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Abstract: Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder,
affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked
with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic
syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been
carried out in recent years in order to clarify its pathogenesis and create new prevention strategies.
Currently, the essential role of environmental pollutants in NAFLD development is recognized.
Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified
as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further
subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesti-
cides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls,
and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a
mechanism involving this group of substances with the disruption of hepatic metabolism, which
promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial
dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to
EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations
supporting these effects in humans are required.

Keywords: non-alcoholic fatty liver disease; endocrine-disrupting chemicals; liver disorder; environmental
pollutants; exposure

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of patholo-
gies, ranging from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH), with
potential progression to cirrhosis and hepatocellular carcinoma (HCC), in individuals
without significant alcohol consumption [1,2]. This pathology is considered a manifestation
of the metabolic syndrome (MetS) due to its association with obesity, insulin resistance
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(IR), and type 2 diabetes mellitus (T2DM) [3,4]. It is a major health problem, representing
the leading cause of chronic liver disease worldwide [3]. The global prevalence of NAFLD
is around 25% in adults, with notable variability among continents, the highest rates be-
longing to South America (31%) and the Middle East (32%), followed by Asia (27%), North
America (24%), Europe (23%), and Africa (14%) as the least affected area [5,6].

During recent decades, mechanistic advances have emerged to explain NAFLD
development. The currently accepted theory is the “multiple-hit model”, which in-
volves the interaction of genetic, dietary, and environmental factors as mediators in the
etiopathogenesis [7]. These factors promote the onset of IR in adipose tissue, lipolysis and
consequent adipocyte dysfunction, thus increasing influx of free fatty acids (FFAs) into the
liver [8,9]. This increase in FFA levels translates into the re-esterification and accumulation
of triglycerides (TG) in the liver, simultaneously with the accumulation of other lipid
metabolites, such as diacyl-glycerols, long-chain acylcarnitines, and ceramides. These lipo-
toxic intermediates are responsible for harmful effects such as mitochondrial dysfunction,
oxidative stress, and chronic liver inflammation involved in disease progression [8,10,11].

In this context, it is necessary to mention environmental pollutants. These molecules
have acquired significant relevance as a consequence of industrialization growth due to
their potential involvement in the development of multiple pathologies [12]. Amid environ-
mental pollutants, endocrine-disrupting chemicals (EDCs) are a heterogeneous group of
substances that include synthetic products used as solvents/lubricants, plastics, plasticizers,
pesticides, fungicides, pharmaceutical agents, and natural products present in human and
animal foods [13–15]. These substances are acknowledged as disruptors, able to interfere
with hormonal signaling and, consequently, cause hormonal dysregulation that mediates
various metabolic disorders. Several experimental investigations have shown that acute
or chronic exposure to EDCs contributes significantly to NAFLD development [15–17].
Therefore, this review aims to summarize the effects of exposure to EDCs on the initiation
and progression of NAFLD from a molecular and clinical perspective.

2. Endocrine-Disrupting Chemicals: An Overview

Although this research field has gained particular interest in recent years, knowl-
edge of the potential role of chemicals on hormonal function dates back to the mid-20th
century [18]. In 1962, the book “Silent Springs” by Rachel Carson highlighted the long-
term consequences of using herbicide and fungicide products on wildlife [19]. Afterward,
in 1991, at the Wingspread meeting in Wisconsin, the term “endocrine disruptor” was
introduced [20]. Likewise, various international entities have defined these agents. Accord-
ing to the US Environmental Protection Agency (EPA), an EDC is an exogenous agent that
interferes with the production, release, transport, metabolism, binding, action, or elimina-
tion of natural hormones in the body responsible for the maintenance of homeostasis and
the regulation of developmental processes.

Furthermore, the European Commission highlighted three characteristics that EDCs
should exhibit: (I) endocrine activity, (II) mediation of a deleterious or pathological en-
docrine mediated-activity, or both, and (III) a cause–effect relationship between the com-
pound and endocrine activity in exposed subjects [21,22]. In the context of these definitions,
multiple studies have been carried out to clarify the mechanisms by which EDCs affect
hormonal action. The first studies show the estrogenic effects of chemical agents known as
xenoestrogens [23,24].

It is well known that EDCs are involved in the signaling of multiple hormones through
their activities as nuclear receptor (NR) ligands, exerting agonist or antagonistic actions [25].
Moreover, EDCs could have a potential role in the regulation of genomic expression,
promoting epigenetic modifications that result in the development of a wide variety of
pathologies by mediating carcinogenic, neurotoxic, hepatotoxic, nephrotoxic, and immuno-
toxic effects, among others [24,26,27]. Suggestive evidence indicates the existence of more
complex processes such as EDC interaction with non-steroidal receptors, transcriptional
coactivators, and even enzymatic pathways responsible for endogenous steroid biosynthe-
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sis and metabolism [28,29]. At present, there are many manufactured chemicals, of which
around 1000 have been identified as EDCs [30].

According to their origin, they can be classified as natural (phytoestrogens, genis-
tein, and coumestrol) or synthetic, and the latter ones can be further subdivided into
industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides,
insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls,
and bisphenol A), and pharmaceutical (parabens). In addition, some heavy metals such
as cadmium (Cd), arsenic, and mercury, among others, stand out for their potential as
EDCs (Table 1) [31,32]. The exposure pathways to these agents can be variable, with
food intake, inhalation of combustion particles, and direct dermal contact being the most
common [13,33]. As a result, it is necessary to describe some of the most characterized
EDCs to date.

First of all, bisphenol A (BPA) is an EDC classified by the EPA as the third most
important pollutant. This molecule, categorized as a weak xenoestrogen, is used in the
manufacture of polycarbonate plastics and epoxy resins, which, due to its proximity to
food, tends to seep out of the plastic and cause harmful effects. However, its lipophilicity
is low and it degrades rapidly, having a half-life of 4 to 5 h [34,35]. Similarly, phthalates are
used as plasticizers in coatings, cosmetics, medical tubes, and toys, representing another
substance with frequent exposure whose toxicity depends on oxidative stress [36–38]. In
turn, nonylphenols (NP), also called alkylphenols, are chemicals present as lubricants in oil
additives, laundry detergents, emulsifiers, and solubilizers and are responsible for causing
widespread contamination in soil, sediments, water, and food. The aforementioned com-
pounds have particular importance for their estrogen-like activity, exerting a competitive
inhibition against natural estrogens [39,40].

Under other conditions, regular contact with home products, such as pesticides, repre-
sents one of the major sources of contamination, with the particularity that these agents
can persist for a long time in the environment [41]. These properties allow pesticides to
be part of a group of chemical substances called “persistent organic pollutants” (POPs),
which, as a result of their relatively slow degradation rate and high lipophilicity, have an
alarming toxic profile, remaining in tissues for prolonged amounts of time, especially in
adipose tissue [42,43]. Besides, POPs are semi-volatile, and as a consequence, they can
be spread over long distances and are widely dispersed by air and ocean currents. The
Stockholm convention designated 12 compounds as the “dirty dozen”. This group includes
pesticides, industrial chemicals, and by-products such as aldrin, chlordane, toxaphene,
mirex, hexachlorobenzene, heptachlor, furans, endrin, dioxins, dieldrin, dichlorodiphenyl-
trichloroethane (DDT), and polychlorinated biphenyls (PCBs) [44,45].

Not least, heavy metals constantly pollute the environment when released from
industrial and agricultural products. In addition to these, tobacco is also an important
release source of these agents. Evidence indicates that organs such as the kidney, liver,
and testicles are the most vulnerable to these compounds. Moreover, according to the
International Agency for Research on Cancer, arsenic is listed among the 121 Group I
carcinogenic agents [46–48].

On the other hand, polycyclic aromatic hydrocarbon (PAH) generated by open com-
bustion and natural filtration of oil or coal deposits, or by incomplete combustion of coal,
oil, gas, wood, garbage, and tobacco, can contaminate by means of its binding to particles
in the air as well as to dishes cooked or roasted at high temperatures [49,50]. Finally, per-
fluorinated chemicals (PFCs), used primarily in the manufacturing of non-stick cookware,
sofas, clothing, waterproof mattresses, food packaging, and fire-fighting materials, are
ubiquitous pollutants in the domestic environment. Due to their delayed elimination from
the body, with a half-life of approximately 2 to 8 years, they are also classified as POPs.
Studies indicate deleterious effects of these compounds on the liver, immune system, and
growth [51].
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Table 1. Origin-based classification of main endocrine-disrupting chemicals (EDCs).

Type Chemical Name Abbreviation Introduction
Date

Restricted/
Banned Source

Residential

Phenols Bisphenol A
Bisphenol S

BPA
BPS 1960 Restricted

Polycarbonate plastics, epoxy
resins, plastic toys and bottles,

lining of food cans

Phthalates

Mono-(2-ethylhexyl)-
phthalate

Di-(2-ethylhexyl)-phthalate
Dibutyl-phthalate

Dicyclohexyl phthalate

MEHP
DEHP
DBP

DCHP

1920 Restricted

PVC: lubricants, perfumes,
cosmetics, medical tubing, wood
finishes, adhesives, paints, toys,

emulsifiers in food, flooring,
personal care products

Perfluorinated
chemicals

Perfluorooctanoic acid
Perfluoroctanesulfonates
Perfluorononanoic acid

Perfluorohexanesulfonic Acid

PFOA
PFOS
PFNA
PFHxS

1940 Restricted

Contaminated food and water,
dust, floor waxes, firefighting

foam, electrical wiring, lining of
food wrappers, stain resistant

carpeting

Industrialist

Dioxins Polychlorinated Dibenzo P PCDD 1872 Restricted
By-product of chlorinated

herbicide production, smelting,
chlorine bleaching of paper

Polychlorinated
biphenyls

Polychlorinated biphenyls
Polybrominated biphenyls
Polychlorinated terphenyls

Polychlorinated naphthalenes

PCBs
PBBs
PCTs
PCNs

1927 Banned
Contaminated air and food, skin

contact with old electrical
equipment

Polycyclic aromatic
hydrocarbons

Benzo[a]pyrene, anthracene,
acenaphtylene, fluorene PAH – Restricted Products of fuel burning

Alkylphenols Nonylphenol
Octylphenol

NP
OP –

Restricted
and banned

in certain
areas of use
in the USA

Surfactants, detergents,
emulsifiers; fish, drinking water,

personal care products

Heavy metals

Arsenic As – Restricted
Pesticides, smelting, industrial

waste, drinking water, soil,
seafood, rice, mushrooms, poultry

Mercury Hg – Restricted
Mining, waste incineration,

manufacturing; fish, shellfish,
medical/dental procedures

Cadmium Cd – Restricted

Soil, water, air; leafy vegetables,
peanuts, soybeans, sunflower
seeds; inhalation products of
mining, combustion, waste

incineration

Agricultural

Dicarboximide Vinclozolin Vnz 1981 Banned Diet and occupational

Organotins Tributyltin oxide
Triphenyltin

TBT
TPT –

Banned by
many

countries

Used as a biocide (fungicide and
molluscicide), especially as a

wood preservative

Organochloride Dichlorodiphenyltrichloroethane
Dichlorodiphenyldichloroethylene

DDT
DDE 1940 Banned Contaminated water, soil crops,

fish, pesticides

Chlorotriazine Atrazine ATR 1959 Banned Pesticide/herbicide,
contaminated water and soil

Pharmaceutics

Parabens

Butylparaben,
methylparaben, ethylparaben,

propylparaben,
benzylparaben

Parabens 1924 Restricted

Antimicrobial agents for the
preservation of food, paper

products, and pharmaceutical
products

Non-steroidal
synthetic estrogen Diethylstilbestro DES 1941–1947 Restricted Pharmaceutical
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3. Endocrine-Disrupting Chemicals Exposure and Liver

The liver, with its multifaceted profile, is one of the first lines of defense against
harmful substances, encompassing mechanisms that involve filtration, oxidation, and con-
jugation of chemical compounds. Enzymatic systems such as cytochrome P450 (CYP)
and UDP-glucuronosyltransferase (UGT) allow clearance of more than 90% of these
substances [52,53]. Consequently, the liver constitutes the center of xenobiotic metabolism,
and its continuous exposure to numerous toxic substances may alter its function [54].

The metabolism of toxins and the mechanisms of liver disruption by EDCs have not
yet been fully elucidated. It is plausible to consider that their arrival to the liver corresponds
to food intake. Thus, absorption and transport of EDCs are shared with diet lipids through
portal circulation [55,56]. On the other hand, these compounds are characterized by being
highly lipophilic, a property that allows them to diffuse through cell membranes with great
ease, accelerating access to their action site [57,58]. Furthermore, the liver expresses a vast
number of NRs such as peroxisome proliferator-activated receptors (PPARs), forming a
dimer with retinoid X receptor (RXR), liver X receptor (LXR), aryl hydrocarbon receptor
(AhR), constitutive androstane receptors (CAR), and pregnane X receptor (PXR). This
places the liver as a critical target for EDCs, requiring further study [59,60].

Once in the liver, activation of NRs by EDCs triggers alteration of hormonal signaling
pathways, combined with modulation of the CYP system [59]. This enzymatic system
includes numerous isoforms; however, those involved in toxins’ metabolism are CYP1A2,
CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A [61]. The effect of EDCs on this detoxify-
ing system turns out to be controversial. First, it has been established that these compounds
tend to inhibit CYP system activity. Studies demonstrate that pesticides, parabens, ph-
thalates, and BPA can reduce the catalytic efficiency of CYP450 [62–64]. Similarly, oral
administration of NP reduces cyp2c expression and cyp1a1 in vitro activity in rat liver
microsomes. From such evidence, it is suggested that altered metabolism together with
prolonged exposure are vital factors that favor bioaccumulation of these substances [65–67].
On the other hand, this complex can target some EDCs, promoting their transformation
into more active metabolites. Such is the case of low molecular weight phthalates such
as di-(2-ethylhexyl) phthalate (DEPH), dimethyl-phthalate (DMP), and dibutyl phthalate
(DBP), which can undergo phase 1 biotransformation to become monoester hydrolytic
metabolites with higher activity [68,69].

The bioaccumulation profile of these substances varies. In particular, BPA, phthalates,
and parabens are usually rapidly metabolized and excreted in feces and urine. In contrast,
organochlorine pesticides, dioxins, and PCBs as POPs accumulate in adipose tissue and are
gradually released into the bloodstream [70–72]. Interestingly, Nicolucci et al., using Liquid
Chromatography-Electrospray Ionization-Mass Spectrometry (LC/ESI-MS/MS), provided
insight into the BPA profile in human plasma and urine and its relation to liver health,
observing sustained elevated levels of unconjugated BPA in plasma and urine in subjects
with liver disease. These elevated levels suggest impaired first-step metabolism and
potential bioaccumulation of BPA in adipose tissue after reaching an exposure threshold.
In this sense, the continuous release of this compound to target organs is possible, despite
its short half-life [73].

Finally, an excellent way to measure the effect of EDCs on liver function is through
classic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) [74,75]. It has been docu-
mented that exposure to various POPs such as PCBs, octachlorodibenzodioxin (OCDD),
and some pesticides is associated with increased bilirubin, ALT, and ALP, suggesting a
deleterious effect on liver function with exposure to these pollutants [76]. Recently, Baralić
et al. [77] explored the effect of oral exposure to a mixture of DEPH, DBP, and BPA in Wistar
rats, observing increases in total bilirubin levels, AST (p < 0.05), and ALT (p < 0.01) along
with an increase in total liver weight. The latter corresponds to a possible hepatocellular
injury and biliary obstruction, showing a synergistic effect on liver damage induction
from EDCs.
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4. Mechanisms of Action of Endocrine-Disrupting Chemicals in NAFLD

Numerous investigations have confirmed the role of EDC exposure in the development
of metabolic disorders. Hence, a new form of categorizing these molecules under the
name of metabolism-disrupting chemicals (MDCs) due to their effects on adipogenesis
induction, lipid metabolism, and energy balance alteration has emerged [78]. Several
preclinical studies have emphasized the mechanistic links between EDC exposure and
NAFLD [17,79–81]. For instance, Al-Eryani et al. described the potential association
between 123 environmental chemicals and NAFLD development in rodents. Within these,
pesticides are the most prevalent and PCBs and dioxins the most potent [81]. The effect
of these xenobiotics is mediated by their interaction with NRs and other receptors, such
as estrogen receptors (ERα and -β), promoting an alteration of liver metabolism through
genomic and non-genomic mechanisms [60,82].

The constitutive activation of these molecular pathways by EDCs leads to the develop-
ment and progression of NAFLD (Figure 1), triggering a chain of multiple phenomena such
as increased hepatic IR, increased accumulation of hepatic TG, mitochondrial dysfunction,
and, finally, inflammation and oxidative stress—key in the development of NASH [83].
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Figure 1. Molecular mechanisms involved in hepatic lipid accumulation induced by EDC exposure. (A) The steatosis-
inducing effect of EDCs is mediated by binding with different nuclear receptors (NRs). The affinity profile of these substances
for their receptors is variable. (B) NR signaling disruption with chemical exposure triggers an alteration in lipid metabolic
pathways that promote lipids accumulation in the hepatocyte. Key mechanisms of action include (1) significantly increased
lipid uptake, (2) decreased fatty acid oxidation, (3) increased expression of key regulators in de novo lipogenesis, and (4)
blocking of lipid secretion in the form of VLDL particles and bile acid. Abbreviations: PCB: Polychlorinated Biphenyls;
BPA: Bisphenol A; PFOS: Perfluorooctane sulfonate; PFOA: perfluorooctanoic acid; MEPH: Mono-(2-ethylhexyl) phthalate;
DEPH: Di-(2-ethylhexyl) phthalate; NP: Nonylphenol; FAO: Fatty acid oxidation; FFA: Free fatty acid; ACC1: Acetyl-CoA
carboxylase-1; SCD1: Stearoyl-CoA desaturase-1; FAS: Fatty acid synthase; VLDL: Very low-density lipoprotein; SREBP-1c:
Sterol regulatory element-binding protein-1c; CD36: cluster of differentiation 36; DNL: De novo lipogenesis; ROS: reactive
oxygen species.
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4.1. Hepatic Lipid Accumulation

NAFLD is characterized by an excessive accumulation of hepatic lipids due to an
intricate network of events that promote an imbalance between lipid production and
elimination. This process is mediated by four main mechanisms: (I) increased lipid uptake
in the liver, (II) decreased very low-density lipoprotein (VLDL) particle lipid export, (III)
decreased fatty acid oxidation (FAO), and (IV) increased de novo lipogenesis (DNL) [84,85].
This process arises in response to various triggers such as hormonal environment, genetics,
drugs, viruses, and, particularly, environmental pollutants [86].

Some EDCs have been documented to directly induce pathological fat aggregation,
while others indirectly produce IR and, thus, increase carbohydrates’ conversion to TG
in the liver [87]. PCBs are one of the chemicals associated with this fact, and this relation-
ship exists for both dioxin-like (DL) and non-dioxin-like (NDL) groups [88]. Specifically,
2,3,3′,4,4′,5-Hexachlorobiphenyl (PCB156), a DL compound, exerts a multimodal effect on
lipids accumulation by acting on PPARα/γ and AhR receptors, promoting an increase in
cluster of differentiation 36 (CD36) and a decrease in CPT1B expression. These generate a
rise in FFA flux to the liver and a reduction in FAO, respectively. Additionally, exposure
to PCB156 may compromise cholesterol homeostasis, interfering with its transport by
downregulation of cyp7a1 and abca1 [89].

On the contrary, some PFCs such as perfluorooctanoic acid (PFOA), perfluorooc-
tane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid
(PFHxS) are capable of mediating lipids accumulation in the liver by a PPARα-independent
mechanism, demonstrated through an increase in cd36 and vldlr expression as well as a
reduction in apob gene expression. The latter is associated with VLDL secretion in PPAR-
null mice; this effect is reported mainly for PFNA and PFHxS [90,91]. In this regard, Yan
et al. [92] postulated that PFOA promotes liver lipid synthesis by increasing maturation of
sterol regulatory element binding protein (SREBP) and its target genes in a dose-dependent
manner in Balb/c mice.

Recently, Zhang et al. [93] showed that PFOA causes a pronounced increase in liver
lipid volume in amphibians in a dose- and sex-dependent manner. This increase in TG
and total cholesterol (TCHO) levels in response to PFOA exposure is associated with the
expression of fatty acid synthase (fas), gpat, and hmg-coa mediated by PPARγ and SREBP2.
In summary, more research is required to elucidate the role of PPARs in the expression of
lipogenic genes induced by PFOA exposure.

On the other hand, DEPH and its active metabolite mono-(2-ethylhexyl) phthalate
(MEPH) have shown a significant effect on the hepatic accumulation of TGs and, sub-
sequently, on exacerbation of high fat diet (HFD) induced NAFLD in rodents [94]. Fur-
thermore, MEPH exposure has been reported to promote abnormal lipid accumulation in
BRL-3A hepatocytes by inhibiting Janus kinase 2/Signal transducer and activator of tran-
scription 5 (JAK2/STAT5) signaling. This demonstrates that STAT5 regulation by MEPH
constitutes a crucial factor in the activation of enzymes that participate in the synthesis and
transport of fatty acids, such as FAS and ap2 [95]. Bai et al. evaluated MEPH effect on lipids
accumulation in HepG2 cells, showing an increase in DNL in the initial hours of exposure
due to increased expression of limiting enzymes such as FAS, acetyl-CoA carboxylase-1
(ACC1), and stearoyl-CoA desaturase-1 (SCD1). Interestingly, in later stages of exposure, a
detriment of DNL was observed, probably mediated by compensatory mechanisms, so it is
assumed that MEPH may also contribute to fatty acid transport to the liver [96].

Finally, another EDC able to promote DNL is BPA [97]. This was demonstrated
following an increase in insulin production and expression of fas, acc1, and scd1 after
exposure to low doses of BPA (50 µg/kg/day) for 28 days in male CD1 mice (Charles
River, Les Oncins, France). This effect of BPA on TG and cholesterol esters’ accumulation
in the liver is associated with increased expression of the transcription factor srebp-1c [98].
Another BPA effect on steatosis induction through modulation of the endocannabinoid
system (ECS) has been described in zebrafish and human hepatocytes [99].
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4.2. Mitochondrial Dysfunction

Mitochondria play a crucial role in NAFLD pathogenesis, which is even being con-
sidered by some authors as a mitochondrial disease [100]. Ultrastructural alterations of
the hepatic mitochondria in NAFLD occur in response to a poor adaptation of these or-
ganelles to increased lipid content. Consequently, there is deterioration in their biogenesis
and dynamics, which results in increased lipid production, generation of reactive oxygen
species (ROS), lipid peroxidation (LPO), cytokine production, and cell death [101,102]. The
mechanisms involved are a decrease in the mitochondrial respiratory chain (MRC) activity
due to an increase in proton leakage and, consequently, a decrease in ATP production [103].

In light of this, EDCs may play a potential role in mitochondrial dysfunction, and their
link with NAFLD has been proposed. Studies show that EDCs’ effects on mitochondrial
bioenergetics, dynamics, biogenesis, and antioxidant capacity are implicated in the devel-
opment of IR, T2DM, and MetS [104,105]. With this broad view, it has been shown that
atrazine [106] and BPA [107] exert direct mitochondrial toxicity in HepG2 cells through the
reduction in mainspring genes involved in mitochondrial function such as mitochondrial
transcription factor A (TFAM) and sirtuin 1 (SIRT1) and MRC interruption, which leads to
a decrease in oxidative phosphorylation (OXPHOS) and ATP production.

Likewise, perinatal exposure to BPA in Wistar rats contributed to the development
of hepatic steatosis in adult offspring rats by progressively decreasing the activity of
complexes I and III of the MRC, OXPHOS, the mitochondrial membrane potential (MMP),
and ATP production. BPA also induces changes in factors related to the intrinsic pathways
of apoptosis such as caspase-3, Bax, and Bcl-2. It should be noted that the impairment of
mitochondrial activity was related to IR and obesity onset; thus, mitochondrial dysfunction
induced by BPA may favor the development of NAFLD [108]. Similarly, other EDCs such as
NP can exert significant effects on MMP loss and apoptosis of rat hepatocytes by promoting
an increase in uncoupling protein-2 (UCP2) [109], deregulating Bax/Bcl-2 activity, and
triggering mRNA activation of TNF-α, caspase-9, and Fas/FasL [110], thus promoting the
development of mitochondrial dysfunction, liver injury, and steatosis.

In contrast, Cd promotes dose-dependent NAFLD development, inflammation, and
fibrosis through mitochondrial damage. This damage shows distinguishing features:
abnormal mitochondrial morphology, decreased fao gene expression, and decreased mito-
chondrial DNA (mtDNA) copies in mice treated chronically with this metal (20 weeks) [111].
Cd may suppress SIRT1 signaling, a NAD+-dependent deacetylase that regulates lipid
metabolism by inducing the expression of essential proteins in fatty acidβ-oxidation [111,112].
Therefore, SIRT1 activity regulation through agonists could represent a novel approach
to stop NAFLD induced by Cd exposure. In this sense, recent studies have reported
favorable effects of SIRT1 activation over pathophysiological NAFLD elements such as
glycemic [113–115] and lipid impairment [116,117], inflammation [118], and oxidative
stress [119], among others [112,120,121].

In addition to mitochondrial toxicity, EDCs also mediate antioxidant machinery dete-
rioration that consequently induces oxidative stress. This mechanism is crucial in NASH
progression due to the ROS effect on pro-inflammatory cytokine production and apoptosis
of hepatocytes by inducing nuclear factor κappa B (NF-κB) [122,123]. In this regard, a
decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)
enzymatic activity with glutathione/glutathione disulfide (GSH/GSSH) ratio appears to be
a significant importance event. Oxidative stress has been reported to occur after exposure
to BPA [124], PFOS [125], PCB156 [126], MEPH [127], and Cd [111], among others, both
in vivo and in vitro. Besides, an increase in mitochondrial ROS following EDC exposure
also promotes an increase in 4-Hydroxy-nonenal (4-HNE) and malondialdehyde (MDA)
(LPO products and oxidative stress markers), which, in turn, lead to cell membrane distur-
bance and exacerbation of liver damage [126]. All these findings show that mitochondrial
damage mediated by these agents constitutes a significant factor in NAFLD development.
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4.3. Mechanisms of Hepatic Inflammation Mediated by EDCs

Hepatocellular damage mediated by lipotoxicity and oxidative stress acts as a promot-
ing stimulus, responsible for the release of danger signals which, in turn, activate sterile
inflammatory pathways and, therefore, adaptive and native immunity components; in time,
these elements amplify tissue damage and contribute to NAFLD progression [128]. Intrin-
sically, this process is orchestrated by multiple factors such as pro-inflammatory cytokines,
resident or recruited immune cells, and even proteins generated within the hepatic tissue
known as hepatokines [129]. Kupffer cells (KCs) in particular have been demonstrated to
be the main source of hepatic inflammation. The release of damage-associated molecular
patterns (DAMPs) leads to the activation of pattern recognition receptors (PRRs)—among
them, Toll-like-receptors (TLRs). These receptors transmit triggering signals to stimulate
the conversion of KCs into a pro-inflammatory phenotype able to promote chemokine and
cytokine secretion as well as the exacerbation of immune cell activation in the liver [130].
In addition, the role of hepatic stellate cells (HSCs) is essential to extracellular matrix
(ECM) renovation and, consequently, fibrosis and cirrhosis development through a pheno-
typic switch promoted by tissue damage responsible for the transformation of HSCs into
myofibroblast-like cells [131].

Given this hypothesis, it is plausible to consider EDC-mediated hepatotoxicity as a sig-
nificant inducer of hepatic inflammatory responses (Figure 2). Similarly, the direct impact
of these substances in NASH development through pro-inflammatory microenvironment
promotion has been described [109,132]. In this context, recent in vitro studies carried
out in HepG2 cells have reported the active participation of BPA in hepatic inflammation
through the release of pro-inflammatory cytokines such as IL-8 and TNF-α [124]. In a
similar way, Acaroz et al. reported increased levels of TNF-α, IL-6, and IL-1β as well as
IL-10 reduction after low oral BPA dose (25 mg × kg−1) exposition; furthermore, these
modifications promote the development of pro-inflammatory microenvironments along
with dose-dependent histopathological changes in the liver of Wistar rats [133].

The pro-inflammatory effect of BPA on the liver cannot be exclusively attributed to
cytokine secretion. EDC exposure has turned out to be a key factor in the activation of
KCs within the liver due to the polarization of these cells into an M1 phenotype (M1KC) as
well to the augmented production of monocyte chemoattractant protein-1 (MCP-1) and
pro-inflammatory cytokines in C57BL/6J mice-isolated KCs. Experimental studies have
demonstrated the effective blockage of M1KC differentiation through the usage of the
estrogenic antagonist ICI 182780; therefore, ER signaling has been proposed as a potential
linking mechanism between BPA and this event [134]. Likewise, PFOS exposition exerts
a significant effect in KC activation with the subsequent release of TNF-α and IL-6 in
a JNK and NF-κB activation-dependent mechanism. In addition, increments in these
cytokines promote apcn, c-jun, c-myc, and cyd1 increments and, in consequence, hepatocyte
proliferation. These findings suggest that PFOS-induced KC activation plays a major role
in HCC development [135].

On the other hand, DEPH has been associated with hepatic fibrosis and pro-inflammatory
phenomena as a result of observable increments in steatosis, hepatocyte necrosis, and im-
mune infiltration after TNF-α and IL-6 increments following different doses of DEPH in
addition to increased levels of profibrogenic factors such as α-SMA, COL-I, COL-III, and
TGF-β1 in LX-2 cells [136]. In this regard, TGF-β1 turns HSCs into a DEPH-susceptible
population [137]. Recently, Lee et al. [138] pointed out alterations in cholesterol metabolism
produced by low doses of DEPH, which elevates the synthesis of endogenous cholesterol
in HSCs and proliferation/apoptosis imbalances. These events could be linked to their
phenotypical transformation, accelerating liver damage and fibrosis in murine models.
The effect of DEPH over the ECM could be stimulus-dependent since increased collagen
production has been registered following the administration of carbon tetrachloride (CCL4).
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Figure 2. Schematic illustration of the effects of EDCs on hepatic inflammation and non-alcoholic steatohepatitis (NASH)
progression. Several EDCs promote hepatic inflammation through diverse mechanisms, such as (1) induction of cytokine
production and Kupffer cell polarization to a pro-inflammatory phenotype; (2) increased hepatocyte proliferation and
immune cell infiltration; (3) HSC transformation to myofibroblast-like cell by promoting an imbalance between prolifer-
ation/apoptosis and, consequently, liver damage and fibrosis development; (4) increased pro-inflammatory eicosanoids
production. Abbreviations: BPA: Bisphenol A; PFOS: Perfluorooctane sulfonate; DEPH: Di-(2-ethylhexyl) phthalate; TCDD:
2,3,7,8-tetrachlorodibenzo-p-dioxin; HSC: Hepatic stellate cell; ECM: Extracellular matrix; MCP-1: Monocyte chemoattrac-
tant protein-1; α-SMA: alpha-smooth muscle actin; TGF-β1: Transforming growth factor beta-1.

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is another EDC able to induce HSC acti-
vation since its exposure seems to promote HSC transition to myofibroblasts and increased
proliferation rates through a PI3K-dependent mechanism. Interestingly, increments in HSC
activity markers such as α-SMA and MCP-1 have been registered despite PI3K inhibition;
this observation suggests that TCDD might mediate HSC activation by binding directly to
AhR in the cellular nucleus [139]. Finally, the role of TCDD in hepatic inflammation has
been attributed to its influence in lipid mediators derived from omega-6 polyunsaturated
fatty acids (ω-6 PUFAs). Increased production of pro-inflammatory eicosanoids derived
from lipoxygenase and CYP450 pathways such as LTB4 and LTB3 following AhR activation
has been documented. In this sense, TCDD effects on theω-6/ω-3 PUFA ratio represent a
potential mediator mechanism in steatohepatitis progression [140].
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4.4. Epigenetic Changes and Transgenerational Inheritance

Current evidence proposes alternative mechanisms to nuclear receptor signaling or mi-
tochondrial dysfunction for NAFLD development in response to EDCs. Epigenetic changes
have been pointed out as a crucial factor in NAFLD pathogenesis. Epigenetic changes are
genetic expression re-editing processes that occur in the absence of nucleotide sequence
alterations; these changes include processes such as DNA methylation and histone mod-
ifications that could lead to the development of phenotypical variations [141]. During
NAFLD, EDC exposure is associated with modifications in histones and DNA methylation
patterns, which, in turn, produce alterations in the adjustment profile of the liver. Ad-
justments occur due to variations in methyl donor availability, histone methyltransferase
modifications, changes in dioxygenase activities, imprint imbalances, non-coding RNA
alterations, and phosphate-dependent signaling pathways’ activation [142].

Epigenetic reprogramming generally remains transcriptionally repressed until en-
vironmental stimuli trigger its activation [143]. In this sense, the transmission of new
adjustments into the progeny will take place if the reprogramming is carried out in germi-
nal instead of somatic cells [144,145]. The occurrence of transgenerational events depends
on fetal exposure to EDCs, and the effects can be identified in the F3 generation. Once the
expectant (F0) is exposed to toxic agents, the fetus germinal line (F1) will be exposed as
well. Afterward, the F1 cells will engender the F2 generation, and therefore, the F3 will be
the only generation indirectly exposed to the teratogen. Thus, the mechanism responsible
for the phenotypical manifestation in this generation is the epimutation transferred by the
ancestral germinal line (F0) [24,146].

Certain chemical agents such as BPA are linked to these effects. Despite its short
lifespan in human adults, the metabolic rates are considerably slower in fetuses and
neonates [147]. Hence, EDC exposure in early life is considered more harmful compared to
adulthood [148]. Studies have shown the existence of hypermethylation/hypomethylation
in cytosine-phosphate-guanine (CpG) sequences located near to primers, histone modi-
fications, and modulation of non-coding RNA, including microRNA after neonatal and
uterine BPA exposure [149–154].

Among the first pieces of evidence, Ma et al. reported that BPA oral exposure
(50 µg/kg/day) during nursing and gestation in Wistar rats induced IR, glucose intol-
erance, and increased body weight in the 21st week of pregnancy by promoting hepatic
DNA global hypomethylation as well as glucokinase (gck) gene hypermethylation, which
codifies a glycolysis rate-limiting enzyme, essential in hepatocyte glucose utilization. Fur-
thermore, despite the absence of histopathologic changes, DNA hypomethylation and gck
reduced expression induced by BPA could represent a potential key mechanism in hepatic
IR development and T2DM preceding NAFLD [155].

Moreover, chronic exposure (10 months) to BPA leads to significant increments in
hepatic cholesterol and TG levels in male mice as a result of srebf1 and srebf2 hypomethy-
lation and its consequent augmented expression. Additionally, decreased mRNA and
DNA methyltransferase levels have been documented. The stimulating effects of DNA
hypomethylation on hepatic lipid accumulation establish epigenetic reprogramming as an
important mechanism in NAFLD development [156].

Similarly, recent studies suggest that epigenetic mechanisms might represent a key
pathway to explain the effects of metalloids in human health. In this regard, the influence
of arsenic in epigenetic modifications has been pointed out, considering the global hy-
pomethylation triggered in the liver of male mice after chronic exposure to the metal as well
as the hypomethylation observed in ERα primers, linked to increased cellular hypertrophy
and hepatic steatosis [157]. Furthermore, intrauterine exposure to trivalent arsenic (AsIII)
can increase NAFLD risk and cardiometabolic diseases in murine models. Increased liver
weight and TG levels were observed after 13 weeks as a consequence of tricarboxylic acid
cycle (TCA) deterioration and consequential increments in FFA synthesis [158].

Differently, DEPH exposure in utero favors the development of metabolic disorders
in murine descendants and considerable elevations in visceral adiposity, and tbx15 and



Int. J. Mol. Sci. 2021, 22, 4807 12 of 22

gpc4 have also been observed in F1 generations, presumably as a result of modifications in
DNA methylation. Increased gene expression is correlated with metabolism disruption in
adipose tissue and, therefore, predisposition to NAFLD development [159].

Comparably, exposure to different plastic-derived products (BPA, DEHP, and DBP) in
various doses promotes transgenerational epigenetic inheritance at the beginning of the
descendant’s adult life by stimulating obesity development and other disorders that will
mainly affect body weight and visceral adiposity in the F3 generation [160]. Additionally,
dichlorodiphenyltrichloroethane (DDT) has shown a significant effect in the promotion of
this mechanism. Transitory exposure to DDT in rats increased obesity incidence and other
associated pathologies in males and females of the F3 lineage [161]. Lastly, despite evidence
concerning transgenerational epigenetic inheritance in adiposity and lipid metabolism,
further investigations are necessary to link this mechanism to EDCs and NAFLD exposure.

5. Endocrine-Disrupting Chemicals and NAFLD: Clinical Evidence

Considering the exposure of the molecular mechanism associated with EDCs in
NAFLD pathogenesis, it is necessary to ponder the existing clinical–epidemiological re-
lationship between these elements. In recent years, this topic has proven to be a chal-
lenge. An extensive range of experimental studies performed in animal models with
different BPA [17,98,162], phthalates [94,163], TBT [164,165], dioxins [166–168], DDE [169],
PFOA [170], and PFOS [90,171] doses have been conducted. Nevertheless, research of
EDCs’ implications in clinical studies has been unsatisfactory; as a result, causal inferences
in such investigations remain unknown, mainly due to the methodological challenges that
comparisons between exposed and non-exposed populations present.

Epidemiological studies (Table 2) have reported positive associations between POPs,
pathogenic elements, and NAFLD serum markers. In this sense, a transversal cohort study
was conducted in 436 individuals, showing increased ALT levels positively associated
with 20 different kinds of PCBs [172]. Similarly, Kim et al. found that PCB serum levels
were correlated with elevated concentrations of AST, ALT, GGT, TG, and TCHO in obese
individuals [173]. On the other hand, Pazderova-Vejlupkova et al. conducted a longitudinal
study with 55 male individuals, dedicated to TCDD production; during the 10-year expo-
sure, the participants developed TCDD chronic toxicity. Researchers reported metabolic
disorders in approximately half of the participants, dyslipidemia being the most common
alteration; simultaneously, a third of the intoxicated individuals presented altered hepatic
function parameters that suggested moderated hepatic damage. Likewise, findings such
as KCs’ activation, periportal fibrosis, and mild steatosis were described after histological
examination of samples obtained via necropsies and/or biopsies [174].

Furthermore, a transversal study exposed 55 participants to polychlorinated dibenzo-
p-dioxins and dibenzofurans (PCDD/Fs). Hepatic parameters and POPs determined after
the exposure revealed associations between elevated PCDD/Fs levels and fatty liver as
well as increased GGT in individuals with high BMI, therefore suggesting that dioxin
exposure affects fatty liver prevalence among exposed subjects [175]. Likewise, a clinical
trial carried out in 6–10-year-old children exposed to TCDD following the Seveso, Italy,
accident, showed altered GGT and ALT levels in children exposed to POPs, indicating
potential hepatic dysfunction [176].

Perfluoroalkyl substances (PFASs) such as PFOA and PFOS are other POPs associated
with NAFLD in children as well as adults. Moreover, a trial including 2216 adults from
the National Health and Nutrition Examination Survey (NHANES) database assessed the
relationship between PFOA plasmatic levels and hepatic enzyme concentrations, reporting
that for every PFOA concentration unit increase, ALT and GGT serum levels increased
by 1.86 and 0.08 units, respectively. Furthermore, the association between PFOA and
hepatic parameters was significant among metabolic syndrome, insulin-resistant, and/or
obese individuals [177]. Similar results were observed in a study that evaluated perfluori-
nated chemicals and various hepatic function markers in individuals. Using the NHANES
database, an evident correlation between PFOA and ALT, GGT, and bilirubin levels was
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observed. Furthermore, every PFOS quartile was associated with proportionally elevated
levels of bilirubin [178]. Additionally, a different trial conducted in 74 children diag-
nosed with NAFLD suggested that PFAS exposure could play a significant role in NAFLD
progression based on the results of histologic liver tests and PFOS/PFOA plasma level
determination. In fact, POP elevations were correlated with worsening of the disease [179].

Table 2. Summary of the clinical evidence regarding endocrine-disrupting chemicals and non-alcoholic fatty liver disease.

Author [Ref] EDC Methodology Results

Cave et al. [153] PCBs

Cross-sectional cohort study
evaluating the influence of

environmental pollutants in
serum ALT in 436 adults.

20 PCBs were positively associated with
subjects that had elevated ALT levels

(p ≤ 0.05).

Lee et al. [156] Dioxins

Cross-sectional study which
evaluated the associations

between serum PCDD/Fs levels
and adverse hepatic-related
health outcomes in adults.

In comparison to the control group, the risk
of fatty liver increased significantly in adults
with higher BMI and higher serum PCDD/Fs

(OR = 27.00, 95% CI = 4.47–229.58).

Jin et al. [160] PFAS

Cross-sectional study assessing
the relationship of PFAS to

histologic severity of NAFLD in
74 children.

The odds of having NASH significantly
increased with the increase in plasma

concentrations of PFOS (OR: 3.32, 95% CI:
1.40–7.87), PFHxS (OR: 4.18, 95% CI:

1.64–10.7), and PFAS composite variable (OR:
4.89, 95% CI: 1.86–12.8).

Lin et al. [158] PFOA

Cross-sectional cohort study
examining the relationship

between serum levels of PFOA
and the levels of liver enzymes in

2216 adults.

When PFOA concentration increased by one
unit, the serum levels of ALT and GGT

increased by 1.86 (95% CI, 1.24–2.48;
p = 0.005) and 0.08 units (95% CI, 0.05–0.11;

p = 0.019), respectively.

Tarantino et al. [163] BPA

Cross-sectional study that
evaluated the effects of increased
serum BPA levels on low-grade

chronic inflammation and hepatic
steatosis in women with

polycystic ovary syndrome.

Higher serum levels of BPA were associated
with higher grades of hepatic steatosis and

AST, ALT, and GGT (p ≤ 0.05).

Milošević et al. [166] Phthalates

Cross-sectional study with 102
male participants assessing the
influence of MEP and MEHP on

the liver function and
cardiometabolic risk factors.

MEP+ normal weight group had statistically
significant elevated transaminase serum
levels. Moreover, there were correlations

found between MEP concentration in urine
samples and TAG serum levels (r2 = 0.33;

p < 0.01), VAI (r2 = 0.41; p < 0.01), LAP
(r2 = 0.32; p < 0.01), and TAG-to-HDL ratio
(r2 = 0.40, p < 0.01) among obese subjects.

Abbreviations: OR: Odds ratio; CI: Confidence interval; NAFLD: Non-alcoholic fatty liver disease; PCB: Polychlorinated biphenyl; ALT:
Alanine aminotransferase; PCDD/Fs: Polychlorinated dibenzo-p-dioxins and dibenzofurans; BMI: Body mass index; PFAS: Perfluoroalkyl
substances; NASH: Non-alcoholic steatohepatitis; PFOS: Perfluorooctane sulfonate; PFHxS: Perfluorohexane sulfonic acid; PFOA: Perflu-
orooctanoic acid; GGT: Gamma-glutamyl transferase; BPA: Bisphenol A; AST: Aspartate aminotransferase; MEP: Monoethyl phthalate;
MEHP: Mono-(2-ethylhexyl) phthalate; VAI: Visceral adiposity index; LAP: Lipid accumulation product; HDL: High-density lipoprotein;
TAG: Triacylglyceride.

Clinical associations between non-persistent EDCs such as BPA and phthalates with
NAFLD have been explored over recent decades. A study carried out by Lang et al.
reported that higher BPA concentrations are linked to clinically abnormal GGT (Odds
Ratio (OR) 1.29; 95% Confidence Interval (CI), 1.14–1.46; p < 0.001) and ALP (OR 1.48;
95% CI, 1.18–1.85; p = 0.002) concentrations in adults [180]. Moreover, higher urinary
BPA concentrations have been associated with augmented hepatic dysfunction in elderly
subjects (OR 2.66; 95% CI: 1.15–5.90) due to significant links between urinary BPA, AST,
ALT, and GGT [181]. Tarantino et al. [182] reported high, weight-independent BPA levels
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in women with polycystic ovary syndrome, associated with elevated AST, ALT, and GGT
levels and hepatic steatosis. In parallel, Khalil et al. [183] performed a transversal study
where the correlation between reduced urinary BPA levels and age reductions in male
obese children (n = 17) was observed. These findings were associated to elevated serum
activity of AST.

Finally, phthalates exposure has been associated with hepatic dysfunction and NAFLD.
In this sense, a transversal measuring study monoethyl phthalate (MEP) urinary levels,
mono-(2-ethylhexyl) phthalate (MEHP) and serum levels of hepatic parameters were de-
termined in 305 volunteers with normal body weight, overweight, or diabetes. Among
individuals with a regular body mass and MEP+, ALT and AST levels were significantly
higher; in contrast, MEHP+ levels were correlated with GGT exclusively. Moreover, partici-
pants with normal body weight had a negative correlation between MEP, TCHO levels, and
LDL-c, while in obese individuals, MEP levels were associated with elevated levels of ALT,
AST, and TG. Furthermore, in diabetic patients, MEP concentrations were correlated with
GGT levels. According to these results, deterioration of hepatic function could be associated
with ubiquitous exposure to phthalates [184]. Similarly, a study aimed to assess MEP and
MEHP effects on the hepatic function and lipid metabolism of 102 males and described the
association between phthalates exposure and dramatic ALT and AST increments in plasma,
as well as their correlation with hypertriglyceridemia and HDL-c reductions [185].

Lastly, numerous indexes such as the fatty liver index (FLI), the triglyceride and
glucose index (TyG), homeostatic model assessment (HOMA), visceral adipose index (VAI),
lipid accumulation product (LAP), body mass index (BMI), and waist circumference (WC)
have been studied as potential NAFLD predictors [186–190]. However, published evidence
regarding the association between these indicators and EDCs is very limited. In this context,
a cross-sectional trial by Hatch et al. reported associations between increased levels of
phthalates and anthropometric indexes such as BMI and WC [191]. Similarly, the study
carried out by Stahlut et al. exposed a significant association between EDCs and increased
WC and HOMA indexes [192]. Similar findings were found in investigations performed by
Dee Geiger et al., La Merril et al., and Lee et al. in which increased values of HOMA, WC,
and BMI were linked to multiple EDCs [193–195]. Nevertheless, further studies with robust
methodologies capable of assessing the relationship between these metabolic indexes and
EDC exposure levels are required.

6. Conclusions

NAFLD is the most common hepatic disease; it has rapidly become a major epi-
demiological problem, projecting itself as the main hepatic transplant indication for
2030 [196]. Within the complex spectrum of its pathophysiology, environmental exposure
to chemical substances present in wildlife and industrial spaces such as EDCs represents a
relevant trigger.

EDCs’ effects in NALFD occur at the expense of NR interactions, activating tran-
scriptional factors which, in turn, trigger imbalances between lipid influx/efflux in the
liver, promote mitochondrial dysfunction, and boost key inflammatory responses in NASH
progression. Furthermore, the relevance of the exposures depends on time and life cycles,
with early exposure being the most susceptible period for DNA and histone modifications,
which increases the risks for NAFLD development in adult life. In this context, the ex-
ponential role of EDCs in the pathogeny of the disease is undeniable. Nevertheless, the
evidence in human trials remains scarce; therefore, further research with larger samples,
more specific side effects, and longer follow-up periods aiming to clarify the exposure to
these substances is required.
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