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|. Abstract

Deutsch

In murinen, experimentellen Modellen von Gliomen hat die Aktivierung von TLR3 oder TLR9 in
Mikroglia/Makrophagen nachweislich das Wachstum von Gliomen beeintrachtigt, was jedoch
nicht in jingsten, klinischen Studien verifiziert werden konnte. Deswegen haben wir getestet, ob
die kombinierte Aktivierung von TLR3 und TLR9 in Mikroglia/Makrophagen einen
synergistischen Effekt hat. Tatsachlich hat die kombinierte TLR3/TLR9-Aktivierung die
Suppression des Wachstums von Gliomen in organotypischen Hirnschnitten von mannlichen
Mausen in Abhangigkeit von Mikroglia positiv beeinflusst, und diese synergistische Suppression
war von der Ausschittung von Interferon B und der phagozytotischen Beseitigung des Tumors
abhangig. Die kombinierte TLR3/9 Stimulation hat ebenfalls mehrere, funktionelle
Eigenschaften von Mikroglia erhoéht, wie beispielsweise die Ausschittung von
proinflammatorischen Faktoren, Beweglichkeit und phagozytotische Aktivitat. Die Stimulation
von TLR3/9 in Kombination mit einer CD47-Blockierung hat weiterhin zu einer vermehrten
Beseitigung der Gliome geflihrt. AbschlieRend haben wir bestatigt, dass die Koaktivierung von
TLR3/9 auch die Beeintrachtigung des Wachstums von Gliomen in vivo erhdht. Unsere
Ergebnisse zeigen, dass die kombinierte Aktivierung von TLR3/9 in Mikroglia/Makrophagen eine
effizientere Unterdriickung von Gliomen zum Ergebnis hat, was eine potenzielle Strategie fur

die Behandlung von Gliomen bieten kénnte.



English

In murine experimental glioma models, TLR3 or TLR9 activation of microglial/macrophages has
been shown to impair glioma growth, which could, however, not been verified in recent clinical
trials. We therefore tested whether combined TLR3 and TLRO activation of
microglia/macrophages would have a synergistic effect. Indeed, combined TLR3/9 activation
augmented the suppression of glioma growth in organotypic brain slices from male mice in a
microglia-dependent fashion, and this synergistic suppression depended on interferon B release
and phagocytic tumor clearance. Combined TLR3/9 stimulation also augmented several
functional features of microglia such as the release of pro-inflammatory factors, motility and
phagocytosis activity. TLR3/9 stimulation combined with CD47 blockade further augmented
glioma clearance. Finally, we confirmed that the co-activation of TLR3/9 also augments the
impairment of glioma growth in vivo. Our results show that combined activation of TLR3/9 in
microglia/macrophages results in a more efficient glioma suppression, which may provide a

potential strategy for glioma treatment.



Il. Manteltext

State of the art — research

Glioblastoma (Glioma) is the most common (comprising approximately 80% of) malignant tumor
in the brain, which cause high rate of mortality and disability (Marenco-Hillembrand et al., 2020).
Glioma can be most commonly classified by World Health Organization (WHO) according to
histologic properties with the spectrum from low grades (I and Il) to high grades (lll and IV).
Current therapeutic strategies including aggressive resection followed by radiotherapy and
chemotherapy received improving survival time of patients, while the overall medium survival
time of glioma patients is merely 14 months(Marenco-Hillembrand et al., 2020).

Microglia, as the major myeloid cell population in central nerve system (CNS), play
crucial role in maintaining brain hemostasis, exerting functions including brain development,
synaptic pruning and immune responses (Helmut et al., 2011). Under disease conditions,
microglia infiltrate, rapidly activate and polarize into certain phenotypes to react to the
pathological signals (Helmut et al., 2011). In glioma, tumor tissue are not only containing tumor
cells but also the non-transforming cells, which predominantly are resident microglia from the
brain and circulating blood monocytes (macrophages), comprising approximately 30% of the
cellular content of these tumors (Hambardzumyan et al., 2015). Over the past decade, these
glioma associated microglia/macrophages (GAMs) are revealed that could closely interact with
tumor cells to actively affect brain tumor biology (Gutmann and Kettenmann, 2019).

Multiple mechanisms underlying this pro-tumoral effect likely vary from tumor to tumor,
while numerous potential etiologies have been identified (Ku et al., 2013; Hu et al., 2015; Dzaye
et al., 2016). Toll like receptors (TLRs) are superfamily of pattern recognization receptors that
recognize pathogens and mediate responses in innate immune cells by activating inflammatory
pathways (Kawai and Akira, 2011). Previous studies illustrated that TLRs (TLR2, TLR4) play
important role in glioma progression via regulating MMP9 (Hu et al., 2014), MMP14 (Markovic et
al., 2009; Hu et al., 2015) and interleukin-6(Dzaye et al., 2016). On the other hand, some other
TLRs (TLR3, TLR7, TLR9) activation on microglia mediate tumor suppression effect (Zhu et al.,
2007; Buonfiglioli et al., 2019). Hence, understanding the mechanisms underlying the microglial
TLRs regulating glioma progression is important to identify the potential novel therapeutic
targets against tumor. In addition, our collaborating group previously reported that co-activating
TLRs on microglia result synergistic impact on microglia properties and influence the neuro-
inflammation (Rosenberger et al., 2014). Nevertheless, TLR3 ligands, and TLR9 ligands had
been utilized in glioma treatment (Hartman et al., 2014; Jordan and Waxman, 2016; Carpentier
and Lambert, 2017).



Therefore, we hypothesis that co-stimulation of TLR3 and TLR9 on microglia may
synergistically induce microglial property changes which affect tumor growth. This study we
focused on the effect of combined activation of TLR3/9 on microglia and the potential synergistic

impact on glioma suppression.

Methodology

In this study, to determine the expression pattern of TLR3 and TLR9 on microglia or glioma
tissues, we applied immunofluorescence staining to the human glioma tissues. Briefly, after
fixation with 4% parformaldehyde solution (PFA), 40 um free-floating tumor sections were
prepared. Subsequently, slices were washed with PBS 3 times for 5 min and blocked with 5% of
donkey serum and 0.1% Triton-X. Primary antibodies (1:500 dilution for Iba-1, 1:200 for TLR3
and 1:100 for TLR9) were incubated overnight. After washing with PBS, secondary antibodies
Cy3 conjugated anti-rabbit IgG and DyLight 488 conjugated anti-goat were applied to the slices.
Nuclei were labeled with 4,6-diamidino-2-phenylindole (DAPI).

We also performed quantitative real time PCR (qPCR) to the Magnetic activated cell
sorting (MACS) sorted GAMs from human glioma tissue and normal murine microglia. In brief,
tumor tissues were first rinsed with PBS and enzymatically digested into single-cell-suspension
using Adult Brain Dissociation Kit. Single cell suspension was incubated with CD11b
microbeads™ in MACS buffer and subsequently loaded onto a MACS column. CD11b-positive
and CD11b-negative cells were then separated for gqPCR. To examine the tumor growth, we
generated the organotypic brain slices (OBS) with fluorescence labeled murine GL261mCherry
tumor inoculation and singly or combined applied with TLR3 ligand Poly(I:C) and TLR9 ligand
CpG Oligodeoxynucleotide (CpG ODN), which clodronate liposome was used to clarify the
microglia effect. To detailed, 14-day-old Macgreen (CSF1R-EGFP) mice were decapitated, and
brains were cut in coronal plane into 250 ym sections with a vibratome. Brain slices were
transferred onto cell culture inserts containing with 0.4 ym pores. Culturing medium (DMEM
supplemented with 10% heat inactivated FCS, 0.2 mM glutamine, 100 U/ml penicillin, and 100
mg/ml streptomycin) were added to the inserts. Liposome-encapsulated clodronate or liposome-
encapsulated PBS diluted with culture medium (1:10) was added into the well for microglia
depletion. Next, GL261mCherry cells were injected into the caudate putamen region of the slice
in 150 um depth of both hemispheres and after 5 days, slices were fixed with 4% PFA. Tumor
volumes were assessed by confocal microscopy (LSM710, ZEISS) with Z-stack scanning and
were reconstructed by IMARIS software into 3D model for volume evaluation. To evaluate
density of tumor infiltrating microglia in the organotypic brain slice, EGFP fluorescence intensity

or numbers within the tumor volume were quantified. Using immunofluorescence staining, cell



counting kit (CCK-8), and quantitative real time PCR (gPCR), glioma growth was determined.
For CCK-8, briefly, GL261 cells were seeded in the 96-well plate. After treatment, CCK-8
reagent was added (10 ul per well) and incubated for 2 h. Plates were measured with a multi-
reader at 450 nm absorbance.

Using gPCR, enzyme-linked immunosorbent assay (ELISA), we verified the phenotype
changes of microglia after TLR3/9 activation. Besides, we identified interferon B (IFNB) as main
synergistic target of microglial TLR3/9 activation and the effect of IFNB on glioma progression
were also determined via immunofluorescence staining, CCK-8, qPCR and OBS.

Further, impact of TLR3/9 co-stimulation on microglial phagocytic capability was
detected using fluorescence labeled beads and tumor cells using fluorescence-activated cell
sorting (FACS) and ex vivo OBS. For phagocytosis beads assay, microglia were seeded on
coverslips in a 24-well-plate and treated with Poly(1:C) and/or CpG for 24 h followed by adding
YF fluorescent beads. Coverslips were then washed 3 times with PBS for 5 min and fixed with
4% PFA. Iba-1 was used to label microglia. Images were taken by a confocal microscope.
Phagocytosis index was evalulated as total number of beads in Iba-1 positive cells divided by
100 number of DAPI-positive cells. To assess phagocytosis of glioma cells by microglia,
similarly, microglia were seeded on coverslips in a 24-well-plate and treated with Poly(l:C)
and/or CpG for 24 h. GL261mCherry cells were applied to coverslips and incubated for 2 h.
coverslips were then fixed and stained for Iba-1 as described above. Coverslips were scanned
with a confocal microscope (LSM710, Zeiss). Number of mCherry fluorescence within the iba1
volume was determined with IMARIS software as a proxy for glioma phagocytosis.

Furthermore, influence of TLR3/9 on microglial migrating activity was measured via ex
vivo OBS, agarose spot and Boyden chamber assay. Briefly, low-melting point agarose was
dissolved and mixed with or without Poly(l:C), CpG and Poly(l:C) + CpG, using PBS as negative
control. Mixed solution was rapidly plated into glass-bottomed dishes. After cooling, microglial
cells were plated in the dish in 2 ml DMEM supplemented with 10% fetal calf serum and
incubated at 37°C for 3 h. Cells inside the spot were counted at the microscope. For Boyden
Chamber, microglial cells in serum-free DMEM medium were added to the upper compartment,
while the lower wells contained the TLRs ligands in medium, using polycarbonate filter (8 m
pore size). The chamber was incubated for 6 h. Cells remaining on the upper surface of the
membrane were removed by wiping, and cells in the lower compartment were fixed in methanol
and subjected to Diff-Quik staining.

To verify the tumor inhibition impact induced by TLR3/9 activation, we generated in vivo
tumor bearing mice and combined administrated with TLR3/9 ligands, which validating the in

vitro and ex vivo tumor growth results. For GL261 in vivo model, anaesthetized mice were



mounted onto a stereotactic head holder. 1mm skin incision were made and the skull was drilled
with a needle tip. Blunt tip syringe containing glioma cell suspension was slowly injected into the
right caudate putamen. After surgery, mice were kept warm, and post-operative condition was
monitored daily. For treatment, 14 days after tumor implantation, tumor-bearing mice were intra-
peritoneally injected with 200 ug Poly(l:C) every 3 d. For CpG administration, mice were first
anaesthetized, and 100 pg CpG in 2 pl volume was administered intratumorally.

In the end, CD47 blockade antibody was applied accompanied with to the TLR3/9
ligands to detect the tumor volume of organotypic brain slice system and tumor clearance in
vitro using FACS.

A detailed description of all methods applied for this study can be found in the materials and

methods section of Huang et al. (2020)

Essential new results

For the first time, Huang et al. illustrated that microglial combined activation of TLR3 and TLR9
synergistically suppress tumor growth that could be beneficial for potential therapeutic strategies.

Previous study from our group revealed that microglial TLR activation inhibits tumor
growth(Buonfiglioli et al., 2019). Additionally, our collaborating group showed the synergistic
effect of increasing pro-inflammatory cytokines induced by TLRs (TLR2 and TLR4) co-
stimulation on microglia. Our current study explored the impact of TLR3/9 co-stimulation on
microglia functions which affect tumor growth. First, we evaluated the tumor volume change
after TLR3/9 combined activation, and observed that TLR3/9 co-stimulation drastically reduce
tumor volume with microglia dependent fashion. We verified previous observations that
microglia accumulate in the glioma tissue and acquire a defined phenotype. We found that
infiltrating microglia expressed significant higher level of Secreted Phosphoprotein 1 (Spp1),
Glycoprotein Nmb (Gpnmb), Matrix Metallopeptidase 14 (MMP14) and Matrix Metallopeptidase
9 (MMP9), which represents tumor-supporting phenotype of GAMs as we previously published
(Szulzewsky et al., 2015). Next, microglia were singly or combined treated with TLR3/9 ligands,
and conditioned medium of microglia (MCM) were collected to treat tumor cells. We revealed
that MCM of TLR3/9 co-stimulated microglia synergistically suppressed glioma cell proliferation
and induce cell apoptosis, indicating factors released from microglia activated through
TLR3/TLR9 impeded glioma growth and promote tumor cell apoptosis. To further measure
microglial phenotype affected by TLR3/9 co-activation, we assessed the pro-inflammatory
genes and cytokines and we observed that Poly(l:C) alone increased Tumor necrosis factor a
(TNFa), Interferon B (IFNB), Interleukin 1B (IL1B), Nitric oxide synthase (NOS2), and Interleukin



6 (IL6) expression, while CpG increased TNFa, IL13 and IL6 expression. Combined application
of Poly(l:C) + CpG augmented TNFa, IFNB, NOS2 and IL12 expression compared to single
stimulation with either Poly(l:C) or CpG, indicating that TLR3/9 combined stimulation
synergistically induce pro-inflammatory genes expression and cytokines release.

It has been widely recognized that TLR3 and TLR9 signaling both activate IRF/type | IFN
signaling, which IFNB as crucial member of type | IFN has been identified as a potent anti-
tumorogenic factors in multiple cancers (Borden, 2019), we therefore analyzed different time
periods of stimulation and different agonist concentrations with respect to IFN( release. Gene
expression of IFNR was most prominently increased after co-stimulation with Poly(l:C) and CpG
compared to control. In addition, the combined application of Poly(l:C) and CpG strongly
enhanced IFNB release compared to treatment with Poly(l:C) alone. Further, we testified
whether microglia priming with either Poly(l:C) or CpG plays a role in the observed IFN release
and we observed that CpG needed to be existing in the beginning to reach the synergistic effect
of augmented IFN( release, suggesting the priming effect of TLR9 signaling in TLR3 induced
IFNP release. Next, to verify the potential tumor inhibition effect of IFNB, recombinant IFN3 was
applied to the glioma cells. We found that IFN significantly suppressed the proliferation rate of
GL261.In addition, we observed tumor volumes significantly decreased after incubation with
IFNB in the organotypic brain slices. We then examined the role of IFN in TLR3/9 co-activation
induced glioma suppression neutralizing antibodies. We found that when the IFNB neutralizing
antibody was added to the respective supernatant, proliferation rate was no longer reduced.
Taken together, TLR3/9 co-stimulation on microglia synergistically increased IFNf release and
IFNB was the main effective cytokine of microglial TLR3/9 induced tumor proliferation reduction
and apoptosis promotion.

To address microglial function influenced by TLR3/9 co-activation, we further found that
TLR3/9 combined stimulation synergistically augment microglial phagocytosis activity engulfing
fluorescence beads as well as tumor cells, indicating co-stimulation increase direct tumor
clearance. In addition, we observed increasing infiltrating microglia in the tumor and higher
migration capacity of microglia when stimulated with TLR3/9, and these increasing effect could
be attenuated by PI3K/Akt inhibition, suggesting TLR3/9 co-stimulation enhance microglial
motility via PI3K/Akt signaling cascade.

To verify the synergistic tumor suppression effect of microglia TLR3/9 activation, GL261
orthotopic murine glioma model was established and administrated with TLR3 and TLR9 ligands.
We observed smallest tumor volume in the TLR3/9 ligands co-treatment group, and combined
treatment significantly prolong average survival time of tumor bearing mice, indicating efficient

tumor suppression compared to single treatment.



Furthermore, since recent studies demonstrated that tumor expressed CD47 is essential
to negatively regulate microglia/macrophage phagocytic capacity in tumor clearance (Veillette
and Chen, 2018), we also co-administrated CD47 neutralizing antibody along with TLR3/9
ligands and we found further augment of tumor clearance based on phagocytosis, suggesting
the potential usage of combined the CD47 blockade and TLR3/9 activation in even more
efficient glioma treatment.

In conclusion, combined microglial TLR3 and TLR9 activation triggers an anti-tumor
phenotype of microglia, which affects glioma cells via release of cytokines, stimulates their
phagocytic activity to directly attack glioma cells, and enhances migratory activity, which may
explain increased accumulation of microglia in glioma tissue. Given the fact that single TLR3
and TLR9 stimulation have so far failed in clinical trials, treatment with combined stimulation of
TLR3 and TLR9 in concert with CD47 inhibition might provide a novel approach for glioma
therapy.

Further scientific questions

The findings of Huang et al.(2020) provides the first insight of impact of combined activation of
TLR3/9 on microglia function and glioma growth, indicating novel therapeutic method to glioma
treatment.

Toll-like receptors (TLRs) are a family of proteins that play a crucial role in the innate
immune system, serving as pathogen recognition receptors which leads to comprehensive
immune response. TLRs ligands raised plenty of interest in glioma treatment, which have
confirmed therapeutic benefits as anti-tumor methods that regulate immune cells of the tumor
microenvironment. TLR3/9 ligands were successfully assessed in glioma animal model and
utilized in clinical trial against glioma while no satisfying outcome achieved until now (Butowski
et al.,, 2009; Rosenfeld et al., 2010). As we stated above, microglial TLR3/9 activation
synergistically impaired tumor growth via releasing IFNB, phagocytosis enhancement. Previous
studies showed that combination of TLRs achieved synergistic impacts on different cells. For
example, combined administrated TLR2 with 4 or TLR4 with 7 agonists could form a potent
adjuvant system that can be combined with multiple antigens to enhance the innate immunity
(ref). Synergistic effect prompted by TLR 2/3 or TLR 2/4 activation has also been observed (ref).
Therefore, it is necessary to investigate potential synergistic effect on tumor inhibition of other
TLRs combination, using TLR3/7 or TLR7/9 for instance.

The delivery methods of the ligands are essential to the tumor inhibition efficiency. It has

been exhibited that nanoparticles containing Poly(l:C) received satisfactory results of tumor
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inhibition (Colapicchioni et al., 2015; Alipour Talesh et al., 2016), and the CpG ODN required to
be intratumoral administrated (Meng et al., 2005; Alizadeh et al., 2010; Carpentier and Lambert,
2017). Thus, further important investigation could focus on using multiple novel delivery
methods to test whether some of the methods improve the treatment efficiency.

In terms of mechanisms, TLRs interaction has been previously revealed (Kawai and
Akira, 2011). Adaptor proteins and kinases are essential in the transducing TLRs signal. When
triggered by the pathogens or agonists, adapter molecules within the cytoplasm of cells are
recruited by TLRs to amplify the signal. There are four identified adapter molecules that involved
in signaling. These proteins are known as Myeloid differentiation primary response 88 (MyD88),
TIR Domain Containing Adaptor Protein (TIRAP, also called Mal), TIR-domain-containing
adapter-inducing interferon-f3 (TRIF), and TRIF-related adaptor molecule (TRAM). TLR signaling
could be divided into two distinct signaling pathways, the MyD88-dependent and TRIF-
dependent pathway. The MyD88-dependent response occurs on every TLR including TLR9
except for TLR3. It might be interactions between the MyD88 dependent pathwas and TRIF-
dependent pathways. While the mechanism of the synergistic effect remain unknown, especially
the signaling cascade involving in the TLR3/9 interaction, which require further investigation to
illustrate the cross-talk between TLR3/9 signaling.

In addition, immune checkpoint blockade became promising strategies in multiple
cancers, which received exciting clinical outcomes (Ribas and Wolchok, 2018). TLRs ligands
have become popular in company with immune checkpoints therapy against tumors (Sato-
Kaneko et al., 2017; De Waele et al., 2018; Zhu et al., 2019). In our current study, TLR3/9
activation and CD47 blockade successfully synergistically suppress tumor growth. Further
investigation could be performed to determine the impact of TLR3/9 ligands with PD-1 or PD-L1
blockade. Also, it will be interesting to identify whether other TLRs (TLR2, TLR5, or TLR7)
amplify the immune-checkpoint inhibition induced tumor suppression. Last, we observed that
TLR3 and 9 express redundantly in GAMs of human glioma tissue.

This study is based on murine glioma in vitro, ex vivo and in vivo model, which is difficult
to perfectly reflect glioma micro-environment in human. Since our ultimate goal of the study is
translating to human glioma treatment. Increasing publications reported the differentiation of
human induced pluripotent stem cells (iPSCs) into microglia, provides the new methods for
establishing humanized context(Abud et al., 2017). Furthermore, recent studies showed the
chimeric model of inoculating human microglia in murine brain (Abud et al., 2017; Hasselmann
et al., 2019; Xu et al., 2020), which could be served as a great model to investigate brain
microenvironment in diseases. In addition, a novel organoid glioma model using primary human

glioma gives us the other chance to verify therapy efficiency in different patients, based on
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heterogeneity of glioma(Linkous et al., 2019). It would be extremely interesting to take
advantage of these humanized models to further testify the potential therapeutic beneficial of
TLRs ligands in glioma treatment.

Overall, Huang et al. (2020) provides the very first insights of the effect of microglial
combined TLR3/9 activation on microglial properties and affecting tumor growth, which provides

multiple further investigation potentiality for microglia based glioma intervention.
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