all related 

triplets, a corresponding triplet graph is then built as Fig. 1 

shows: triplets denote nodes and two triplets are connected to 

each other, if they share two common images. An optimal subset 

of these triplets is selected for better time efficiency and 

robustness. We select such a subset called optimal minimum 

cover connected image triplet set (OMCTS) with the following 

requirements: 1) the selected triplets cover all available images 

and the three relative orientations should be as compatible as 

possible; 2) triplets from the selected subset are connected, which 

guarantees that the photogrammetric block will not break; 3) the 

minimum number of triplets that fulfil the above two 

requirements is selected.  
 

To identify the compatibility of each triplet, similar to Wang et 

al. (2019b) and Kasten et al. (2019a), we compute two triplet 

closure discrepancies with respect to relative rotations and 

translations, respectively. Given three relative rotations of a 

triplet, Rij, Rjk and Rki, RijRjkRki = I3×3 should hold. However, this 

is not strictly the case because of outliers and noise in relative 

rotations. We can use 𝑑∠(𝑠𝑅 , 𝐼3×3) = arccos ((𝑡𝑟(𝑅𝑖𝑗𝑅𝑗𝑘𝑅𝑘𝑖 −

 𝐼3×3 ) − 1)/2) as one indicator of the triplet compatibility. The 

discrepancy in relative translation can be calculated from the 

difference of the sum of the angles formed by the three projection 

centres within a triplet and 180°, i.e., 𝑑∠(𝑠𝑇 , 180°) = |θi + θj + θk 

-180°| with θi = arccos
𝑡𝑖𝑗𝑡𝑖𝑘

||𝑡𝑖𝑗||||𝑡𝑖𝑘||
 and ||.|| the L2 norm (see Wang 

et al., 2019b for details). Based on these two criteria, the triplet 

compatibility indicator is formulated as max ( 𝑑∠(𝑠𝑅 , 𝐼3×3) , 

𝑑∠(𝑠𝑇 , 180°) ). Finally, we employ a greedy triplet deleting 

scheme: starting with the triplet with the largest indicator, a 

triplet is deleted as long as the remaining triplets are still 

connected and no image is deleted from the photogrammetric 

block (see Appendix for more details on generating the OMCTS), 

note that we introduce our triplet selection process in a less 

sophisticated way and a more grounded graph theory based 

explanation is given by Shah et al. (2018). 
 

The collinearity degree of a triplet is determined by the minimal 

angle among θi, θj and θk. From the triplets selected for the 

OMCTS, the ones with that minimal angle larger than a threshold 

θang are considered to be non-collinear, the others are considered 

collinear. 
 

4.2 Solving image pose for non-collinear triplets 

Based on Kasten et al. (2019b), this section focuses on non-

collinear triplets which are denoted as {𝜏𝑛𝑐}𝑛𝑐=1
𝐾 , K is the number 

of detected non-collinear triplets and nc is the nc-th non-collinear 

triplet, the corresponding 3-Image essential matrix is denoted as 

{𝐸𝜏𝑛𝑐
}𝑛𝑐=1
𝐾 , the elements of {𝐸𝜏𝑛𝑐

}𝑛𝑐=1
𝐾  are the unknowns. As 

input, we have corresponding estimated essential matrices 

�̆�𝑖𝑗(e.g., using the 5-point algorithm) for each overlapping image 

pair, and they can be transformed into estimated 3-Image 

essential matrices denoted as {�̆�𝜏𝑛𝑐
}𝑛𝑐=1
𝐾 .  

Our goal is to first seek a scale consistent 3-Image essential 

matrix that is as close as possible to the estimated 3-Image 

essential matrix for all non-collinear triplets and then estimate 

exterior pose parameters within each non-collinear triplet by 

using corollary 2. The constrained problem can be formulated as 
 

minimize
{𝐸𝜏𝑛𝑐}𝑛𝑐=1

𝐾
∑ ||𝐸𝜏𝑛𝑐

− �̆�𝜏𝑛𝑐
||𝐹

2𝐾
𝑛𝑐=1                                                    (1) 

subject to   rank(𝐸𝜏𝑛𝑐
) = 6; Σ+(𝐸𝜏𝑛𝑐

) = −Σ−(𝐸𝜏𝑛𝑐
);  √0.5( 𝐴(𝐸𝜏𝑛𝑐

) + 

𝐵(𝐸𝜏𝑛𝑐
)) is a block rotation, 
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where Σ+(𝐸𝜏𝑛𝑐
),  −Σ−(𝐸𝜏𝑛𝑐

)  are the 3 largest eigenvalues in de-

scending order and the 3 smallest eigenvalues in ascending order 

of 𝐸𝜏𝑛𝑐
, respectively. 𝐴(𝐸𝜏𝑛𝑐

) and 𝐵(𝐸𝜏𝑛𝑐
) are the corresponding 

eigenvectors. Solving (1) is not easy due to the non-convex rank 

defect and block rotation constraints. The the alternating direc-

tion method of multipliers (ADMM, Boyd et al., 2011) is used to 

solve equation (1) iteratively; we can generate an equivalent con-

strained optimization problem. 
 

max
𝜗,𝜌

min
{𝐸𝜏𝑛𝑐},𝑊,𝑄

∑ 𝑙({𝐸𝜏𝑛𝑐
},𝑊𝑛𝑐 , 𝜗𝑛𝑐 , 𝑄𝑛𝑐 , 𝜌𝑛𝑐)

𝐾
𝑛𝑐=1                                (2) 

 

subject to rank (𝑊𝑛𝑐) = 6; Σ+(𝑊𝑛𝑐) = −Σ−(𝑊𝑛𝑐); rank (𝑄𝑛𝑐) = 6; 

𝐴(𝑄𝑛𝑐) + 𝐵(𝑄𝑛𝑐) is a block rotation. 
 

where, 𝑙({𝐸𝜏𝑛𝑐
},𝑊𝑛𝑐 , 𝜗𝑛𝑐 , 𝑄𝑛𝑐 , 𝜌𝑛𝑐)  = ||𝐸𝜏𝑛𝑐

− �̆�𝜏𝑛𝑐
||𝐹

2  + ∆1||𝑊𝑛𝑐 −

𝐸𝜏𝑛𝑐
+ 𝜗𝑛𝑐||𝐹

2  + ∆2||𝑄𝑛𝑐 − 𝐸𝜏𝑛𝑐
+ 𝜌𝑛𝑐||𝐹

2 , 𝑊𝑛𝑐  and 𝑄𝑛𝑐  are auxiliary 

matrices for constraints of rank defect and block rotation, respec-

tively. 𝜗𝑛𝑐 and 𝜌𝑛𝑐 are two Lagrange multipliers. Initializations 

are given at sp = 0 (sp denotes the number of iterations) as  𝑊𝑛𝑐
0 

= 𝑄𝑛𝑐
0 = �̆�𝜏𝑛𝑐

, 𝜗𝑛𝑐
0
 = 𝜌𝑛𝑐

0 =0. We then solve (1) iteratively by 

alternating between the following steps: 
 

(a) Computing  {𝐸𝜏𝑛𝑐
} 

{𝐸𝜏𝑛𝑐
}
𝑠𝑝

=  argmin
{𝐸𝜏𝑛𝑐}

∑ ||𝐸𝜏𝑛𝑐
− �̆�𝜏𝑛𝑐

||𝐹
2𝑘

𝑛𝑐=1  + ∆1||𝑊𝑛𝑐 − 𝐸𝜏𝑛𝑐
+ 𝜗𝑛𝑐||𝐹

2  + 

∆2||𝑄𝑛𝑐 − 𝐸𝜏𝑛𝑐
+ 𝜌𝑛𝑐||𝐹

2  
 

This is a convex quadratic optimization problem and can be 

solved using equation (3) 

𝐸𝜏𝑛𝑐

𝑠𝑝 =
1

1+2∆1+2∆2
[  2∆2( 𝑄𝑛𝑐

𝑠𝑝−1  +  𝜌𝑛𝑐
𝑠𝑝−1 )   +  2∆1( 𝑊𝑛𝑐

𝑠𝑝−1  +

𝜗𝑛𝑐
𝑠𝑝−1) + �̆�𝜏𝑛𝑐 ]                                                                            (3) 

 

(b) Computing 𝑊𝑛𝑐 

𝑊𝑛𝑐
𝑠𝑝 = argmin

𝑊𝑛𝑐

||𝑊𝑛𝑐 − 𝐸𝜏𝑛𝑐

𝑠𝑝 + 𝜗𝑛𝑐
𝑠𝑝−1||𝐹

2                                  (4) 

 

subject to rank (𝑊𝑛𝑐) = 6; Σ+(𝑊𝑛𝑐) = −Σ−(𝑊𝑛𝑐); 
 

Equation (4) is also convex quadratic optimization problem, thus, 

the estimation of 𝑊𝑛𝑐
𝑠𝑝  should be 𝐸𝜏𝑛𝑐

𝑠𝑝 − 𝜗𝑛𝑐
𝑠𝑝−1

, however, 

this may not fulfil the constraints of rank defect and eigenvalue 

of Σ+(𝐸𝜏𝑛𝑐
) = −Σ−(𝐸𝜏𝑛𝑐

). To overcome this issue, we do a spectral 

decomposition on 𝐸𝜏𝑛𝑐

𝑠𝑝 − 𝜗𝑛𝑐
𝑠𝑝−1

 by �̿�Σ′�̿�𝑇 , �̿� is a 9×9 ma-

trix and Σ′  a diagonal matrix with corresponding eigenvalues 

sorted in descending order. Thus, we can update 𝑊𝑛𝑐 as 
 

𝑊𝑛𝑐
𝑠𝑝=𝑈Σ∗�̿�𝑇                                                                                      (5) 

 

where 𝛴11
∗ = 0.5(𝛴11

′ − 𝛴99
′ ) , 𝛴22

∗ = 0.5(𝛴22
′ − 𝛴88

′ ) , 𝛴33
∗ = 0.5(𝛴33

′ −
𝛴77

′ ) , 𝛴44
∗ = 0 , 𝛴55

∗ = 0 , 𝛴66
∗ = 0 , 𝛴77

∗ = 0.5(𝛴77
′ − 𝛴33

′ ) , 𝛴88
∗ =

0.5(𝛴88
′ − 𝛴22

′ ), 𝛴99
∗ = 0.5(𝛴99

′ − 𝛴11
′ ). 

 

(c) Computing 𝑄𝑛𝑐 

𝑄𝑛𝑐
𝑠𝑝 = argmin

𝑄𝑛𝑐

||𝑄𝑛𝑐 − 𝐸𝜏𝑛𝑐

𝑠𝑝 + 𝜌𝑛𝑐
𝑠𝑝−1||𝐹

2                                     (6) 

 

subject to rank (𝜌𝑛𝑐) = 6; 𝐴(𝑄𝑛𝑐) + 𝐵(𝑄𝑛𝑐) is a block rotation. 
 

Similar to equation (4), the initial guess of 𝑄𝑛𝑐
𝑠𝑝  would be 

𝐸𝜏𝑛𝑐

𝑠𝑝 − 𝜌𝑛𝑐
𝑠𝑝−1, which may violate the extra constraints. To ob-

tain an eligible solution, we do a spectral decomposition for the 

initial guess. Σ+ and Σ− are eigenvalues, A and B are correspond-

ing eigenvectors, A, B  ϵ  ℝ9×9 . Now, the requirement is that 

√0.5 (𝐴 + 𝐵𝐼𝑡) with 𝐼𝑡 =(
±1 0 0
0 ±1 0
0 0 ±1

) is a block rotation matrix. 

To find a correct solution for  𝐼𝑡 , we have  𝐼𝑡
∗ = 

argmax
𝐼𝑡

∑
||𝑑𝑖𝑎𝑔(√0.5 (𝐴𝑖+𝐵𝑖𝐼𝑡)

𝑇√0.5 (𝐴𝑖+𝐵𝑖𝐼𝑡))||2

||√0.5 (𝐴𝑖+𝐵𝑖𝐼𝑡)
𝑇√0.5 (𝐴𝑖+𝐵𝑖𝐼𝑡)||𝐹

3
𝑖=1 , Ai and Bi is the 

corresponding block matrix of A and B. This is also applied in 

corollary 2.  

Let �̈� = [�̈�1 �̈�2 �̈�3]
𝑇, where �̈�𝑖 is the closest scaled rotation of 

√0.5 (𝐴𝑖 + 𝐵𝑖𝐼𝑡
∗), which is obtained by first computing a SVD of 

√0.5 (𝐴𝑖 + 𝐵𝑖𝐼𝑡
∗)  and replacing the diagonal matrix of singular 

values by an 3×3 identity matrix, the average of original singular 

values is  the scale factor. Let 𝑀 ̈ =  √0.5 (𝐴𝑖 − 𝐵𝑖𝐼𝑡
∗),  we update 

A and B by �̈� = √0.5 (𝑀 ̈ +  �̈�) and �̈� = √0.5 (𝑁 ̈ −  �̈�), finally  
 

𝑄𝑛𝑐
𝑠𝑝 = [�̈�  �̈�] [

Σ+  
 Σ−

] [�̈�
𝑇

�̈�𝑇
]                                                              (7) 

 

(d) Computing 𝜗𝑛𝑐 and 𝜌𝑛𝑐 
 

𝜗𝑛𝑐
𝑠𝑝

 = 𝜗𝑛𝑐
𝑠𝑝−1

 + 𝑊𝑛𝑐
𝑠𝑝- 𝐸𝜏𝑛𝑐

𝑠𝑝                                                   (8) 

𝜌𝑛𝑐
𝑠𝑝 = 𝜌𝑛𝑐

𝑠𝑝−1 + 𝑄𝑛𝑐
𝑠𝑝- 𝐸𝜏𝑛𝑐

𝑠𝑝                                                   (9) 
 

In our experiments, we set ∆ 1  = 100 and ∆2  = 0.01 to weight  

rank defect and block rotation constraints, respectively, and re-

peat the above four steps 100 times (more interpretations related 

to settings of ∆1, ∆2 and sp are discussed in our experimental sec-

tion below) and we obtain the scale consistent 3-Image essential 

matrix. Rotation and translation of each image within one non-

collinear triplet are then estimated using corollary 2. 

4.3 Solving image pose parameters from collinear triplets 

 
Figure 2. Collinear triplet Case. 

 

Different to Kasten et al. (2019b), where the authors deleted all 

(nearly) collinear triplets, both non-collinear and collinear 

triplets are considered in this paper. To deal with collinear 

triplets, we choose one image as reference and use the 

information of relative rotations and translations to estimate the 

exterior orientation parameters of the other two images. Global 

rotations within one triplet are straightforward to compute: we 

assign an identity matrix to one image and obtain the other two 

rotations by propagating the relative rotations. However, global 

translations within one triplet are not that easy to compute, 

because the length of relative translations are typically 

normalized to 1 when decomposing the essential matrix, and this 

will normally lead to scale ambiguity as Fig. 2 shows. The 

projection centres C1, C2 and C3 of images {1, 2, 3} are collinear, 

which generates a collinear triplet. P12 and P13 represent the same 

object point, but have different positions after triangulation due 

to the different scales of the two models. Fig. 2 implies that we 

can remove the scale ambiguity by moving the original C3 to C3’, 

mathematically this can be expressed by using the depth values 

of calculated position of P12 and P13. We have  

 
|𝐶1𝐶3

′|
|𝐶1𝐶3|

⁄   = 
|𝐶1𝑃12|

|𝐶1𝑃13|
⁄  = 

𝑍𝑃12

𝑍𝑃13

⁄  = λ                          (10) 

 

where |.| returns length, 𝑍𝑃12
and 𝑍𝑃13

 are the corresponding Z 

values (as object points are always in front of cameras, the Z 

value is guaranteed to be larger than 0). Each three-ray point 

contributes one λ, we use the idea of Wang et al. (2019b) to obtain 
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a robust solution �̇�. Given �̇� and the relative rotations R12, R13 and 

relative translation t12, t13, we obtain a triplet of scale consistent 

exterior orientation parameters by formula (11) with the 

assumption that image pair (i1,i2) has most correspondences 

within the image pairs of the triplet (note that 𝑅23   and 𝑡23 are not 

used in this solution to reduce the computational complexity, and 

we assume that the relative orientations within the selected 

compatible triplets can be considered to be accurate after having 

checked them before). 
 

𝑅1 = 𝐼3×3    𝑡1 = 𝟎
𝑅2 = 𝑅12   𝑡2 =  𝑡12

𝑅3 = 𝑅13, 𝑡3 = �̇� · 𝑡13

                              (11) 

 

For all detected collinear triplets, equation (11) is used to obtain 

rotation and translation of each image. 

 

4.4 Estimating all images pose parameters from triplets 

We have now estimated the exterior orientation parameters (three 

rotations and translations per image) within all triplets, whether 

collinear or non-collinear, which are uniquely determined up to a 

similarity transformation. For any two connected triplets which 

share two common images, there is a possibility to compute a 

unique similarity transformation between these two triplets by 

using the two corresponding common image pose parameters 

calculated from individual triplet (Hartley and Zisserman, 2004). 

Since a minimum cover connected image triplet set has already 

been generated and the corresponding pose parameters within the 

triplets are available, the extracted connected triplets can be tra-

versed and similarity transformations between all connected 

triplets can be applied to transform all exterior orientation 

parameters into a common coordinate system (see the Appendix 

for more details of calculating the similarity transformation 

between two connected triplets).  

 

5. EXPERIMENTS 

To evaluate our method, we implemented the proposed global 

hybrid image orientation method as the workflow in Fig. 1 shows. 

We set the free parameter θang to be 0.17 (in radian) for all 

experiments 1 . The experiments are first conducted on four 

terrestrial close range datasets, one of them is a public dataset 

with 128 images around a building (Zach, et al. 2010) which 

consists of both (nearly) collinear and non-collinear images. The 

other three test data are benchmark datasets published by Strecha 

et al. (2008) which are made up of 11 to 30 images. Each of these 

three datasets is provided with ground truth exterior orientation 

parameters, which are used for comparison. Finally, we further 

explore our method by dealing with one set of oblique quasi-

aerial images from an open public photogrammetric contest 2 

(Özdemir et al., 2019). The bundle adjustment of Wang et al. 

(2019b) integrated with the open source Ceres-solver (Agarwal 

et al., 2017) is applied for refining the results. 

 

5.1   Analyzing various settings of ∆𝟏, ∆𝟐 and sp 

To inspect the influence of  ∆1, ∆2 and sp on solving equation (1), 

we first investigate the rank constraints (i.e., rank(𝐸𝜏𝑛𝑐
) = 6) on 

castle-P30 by calculating the logarithm of the mean ratio 

between the 7-th and 6-th singular values 𝑙𝑜𝑔10(𝜎7/𝜎6)  of all 

triplets in {𝐸𝜏𝑛𝑐
}𝑛𝑐=1
𝐾  for different settings of ∆1, ∆2 and sp. In 

general, a reliable solution of a 3-Image scale consistent essential 

matrix from equation (1) can generate a very small value for 

𝑙𝑜𝑔10(𝜎7/𝜎6). The results shown in Fig. 3 indicate that in our 

experiment 𝑙𝑜𝑔10(𝜎7/𝜎6) decreases as the iteration process runs 

                                                                 
1 https://github.com/wx7531774. 

and it starts to become stable at the 80-th iteration. The case of 

∆1 > ∆2 normally generates much smaller values for 𝑙𝑜𝑔10(𝜎7/𝜎6) 

than that of ∆1 ≤ ∆2 does. Also, the larger the ratio of  ∆1 / ∆2 is, 

the smaller 𝑙𝑜𝑔10(𝜎7/𝜎6) becomes in general, because only if the 

rank constraint is fulfilled, can the spectral decomposition be 

processed for the block rotation constraint. So, we typically set a 

high weight ∆1.     
 

  
Figure 3. Rank constraints of various setting of ∆1, ∆2 and sp. 

 

However, as Fig. 3 shows, we can’t conclude that an infinitely 

large ∆1  is best, because this will lead to the constraint that 

√0.5( 𝐴(𝐸𝜏𝑛𝑐
) + 𝐵(𝐸𝜏𝑛𝑐

))  is a block rotation matrix contributing 

nothing to equation (1). Thus, it is possible that the estimated 

rotation matrix is not an element of SO(3). To demonstrate this, 

we test different values of ∆1 by fixing ∆2=0.01 and sp=100. The 

Frobenius norm between the estimated rotation matrix and its 

closest element in SO(3) is computed for each image denoted as 

𝑅∆, then the logarithm for the largest 𝑅∆ is computed, the result is 

shown in Fig. 4. As can be seen, the estimated rotation matrix 

tend to be further away from SO(3) as ∆1 increases.  
 

 
Figure 4. Block rotation constraint of various settings on ∆1. 

 

Based on this evaluation and to obtain a reliable and accurate 

solution for equation (1), we set ∆ 1 = 100, ∆2 = 0.01 and sp=100 

in our all experiments. 

 

5.2    Experiments on terrestrial close range datasets 

5.2.1 Building dataset 
 

Our hybrid method classifies the triplets of the OMCTS into 

collinear and non-collinear ones and processes them separately. 

To show that this strategy is superior to the idea of considering 

all detected triplets as either non-collinear or collinear, we 

conduct experiments on the building dataset using three 

corresponding pipelines: hybrid, all non-collinear and all 

collinear (they are indicated by “HM”, “ANC” and “AC”, 

respectively, henceforth). As this dataset does not have ground 

truth exterior orientation and Wang et al. (2019b) was 

demonstrated to provide a reliable result for it, we use the exterior 

orientation from Wang et al. (2019b) as reference.  
 

2 https://3dom.fbk.eu/3domcity-benchmark. 
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           AN                     AC                 HM                Reference 

Figure 5. Motion trajectories of Building of different pipelines. 
 

Fig. 5 shows the set of projection centres using the different 

pipelines (without refinement of bundle adjustment). The green 

ellipses denote drifts; the larger the ellipse, the bigger the drift, 

this in other words implies that “ANC” produces the worse result. 

The reason is that some triplets of the dataset are (nearly) 

collinear, which violates the non-collinear constraint described in 

corollary 1, thus, the corresponding estimated 3-Image essential 

matrix is not scale consistent. “AC” performs better than “ANC”. 

We find that the method described in section 4.3 can actually also 

be used for non-collinear triplets. However, errors stemming 

from inaccurate Z values of object points in equation (10) can 

accumulate in the process of traversing all connected triplets as 

described in section 4.4, and this can lead to the drift depicted in 

Fig. 5. “HM” generates the best result, the detected non-collinear 

triplets satisfy the non-collinearity constraint of “ANC” and the 

remaining collinear triplets (less triplets compared to “AC”) 

show less error accumulation. In addition, the method for solving 

collinear triplets only use two necessary relative orientations, 

which is not be as robust as solving non-collinear triplets using 

all the relative orientations. Thus, among these three pipelines, 

based on the result presented our hybrid method is the best one 

to deal with datasets consisted of both non-collinear and collinear 

images.  
 

5.2.2 Three benchmark datasets with ground truth 
 

We also inspected three benchmark datasets with ground truth of 

exterior pose parameters, namely, fountain-P11, Herz-Jesu-P25 

and castle-P30 (Strecha et al., 2008). The interior orientation 

parameters are extracted from the EXIF information. Similar to 

the Building dataset, we ran the three pipelines (“ANC”, “AC” 

and “HM”) for these three benchmarks. Besides, we further 

compared our results to the results of several recent global 

rotation and translation estimation methods. 
 

 
             ANC                            AC                             HM 

(a)  fountain-P11 

 
ANC                            AC                             HM 

(b) Herz-Jesu-P25 

 
ANC                            AC                             HM 

(c) Castle-P30 

Figure 6. Motion trajectory of three benchmarks with different 

pipelines, red triangles denote the results computed from 

corresponding pipelines and blue triangles indicate the ground 

truth exterior parameters. 

 

Fig. 6 shows the results for the exterior orientation parameters of 

these three benchmarks by using the corresponding different 

pipelines (without bundle adjustment), where the blue triangles 

represent ground truth and the red triangles indicate the estimated 

exterior pose parameters (the estimated exterior pose parameters 

are transformed into the coordinate system of ground truth using 

the 3D similarity transformation method presented in Wang et al. 

(2019b)). From Fig. 6, we find that all three pipelines work very 

well on fountain-P11and Herz-Jesu-P25, as the blue and red 

triangles are very close to each other and some almost overlap. 

However, results of castle-P30 look different, a similar 

phenomenon as described above for the building benchmark: 

“AC” is better than “ANC”, and the proposed method “HM” is 

the best. This can be explained by the fact that the images of 

fountain-P11and Herz-Jesu-P25 are all almost non-collinear and 

the relative orientations are already rather accurate, so error 

accumulation is not a major problem, thus, all three pipelines 

perform very well. However, Castle-P30 is closer to building in 

that it has both collinear and non-collinear triplets, and outliers 

of relative orientations exist due to repetitive structures. 
 

Visualizations of the results in Fig. 5 and Fig. 6 are provided for 

a qualitative comparison of the different pipelines. To generate a 

numerical analysis, based on the three benchmarks with ground 

truth we calculate the mean rotation error denoted as mean angle 

error and the mean translation error which are both listed in Tab. 

1. From this table, it can be inferred that the exterior orientation 

parameters (rotation and translation) estimated by “ANC”, “AC” 

and “HM” achieve nearly the same accuracy on fountain-P11 and 

Herz-Jesu-P25, respectively. The result of castle-P30 shows a 

very explicit superiority of “HM”: the angle and translation error 

of our hybrid method are approximately 15 to 20 and 5 to 10 

times smaller than those of “ANC” and “AC”, respectively. What 

Tab. 1 implies is consistent with Fig. 6, thus, we can conclude 

that both “ANC” and “AC” can perform very well on small 

datasets with very few collinear triplets such as fountain-P11and 

Herz-Jesu-P25 (as Fig. 6 (a) and (b) illustrate), whereas, for the 

castle-P30 dataset with not only more images but also both, col-

linear and non-collinear images (see Fig.6 (c)), “ANC” results are 

invalid due to the non-collinearity constraint requirement, and the 

performance of “AC” also decreases because error accumulation 

increases, when more connected triplets are traversed. As in the 

first test, “HM” provides the best solution for the problem at 

hand. A visualization of image orientation and sparse 3D object 

point result after bundle adjustment is shown in Fig. 7. 
 

 
Figure 7. Visualization of benchmarks’ SfM results by “HM” 

(after bundle adjustment). Colourful triangles denote exterior 

pose parameters; red dots are estimated 3D object points. 

 

To obtain a deeper understanding of the performance of “HM”, 

we compare rotation and translation results of “HM” with those 

of several global rotation estimation and global translation 

estimation methods, respectively. Tab. 2 presents numerical 

results for the mean rotation and translation errors of different 

methods. Before bundle adjustment, “HM” outperforms all the 

other methods listed in Tab.2, specifically, the mean angle errors 

and mean translation error of “HM” are the smallest on all these 

three benchmark datasets (except for the translation error of 

castle-P30, where Wang et al. (2019b) is 2 millimetres better than 

“HM” which is negligible). This is probably a consequence of the 
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fact that we only use some optimal triplets in the extracted 

OMCTS, the selection acts as a kind of blunder detection method 

for the relative orientations, whereas the other methods typically 

employ more redundant relative orientations, and may thus be 

negatively influenced by relative orientations not spotted as 

outliers. After bundle adjustment, both rotation and translation 

accuracies are improved on all benchmark datasets, and 

remaining differences are negligible. 

 

Table 1. Mean angle error R in degree and mean translation error T in meter for different pipelines.  We highlight the best results of 

each dataset. 
 

Table 2. Mean angle error R in degree and mean translation error T in meter for different global estimation methods. We compared our 

rotation results with Chatterjee and Govindu (2013) (Global_R), Reich and Heipke (2016) (1) and Jiang et al. (2015) (2). GR_L2 adopts 

the “Global_R” method with L2 norm, their corresponding results are provided by Wang et al. (2018). The translation results are 

compared with Reich and Heipke (2016) (1), Jiang et al. (2015) (2), Wang et al. (2019b) (3) and Wang et al. (2019a) using L1 and L2 

norm denoted as Global_T and GT_L2, respectively. Note that the results of (1), (2) and Wang et al. (2019a) are directly cited from 

the corresponding papers, and we reimplemented the approach of Wang et al. (2019b). The best results of each dataset are highlighted. 

 

5.3 Experiments on oblique aerial image dataset 

 

Figure. 8 Overall view of the simulated urban scenario. 

Table. 3 Precision assessment. RMS(x), RMS(y) and RMS are 

the RMS (root mean square) of reprojection residuals (in pixels) 

in image space in horizontal direction, vertical direction and 

Euclidean residual. 
 

Table. 4 Accuracy assessment in 10-1 mm. CH1, CH2 and CH3 

are the corresponding check bars showed in Fig. 8. 

To further explore the capability of our method, we test another 

dataset of oblique quasi-aerial images (Özdemir et al., 2019). 

This dataset includes a set of 420 nadir and oblique images 

(6016×4016 pixels each) captured in a controlled environment 

over an ad-hoc 3D test field which simulates a typical urban 

scenario, as shown in Fig. 8. Three evaluation criteria are 

proposed to assess the image orientation results: 1. Precision 

assessment, the reprojection residuals of 115 targets (red crosses 

in Fig. 8) are used to evaluate the precision of orientation results 

in image space; 2. Accuracy assessment, three control bars 

(shown as blue lines in Fig. 8) and three check bars (showed as 

yellow lines in Fig. 8) with known length are provided to evaluate 

the accuracy of the orientation results; 3. Relative accuracy 

assessment, the errors of translation and rotation are evaluated by 

taking the provided exterior pose parameters as a reference. More 

information is provided by Özdemir et al. (2019). 
 

 
before bundle adjustment 

RMSE 

(X) 
RMSE 

(Y) 
RMSE 

(Z) 

RMSE 

(O) 

RMSE 

(P) 

RMSE 

(K) 

HM 13.59 54.78 16.56 10.65 10.19 10.84 

(II) 14.66 53.58 19.63 11.73 13.35 13.99 

(III) 18.14 55.96 17.95 11.73 13.35 13.99 

 
after bundle adjustment 

RMSE 

(X) 
RMSE 

(Y) 
RMSE 

(Z) 
RMSE 

(O) 
RMSE 

(P) 
RMSE 

(K) 

HM 5.645 24.833 8.064 1.495 1.444 2.455 

(II) 5.665 24.824 8.334 1.496 1.435 2.461 

(III) 5.687 25.413 8.237 1.520 1.440 2.457 

Table. 5 Relative accuracy assessment. Taking the exterior pose 

parameters of Özdemir et al. (2019) as a reference, RMSE (X), 

(Y) and (Z) are the root mean square error of translation 

parameters which is in 10-1 mm, RMSE (O), (P) and (K) are the 

root mean square error of three rotation angles (O, P and K denote 

Omega, Phi, Kappa, respectively) which is in degrees. 
 

The corresponding evaluation criteria are listed in Tab. 3, 4 and 

5, where the results of Özdemir et al. (2019) are denoted by (I); 

for this method results prior to bundle adjustment do not exist), 

Wang et al. (2019a) using L1 norm is (II) and Wang et al. (2019b) 

 
fountain-P11 Herz-Jesu-P25 castle-P30 

ANC AC HM ANC AC HM ANC AC HM 

R 0.161 0.159 0.156 0.186 0.189 0.191 5.732 4.643 0.277 

T 0.020 0.022 0.019 0.033 0.033 0.028 3.794 1.573 0.155 

R 
before bundle adjustment after bundle adjustment 

HM Global_R GR_L2 (1) (2) HM Global G_L2 

fountain-P11 0.156 0.251 0.261 0.249 0.45 0.042 0.136 0.140 

Herz-Jesu-P25 0.191 0.238 0.365 0.206 0.39 0.023 0.053 0.048 

castle-P30 0.277 0.745 0.954 0.583 0.96 0.084 0.133 0.129 

T 
before bundle adjustment after bundle adjustment 

HM Global_T GT_L2 (1) (2) (3) HM Global G_L2 (3) 

fountain-P11 0.019 0.035 0.041 0.035 0.072 0.037 0.008 0.010 0.010 0.011 

Herz-Jesu-P25 0.028 0.085 0.131 0.083 0.061 0.077 0.013 0.014 0.013 0.015 

castle-P30 0.155 0.161 0.194 1.312 1.620 0.153 0.019 0.019 0.020 0.022 

 before bundle adjustment after bundle adjustment 
RMS(x) RMS(y) RMS RMS(x) RMS(y) RMS 

(I) - - - 0.140 0.147 0.204 

HM 2.199 3.437 4.474 0.132 0.138 0.191 

(II) 2.234 3.617 4.591 0.132 0.138 0.191 

(III) 2.354 3.444 4.778 0.132 0.138 0.191 

 before bundle adjustment after bundle adjustment 
CH1 CH2 CH3 CH1 CH2 CH3 

(I) - - - -0.340 -1.046 0.333 

HM 9.434 14.52 8.191 -0.915 1.462 0.533 

(II) 9.232 17.32 7.969 -0.841 1.482 0.606 

(III) 9.116 15.87 8.492 -0.761 1.503 0.685 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-95-2020 | © Authors 2020. CC BY 4.0 License.

 
101



 

is indicated as (III), “-” means the corresponding items are not 

available. Before bundle adjustment, among these methods we 

find that “HM” typically generates the best results (as the 

highlighted items show in these three tables) with only small 

discrepancies; this finding is basically identical with the results 

of castle-P30 shown in Tab. 2. “ANC” and “AC” were also 

tested, however, “ANC” failed when solving equation (1) due to 

the collinearity of projection centres, see. Fig. 9, and “AC” is also 

not reliable as we have explained in the last section. The rotation 

error of (II) and (III) are identical because both of them apply the 

same method of Chatterjee and Govindu (2013) to estimate 

global rotations. After bundle adjustment, “HM”, (II) and (III) 

achieve nearly the same precision. (I) is not included in Tab. 5, 

because the exterior orientation parameters of (I) are the 

reference for the relative accuracy assessments. The results after 

bundle adjustment have been published in a contest of image 

orientation3. Fig. 9 is the visualization of image orientation and 

3D object points using “HM” from two different perspectives. 

 

Figure. 9 Visualization of SfM results by using “HM”. 

 

 

6. CONCLUSIONS 

In this paper, we present a novel hybrid global image orientation 

method which can solve global rotation and translation 

simultaneously. Specifically, an optimal minimum cover 

connected triplet set (OMCTS) is extracted, among which non-

collinear and collinear triplets are first solved individually and 

global exterior pose parameters are then estimated by traversing 

all these solved connected triplets. Comparisons with several 

recent global SfM methods on different benchmarks demonstrate 

that our method can normally provide the best initial estimation 

of exterior orientation parameters for bundle adjustment. In the 

future, we will test larger and more interesting datasets, such as 

images downloaded from Internet (Wilson and Snavely, 2014), 

as these images are normally unordered which can create 

additional challenges for extracting the OMCTS. Also, the 

comparisons before applying final bundle adjustment and the 

time efficiency of the proposed hybrid method needs to be further 

investigated.  

 

APPENDIX 

1. Corollary 3. Given a non-collinear triplet, the corresponding 

scaled consistent 3-Image essential matrix is invariant to scales. 
 

Proof. Assume E is a scale consistent 3-Image essential matrix, 

according to corollary 1 the block matrices of E can be denoted 

as Eij = αiRi
T (Ti - Tj)Rjαj. Then, let �̅� be a 9×9 matrix whose cor-

responding block matrices are indicated as �̅�𝑖𝑗 = βij Eij, where βij 

is a non-zero arbitrary positive scale factor. For a 3-Image essen-

tial matrix, we have three arbitrary scale factors β12, β13, β23. Next, 

we show that for these three arbitrary scale factors it is possible 

to compute a new scalar for each image, whereas, it is not doable 

for an N-Image essential matrix with N>3.  
 

                                                                 
3 Find more details at http://3dom.fbk.eu/3domcity-task-1-result 

1) N = 3, the goal is to obtain new scalars γ1, γ2, γ3 s. t. they 

fulfill the new scale consistent 3-Image essential matrix �̅�  

γ1 ∙ γ2 = 𝛼1𝛼2𝛽12

γ1 ∙ γ3 = 𝛼1𝛼3𝛽13

γ2 ∙ γ3 = 𝛼2𝛼3𝛽23

  ⇒ [
1 1 0
1 0 1
0 1 1

] [

𝑞1

𝑞2

𝑞3

] = [

log 𝛽12

log 𝛽13

log 𝛽23

] where 𝑞𝑖 = 𝑙𝑜𝑔
γ𝑖

𝛼𝑖
  (i 

=1,2,3), PM = [
1 1 0
1 0 1
0 1 1

]  

 

In this case, we find that rank (PM) = 3 which implies we can 

compute 𝑞𝑖  and get γ𝑖 , and γ1 = 𝛼1√
𝛽12𝛽13

𝛽23
, γ2 = 𝛼2√

𝛽12𝛽23

𝛽13
, γ3 = 

𝛼3√
𝛽13𝛽23

𝛽12
. 

2) N ≥ 4, we assume N = 4, similar to N =3. We can also set up 

equations similar to PM when N = 3 and the corresponding ma-

trix PM = 

[
 
 
 
 
 
1 1
1 0
1 0

    
0 0
1 0
0 1

 0 1
0 1
0 0

    
1 0
0 1
1 1]

 
 
 
 
 

 and rank (PM) = 4, there is an infinite 

number of  solutions and we cannot obtain a unique closed form 

solution like the case of N = 3, this is also true when N > 4. 
 

Hence, the new 3-Image essential matrix �̅�  is also scale con-

sistent, which means that a scale consistent 3-Image essential ma-

trix is invariant to scalars. 

 

2. Algorithm for generating the minimum cover connected 

image triplet set 

Input Original exhaustive triplet set, each triplet’s quality in-

dicator, corresponding set of images 𝐼𝑛 = {1,2,3,… ,𝑛}. 
 

Output Optimal minimum cover connected image triplet set 

1. Build a triplet graph Gτ = {τ, ε𝑡}, where τ is the original 

exhaustive triplet set denoted as nodes and ε𝑡 are the edges 

between triplets (two triplets are connected only if they 

share two common images). 

2.  Sort all triplets by their quality indicators in descending 

order, obtain corresponding triplet index set Ind. 

3. Start with the triplet of largest quality indicators: 

      Do { 

      Remove τIndj and its corresponding edges from Gτ, then, 

check that: 

  

     a. The remaining Gτ is connected; 

     b. The images’ number of remaining Gτ doesn’t reduced. 
 

If both a and b fulfil, Gτ is successfully reduced by 

removing the corresponding triplet τIndj, otherwise, we keep 

Gτ unchanged and try the next iteration by considering 

j=j+1;  

     }while ( j = {1,2,3,…size of (Ind)}) 
 

Finally, the triplets which exist in the remaining Gτ consist of 

the triplet set that we desire. 

 

3. Solving similarity transformation between two connect 

triplets 
 

 
Figure 10. Two connected triplets. 
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Given two connected triplets shown by Fig. 10, image 2 and 3 are 

the shared images, {𝑅1, 𝑅2, 𝑅3}, {𝑡1, 𝑡2, 𝑡3} and {𝑅2
′ , 𝑅3

′ , 𝑅4
′ }, 

{𝑡2
′ , 𝑡3

′ , 𝑡4
′ } are the exterior pose parameters calculated from these 

two triplets, respectively. Our goal is to find a similarity transfor-

mation which can bring the second triplet to the coordinate sys-

tem of first triplet. 
 

For the relative rotation of the similarity transformation two so-

lutions can be generated, i.e., 𝑅𝑟 = 𝑅2 𝑅2
′ 𝑇

 or 𝑅𝑟 = 𝑅3 𝑅3
′ 𝑇

. Then, 

we obtain a mean rotation matrix 𝑅𝑟
̅̅ ̅ = (𝑅2 𝑅2

′ 𝑇
 + 𝑅3 𝑅3

′ 𝑇
)/2, and 

project 𝑅𝑟
̅̅ ̅ to the space of SO(3) by SVD, i.e., 𝑅𝑟

̅̅ ̅ = U𝛬VT, finally, 

𝑅𝑟 = U𝐼3×3VT. The scale factor λs and translation ts of the simi-

larity transformation are solved by  
 

                     𝑡2 = λs𝑅𝑟𝑡2
′  + ts, 𝑡3 = λs𝑅𝑟𝑡3

′  + ts                  (12) 
 

As each translation 𝑡𝑖 has three entries, there are 6 equations and 

four unknowns in equation (12), least square is then used to ob-

tain an optimal solution. Finally, image 4 can be transformed to 

be consistent with image 1,2 and 3 by 𝑅4=𝑅𝑟𝑅4
′ , 𝑡4 = λs𝑅𝑟𝑡4

′  + ts. 
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