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Abstract

Intramedullary nailing of diaphyseal femoral fractures is a commonly used treatment method

in dogs because of its biological and biomechanical advantages compared to bone plating.

To achieve adequate resistance of the intramedullary nail against torsional and axial com-

pressive forces, additional application of transcortical screws is needed. As these interlock-

ing screws represent a frequent cause of post-operative complications, a new expandable

intramedullary nail (EXPN) was developed, which was designed to provide adequate frac-

ture stabilisation without the need for transcortical fixation. The evaluation of the biomechan-

ical properties of the new EXPN with regard to torsional, compressive and bending stability

as well as direct comparison to the biomechanical properties of conventional Steinmann

(STMN)- and interlocking (ILN) nails was carried out with different biomechanical test

arrangements. No significant statistical differences regarding the torsional and bending

resistance between the EXPN and ILN group were seen, which indicates that rotatory as

well as bending stability of the innovative EXPN is similar to the conventional ILN. Neverthe-

less, the percentage deviation between the attempted and successfully reached physiologi-

cal compressive forces was significantly higher (p = 0.045) in the EXPN group compared to

the ILN group, which indicates that the compressive stability of the innovative EXPN might

be weaker compared to the ILN. In summary, the new EXPN represents an interesting alter-

native to conventional intramedullary nails. However, in direct comparison to conventional

interlocking nails, the EXPN has shown weaknesses in the neutralization of axial compres-

sive forces, which indicates that at least biomechanically the interlocking nail seems advan-

tageous. Further in-vitro and in-vivo investigations are required before clinical use can be

recommended.
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Introduction

Due to its advantageous biomechanical properties compared to bone plating [1–10], intrame-

dullary nailing is considered as the gold standard for treating most diaphyseal fractures in the

human femur [1, 2, 9, 11–14] as well as it being a commonly used technique in canine osteo-

synthesis [2, 15, 16]. These advantages include placement near the neutral axis of the bone [1–

5, 8, 9] as well as the larger area moment of inertia of the intramedullary nails, providing

higher resistance in bending compared to plates of similar size [2, 4, 8, 17].

Besides these mechanical benefits, intramedullary nails are also reported to be biologically

advantageous [4, 9, 10, 18], e. g. providing a lower incidence of postoperative infection[18]. In

order to ensure sufficient stability against torsional and axial compressive forces, the most

commonly used intramedullary nails are interlocking nails (ILN), which are dependent on the

insertion of transcortical screws or bolts [2, 8, 16]. Even though various studies highlighted an

excellent rate of success for the use of interlocking nails in dogs [2, 5, 10, 11, 19, 20], the appli-

cation of transcortical screws also represents a major cause of complications and implant fail-

ure in canine osteosynthesis [4, 8–10, 16, 20–22], such as screw deformation and breakage [5,

6, 21] as well as weakening of the bone strength due to drilling holes needed for screw applica-

tion [8]. Furthermore, if screw removal is indicated, the empty holes act as stress concentra-

tors, which severely decrease the torsional strength of the bone [8]. In addition, the screw

holes significantly weaken the rod, which may lead to nail breakage [10].

These concerns regarding screw application led to the development of a new expandable

intramedullary nail (EXPN) for treating diaphyseal fractures of the canine femur, which was

biomechanically evaluated in the present study. The purpose of the new EXPN was to display

the good biomechanical and biological properties of conventional ILN without its disadvan-

tage of the necessity to apply transcortical screws. The EXPN consists of several expandable

segments that extend after nail insertion has been accomplished, leading to intramedullary fix-

ation of the bone-nail-interface.

The aim of this in-vitro study was to examine the biomechanical properties of the EXPN in

the canine femur as well as compare them with a conventional Steinmann nail (STMN) and

regular ILN. For this purpose, the implants were exposed to compressive, torsional and bend-

ing forces of physiological and supraphysiological magnitude.

Materials and methods

Specimen collection and preparation

Thirty-two femora from one skeletally immature dog and 31 mature dogs, which had been

euthanised or had died of causes unrelated to this study, were collected, wrapped in saline-

soaked towels and stored at -20 ˚C until testing.

No approval of an animal research ethics committee was required, because only femora

from dogs euthanised due to medical reasons not related to this study were used. The cadaveric

femora were collected after permission of the patients’ owners at the Small Animal Clinic, Uni-

versity of Veterinary Medicine Hannover, Germany. Exclusion criteria for specimen selection

was excessive femoral curvature.

Before carrying out nail insertion, a transverse or short oblique (approximately 30 degrees

perpendicular to the longitudinal axis of the femur) osteotomy at the level of the mid diaphysis

was performed with an oscillating saw.

For compressive testing of transverse-fractured specimens, fracture treatment was success-

fully completed while maintaining a 5 mm gap at the fracture site. In all other cases, the aim

was to achieve gap closure to ensure bone-to-bone contact of both fracture segments.
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Composition and functionality of the EXPN

The EXPN was constructed of stainless-steel 316L and developed at a company experienced in

developing veterinary biomedical implants (Innoplant Medizintechnik GmbH, Hannover,

Germany).

The composition of the EXPN is presented in Fig 1.

To ensure easy insertion of the EXPN into the medullary cavity, the loose expandable seg-

ments were initially lined up on an implant inner casing, providing a straight nail without any

edges.

After insertion, the self-locking capabilities of the nail were initiated according to the man-

ufactures guide, whereby the expandable units were forced against the cancellous and cortical

bone to match the endosteal dimensions and fill the medullary cavity.

Fig 1. Expandable nail: Composition and 3D-model of the implanted innovative EXPN. (A) Composition of the

newly expandable nail. (A1) End cap (locking nut) of the EXPN, which prevents the tension nut (A2) from loosening.

(A2) Tension nut, that permits the expandable segments (A3) to extend with increasing torque. (A3) Expandable

segments, with oblique borders, which sit loosely on the threaded rod (A4). (A4) Threaded rod that bears all

expandable segments and the bridging element (A5). The threaded part allows the tightening of the end cap (A1) as

well as of the tension nut (A2). The distal non-cutting tip is fixed with the rod. (A5) Bridging element, which links the

fracture segments to ensure equal distribution of the incoming forces alongside the femoral axis.(B1) Expandable nail

without the end cap and tension nut, with expandable segments fastened together on the implant’s inner casing,

avoiding early expansion of the elements to allow unproblematic insertion of the nail. (B2) Expanded nail with

tightened tension nut and end cap (same nail as in picture B1), demonstrating shortening of the initial nail length.

https://doi.org/10.1371/journal.pone.0231823.g001

PLOS ONE Biomechanical evaluation of a new expandable intramedullary nail for treating simple femoral fractures in dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0231823 May 5, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0231823.g001
https://doi.org/10.1371/journal.pone.0231823


After expansion, the expandable segments should provide high contact pressure with the

inner femoral, which might result in adequate compressive, rotatory and bending stability as

well as fragment alignment without the need for interlocking screws (Fig 1).

Implantation technique

The selection of an appropriately sized nail was ensured by measuring the best fitting diameter

at the isthmus of the femur in a caudocranial and a mediolateral radiograph. Normograde nail

insertion was carried out, followed by anatomical reconstruction of the fracture segments and

locking of the implant (Fig 1C).

Additional information regarding the implantation- (S1 Video) and explantation (S2

Video) technique can be found in the supporting information.

To ensure a comparison of the biomechanical properties of the EXPN, fractured femora

were also treated with conventional STMN (IMEX Veterinary, Inc., Longview, Texas, USA) as

well as regular ILN (Dueland Interlocking Nail System, Innovative Animal Products Inc.

Rochester Minnesota, USA) based on the surgical techniques described by McLaughlin et al.

[16].

Further detailed information regarding the length and diameter of the used intramedullary

nails can be found as supportive information (S1 Table).

Radiographic examination (x-ray and computed tomography)

Prior to nail insertion, radiographs of all femora were taken in caudocranial and mediolateral

orientation in order to ensure selection of appropriately sized implants. The presence of osteo-

phytes at the femoral neck was rated in a semi-quantitative fashion (0—no osteopyhtes to 3—

severe osteophytes). Femoral measurements were carried out using the easyIMAGE software

(Vers. 8.0.0.19/R7, VetZ GmbH, Hannover, Germany). The femoral lengths were measured in

caudocranial projection from the most proximal extremity of the greater trochanter to the

most distal part of the lateral condyle. In addition, the diameter of femoral isthmus and cortical

thickness in both mentioned planes were measured. The corticomedullary index (CMI) of all

femora was calculated using the isthmus diameter and surrounding cortical thickness (medial

+ lateral portion) [23], measured in the caudocranial radiograph: CMI ¼ cortical thickness
isthmus diameter [24].

Furthermore, the canal flare index (CFI) was evaluated in a quantitative fashion. In accor-

dance with previous studies [23, 25], the CFI was investigated as a ratio of inner medullary

width at the level of the proximal extremity of the lesser trochanter to the inner medullary

width at the level of the canal isthmus. In the present study, radiographs in a caudocranial pro-

jection were used for measuring the CFI. Moreover, femoral curvature was evaluated in a med-

iolateral radiograph in a semi-quantitative fashion (1—minor bowing to 6—strong bowing).

In addition to this, biplanar radiographs and computed tomographic (CT) images were

taken from all femora after nail insertion (Fig 2) as well as after biomechanical testing for

selected specimens to verify correct nail placement and to determine whether fractures or

smaller defects had been caused by nail insertion or mechanical testing.

Moreover, the maximum increase in the initial diameter of the EXPN was radiographically

evaluated after successful nail implantation. Therefore, the largest diameter between two adja-

cent expandable segments was measured.

Additionally, the shortening of the initial nail length due to the expansion process was also

measured using radiographs.

Fracture reduction was evaluated in a semi-quantitative fashion (1—nearly anatomical

reduction of the fracture ends to 6—high degree of fragment displacement).
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Radiographs were carried out with ‘Philips Bucky Diagnost’ (Philips Medical Systems DMC

GmbH, Hamburg, Germany), at an exposure of 52 kilovoltage (peak) and 4.6 to 5.1 milliam-

pere seconds depending on femur size. CT-images were obtained with ‘Philips Brilliance 64‘

(Philips Medical Systems DMC GmbH, Hamburg, Germany) at constant settings of 120 kV

and 145 to 150 mAs depending on femur size.

Biomechanical testing

The biomechanical properties of the bone-nail constructs were investigated using non-

destructive (physiological) eccentric axial compressive (sample size n = 15) and torsional tests

(sample size n = 14), as well as destructive (supraphysiological) maximum force tests for bend-

ing (sample size n = 6) and torsional loadings (sample size n = 5).

For the non-destructive testing groups, the specimens were loaded with physiological forces

for axial compressive (recorded in Newton (N)) as well as torsional testing (torque, recorded

in Newton metres (Nm)).

The physiological forces represent the loading conditions dogs are exposed to in normal

motion and thus depend on the dogs’ bodyweight. These forces were determined in previous

examinations by multi-body simulation of the physiological loads of a dog, whose kinematic

and kinetic data were determined in gait analyses [26, 27]. Afterwards, the forces, which are

physiologically acting on the femoral bone, were calculated by means of a multi-body simula-

tion using the software AnyBody™ (AnyBody Technology A/S, Denmark). These loads repre-

sent the basis of the forces and moments to be assumed for the biomechanical tests. However,

the model was based on the data of a single dog with a certain weight. As the femora of the

tests originated from dogs covering different body weights, the loads had to be scaled to the

Fig 2. Radiographs of canine femora with implanted (A) EXPN, (B) ILN and (C) STMN. (A) Caudocranial (A1) and mediolateral (A2)

radiograph of a femur with an oblique fracture and implanted and expanded EXPN. (B) Caudocranial (B1) and mediolateral (B2)

radiograph of a femur with oblique fracture and implanted ILN.

https://doi.org/10.1371/journal.pone.0231823.g002
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considered weights. Thus, the applied test forces and moments were calculated using a scaling

factor in relation to the corresponding body weight of the dog [27]. This scaling factor was

determined by linear interpolation. Thus, the physiological compressive force F is scaled and

calculated using Eq 1:

F ¼ 19;35
N
kg
� weight kilogramme kgð Þð Þ Eq 1

The physiological torsional moment is calculated in the same fashion using Eq 2:

T ¼ 0; 05
Nm
kg
� weight kgð Þ: Eq 2

Two different machines were used for biomechanical testing. The torsional and compres-

sive loads were carried out on a tensile testing machine S100/ZD (Dyna-Mess Prüfsysteme

GmbH, Aachen, Germany). A position-controlled Wolpert Testatron tensile tester (Amsler

Otto Wolpert-Werke GmbH, Ludwigshafen, Germany) was used for the bending tests.

The clamping device of the S100/ZD was modified according to the type of load. The testing

device was path-controlled and pressure is applied to the bone as a result of the continuous

upward movement of the clamp. The resulting force was measured by a load cell. Additionally,

the upward movement of the clamp (displacement) was recorded. The displacement consti-

tuted a combination of yielding of the bone-nail construct to the resulting force as well as the

stiffness and mechanical play of the testing machine consisting of many different components.

The torsional testing loads were applied by using a ball screw drive, transforming the trans-

lational axial displacement into a torsional motion.

The distal end of the femur, which was cast in polyester resin, was fixed in the container

with screws. The proximal part of the femur was fixed in the clamp. It has to be noted that as

rotation of the container occurs due to axial shortening of the testing device, slight compres-

sive forces are added to this type of loading configuration as well. Therefore, an application of

isolated torsional forces was not possible with this set-up.

For axial compressive tests, the container was removed and a flange was used for force

transmission. The axial load was applied eccentrically to the femoral head, representing the in

vivo loading configurations [15]. It has to be noted that due to this eccentric load transmission,

the femora were also affected by bending forces [8], depending on the degree of femoral curva-

ture and neck-shaft angle.

In order to carry out tests under a bending load, the femur was placed horizontally on the

three-point bending test device within the Wolpert Testatron testing machine. The testing

force was applied perpendicular to the femoral axis at the level of the mid-diaphysis by a

punch with a punch velocity of 0.05 mm/s.

In the non-destructive tests, loading of the femora was terminated when the physiological

compressive force (F) or the physiological torque (T) was reached or failure occurred. In the

destructive tests, however, loading was continued until failure occurred. Failure was defined as

a visible secondary fracture of the bone, a clear displacement (more than 5 mm for compres-

sive tests or more than 5˚ for torsional tests) of the fracture segments or continuous stagnation

or decrease in the measured force illustrated by the load-displacement curve. The loading

velocity was ω = 0.72 rad/s or v = 0.05 mm/s for torsional and compressive tests, respectively.

After testing had been completed, the degree of rotation (˚) of the bone segments at the

fracture site was measured quantitatively. Furthermore, any shift, opening or compression of

the bone segments was evaluated in a semi-quantitative fashion (0—no to 6—very high shift/

opening/compression). Shift was defined as horizontal displacement, opening (movement of
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both bone segments into opposite directions) and compression (movement of both bone seg-

ments towards each other) as vertical displacement.

In addition, the occurrence of secondary femoral fracture due to biomechanical testing was

checked visually and by means of radiography.

Statistical analysis

For statistical data analysis, the software SAS 9.4, using the “SAS Enterprise Guide” version

7.15 (SAS Institute Inc., Cary, North Carolina, USA) was used.

The mean values, median, range and standard deviations were calculated for each

parameter.

The investigation on the normal distribution of the parameters was conducted by the Sha-

piro Wilks test and visual assessment of qq-plots.

In addition, contingency tables were compiled and evaluated for dichotomous parameters.

Depending on sample size, the chi-square test or Fisher-Yates test was used to check for statis-

tically significant associations between the variables.

Moreover, logistic regression analysis was performed to investigate associations between

dichotomous and quantitative parameters.

Examination of morphological (isthmus diameter, CFI, CMI and femoral curvature) differ-

ences of the specimens between the three implant groups as well as displacement of the testing

device, percentage deviation between the calculated and actual reached physiological forces,

maximum reached torque and force (supraphysiological torsional tests and destructive bend-

ing tests) was carried out using the two-sample students-t test for normally distributed param-

eters or rather the Wilcoxon-2 sample test for non-parametric data.

The level of statistical significance was set at p<0.05.

Results

Specimens (implant-bone constructs)

In all specimens, nail insertion was performed by opening the proximal part of the medullary

cavity. Additional reaming of the diaphyseal part of the femora for enlarging the medullary

canal was not necessary.

No statistically significant differences regarding the endosteal femoral morphology (isth-

mus diameter, femoral curvature, CMI and CFI) of the used specimens between the three dif-

ferent implant groups were found.

Expandable nails. A total of 20 EXPN were implanted (diameter: median 10 mm; length:

median 120 mm; S1 Table). Two femora were fractured during the expansion process of the

EXPN (Nos. 8 & 10; S2 Table), but were not excluded from biomechanical testing. One of

these fractures was stabilised with cerclage wire initial to biomechanical testing. In one speci-

men the fracture occurred as a result of the expansion process. Closure of the artificially pre-

pared fracture was considered to be successful if no continuous fracture gap remained after

implant insertion. This was achieved in all cases (15/15), where complete closure of the frac-

ture gap was intended.

The expansion mechanism of the EXPN resulted in shortening of the nail, depending on

the number of expandable units and the degree of expansion (up to 10 mm shortening; S2

Table).

Interlocking nails. Seven interlocking nails (diameter: median 6 mm; length: median 165

mm) were used. In all fractures treated with interlocking nails, four transcortical screws (two

screws each at the proximal as well as the distal segment) were placed. One bone (specimen

no. 25) showed an approximately 2 cm longitudinal fracture running from the proximal
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transcortical screw of the distal bony fragment to the osteotomy gap (S1 Fig). The specimen

was not excluded from biomechanical testing and no cerclage wire was attached. Gap closure

was attempted in four specimens and was successfully accomplished in two cases (S2 Table).

Steinmann nails. Five STMN (diameter: 5 mm; length: median 140 mm) were inserted.

Gap closure was achieved in 4/4 cases.

Additional radiographs that were obtained after nail insertion indicated that all nails had

been placed in the intended position.

Biomechanical testing

Physiological torsional testing. Fig 3 illustrates the load-displacement curves of the dif-

ferent implants. It has to be noted that these curves present the displacement (shortening) of

the testing device related to the measured force. However, this force does not represent the

actual acting torque on the specimen, but rather indicates the degree of load resistance of the

specific construct. The EXPN gradient compared to the remaining implants was significantly

higher in the initial period of testing. Nevertheless, after a moderate amount of displacement,

the ILN gradient was about the same as the EXPN. In contrast, the STMN curve did not rise

until a high degree of displacement was present.

In this testing set-up, there were no significant differences between the implant groups and

the displacement of the testing device.

The percentage deviation between the calculated and successfully reached physiological

forces tended to be higher in the STMN group compared to the EXPN group (p = 0.055).

Expandable nails. In 8/10 cases, the bone-implant constructs reached the calculated phys-

iological torque. Only in one specimen was minor rotation (approximately 3˚) of the bone

fragments visible. Furthermore, in 3/10 constructs, a minor (2x) to moderate (1x) shift of the

fragments at the fracture site, as well as a minor (3x) to moderate (1x) opening of the fracture

gap in 4/10 specimens were present. Nevertheless, there was no evidence of gap compression.

Due to testing, in 2/10 cases, a 2–4 cm longitudinal fracture starting from the osteotomy gap

occurred (Table 1).

Fig 3. Load-displacement curves of physiological torsional testing (one example of each implant type). The line

graph illustrates the amount of axial load affecting the bone-nail interface (y-axis) in relation to the shortening/

displacement (x-axis) of the testing device. In the torsional test, this curve does not represent the actual acting torque.

https://doi.org/10.1371/journal.pone.0231823.g003
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One of these bones had already obtained a fissure during nail insertion, but the fracture fur-

ther expanded (approximately 4 cm) as the torque acting on the femur increased. The other

fracture (approximately 2 cm) was seen in a specimen without any evidence of femoral fracture

due to previous nail insertion (S2 Fig). Neither of these secondary fractured constructs reached

the calculated physiological torque. Nevertheless, the construct that did fracture during nail

insertion and was treated with a cerclage wire (specimen no. 8) successfully reached the physi-

ological forces as well as showing no rotation, shift of the fragments or opening of the fracture

gap.

Interlocking nails. In 2/2 femora with inserted ILN, the calculated physiological torque

was reached. Although in both tested specimens, no rotation, shift, opening or compression of

the bone fragments was visible after the testing procedure, moderate torsional shifting

(approximately 3–5˚) was visible during testing as torsional load was applied. In addition, in

one bone-implant construct, a longitudinal fracture (approximately 3 cm) starting from the

osteotomy gap was present as a result of the testing procedure (S3 Fig).

Steinmann nails. 0/2 implant-bone interfaces reached the calculated physiological torque.

In both specimens, torsional failure occurred due to approximately 5˚ rotation as well as in 1/2

implant-bone constructs a moderate shift of the fracture ends was visible. In both femora, a

minor (1x) to high (1x) degree of gap compression occurred, this resulting in bone-to-bone

contact while testing. Nevertheless, no fractures were detectable after testing.

Physiological compressive testing. Fig 4 illustrates the load-displacement curves of

selected specimens with the three different inserted nail types. The gradient of the EXPN and

ILN were very similar, whereas the STMN curve did not rise at all. A higher gradient relates to

a higher resistance against incoming loads.

In the compressive testing set-up, the STMN group showed a significantly higher displace-

ment of the testing device compared to the ILN group (p = 0.049). In addition, the STMN

group tended to show a higher displacement compared to the EXPN group (p = 0.05).

The percentage deviation between the calculated and successfully reached physiological

forces was significantly higher in the EXPN group compared to the ILN group (p = 0.045).

Expandable nails. In 2/10 cases, the bone-implant constructs successfully reached the cal-

culated physiological forces. In all tested specimens, there was no rotation of the bone

Table 1. General information of the used specimen and results of biomechanical testing.

Implant

groupa
Type of

testing

Number of

used

specimens

Mean

body

weight

(kg)

Mean

femur

length

(mm)

Mean

corticomedullary

index (CMI)

Mean

canal flare

index

(CFI)

Mean nail

diameter

(mm)

Mean

deviation of

the forceb (%)

Mean

displacementc

(mm)

Fractures

due to

testing

EXPN Torsion 10 34.5 211.8 0.43 2.26 9.9 6.2 3.84 2

ILN Torsion 2 31.1 197.5 0.38 2.43 7 0 2.3 1

STMN Torsion 2 25.5 172 0.49 2.75 5 43.5 7.25 0

EXPN Compression 10 31.7 203.3 0.46 2.42 9.4 40.3 6.25 4

ILN Compression 3 31.33 203 0.48 2.55 6.67 0 4.83 0

STMN Compression 2 22 184 0.52 2.42 5 57 10.75 0

EXPN Bending 2 30 183.66 0.56 2.45 8 - 7025 0

ILN Bending 2 28.2 189 0.47 2.33 7 - 4.6 2

STMN Bending 2 29 196.3 0.49 2.75 5 - 7.6 1

a: EXPN = expandable Nail; ILN = interlocking nail; STMN = Steinmann nail
b: Displays the percentage deviation between the calculated physiological force and the actual resisted force.
c: Displacement/shortening of the testing device including the femoral bone.

https://doi.org/10.1371/journal.pone.0231823.t001
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fragments due to testing. Nevertheless, after testing, in 2/10 constructs, a minor shift of the

fragments at the fracture site, and in the same specimen, a minor opening of the fracture gap

were present. In one implant-bone construct, a high degree of gap compression was visible,

resulting in bone-to-bone contact of this specimen while testing. Furthermore, in 6/10 cases,

some elastic axial deformation of the bone-nail-interface occurred (S4 Fig), this however shift-

ing back into its original conformation with decreasing pressure. After testing, in 4/10 cases, a

2–3 cm longitudinal fracture starting from the osteotomy gap was visible. It should be noted

that 3/4 of these secondary fractured specimens were present in the group with a maintained

gap and showed axial deformation, whereas in only 1/4 constructs with a closed gap did frac-

ture occur due to testing. Nevertheless, the femur of an immature dog (specimen no. 18; S2

Table) successfully reached the physiological forces as well as showing no axial deformation,

shift of the fragments, opening or compression of the fracture gap.

Interlocking nails. In 3/3 femora with an inserted ILN, the calculated physiological forces

were reached. In all tested specimens, no rotation, shift, opening or compression of the bone

fragments due to testing was detectable. Furthermore, no elastic deformation or fracture of the

implant-bone constructs occurred.

Steinmann nails. 0/2 implant-bone interfaces reached the calculated physiological forces.

In 1/2 specimens, a moderate degree of rotation (approximately 30˚) as well as a minor shift of

the fracture ends was noticeable. In both femora, there was a high degree of gap compression,

resulting in bone-to-bone contact while testing. Nevertheless, no elastic deformation or frac-

ture due to testing was present in either of the cases.

Destructive bending tests

In this series, for evaluating the bending properties of the implants, specimens No. 5 & 8 were

used for the EXPN, Nos. 30 & 32 were used for the ILN and Nos. 29 & 31 were used for the

Fig 4. Load-displacement curves of physiological compressive testing (one example of each implant type). The line

graph illustrates the amount of axial load resisted by the bone-nail interface (y-axis) in relation to the shortening/

displacement (x-axis) of the testing device.

https://doi.org/10.1371/journal.pone.0231823.g004
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STMN group (S2 Table). The bending resistance of all three nail designs was similar. Increas-

ing bending load resulted in higher bowing of all constructs, although it has to be noted that

the ILN-bone-interface showed the least bending. In all tested specimens, only elastic deforma-

tion occurred, this returning to the initial conformation with decreasing bending load. Fig 5

illustrates the load-displacement curves of selected specimens of all three implants. The gradi-

ent of the ILN is slightly higher compared to the EXPN and STMN. Otherwise, the gradients

were very similar to each other.

Nevertheless, both specimens with implanted ILN (S5 Fig) and 1/2 femora with inserted

STMN fractured due to the applied bending load, whereas the cortical bone of both EXPN-

bone constructs stayed intact.

No statistical differences between the investigated implant groups regarding the displace-

ment of the testing device were found.

In addition, the ILN group resisted a significantly higher maximum bending load compared

to the STMN (p = 0.006).

Supraphysiological torsional tests. For comparison of maximum torsional resistance,

three femora with inserted EXPN (Nos. 2, 4, 7) and two specimens with inserted ILN (Nos. 11

& 27) of various size, that had already successfully performed in the non-destructive tests, were

used (S2 Table). As STMN had already failed to reach the physiological torque, they were

excluded from this series of tests. Fig 6 illustrates selected load-displacement curves of both

aforementioned nails. The initial gradient of the ILN-bone construct is higher compared to

the EXPN, which initially showed a plateau without increasing load. After some increase in

displacement, the gradient was about the same or even slightly higher for the EXPN.

The mean maximum torque reached in all tested specimens was 266% higher (n = 3; range:

213–333%) for the EXPN constructs (mean 4.17 Nm) and 205% higher (n = 2; range: 150–

259%) for the specimens with inserted ILN (mean 3.33 Nm) compared to the specific calcu-

lated physiological torque, respectively. Nevertheless, the higher maximum torque, which was

reached by the EXPN group, did not show any statistically significant differences. For the

EXPN constructs, testing was terminated because of secondary fracture (1x), shift (1x) and

Fig 5. Load-displacement curves of destructive bending tests (one example of each implant type). This line graph

illustrates the amount of bending load (y-axis) acting on the fracture site perpendicular to the anatomical axis in

relation to the shortening/displacement (x-axis) of the punch of the testing device.

https://doi.org/10.1371/journal.pone.0231823.g005
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rotation (1x) of the bone fragments. Moreover, for the ILN group, testing was terminated due

to rotation (2x) of the fragments. Contrary to the EXPN, the rotation of ILN-bone constructs

only affected the elastic region of the implant. Thus, they returned to their original shape with

no permanent deformation when torque was released.

A statistically significant correlation was found between the occurrence of femoral fracture

due to testing and achievement of the calculated physiological forces (p = 0.01).

Even though no significant correlations were found between the anatomical characteristics

(CFI, femoral curvature) and the outcome of biomechanical testing, there was a trend in corre-

lation between the corticomedullary index and the risk of fracture due to testing (p = 0.058;

Fig 7).

Discussion

During normal motion of dogs, the femur is exposed to different loading types, such as com-

pression, bending, shear and torsion [8]. Therefore, the treatment method used for stabilising

femoral fractures should be able to compensate these physiologically applied forces.

In order to simulate these forces, evaluation of the biomechanical properties regarding the

torsional stability of the new EXPN was carried out using a testing device, which was capable

of applying rotatory forces onto the bone-nail construct.

The EXPN proved to have good biomechanical properties in neutralising torsional load. In

most cases, the physiological torque was reached by the EXPN without any evidence of seg-

ment rotation or secondary femoral fracture, indicating that rigid torsional stabilisation of the

fracture segments is achievable using the EXPN. In contrast, although the ILN constructs did

not show any shift or rotation of the fracture segments after testing, moderate torsional shift-

ing (approximately 4˚) was visible during testing as torsional load was applied. This rotatory

micromotion of the ILN, also known as torsional slack, which represents a common issue in

standard ILN [4, 20], illustrated that rigid torsional stabilisation of the fracture proved impos-

sible with this implant. Even though micromotion may improve secondary bone healing in

comminuted fractures, it may lead to non-union in simple fractures (transverse/oblique) [4, 8,

28]. Nevertheless, after releasing load, the ILN-bone construct returned to its initial position.

Fig 6. Load-displacement curves of supraphysiological torsional testing (one example of EXPN and ILN). This line

graph illustrates the amount of axial load affecting the bone-nail interface (y-axis) in relation to the shortening/

displacement (x-axis) of the testing device. In the torsional test, this curve does not represent the actual acting torque.

https://doi.org/10.1371/journal.pone.0231823.g006
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As no significant differences regarding the percentage deviation of the calculated and

reached physiological forces between the EXPN and ILN groups were seen, this might indicate

that the torsional stability of the new EXPN is at least comparable to the ILN. Deviation illus-

trates the difference of the calculated physiological forces, which the construct should reach,

and the actually reached load.

Supraphysiological torsional tests showed that the maximum torque which the nail-bone

constructs withstood prior to failure was more than twice as high as the calculated physiological

torque in both examined implants and was even superior (non-significantly) in the EXPN group.

These results highlighted that the EXPN might even withstand torsional loads that are consider-

ably higher than the load that is acting on the femur during normal activity of the patient.

Secondary femoral fractures occurred during testing in a few EXPN-bone constructs, in

which an extremely low corticomedullary index was present. In addition, these specimens rep-

resented those constructs that could not reach the physiological torque. Moreover, even

though the ILN showed good results in withstanding physiological torsional forces, despite the

appearance of torsional slack, secondary fractures due to testing also occurred in this implant

type. This illustrated that secondary femoral fractures due to testing might occur in conven-

tional types of fracture treatment as well as in fractures treated with the EXPN.

Adequate torsional stability of the implant-bone construct is especially important in dogs

due to their inability to restrict weight-bearing in the initial period after osteosynthesis [9].

The results of this study indicate that the capability of the new EXPN to withstand physiologi-

cal torsional loads is sufficient and might even be superior to a conventional ILN due to its

absence of torsional slack.

Fig 7. Logistic regression curve of the correlation between CMI and secondary fracture of the EXPN-bone constructs

due to testing. This graph illustrates a trend in correlation between the presence of secondary femoral fracture due to

testing and the corticomedullary index (CMI).

https://doi.org/10.1371/journal.pone.0231823.g007
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During normal motion of the dog, the femur is also exposed to bending loads [8]. In order

to evaluate the bending properties of the EXPN, three-point-bending tests were carried out.

The load-displacement curves regarding the bending resistance of the EXPN were similar

to both conventional implants. In addition, no significant differences were found regarding

the resisted maximum bending load between the EXPN and ILN, which indicated that the

EXPN provided comparable properties to withstand isolated bending forces.

Although the ILN constructs in the present study were capable of resisting a significantly

higher amount of bending load compared to the STMN group, all specimens with inserted

ILN fractured at a certain degree of femoral bowing. Thus, the risk of secondary fractures due

to applied bending forces might be higher in ILN in comparison to EXPN and STMN.

Physiologically, the femur of a dog is also exposed to compressive forces, which are eccen-

trically applied to the femoral head during normal motion [8]. In order to simulate this in-vivo

loading configuration, compressive loads were applied by the testing device to the femoral

head as well.

The compressive testing of the EXPN showed that most constructs did not successfully

reach the physiological forces. In addition, the percentage deviation was significantly higher in

the EXPN group compared to the ILN, which might indicate that ILN provided better bio-

mechanical properties compared to the new EXPN regarding compressive stability. Neverthe-

less, these results must be treated with caution because in all of these unsuccessful attempts,

either secondary femoral fracture due to testing or axial elastic deformation of the specimen

occurred, which might be a reason for the poor results in the compressive tests. Axial deforma-

tion most likely occurred because the distal end of the femur was rigidly fixed in a clamping

device while axial compressive load was applied eccentrically to the femoral head. Despite

these issues, compression of the maintained gap was seen in only one specimen in the EXPN

group. On the contrary, in both STMN, compression of the gap occurred, which indicated that

this conventional implant was incapable of providing adequate compressive stability. Support-

ing this thesis, displacement of the testing device, which serves as an indicator for instability of

the fracture treatment, was significantly higher in the STMN groups compared to the ILN

group Therefore, as the maintained fracture gaps of most EXPN constructs did not close due

to the applied compressive forces, resistance to isolated axial compressive load might be better

than the results may suggest even though the physiological force was not reached in most

EXPN.

Another reason for the poor results of the EXPN might be the maintained gap of the trans-

verse fractured specimen for compressive loading tests, which resulted in an unstable fracture

model that represented the worst case scenario in clinical practice [4]. This was intentional to

visualise gap compression, which could be seen if the implant-bone construct was incapable of

providing sufficient compressive stability. The expansion process of the EXPN conducts inter-

fragmentary gap compression, which tends to achieve gap closure and may result in better bio-

mechanical properties.

Regarding the relatively high amount of secondary femoral fractures due to testing, it

should be noted that in this study only initially frozen femora were used, which still provide

adequate strength and rigidity, but lack resilience and flexibility compared to vital tissue [29].

The expandable segments might have led to high pressure against the intramedullary cortices,

especially as additional external load was applied. This might have resulted in secondary femo-

ral fractures, particularly as the resilience of the specimen was decreased by the storage process.

Furthermore, all secondary fractured specimens in this group had a low corticomedullary

index, which might also be a reason for the frequently seen fractures in this group.

In contrast to this, neither the STMN nor the ILN showed any axial deformation or second-

ary fracture due to testing. This leads to the assumption that the EXPN has limited
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biomechanical properties against eccentric axial compressive forces, especially if gap closure

could not be achieved.

Due to the superiority of CT-images regarding accuracy compared to standard radiographs

[30, 31], reliable evaluation of bone condition as well as detection of minor fractures was possi-

ble in the present study. An additional CT-image of a secondary femoral fracture, demonstrat-

ing the superiority of this modality compared to conventional radiographs can be found in the

supporting information (S6 Fig).

The new expandable nail evaluated in this study was designed to combine the advantages of

intramedullary nails with adequate rotational and compressive resistance without the need for

transcortical fixation. The results of the biomechanical testing confirmed this ability of the

new EXPN regarding its good biomechanical properties to withstand physiological torsional

and bending loads. Nevertheless, the compressive stability of the EXPN showed some

weaknesses.

In conventional intramedullary nailing, femoral curvature impedes the usage of this treat-

ment method, as the rigid implant cannot adapt to moderate femoral bending, which might

lead to a mismatch between the nail and endosteal shape [14]. If this mismatch cannot be com-

pensated by further intramedullary reaming, it may lead to serious complications [13, 14].

The EXPN was capable of matching moderate femoral curvature, as the alignment of the

expandable segments was, to some degree, able to adapt to the space within the medullary

cavity.

In addition, as transcortical screw application was not needed, stabilisation of the fracture

was quickly achieved. In a clinical practice, this advantage should reduce the duration time of

surgical treatment compared to the usage of conventional ILN, as nail insertion is possible

without further exposure of the femoral diaphysis. This property of the new EXPN may be

advantageous compared to interlocking nailing, as the less invasive surgical approach may

result in a decrease in soft-tissue damage, thus causing less disruption of the extraosseous

blood supply [16, 32]. Additionally, this may contribute to early fracture healing [20, 32, 33].

The results of this study showed that the risk of femoral fracture due to biomechanical test-

ing tended to correlate with the corticomedullary index, although no statistical significance

was reached. This leads to the conclusion that the new EXPN should be used with caution if

only a small amount of cortical bone is present. Therefore, careful consideration must be given

when using the EXPN in canine breeds which tend to have relatively little cortical bone volume

like German Shepherd dogs (S1 Table). In the present study, only one femur of this breed was

included and as expected this specimen showed a low corticomedullary index, resulting in sec-

ondary femoral fracture during testing.

A disadvantage in the implantability of the EXPN was that no concrete information regard-

ing the acting inner cortical forces applied by the expandable segments was available during

the expansion process. This might be an issue especially in femora with low corticomedullary

indices.

Implantation of the innovative EXPN can be rated as relatively safe regarding the few inci-

dences of secondary femoral fractures due to nail insertion or the expansion process.

Usage of the EXPN provides shortening of the nail length, which might result in gap closure

and interfragmentary compression (bone-to-bone contact) similar to the function principle of

a dynamic compression plate. This may contribute to load sharing and increased friction

between the fragments, increasing the mechanical stability of the construct as well as minimis-

ing micromotion, which may lead to primary osteonal fracture repair [8, 34]. The results of

this study highlighted that bone-to-bone contact was successfully accomplished in all intended

specimens.
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Limitations

This study was based on an in-vitro approach, aiming at evaluating the biomechanical proper-

ties provided by a new expandable nail. Nevertheless, there are several parameters that cannot

be fully investigated on an in-vitro basis and that therefore require further in-vivo investiga-

tions to assist with the final evaluation as to whether the new EXPN is suitable for clinical use.

These parameters include: the duration until union of the fracture segments occurs or poten-

tial complications such as non-union, which might eventually occur if torsional and axial

micromotion at the fracture line cannot be sufficiently avoided; the appearance of necrosis or

loss of bone density due to intramedullary cortical pressure caused by the expandable seg-

ments, which may lead to periprosthetic fractures; the decrease in blood supply due to the

expansion process of the nail; the duration until the hindlimb is fully capable of weight-bear-

ing; the degree of lameness in the initial postoperative period as well as potential challenges in

removal of the EXPN after fracture healing; potential fretting of the SS316L material due to

possible motion between the metal parts, which may lead to local inflammatory reactions.

Even though the removability of the EXPN was successfully tested during the development

of the EXPN, possible difficulties may occur due to bony ingrowth into the spaces of the

expandable units. Despite this potential disadvantage, bone ingrowth may also lead to second-

ary nail fixation, which might increase the biomechanical properties of the bone-nail interface

in withstanding incoming load.

Furthermore, it has to be considered that although the eccentric compressive testing set-up

represented the in-vivo loading configurations of a dog, the combination of compressive and

bending loads also impeded the assessment of isolated compressive stability of the bone-nail

constructs.

Moreover, for statistical comparison of the EXPN and conventionally used implants regarding

the outcome of the biomechanical testing, only a small number of specimens with inserted ILN

and STMN were available for testing. This might have led to insufficient statistical reliability.

Finally, the storage process of the specimens may have resulted in decreased resilience and

flexibility compared to vital tissue, which might be a reason for the frequent appearance of sec-

ondary femoral fractures in the EXPN group.

Conclusions

The results of the present study indicate that use of the EXPN is reasonably safe. Torsional and

bending stability were similar to a regular ILN and can be considered to be sufficient for expo-

sure to normal physiological strain. Although the EXPN might have illustrated limited proper-

ties regarding its compressive stability, this has to be further examined due to limitations

regarding the applied testing procedure as well as storage process of the specimens.

Biomechanically, the ILN is superior to the EXPN, but the EXPN could provide biological

advantages over the ILN, such as the preservation of soft tissue, which could possibly lead to

faster fracture healing and a lower infection rate.

Since not all parameters necessary for successful application of the new nail in living ani-

mals can be evaluated in in-vitro procedures, further testing of the EXPN is necessary before

its use can be considered in veterinary practice.

Supporting information

S1 Video. Nail insertion and expansion process of the EXPN. Nail insertion is carried out

according to the implantation technique described in the manuscript.

(MP4)
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S2 Video. Explantation technique of the EXPN. The explantation of the nail is carried out

using the implant’s inner casing. In the first step, the locking nut (not presented in the video)

and the tension nut are loosened and removed. In the next step, the implant’s inner casing is

applied to the threaded rod of the EXPN, picking up the expandable units, aligning them in a

straight line to ensure easy nail removal. In the final step, the fully inserted inner casing is

fixed and then the EXPN is removed.

(MP4)

S1 Fig. CT-image of an interlocking nail-bone construct after nail insertion. This CT-

image represents a femur (specimen no. 25) with a secondary longitudinal fracture (red

arrow), running from the proximal transcortical screw of the distal bony fragment to the

osteotomy gap. This fracture occurred due to nail insertion of the ILN.

(TIFF)

S2 Fig. CT-images of an EXPN-bone construct after nail insertion (A) and after torsional test-

ing (B). (A) This CT-image represents the femur (specimen no. 3) without any secondary frac-

tures despite the artificial one. (B) This CT-image illustrates a similar image alignment of the

same femur as (A) and shows a secondary longitudinal fracture (red arrow), which occurred

due to torsional testing.

(TIFF)

S3 Fig. Photograph of an interlocking nail-bone construct after nail insertion (A) and after

torsional testing (B). (A) After nail insertion, no secondary femoral fracture is present on the

cranial part of the bone (specimen no. 12). (B) After torsional testing, a secondary longitudinal

fracture (black arrow) is visible due to the testing procedure.

(TIFF)

S4 Fig. Photographs demonstrating the elastic deformation of an EXPN-construct during

compressive testing. (A) This photograph shows the initial conformation of the femoral shape

(specimen no. 18) as no compressive load was applied (starting point of the testing procedure).

(B) This photograph shows a minor elastic deformation of the femur. It was taken when the

physiological force has been successfully reached (time of the highest compressive load acting

on the femur). Afterwards, the bone-nail construct shifted back into its original conformation

with decreasing pressure (not shown in the photograph).

(TIFF)

S5 Fig. CT-image of an interlocking nail-bone construct after the bending test. This CT-

image illustrates two longitudinal fractures (red arrows) of a femur (specimen no. 30) that

occurred due to bending testing.

(TIFF)

S6 Fig. CT-image (A), biplanar radiographs (B) and a photograph (C) of an EXPN-bone con-

struct after nail insertion. This figure illustrates the superiority of CT-images in detecting

small longitudinal fractures compared to conventional radiographs. Therefore, in the CT-

image (A) and photograph (C) of the femur, a longitudinal secondary femoral fracture is visi-

ble, whereas in both radiographs (B), no evidence of this fracture is given. (A) This CT-image

represents the femur (specimen no. 8) with a secondary longitudinal fracture (red arrow) due

to the expansion process of the nail, treated with a cerclage wire. (B) Caudocranial and medio-

lateral radiographs of the same secondary fractured femur, but without any radiographic evi-

dence of the mentioned fracture. (C) A cranial photograph of the same femur, illustrating the

mentioned secondary longitudinal femoral fracture (black arrow).

(TIFF)
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S1 Table. Detailed information regarding signalment, anatomical variations in the used

specimen and characterisation of the inserted implants.

(DOCX)

S2 Table. Detailed presentation of the results of physiological biomechanical testing.

(DOCX)
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