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Abstract 

 
We consider the impact of sequential investment and active management on the value of 
a portfolio of real options.  The options are assumed to be interdependent, in that exercise 
of any one is assumed to produce, in addition to some intrinsic value based on an 
underlying asset, further information regarding the values of other options based on 
related assets.  We couch the problem in terms of oil exploration, where a discrete 
number of related geological prospects are available for drilling, and management’s 
objective is to maximize the expected value of the combined exploration campaign.  
Management’s task is complex because the expected value of the investment sequence 
depends on the order in which options are exercised. 
 
A basic conclusions is that, although dependence increases the variance of potential 
outcomes, it also increases the expected value of the embedded portfolio of options and 
magnifies the value of optimal management.  Stochastic dynamic programming 
techniques may be used to establish the optimal sequence.  Given certain restrictions on 
the risk structure, however, we demonstrate that the optimal dynamic program can be 
implemented by policies that are relatively simple to execute.  In other words, we provide 
sufficient conditions for the optimality of intuitive decision rules, like “biggest first,” 
“most likely first,” or “greatest intrinsic value first,” and we develop exact analytic 
expressions for the implied value of the portfolio.  This permits the value of active 
management to be assessed directly.  Finally, the sufficient conditions we identify are 
shown to be consistent with plausible exploration risk structures.   
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Managing a Portfolio of Real Options: 
Sequential Exploration of Dependent Prospects 

 
1.  Introduction 

 We consider the impact of sequential investment and active management on the 

value of a portfolio of real options.  The options are assumed to be dependent, in that 

exercise of any one is assumed to produce, in addition to some intrinsic value based on its 

underlying asset, further information regarding the values of other options based on 

related assets.  We take the values of the underlying assets to be positively related; a high 

value on any one tends to increase the likelihood of high values elsewhere.  Valuation of 

such portfolios is complex in that the combined value of the entire portfolio may depend 

on the order in which options are exercised, and the optimal order is not always obvious 

(and sometimes counterintuitive) when the number of options exceeds two. 

 As a frame of reference, we couch the problem in terms of oil exploration, where 

a discrete number of related geological “prospects” are available for drilling and 

management’s objective is to maximize the net present value of the entire exploration 

campaign.  Such prospects typically differ in size and probability of success, and are said 

to be “dependent” or “associated” if success on one increases the conditional probability 

of success on others.1  Each prospect represents a real option, which if successfully 

exercised (via drilling) conveys the intrinsic value of the underlying oil, plus information 

regarding the value of remaining prospects.  How much should management be willing to 

pay to acquire such a portfolio?  Certainly more than the sum of the intrinsic values, 

because that measure ignores the value created by using intervening information to 

                                                 
1 Tong (1980, pp. 78-90) discusses the “association” of random variables (a property equivalent to “positive 
quadrant dependence” in the bivariate case) and reviews many of the relevant statistical implications. 
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actively manage the exploration sequence.  Holding all else equal, the existence of 

dependence among prospects adds value to the portfolio of options. 

 Our results highlight an important difference between real option applications and 

the standard financial option paradigm:  in many applications of real options, the value of 

the underlying asset will not be revealed until after the option has been exercised.  The 

true value of the asset will often depend on additional sources of uncertainty that can be 

resolved only through investment and exploitation of the asset.  Paddock, Siegel, and 

Smith (1988) demonstrated in the case of petroleum exploration (where the number of 

“shares” to be acquired via drilling an exploratory well is uncertain) that, where only a 

single asset is involved, the basic analogy to financial options is preserved and standard 

techniques based on the risk-neutral valuation principle may be applied.  When several 

dependent assets are involved, however, the valuation problem changes in a fundamental 

way.  The flow of available information is endogenized—subject to managment’s 

decision to exercise one option that could reveal information regarding the values of 

others.  The flow of information has to be managed in concert with investment in the 

underlying assets, and the value of the portofolio as a whole will reflect managment’s 

skill in combining these two functions. 

A simple illustration shows the importance sequencing dependent investments 

optimally.  Consider three prospects, each requires  the expenditure of $80 million to test, 

and returns a gross value of $100 million if successful.  Joint and marginal probabilities 

of success for the three prospects are shown below: 

  p1 = .820 
    p2 = .810 
    p3 = .803 
 



 3

080.015.
010.022.
075.078.
080.640.

321321

321321

321321

321321

==
==
==
==

∩∩∩∩

∩∩∩∩

∩∩∩∩

∩∩∩∩

pp
pp
pp
pp

 

 
Prospect 1 is the most likely, and prospect 3 the least likely to succeed.  It is nonetheless 

optimal to test the third prospect first because it generates valuable information that more 

than compensates for its lesser intrinsic value.  The value of the portfolio if prospect 3 is 

tested first amounts to $15.12 million.2  In contrast, the value of the portfolio if all three 

prospects are tested simultaneously, or without regard for intervening outcomes, amounts 

to only $3.3 million.  Thus, dependence among individual prospects quadruples the value 

of this portfolio, but only if the investments are made in proper sequence and the 

resulting information acted upon in an optimal manner. 

 Subject to certain regularity conditions, stochastic dynamic programming 

techniques may be applied to identify the optimal order of trials in problems of this 

type—and to ascertain portfolio value.  That approach relies heavily on computational 

power but does not contribute much economic insight regarding the elements of a 

successful sequential investment strategy.  Of course, as the size of the portfolio grows, 

dynamic programming sollutions impose ever larger computational demands and 

information requirements, as well.3   

 We show that, given certain plausible constraints on the structure of dependent 

risks, the solution to this portfolio management problem reduces to a form that is much 

simpler and easier for management to execute.  In the extreme, for example, is the case 

where the value of each asset is independent of the others, which implies that the value of 

                                                 
2 This value is obtained by solving a simple decision tree.  
3 For example, see Haugen (1996) and Jorgenson (1999). 
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the portfolio is independent of the order in which the options are exercised.  But that 

example throws out the baby with the bath water.  Our goal is to identify, where possible, 

simple rules for managing a portfolio of dependent options.   

 We also show that the risk structure most commonly used to describe dependent 

petroleum exploration outcomes is sufficient for the optimality of simple decision rules, 

like “biggest first,” “most likely first,” or “greatest intrinsic value first”; and we develop 

exact analytic expressions for the value of the portfolio in such cases.  This permits the 

incremental value of active management to be assessed simply and directly.   

 We are just as much interested in establishing the limits beyond which simplified 

decision rules would fail to optimize the value of the portfolio.  Positive association is 

not, by itself, sufficient for our results—as the preceding example already demonstrated.  

A special form of association among the underlying assets is required to achieve much in 

the way of simplification.   

2.  Related Literature 

 Relatively few papers have considered the impact of sequential investment and 

project interdependence on the value of a portfolio of real options.  Trigeorgis (1993) was 

among the first to consider the implications of interdependence and establish the non-

additivity of real option values.  His analysis, however, pertains to a collection of options 

all written on the same underlying asset, whereas we have in mind applications where 

distinct assets underlay each option in the portfolio.  In addition, the sequence in which 

options might be exercised is predetermined in his analysis, whereas flexibility in 

determining this sequence is paramount in our study. 
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 Vishwanath (1992) derives, as we do, sufficient conditions for the application of 

relatively simple rules to solve the problem of optimal sequential investment in a 

collection of projects.  She also shares our view regarding the inherent practical 

limitations of the dynamic programming approach, which in her words is likely to shed 

“little economic insight (and) would be a complex brute force task.”  Unlike us, however, 

she confines her analysis to projects whose payoffs are mutually independent, all of 

which must be exercised.4  Thus, two crucial aspects of our framework are missing in her 

work. 

 Cortazar, Schwartz, and Casassus (2001) investigate the impact of geologic and 

price risk on the value of a collection of interrelated natural resource options.  As in 

Trigeorgis (1993), however, the analysis pertains to multiple options written on the same 

underlying real asset, and the investment sequence is predetermined.   

 Childs, Ott, and Triantis (1998) undertake what is perhaps the most 

comprehensive study of the impact of interdependence on real option valuation and 

investment sequence.  They describe problems wherein the form of interdependence 

ranges from mutual exclusivity to perfect complimentarity.  Their analysis is limited to 

the two-prospect case, however, and only the “mutually exclusive” case is discussed in 

the text.  Their results anticipate one of our main observations:  that it is not always 

advisable to exercise the most valuable option first; and they describe the conditions that 

work for and against such an outcome.  Our work pertains to options whose values tend 

to be positively correlated, rather than mutually exclusive, and we have found that some 

results obtained easily for the two-prospect case fail to generalize even to the three-

                                                 
4 The sequence of investments matters in that framework, but for reasons that relate to risk preferences.  
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prospect case—the difference coming from the extra degrees of freedom that are inherent 

in multivariate distributions.5   

 Several papers in the practitioners’ arena are also pertinent to our work.  Murtha 

(1996) has investigated the impact of dependence among petroleum prospects, but within 

a rigid investment structure that would require all prospects to be drilled.  He finds 

(correctly within that framework) that expected reserve volumes are unaffected by 

dependence among prospects, although the variance of reserves (payoffs) must increase.  

His conclusion, that “dependence increases the riskiness” of exploration, overlooks the 

value of flexible management—a value that we conclude can be very high.  Delfiner 

(2000) adheres closely to Murtha’s approach to portfolio analysis, to the point of 

repeating Murtha’s potentially misleading conclusion, that “dependencies increase the 

exploration risk.”  What the real options approach incorporates is what both Murtha and 

Delfiner leave out:  the ability of managerial flexibility to turn inflated variance into 

enhanced return.  Wang, et. al. (2000) do recognize that dependence creates managerial 

options to sequence petroleum exploration prospects optimally based on updated 

information, but they provide no analysis of the value of such options.   

3.  Preliminaries:  The N=2 Case: 

 We start by assuming there are two prospects, with intrinsic values: 

 p1V1 – C and  p2V2 – C, 

where pi represents the probability of success on the ith prospect, Vi is the expected value 

of that prospect conditional on success, and C is the cost of performing the trial (we 

assume identical drilling costs over all prospects).6   

                                                 
5 It is impossible with only two prospects, for example, to construct the type of illustration we presented in 
the introduction; i.e., where the lower-probability prospect should go first. 
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 Without loss of generality, we order prospects in terms of decreasing intrinsic 

value, thus: 

 p1V1 > p2V2. 

To simplify the presentation, we will assume that all prospects are initially “in the 

money,” thus:  p2V2−C >0.7  As noted already, association of outcomes implies:   

 jijiji ppandpp ≥≥ .. ; 

that is, success on either prospect increases the chance of success on the other.  Due to 

the impact of the specific information generated by the first trial, the value of the 

portfolio depends on which prospect goes first.  The expected value of starting with 

prospect 1 is given by: 

( ) ( ) ( ) 121.2121.2111 pCVpmpCVpCVp −+−+−=Π , 

where for convenience we define:  m(x) =max(x,0), 11 1 pp −= , and 1211.2 / ppp ∩= , 

etc.  The term ( ) 121.2 pCVpm −  embodies the value of the option not to test the second 

prospect after failing on the first.   

 Likewise, the expected value of starting with prospect 2 is given by: 

( ) ( ) ( ) 212.1212.1222 pCVpmpCVpCVp −+−+−=Π . 

The premium earned by starting with prospect one is given by the difference: 

 ( ) ( ) ( ) ( ) 212.1121.22211 pCVppCVpCVpCVp −−−+−−−=∆  

( ) ( ) 212.1121.2 pCVpmpCVpm −−−+  

 ( ) ( ) ( ) ( ) ( ) 212.1121.22112212211 pCVpmpCVpmCppVVpVpVp −−−+−−−+−= ∩ . 

                                                                                                                                                 
6 In the vernacular of the petroleum industry, Vi is sometimes referred to as the “unrisked value” of a 
prospect, whereas piVi is the “risked” value. 
7The value of the portfolio may be positive even if p1V1 < 0, and we believe it is possible to derive similar 
results for such cases, but that goes beyond the scope of the present work. 
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We evaluate this expression, distinguishing three cases: 

Case A:  Neither prospect is condemned by failure of the other 

 In this case, both expressions of the form ( )CVpm iji −.  are positive and we have: 

 ( ) ( ) ( ) 21211212211221)2211 CpVpCpVpCppVVpVpVpA +−−+−−−+−=∆ ∩∩∩  

 ( ) ( ) ( ) ( ) ( )CppCppVppVppVpVp 221112121221212211 11 −+−−−+−+−++−= ∩∩∩∩  

  ( ) 011222211 =+−−+−= CCVpVpVpVp .         (1) 

Thus, order doesn’t matter in Case A since management would test both prospects 

regardless of intervening outcomes. 

Case B:  Either prospect is condemned by failure of the other 

 In this case, both expressions of the form ( )CVpm iji −.  are zero and we have: 

 ( ) ( ) ( )CppVVpVpVpB 2112212211 −−−+−=∆ ∩ . 

  ( ) ( ) ( )CppVppVpp 2122121211 −−−−−= ∩∩          (2) 

But, V2 < p1V1/p2 (by assumption,) so: 

 ( ) ( ) ( )CppppVppVppB 212112121211 / −−−−−≥∆ ∩∩  

  ( )Cpp
p

pp
pV 21

2

21
211 −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= ∩  

  ( )( )CVppp −− 12.121 , 

which takes the sign of (p1−p2) since p1.2V1−C > 0 (recall that p1.2 ≥ p1).  Thus, in Case B 

it is optimal to test first the prospect with higher intrinsic value if that prospect also has 

the higher probability of success.  If the two prospects have equal values conditional on 

success (i.e., V1 = V2), you would always test the more likely prospect first.  If they have 
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equal probabilities of success, then the one with the greater conditional value must go 

first. 

 On the other hand, you would test the 2nd prospect (lower intrinsic value) first if 

its failure conveys enough information to compensate for its lower intrinsic value.  

Specifically, the condition for testing the second prospect first is (from Eq. 2): 

 ( ) ( ) ( ) 02122121211 <−−−−− ∩∩ CppVppVpp  

Equivalently: 

  ( ) ( )CVpCVp −<− ∩∩ 221121 ; 

which implies that you would test the lower intrinsic value first if and only if: 

 
CV
CV

p
p

−
−

<
∩

∩

1

2

21

21 .             (3) 

In terms of the primitive parameters, lower values of the ratio 2121 / ∩∩ pp  make it more 

likely that the lower intrinsic value prospect should go first.  Intuitively, low values of 

2121 / ∩∩ pp  means that the odds are against prospect two generating many false negatives, 

at least relative to prospect one, which enhances the value of information gleaned from it. 

Case C:  Only one prospect is condemned by failure of the other 

 It is easy to show ∆C and ∆B have the same sign.  To see this, examine the 

difference: 

 ( ) ( ) =−−− 121.2212.1 pCVppCVp ( ) ( ) ( ) BCppVVpVpVp ∆=−−−+− ∩ 2112212211  

where the first equality is implied by Eq. 1, and the second by Eq. 2.  Thus: 

 ( ) ( ) 00 121.2212.1 <
>

<
> −−−⇔∆ pCVppCVpB ; 

which, since 1p  and 2p  are non-negative, is equivalent to: 
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 ( ) ( ) 000 21.212.1 >
<

<
>

<
> −−⇔∆ CVpandCVpB , 

where we have used the fact that in Case C these two expressions must differ in sign.  

Therefore, if ∆B > 0, we know: 

 ( ) ( ) ( ) ( ) 212.12112212211 pCVpCppVVpVpVpC −−−−−+−=∆ ∩  

  ( ) 0121.2 >−−∆= pCVpA . 

Likewise, for ∆B < 0, we have: 

 ( ) 0212.1 <−+∆=∆ pCVpAC . 

Implications: 

 Some preliminary results can now be summarized.  If neither prospect has the 

power to condemn the other, both may be tested simultaneously.8  Otherwise, the 

necessary and sufficient condition for testing the ith first is given by (cf. Eq. 3): 

 Test the ith prospect first if and only if:  
CV
CV

p
p

i

j

ji

ji

−

−
>

∩

∩ .   

For i=1, this condition is assured if, in addition to p1V1 > p2V2, we have p1 > p2.  On the 

other hand, if we have V1 = V2, the condition implies testing prospect one first since we 

have assumed p1 > p2.  Our conclusions regarding the optimal investment sequence is 

summarized in the following diagram. 

                                                 
8 Throughout this paper, we neglect the time value of money in order to emphasize the option-value 
component of portfolio value.   
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V1 V2

p1

p2

Optimal Sequence with Common Risk Structure:

If Prospect 2 Falls In Shaded Region, Test Prospect 1 First;

In Unshaded Region, Order Depends on Degree of Dependence

p2V2 < p1V1  &  p2 > p1
Order depends on
joint probabilities

EV2 = EV1

p2V2 < p1V1  &  p2 < p1
Prospect 1 First

 

Option Value 

 We define the “static value” of the portfolio (Π0) to be the sum of intrinsic values; 

i.e., the expected value of the portfolio if management ignores the information content of 

previous outcomes: 

 ( ) ( )CVpCVp −+−=Π 22110 . 

We may then define the “option value” of the ith prospect (OVi) as the additional value 

that comes by testing it first and using the resulting information to make subsequent 

investment decisions: 

 ( ) ( ) ( )CVppCVppCVpOV jjijijmijijii −−−+−=Π−Π= ..0 . 

Now, if failure on the ith prospect does not condemn the jth, we have: 

 ( ) ( ) ( )CVppCVppCVpOV jjijijijiji −−−+−= ..  

  0. =+−−+−= ∩ CVpCpVpCpVp jjijijijij . 



 12

Thus, if the ith prospect has no power to condemn the other, it has no option value.  

Alternatively, if failure on the ith prospect does condemn the jth, we have: 

 ( ) ( ) ( ) ( )CpVppCVppCVpOV ijjijjjijiji −+−=−−−= ∩ 1.  

  0>−= ∩ jjii VpCp .       (4) 

 This option value has the natural interpretation of being the expected cost savings 

(in terms of deferred testing cost) less the foregone revenue due to the occurrence of a 

false negative (i.e., the ith prospect wrongly deferring the jth).  Partial differentiation of 

Eq. (4) gives: 

  0<−=
∂
∂

∩ ji
j

i p
V

OV
 0>=

∂
∂

i
i p

C
OV

 j
ji

i V
p
OV

−=
∂
∂

∩

. 

Thus, option value falls as the intrinsic value of the other prospect rises since there is less 

chance that failure will defer it.  Option value rises as the cost of trials rises since the 

potential cost savings is larger.  Finally, option value falls as the probability of false 

negatives rises. 

4.  The General Case:  N ≥ 2 

 Before these results can be generalized to the case of multiple prospects, it is 

necessary to place further restrictions (beyond association) on the risk structure.  In this 

section, we restrict attention to what is referred to in petroluem exploration as the “shared 

risk” information structure.9 

“Shared Risk” Information Structures 

 We let:  p(Fi) = qi; and ( )iFp  = 1-qi; for i = 0, 1, ..., N; 

where the Fi represent independent events.  Then, define: 
                                                 
9 The name comes from Stabell (2000), although applications of this type have a much longer history in the 
petroleum industry.  See Megill (1979) for example. 
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   Si = F0∩Fi; i = 1, 2, ..., N. 

Intuitively, F0 denotes the presence of a common factor that is necessary for success on 

each of the N prospects (e.g., the original deposition of carboniferous sediments in a 

prospective petroleum basin).  For i = 1, ..., N, each of the Fi represents the presence of an 

additional prospect-specific factor that is necessary for success (e.g., a local trapping 

mechanism) on that specific prospect.  The prospect-specific factors are assumed to be 

independent of each other and independent of the common factor.  Thus: 

  pi = p(Si) = q0qi; i = 1, 2, ..., N.; and: 

  pi.j = p(Si|Sj) = p(Si∩Sj)/p(Sj) = p(F0∩Fi∩Fj)/p(F0∩Fj) = q0qiqj/q0qj = qi 

Also:  jikjkjikji pqqqqqqqp .00. / == , 

  jikjkjijki pqqqqqqqp .00. / == , etc. 

In the shared risk structure, relative probabilities of success among remaining prospects 

are not affected by previous outcomes, since: 

{ }

{ } j

i

j

i

kj

ki

q
q

p
p

p
p

==
.

. , 

where the set {k} represents any set of outcomes on other prospects.  From this, it also 

follows: 

 { } { } jjiijkjiki VpVpVpVp <
>

<
> ⇔..  

I.e., the ranking of remaining common-risk prospects by intrinsic value is not affected by 

the outcomes of previous trials.  Within this framework, we can now prove: 
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Theorem 1:  Given N prospects such that piVi ≥ pjVj and pi ≥ pj, for all i and j such that i < 

j, then at each stage in the investment sequence it is optimal to test next the prospect with 

highest intrinsic value.  (Proof—see Appendix) 

Option Values 

 We now extend the definition of option value to the N-prospect case.  The specific 

results to follow are based on Theorem 1, and therefore presume that pi ≥ pj, for all i and j 

such that i < j.    Moreover, for the time being, we will assume that failure on prospect 

one would condemn prospect two. 

 The option value of the 1st prospect as it affects the jth can be defined as in the 

N=2 case: 

 OV1j = jjVpCp ∩− 11 , for j = 2, ..., N. 

The value of the portfolio can then be computed as the sum of these elementary option 

values (cf. Eq. 4): 

Theorem 2:  If failure on prospect one would condemn prospect two, then the value of the 

portfolio is given by: 

 Π* NOVOVOV 1131201 ...++++Π=Π . 

  ( )∑
=

−+Π=
N

j
jj VpCp

2
1.10 .       (5) 

(Proof—see Appendix) 

The value of actively managing the portfolio is therefore: 

 ( )∑
=

−=Π−Π
N

j
j VpCp

2
11.101 . 
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Portfolio Value—Comparative Statics 

 We differentiate Eq. (5) to observe the impact of parameter changes on the 

portfolio value, and on the value of active management.  First, with respect to the cost of 

testing the prospects: 

 ( ) 01 111
1 <−−=−+−=

∂
Π∂

pNppNN
C

; 

( ) ( ) 01 1
01 >−=

∂
Π−Π∂

pN
C

; 

which means that a higher testing cost decreases the value of the portfolio, but increases 

the value of active management. 

 With respect to the conditional value of each prospect: 

 011
1 >=−=

∂
Π∂

∩∩ jjj
j

ppp
V

; 

 
( ) ( ) 011

01 <−−=−=
∂

Π−Π∂
∩∩ jjj

j

ppp
V

; 

which means that higher prospect value (conditional on success) increases the value of 

the portfolio, but decreases the value of active management. 

 Finally, with respect to the probability of obtaining a “false negative from each 

prospect (while holding constant the marginal probabilities of success): 

 
( )

0
1.

01

1.

1 <−=
∂

Π−Π∂
=

∂
Π∂

j
jj

V
pp

. 

But, note that 1.1. 1 jj pp −= ; thus: 

 
( )

0
1.

01

1.

1 >=
∂

Π−Π∂
=

∂
Π∂

j
jj

V
pp

; 
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which means that, holding other things equal, greater dependence increases the term 

1.jp , and therefore increases both the value of the portfolio and the value of active 

managment; whereas greater probability of a false negative regarding any prospect 

decreases both the value of the portfolio and the value of active management. 

 Next we account for the case where failure on the 1st prospect may not condemn 

the 2nd.  To make an interesting problem, some prospect must be condemned by one or 

more prior failures, else all prospects would be tested and the value of the portfolio would 

be given simply by the static value, Π0.  We let prospect m+1 (where 1≤m<N) represent 

the most valuable “condemnable” prospect (i.e., the prospect of lowest index that could 

possibly be condemned by prior failures).  We can then establish: 

Theorem 3:  If prospect m+1 is the condemnable prospect of highest intrinsic value, then 

the value of the portfolio is given by:   

 ( ) ∑
+=

∩−−+Π=Π=Π
N

mi
imim VpmNCp

1
)(0)(001*    (6) 

where )(0 mp  is the probability of no success among the first m trials, and )(0 mip ∩  is the 

probability that the ith prospect (i ≥ m) succeeds and there are no successes among the 

first m trials.  Proof:  (see appendix). 

 Our previous eq. (5) represents the special case of (6) obtained by setting m=1.  

The same natural interpretation of option values applies here as in that case, but where 

the decision to test the first m prospects simultaneously is treated as a single act.  The 

form of the expression is otherwise entirely analogous.  Finally, the value of actively 

managing the portfolio is given by: 
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 ( ) ∑
+=

∩−−=Π−Π
N

mi
imim VpmNCp

1
)(0)(001 , 

from which comparative static properties can be derived similar to those given above. 

5.  Summary 

 

 At this juncture we are able to organize the following simplifications to the 

general problem of managing a portfolio of dependent options. 

1. When choosing between two prospects, it is optimal to test both simultaneously if 

neither has the power to condemn the other. 

2. When choosing between two prospects, it is optimal to test first the prospect with 

larger intrinsic value if that prospect also has the larger probability of success.  However, 

it is optimal in some cases to test first the prospect with smaller intrinsic value if it has 

the larger probability of success. 

3. When choosing between two prospects, knowledge of the ratio of success 

probabilities conditional on failure of the other prospect is sufficient to order the 

prospects as a function of unrisked valuations. 

4. If prospect dependence conforms to the “common-risk” risk structure, then these 

results generalize to comparisons among N prospects: 

 a.  When choosing among N prospects, it is optimal to test first the 

prospect with the largest intrinsic value if it also has the largest probability 

of success. 

 b.  When choosing among N prospects, it is also optimal to simultaneously 

test any prospects that would not be deferred (condemned) by failure on 
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the prospect identified in part a, regardless of its intrinsic value and/or 

risk. 

 c.  If all prospects are of the same “size” and conform to the “common-

risk” structure, then it is optimal to test first the one with the largest 

probability of success. 

 d.  If all prospects have the same probability of success and conform to the 

“common-risk” structure, then it is optimal to test first the one with the 

largest size. 

5. The option value of a prospect measures the extent to which information revealed 

via a test of that prospect enhances the value of the rest of the portfolio of prospects. 

6. The option value of a prospect increases directly with that prospect’s degree of 

affiliation with other prospects.   

7. The option value of any prospect varies directly with the cost of testing, but 

inversely with the intrinsic value of other prospects.  In these two respects, circumstances 

that are associated with a decrease in the static value of the portfolio are associated with 

an increase in the value of managing the portfolio actively. 

 Our preliminary inquiry encourages us into further contemplation of how the 

structure underlying a portfolio of real options interplays with the optimal option 

exercise. We suggest broadening the search for probability spaces wherein simple 

decision rules are optimal and characterizing these rules in the vernacular of real options.  

Will it be possible to state sufficient and necessary conditions under which specific 

simple rules are optimal?  What will these conditions look like and how closely will they 

conform to meaningful applications?  How much value is contributed by the optimal 
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exercise of imbedded options?  If research outcomes are indeed associated, our results to 

date leave us optimistic about obtaining useful answers to these and similar questions. 
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Appendix 

Proof of Theorem 1:   

The proof is by induction.  The result has already been established for the case of N=2, so 

begin now with N=3.  Pick any prospect j other than the first (j≠1) to test first.  Among 

the N-1 prospects that remain, we have already shown that it is optimal to test the highest 

intrinsic value first.  Since the order is preserved, the prospect with highest intrinsic value 

(and highest probability of success) after j has been tested is the same as before j was 

tested.  There is no ambiguity therefore in the labeling of prospects.  The maximal 

expected value of all N prospects, given that you start with j, may then be written:  

 jΠ  = ( )CVp jj −  + ( ) ( ) jjjjjjj pEpEppCVp 1.11.11.1 ++−  

    + ( )[ ] jjjjjj pEpEpCVpm 1.11.11.1 ++− ; (A1) 

where: jp .1  = conditional probability of success on prospect 1 after failing on j.  

 jE1  = expected value of remaining prospects after success on 1 and failure on j. 

 [ ]xm = maximum of (0,x). 

If a negative value appears in the square bracket, then you would choose to not test 1 

after failing on j.  But, in that case you would test no further (else prospect 1 would not 

have been the optimal choice to follow j ) and the series ends.   

 We claim that a value not less than Πj could be obtained by starting with the first 

instead of the jth.  The maximal expected value, given that you start with prospect 1, can 

be written as: 
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 1Π  = ( )CVp −11  + ( ) ( ) 111.11.11. pEpEppCVp jjjjjj ++−  

    + ( )[ ] 111111.11.1. pEpEEpEpCVpm jjjjjj +−++−  (A2) 

where: 1E  = expected value of remaining prospects after failure on 1 and not permitting j 

to go next.  Equation (2) differs in form from (1) only because there is no assurance that j 

(which was chosen arbitrarily) should optimally follow 1.  If the value in square brackets 

is non-negative, it should follow 1; otherwise not. 

 To prove our claim, we must show Π1 -Πj ≥ 0.  Using (A1) and (A2), we have: 

 ∆  = jΠ−Π1  = ( ) ( ) ( ) ( ) jjjjjj pCVpCVppCVpCVp −−−−−+− 1.111.11  (T1) 

     + ( ) 111.11. pEpEp jjjj +   −  ( ) jjjjj pEpEp 1.11.1 +  (T2)  

     + [ ] 1111. pEpdm j + [ ] jj pdm .1− ; (T3) 

  where:  =1.jd  ( ) 111.11.1. EEpEpCVp jjjjjj −++−  

  and:  =jd .1  ( ) 1.11.11.1 jjjjj EpEpCVp ++− . 

The terms 1.jd and jd .1  show the impact on portfolio value if each prospect is tested, 

rather than deferred, after the failure of the other.  A negative value indicates that deferral 

is optimal. 

 We evaluate each of these three components separately, then combine results.  It 

is straightforward to show (cf. the N=2 case): 

  ( ) ( )CppVpVpT jjjj −−−= ∩∩ 11111  > 0. 

We proceed to T2, where due to the common-risk structure, we have:   
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  0111 ≥≡== EEEE jjj . 

I.e., confirmation of any prospect confirms the common factor on all remaining 

prospects.  After substituting these into T2, we get: 

  ( )EppT j−= 12  ≥ 0, 

since p1 > pj by assumption. 

Regarding T3, there are three possible cases to consider. 

Case A:  Neither 1.jd  nor jd .1  is negative (neither is deferred by failure of the other).  T3 

then takes the form: 

 T3 = ( ) 1111111111 EpEpEpEpCpVp jjjjjj +−++− ∩∩∩  

    11111 jjjjjjj EpEpCpVp ∩∩∩ −−+− . 

But, the common-risk structure implies:   

  011 >≡= EEE jj . 

After making this substitution and cancelling like terms, T3 reduces to: 

 ( ) ( )( )CEppVpVpT jjjj −−−−−= ∩∩ 11113   =  −(T1+T2)  <  0 

Thus, in Case A: 

 0321 =++=∆ TTTA  

Thus, if failure of neither prospect would cause the other to be deferred, the order is of no 

consequence; they could be tested simultaneously. 

Case B:  Both 1.jd  and jd .1  are negative (either is deferred by failure of the other).  T3 

then takes the simple form:  0113 ≥= pET  (since 1E  cannot be negative), which when 

combined with T1 and T2 gives: 
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 01121 >++=∆ EpTTB . 

Thus, if failure on each prospect would cause the other to be deferred, the highest 

expected value (and most likely) should be tested first. 

Case C:  Only 1.jd is negative (only one is deferred by failure of the other).  The fact that 

it is the 1st prospect that would defer the jth can be deduced from the Case A result, where 

we showed: 

 ( ) 021.11111.3 <+−=−+= TTpdpEpdT jjj , 

which implies: 

 011.111. ≤−<− pEpdpd jjj . 

Now, if 1.jd  and jd .1  are to differ in sign (as Case C requires), then it must be that 1.jd  < 

0 while jd .1  > 0.  Thus, it must be the 1st prospect that has the power to defer the jth. 

 We can now easily evaluate T3 in Case C by reference to Case A:  what entered 

there into T3 (and therefore ∆ ) as 11. pd j  enters here as 0.  All else remains the same.  

Thus, we can simply subtract this term from the Case A result to obtain: 

 011. >−∆=∆ pd jAC . 

Thus, if failure on only one of the prospects is informative enough to cause deferral of the 

other, the most likely (and highest intrinsic value) prospect would be the informative one, 

and it should be tested.  

Proof of Theorem 2: 

Theorem 1 established that the value of the portfolio is given by Π1, which can be 

computed directly using the decision tree approach.  We keep in mind that if the 1st 

prospect succeeds, then all prospects will be tested, and if the 1st prospect fails, no more 
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will be tested.  (We assumed that the 1st would condemn the 2nd, but the 2nd would 

optimally follow the 1st under Theorem 1, thus no other prospect could follow the 1st but 

the 2nd.  In other words, if the 1st has the power to condemn the 2nd, then it has the power 

to condemn them all. 

 Thus, we can compute the value of the entire portfolio as follows: 
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Proof of Theorem 3: 

The first m prospects will be tested simultaneously, en block.  Prospect m+1 (and all 

remaining prospects) would be condemned unless at least one success occurs among the 

first m trials—in which case prospect m+1 (and all remaining prospects) would be tested.  

Thus, we can write the value of the portofolio as: 
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where )(0 mp  is the probability of at least one success among the first m trials, and )(0. mip  

represents the probability that the ith prospect (i>m) succeeds given that there was at least 

one success among the first m trials. 

 This expression can be simplified as follows: 
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