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Abstract

This dissertation presents a different approach at looking at market power in capacity
rights markets that goes beyond the functional aspects of capacity rights markets as
access to transportation services.  In particular, this dissertation analyzes the role of
storage in limiting the ability of pipelines to extract monopoly rents.  The first two
chapters present a model that show storage, by intertemporally linking markets, as
introducing the pipeline in the valley as a competitor to the pipeline in the peak.  As such,
storage limits the ability of the pipeline to price monopolistically.  This competitive effect
is present although the pipeline retains 100% market share.  It is thus important that
regulators understand that focusing on concentration indices as a measure of market
power overestimates the extent to which pipeline can extract monopoly rents.  This
dissertation also focuses on the role of contracts in capacity rights markets.  Contracts
play a dual role.  They not only allow for a stronger competitive effect of storage but they
can also lead to more efficient levels of pipeline investments as they can allocate risks
more efficiently and can solve the information asymmetry problems.  In this sense,
contracts and storage should be seen as substitutes to market mechanisms when markets
fail.  In some instances, this dual role of contracts can be conflicting.  Regulators need to
understand this dual role of contracts in order to use it as a tool for achieving efficiency
in capacity rights markets.
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Introduction

Over the last two decades, dramatic changes have taken place in the industrial

structure, ownership forms and regulatory structures governing the natural gas industry.

These changes have originated in the United States with a vast pipeline infrastructure, but

are quickly spreading to other countries, even to those with limited infrastructure in

place.  These changes seek to replace the horizontally integrated hierarchy, characterized

by pipeline companies buying and selling gas under long term contracts, with governance

structures that rely much more on unregulated markets, more diffuse vertical and

horizontal ownership arrangements and alternative mechanisms for regulating the

“natural monopoly” of pipelines.

In the United States, this restructuring process started with the Natural Gas Policy

Act of 1978, which introduced deregulated wellhead prices.  This process effectively

introduced gas-to-gas competition at the wellhead and led to the development of wellhead

spot markets.  According to De Vany and Walls (1995), these spot markets are very

integrated and transportation costs explain price differentials.  We can talk of a single

United States wellhead gas market.  Through a series of orders in the late 1980s and early

1990s, culminating with Order 636 in 1992, the Federal Energy Regulatory Commission

(FERC) completed the restructuring process by separating the merchant and

transportation activities of pipelines.  Pipeline companies serve now as transportation

companies and do not own the gas they transport.  End users, when transporting gas from

the wellhead to the burner tip, must purchase capacity rights to have access to the
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pipeline network, in addition to paying any transportation costs.  Furthermore, the

introduction of a capacity release program and the flexibility in receipt and delivery

points enable a greater standardization of capacity rights and the development of a

secondary spot market for capacity rights.  In this sense, access to pipeline capacity (e.g.

pipeline capacity rights) should be viewed as a tradable asset complementary to gas.  The

secondary market for capacity rights performs two functions.  First, it guarantees an

efficient allocation of scarce capacity to those end users that value gas the most; and

second, the resulting price represents the value of capacity to end users.

In this new industry structure, decision and ownership rights are completely

dispersed and hence decentralized.  The different end users decide how much and when

to transport gas.  In contrast, under the old hierarchy, pipeline companies, as owners of

the gas they transported, centralized this decision.  Today, end users make their decisions

based on the price signals they receive from the wellhead gas and capacity rights markets.

Any shift in consumption patterns of a particular end user is a direct response price

signal.  Thus, an electricity generation company might switch to alternative fuel oil

during the winter period when gas prices tend to be relatively high.  Moreover, prices

under the new structure also provide investment signals.  If capacity rights prices are

high, they indicate that more capacity is needed and can be added at a profit.  In sum, the

most important element in the restructuring process in the United States has been the

recognition of price signals as guide to efficient consumption patterns and investment

levels.

The restructuring process in other countries takes this recognition as the starting

point.  Countries such as Argentina, Bolivia and Britain introduced gas to gas

competition by privatizing and separating vertically and horizontally state owned

monopolies.  Open access to the pipeline network was also introduced creating a price for

capacity rights.  Moreover, many regions (including Europe and the Southern Cone) are

physically integrating their markets and reaping the benefits of trading1.  For this

                                                

1 As an illustration, there are numerous pipeline projects in the Southern Cone region.  The Bolivia-Brazil
pipeline was just recently completed.  A pipeline from Argentina into Santiago is scheduled to be
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integration to be successful countries must adopt comprehensive and consistent

regulatory frameworks centered on markets and price signals, and that respect property

rights across borders.  The price signals introduced through capacity markets will play a

pivotal role in this regional integration process, as they would guide pipeline investments.

It is important that prices be transparent if they are to guide consumption patterns

and investments efficiently and maximize social welfare. This dissertation concentrates

on the capacity rights price.  It focuses on two sources for the non-transparency of

capacity prices.  First, in some markets, pipelines are monopolistic and as such are bound

to exploit their position if left unregulated when determining capacity rights prices.

Monopolistic prices are necessarily higher than the competitive price and lead to

inefficient consumption patterns as end users might switch to alternative sources of

energy when in a competitive world it would be inefficient to do so.  Second, in the

context of infant markets with limited infrastructure in place such as the Southern Cone

market, capacity rights prices might not only be not transparent, but more importantly

non-existent.  What is the capacity rights price for the pipeline linking Bolivia and

Northern Chile if there is no gas flowing to the region?  How much capacity to build?

Even if there are answers to these questions, other market imperfections might hinder

efficient investments.  In particular, differences in the ability to bear the risks involved in

developing gas pipeline projects could potentially lead to the failure to develop projects

that are economically attractive from a social point of view, but unattractive to one of the

parties.

This dissertation addresses these two issues.  In particular, the dissertation argues

that contracts between end users and the pipeline on the one hand, and storage on the

other hand, play an important role in limiting the monopoly power of pipelines and in

inducing efficient pipeline investments.  Although regulation, with its usual limitations in

dealing with informational asymmetries2, can still play an important role, this dissertation

                                                                                                                                                

completed next year.  Other projects include two Argentina-Chile pipelines, one Bolivia-Northern Chile,
one Argentina-Brazil and one Bolivia-Paraguay.
2 See Laffont and Tirole (1993) for a comprehensive theoretical treatment on this issue.
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argues that contracts and storage provide market-based mechanisms to limit market

power.  As such, contracts and storage should be seen as complementary to regulation.

The dissertation also argues that contracts are an important element in the development of

pipeline projects by allocating risks and returns in an efficient manner and by providing

the right incentives for efficient behavior for all parties and information sharing.  That is,

in the Coasian tradition, this dissertation views contracts and storage as substitutes to

market mechanisms when markets fail.

This dissertation borrows heavily from the industrial organization literature in

economics.  It relies on mathematical models where the pipeline maximizes profits

subject to some constraints introduced by the nature of the contracts and storage.  It also

borrows from the contract theory and incomplete contract literature in determining how

contracts can induce efficient behavior and information sharing.  From the applied

corporate finance literature, the dissertation borrows on how different contracting

mechanisms can allocate risks more efficiently.

The role of capacity rights markets for the allocation of scarce infrastructure

capacity has been extensively discussed in the economics literature in the context of the

restructuring of the electricity sector.  This dissertation borrows many of the concepts

expanded in this literature.  Tabors and Wilson (1999) propose an auction based

allocation of firm capacity rights in the electricity market.  They further propose these

rights be traded on a secondary market at market determined prices.  The proceeds of the

auction are proposed to go to transmission companies.  The capacity rights market

assumed in this dissertation is similar to that in Tabors and Wilson in that the pipeline

auctions rights and these are traded on a secondary market.  However, in contrast to their

proposal, this dissertation focuses on the ability of pipelines to extract monopoly rents

and thus to affect the number of rights to be issued.  Tabors and Wilson assume that the

transmission company does not have the power to alter the number of rights issued.  The

emphasis of the paper is on the design of an auction process that would ensure a fair and

efficient allocation of rights to those end users that value it most.  In contrast, this

dissertation focuses on storage as an alternative mechanism to limit the ability of
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pipelines to extract monopoly rents while neglecting altogether the issue of allocation

among the different end users.

Similarly, Joskow and Tirole (1999 a, b) study capacity rights markets in the

electricity sector and focus on the allocation of transmission rights may enhance the

market power of sellers or buyers.  As Tabors and Wilson, they assume the number of

capacity rights is given (maybe by regulators) and that transmission companies have no

power altering this number.  Interestingly, their paper recognizes that the ultimate

allocation of rights is endogenous and depends on the microstructure of the rights

markets.  This dissertation borrows this insight and argues that the ability of pipelines to

extract monopoly rents depends on the microstructure of capacity rights markets, in

particular the contracting regime.

Many of the studies on capacity rights markets in the electricity sector can easily

be extended to the natural gas sector.  However, this dissertation takes the storability

characteristic of natural gas and analyses its effect on capacity rights markets.  Because

electricity is not fully storable3, the literature on capacity rights markets in the electricity

market does not provide a complete understanding of the issues in the natural gas sector.

The role of storage in commodity prices has also been widely studied in the economics

literature.  The assumption in these studies is that storage is operated by producers.

Pindyck (1990), for example, argues that storage can serve to smooth production during

periods of low prices, but they play an important role if facilitating production and

avoiding stockouts during periods of high prices.  This would be a valid assumption

under the old structure of the natural gas industry where pipelines sold the gas to end

users.  Pipelines, thus, used storage to decrease investment and purchasing costs.

Moreover, they internalized this storage effect on their pipeline throughput decision.  In

contrast, under a deregulated natural sector this assumption is no longer valid.  Now end

users must coordinate their purchases of capacity rights and storage services.  Under the

new structure, storage does not only serve to smooth gas delivery costs to end users, but

                                                

3 Electricity can be stored in the form of pumped storage, but this storage capacity is very small in relation
to electricity demand.
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more interestingly, it serves to bypass the capacity rights market altogether.  Pipelines

cannot fully internalize any longer the storage decision.

This concept of storage as a mechanism to bypass capacity rights market

differentiates the treatment of storage in this dissertation from that in the economics

literature.  This bypass concept is also exploited in Laffont and Tirole (1996 a) in the

context of pollution permits.  Their paper analyze the impact spot and futures markets for

tradable pollution permits on the potential polluters’ compliance decisions.  Potential

polluters can bypass the permits by investing in pollution abatement.  This investment is

equivalent to storage in the analysis presented in this dissertation.  The model presented

here borrows from their treatment of spot markets and future markets and their effects on

bypass decisions.

The structure of the dissertation is as follows.  The first two chapters give

theoretical and mathematical models of how contracts between end users and pipelines,

and storage limit the ability of a pipeline to extract monopoly rents.  Three contract

structures are analyzed.  They differ in their ability to sell forward and to distinguish

between peak and valley periods.  The first chapter analyses the case of certainty and the

second chapter analyzes the impact of uncertainty.  The third chapter analyzes the role of

contracts in the development of pipeline projects.  In particular, it identifies the different

risks involved and analyzes how different contracting mechanisms can yield an efficient

allocation of these.  This chapter focuses on the relationship and interaction between

contracts and infrastructure in place at the time of the investment.  In particular, it

discusses how contract features change as a function of infrastructure.  These three

chapters can each be considered as self contained, and can be read independently of the

others.  Finally, the conclusion of the dissertation discusses some policy

recommendations as well as future research based on the analysis presented here.
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Chapter 1:

Capacity Rights, Contracts and Storage

with Certainty

1.1. Introduction

The natural gas industry in the United States has gone through dramatic changes

in the last two decades that culminated with FERC’s Order 636 in 1992.  These changes

aimed at differentiating potentially competitive segments from network infrastructure

segments.  They also aim at guaranteeing suppliers in the competitive segments a fair and

equal access to the network segments in order to supply their services in competitive

environment.  Order 636 separated the merchant and transportation activities of pipelines

and introduced a secondary market for capacity rights.  End users must coordinate their

gas purchases with purchases of transportation rights in order to guarantee their supply at

the burner tip.  In this sense, access to pipeline network should be seen as a tradable and

complementary asset to gas.  Although some considerations, such as price, caps currently

limit the transparency and efficiency of the secondary markets for capacity rights, the

industry is evolving towards market-determined prices for capacity rights.
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The question that arises is that many regions are served by a single pipeline which

is bound to exploit its position if left unregulated in determining the prices for capacity

rights.  Regulation is necessary to avoid monopoly rents by the pipeline.  However, this

paper argues that storage and contracts can be used in conjunction with regulation in

limiting the ability of the pipeline to extract monopoly rents.  The model presented here is

general enough that it can be extended to other private monopolists facing a seasonal

demand and end user bypass in the form of storage.  The main impact of storage is that,

by allowing end users to bypass the pipeline, it introduces competition to the pipeline in

the peak.  End users will make their by pass decisions based on their expectations of the

difference between peak and valley prices.

The extent of this competitive effect of storage and the extent that the monopolist

pipeline can limit it will greatly depend on the market structure of the capacity rights

market.  Here we analyze three possible market structures: (i) a long term contract

structure where the pipeline can make and commit to forward sales of capacity rights, (ii)

a short term contract structure where the pipeline sells capacity rights at the beginning of

the each period, and (iii) a contract structure by which end users have the right to

transport at any point in time, up to the maximum throughput amount their capacity right

allows.  The first two structures entail a separate right for valley and peak times.  End

users will have a right to transport gas during the valley which is not the valid for the

peak.  Because of seasonalities in demand, end users will buy more rights during the peak

than the valley.  In contrast, the third structure makes no distinction between rights for

valley and peak times; they are equivalent4 as the number of capacity rights is equal in

both valley and peak times.  End users can transport up to a fixed amount at any point in

time.  Depending on the magnitude of the seasonality, end users may find themselves

with over capacity during the valley.  It is important to note that the US market under

Order 636 resembles the third contract structure described above.

The model analyzes two scenarios.  The first assumes that pipeline infrastructure

is already in place and hence sunk, and that capacity is not binding in the peak.  Under

                                                

4 From here on we shall refer to this third structure as “EQ” for “equivalent”.
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this scenario, the model shows that storage unambiguously increases social welfare under

the three market structures.  However, this positive impact of storage is greater with a

short term contract structure than with a long term structure.  The latter allows the

pipeline to more effectively limit the competitive effect of storage than does the former.

This is so because, through forward sales, the monopolist pipeline incorporates the long

run elasticity of demand into its maximization problem.  That is, forward sales allow the

monopolist to incorporate not only the effects of valley prices but also of peak prices on

end-users’ decision to bypass the pipeline in peak times and its effect on valley profits.

With a short term contract structure, however, the pipeline monopolist does not fully

internalize the effect of peak prices on valley profits as the monopolist’s problem in the

peak takes the valley price as given.

Interestingly, the impact of storage under the third market structure can be the

smallest or the largest of the three structures depending on the magnitude of the

seasonality.  With high seasonalities, the monopolist maximizes profit by making

capacity bind in the peak and allowing over capacity in the valley.  As a result, price in

the valley is zero, providing an incentive for storage and hence price in the peak must fall

to offset this incentive for storage.  The result is lower prices in both the peak and the

valley relative to the short term structure.  In contrast, with low seasonalities, the

monopolist maximizes profits by making capacity bind in both the peak and the valley.

The total number of rights issued is between the number of rights issued for the peak and

the number issued for the valley under the long term contract structure.  As a result, the

third market structure leads to a higher price in the peak and a lower price in the valley,

and hence to a smaller welfare effect relative to the long term structure.

The second scenario assumes no infrastructure and hence analyzes the investment

decision by a monopolist pipeline.  As in the first scenario, storage unambiguously

increases social welfare under the three market structures.  However, the long term and

short term market structures lead to the same result.  This is so because, when

determining the investment level, the monopolist pipeline effectively sells capacity rights

forward for the peak period.  In other words, the ability to sell forward which was lost

under the short term structure in the first scenario, is regained through the investment
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decision.  Similarly, we also find that the impact of the third market structure is smaller

than the other structures for small seasonalities, and is higher for large seasonalities.

The model also shows that the positive impact of storage on welfare depends on

the relative length of the peak and the valley.  A long peak means there are limited

opportunities to inject gas into storage as the valley is relatively short.  Consequently, the

use of storage facilities is low.  By the same token, a long valley means there are ample

opportunities to inject gas into storage but the potential benefit of this storage is limited

as the peak is relatively short.  Again, the use of storage facilities is low.  We show this in

the context of the first scenario and a long term contract.

The policy implications of the results of this model are very important.  First,

storage is an important, albeit imperfect, element to undermine the monopolistic position

of a pipeline.  Regulators, instead of concentrating on devising mechanism to regulate

pipelines, can introduce competition by promoting investments in storage facilities (for

example by reducing the transaction costs associated with the approval of storage

investment plans).  Second, the current structure of the US capacity rights market might

not be optimal.  For those markets with a relatively low seasonality, social welfare would

be increased if a short term contract structure is introduced.  Third, infant natural gas

markets such as the Southern Cone, can develop more efficiently if incentives for storage

investments are in place as well as a capacity rights market that promotes social welfare

based on the magnitude of seasonality, as argued in this paper.

The second section of the chapter will describe the model as well as the effect of

storage on throughput demand. The third section will analyze the first scenario that

assumes a pipeline infrastructure in place and no capacity constraints.  This section will

also evaluate the welfare effects of the three market structures.  Finally, the fourth section

will analyze the investment decision of a monopolist pipeline and the welfare

implications.
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1.2. The Model

The model assumes a single period divided into a valley component of duration

(1-α) and a peak component of duration α.  At an instant dt of time, end-user natural gas

demand is given by:

for t=v,p, denoting whether dt is during valley or peak times.  θt represents the seasonal

component of end-user demand.  We assume

with a>1.  We assume α to be in the range (0,1).  Figure 1.1 below depicts the time

pattern of θt.

Figure 1.1: Time Pattern of θt

In the context of the current structure of the US natural gas sector, the price Pt

paid by end-users has three components.  End users pay Pgt for gas at the wellhead, a

regulated transportation price Ptt to get the gas from the wellhead to the city gate, and a

transportation capacity reservation price Pct/n, where n represents the instantaneous

capacity turnover rate. Pct is paid to reserve one unit of capacity for a given period of time

and n represents the number of times this capacity is utilized over the period.  That is, Pt

= Pgt + Ptt+ Pct/n.  In order to isolate the effect of storage on capacity rights markets and to

simplify our model, we assume an infinitely elastic wellhead gas supply curve and we

normalize, Pgt =0.  Also, we assume that the marginal cost of transporting gas is constant,

cp, and that transportation price is regulated at this marginal cost.  For simplicity, we

normalize such that Ptt=cp=0.  Finally, we assume n=1.  Hence, seasonal component of

demand and the effect of storage are totally reflected on the capacity price.

( )ttt Pq γθ −=

vp aθθ =

θv

θp

1−α 1
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We assume that the pipeline sector is monopolistic.  This case can be thought of

as a single pipeline delivering gas to a particular consumption center.  We assume storage

is located at the city gate and is perfectly competitive.  This case can be thought of as

multiple storage facilities near a consumption center with end-users having equal access

to them.  Gas is assumed to be injected during the valley period and withdrawn during the

peak period.  End users make their storage decision to take advantage of price

differentials between peak and valley prices, buying pipeline capacity in the valley and

transporting gas to the storage location for use in the peak.

We assume complete certainty about future outcomes, and for simplicity, we

neglect interest rate.  Thus, the price of storage is given by the no arbitrage condition:

Cost of total gas injected into storage, Qs, is assumed to be quadratic:

This assumption is consistent with the operation and investment in natural gas storage

facilities.  First, because of the compressibility of gas, operational marginal cost of

storage increases with the amount of gas inside the storage facility.  Injecting an extra

unit of gas becomes more expensive because of the associated increase in pressure inside

the facility.  In contrast, the marginal cost of storing liquids (e.g. oil) is relatively

constant. Because of the non-compressibility of liquids, there is no change in pressure

inside the storage facility resulting from an extra unit of liquid being stored.  Second,

most common storage facilities are depleted gas fields and salt caverns5.  As such, the

natural characteristics of these fields and caverns determine the capacity volume of these

storage facilities in contrast to containers (e.g. tanks) where investments in surface areas

determine the volume of the storage facility.  As such, the economies of scale, displayed

in container investments where volume increases faster than surface area, are not present

in the investment in depleted fields and salt caverns.  Investment costs for depleted fields

                                                

5 The investment costs required for liquefied natural gas storage facilities are prohibitively expensive.  This
is so because of the liquefaction and gasification process required for this type of storage facility.

vps PPP −=

2

2

1
)( ssss QcQC =



19

and salt caverns vary linearly with volume.  In sum, the investment and operation costs of

natural gas storage facilities can be proxied by a quadratic function.

Equilibrium in the storage sector entails6

Pipeline investments are made at time t=0, and we assume they are immediately

available for use.  Investment costs are assumed to be linear in capacity, with a constant

marginal investment cost of k.

The Effect of Storage on Demand Elasticity

We assume that injections into storage during valley times, and withdrawals from

storage during peak times are at a constant, albeit different, rate.7  That is, during the

valley period, instantaneous injections into storage equal:

Similarly, during the peak period, instantaneous withdrawals from storage equal:

Thus, in the context of storage, we can define the throughput demand curve the

monopolist pipeline faces.  Throughput demand is defined as end user demand plus the

effect of storage (an injection in valley times and a withdrawal in peak times)8.  The

pipeline operator faces the following throughput demand for valley and peak times,

respectively:

                                                

6 Note that in the context of certainty, under a rational expectation equilibrium, total amount injected into
storage equals total amount withdrawn from storage.
7 This is a direct consequence of neglecting interest rate.  With a positive interest rate, end users would
want to reduce their interest expenses and would thus try to inject as late as possible in the valley period
and to withdraw as early as possible in the peak period.
8 In the absence of storage, throughput demand is equal to end user demand.
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and

Proposition 1.1:

Storage makes peak throughput demand more elastic.  The effect of storage on valley

throughput demand elasticity is ambiguous.

Proof

In the absence of storage, the instantaneous throughput demand elasticity is equal

to the instantaneous end-user demand elasticity, given by

for t=v,p.  With storage storage, the instantaneous throughput demand elasticity for peak

times is equal to:

Thus, we have:

We note that the above condition holds because:
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This condition is equivalent to peak throughput demand having a lower price intercept

than peak end user demand.  Indeed, we expect this because, given a peak price,

throughput demand is lower as a result of storage withdrawals.  This difference in peak

price intercept is given by:

By the same token, with storage, the instantaneous throughput demand elasticity

for valley times is equal to:

Thus, we have:

Similarly, the condition:

entails that valley throughput demand have a lower price intercept than valley end user

demand.  There is nothing in our model that guarantees this.  Our model requires (in

order to have positive storage injections during valley times) that throughput demand

have a higher quantity intercept than end user demand, which is indeed what we have for

a positive Pp.  That is, the effect of storage on valley throughput demand elasticity is

ambiguous.  A high peak price would lead to θv-γ Pp >0 and thus an increase in valley

throughput demand elasticity.  In contrast, a low peak price would lead to θv-γ Pp <0 and

thus a decrease in valley throughput demand elasticity.

Q.E.D.

Intuitively, storage makes peak throughput demand more elastic because, as noted

earlier, storage effectively introduces the pipeline in valley times as a direct competitor to

the pipeline in peak times.  As a result, peak end users are more sensitive to peak period

prices (given valley prices), as they are indifferent from obtaining gas directly through

the pipeline or via storage.  In contrast, the effect of storage on valley throughput is
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ambiguous.  In the presence of storage, both valley and peak end users demand capacity

rights in valley times.  A high peak price (or alternative a high seasonal component, a)

tends to decrease valley throughput elasticity.  Indeed a higher peak price drives peak end

users to store more gas increasing the valley throughput demand.  At a given valley price,

this increase in storage demand leads to a lower elasticity of throughput demand.  In

contrast, a low peak price results in a low demand for storage.  For such low peak prices,

small increases in valley prices can eliminate that demand for storage making valley

throughput demand very sensitive to valley prices.

Figure 1.2 shows the instantaneous throughput demand and end user demand for

both peak and valley times.  The first thing to note is that storage renders throughput

demand flatter in both valley and peak periods for all values of α.  Peak throughput

demand is steeper than valley throughput demand for α>1/2 (Figure1.2 depicts the case

of α=1/2, and thus storage injection and withdrawal rates are equal).  We also note that

peak throughput and end user demand curves intersect at Pp = Pv (taking Pv as given), and

in valley times they intercept at Pv = Pp (taking Pp as given).  Figure 1.2 depicts the case

of a sufficiently low peak price that there is a decrease in valley throughput demand

elasticity.

Proposition 1.2:

A higher seasonal component of demand, α, decreases the increase in the elasticity of

peak throughput demand resulting from storage.  The effect on the elasticity of valley

throughput demand is a strengthening of the storage effect.

Proof

We calculate the partial derivative of the throughput demand elasticity, with

respect to the seasonal component of demand.  In the case of peak throughput demand,

we have:
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Pv

Pp

Peak end user demand

Peak throughput demandValley end user
demand

Valley throughput
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Figure 1.2: End User and Throughput Demand
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That is, the effect is unambiguous and is opposite of the storage effect: An increase in α

decreases the increase in demand elasticity.  In the case of valley demand, we have:

That is,

Q.E.D.

In sum, the model presented here shows storage as introducing competition to the

pipeline in peak times.  This competitive effect is described by the increase in the

elasticity of peak throughput demand.  The model also presents the length of peak times,

α, as affecting this competitive effect.  However, the underlying structure of the capacity

rights market can also affect this competitive effect.  In particular, a long term contract

structure will tend to undermine this competitive effect in relation to a short term contract

structure.  The next paragraphs will analyze these considerations.

1.3. Infrastructure in Place

We assume that pipeline infrastructure is monopolist and already in place and

hence is sunk9.  Furthermore, we assume that the capacity of this infrastructure is very

large so there are no capacity constraints.  This assumption represents the “worst case

scenario” as it represents the maximum amount of monopoly rents that a pipeline can

extract, as capacity constraints would necessarily decrease monopoly rents.  In this

context, the monopolist pipeline problem is to determine the amount of capacity rights to

sell.  In the context of a long term contract and short term contract structures the amount

of capacity rights sold in the peak and in the valley are not equal.  Physically, a pipeline

operator can vary the capacity on its line by increasing or decreasing the pressure inside

                                                

9 Alternatively, we can think of the cost of infrastructure investment as being zero.
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the pipe.  In this context, we assume that the physical strength of the pipeline is very

large and able to withstand high pressures so that capacity constraints do not become a

consideration in the peak.

To start building intuition about how contract structures affect the ability of a

pipeline to extract monopoly rents, we will first analyze the case with no storage, and

later analyze the storage case.

1.3.1.  The No Storage Case

In the absence of storage, there is no linkage between peak and valley markets.

Prices in both markets are correlated insofar as their demands are correlated.  We will

first analyze the long term contract structure, then the short term contract structure and

last the equivalent contract structure.

1.3.1.1.  The Long Term Contract Structure

In this market structure, the monopolist sells at the same time capacity rights for

both valley and peak times.  That is, when selling capacity rights for valley times, the

monopolist sells forward capacity rights for peak times.  There might be a secondary

market for these contracts, as is currently the case in the US with the introduction of the

capacity release program under FERC Order 636.  In the context of this model, such

secondary market guarantees that only high value end-users end up with the capacity

rights.  It does not affect the number of rights in the valley and in the peak.

The optimal mechanism consists in setting a price Pt or in choosing a number of

capacity rights qt so as to maximize monopolist profits (There is no distinction between

these two mechanisms in our model.  We will think of the mechanism as a price

mechanism in the presence of storage) 10.

                                                

10 Of course, the monopolist might choose a non-linear pricing scheme to extract more rent from end-users.
This chapter does not consider such non-linear scheme for two reasons.  First, in the context of natural gas
sector, these non-linear schemes are not sustainable.  There is nothing in the gas sector that would prevent
low price end users to sell their rights at a profit to high price end users in a secondary market.  And
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The solution is given by:

This is classic monopolist problem.  The monopolist tries to restrict output (in this case,

capacity rights) so as to increase the price.  In the absence of storage, the pipeline fully

extracts monopoly rents.  We note that the monopolist pipeline prices capacity rights at

the point where elasticity of throughput demand is 1.

1.3.1.2.  The Short Term Contract Structure

In this market structure, the pipeline monopolist sells capacity at the beginning of

the valley and of the peak.  This structure can be thought as a series of spot markets.

Again, there is no linkage between the valley and peak demands.  In each market, the

pipeline selects capacity so as to maximize profits in each period.  The monopolist

problem is identical to the one under a long term contract structure.  This is summarized

in the following proposition:

Proposition 1.3:

In the absence of storage, long term and short term contract structures lead to the same

equilibrium: The pipeline fully extracts monopoly rents.

1.3.1.3  The Equivalent Contract Structure

In this third market structure, the monopolist sells capacity rights at t=0.  Unlike

the other two market structures studied above, capacity rights under this structure are

equally valid in peak and in valley times.  That is, at any point in time, an end user has

the right to transport gas up to the amount of its capacity right.  As noted in the

introduction, this structure resembles the current situation in the US market.  The

                                                                                                                                                

second, even if such schemes were sustainable, their welfare implications are so obvious that regulators
will not permit them.
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problem the monopolist pipeline faces is to maximize its revenue from the sales of these

rights at t=0.  The maximum end-users would be willing to pay for these rights is the sum

of their value during the valley and the peak.  Under this market structure the monopolist

effectively sells the pipeline to end-users while still being in charge for its operation.  It is

important to note that this structure is somewhat similar to the long term contract

structure in that the monopolist effectively sells capacity rights for the peak in the

forward market.  The difference lies in that under the equivalent contract structure, the

monopolist cannot sell different set of rights for the peak and valley, restraining the

flexibility of the monopolist.

The mechanism consists in the monopolist selecting an amount K of capacity

rights to sell at t=0.  We consider two cases.  The first assumes that K is binding in both

valley and peak times; and the second case assumes that K is binding only in peak times.

Depending on the magnitude of the seasonality, a, each scenario represents the best

possible equilibrium outcome for the monopolist pipeline.

Case 1: K binding in both peak and valley times

Prices are determined such that throughput demand during valley and peak equals

K.  That is, we have:

That is,

In equilibrium, the amount end users will pay for these rights is (1-α)Pv + αPp.  Thus the

monopolist’s problem is:

The First Order Condition (FOC) is given by:
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and the solution is thus:

We note that we require a positive valley price, that is:

Case 2: K binding only in peak times

This case holds for a seasonality magnitude greater than the above threshold.  In

this case, we have Pv=0, and hence the monopolist must maximize profits by pricing

monopolistically in peak times.  That is, the monopolist problem becomes:

The usual monopolist solution derives:

1.3.1.4.  The Welfare Effects of the Equivalent Contract Structure Relative to the Others

The equivalent contract structure introduces a constraint in the pipeline

maximization problem.  As such, the pipeline is necessarily worse off under the

equivalent contract structure.  However, the net effect on social welfare depends on the

level of seasonality.
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Case 1: K binding in both peak and valley times

Proposition 1.4:

When seasonality is low, in the absence of storage, the equivalent contract structure

yields a lower social welfare than either the long term or short term contract structures.

Proof

Figure 1.3(a) depicts the equivalent contract structure and the long term contract

structure (which yields the same result as the short term contract structure).  We see that

valley price under the equivalent contract structure is lower, whereas the peak price is

higher.  Indeed, it can be easily checked that:

Similarly, we see that:

We note that the price and the throughput differentials are equal for α=1/2.

It is clear that valley end user are better off as a result of lower prices and peak

end users worse off.  By the same token, the monopolist is better off in the valley and

worse off in the peak.  The net effect, however, is not ambiguous.  In valley times, social

welfare under the equivalent contract structure is higher by an amount equal to area A.  In

peak times, social welfare is lower by an amount equal to area B.  Thus, net social

welfare change11 is:

                                                

11 Social Welfare here is defined as the sum of consumer surplus and pipeline profits.
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Q.E.D.

With low seasonality, the pipeline maximizes profits by extracting rents in both

peak and valley.  As such, the number of rights issued under the equivalent contract

structure is somewhere in between the number of rights for valley and peak under the

long term contract structure.  As such, price increases (and social welfare decreases) in

the valley but it decreases (and social welfare increases) in the peak.  However, the

decreased welfare in the valley is more than outweighed by the increase in the peak.  It is

worth noting that the longer the peak period is, the closer the number of capacity rights

issued under the equivalent contract structure will be to the long term contract level for

the peak.  Conversely, the longer the valley period is, the closer the number will to the

long term contract level for the valley.

Case 2: K binding only in peak times

Figure 1.3(b) depicts the equivalent contract structure and the long term contract

structure.  We note that peak prices remain unchanged under the former relative to the

latter, but valley prices decrease to zero.  It is clear that the welfare of both end users and

the monopolist remain unchanged in the peak, and consequently so does social welfare.

In contrast, end users in the valley are better off under the equivalent contract structure

and the monopolist worse off.  Clearly, the increase in consumer surplus is greater than

the decrease in pipeline profits.  The equivalent contract structure leads, thus, to an

increase in social welfare relative to the long term or short term contract structures.  This

is summarized in the following proposition.

Proposition 1.5:

When seasonality is high, in the absence of storage, the equivalent contract structure

yields a higher social welfare than either the long term or short term contract structures.
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Figure 1.3: The Equivalent vs. the Long Term Contract Structures

       with No Storage
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Propositions 1.4 and 1.5 show that contract do indeed matter in the ability of the

pipeline to extract monopoly rents.  Here, we saw that an equivalent contract structure

necessarily decreases the ability of the pipeline to earn monopoly rents, but the net effect

on social welfare depends on the level of seasonality.  When storage is introduced, the

effect of contracts on the ability of the pipeline to extract monopoly rents is even more

dramatic.  This is so, because contracts also affect the competitive effect of storage.  We

will now turn our attention to the storage case.

1.3.2.  The Storage Case

As argued earlier, storage introduces a link between peak and valley markets

through the arbitrage equation identified in the second part of this chapter.  As such, the

pipeline must take into account this interaction when determining the number of capacity

rights to issue.  Again, we will first analyze the long term contract structure and examine

the welfare effects of storage as well as the effect of peak duration in the context of this

contract structure.  We will then analyze the short term contract structure and compare it

with the long term contract structure.  Finally, we will analyze the equivalent contract

structure.

1.3.2.1.  The Long Term Contract Structure

Again, this contract structure allows the pipeline to sell capacity rights forward

and as such, it allow to take the long run (i.e. peak time) elasticity of demand into

account.  That is, forward sales allow the monopolist to incorporate not only the effects

of Pv, but also of Pp, on end-users’ decision to bypass the pipeline in peak times for

storage.  With this forward sales commitment, the pipeline is able to better "coordinate"

the problem it faces in valley and peak times, and as such can more effectively limit the

competitive effect of storage.  Indeed, the solution to this long term contract structure

represents the best that a monopolist can do in the presence of storage

Mathematically, the optimal number of capacity rights in peak and valley times

for the pipeline to sell is given by:
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and the resulting FOCs for Pv and Pp are, respectively:

These FOCs show the three effects that a monopolist pipeline must take into

consideration when solving this problem:

• The first bracket term of each FOC shows the effect of a change in Pt on valley

(t=v) or peak (t=p) total profitability stemming from end user demand.

• The second bracket term of each FOC shows the effect of a change in Pt on valley

or peak total profitability stemming from changes in storage usage.

• The third bracket term of each FOC shows the effect of a change in Pt on the other

period profitability stemming from changes in storage usage.

The simultaneous solution of both FOCs enables the coordination of the problem

facing the monopolist in valley and peak times.  Appendix 1.A shows the derivation of

the solution of these FOCs, which is given by:
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where g=(1-α)(csγα+1) 12.  The resulting gas amount injected into storage is:

It is important to note the role of commitment in this market structure.  Once Pv is

set and end-users’ storage decision has been made based on the above peak price, the

monopolist has the incentive to deviate from the above peak price in peak times.  If end-

users rationally expect this lack of commitment, they will take it into account when

making their storage decisions, and the market structure will end up being a sequence of

spot short term transactions which we will analyze later.  That is, to distinguish between

the short term and the long term contract market structure it is imperative that we assume

that the pipeline monopolist credibly commits to forward sales.

The Welfare Effects of Storage

Figure 1.4 depicts the no storage and the storage cases for α=1/2 and a long term

market structure.  The picture depicts valley throughput demand as having a higher price

intercept than end-user demand.  Thus, the picture shows the case where there is a

decrease in the elasticity of throughput demand in the presence of storage.  As argued in

the second part of this chapter, storage introduces a competitive effect, and thus, we

expect social welfare to increase.  This is indeed our result, as show in the following

proposition.

Proposition 1.6:

Storage leads to an increase in social welfare as a result of the competitive effect it

introduces.

                                                

12 Our expression for valley throughput demand assumes a positive valley end-user demand.  Thus, we
assume the resulting Pv

LT<θv/γor a<2+g/α in order to guarantee an interior solution.  There is no lower
bound restriction on the value of a.
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Proof

Storage leads to an increase in valley price and a decrease in peak price, as

expected.  The magnitude of these price changes is given by:

where the superscript 0 denotes the equilibrium with no storage.  Note that the magnitude

of price changes are equal for α=1/2.

With these price changes, we can conclude that consumers are unambiguously

better off as a result of storage.  In the valley, consumer surplus is reduced by the sum of

areas (H+A) in figure 1.4, and in the peak, consumer surplus is increased by the sum of

areas (E+B).  The net effect on consumer surplus is thus:

Similarly, we can conclude that the pipeline monopolist is unambiguously worse off as a

result of storage.  In the valley, producer surplus is increased by the sum of areas (H+2A)

in figure 1.4, and in the peak producer surplus is decreased by area E.  The net effect on

producer surplus is thus:

The increase in consumer surplus outweighs the decrease in producer surplus.

Thus, storage unambiguously increases social welfare in the context of a long term

contract market structure.  We need to add the surplus in the storage sector to completely

obtain an expression of social welfare increase.  We have:
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Q.E.D.

In sum, we see that by introducing competition to the monopolistic pipeline in

peak times and by allowing end-users to bypass the pipeline in peak times, storage leads

to an increase in social welfare.  Storage hinders the ability of the monopolist to extract

rent from end-users.  Surprisingly enough, storage does not change the throughput levels

in valley and peak times.  There is, however, greater consumption in peak times, as a

result of a lower peak price, and a lower consumption in valley times as a result of a

higher valley price.

The Effect of Peak Length α

First, we note that prices and throughput quantities in the no storage case are

unaffected by peak length α.  The same holds true for throughput in the case of storage.

Changes in α will affect the impact of storage through prices and quantity injected into

storage.  Intuitively, a longer peak period (i.e. a high α) means the withdrawal rate from

storage in peak times is low and peak end-users rely more heavily on pipeline deliveries

to meet their demand. That is, a high α limits the competitive effect of storage and thus

leads to a smaller decrease in peak price.  In contrast, a high α leads to a more important

fraction of valley throughput going into storage injection and thus valley price is more

closely related to peak demand than to valley demand.  That is, a high α makes valley

times resemble more peak conditions and hence the introduction of storage leads to a

larger increase in valley price.  Indeed, we have:
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The change in amount of gas injected into storage is not, however, unidirectional

with respect to α.  We have:

Amount of storage injected is maximum when α=1/2.  Coincidentally, α=1/2 is also the

point where the effect of storage on consumer surplus and producer surplus is maximum

since:

We can summarize these observations in the following proposition:

Proposition 1.7

Peak length, α, influences the competitive effect of storage.  The competitive effect,

measured by change in producer and consumer surplus is concave in α, and maximized

when peak and valley periods are of equal length.

Figure 1.5 presents a schematic of the effect of storage on quantity injected into

storage, Qs, and consumer surplus and producer surplus, ∆CS+∆PS.  We see that the

competitive effect of storage is limited not only by a high α, but also by a low α.  A high

α (i.e. a short valley period) limits the opportunities to inject into storage, and hence total

amount of gas stored is relatively low, despite the high injection rate during the relatively

short valley times.  By the same token, a low α  (i.e. a short peak period) limits the

opportunities to make use of the storage facilities and hence total amount of gas stored is

relatively low, despite the high withdrawal rate during the relatively short peak times.

The amount of gas stored is maximum when the peak and the valley are equal in length.
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At such point, the opportunities to make use of the storage facilities coincide with the

opportunities to inject into storage.

Figure 1.5: The Effect of Peak Length

1.3.2.2.  The Short Term Contract Structure

The equivalence between long tern and short term contract structures, derived in

the case with no storage, is lost in the storage case.  In the presence of storage and in

contrast to the long term contract structure, a short term contract market does not allow

the pipeline to fully internalize the effect of peak price on total profit stemming from the

bypass decision of end users for storage.  The coordination that was so beneficial to the

monopolist pipeline in the case of a long term contract structure is lost here.  As a result,

in peak times the pipeline can only react to the bypass decision by maximizing peak

profits over the residual end user demand, that is, over the demand not already supplied

via storage.  Hence, the pipeline can less effectively limit the competitive effect of

storage.  It is in this sense that the pipeline is worse off with a short term contract

structure than with a long term contract structure.  Conversely, consumers are made

better off.  Mathematically, we solve the pipeline problem via backward induction.

1/2 1
α

∆CS+ ∆PS

Qs
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The peak period problem

The pipeline takes Qs as given and must maximize over the residual end-user

demand.  In a rational expectation equilibrium, end-users must anticipate the pipeline’s

pricing decision in peak times before making their storage decisions in the valley.  Thus,

equivalently, our pipeline takes Qs as given, and the optimal peak price is given by:

Appendix 1.B shows the derivation for the solution to this problem.  The solution to this

monopolist problem is given by:

We note that the monopolist sets price at a point where the elasticity of

throughput demand is 1.  Furthermore, by inspection we see that storage leads to a higher

throughput in the peak.  This is counterintuitive, as we would expect storage to decrease

throughput in the peak.  The reason for this result, as we will see later, is that a short term

structure is less effective at limiting the competitive effect of storage than a long term

contract structure.  Also, storage leads to a lower peak price since:

where the superscript 0 denotes the equilibrium in the no storage case.  The inequality

stems from the fact that storage leads to peak throughput having a lower price intercept

than end-user demand, indicating withdrawals from storage.  The resulting peak total

profit level is thus:









−−

α
γθα

),( vps
ppp

P

PPQ
PPMax

p

α
αθ

γα
αθ

s

vsp
p

s

vsp
p

c

Pc
q

c

Pc
P

2
’

)1(2

+
=

+
+

=

0
)1(2

0 >
+

−
=−

γα
γθ

s

vp
p

ST
p c

P
PP

[ ]
)1(4

2

+
+

=Π
γα

αθ

ss

vsp
p cc

Pc



41

The valley period problem

The optimal valley price is given by:

The resulting FOC is given by:

This FOC shows the three effects of a change in Pv that the pipeline operator must take

into consideration when solving its valley problem:

• The first bracket term shows the effect on valley total profitability stemming from

valley end user demand.

• The second bracket term shows the effect on valley total profitability stemming

from changes in storage injection.  Note that it takes into account the indirect effect

of Pv on storage injection through its effect on Pp.

• The third bracket term shows the effect on peak period profitability stemming from

changes in storage injection.

Taking our solution for the peak, the instantaneous throughput demand in the

valley is equal to:

with g=(1-α)(csγα+1); and the above optimization problem becomes:

Appendix 1.B shows the derivation of the solution to this problem and is given

by:
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and the resulting solution for the peak is:

The resulting gas amount injected into storage is13:

The social benefits of short term contracts in relation to long term contracts

Proposition 1.8

A short term contract structure leads to a stronger competitive effect of storage than a

long term contract structure, and as such to a higher social welfare.  Following

Proposition 1.6, this entails that storage has a positive social welfare effect under short

term contracts as well.

Proof

Figure 1.6 depicts the storage case for both short term and long term market

structures.  We see that in the context of storage, a short term contract structure leads to

lower prices both in the peak and in the valley.  Indeed, we have:

                                                

13 In order to guarantee an interior solution, we assume 
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 to insure a positive amount of gas

injected into storage, and a<2+g/α+1/(2csγ) in order to guarantee a positive end user demand, or Pv
ST<θv/γ.

Note that this upper condition is already satisfied by our assumption to guarantee an interior solution in the
context of a long term contract structure.
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Peak throughput demand:
          under ST
          under LT

Valley throughput demand:
         under ST
         under LT
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Figure 1.6: The Storage Case with Long Term and Short Term Contracts
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We note that the peak price differential is larger than the valley price differential.  Hence

we conclude that short term contracts entail a lesser usage of storage facilities than long

term contracts.  Furthermore, by inspection of our short term contract structure results,

we see that throughput demand in the peak increases whereas throughput demand in the

valley decreases relative to the long term contract structure.

The question is what these observations entail for social welfare.  Consumers are

clearly better off with a short term contract structure since it entails lower prices.  The

monopolist pipeline is worse off because, as argued earlier, a short term contract does not

give the flexibility to coordinate the monopolist’s problem in the peak and in the valley.

The best that the monopolist can do is given by the long term contract solution.  This is

indeed what we obtain, as can be easily verified that:14

Moreover, as shown in Appendix 1.C, change in social welfare in the context of

storage is given by:

where PSte represents monopolist surplus at time t based on end-user demand.  The term

(CSt + PSt
e) is shown as area A in the figure 1.7 below.

                                                

14 We can thus make an argument that in an infinite horizon model, committing to forward sales in the long
term contract structure is indeed time consistent for the monopolist.  This is so because if the monopolist
does not comply with its longer commitment, it risks losing credibility and future higher rents.
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Figure 1.7

From the expression above, we note that a decrease in peak and valley prices and

a reduction in the usage of storage is a sufficient condition for an increase in social

welfare.  This is indeed the case of the short term contract structure in relation to the long

term contract structure.  That is, the social welfare benefits of storage are not only

positive under a short term contract structure but more importantly, they are higher than

under a long term contract structure15.  This result holds for all values of peak length, α.

Q.E.D.

This analysis shows that a long term contract structure allows the monopolist

pipeline to more effectively limit the competitive effect of storage than a short term

contract market structure.  This is evidenced by the smaller price differential under a

short term contract structure.  The competitive effect of storage is so important in a short

term contract structure that the drop in peak price is very large in relation to the no

storage case.  This drop leads to an important increase in peak end-user demand that is

only partly offset by storage, and thus leading to an increase in peak throughput.

1.3.2.3.  The Equivalent Contract Structure

As in the case with no storage, we need to consider two cases.  The first with low

levels of seasonality in which the pipeline is better off extracting rents in both the peak

                                                

15 In the presence of storage, the solution to the perfect competitive case is trivial and entails zero peak and
valley prices with zero storage injections.  In this context, a short term contract structure represents a step
closer to the perfectly competitive pipeline sector case than a long term contract structure.

qt
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and the valley.  The second with high levels of seasonality where the pipeline extracts

rents only in the peak.

Case 1: K binding in both peak and valley times

Throughput demand must now incorporate the storage effect.  Again, prices are

determined such that throughput demand equal K in both valley and peak times:

Solving this system of equations for Pv and Pp, we have (Appendix 1.D shows the

derivation):

Again, the maximum end users are willing to pay for these rights is (1-α)Pv + αPp.  Thus

the monopolist problem is:

Appendix 1.D shows the solution of this problem to be:
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As in the no storage case, this solution assumes a positive valley price, and thus we

require:

Case 2: K binding only in peak times

As in the no storage case, this case holds for a seasonality magnitude greater than

the above threshold.  Again, valley price is zero and the resulting peak price is

and the resulting monopolist problem becomes:

The solution to this problem is thus:
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1.3.2.4. The Welfare Effects of the Equivalent Contract Structure Relative to the Other

Structures

Case 1: K binding in both peak and valley times

Figure 1.8 depicts the monopolist solution under the equivalent contract and the

long term contract structures.  As in the no storage case, we see that valley price under

the equivalent contract structure is lower, whereas the peak price is higher.  Indeed, it can

be easily checked that:

Similarly,

Again, we note that the price and throughput differentials are equal for α=1/2.

Furthermore, because the valley price differential is positive and the peak differential is

negative, storage usage is larger under the equivalent contract structure.

As in the no storage case, we see that valley users are better off and peak end

users worse off under the equivalent contract structure.  The monopolist, in contrast, is

unambiguously worse off because, as argued earlier, cannot do better than with the long

term contact structure.  Appendix 1.E shows that social welfare under the equivalent

contract structure is unambiguously lower than under the long term contract structure.

Indeed, Appendix 1.E shows that:

where PSt
e represents monopolist surplus at time t based on end-user demand.  The first

bracket term on the RHS of the first line is represented by area A in Figure 1.8, and the

second term by area B.  As argued earlier, the above condition plus the fact that the long

term contract structure leads to a lower storage usage, are sufficient to show it yields
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Figure 1.8: The Storage Case under Equivalent and Long Term Contracts
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higher social welfare relative to the equivalent contract structure.  By transitivity, the

equivalent contract structure also leads to a lower social welfare level than the short term

contract structure.

Case 2: K binding only in peak times

Figure 1.9 depicts the monopolist solution under the equivalent contract and the

short term contract structures.  We see that both peak and valley prices are lower under

the equivalent contract structure.  Indeed, we have:

We note that the drop in valley price under the equivalent contract structure is larger than

the one in peak price.  As a result, the storage price is higher under the equivalent

contract structure, and consequently, so is storage usage.  That is, the equivalent contract

structure leads to lower prices albeit a higher storage usage.  We cannot thus, make a

definite conclusion on the relative social welfare based on these observations.  However,

Appendix 1.F shows that the equivalent contract structure leads to a higher social welfare

than the short term contract structure, and hence a higher social welfare than the long

term contract structure.  Indeed, Appendix 1.F shows that:

We can thus summarize our welfare analysis of the equivalent contract structure

in the following proposition:

Proposition 1.9

The equivalent contract structure leads to a lower social welfare than either long term or

short term contract structures when seasonality is low.  In contrast, when seasonality is

high, the equivalent contract structure is preferred, from a social welfare point of view,

than either the other two contract structures.
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Valley throughput demand:
          under EQ
          under ST

Peak throughput demand:
          under EQ
          under ST
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Case 2: K binding only in peak times

Figure 1.9: The Storage Case under Equivalent and Short Term Contracts
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1.3.3.  Summary

This third section of the chapter analyzed three possible market structures

assuming that infrastructure is already in place.  The following table summarizes our

results with respect to the social benefits of each contract structure:

Table 1.1: Summary of results for Infrastructure in place scenario

Low seasonality High seasonality
No Storage Case EQ<LT=ST LT=ST<EQ

Storage Case EQ<LT<ST LT<ST<EQ

From this table, we see that the long term contract structure is never optimal from

a social point of view.  At best, it yields the same results as the short term contract

structure.  We note that short term contracts are always better than long term contract in

the storage case.  As argued before, short term contracts gives less flexibility to the

monopolist to counteract the competitive effect of storage.  With a short term contract

structure, the monopolist has no alternative but to react to the valley price, when

determining the peak price.  This is in contrast to the long term contract structure which

gives it the flexibility to incorporate the effect of valley prices on peak profitability and

hence to take into account long term elasticity into its maximization solution.  We also

see that with low seasonality, the short term contract structure is best.  The reason is that

with low seasonality, the monopolist tries to obtain some rents in the valley as well and

thus, under the equivalent contract structure, will issue an amount of rights between that

for peak and that for valley under the long term contract structure.  As a result, the

increase in welfare in the valley under the equivalent contract structure and relative to the

long term contract structure, is more than offset by the loss of welfare in the peak.  In

contrast, with high seasonality, the equivalent contract is best.  It is not optimal for the

monopolist to obtain rents in the valley, and thus will let valley price be zero.  This, of

course, strengthens the competition arising from storage making the peak price to drop so

as to limit this competitive effect.

The above analysis has important policy implications.  First, it says that giving

full flexibility to the monopolist allowing it to make long term contract arrangements is

never optimal.  Second, it says that the presence of storage can indeed undermine the
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monopolistic position of pipelines.  Third, it says that the optimal market structure for

capacity rights markets depends on the level of seasonality.  In the next section of this

chapter, we will analyze the investment decision under the same three market structures.

We shall see that the distinction between the short term and the long term contract

structures is no longer valid.  This is so because by determining the investment level at

the beginning of the valley, the monopolist is effectively selling forward peak capacity

rights.  In other words, the investment decision by the monopolist can limit the

competitive effect of storage in the case of short term contracts.

1.4. No Infrastructure in Place

This second scenario assumes that no infrastructure is in place.  The monopolist

pipeline must first decide how big a pipeline to invest and then determine the amount of

rights to sell for peak and valley.  Under our assumptions of perfect foresight, the

monopolist will invest so as to have a capacity constraint in the peak. The following

paragraphs will derive the solution for the perfectly competitive pipeline sector and will

discuss the three market structures studied above for a monopolist pipeline.

1.4.1.  Competitive pipeline sector

In this part, the case of a competitive pipeline sector is analyzed.  This case can be

thought of as a network of many pipelines delivering gas to a particular consumption

center.  No single pipeline is big enough to influence capacity prices.

1.4.1.1.  Market Equilibrium

The No-Storage Case Equilibrium

The short run marginal cost of delivering gas in this case is 0, when Qt<K, and ∞

for Qt>K, where K represents the capacity of the pipeline.  We expect pipeline to be

constrained in the peak, and hence the long run marginal cost is k/α, which incorporates

the investment cost and the fact that it must be recovered during peak time.  That is, peak
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end-users pay for the investment costs.  The solution to this competitive case is given by

the familiar P=MC principle.

The solution in the peak period is thus given by:

and thus, we have:

The solution in the valley period is given by:

and thus, we have16:

The Storage Case Equilibrium

We still have peak end users paying for investment costs.  The P=MC principle

leads to the peak period solution given by:

and the valley period solution given by:

The solution to these simultaneous equations is given by:

                                                

16 Seasonality is assumed to be sufficiently large to guarantee an interior solution, so peak throughput is
greater than valley throughput.  That is, a>1+kγ/(αθ v) is assumed.
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The resulting gas amount put in storage is:

Note that as the peak length, α, the valley price decreases.  The reason is that as

α increases there is more time to recover investment costs, and thus less need to charge

for the recovery of these costs.

1.4.1.2.  The Welfare Effects of Storage

Figure 1.10 shows this competitive pipeline sector for the no storage and storage

cases. The first thing to notice is that storage does not affect equilibrium prices in both

periods 17. End user consumption remains unchanged in both periods.  The difference

between the two cases lies on how the gas is delivered.  Storage leads to an increase in

throughput in the valley period and a decrease in throughput in the peak period.  That is,

there is a decrease in the amount of pipeline that remains idle in the valley period.  There

is a better utilization of capital, as the same amount of gas is being delivered with a lower

investment level.  This better utilization of capital leads to an increase in social welfare.

Indeed, from our result of Appendix 1.C and incorporating investment costs, we have:

Since the price remain unchanged, the first bracket term is 0.  The other two terms lead

to:

                                                

17 A model with increasing marginal costs in the operation of pipelines would lead to a reduction in peak
price and an increase in valley price, associated with the decrease in peak throughput and the increase in
valley throughput.
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peak end user demand

peak throughput
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Figure 1.10: Investments under the Competitive Case
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We see that investment costs has three effects18.  First, peak prices increase by a

factor necessary for the recovery of investment costs which decreases peak throughput.

Second, this factor leads to a larger difference between peak and valley prices and hence

to larger storage usage.  And third, this larger storage usage leads to higher valley

throughput and further decreases peak throughput.  We will see these three effects in our

analysis of the three contract structures.

1.4.2.  The Equivalency of Long Term and Short Term Contract Structures

The second part of the chapter analyzing the scenario where infrastructure is

already in place showed that the long term and short term contract structures are

equivalent in the case of no storage.  However, in the case of storage, short term contracts

lead to higher social benefits.  In contrast, when analyzing the investment decision, long

term and short term contracts are equivalent in both storage and no storage cases.  Indeed,

the investment decision by the pipeline in the short term contract structure effectively

sells capacity rights forward.

1.4.2.1.  The No Storage Market Equilibrium

Again, there is no linkage between the market in the peak and in the valley.  Thus

the short term and long term contract structures lead to the same equilibrium outcome.

We introduce investment decision into our previous analysis in the scenario with

infrastructure in place.  Capacity will be binding in the peak.  Thus, the monopolist

problem is:

                                                

18 The solution of the competitive pipeline sector with no investment decision is trivial as it yields to zero
prices and no storage usage.
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The solution to this problem is given by:

The peak solution is given by:

To insure that peak capacity is binding only in the peak, we assume19:

1.4.2.2.  The Storage Market Equilibrium

The Long Term Contract Structure

Introducing investment decision into our previous analysis leads to the following

monopolist problem:

and the resulting FOCs for Pv and Pp are, respectively:

                                                

19 The case where capacity is binding in the both periods is not very interesting from an economic point of
view, and thus is neglected.
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These FOCs show the three effects identified earlier plus an additional fourth effect

shown in the last bracket term of each equation.  This term shows the effect of prices on

the investment cost.  This effect has only one component in the FOC for the valley price:

as higher valley price leads to lower storage usage and hence a higher peak throughput

and investment level, ceteris paribus.  In contrast, the first component says that a higher

peak price leads to a greater usage of storage and hence a lower investment level.  The

second component relates to the notion that investment is paid by peak end-users.

Appendix 1.G shows the derivation of the solution to these FOCs, which is given

by:

The superscript o denotes the equilibrium in the no storage case.  The resulting gas

amount injected into storage is:
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In this analysis we assume that capacity is binding in the peak and hence20,

It is interesting to compare this result with the one obtained when assuming the

infrastructure was already in place. Unlike to the first scenario, storage here leads to an

increase in  valley throughput and a decrease in peak throughput relative to the no storage

case.  This is driven by the fact that investment is paid by peak end users, and thus the

extra term containing k in the peak price.  This extra term creates an extra incentive for

storage usage not present when we assumed the infrastructure to be in place.  This extra

incentive for storage usage increases valley throughput and decreases peak throughput.

Figure 1.11 shows depicts the no storage and the storage cases for α=1/2 and a

long term market structure.  As noted above, storage leads to an increase in valley

throughput demand and a decrease in peak throughput demand.  Also, as in the previous

analysis, the presence of storage leads to an increase in valley price and a decrease in

peak price, as expected.  The magnitude of these price changes is given by:

Again, the superscript o denotes the equilibrium with no storage.  Note that these price

differentials are the same as those obtained in the previous analysis assuming

infrastructure was already in place.

The Short Term Contract Structure

The solution to the short term contract structure is derived through backward

induction.

                                                

20 As in our previous analysis, our expression for valley throughput demand also assumes a positive valley
end-user demand.  Thus, we assume the resulting Pv

LT1<θv/γor a<2+g/α.
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Figure 1.11: Investments under Long Term Contracts

Superscript 0 denotes equilibrium with no storage
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The peak period problem

The pipeline when solving its peak period problem takes the capacity K and

valley price as given.  As argued earlier, the investment decision will be such that

capacity binds in the peak.  Hence:

and the resulting peak price and peak profitability are given by:

The valley period problem

In the valley, the monopolist wants to maximize overall profit less investment

costs.  That is, the problem is:

Substituting and rearranging terms leads to the following FOCs:

which lead to the following equilibrium conditions:

Note that these conditions are exactly the same as the corresponding conditions for the

long term contract structure.  That is, the two structures yield identical results.  This

would suggest that the monopolist does no longer react to valley prices in the peak, as we

concluded in the scenario with infrastructure in place.  By making the investment
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decision simultaneous to the valley price, the monopolist is effectively selling forward

capacity rights for the peak, since capacity will be binding in the peak.  Thus, making the

investment decision allows it to incorporate long term demand elasticity into the

monopolist valley problem.  What was so attractive about this contract structure when

infrastructure is in place is lost here.  A short term contract structure no longer limits the

ability of the monopolist to fend off the competitive effect of storage.  The following

proposition summarizes this result.

Proposition 1.10

Through the investment decision, a monopolist pipeline effectively sells capacity forward

through the investment decision in the context of a short term contract structure.  As

such, the long term and short term contract structures are equivalent in both storage and

no storage cases.

1.4.3.  Summary

The investment decision does not change the value, from a social point of view, of

the equivalent contract structure relative to either long term or short term contract

structures.  Mathematically, there is an extra component related to the investment cost in

the solutions derived in the second part of the chapter.  The investment decision does not

change the problem the monopolist faces under an equivalent contract structure as it does

under a short term contract structure.  Hence, the equivalent contract structure leads to

higher social welfare with high seasonalities and lower social welfare with low

seasonalities.  The following table summarizes this:

Table 1.2: Summary of results for No Infrastructure in place scenario

Low seasonality High seasonality
No Storage Case EQ<LT=ST LT=ST<EQ

Storage Case EQ<LT=ST LT=ST<EQ

Comparing to Table 1.1, this table shows that in all four cases, short term and long term

contract structures are equivalent.  This is not true when infrastructure is already in place.

However, the relative value of the equivalent contract structure is the same in both

scenarios.
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1.5.  Conclusions

The main insight presented in this model is that the competitive effect of storage

depends on the capacity rights market structure.  This implies that policy makers have to

be very careful in designing the structure of capacity rights markets.  While the pipeline

sector in many regions in the United States is competitive, there are regions where there

are few pipelines competing for the delivery of gas.  The structure of capacity rights

markets will have an important bearing on these regions.  Furthermore, the model shows

that the current structure of the capacity rights market in the United States, characterized

by the equivalent contract structure in this analysis, might not be optimal in regions with

low seasonalities.  In such regions, a short term contract structure would enhance social

welfare.  The chapter also has important implications for infant natural markets where the

pipeline infrastructure is very much underdeveloped and hence there is little competition

in the pipeline sector.  The model shows that there is no distinction what so ever between

a short term and a long term contract structure when the monopolist pipeline must also

decide on the investment level.  In such markets, the monopolist pipeline has greater

ability to limit the competitive effect of storage.  In any case however, infant markets

should aim at encouraging investments in storage facilities as these tend to introduce

competition to the monopolist pipeline and increase social welfare.

The next chapter introduces extends the analysis presented here by introducing

uncertainty.  Uncertainty breaks down the equivalency between short term and long term

contract structures, and as such has important implications in the ability of the pipeline to

fend off the competitive effect of storage.  Moreover, although long term contracts might

strengthen the competitive effect of storage, it has the benefit of allocating risks in a more

efficient manner, as discussed in the third chapter.  It is important that regulators take all

these elements into consideration when designing capacity rights markets both in the

United States and abroad.
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Appendix 1.A: Derivation of solution under long term contract
structure and infrastructure already in place

Here we derive the market equilibrium in the presence of storage.  The problem

facing the monopolist pipeline is given by:

The resulting First Order Conditions (FOC) are given by:

From the first equation, we have:

and into the second equation leads to:

where g=(1-α)(csγα+1).  Thus, we have:

Similarly, we get:

and
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Also,

Appendix 1.B: Derivation of solution under short term
contract structure and infrastructure already in place

Here we derive the market equilibrium in the presence of storage.  The solution is

derived via backward induction.

Peak Period Problem

The monopolist takes valley price as given and the problem it faces is given by:

The resulting First Order Condition (FOC) is given by:

Hence we have:

and
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This leads to a profit level for the peak equal to

Valley Period Problem

In the valley, the monopolist pipeline faces the following problem (taking the

solution of the peak period into account):

The resulting First Order Condition (FOC) is given by:

and hence, we have:

where g=(1-α)(csγα+1).  Plugging into our peak solution yields to:
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The resulting amount put in storage is given by:

The resulting throughput amounts are given by:

and

Appendix 1.C: Derivation for the expression for Social Welfare
in the presence of storage

Social welfare is given by the sum of consumer surplus, pipeline surplus and

storage surplus:
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where PSt
e represents producer surplus at time t based on end-user demand, as illustrated

in figure 1.7 in the text.

Appendix 1.D: Derivation of the solution to the monopolist
problem under the equivalent contract structure in the
presence of storage and K binding both in valley and peak
times

Prices are determined such that throughput demand equal K in both valley and

peak times:

Equating these two equations yields to

and plugging into the first equation leads to:

Thus, we have:
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The maximum end-users are willing to pay for these rights is:

Thus, the monopolist problem becomes:

The solution to this problem is:

Thus we obtain,

Similarly, we have

And the resulting storage price is
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Appendix 1.E: Proof that the equivalent contract structure
leads to a lower social welfare than the long term contract
structure for low seasonality and storage

From Appendix 1.C, we know that social welfare in the presence of storage is

given by:

where PSt
e represents producer surplus at time t based on end-user demand.

From Figure 1.8, we have:

where ∆qt
LTEQ represents the change in end user demand.  We note that

Also, it can be checked that:

Hence, we have

Appendix 1.F: Proof that the equivalent contract structure
leads to a higher social welfare than the short term contract
structure for high seasonality and storage

From Appendix 1.C, we know that social welfare in the presence of storage is

given by:
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where PSt
e represents producer surplus at time t based on end-user demand.

From Figure 1.9 in the text, we have:

where ∆qt
STEQ represents the change in end user demand.

Also,

Thus, we get

Similarly, from figure 1.A.1 below, we have

Figure 1.I.1: Storage Surplus
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where

We have:

Hence, the relative social welfare is given by

Simplification leads to:

That is, the equivalent contract structure leads to a higher social welfare level than the

short term contract structure.
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Appendix 1.G: Derivation of solution under long term contract
structure with investment decision made simultaneously

This appendix derives the market equilibrium in the presence of storage.  The

problem facing the monopolist pipeline is given by:

The resulting First Order Conditions (FOC) are given by:

From the first equation, we have:

and into the second equation leads to:

Thus, we have:

Similarly, we get:

and
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Also,

( )
( ) ( )

( )
( )

)1(22

)1(22

)(2

)1(2)1(2

)1()1(

2
’

αα
θ

ααα
ααθ

αααα
ααθ

αγ
αγθθ

−
+=

−
+

+
−−+=

−
+

−+
−−+

+
+−=

s

v

s

v

s

vv
v

LT
v

c

k

c

k

g

gg

c

k

g

a

g

ag
q

( )
( ) ( )

( )
( )









+−=









+−

+
−−−−+=









+−

+
−−−

+
−−++−=

α
γ

α
θ

α
γ

αα
ααθ

α
γ

ααα
ααθ

αγ
γαααγθθ

s

p

s

v

s

vsv
p

LT
p

c

k

c

k

g

gaagga

c

k

g

a

g

acag
q

1

22

1

22

)1()(2

1

22

)1()1(

2

)1()1(
’



76

Chapter 2:

Capacity Rights, Contracts and Storage

with Uncertainty

2.1.  Introduction

The last decade has seen the restructuring of infrastructure sectors that have been

vertically integrated “natural” monopolies.  In the energy field, these include electric

power and natural gas.  This restructuring process seeks to differentiate potentially

competitive segments (i.e. electricity generation and natural gas production) from natural

monopoly or network infrastructure segments (i.e. electric transmission and gas pipeline

networks).  Restructuring entails price and entry deregulation in the potentially

competitive segments, while the network segments continue to be subject to some form

of regulation of prices, entry and quality.  This new paradigm of industrial organization

aims at guaranteeing suppliers in the competitive segments a fair and equal access to the

network segments in order to supply their services in competition with their rivals.



77

In order to secure the efficiency of this new paradigm, a mechanism must be

implemented to guarantee the efficient utilization of scarce network infrastructure

capacity.  From an economic point of view, market determined access prices are usually

preferred over administrative rationing mechanisms, as these prices provide the economic

signals that should guide additional capacity investments.  One of the difficulties in

implementing such market mechanisms is that the operator/owner of the network is a

monopoly, and as such is bound to exploit its position if left unregulated.  The monopoly

cannot be trusted to set the right prices or make the right investment decisions.  However,

the design of regulatory mechanisms also proves troublesome as asymmetric information

necessarily limits the ability of regulators to provide the right incentives.

This chapter, as the first one, exploits the storability characteristic of natural gas

to analyze the extent that a pipeline can extract monopoly rents in a capacity rights

market if left unregulated.  The first chapter analyzed the case of perfect certainty.  We

saw that storage, by allowing end-users to bypass the pipeline in the peak, introduces the

pipeline in the valley as a competitor to the pipeline in the peak.  As a result, the

pipeline’s ability to extract monopolist rents is reduced, and social welfare is increased.

This competitive effect of storage seems to provide support for market over regulatory

mechanisms in providing the right incentives to the pipeline21.

The extent of this competitive effect of storage and the extent that the monopolist

pipeline can limit it, greatly depends on the market structure of the capacity rights

market.  We analyzed three possible structures: (i) a long term structure with a seasonal

component, where the pipeline can commit to forward sales of capacity rights, (ii) a short

term contract structure where the pipeline sells capacity rights at the beginning of each

period, and (iii) a long term contract with no seasonal component.  The first two

structures entail a separate right for valley and peak times.  End users will have a right to

transport gas during the valley, which is not valid for the peak.  Because of seasonalities

in demand, end users will buy more rights in the peak than in the valley.  In contrast, the

                                                

21 Because the storability of electricity as pumped storage is very limited, this conclusion cannot be
extended to the electricity sector.
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third structure makes no distinction between rights for valley and peak times; they are

equivalent as the number of capacity rights is equal in both valley and peak times.

The model analyzed two scenarios.  The first assumed infrastructure is sunk, with

capacity not binding in the peak.  The model unambiguously showed that the competitive

effect of storage is greater with the short term contract than with the long term contract

with a seasonal component.  That is, the latter allows the pipeline to limit more

effectively the competitive effect of storage than the former.  This is so because, through

forward sales, the monopolist pipeline incorporates the long run elasticity of demand into

its maximization problem.  That is, forward sales allow the monopolist to incorporate not

only the effects of valley prices, but also of peak prices, on end-users’ decision to bypass

the pipeline in peak times and its effect on valley profits.  With a short term contract

structure, however, the pipeline monopolist does not fully internalize the effect of peak

prices on valley profits as the monopolist’s problem in the peak takes the valley price as

given.  With the short term structure, the pipeline loses its ability to coordinate between

the peak and valley periods, and can only react to valley prices in the peak.  Moreover, a

long term contract structure with no seasonal component, unambiguously led to higher

social welfare at high levels of seasonalities, than the other two structures.  Indeed, at

high levels of seasonalities, capacity binds in the valley driving valley price to zero, and

thus creating an enormous competitive effect of storage.

The second scenario analyzed assumes no infrastructure, and thus focuses on the

investment decision by a monopolist pipeline.  In this scenario, however, a short term

contract structure leads to the same equilibrium as the long term contract structure with a

seasonal component.  This is so because, when determining the investment level, the

monopolist pipeline effectively sells capacity rights forward for the peak period.  In other

words, the pipeline’s ability to coordinate the maximization problem in the peak and

valley periods, which was lost under the short term structure in the first scenario, is

regained through the investment decision.  Again, we saw that a long term contract

structure with no seasonal component lead to higher social welfare for high levels of

seasonalities.
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In this second chapter, we expand our analysis by incorporating uncertainty.  We

model uncertainty with respect to peak end-user demand.  The main effect of uncertainty

is that it limits the competitive effect of storage.  The reason is that the storage injection

decision is made based on expected peak price.  As such, ex-post, there is not enough

storage injected if peak demand turns out as high, and there is overinjection if peak

demand turns out as low.  That is, ex-post, the amount of storage is never optimal,

hindering the competitive effect of storage in relation to the certainty case.  Moreover and

more interestingly, uncertainty also changes the relative value of short term and long term

with a seasonal component contracts from a social welfare point of view.  Unlike the

certainty case, short term contracts might prove more detrimental to social welfare than a

long term contract.  The main reason for this is that short term contracts give the

flexibility to pipeline operators to adapt once uncertainty unfolds, which can be exploited,

ex-post, in detriment of end-users.

The analysis presented here also extends to the investment decision case, when

there is no infrastructure in place.  Again, uncertainty changes the relative value of short

term and long term with a seasonal component contracts.  Short term contracts not only

give the monopolist the flexibility to adjust to the outcome of uncertainty, but also the

ability to sell capacity rights forward through the investment decision.  As a result, long

term contracts with no seasonal component unambiguously dominate short term contracts

from a social welfare point of view.

The second section of the chapter will present the model, as well as argue that

uncertainty limits the competitive effect of storage. The third section will present the

scenario with infrastructure in place.  The fourth section will concentrate on the

investment decision.
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2.2.  The Model

The model presented here presents small variations over the model presented in

the first chapter.  The model assumes two periods: valley and peak.  Both periods are of

equal length.  Each period, end user demand for natural gas is given by:

for t=v,p for valley and peak respectively.  θt represents the seasonal component of end-

user demand.  We assume uncertainty with regard to θp, as depicted below:

with β<1, representing the probability of a high peak end user demand.  We assume

As in the first chapter, pipeline sector is assumed to be monopolistic and the storage

sector assumed to be perfectly competitive.  We assume storage is located at the city gate.

Gas is assumed to be injected during the valley and withdrawn during the peak, after

uncertainty unfolds.  The model can be thought of as storage operators (e.g. marketers)

making storage decisions to take advantage of price differentials between peak and

valley, buying capacity at valley prices and transporting it to the storage location in the

valley period, and selling it at peak prices in the peak period.

Throughput demand, defined as end-user demand plus the storage effect (an

injection in the valley and a withdrawal in the peak) is the demand facing the pipeline for

capacity rights, and is thus,

for i=H,L, and where Qs
I and Qs

Wi represent gas injection into and gas withdrawals from

storage, respectively.
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Finally, investments are made in the first period, and are assumed to be

immediately available for use.  Investment costs are assumed to be linear in capacity with

a constant investment cost of k.

The Storage Sector

For simplicity, we assume there is no cost of injecting gas into storage, but cost of

total gas withdrawn22 from storage, Qs, is assumed to be quadratic23:

Storage operators take gas prices as given when making their storage decisions.

Storage decisions are irreversible in that Pv, paid to transport gas in the valley for

injection into storage, is sunk and storage operators cannot modify their storage injection

decisions in the peak period.  Let Qs
I be the amount of storage injected into storage in the

valley period.  Given the storage cost structure, storage operators will withdraw all the

gas from storage if the following condition holds:

In equilibrium, storage operators will withdraw all injected gas if uncertainty unfolds as

high peak demand.  Otherwise, storage injections would be suboptimal.  That is, in

equilibrium,

                                                

22 This chapter makes this somewhat unrealistic assumption to simplify the algebra in the equilibrium
solutions.  A more realistic assumption would be an injection cost with zero withdrawal costs.  The results
in this chapter are still valid with this assumption.  This chapter discusses the results in light of this more
realistic assumption, although it does not derive the equilibrium solutions.
23 This is total cost for the entire storage sector.  Alternatively, we can think of n storage operators having
the same cost structure C’s=(1/2)c’ s Q s

 2, with c’ s =c s n..  See the first chapter for a justification of this
quadratic cost assumption.
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In addition, in equilibrium, high peak price is larger than low peak price.  In contrast,

there are two possible cases for the quantity of gas withdrawn if uncertainty unfolds as

low peak demand.

Case 1: A fraction of gas injected is withdrawn

In this first case, since capacity cost in the valley is sunk, the amount of gas

withdrawn is:

Thus, aggregate storage sector expected profits is given by:

Since the storage sector is perfectly competitive, quantity injected in storage is given by

the condition of zero marginal expected profit or:

The above expression incorporates in the coefficient for Pp
H the fact that storage operators

will be able to sell the last unit of gas put into storage only β of the time.  Similarly, Pv

represents the cost incurred in the purchase of capacity rights in the valley, for gas

injection into storage.  This cost will be incurred regardless of the outcome of the

uncertainty.  Also, the β in the denominator reflects the fact that withdrawal of this last

unit of gas injected will occur only in the case of high peak demand.
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Case 2: All gas injected is withdrawn

In this second case, all gas injected in storage is withdrawn.  Thus, in equilibrium

quantity injected into storage is given by24:

That is, case 2 holds if:

Therefore, from the above expression, two elements drive the two cases at hand:

1. The level of uncertainty: the larger uncertainty is, the larger the term (Pp
H- Pp

L) is,

making case 1 more likely.  One of the components in the storage decision is high

peak demand.  The larger it is, relative to low peak demand, the more storage will be

driven by high peak demand making storage leftovers more likely in the case of low

peak demand.

2. The probability, β: the larger it is, the larger the RHS in the above expression is,

making case 1 more likely.  Again, a higher probability of high peak demand will

lead to a greater influence of high peak demand on the storage decision, storage

leftovers more likely in the case of low peak demand.

From the above assumptions, the following conclusions can be drawn.

Corollary 2.1

Ex-post, the amount of gas injected into storage is never optimal from the point of view of

end users.

                                                

24 This case is equivalent to the case with injection costs and no withdrawal costs, since amount of gas
injected into storage in that case is also Qs=[βPs

H+(1-β)Pp
L-Pv]/cs.
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Proof

Ex-post, the marginal benefit of storage is determined by the difference between

peak and valley prices.  That is,

for i=H,L.  The marginal cost of withdrawing the last unit of gas in storage is csQs
I.  Thus,

storage injections are not optimal ex-post if marginal benefit of storage is not equal to

marginal cost.

Case 1

If uncertainty unfolds as high peak demand, then:

If uncertainty unfolds as low peak demand, then:

Case 2:

If uncertainty unfolds as high peak, then:

Similarly, in the case of low peak demand,

Q.E.D.

In the case of a high peak demand, then, ex-post in the case of high peak demand,

there is underinjection into storage, as marginal benefit exceeds marginal cost.  In

contrast, in the case of low peak demand, there is overinjection into storage as marginal
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cost exceeds marginal benefits.  However, ex-ante, storage decision is efficient in that it

incorporates the probability of high and low peak demand as well as price expectations.

Ex-post, then, the competitive effect of storage is not optimally exploited.  It is in this

sense that the irreversibility of storage decision strengthens the monopolistic position of

the pipeline in the presence of storage.  This conclusion is summarized in the following

proposition.

Proposition 2.1

Irreversibility of the storage decision limits the competitive effect of storage and

hence enhances the monopolistic position of the pipeline.

Proof25

The magnitude of the competitive effect of storage can be proxied by the extent

that the pipeline can extract monopolistic rents26.  This proof shows that a monopolist

pipeline extracts a higher expected profit with irreversibility than with full reversibility.

In the case of full reversibility, storage operators can fully adjust their storage levels in

the peak as a function of the uncertainty outcome.  That is, in the case of a high peak

demand, storage operators can make further injections at a cost of Pv, and in the case of

low peak demand, they can sell the extra gas in storage at a price of Pv.  Ex-post, storage

level is always optimal from the point of view of end-users given price differentials.

Thus, the pipeline expected profit in this full reversibility case is:

where Πi represents the pipeline profit in the case of certainty for i=H,L.

In the case of irreversibility, the pipeline expected profit is given by:

                                                

25 Appendix 2.A proves this proposition for the assumption of zero withdrawal costs and positive injection
costs.
26 Unlike the first chapter, this chapter deals with long term and short term contracts which differ only on
their ability to sell capacity forward.  Moreover, the only source of market imperfection is the monopolist
position of the pipeline.  Hence a contract structure that leads to higher profits for the pipeline necessarily
leads to lower social welfare.
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Following, Corollary II.1, ex post, storage injections are not optimal from the point of

view of end users.  Thus, we have:

Furthermore, the convexity of Π with respect to θp (Appendix 2.B shows this)

suggests that uncertainty works in favor of the monopolist as E(Π)R is higher than the

profit with E(θp) for certain, Π(E(θp)).  That is, irreversibility strengthens the positive

effect of uncertainty on pipeline expected profit, as depicted in figure 2.1 below.  The

convex function represents the pipeline profit in the certainty case.  The straight line

connecting the two points on the profit function represents the pipeline expected profit

with full reversibility of the storage decision.

Figure 2.1: The Effect of Irreversibility and Uncertainty

Q.E.D.

It is important to note that this model assumes no economic life after the second

period.  This, of course, is unrealistic.  However, these conclusions would still hold in a

multicycle model.  In particular, storage injections would be higher as the gas remaining

in storage in the case of low peak demand could be used for the following valley-peak

cycle.  This would tend to diminish the positive effect of irreversibility on pipeline

expected profit.
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Although, the above corollary and proposition are general enough to apply to the

different market structures in the first chapter, uncertainty also has some other

implications that affect the relative value of the different market structures from a social

welfare point of view.  In the next paragraphs, we will analyze these implications for two

contract structures: (i) the long term contract structure with a seasonal component, and

(ii) the short term contract structure.  It is important to note that in this model, the only

source of market imperfection is the monopolistic position of the pipeline  As such any

contract structure that enables the pipeline to increase its profitability will conversely

decrease social welfare.  For this reason, the focus is on pipeline profits when

determining the welfare effects of the different market structures.  As in the first chapter,

this chapter analyzes two scenarios: the first assumes infrastructure is sunk, and the

second concentrates on the investment decision by the monopolist pipeline.  Finally, this

chapter focuses on the case where storage withdrawals under low peak demand are only a

fraction of total gas injected into storage (case 1 in the above discussion).  There are two

reasons for this emphasis.  First, this chapter argues that uncertainty changes the relative

value of contracts.  Cases of low uncertainty levels (e.g. case 2) can be proxied by the

analysis in the first chapter with certainty while this chapter concentrates on high level of

uncertainty.  Second, uncertainty in the natural gas industry is primarily driven by

weather uncertainty, which is highly volatile.  Thus, case 1 seems to present a more

realistic depiction of the natural gas industry.

2.3.  Infrastructure in Place

Here we assume, pipeline infrastructure is sunk and, furthermore, that capacity is

so large that it is never binding.  We will first analyze the equilibrium with no storage,

and then the equilibrium with storage under a short term contract and a long term contract

structures.  In our analysis of the certainty case, we saw that with no storage, both

contract structures lead to the same equilibrium.  However, with storage, the long term

contract structure unambiguously leads to higher pipeline profits and thus to lower social

welfare benefits than a short term structure.  With a long term structure, the pipeline
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monopolist takes the elasticity of peak demand into account when determining how many

capacity rights to sell in the valley.  This way, the monopolist is able to coordinate better

the peak and valley problems and thus limit more effectively the competitive effect of

storage.  With uncertainty, this unambiguous benefit of short term contracts from a social

welfare point of view is no longer valid, as will be explained in the next paragraphs.

It is important to note some characteristics of the long term contract structure

under uncertainty.  As in the certainty case, the monopolist sells capacity rights for both

valley and peak periods at the same time.  That is, when selling capacity rights for valley

times, the monopolist sells forward capacity rights for the peak period.  There is a

seasonal component to the contract.  The pipeline monopolist is committed to the contract

and does not issue more rights once the uncertainty unfolds.  However, in the context of

uncertainty, this contract could take two forms, one with state a contingent clause and the

other without it.  With a state contingent contract, the monopolist can differentiate rights

not only between peak and valley periods, but also between the different uncertainty

outcomes in the peak.  Such a contract gives full flexibility (i.e. coordination across time

and outcomes) to the monopolist and thus represents the best possible outcome for the

pipeline operator.  In this report, however, we will concentrate on long term contracts

with no contingent clauses.  This is a more realistic assumption for two reasons: (i)

writing a contract that stipulates responsibilities in all possible outcomes can be

prohibitively expensive, and (ii) even if it were possible to write such a contract, the

outcomes would not necessarily be observed by all interested parties making such

contract unenforceable.

2.3.1.  The No Storage Market Equilibrium

2.3.1.1.  The Long Term Contract Structure

The optimal mechanism consists in determining the quantity of capacity rights27

for the valley and the peak so as to maximize monopolist profits.
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The solution to this problem is given by:

The resulting pipeline expected profit is given by:

We note that the pipeline expected profit is equal to total profit in the case with

for certain.

2.3.1.2.  The Short Term Contract Structure

In this market structure, the pipeline monopolist sells capacity at the beginning of

each period.  In the absence of storage there is no interaction between peak and valley

periods and hence the problem facing the monopolist each period is given by:

for t=v,p and i=H,L when t=p.  The solution to this problem is given by:

                                                                                                                                                

27 With no storage, end user demand is equal to throughput demand.
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for i=H,L.  The resulting expected profit for the pipeline monopolist is given by:

We note also that the expected profit under a short term contract structure in the context

of uncertainty is higher than in the context of average θp for certain.  This comes as a

direct consequence of the convexity of the profit function with respect to θp, in the

certainty case.  This is consistent with our earlier observation that uncertainty works to

the benefit of the pipeline.

2.3.1.3.  The Effect of Uncertainty

The first thing to note is that the equivalence between the short term contract and

the long term contract structures, true in the context of certainty, is no longer so in the

case of uncertainty28.  Moreover, the short term contract structure seems to present a

higher benefit to the pipeline operator.  Namely,

The reason for the higher profit level is that a short term contract structure gives

the pipeline to ability to adjust once uncertainty unfolds.  This added flexibility enables

                                                

28 In fact, the equivalence still holds in the context of uncertainty if we consider a long term contract with
contingent clauses.
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the pipeline to price monopolistically in all periods, regardless of the outcome of

uncertainty.  This is not true under a long term contract structure as the pipeline must

decide ex-ante, the number of rights to sell.  Ex-post, the equilibrium under this contract

structure does not coincide with the monopolistic outcome in either state of nature in the

peak.  Furthermore, the increased profitability under a short term contract structure

increases with the variance of peak demand.  Indeed, this is indeed as expected.  With

low variance, the value of the added flexibility under a short term contract is low as both

states of the world look more similar.  These observations can be summarized in the

following proposition.

Proposition 2.2

In the absence of storage, a short term contract structure leads to higher expected

profits for the pipeline, and hence to lower social benefits than a long term contract

structure with no contingency clause.

2.3.2.  The Storage Market Equilibrium

In the certainty case, we saw that a long term contract structure unambiguously

leads to a lower pipeline profits and hence higher social benefits than a short term

contract structure.  The reason for this is that a long term contract structure allows the

pipeline to incorporate the peak elasticity of demand into its maximization problem, and

thus coordinate the peak and valley pricing problem.  This coordination allows the

pipeline to more effectively limit the competitive effect of storage.  However, from our

discussion above, a short term contract structure under uncertainty can be beneficial to

the pipeline as it adds flexibility to adjust to uncertainty outcomes ex post.  In the

following paragraphs, we want to understand more this trade off between a short term

contract and a long term contract structures when storage is present.  More specifically,

we want to determine the conditions under which the value of this added flexibility under

a short term contract structure is sufficiently large that it makes a long term contract

structure less profitable for the pipeline, contrary to our conclusion in the certainty case.
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2.3.2.1.  The Long Term Contract Structure

As noted earlier, storage introduces interaction between valley and peak times that

the monopolist must take into account.  Moreover, with uncertainty and period under a

long term contract structure, the monopolist must consider that only one set of rights are

valid for the peak period regardless of the uncertainty outcome.  That is, the pipeline does

not have full flexibility in the contract structure as contingency clauses would entail.

This contract is not the best that a monopolist can do.

Mathematically, the optimal number of capacity rights to sell in the peak and

valley periods is given by:

subject to:

The constraint suggests that throughput demand in both states of the world be equal.  The

resulting Lagrangean is given by:

The Lagrangean presents the five effects that the pipeline operator must take into

account:

• The first three bracket terms represent the expected end-user demand

• The fourth and fifth brackets represent, respectively, the loss of revenue

stemming from storage usage in the case of high peak demand and low peak

demand.

• The sixth term represents the ex-post overinjection that occurs in the case of

low peak demand.  This is a positive term because it represents a revenue in

the valley coming and no corresponding decrease of sales in the peak.
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• The last term represents the effect of having no contingency clauses in the

contract.

Appendix 2.C shows the derivation of the solution to this problem.  For notational

simplicity, we put the solution as a function of equilibrium valley price:

with s=csγ+1.  The LT in the superscript denotes the long term structure.  The resulting

peak prices are

And expected peak price is:

The resulting storage injection (equivalent to storage withdrawal in the high peak)

and storage withdrawal in the low peak are respectively given by:

The resulting throughput demands are:

With r=csγβ+1.  Finally, pipeline expected profits are:

There are two elements to consider in this contract structure: (i) the irreversibility

of storage decision, which benefits the pipeline as discussed in Proposition 2.1, and (ii)

the no-contingency clause of the contract structure, which goes in detriment of the
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pipeline.  This second element is represented by the constraint in the pipeline’s

maximization problem.  These two elements can be illustrated in figure 2.2 below.

Figure 2.2: Irreversibility and No-contingency clauses in Long Term Contracts

Again, the convex function depicts the pipeline’s profit in the certainty case under

a long term contract structure29.  The straight line connecting the two points on the profit

function represents the pipeline’s expected profit level with storage fully reversible and

with contingency clauses.  Point A represents, thus, the expected profit when both

conditions are met.  In contrast, point A’ represents the expected profit with storage fully

reversible and no contingency clauses.  Because point A’ represents a constrained

maximization relative to point A, it entails a lower level of expected profits.  Points B and

B’ are the corresponding expected profit levels when storage is irreversible.  Again point

B’ entails a lower expected profit level than point B.  It is precisely this difference, the

cost of lesser flexibility for the pipeline, that can make a short term contract structure

more attractive to the pipeline.

                                                

29 Appendix 2.A shows this function to be convex.
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2.3.2.2.  The Short Term Contract Structure

We find the equilibrium for the short term contract structure via backward

induction.  Again, for notational simplicity we put our solution as a function of

equilibrium valley price.

Peak Period Solution

In the case of low peak demand, the pipeline must maximize profits over residual

demand.  Pipeline must take valley price as given.  In equilibrium, following our

discussion earlier, storage withdrawals equals:

Thus the pipeline problem is:

The solution to this problem is:

with s=csγ+1.  Again, the ST superscript denotes the equilibrium solution for short term

contracts.  Storage withdrawals with low peak demand is thus,

Low peak profits equal,

Similarly, in the case of high peak demand, the monopolist must maximize profits

over residual demand.  As discussed earlier, the amount of storage withdrawals equals

storage injections in the peak:

The problem is thus:
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The solution to this problem is:

The resulting storage withdrawals and high peak profits are thus:

Valley Period Solution

To solve the valley period problem, the monopolist takes the above solutions, as a

function of Pv as given.  The problem facing the monopolist is thus:

Appendix 2.D shows the derivation of the solution to this problem.  We find equilibrium

valley price to be:

The resulting valley throughput demand is thus:

Finally, pipeline expected profits under this short term contract structure are:
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 2.3.2.3.  The Effect of Uncertainty

In the certainty case, we saw that the pipeline is unambiguously better off with a

long term contract structure than with a short term contract structure.  With uncertainty,

however, this is not necessarily true.  From our discussion above, the pipeline faces a

trade-off between a short term and a long term contract structure.  On the one hand, a

long term contract structure allows for the incorporation of peak elasticity into the

maximization problem in the valley.  However, with no contingency clause, a long term

contract structure does not allow the flexibility to adjust the decision once uncertainty

unfolds.  In contrast, a short term contract structure gives the pipeline the flexibility to

react to the uncertainty outcome, although it does not allow for the incorporation of peak

elasticity into the valley maximization problem.  As the variance of θp increases, the value

of the flexibility entailed by the short term contract structure increases.  Thus, for large

variances, a short term contract structure yields higher expected profits than a long term

contract structure.

Proposition 2.3

A short term contract structure yields higher expected profits than a long term

contract structure with no contingency clauses for large variances in θp. For small

variances, the long term contract structure yields higher expected profits, as in the

certainty case.

Proof

The first chapter shows that a long term contract structure leads to higher pipeline

profits in the case of certainty.  The certainty case proxies and proves the proposition

with regard to low variances in θp.  For the case of high variances in θp, comparative

statics are performed on our above equilibrium solutions with respect to θp
H, while

keeping expected θp constant.  That is, an increase in θp
H with expected θp constant,

represents an increase in the variance of θp.  Appendix 2.E shows that the expected profits

under a long and a short term contract structure are both convex with respect to θp
H.

Thus, the following condition are sufficient to prove the proposition:
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This is indeed what we find in Appendix 2.E.  This proposition is depicted in the figure

2.3 below.

Figure 2.3: Profitability under Short Term and Long Term Contracts

Q.E.D.

In sum, uncertainty introduces two elements that must be analyzed: (i) the

irreversibility of storage decision, (ii) the inability of the pipeline to include contingency

clauses in long term contracts.  These two elements are depicted in the figure 2.4 next

page.  The convex functions represent the profit functions in the certainty case under a

long and a short term contract structure.  Note that a long term contract unambiguously

leads to a higher profit level.  Two uncertainty structures are considered: the first with

low variance (denoted by the subscript 0) and the second with high variance (depicted by

the subscript 1).  Both these structures have the same expected θp.  Points LTi and STi

(with i=0,1) represent the expected profits under a long term and a short term contract

structure, respectively, with full reversibility of storage decision.  Points LT’i and ST’i

represent the corresponding expected profits with irreversibility of storage decision.

E(θp)

θp
H

E(Π)

E(Π)LTE(Π)ST

0
)()(
2

2

2

2

>
∂

Π∂−
∂

Π∂
H
p

LT

H
p

ST EE

θθ



99

Figure 2.4: Uncertainty and Irreversibility in Short Term and Long Term Contracts
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Following Proposition 2.1, the irreversibility of storage decision leads to higher

expected profits than with full reversibility.  In the graph this is represented by LTi> LT’i

and STi> ST’i.  Moreover, following Proposition 2.3, a long term contract with no

contingency clauses leads to lower expected profits than one with contingency clauses.

This is represented by Ai>LTi, where Ai represents the expected profit under a long term

contract with contingency clauses and full reversibility of storage decision.  Note that Ai

lies on the ray connecting the two points on the profit function.  From the figure 2.4, we

see that with a high variance the effect of no contingency clauses is very large making a

short term contract more attractive for the pipeline.  Again, with such high variances, the

value of a short term contract lies on the flexibility to adjust once uncertainty unfolds.

2.4.  No Infrastructure in Place

We now turn our attention to the pipeline investment decision.  We assume

infrastructure is not sunk, and thus the pipeline operator must invest in pipeline capacity

if it is to provide gas transportation services.  In the following paragraphs, we derive the

solution to the long term contract and short term contract structures.  Our main

conclusion that short term contracts provide an additional benefit to the pipeline, namely

the flexibility to adjust to the uncertainty outcome, still holds.  Moreover, this benefit of

short term contracts is even stronger when we incorporate investment decision.  Indeed,

we find that short term contracts unambiguously leads to higher expected profits both in

the absence and presence of storage.  As in the certainty case, under a short term contract

structure, the pipeline effectively sells forward capacity for high peak demand by making

the investment decision in the valley simultaneous to determining the valley price.  A

short term contract allows the incorporation of high peak demand elasticity into its valley

problem.  That is, with a short term contract does not only allow the pipeline to have the

flexibility to adjust to the uncertainty outcome, but it also allows him to coordinate his

high peak and valley problems.  However, this structure does not allow him to coordinate

the low peak and the valley problems.  It is precisely this added feature that makes the

short term contract more attractive.
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2.4.1.  The No Storage Market Equilibrium

2.4.1.1.  The Long Term Contract Structure

Under a long term structure with no contingency clauses, capacity is binding in

the peak period regardless of the uncertainty outcome.  Let K be the investment capacity.

The problem facing the monopolist is given by:

The solution to this problem is given by:

The resulting pipeline expected profit is given by:

As in the scenario with infrastructure in place, this solution is the same as the one with

average peak demand for certain.  Note that the term γk is in both peak prices, suggesting

investment costs are paid by peak end-users regardless of the outcome of the uncertainty.

2.4.1.2. The Short Term Contract Structure

In contrast to the long term contract structure, we assume that the monopolist

invests such that capacity is binding in the peak period only when the uncertainty unfolds
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as high peak demand30.  In the case of a low peak demand, the pipeline faces the

following problem:

The solution is the usual

In the valley, the pipeline must choose valley prices and capacity.  Again, let K be the

investment variable.  The valley problem is thus:

The solution to this problem is given by:

For K>Qp
L, we need (θp

H −θp
L)>γk/β.  Note that the investment is paid only by end users

in the high peak demand outcome.  As such, the effective investment price is k/β, which

incorporates the probability that investment will get repaid.

The resulting pipeline expected profit is given by:

                                                

30 If this is not true, then capacity will be binding in the both states of peak demand, and the outcome will
be identical to long term contract structure.
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2.4.1.3. The Effect of Uncertainty

As in the first scenario, we conclude that the equivalency between the two

structures found in the certainty case, is no longer valid with uncertainty.  Moreover,

comparing the equilibrium under the two structures leads to interesting results.  First, a

short term contract structure unambiguously leads to a higher investment level than the

long term contract structure.  Indeed, we have:

Note that this difference increases with the variance of θp.  There are two issues at hand.

On the one hand, under a short term contract, only high peak end users pay for the

investment cost.  As such the effective investment cost, as noted earlier, is k/β.  This is

not the case under a long term contract structure where peak end users pay for the

investment cost regardless of the uncertainty outcome.  This will tend to decrease

investments with a short term contract relative to a long term contract.  On the other

hand, under a short term contract, investments are designed for high peak demand, θp
H.

In contrast, under a long term contract, investments are designed for average peak

demand.  This will tend to increase investments under a short term contract relative to a

long term contract.  In balance, this second issue outweighs the first.  This result has

important implications if the aim of regulators is to provide incentives for pipeline

investments (e.g. in infant markets with low pipeline penetration).

Second, a short term contract structure leads unambiguously to a higher expected

profit than a long term contract.  Indeed, we find:
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We note that the dominance of short term contracts accentuates as the variance of θp

increases.  We summarize the above conclusion in the following proposition.

Proposition 2.4

In the absence of storage and with no infrastructure in place, a short term

contract structure yields higher pipeline investments as well as higher expected profits

than a long term contract structure.  The difference in investment and profit levels are

positively related to the variance in θp.

2.4.2.  The Storage Market Equilibrium

In the certainty case, chapter one shows that the short term and long term contract

structures yield the same solution when infrastructure is not in place.  The reason for this

is that the pipeline, by making the investment decision in the valley, effectively sells

capacity rights forward for the peak period.  That is, the investment decision hinders the

ability of short term contracts to limit the competitive effect of storage, so much greater

when infrastructure is sunk.  Here we extend the analysis to incorporate uncertainty.  As

in the scenario with infrastructure sunk, we take long term contracts to have no

contingency clauses.  As in the no storage equilibrium, we find that short term contracts

unambiguously lead to higher expected profit than long term contracts.  The reason for

this is that a short term contract structure offers an additional benefit to the pipeline

beyond the flexibility to adjust to the uncertainty outcome, as discussed in the first

scenario.  In this scenario, a short term contract structure allows the pipeline, through the

investment decision, to incorporate the demand elasticity of high peak into the valley

maximization problem.  That is, the investment decision allows the pipeline to move a

step closer to his first best outcome.  This outcome entails the flexibility to adjust to the
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uncertainty outcome and the ability to incorporate high and low peak demand elasticities

into his valley maximization problem31.

2.4.2.1.  The Long Term Contract Structure

The problem facing the monopolist is the same as that in the first scenario.  We

need only incorporate the investment cost.  Mathematically, the optimal number of

capacity rights to sell in the peak and valley periods is given by:

subject to:

The constraint suggests that throughput demand in both states of the world be

equal.  Note that this is the same problem as in the first scenario.  The last term in the

second line is added reflecting investment costs.  Appendix 2.F shows the derivation of

the equilibrium solution to this problem.  Again, for notational simplicity, we put the

solution as a function of equilibrium valley price:

The resulting peak prices are

And expected peak price is:

                                                

31 Of course, this first best outcome is achieved through a long term contract structure with contingent
clauses.
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The resulting storage injection and storage withdrawal in the low peak are respectively

given by:

The resulting valley throughput demand and investment level are, respectively:

Finally, pipeline expected profits are:

2.4.2.2.  The Short Term Contract Structure

We find the equilibrium solution via backward induction.  Again, for notational

simplicity, we put our equilibrium solution as a function of equilibrium valley price.

Peak Period Solution

In the case of low peak demand, the pipeline faces the same problem as in the first

scenario when infrastructure is in place.  Namely, in equilibrium, we have:

Storage withdrawals and profits are thus,
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The ST superscript denotes equilibrium under a short term contract structure.

In the case of high peak demand, capacity (built in the valley period) is binding.

Let K be the investment capacity.  The resulting price and profit in the case of high peak

demand are:

Valley Period Solution

Valley demand throughput is given by:

To solve the valley period problem, the monopolist takes the above solutions, as a

function of Pv  and K, as given.  The problem facing the monopolist is thus:

The First Order Conditions (FOC) are thus:

In equilibrium, we find thus,

The resulting storage injection is thus,
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The resulting valley throughput demand is thus:

Finally, expected profits are:

2.4.1.3.  The Effect of Uncertainty

As noted earlier, this chapter focuses on the case with partial storage withdrawals

when uncertainty unfolds as low peak demand.  Thus, the following conditions must

hold:

for the long term structure, and:

for the short term contract structure.  Let T be the threshold such that:

Thus, the analysis assumes:

so as to guarantee partial storage withdrawals under both contract structures, when

uncertainty unfolds as low peak demand.

With the uncertainty range defined, uncertainty leads to different equilibrium

outcomes, in contrast to the certainty case that leads to short term and long term contract

structures yielding the same equilibrium.  Comparing the two equilibrium conditions lead

to some interesting results summarized in the following propositions.
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Proposition 2.5

In the presence of storage and with no infrastructure in place, a short term

contract structure induces lower pipeline investments at low uncertainty levels, and

higher investments at high uncertainty levels.

Proof

Appendix 2.G shows that:

Thus, for high uncertainty levels, a short term contract structure leads to higher

investment levels, but for low uncertainty levels a long term contract structure leads to

higher investment levels.  Figure 2.5 below depicts this case:

Figure 2.5: Investment under Short Term and Long Term Contracts

Q.E.D.

As in the no storage equilibrium, there are two issues at hand here.  First, the

effective investment cost under a short term contract is k/β.  Second, investments under a

short term contract are designed for high peak demand, θp
H, whereas they are designed to

average peak demand under a long term contract.  With low variances, the two states of

nature are very similar and hence a short term contract structure leads to lower

investment levels because of the higher effective investment cost.  In contrast, with high

variances, a short term contract structure leads to higher investments because of the

second issue.
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Note that the above proof assumes:

If, on the other hand, investment costs are such that

then a short term contract structure always leads to higher investment levels.

Proposition 2.6

In the presence of storage and with no infrastructure in place, a short term

contract structure unambiguously leads to higher expected profits than a long term

contract structure.

Proof

Appendix 2.H shows that the difference in expected profits under a short term and

long term contract structures are:

Q.E.D.

The intuition behind this proposition is that a short term contract does not only

allow for the flexibility to adjust to the uncertainty outcome, but it also allows the

pipeline, through the investment decision, to incorporate the demand elasticity of high

peak into his valley maximization problem.  In this manner, the pipeline can better

“coordinate” the high peak and valley problems, and hence more effectively limit the

competitive effect of storage on high peak demand.  Short term contracts does not allow

for the same coordination benefits with low peak demand.  In the case of low peak

demand, the pipeline can only react to valley prices and storage injections.  In other

words, a short term contract allows the pipeline to move a step closer to his first best

position, characterized by the ability to distinguish between states of nature and the

ability to fully coordinate the peak (both high and low) and valley problems.  This first

best position is attained through a long term contract structure with contingency clauses.
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2.5.  Conclusions

This chapter analyzes the impact of uncertainty on the competitive effect of

storage.  We saw that uncertainty, and more precisely the irreversibility of the storage

decision, limits the competitive effect of storage.  More interestingly, uncertainty changes

the relative value of short term contracts vis-a-vis long term contracts.  With

infrastructure in place, there is a trade-off for the pipeline between the flexibility to adjust

to the uncertainty outcome entailed by a short term contract structure, and the ability to

incorporate peak demand elasticity in the valley problem entailed by a long term contract

structure.  At low variances, the second issue outweighs the first and, thus, a long term

contract structure more effectively limits the competitive effect of storage.  In contrast, at

high variances the ability to adjust to uncertainty outcomes is more valuable, making

short term contracts a better mechanism to limit the competitive effect of storage.  That

is, at low variances a short term contract structure seems to enhance social welfare,

whereas at high variances the opposite holds.  This would entail that there is no single

answer to the most efficient market structure.  It all depends on the nature of the market.

In such markets with high uncertainty (perhaps maybe the Northeast corridor with wild

variation in winter weather pattern) a long term contract structure might prove more

beneficial.  In contrast, in markets with low uncertainty about peak demand (for example,

Florida) a short term contract structure can be more beneficial.  It seems that end users

can fairly easy adjust to these market structures.  In markets with high variances, the need

for risk hedging mechanisms is very clear, and long term contracts might be an avenue to

hedge the risks.  Similarly, in markets with low variance, the need for hedging

mechanisms is very limited, and thus a short term contract structure could be

implemented relatively easy.

The results with regard to the investment decision also raise interesting

conclusions.  This chapter, as well as the first one, clearly shows the benefits of

encouraging storage facilities near natural gas markets.  Moreover, it would seem that a

long term market structure is the more efficient one, from a social welfare point of view,

in the context of the pipeline investment decision, as it leads to lower pipeline profits.

This is indeed very interesting since most investments are usually carried under long term
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contracts so as to avoid any opportunistic behavior after the investments are done.

However, policy makers need to understand that a long term contract structure might lead

to a lower investment level if the market presents high variances.  Thus long term

contracts may hinder infrastructure development.  Policy makers need to weight whether

this is indeed desirable.  Moreover, as discussed in the next chapter, long term contracts

also allow a better allocation of risk and can thus lead to more efficient investment levels.

Again, this might be at cost of lower investment levels.  Contracts seem to have a dual

role.  First, they can strengthen the competitive effect of storage and, second can guide

investment decisions.  Unfortunately, these roles can be conflicting.  There seems to be

no right answer as to what the most efficient contracting regime is to encourage

investments and competition by storage.
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Appendix 2.A: Proof of Proposition 2.1 assuming zero
withdrawal costs and positive injection costs

We assume that injection costs are of the same form as in the main text (e.g.

quadratic).  Irreversibility of storage decision with positive injection costs amounts to

irreversibility in injection costs.  In the peak, injection costs are already sunk and hence,

all gas is withdrawn regardless of the uncertainty outcome.  Thus, aggregate storage

sector expected profits is given by:

Since the storage sector is perfectly competitive, quantity injected in storage is given by

the condition of zero marginal expected profit or:

To prove that Proposition 2.1 still holds with a positive injection cost and zero

withdrawal cost, we show that pipeline expected profit is higher under irreversibility of

the storage decision than under full reversibility.  We proceed in two steps.  First, we

calculate a lower bound of this increased profitability, by taking equilibrium prices under

irreversibility as given and assuming storage quantities can be modified ex post,

according to the peak-valley price differential.  That is, we assume in the case of a high

peak, end-users can “inject” more gas in the valley and withdraw it in the peak.  In the

case of a low peak, end-users can “reduce” their injection in the valley so as to withdraw

less in the peak.  These adjustments are assumed to occur at no extra cost, and they are

assumed, in this first step, to have no impact on equilibrium prices.  In the second, step

we take the effect of such adjustments on equilibrium prices (i.e. we assume full

reversibility in the storage decision).  We find that taking the effect on prices leads to an

even higher profitability under irreversibility of storage decision.

Let Pv,Pp
H,Pp

L and Qs be the equilibrium prices and storage injection/withdrawal

under irreversibility of storage decision.  The resulting pipeline expected profit is:
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where Qv(.) and Qp
i (.) represent end-user demand (for i=H,L).  Allowing adjustments in

the storage decision, ex-post, without any change on equilibrium prices, yields to the

following storage injection/withdrawal amounts for i=H,L:

The resulting expected profit is:

Allowing for these adjustment decisions leads to a decrease in expected profits, relative

to the irreversibility case:

Moreover, in the second step of our proof, we show that the above expression is a

lower bound.  Including the effects of adjusting storage decision on equilibrium prices

lead to an even higher decrease in profits relative to the irreversibility case.  Let Pv
H*,

Pp
H*, Pv

L*, Pp
L*, Qs

H* and Qs
L* be the equilibrium prices and storage

injection/withdrawals under  this full reversibility assumption.  Again, we have for i=H,L:

The expected pipeline profit is:
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Now, in the case of high peak demand, adjustments in the storage decision lead to

a decrease in the peak price and an increase in the valley price, Pp
H*< Pp

H and Pv
H*> Pv.

Similarly, in the case of low peak demand, these adjustments lead to an increase in the

peak price and a decrease in the valley price, Pp
L*> Pp

L and Pv
L*> Pv.  Thus, we have:

where:

Thus, we have:

That is, Proposition 2.1 is robust to our assumptions about the nature of the cost structure

of the storage sector.  In essence, the irreversibility of the storage decision deprives end

users from the flexibility to adjust the storage decision once uncertainty unfolds.  This

lack of flexibility works to the benefit of the pipeline, as it can more efficiently limit the

competitive effect of storage.

Q.E.D.
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Appendix 2.B: Proof of the Convexity of Profit Functions in the
Certainty case

From the results derived for the certainty case, we note that the pipeline profit

function under a long term with seasonal component contract structure is given by:

with s=csγ+1.  We note that the profit function is quadratic in θp with positive

coefficients.  Thus the profit function is convex in θp. Q.E.D

Similarly, the pipeline profit under a short term contract structure in the case of

certainty is given by:

The resulting first and second derivatives are given by:

Q.E.D.

Appendix 2.C: Derivation of the Solution for the Storage
Equilibrium under a Long Term Contract Structure

From our discussion, we know:

                                    (1)

                                    (2)

An alternative mechanism (equivalent to the one described in the text) is for the pipeline

to choose throughput quantity for the peak, Q’p, and price in the valley, Pv.  That is:
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And the resulting high peak and low peak are:

                    (3)

                    (4)

with s=csγ+1.  Hence expected peak price is given as:

     (5)

where

Similarly, valley throughput demand is:

   (6)

where r= csγβ+1.

The maximization problem facing the monopolist is thus:

The resulting First Order Conditions (FOC) for valley price and peak quantity are thus:

   (7)

Solving this system of equations, we have:
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We find our solution as a function of valley price.  From (7), we find peak

throughput demand:

From (3) and (4), we find high and low peak prices to be:

From (5) expected peak price is given as:

From (1) and (2) we find storage injections and withdrawals:

From (6), we find valley throughput demand to be:

Finally, we find expected pipeline profit to be:
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Appendix 2.D: Derivation of the Solution for the Storage
Equilibrium under a Short Term Contract Structure

Let us first determine valley throughput demand as a function of valley price.  We

have:

From our discussion, we have

Hence, valley throughput demand is thus:

The pipeline faces the following problem:

The First Order Condition (FOC) is thus:

Finally, the pipeline expected profits under this short term structure is:
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Appendix 2.E: Proof of Proposition 2.3
We first prove that expected profits under both contract structures are convex with

respect to θp
H.  We note that32:

where:

Now,

The second derivative is:

Hence, pipeline expected profit under a long term structure is indeed convex.

Similarly, under a short term contract structure, we have33:

                                                

32 Here, we take the derivative with respect to θp
H while keeping average θp

 constant.
33 We first rewrite the expected pipeline profit under a short term structure by substituting  θp

L as a function
of θp

H and average θp.  We then take the derivative with respect to θp
H.
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Taking the second derivative, we find:

Thus, expected pipeline profit under a short term contract structure is also convex in θp
H.

Finally, the difference in the second derivative is:

This shows the condition in the proposition to be true.

Q.E.D.

Appendix 2.F: Derivation of the Solution for the Storage
Equilibrium under a Long Term Contract Structure and No
Infrastructure in Place

The derivation of this solution follows closely the one in Appendix 2.C.  Let K be

the investment capacity.  In equilibrium, capacity is binding in the peak.  From Eq (3)

and (4) in Appendix 2.C, we have:
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                     (1)

                     (2)

Expected peak price is given by:

          (3)

From Eq (6) in Appendix 2.C, valley throughput demand is:

      (4)

The maximization problem facing the monopolist is thus:

The resulting First Order Conditions for valley price and investment level are thus:

     (5)

Solving this system of equations, yields:

Again, we find our solution as a function of valley price.  From (5), we find

investment level:

From (1) and (2) we find peak prices:
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From (3) expected peak price is given as:

Storage injection and withdrawals are:

From (4), we find valley throughput demand to be:

Expected pipeline profit is:

Finally, in order to guarantee a partial withdrawal of gas in storage in the case of low

peak demand, the following condition must hold, following the discussion in the third

part of the chapter:
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Appendix 2.G: Proof of Proposition 2.5
We have:

Thus, investments under a short term contract are higher if

Q.E.D.

Appendix 2.H: Proof of Proposition 2.6
From the equilibrium solutions, we have:

Now, from the equilibrium solutions, the following holds:
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Thus, expected profit difference is:

Q.E.D.
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Chapter 3:

Risk, Contracts, Infrastructure and

their Relationship to Capacity Rights and

Pipeline Investments

3.1.  Introduction

The previous chapters showed that in the presence of storage, the ability of a

monopolist pipeline to extract monopoly rents greatly depends on the contracting regime.

Furthermore, they showed how contract structure also affects the incentives for pipeline

investment by a monopolist.  However, the analysis of the investment decision assumed a

perfect world (except for the monopolist position of the pipeline): perfect information

sharing and a perfect financial market (with completely diversified investors).  These are,

of course, unrealistic assumptions.  First, end users (in this case, local distribution

companies (LDCs) and electric companies for example) know more about their natural

gas demand than pipeline companies.  For pipelines to make efficient investments, it is
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important that this information be shared with them.  Second, there are significant

differences in the ability of pipeline companies and end users to bear the risks involved in

developing gas pipeline projects.  These characteristics, as many other, could potentially

lead to the failure to develop natural gas pipeline projects that are economically attractive

from a social point of view, but unattractive to one of the parties because of the inability

to solve the above problems.  Different contracting mechanisms can effectively alleviate

these problems by sharing risks and returns in an efficient manner and by providing the

right incentives for information sharing and efficient behavior by all parties.

This final chapter explores in greater detail the role of contracts in the

development of natural gas pipeline projects.  The starting point, as it has been

throughout the dissertation, is a well functioning capacity rights market (which will be

defined later).  This chapter aims at evaluating different contract structures with respect

to the effectiveness with which they alleviate the characteristics described above.

Furthermore, the chapter also explores how the effectiveness of the different contract

structures changes as a function of the physical infrastructure in place at the time of the

investment.  In this sense, contract structure and infrastructure should be seen as

complementary.  The objective is to evaluate the desirability, from the perspective of all

parties, of different contracting mechanisms as a function of the infrastructure in place.

The analysis adopts a Paretian definition of desirability.  That is, contract A is

more desirable than contract B, from the perspective of all parties, if contract A improves

the position of at least one party without making any of the other parties involved worse

off.  Thus, making a contract more desirable is a non-zero-sum process in which none of

the parties lose and at least one can gain.  However, it is important to note that the

analysis assumes that all decisions are made by private, as opposed to government,

actors.  As such, there is no guarantee that a Pareto efficient contract among private

actors with market power will necessarily lead to an increase in social welfare.  In this

sense, the chapter also focuses on allocative economic efficiency as a second dimension

to the desirability of a contract, making regulation an important tenant of the analysis.

The analysis concentrates on analyzing Pareto efficient contracting schemes given a

regulatory scheme that aims at allocative efficiency.



128

This final chapter is organized in three sections.  The next section defines a well

functioning capacity rights market.  It discusses its necessary conditions as well as the

information content of the capacity price and the relationship between the different

capacity markets (i.e. firm versus interruptible markets, long versus short term markets).

The third section identifies the issues that need to be considered when designing desirable

contracts, as defined above.  The fourth section discusses the desirability of different

contract structures as a function of infrastructure in place.  The chapter analyses three

infrastructure scenarios: (i) a monopolist pipeline, (ii) a monopolist pipeline in the

context of storage, and (iii) a pipeline that is part of a well integrated pipeline grid

system.  The first two scenarios directly relate to the first two chapters of this dissertation

and our analysis will incorporate the results of these chapters.  We can think of the first

scenario as the case of infant markets such as the Southern Cone market, and the third

scenario as the case of a mature and integrated market such as the United States.

3.2.  A Well Functioning Capacity Rights Market

This second section characterizes a well functioning capacity rights market and

the relationship between the different capacity markets: short term, long term and

interruptible markets.  The section also describes the role of capacity price as a signal for

infrastructure investment.

3.2.1.  Characteristics of Capacity Rights Market

As described in the introduction of the dissertation, the restructuring of the natural

gas industry entails the vertical separation of the different components: production,

transportation and distribution.  This restructuring allows end users to compete for gas at

the well head, but they must now purchase a transportation service to deliver gas to the

burner tip.  In this new industry structure, it is only natural to think of access to the

pipeline as a separate and complementary asset to gas.  A capacity rights market is based

on the assumption that such an asset is tradable.  The holder of such an asset owns the

right to ship volumes up to the capacity limit over the specified segment on which the
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right is held.  Under such market, the ownership and control of transportation capacity is

indeed decentralized among the many holders, each of which makes their own choices as

to its use or allocation.

Pipelines issue transportation rights, which are sold on a primary market to the

highest bidder.  Because many end users (LDCs, electric generators and large industrial

users) need transportation rights for their gas supplies, bidding for these rights in the

primary market is competitive.  Even marketers might participate in this market so that

they can purchase gas and transportation services and sell them as a rebundled good to

end users.  Moreover, the key to a well functioning capacity rights market is a secondary

market.  Trading in such secondary market would not only ensure that pipeline capacity

goes to the end user that values it the most, but also would considerably hamper the

ability of a pipeline to price discriminate among different shippers.  Two important

conditions must be met if this secondary market is to effectively price capacity:

1. Capacity Release: Each holder of a capacity right must be able to resell it.  This

condition has been introduced in Order 636 in the US market, although there is a

regulated cap on the price at which this right can be released.  In FERC’s Notice

of Proposed Rulemaking (“NOPR”) of July 1998, FERC is seeking comments for

the elimination of this price cap.  Most analysts expect the removal of the cap in

the near future.

2. Flexible receipt and delivery points: The ability to receive and deliver gas at

different points allows a greater standardization of capacity rights.  This flexibility

allows shippers to convert transportation that is useful to one shipper into

transportation useful to another.  This flexibility increases the liquidity of

secondary capacity markets and is thus critical for a well functioning capacity

rights market.  It is important to note that the physics of pipeline transportation

allows for this flexibility.  To maintain pressure inside a pipeline constant, a

determined gas volume is needed inside at all times.  Gas is not really transported

along the pipeline.  Rather, an amount of gas is injected at one end and the same
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amount is withdrawn at another thereby maintaining pressure constant34.

Injection and withdrawals points can thus change without affecting pipeline

pressure as long as they belong to the same pipeline system.

Under a capacity rights market, pipelines recover their investment and other fixed

costs through capacity sales in the primary market.  Of course a pipeline may sell

capacity rights forward, in which case the original holder of the right agrees to pay the

agreed price at some point in the future even if the right has been sold on the secondary

market35.  Any variable costs incurred in the injection and withdrawal of gas are

recovered through a transmission rate.  Currently in the US and in most natural gas

markets, this rate is regulated using conventional regulatory ratemaking, as pipelines are

considered natural monopolies.  This chapter will have very little to say about

transmission rates.  It will assume there is a mechanism (administrative or market

determined) that allows the full recovery of variable costs, and concentrate on the

incentives that capacity rights markets provide to pipeline investment.  To understand the

incentives for pipeline investment, we must first understand the relationship between the

different capacity rights markets and the role of contracts in pipeline investments.

3.2.2.  Relationships among the Different Capacity Rights Markets

In the NOPR issued in July 1998, FERC proposes different approaches to the

regulation of the short term market, defined as contracts of less than one year, and the

long term market for transportation services on the grounds that the two markets are

significantly different.  Moreover, FERC also seeks comments on the regulation of firm

and interruptible capacity rights.  Understanding the interaction among these markets is

important as it will affect the pipeline incentives for (and end users willingness to

embrace) additional capacity.  The chapter argues that long term and short term contract

should not be seen as different in a well functioning capacity rights market; that in fact

                                                

34 This is somewhat of a simplification as friction inside pipelines makes the use of compressors necessary.
Thus injections might exceed withdrawals.
35 Tabors and Wilson (1999) also look at a similar arrangement for capacity rights in the electricity
industry.
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they are very much part integrated.  Also, the chapter argues that pipelines are indifferent

with regard to interruptible rights, as these have no bearing on the primary market in

which pipelines operate.  In a well functioning capacity rights market interruptible rights

are traded among shippers only.

3.2.2.1.  The Relationship of Short Term Markets and Long Term Markets

FERC’s argument for the difference between long and short term markets lies on

the number of players that can sell capacity in both markets.  FERC assumes that long

term markets are the primary markets in which a pipeline sells capacity rights, and as a

result can exploit its monopolistic capacity.  In contrast, short term markets, through

capacity releases into a secondary capacity market, are competitive as shippers can

choose between numerous releasing shippers and the pipeline itself.  It seems, according

to FERC’s distinction, that we must understand the equilibria in both markets to

determine a pipeline’s incentives for investment in capacity addition.  However, the

chapter argues that both markets are closely integrated.  A pipeline cannot treat one

market separately from the other.  Thus, there is a unique equilibrium that embraces both

markets determined by the total number of rights issued by the pipeline (both in the short

and long term contracts).  In other words, we must look at this equilibrium in terms of

total number of rights issued to understand the incentives for investment.

Understanding this argument requires separating the two issues at hand.  First, the

dispersion of rights ownership in the short term market (resulting from capacity release)

guarantees a competitive and efficient exchange of rights in that it leads to the allocation

of rights to those end users that value it the most.  The number of rights allocated is equal

the number of rights issued in the primary market (short term and long term) by the

pipeline.  In other words, the short term market is efficient given the total number of

rights issued by the pipeline.  Second, what are the incentives for the pipeline to issue

new rights in the short term market after the assignment of rights in the long term

market?  Evaluating this question is critical for understanding the incentives for pipeline

investment.
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Chapters one and two of the dissertation give us insight to answer this question.

The real issue is whether a monopolist pipeline can credibly commit in the short term

markets to the agreements incurred in the long term markets.  End users willingness to

pay for capacity rights in the long term markets depends on their expectations of future

prices in the short term markets.  Expected new issues in the short term markets will

reduce the value of those issued in the long term markets.  Correspondingly, end users

will be willing to pay less for capacity rights in the long term markets if they expect the

pipeline to issue new rights in the short term market.  In other words, it is this expectation

about the pipeline behavior in the short term market that effectively links the two

together.  The two markets cannot be treated independently.

To understand whether it is in the monopolist pipeline interests to commit to not

issue new rights in the short term market, take the case with no storage capacity available

analyzed in chapters one and two36.  In the case of perfect certainty (chapter one), the

monopolist pipeline is indifferent between committing and not committing.  If the

number of rights issued in the long term market is the monopolistic quantity (i.e. quantity

that maximizes monopolist profits), the pipeline cannot gain by issuing more rights in the

short term market.  If it issues more rights, end users will know this37 and will incorporate

it into the price paid in the long term market.  Clearly, the pipeline will not maximize

revenues by doing so.  By the same token, if the pipeline does not commit, then it will

issue the monopolistic quantity of rights in the short term market.  The pipeline

maximizes profits by issuing the monopolistic amount of rights; it is indifferent whether

it issues them in the short term or long term markets or a combination of both.

In contrast, commitment plays an important role in the case of uncertainty, as

analyzed in the second chapter.  End users must incorporate their expectations about the

                                                

36 We neglect any considerations about seasonal demand as well.
37 The model presented in the first two chapters contains two periods which is of course an incorrect
assumption.  Real life can be incorporated into the model through an infinite game in which the pipeline
loses all credibility if it deviates from the agreement incurred in the long term market.  In equilibrium, the
pipeline will always comply with its agreement.  In this infinite game models reputation becomes a crucial
element.
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number of new rights issued once uncertainty unfolds.  If the pipeline cannot credibly

commit not to issue new rights, the capacity rights market will be effectively comprised

of a series of short term markets.  As we saw in chapter two, the pipeline is better off not

committing when uncertainty is large.  This is so because the value of the flexibility to

adjust the number of capacity rights once uncertainty unfolds is big for large

uncertainties.

In sum, short term and long term markets are not different; they are in fact

integrated.  A monopolist pipeline cannot treat one separately from the other.  The core of

the problem, from the perspective of investment decisions, is to understand the incentives

for issuing rights in the primary capacity market, both in the short term and in the long

term.  The competitive and efficient exchange that occurs in the short term market as a

result of capacity release has no impact on the incentives for issuing rights in the primary

market.  It only guarantees that capacity will be allocated to those end users who value

capacity the most.

3.2.2.2.  The Relationship between Firm and Interruptible Rights Markets

Holders of firm transportation rights own the right to ship volumes up to the

capacity limit at any time over the specified segment on which the right is held.  In

contrast, holders of interruptible transportation may be denied access to the pipeline

system in the event of high demand as firm transportation rights holders have priority

over them.  Firm service is usually purchased to ensure reliability in the transportation

service.  Demand for interruptible service arose before the restructuring of the industry

and the introduction of secondary markets of capacity rights.  Pipelines supplied this

interruptible service so as to increase the level of throughput when those end users with

firm contracts did not make full use of them.  End users with access to alternative sources

of energy when transportation services were interrupted purchased this service.  For

example, electric generators with access to fuel oil supply do not require the reliability

that a firm contract entails, and could thus reduce costs by purchasing the less expensive

interruptible service.
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With a well functioning capacity rights market, the pipeline should not sell

interruptible service anymore.  As noted earlier, the pipeline sells capacity rights in the

primary market, which are traded in a competitive secondary market.  Trading in the

secondary market guarantees that all the rights issued by the pipeline get allocated

efficiently at a positive price, and thus these rights can be considered as firm in nature.  In

other words, the pipeline does not have the flexibility to issue interruptible rights since a

competitive secondary market for firm rights guarantees that they will all be utilized.

Changes in demand and supply conditions will be reflected in the secondary market price

for firm rights.  However, interruptible rights may still exist in the context of capacity

rights markets.  These rights will be traded exclusively among shippers.  For example, a

LDC holding a firm right may release it to an electric generator as an interruptible right

stipulating that under certain demand conditions the right will revert back to the LDC.

Such callable release of the firm right by the LDC can be viewed as a financial option,

with the underlying asset being a firm right.  The payoffs to the electric generator is

illustrated in the figure below:

Figure 3.1: The relationship between Firm and Interruptible Rights

K represents the threshold firm price at which the right reverts back to the LDC.

For firm prices below K, the value of the interruptible right to the electric generator is the

45o
price

pay off

K
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firm price because the generator can sell the interruptible right in the capacity rights

market.  Because this interruptible right has all the properties of a firm right, their price

should be the same.  For prices above K, the value to the generator is zero as the right has

reverted back to the LDC.  The price of this interruptible service can thus be determined

from the above payoff structure using standard option pricing methodologies.  Since this

price is determined in the secondary market, the pipeline is indifferent with respect to it.

In the financial economics jargon, interruptible rights are redundant in that they do not

span or complete the market space.  They do not provide additional information about

demand and supply conditions that are not already engrained in capacity rights markets

for firm rights.

3.2.3.  The Role of Contracts in Pipeline Investment

From above, it is the price of firm transportation rights that represents a signal for

investments in infrastructure (storage and new pipeline capacity).  Investments in storage

will be determined by the difference between prices in the peak period (heating season)

and the off peak period (non-heating session).  Investments will occur as long as the price

differential exceeds the marginal cost of storage investment.  Although storage plays an

important role in the natural gas industry, the chapter will not expand on the issues that

need to be considered when evaluating storage investments.  Much of what the chapter

has to say about pipeline investments does indeed apply to storage investments.  The

emphasis will thus be on the capacity rights market provides a signal for pipeline

investments.

Pipeline companies recover their investment costs through their activities in the

primary market for firm capacity rights (both in the short term and long term markets).

As noted above, transactions in the secondary markets (which include interruptible rights)

have no bearing on the pipeline company recovery of investment costs.  Pipeline

investments are characterized by large capital outlays, long lead times to project

completion and long economic life of the project.  As such, these projects are subject to

substantial risks.  The questions that arise thus are twofold.  (i) Is there already a capacity

rights market whose price could guide pipeline investments?  If this is not the case (as in
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infant markets with scant infrastructure), the execution of a pipeline investment will

depend on the contractual structure among the different parties.  (ii) Even if there is a

price for capacity rights, how good of an investment signal is it?  Will investment be

carried out?  Will it be socially efficient?  Even if the price signal is correct, differences

in the ability of the parties to bear the risks involved might lead to inefficient investment

levels.  At an extreme, it can lead to the failure to develop the investment project

altogether as it would be unattractive to the pipeline because of uncertainties over sharing

project risks and returns.  Again, the contractual structure is key to the sharing of risk and

returns, and thus to the development of pipeline projects.

The remainder of the paper will concentrate on efficient contracting structures for

the development of pipeline projects. It will concentrate on three parties: the pipeline

company making the investment, electric generation companies, large industrial

companies and local distribution companies (LDCs).  It will assume that electric

generators participate in a competitive wholesale electricity market, which includes a

futures market for electricity.  LDCs are assumed to represent residential, commercial

and small industrial customers.  These are captive customers with no direct access to

capacity rights markets.  LDCs are assumed to be regulated in providing distribution

services to its captive customers.

3.3.  Contract Features

In general, contracts have different features.  Among the most important are38:

1. How they allocate investment-costs, market-price and country-macro-political risks.

2. The extent to which they introduce contracting strains, that is, risks of

nonperformance by one or more parties.

3. The incentives they create for exploitation of asymmetries in information.

                                                

38 Charles Blitzer, Donald Lessard and James Paddock (1984) look at similar issues in the context of oil
development projects.
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From the viewpoint of the pipeline company, the desirability of a particular

contract depends among other things, the extent to which it is exposed to market and

country risks, its knowledge about potential demand, and the ability to enforce the

performance of contracts by the other parties.  These circumstances will in turn determine

the comparative advantage of pipelines in relation to the other players in assuming

various responsibilities and risks, and thus, they will determine the pipeline’s incentives

for investment.  Understanding such circumstances is key in negotiating an efficient

contract.

To understand how risk allocation can contribute to a Pareto efficient contract, it

is important to understand how parties may trade off a particular risk so that it is borne by

the party having a comparative advantage in bearing that risk.  For instance, the pipeline

could already be over exposed to market risk, and hence at a comparative disadvantage in

bearing it relative to an electric generator.  Both parties can improve their contractual

gains by distributing this risk according to their ability to bear it.  By the same token, all

parties benefit by reducing contracting risks.  Contracts are incomplete in nature.  It is

impossible to determine contractual responsibilities for all possible states of nature.  In

some states of nature, some parties might benefit from unilaterally deviating from the

contractual agreements.  The other parties, recognizing this possibility will demand extra

compensation, reducing the potential benefits of the project.  It is thus in the best interest

of all parties to design a contractual agreement that is both enforceable and that all parties

involved will perform.  Finally, information asymmetries may lead to inefficient

outcomes and thus reduce the potential benefits of the project.  Consequently, all parties

can gain more by designing mechanisms for information sharing.  Similarly, contracts

must be designed so that they prevent a party from abusing its dominant position once the

pipeline is operational.  In the following paragraphs, each of these dimensions will be

discussed separately.  However, we must recognize that a choice in one dimension may

constraint choices in the others.
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3.3.1.  Risk Allocation and Contracting Efficiency

Throughout this discussion, it is important to remember that risk is not necessarily

bad.  The least risky projects are not necessarily the better ones, nor are the most risky

projects the least attractive.  Although risk may clearly reduce the attractiveness of a

project, its undertaking will depend on how well risk is managed and allocated among the

different parties involved.  As argued before, there are benefits in allocating risks as a

function of the parties’ different ability to bear risks.  Comparative advantage in risk

bearing goes against the key assumption underlying CAPM or other equilibrium based

models: that investors hold completely diversified portfolios.  In such an idealized world,

the return of a project will be based on the project’s contribution to systematic risk, the

risk which is not diversifiable.  Following Lessard (1996), this deviation from CAPM can

arise for three reasons: “(1) information is not equally available to all investors; (2)

investors may have different degrees of influence over outcomes, and (3) investors may

differ in their ability to diversify risks, largely as a result of reasons (1) or (2) above.”

Efficient contracts must thus understand the extent of these reasons, and must

structure the participation of the various players in the project so as to give those with a

comparative advantage in bearing a particular risk a larger exposure to that risk.  A party

with a comparative advantage will place a higher value on that risk and thus will be

willing to pay more for it than a party with no comparative advantage39.  This

comparative advantage depends on how large an exposure each party has on a particular

risk and his ability to diversify it.  The following paragraphs discuss the different types of

risk involved in pipeline projects and the ability of the different players to bear them.  We

can identify three sources of risk: (i) market-price risk, (ii) investment cost risk, and (iii)

country-macro-political risks (relevant when considering projects offshore).

                                                

39 Alternatively, a party with a comparative ability to diversify a particular risk should not be given an extra
benefit (in terms of return) to hold that risk.  In contrast, a party with no ability to diversify that risk should
needs a large incentive in terms of return to hold it.
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3.3.1.1.  Market-Price Risk

This risk is associated with the variability in the demand (and consequently in

price) that the pipeline intends to service.  There are two components to this risk: the first

associated with overall demand and prices and affecting all sectors of the economy, and

the second associated with the specific demand and price of natural gas.  If financial

markets were complete, this risk could be fully diversifiable by, for example, issuing

bonds whose payoffs are linked to the price of capacity rights.  In such an idealized

world, this risk could be transferred to fully diversified investors, and no party should

have a comparative advantage in bearing this risk.  The price of this risk would be

directly linked to the contribution of this risk to the overall risk of the fully diversified

investor.  Financial markets, however, are not complete and the different parties have

comparative advantages in bearing this risk.  Depending on the risk allocation profile

resulting from the contracting arrangements, the different parties will require different

risk premium in their discount factors when evaluating the different contracts.

In general, pipeline companies can bear some of this risk.  There is no world

market for natural gas40, the US market behaves very independently from the European

market or the Southern Cone market.  Pipeline companies are usually transnational in

nature (Enron, British Gas, Tenneco, Nova, etc)41.  Participation in several regional

markets offers pipelines the ability to put “their eggs in several baskets”.  It is such

diversification that allows the pipeline to the ability to bear some of this risk.  As such

bearing part of these risks should not lead to an increase in the required expected return

of the pipeline company.  In contrast, pipeline companies that are overly exposed to one

particular region have no comparative advantage in bearing market risk when considering

investments in that region.  As such, bearing this risk should lead to an increase in the

required expected return, as an incentive for the pipeline to bear it.  The risk profile of

                                                

40 There is a small trade in LNG, but it can hardly be thought as the integrating factor of all markets.
41 This can be interpreted as a general equilibrium solution.  Companies can be thought of as invest abroad
for two reasons.  First, economies of scope resulting from investing in various markets add value to the
company.  Second, diversification by investing in various markets also allows more efficient risk
management by these companies.



140

future cash flows for the pipeline depends on the type of contracts.  The shorter the length

of contracts, the more the pipeline bears this risk.  At one extreme, an infinitely long term

contract (e.g. selling the pipeline to end users) completely shifts the risk to end users.  At

the other extreme, an infinitesimally short contract shifts the risk to the pipeline.  An

efficient contract is between the two extremes and depends on the ability of end users to

bear this risk.

Electric generation companies have mechanisms to hedge this risk, and should

thus bear as much of this risk as it is comparatively advantageous for them to do so.  The

electric industry is being restructured around the world introducing competition at the

generation level leading to the emergence of spot and futures electricity markets.

Precisely, the electricity futures market allows electric generators to hedge market-price

risk.  Indeed, a long term contract with the pipeline would shift this risk to the electric

generator, who in turn can hedge it by selling electricity in the futures market.  Of course,

the maturities of the long term contract and the futures contract will have to match for a

perfect hedge.  The length of available electric futures contracts will thus limit the extent

to which this risk is transferred to and fully hedged by the electric generation companies.

There is no possibility for electric generators to hedge or transfer any residual risks (i.e.

for example, risks resulting from futures contracts having a shorter maturity than long

term contracts with the pipeline).  In other words, when evaluating long term contracts

with the pipeline, electric generators should not expect a risk premium in discounting the

portion of the contract that can be fully hedged through the electricity futures market.  In

contrast, the generators should require a risk premium for the portion of the contract that

cannot be hedged.  The key determinants for this risk premium will be the importance of

pipeline capacity right price per unit of electricity generated, and the correlation between

this price and the electricity spot price.

Finally, with imperfect financial markets, large industrial end users and LDCs can

hardly hedge this risk.  Although a long term contract with the pipeline would lock in

quantity and price, they still face the risk of whether they will actually use that quantity

(and pay for it regardless if it is used).  In contrast to electric generators, there are no

mechanisms that would allow them to hedge this risk.  As a result, large industrial end
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users and LDCs should require a risk premium when evaluating a given contract.  The

magnitude of the risk premium necessary for a large industrial end users risk premium

will differ from that of LDCs.  The key determinant of the risk premium for a large

industrial end user is the contribution changes in capacity rights prices make to the

variance of the end user’s revenues.  This will in turn depend on the importance of

capacity rights prices per unit of value added.  For energy intensive industries (e.g.

cement, metallurgy), we expect operating profits to respond strongly and negatively to

changes in capacity rights prices.  As a result, we expect a significant negative risk

premium for these end users.  LDCs, on the other hand, can pass this risk to their captive

customers, as they are regulated monopolies.  That is, ultimately these captive customers

(residential, commercial and small industrial) bear this risk.  Again the key determinant

of the risk premium is the contribution that changes in capacity rights prices make in

these captive customers’ income.  We expect variations in energy capacity rights prices to

contribute very little to the volatility of these customers’ income, as such, their risk

premium required is likely to be very small

In sum, an efficient contract would transfer some of the market risk away from

the pipeline company towards electric generators, who can completely hedge it; LDCs,

who are close to being indifferent about this risk; and large industrial end users, who can

be very sensitive to this risk.  Long term contracts can achieve this risk transfer.  It is

important to note that the case analyzed here assumes that ownership of these companies

is not dispersed.  If these companies were traded on a world equity market and ownership

dispersed, then financial markets would be more complete as shareholders could diversify

away from market risk by trading shares of the companies.  The market risk would be

incorporated in the share price.  This is an extreme case that is hardly a reality.

Ownership of these companies is not dispersed.  Market risks cannot be completely

transferred through financial markets, and thus the different companies have comparative

advantages in bearing market risk.  These differences in the ability to bear risk are

reflected in risk premia differences, which suggest different valuations for a given long
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term contract42.  Transferring risk to those parties that have a comparative advantage in

bearing that risk increases the surplus of both parties.  This is depicted in figure 3.2.

Figure 3.2: Risk Allocation and Welfare Increase

Transferring some of the market risk away from the pipeline allows the pipeline

to decrease the marginal cost of investment, which is represented by a downward shift in

the marginal cost curve.  End users, on the other hand, bear more of this risk and are thus

demand less for a given price.  This is represented by a downward shift in the demand

curve.  Overall, there is an increase of overall efficiency (measured as the area between

the two curves) as area A is bigger than area B.  Again, this is the result of comparative

advantages in the ability to bear this risk.

3.3.1.2.  Investment Cost Risk

Clearly the pipeline company has a comparative advantage in bearing this risk.

This advantage derives from better information, and in particular, stronger influence over

the outcomes relatives to the other players.  As a result, the pipeline company should

                                                

42 Risk premium affects the discount rate used for the evaluation of these contracts.  Thus a party with a
higher risk premium, and thus a higher discount rate, will have a lower valuation for a given contract than a
party with a lower risk premium.
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want a disproportionate exposure to this risk.  A contract to transfers most of the risk to

the pipeline might include some penalties for delays in the completion of the project.

Moreover, such contract does not guarantee efficiency in the development of the project.

A cap on allowed investments would give the pipeline the incentives to reduce

investment costs as it would be the residual claimant to all investment savings.  With

such contract, the interests of the pipeline and the end users would be aligned.

3.3.1.3.  Country-Macro-Political Risk

This risk is important when considering investment projects offshore by a pipeline

company43.  Country-macro-political risks refer to the viability of economic programs in

the host country.  The pipeline company can somewhat diversify this risk as it can

participate in investment projects in various regions of the world.  In contrast, end users,

with local or government shareholders, are overexposed to this risk44.  Following Lessard

(1996), there are various ways parties can mitigate this risk while at the same time

achieving efficient allocation in the other dimensions.  The purchase of country risk

insurance (from institutions like Overseas Private Investment Corporation for example)

or the hedge based on puts on traded shares of local firms are just two options that may

be considered.

Part of the economic viability of the host countries, and hence the viability of

pipeline projects, includes whether and how “the rules of the game” are likely to change.

That is, whether the decision rights will change or whether existing contracts will be

enforced. In the case of emerging countries, this risk can be very important and can, at

the end, be the determinant factor of whether a project is implemented or not.  As noted

by Lessard (1996), the stability of the rules of the game depend on how the discretionary

power of regulators and policymakers is used.  As such, comparative advantage on

bearing this risk will arise when one or more parties have influence over the process and

                                                

43 See Lessard (1996). for a more complete discussion of the principles of risk and valuation in the context
of foreign direct investment.
44 Of course, electric generators can be multinationals as well as large industrial end users.  As such, these
companies can also diversify this risk and can bear it.
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outcome.  Local strategic investors can have an advantage in taking this institutional risk

because of their leverage over the political process.  For example, pension funds could be

an important strategic investor.  Because pension funds represent the savings of “widows

and orphans”, they can have an important influence over the political and regulatory

process relevant to pipeline operations45.  However, these passive investors may not want

to be exposed to other risks (e.g. investment cost risks) and thus may want to participate

in the project through preferred shares or options on the equity of the project once project

is fully operational.  Investments by international organization (e.g. World Bank, IADB)

can also help these risks to the extent that they can exert pressure and influence on policy

makers and regulators to avoid changes in the “rules of the game”.

3.3.2.  Contracting Risks and Contracting Efficiency

Contracts are incomplete by nature.  It is impossible to determine in advance the

responsibilities of each contracting party for each possible state of nature.  Moreover,

uncertainty may lead to huge disparities between contract terms and market conditions.

As a result, there will be instances where one or more contracting incentives will have the

incentive to act unilaterally and renege and renegotiate the agreement.  This can lead to

costly gaming by the different players which must be incorporated by all players when

structuring the original contract.  In the end, these contracting risk may reduce the overall

attractiveness of the project.  An efficient contract would thus minimize these contracting

strains.

The existence of a secondary market for capacity rights can prove valuable at

reducing contracting strains.  Indeed, when end users find the contract does not reflect

their interests anymore, (for example, a secondary market price well below their

contractual price) they may transfer their contractual obligations to other end users

                                                

45 See for example the case of privatization in Bolivia.  Government shares of state owned companies were
transferred to all Bolivians through pension funds.  This has limited the ability of policymakers to change
the “rules of the game” affecting the privatized companies.
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through capacity release.  In theory, the price of the secondary market is both transparent

and unbiased, and thus should not be subject to extensive negotiations at the time of the

transfer.  More importantly, the pipeline is indifferent with respect to this transfer.

Similarly, the pipeline, when feeling the original contract does not reflect its interests

anymore (for example, when secondary market prices are far above the contracted price),

may issue new rights in the primary market.  This would tend to reduce the secondary

market price, and thus the originally contracted price would tend to reflect more the

interests of the pipeline.  However, it is important to note, that an inefficient secondary

market (in terms of information sharing or liquidity) will have a limited value in reducing

contracting rights.  In such instances, then, short term contracts can present advantages

over long term contracts since renegotiations of the contracts will necessarily reflect any

changes in market conditions46.

3.3.3.  Information and Contracting Efficiency

Asymmetries in information can lead to inefficient investment levels.  A pipeline

company needs to know demand for gas in order to make the efficient investment in

capacity.  However, end users might know more about demand than the pipeline

company.  An efficient contract must thus provide a mechanism that gives the incentive

to end users to truthfully reveal their information about demand to the pipeline company.

Long term contracts can serve this purpose.  By transferring market-price risk to end

users, as argued before, they make end users the residual claimant to the value of the

pipeline investment.  As such, end users have the incentive to estimate their demand as

carefully and honestly as possible47.  Short term contracts do not provide for these

incentives as end users do not bear the cost of investment.  In a world of uncertainty, end

                                                

46 The theory behind incomplete contracts is developed in Grossman and Hart (1986), Hart and Moore
(1988) and Hermalin and Katz (1991) among others.
47 See Michael Habib (1996) for a discussion of information asymmetries and the role of contracts in the
development of electricity generation projects.  Grossman (1977) and (1992) provide a theoretical
explanation for the informational role of futures markets.  Allaz and Vila (1993) extend the role of futures
markets to induce competition in a duopoly market.
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users have the incentive to claim higher demands to the pipeline company (which we

assume will translate it into investment), thus minimizing the possible outcomes over

which they are unable to satisfy demand as a result of lack of capacity.  Inducing end

users to reveal their information truthfully requires that they bear the costs of the required

capacity.  That is precisely what long term contracts achieve.

3.4.  Infrastructure and Contracts

The previous section identified the different risks and issues that need to be

considered when evaluating the investment in a pipeline project.  We briefly discussed

how long term and short term contracts can handle these issues.  In this section, we

analyze, from a social welfare point of view, the desirability of short and long term

contracts with respect to the issues identified above and discuss how this desirability

varies as a function of the infrastructure.  We will concentrate on three types of contracts

discussed in chapter one.

1. Long term contracts, where the pipeline sells capacity forward in the primary market

and is not allowed to issue new rights in the primary short term markets.  However,

the pipeline is allowed to discriminate rights between heating and non heating

seasons.

2. Short term contracts, where the pipeline sells capacity rights in the primary short term

markets only, and is not allowed to participate in the primary long term contracts.

That is, at the beginning of each heating and non-heating season, the pipeline issues

capacity rights valid for one season only.

3. Long term contracts with no seasonal component, where the pipeline sells capacity in

the forward market only (as in the first contract structure), but is not allowed to

discriminate between heating and non-heating seasons.  Rights are equally valid in

both seasons.  This contract structure is referred as the equivalent contract structure in

the first chapter.
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We will judge desirability of these contracts as a function of how they rate with

respect to five issues: (i) their efficiency in allocation market-price risk; (ii) their ability

in reducing contracting risks; (iii) their ability to handle asymmetries in information; (iv)

their ability to limit monopoly rents by pipeline; and (v) the incentives they provide for

pipeline investments.  The last two issues directly relate to the first two chapters of the

dissertation, and should be seen in conjunction with regulation.  As we saw in the first

two chapters of the dissertation, storage does not completely eliminate the ability of the

monopolist pipeline to exert market power.  There is still a role for regulation in

controlling and limiting the abuse of power by the pipeline.  However, the regular caveats

in regulation (information asymmetries, moral hazard) can limit the extent to which

regulation can successfully limit the pipeline’s ability to extract monopoly rents.  Storage

can facilitate the regulatory task by introducing the pipeline in the valley as a competitor

to the pipeline in the peak.  As argued in the first two chapters, the strength of this

competitive effect will depend on the nature and structure of the contracts between the

pipeline and end users.  It is in this sense that we should see storage as a complement to

regulation.  We do not judge the desirability of contracts with respect to allocation of

investment cost risks and country-macro-political risks because the mechanisms to hedge

and manage these risks can be equally applied to all three contract structures with no

change in their relative value.

Our discussion will focus on three infrastructures scenarios: (i) a monopolist

pipeline, (ii) a monopolist pipeline in the context of storage, and (iii) a pipeline that is

part of a well integrated pipeline grid system.  In the first two scenarios, before the

pipeline investment, there is no pipeline infrastructure in place delivering gas.  As such

there is no capacity rights market and thus no capacity price that could guide the pipeline

investment.  Once completed, the pipeline will have a monopoly over the transportation

of gas into this market.  In the second scenario, the pipeline investment is accompanied

by investments in storage48.  In both scenarios, contracts and regulation will play a key

role in providing the incentives for pipeline investment.  In contrast, the third scenario

                                                

48 Our analysis does not discuss the incentives for storage investments.  We assume that they “are just
there” and developed in conjunction with the pipeline.
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entails a developed pipeline grid with many pipelines delivering gas into this market from

many producing areas, as well as a competitive storage sector.  In this third scenario,

competition is so intense that no single pipeline is assumed to have market power in

transporting gas.  Hence, regulation is not a critical component in this scenario.

Moreover, such integrated markets are more likely to develop futures markets because of

the liquidity that they have.  We assume the existence of a futures price, which provides

the incentives for pipeline investment.  Of course these scenarios represent two extremes.

The first two scenarios represent infant markets whereas the third scenario represents

well developed and mature markets such as the US market.  Of course, there is a

continuum of possibilities between these two extremes.  Understanding the relevant

issues at these two extreme cases allows us to capture the intermediate cases as well.

Table 3.1 below summarizes the interaction between the different contracting

regimes and physical infrastructure.

Table 3.1: The Interaction of Contracting Regimes and Physical Infrastructure

Market Risk

Allocation

Reduction in
Contracting

Risk

Information

Sharing

Limit

Monopoly

Rents

Incentives for

Pipeline

Investments

Infrastructure\

Contract Type LT ST EQ LT ST EQ LT ST EQ LT ST EQ LT ST EQ

Monopolist Pipeline + - + - + - + - + +
-1

+2

++3

-4

+
++1

+2

+3

-4

Monopolist Pipeline
and Storage

+ - + - + - + - + +
-1

++2

++3

-4

+
++1

+2

+3

-4

Integrated Pipeline
System

+ - + 0 0 0 0 0 0 0 0 0 0 0 0

Note: Contract Type corresponds to the contracting regimes described above.
0 represents indifference and/or no effect.
+ and ++ represent a comparative advantage over the other contract types.
- and -- represent a comparative disadvantage over the other contract types.
1. When uncertainty is high (see chapter two)
2. When uncertainty is low (see chapter one)
3. When seasonality is high (see chapter one)
4. When seasonality is low (see chapter one)
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The table shows that there is no single contracting regime that dominates the

others in all five dimensions and across all infrastructure scenarios.  It is important that

regulators understand interaction between contracting regimes and physical

infrastructure, as it is critical for the efficient operation of the natural gas industry.  Note

that the regulator’s choice of contracting regime will depend on the relative weight of the

five dimensions outlined.  Thus, for example, regulators in infant markets such as the

Southern Cone where the emphasis is on pipeline investment might choose a contracting

regime based on its relative advantages to provide incentives for pipeline investments.

Moreover, regulators must also understand how the five dimensions interact with each

other.  Thus, for example, a more efficient risk allocation of risk might increase the

incentives for pipeline investment.  This discussion suggests that selecting a particular

contracting regime is indeed very complex at best.  Regulators must weigh the different

considerations at hand.

From the table, we see that long term and the equivalent contract structures are

the more efficient with respect to allocating risk and providing incentives for information

sharing across all infrastructure scenarios.  In contrast, short term contracts reduce

contracting risks more efficiently than the other two.  It is only when considering the

effects of the contracting regimes on the ability to limit monopoly rents and to provide

incentives for investments that the relative value of the contracting regimes depend on the

level of uncertainty and seasonality.  Based on the results of chapter two, at high

uncertainty levels, a long term contract regime is more suited, from a social point of

view, than a short term contract regime to limit the monopoly power of pipelines.  In

contrast, at low uncertainty levels, the two regimes are equally effective in limiting

monopoly rents.  The reason for this is that short term contracts allows the monopolist

pipeline the flexibility to adjust once uncertainty unfolds.  This flexibility has a greater

value with high levels of uncertainty.  When storage is present, a long term contract

regime dominates again a short term contract regime at high levels of uncertainty.

However, at low levels of uncertainty, the short term structure dominates the long term

contract structure.  As argued in chapter one, a short term contract regime introduces a

stronger competitive effect of storage.  With respect to providing incentives for
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investments, the short term contract regime dominates at high levels of uncertainty, but

they are equally effective at low uncertainty levels.

By the same token, based on the results of chapter one, the equivalent contracting

regime is more effective at high levels of seasonality than the other two at limiting

monopoly rents.  In contrast, at low levels of seasonality, the equivalent contract structure

is dominated by the other two structures.  Similarly, at high levels of seasonality, the

equivalent structure yields the same investment levels as the long term contract structure,

but yield lower investment levels than either of the two other structures at low level of

seasonality.

The table also shows that in the context of integrated pipeline systems, the

different contracting regimes make no difference with regard to reduction in contracting

risk, information sharing, limits to monopoly power and investment incentives.  There is

no advantage in using contracting regimes to reduce contracting risk because the market

is a more effective mechanism.  With an integrated system, we expect a highly liquid

capacity rights market because of the large numbers of participants in it.  Thus, it is easier

to transfer the contractual obligations to other end users when these obligations go

against the interests of the original parties.  Similarly, the futures market characteristic of

integrated markets provide a mechanism for information sharing as it gives an unbiased

estimate of the future value of pipeline capacity.  Futures prices contain the information

about gas demand that might be otherwise difficult for the pipeline to obtain49.  Finally,

by definition, there is no market power in an integrated pipeline system.  The competitive

outcome will prevail regardless of the contracting regime.  Similarly, competitive

investment incentives will prevail.  The contract structure would have no effect.  This

shows how contracts can serve as substitutes to markets when these fail.  The first two

scenarios presented market failures associated with the monopolist position of the

pipeline.  However, different contracting regimes were able to alleviate these problems.

                                                

49 See Habib (1996) for a discussion of the informational role of futures markets in the context of
investments in electric generation.
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It is important to note the role that marketers play in integrated pipeline markets.

Marketers secure the competitive outcome characteristic of integrated markets.  They

pool sellers and buyers enhancing competition.  Moreover, in order to offer the least

expensive alternative to end users, marketers will take advantage of any arbitrage

possibilities that may arise within an integrating system, moving gas through pipelines

with lower-than-equilibrium capacity price.  As such, we expect marketers to play a

pivotal role in achieving the “law of one price” in the entire system where prices across

points differ only by the capacity price which reflects the relative scarcity of capacity to

those points.  Participating across the entire pipeline systems gives marketers the ability

to diversify local market-price risk better than local end users.  Marketers by participating

in various regional markets of an integrated system effectively pool the regional risks and

can thus bear more of regional risk, unlike end users in a particular region within the

system.  It should not be surprising then that in an integrated system, pipelines contract

with marketers rather than end users as they have a comparative advantage in bearing

market risk.  Marketers have also the advantage of participating across energy markets

(electricity, gas, etc) by selling units of energy rather than volume of gas for example.

This flexibility allows marketers to arbitrage across energy markets making them more

efficient and introducing financial instruments that would not be otherwise available.

3.5.  Conclusions

In this last chapter of the dissertation, we have tried to integrate our analysis of

the first two chapters into a more general discussion of incentives and contracts in

pipeline investments.  Our aim has been to determine the desirability of long and short

term contracts in terms of risk allocation, information sharing, contracting risk and the

ability to strengthen the competitive effect of storage on monopolist pipelines.  We have

seen in the second section of this last chapter that the incentives for pipeline investments

depend on the capacity price on the primary markets.  The price in this primary market

will depend on whether the pipeline can credibly commit not to issue new rights in the
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future or not.  Secondary markets for capacity rights guarantee that capacity will be used

by those end users that value it the most.

We have also seen that long term contracts play an important role in providing

mechanisms for efficient risk allocation and information sharing.  Without such

mechanisms, projects that are economically attractive in aggregate terms may be

unattractive to a particular party and thus may not be developed.  Moreover, contracting

must also be seen as complementary to regulation in that it can strengthen the competitive

effect of storage and limit the ability of a pipeline to extract monopoly rents.  We saw

that in the context of an integrated pipeline grid, long term contracts have less of an

important role as there are market mechanisms that can effectively substitute long term

contracts in terms of information sharing and reduction of contracting risks.  Long term

contracts are still needed in order to efficiently allocate risk.  However, we expect the

more integrated the pipeline system becomes, the shorter the average length of long term

contracts between pipeline and end users will be.  Indeed that has been the case in the

US50.  In this sense, pipelines will be bearing more of market risk than with less

integrated systems.  However, as noted earlier, the emergence of marketers who have a

comparative advantage in bearing this risk might alleviate this situation.

                                                

50 See Energy Information Administration (1995) and (1996).
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Conclusions

The starting point in this dissertation was a restructured natural gas industry with

a market for pipeline capacity rights.  In addition to purchasing gas at the wellhead, end

users must purchase capacity rights in order to transport gas to the burner tip.  In such

context, access to pipeline should be viewed as a separate asset complementary to gas.

The dissertation argued that the value of capacity rights prices is twofold.  First, they lead

to an efficient allocation of scarce pipeline capacity, as those end users that value it the

most will obtain it and the marginal cost of the service is equal to the benefit to the

marginal end user.  Second, they represent the benefit that end users put on pipeline

capacity, and therefore can guide capacity additions in an efficient manner.  Of course,

the value of this price signal depends the transparency of the capacity price.  The

dissertation focused on two sources for the non-transparency of price signals: (i) the

monopoly position of pipelines, and (ii) the non-existence of price signals in those

markets where gas is not already flowing.  Moreover, in the context of the second source,

even if there is some sort of price to guide investments, there might be some other market

imperfections that could lead to inefficient investment levels.

The dissertation analyzed the interaction between contracts and infrastructure, in

particular storage, as a solution to these imperfections.  In the Coasian tradition, this

dissertation viewed contracts and infrastructure as substitutes for market mechanisms in

the presence of market failures.  The first chapter analyzed this interaction in the context

of certainty.  It argued that storage introduces a physical link between market in the
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future and market in the valley.  It is precisely the introduction of this link that renders

the pipeline in the valley as a competitor to the pipeline in the peak.  Moreover, the

strength of this competitive effect of storage greatly depends on the contract structure

between pipelines and end users.

The second chapter extended the analysis by incorporating uncertainty.  The main

effect of uncertainty is that it reduces the competitive effect of storage.  Storage decision

is irreversible in the sense that once uncertainty unfolds, end users cannot adjust their

storage decision.  As such, storage decision, although efficient ex-ante, is always

inefficient ex-post.  This ex-post inefficiency reduces the competitive effect of storage.

The conclusions of the first chapter are still robust in the context of uncertainty.

However, the relative value of the contract structures analyzed varies with the magnitude

of the uncertainty.  Finally, the third chapter was concerned with a qualitative approach to

the investment decision.  It recognized different market imperfections, including

differences in the ability of pipelines and end users to bear risks, and informational

asymmetries.  These market imperfections could potentially lead to the failure to develop

pipeline projects that are economically attractive from a social point of view, but

unattractive to one of the parties.  The chapter analyzed how different contracting

mechanisms could alleviate these problems and hence lead to efficient investment.

The dissertation suggests a different approach to thinking about capacity rights

markets and monopoly power in them.  This new approach hints at going beyond the

functional aspects of capacity rights markets as access to transportation services.

Traditionally, regulators have emphasized the Herfindahl-Hirschman concentration index

(HHI) as a measure of market power51, and hence the extent to which allocative

efficiency is achieved.  The HHI is too narrow a measurement and neglects many

important aspects of the economics of capacity rights markets52.  In particular, the HHI

neglects three dimensions that need to be considered for a comprehensive analysis of

                                                

51 See Dan Alger (1996) for a more complete discussion of FERC’s policies to allow market based rates for
pipeline transportation.
52 The HHI takes the square of the percentage market share of each pipeline.  FERC does not allow market
based rates if one of the pipelines have an HHI of 1800 or above (equivalent to 42% of market share).
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market power and allocative efficiency.  These dimensions are (i) intertemporal

integration of capacity rights markets, (ii) interregional integration of capacity rights

markets, and (iii) integration with other energy markets.

First, the intertemporal integration of markets is concerned with the competitive

effect of storage, which is the focus of this dissertation.  As argued, storage introduces a

competitive effect that limits the ability of the pipeline to extract monopoly rents.  By

construction, HHI does not include this competitive effect of storage.  The model

presented in this dissertation shows that pipelines might have 100% market share

(equivalent to a level of 10,000 HHI) and yet cannot fully exploit their monopoly position

because of the competitive effect of storage and contracts.  Thus, the HHI overestimates

the market power of the pipeline.  As a first measure, market definition should be

expanded to include storage deliveries into the HHI.  Of course, this dimension is

relevant only for those markets that present physical and geological characteristics

suitable for the use of depleted fields and salt caverns as storage facilities.

Second, interregional integration of capacity rights markets is concerned not only

with infrastructure already in place but also with potential pipeline projects.  In particular,

interregional integration is concerned with the contestability of pipeline markets.  The

HHI is a measure based on actual market shares, and by construction neglects the market

shares of potential entrants.  Again, the HHI could lead to overestimation of market

power.  With low barriers to entry, monopoly pipelines would tend not to drive prices up

in capacity rights markets, if they know that could drive potential competitors into the

market.  A single pipeline could have 100% market share, but its ability to extract

monopoly rents could be severely limited by the threat of entry.  The strength of this

threat will depend on how large barriers of entry are.  High investment costs and long

lead times in the completion of pipeline projects could introduce large barriers to entry.

This is indeed the case for some isolated regions that require large investment sums for a

pipelines.  Other regions, however, benefit from low barriers of entry, as potential

entrants could build inexpensive connections with adjacent and nearby pipeline systems.
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Third, integration across energy markets is concerned with alternative sources of

energy for end users.  The ability of end users to switch to alternative sources provides a

natural bound on the ability of a pipeline to extract monopoly rents.  Again, the HHI

ignores the competition from other sources.  This is particularly important for electric

generators who, through their increasing use of combined cycle technology, have the

ability to switch to fuel oil.  This switching option is inherent in the technology and

therefore is free, making the competitive effect of fuel oil very strong.  Of course, the

more important electric generation is in end user demand, the stronger the competitive

effect of fuel oil is, and hence the more pipeline is constrained in extracting monopoly

rents.  In the extreme case where all end user demand comes from electricity generation,

the price of gas (which includes capacity rights) will be determined by world price of fuel

oil.  In this sense, the gas market will not be regional, but rather completely integrated to

the world market for fuel oil.  Moreover, the competition from alternative sources of

energy is not restricted to the burner tip end of the pipeline.  Electric generation can

bypass the capacity rights market altogether and generate electricity near the producing

areas and transmit it, through the high voltage system, to the burner tip region.  That is,

the alternatives faced by electric generators limits the ability of a pipeline to extract

monopoly rents in the capacity rights market.  Again, the HHI does not incorporate this

issue and thus overestimates the market power of pipelines.

The three dimensions discussed above introduce substitutes to capacity rights

markets.  End users are not completely hostage to the use of capacity from a monopolist

pipeline.  It is important that regulators understand these dimensions when analyzing

market power of pipelines.  These substitutes limit the extent to which pipeline can

extract monopoly rents contributing to the attainment of allocative efficiency.  It is

important to note that the arguments presented here do not aim at eliminating regulation

altogether.  Indeed, the monopoly power of pipelines could be so strong that regulation is

needed to guarantee they do not extract monopoly rents.  However, regulation can never

perfectly eliminate market power.  Informational asymmetries necessarily restrict the

efficiency of regulators.  Moreover, cost of service regulation can introduce perverse



157

incentives such as the Averch-Johnson effect, which induces the excessive accumulation

of capital53.  Instead, the dimensions discussed above should be seen as complementary to

regulation.  They represent market-based mechanisms, and as such can strongly and

efficiently limit the monopoly power of pipelines.  Regulators should treat these

dimensions as another tool in their arsenal against pipeline monopoly power.  Regulator

should thus provide stronger incentives so that these three dimensions become more

important and therefore contribute to allocative efficiency.

Incentives for storage investments become a critical policy variable for regulators

concerned with the intertemporal integration of markets.  These incentives include, for

example, reducing the transaction costs associated with the approval of storage

investments.  In addition, regulators should abstain from regulating storage prices as it

introduces inefficiencies and hinders the competitive effect of storage.  There are no

economic reasons justifying the regulation storage. The difference in peak and valley

prices provides a natural bound to storage prices.  Moreover, there are no economies of

scale in storage investments as the most economical storage facilities are depleted fields

and salt caverns.  Investments in these facilities vary with the physical and geological

properties of a particular region, and have a linear relationship with volume.  As argued

in the first chapter, investments in liquefied natural gas (LNG) container facilities may

exhibit economies of scale as the surface area has a linear relationship with radius of the

container, and volume has a squared relationship.  However, the operational costs of

these facilities are prohibitively expensive as it involves the liquefaction and

regasification of natural gas.

Concerning the interregional integration of markets, decreasing barriers to entry

for pipeline investment could be an option for regulators.  Eliminating any approval

process (except for engineering and safety standard purposes) would greatly reduce the

barriers to entry for potential competitors thereby limiting the monopoly power of

pipelines.  Finally, with regard to the integration of energy markets, providing the

incentives for end users to easily switch sources of energy could prove valuable to

                                                

53 See Laffont and Tirole (1993) for a comprehensive analysis of the limitations of regulation
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regulators.  For example, regulators could provide the incentives for marketers that

arbitrage across energy markets selling Btus rather than volume of gas.  The emergence

of such marketers could lead to the convergence into a single energy market.  This is

indeed the trend in the United States resulting from the restructuring of the electricity and

natural gas markets.  Companies such as Enron are leading the way in the innovation of

financial and physical instruments that arbitrage across energy markets.  This type of

arbitrage introduces more flexibility to end users, thereby completing the market and

introducing more competition to the pipeline.

This dissertation also suggests the important role of financial markets for pipeline

investments.  Complete financial markets allow for the efficient allocation of risk to those

parties that have a comparative advantage in bearing a particular risk.  As such,

conditional on allocative efficiency in capacity rights markets, only those socially

attractive investments will be made.  However, incomplete financial markets could lead

to suboptimal investment levels even if there is allocative efficiency in capacity rights

prices markets.  This is so because some parties might be overexposed to a certain risk

and there are no mechanisms that can alleviate this situation.  Thus, for example as

argued in chapter three, if ownership of pipeline, LDCs, and electric generation

companies is wide and dispersed through equity markets, then risks associated with a

pipeline project will be imbedded in the price of equity of these companies.  As such,

equity markets will represent the sufficient mechanism to allow efficient risk allocation.

In contrast, if ownership is not dispersed, there is a need for mechanisms that would

complete the financial markets and allow for a more efficient allocation of risk and thus

more efficient investment levels.

Between financial markets and the three dimensions discussed earlier, lie

contracting regimes.  That is, contracts play a dual role of achieving allocative efficiency

and providing incentives for efficient investments.  As argued in the first chapter of the

dissertation, the contracting regime plays an important role in the competitive effect of

storage.  As such, contracts play an important role in the intertemporal integration of

markets.  Similarly, contracts can determine the extent to which there are barriers to entry

in the pipeline sector.  For instance, end users might have take-or-pay clauses in their
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capacity contracts with existing pipelines.  Such contracts could considerably increase the

costs of switching to another pipeline, representing high barriers to entry into the sector.

Such contracts would thus increase the ability of a monopolist pipeline to extract

monopoly rents.  On the other hand, as argued in the third chapter, contracts can be seen

as completing financial markets in that they allow a more efficient allocation of risk.

However, the role of contracts can be conflicting as a function of seasonality, uncertainty

and length of peak period.  For example, following the analysis in chapter one, markets

with low seasonalities should benefit with short term contracts as they strengthen the

competitive effect of storage.  But short term contracts do not lead to an efficient

allocation of risks, following the analysis in the third chapter, and thus can lead to

inefficient levels of investments.

It is important that regulators understand this dual role of contracting regimes.  In

mature markets such as the United States, characterized by the vast pipeline infrastructure

already in place, the emphasis is on limiting the monopoly power of pipelines, rather than

on the development of new pipeline projects.  In addition to providing the incentives for

intertemporal, interregional and energy markets integration as discussed earlier,

regulators could also use contracting regimes to strengthen the effect of these types of

integration on the ability of pipelines to extract monopoly rents.  That is, regulators could

restrict those contracting regimes that do not strengthen the competitive effect of storage

or that introduce high barriers to entry into the pipeline sector.  For example, regulators

could restrict contracts with seasonal components in those markets with high

seasonalities and allow only short term contracts in those markets with high seasonalities

and low uncertainty levels.

In contrast, the emphasis in infant markets is not only on limiting the monopoly

power of pipelines, but also on providing incentives for efficient pipeline investment.

The key for the successful development of these markets lies on the ability of regulators

to strike a balance on providing incentives for efficient investments and limiting the

monopoly power of pipelines.  It is important that regulators recognize there is a tradeoff

in the use of contracting regimes.  For example, although long term contracts are

necessary for the efficient allocation of risks and hence for efficient investments, they can
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also introduce higher barriers to entry and weaken the competitive effect of storage.  That

is, long term contracts while beneficial to efficient investments may introduce deviations

from allocative efficiency.  However, this trade off is less dramatic the more financial

markets are complete.  As noted earlier, the more complete financial markets are, the less

important long term contracts are as mechanisms for the efficient allocation of risk and

the more freedom regulators have in using contracting regimes as tools for allocative

efficiency.

It is important to note that regulators in infant markets have an additional tool for

limiting the monopoly power of pipeline not available to regulators in mature markets

where infrastructure has already been developed.  By auctioning the rights to construct

and operate a pipeline, regulators can introduce ex-ante competition that would guarantee

that the pipeline does not extract monopoly rents even if ex-post the pipeline is a

monopolist.  Regulators can define the auction rules so that the winner is selected based

on the capacity price it will charge.  A sufficiently large number of participants will

guarantee that the winning price will equal the competitive price54.  Moreover, the

contracting regime does not matter since in a competitive equilibrium contracting

regimes are redundant in that they all achieve the competitive outcome.  This auction

process introduces a “virtual competition” that effectively completes the market and

hence achieves allocative efficiency.  Of course, this tool assumes a sufficiently large

number of participants.  This assumption is not necessarily true for small isolated regions

that do not attract large amounts of investments.  In these cases, regulators will have to

allow some monopoly rents in order to induce participants to invest in a pipeline project.

However, they can limit this monopoly power to the minimum required for the

participation in the project by providing the incentives for intertemporal, interregional

and energy markets integration as discussed earlier; and by using contracting regimes to

strengthen the effect of these types of integration.

                                                

54 See Salanie (1997) for a discussion of the theoretical work on auction theory.
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Future Research

This dissertation introduces a number of interesting arguments that can be

expanded in future research.  This future research can be divided into two directions.  The

first line of research directly tests the propositions introduced in the dissertation.  In

particular, future researchers may test the relationship between contracting regimes

between pipelines and end users, seasonality, uncertainty and duration of peak period.

The emphasis of this research may be on how pipeline profits changes as a function of

contracting regime while controlling the other variables (uncertainty, seasonality and

duration of peak period).  Following the first two chapters of the dissertation, research

could, for example, hypothesize that a long term contract with seasonal components

should lead to higher profits when seasonalities are high and uncertainty low.  In contrast,

a long term contract with no seasonal component structure should lead to higher profits

when seasonalities are low.  This already poses an interesting puzzle as the current trend

in the natural gas industry in the United States is long term contracts with no seasonal

component.  Future research could explain whether this trend is consistent with the model

presented here in that seasonality is relatively low in these markets, thereby making this

trend profit maximizing from the point of view of the pipelines, or whether there are

other considerations that can explain this trend.

Within this first line of research, the effect of contracting regimes on pipeline

investment could also be tested.  In particular, future researchers may test whether for

low uncertainty levels, the short term and long term contracts lead to identical investment

levels.  Moreover, future researchers may also study the extent to which long term

contracts serve as a mechanism to allocate risk among the different parties.  That is,

researchers may study the pattern of long term contracts as a function of dispersion of the

ownership of the different companies, the extent to which there is an electricity futures

market, and the physical integration among the different regions.  Following the analysis

of the third chapter, researchers could hypothesize for example that the more disperse

ownership is, the less important the role of long term contracts in allocating risks.

Moreover, they could also hypothesize that the more integrated a market is and the
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stronger the presence of marketers is, the more important the activities of marketers in the

primary markets for capacity rights.

The second line of research is related to the broader argument of the dissertation

that regulators need to look at market power in capacity rights markets beyond the

functional aspects of capacity rights markets as access to transportation services.  In

particular, future research could concentrate on how important storage markets are in

undermining the monopoly power of pipelines by looking at the deviation from

monopoly rents resulting from storage.  Also, researchers could also study the extent to

which low barriers to entry into the pipeline sector can undermine the ability of pipelines

to extract monopoly rents.  Finally, the importance of integration across energy markets

could also be studied.  Such studies would give regulators the empirical evidence needed

to understand the extent to which pipelines can price monopolistically.

It is important to note that the empirical studies outlined above could indeed

prove difficult because of data availability and experiment set up.  The analysis in this

dissertation assumes no regulation, and concentrates on the monopolist being completely

free in its maximization problem.  This is not necessarily true in real life.  The testing of

the propositions presented in this dissertation would require looking at pipeline

profitability before and after the introduction of storage for example.  Because of

regulation of prices, the change in profitability might not fully reflect the impact of

storage.  By the same token, the impact of different contracting regimes might be

underestimated as regulation in prices might impose some restrictions on pipeline ability

to react to the different contracting regimes.
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