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ABSTRACT 

New procedures and technologies of Air Traffic Control (ATC) under development in 

Next Generation Air Transportation System (NextGen) will change controllers' tasks, 

roles, and responsibilities. However, cognitive complexity will remain one of the limiting 

factors in future system's capacity and none of existing complexity metrics can be 

directly extended to evaluate cognitive complexity under future operational concepts. 

Therefore, complexity metrics, applicable to future operational concepts, need to be 

developed.  

This thesis developed the structure for a cognitively based complexity metric, 

Modified Aircraft Count (MAC). Cognitive complexity is decomposed based on 

individual aircraft complexity factors and sector specific factors. The complexity 

contribution of each aircraft is summed and adjusted by sector level complexity factors. 

Cognitive principles, such as controller strategies, may be incorporated in aircraft specific 

complexity factors and sector level complexity factors.  

To investigate complexity factors in Modified Aircraft Count, two simulations were 

developed to explore two proposed NextGen operational concepts, including Time-Based 

Control at a Metering Fix and Dynamic Route Structure Control. Two experiments were 

designed to evaluate controller performance and subjective workload under the simulated 

operational concepts. The Time-Based Control at a Metering Fix was found to have 

enhanced schedule conformance, reduced operational errors and lower perceived 

complexity. The Dynamic Route Structure Control introduced longer hand-off acceptance 

times, however, no other significant changes of controller performance and subjective 

workload were found.  
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A new complexity probe technique was developed and applied in the two 

experiments to explore individual aircraft complexity factors in Modified Aircraft Count. 

In the new complexity probe, participants were asked to identify high complexity aircraft 

from the screen shot of a traffic situation they had experienced. It was shown to be an 

effective tool to assess aircraft specific complexity factors. Four complexity factors 

(proximity to other aircraft, membership of a standard flow, proximity to weather, and 

projected proximity to other aircraft) were examined by the relationship between their 

corresponding observable factors and high complexity aircraft percentage. The chance of 

an aircraft being considered as of high complexity increased if the aircraft was closer to 

another aircraft, off the standard route structure, closer to the area impacted by weather, 

or more likely to be in a conflict in the future. 
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Chapter 1

Introduction

1.1 Motivation

Cognitive complexity, which is directly related to controller workload, is likely to

remain one of the functional limitations on the capacity of the air traffic control

(ATC) system (Majumdar and Polak, 2001; Hilburn, 2004). New ATC procedures

and technologies under development will affect cognitive complexity since controller

roles and tasks will be altered. The current complexity metrics, such as the monitor

alter parameter (MAP), may not be applicable to future operations. Well grounded

complexity metrics that are robust to be used in future operational concepts are

needed to evaluate trade-offs of new operational concepts and also to be used in the

ATC operational management of future system.

The Next Generation Air Transportation System (NextGen) has been proposed as

a wide-ranging initiative to modernize the air traffic control system. New capabilities

and operational concepts have been proposed in NextGen. As a result, the tasks,

roles and responsibilities of controllers will be changed. In order to develop metrics

which reflect the cognitive complexity of future operational concepts, it will be im-

portant to identify and understand the changes in cognitive complexity and controller

strategies introduced by new operational concepts in NextGen systems. Many new

operational concepts have been proposed in NextGen. Four-dimensional trajectory

(4DT) is one of them. In 4DT systems, flight path and time information along the
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path helps controllers to manage flights more effectively and precisely (JPDO, 2007).

Moreover, flexible route definitions enabled by 4DT allow traffic flows to be shifted as

necessary to enable more effective weather avoidance. Some other 4DT capabilities

are also envisioned in NextGen, such as aggregated and individual 4DTs can tailored

to individual flight preferences. These changes are expected to significantly alter

the controllers’ tasks and cognitive strategies. There is a clear need to understand

how the new ATC procedures and technologies affect cognitive complexity, what the

factors that drive cognitive complexity are, and how to identify the ”safe” limits of

controller workload ultimately.

None of the complexity metrics to date have been accepted to fully capture the

notion of complexity as it is perceived by the controller. Moreover, current complexity

metrics require calibrations and testings in the actual sector and under the actual

procedures. Thus, current metrics are difficult to project cognitive complexity under

future operational concepts. In addition, many complexity factors used in these

metrics have not been explicitly validated. Well grounded complexity metrics would

help to assess the cognitive complexity under future operational concepts, and also be

helpful in managing cognitive complexity in future air traffic control systems where

complexity may be one of the target or limiting parameters in the control strategies.

1.2 Research Questions

The research questions of this thesis are

• What are possible structures of complexity metrics that would be applicable to

future operational concepts?

• What is the impact of some complexity factors on cognitive complexity under

current operation and future operational concepts?

The research of this thesis is focusing on the development of cognitively based

complexity metrics and the cognitive principles of the complexity factors incorporated

in the metrics. Controller cognitive complexity is the object of the study. The
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term, complexity, has been used frequently in ATC literature. The consensus view

among the ATC research is that complexity drives controller workload. However,

the concepts and definitions of ATC complexity presumed in ATC studies differ and

can be grouped into three categories: situation complexity, perceived complexity,

and cognitive complexity (Histon and Hansman, 2008). Situation complexity is an

intrinsic property of the configuration of the traffic situation; Perceived complexity

is a subjective experience of the controller; Cognitive complexity is the complexity of

the working mental model(s) used by a controller to control an air traffic situation, a

property of the process being used to perform the ATC task (Histon and Hansman,

2002). The cognitive complexity of a controller can be affected by the geometrical

complexity of the traffic, the controller’s task, their mental models and strategies,

and other factors such as fatigue and stress (Histon and Hansman, 2008).

1.3 Study Overview

In order to address the proposed research questions, a structure for cognitively based

complexity metrics, Modified Aircraft Count (MAC), was developed based on the as-

sumption of aircraft based decomposition of cognitive complexity and cognitive prin-

ciples in different operational concepts. Two experiments were designed to explore

the validity of MAC in two simplified future operational concepts. Controller perfor-

mance and subjective workload in the simulated operational concepts were examined.

Furthermore, the impact on controller cognitive complexity of two future operational

concepts was investigated through a new complexity probe, Aircraft Complexity As-

sessment.

In Chapter 2, a literature review was performed focusing on the definition of com-

plexity, common complexity metrics, and current studies on 4DT related controller

cognitive complexity.

In Chapter 3, a structure for cognitive complexity metrics was developed based

on the modified aircraft count method proposed by Histon et al. (2002b). The basic

idea of the Modified Aircraft Count (MAC) structure was to measure the cognitive
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complexity of a traffic situation by the sum of each aircraft’s complexity contribution

and then adjusted by sector level complexity factors. Simulation methods and a

special complexity probe technique were proposed to investigate complexity factors

the Modified Aircraft Count structure. The new complexity probe technique, Aircraft

Complexity Assessment, allowed high complexity aircraft to be identified on a screen

shot of a traffic situation. Complexity factors associated with individual aircraft were

able to be assessed through this complexity probe method.

In Chapter 4, two part task simulations were designed to represent key elements

of the two future operational concepts. Experiment 1: Time-Based Control at a Me-

tering Fix was designed to investigate the potential impact on controller cognitive

complexity of a simple version of 4DT operations. Experiment 2: Dynamic Route

Structure Control was designed to explore the proposed operational concepts of flexi-

ble route definition and dynamic flow management in NextGen. Cognitive complexity

of air traffic controllers cannot be measured directly. Controller performance and sub-

jective report of workload or perceived complexity were analyzed in each experiment.

In Chapter 5, efforts were made to quantify the cognitive complexity impact of air-

craft complexity factors. Aircraft-specific complexity was assessed through the results

of Aircraft Complexity Assessment. Four aircraft complexity factors were validated,

including proximity to other aircraft, membership of a standard flow, proximity to

weather, and projected proximity to other aircraft. These complexity factors were

evaluated based on the values of associated observable factors and the results of

identified high complexity aircraft. Statistical relationships between these observ-

able factors and high complexity aircraft were given. Various controller strategies in

different traffic situations were also indicated by the empirical results.
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Chapter 2

Background and Literature Review

This chapter reviews definitions of complexity in air traffic control, methods to mea-

sure complexity, and studies to explore new operational concepts in NextGen, espe-

cially the four-dimensional trajectory operational concept. This section is organized

into three parts. First, concepts and definitions of complexity are discussed in order

to provide a basic understanding of what complexity is. Then, the proposed com-

plexity factors and methods to measure complexity are introduced. At the end, the

impact of future operational concepts on controller cognitive complexity is discussed.

2.1 Complexity Definition

2.1.1 Complexity in General

The term ”complexity” is difficult to define precisely. Nonetheless, many attempts

can be found in the literature and they share several common characteristics to the

concepts and definitions of complexity. Cilliers (1998) describes a list of complex sys-

tem characteristics which can be applied to many human-machine complex systems.

These characteristics (Cilliers, 1998; Hilburn, 2004) are:

• A large number of elements whose interaction defies analysis by traditional

mathematical means
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• Dynamic interaction between elements, that involves transfer of energy and/or

information

• Redundancy that permits some subset of the system to carry out the function

of the whole

• Localized autonomy and lack of information sharing between all elements

• Non-linear interactions between elements, which makes it possible for small

perturbations to have large effects

The list covers several key characteristics of the concept of complexity that are

prevalent in previous definitions of complexity, such as numeric size and variety of

basic elements, internal structure, and how the object or problem is represented (Ed-

monds, 1999; Xing and Manning, 2005; Cummings and Tsonis, 2006; Histon and

Hansman, 2008).

Complexity has been associated with “size”,“count”, “number of items in an ob-

ject”, or “variety” (Edmonds, 1999). To some extent a larger numeric size corresponds

to a higher degree of complexity. in addition to size, variety has also been used in

various applications as the measure of complexity.

However, Edmonds (1999) pointed out that size or variety alone is not a sufficient

definition of complexity as the full richness of what is meant by complexity can

not be captured. Indeed, a system with many components that are not interacting

may still be viewed as less complex than a system with few but strongly interacting

components. hence, the internal structure of a system is also a key characteristic of

complexity.

The third key characteristic, argued by Edmonds (1999); Xing and Manning

(2005); Cummings and Tsonis (2006); Histon and Hansman (2008), is that complexity

depends on how the object or problem is represented. Recall that ”complexity only

makes sense when considered relative to a given observer” (Edmonds, 1999). The

complexity of a system depends on which aspects the observer is concerned with and

how the observer processes information (Xing and Manning, 2005).
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2.1.2 Complexity in Air Traffic Control

Among ATC research, few definitions of “complexity” can be found, however, the key

characteristics of complexity are consistent with typical uses of the term. The consen-

sus view among ATC research is that complexity drives controller workload (Christien

et al., 2002; Majumdar and Ochieng, 2002; Hilburn, 2004). Mogford et al. (1995)

refer the term “ATC complexity” as the effect on the controller by the complexity of

the airspace and the air traffic flying within it. Athenes et al. (2002) describe ATC

complexity as “a way to characterize air traffic situations”, which accounts for a large

proportion of controller workload. Similarly, Histon and Hansman (2008) suggests

“cognitive complexity” to relate to the cognitive difficulty of controlling an air traffic

situation.

Although there is a common view about the link between complexity and work-

load, the concepts and definitions of ATC complexity presumed in ATC studies differ

and can be grouped into three major categories: situation complexity, perceived com-

plexity, and cognitive complexity (Histon and Hansman, 2008). Situation complexity

is an intrinsic property of the configuration of traffic; perceived complexity is a sub-

jective experience of the controller; cognitive complexity is a property of the process

being used to perform the ATC task (Histon and Hansman, 2008).

2.2 Complexity Factors and Metrics in Air Traffic

Control

2.2.1 Complexity Factors

There is a large amount of work in ATC complexity focusing on the identification

of factors and influences that appear to make an air traffic situation more or less

complex. Summaries of these studies can be found in the review papers (Mogford

et al., 1995; Majumdar and Ochieng, 2002; Hilburn, 2004; Loft et al., 2007).

At the beginning of ATC complexity studies, traffic density has been the factor

that most closely associated with complexity. However, it is increasingly clear that
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Figure 2-1: Mental and Physical Processes Required in Air Traffic Control (Pawlak
et al., 1996)

density by itself is an insufficient indicator of the difficulty a controller faces (Hilburn,

2004), since traffic density itself does not capture the richness of the associated traffic

complexity (Mogford et al., 1995; Kirwan et al., 2001; Athenes et al., 2002).

Up until now, various complexity factors have been identified. Most of them can

be grouped into two categories: the distribution of aircraft in the air traffic situation

and properties of the underlying structure in a sector (Histon and Hansman, 2002).

Indicators for the distribution of aircraft in the air traffic situation include traffic

density, the proportion of aircraft changing altitudes, and number of conflicts, etc.

Indicators for the properties of the underlying structure in a sector include sector

size, sector shape, the configuration of airways, the location of airway intersections

relative to sector boundaries, and the impact of restricted areas of airspace (Histon

and Hansman, 2002).

In addition to the observable indicators mentioned above, due to the cognitive

nature of the ATC task, there are other complexity factors that are not directly

observable. Pawlak et al. (1996) define four types of general tasks that controllers

must perform as shown in Figure 2-1. Of these, only the implementation processes

are observable. The other three processes, planning, monitoring, and evaluating, are

not directly observable. The four processes combine to determine the level of mental

effort required for air traffic control (Pawlak et al., 1996).
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The cognitive nature of the ATC task may be the main reasons for the nonlinear

interactions between complexity factors (Majumdar and Ochieng, 2002; Athenes et al.,

2002) and the different responses by different controllers to the same constellation of

complexity factors (Mogford et al., 1994; Loft et al., 2007). Correspondingly, the

controller cognitive processes are analyzed and incorporated in the development of

complexity model in some work (Seamster et al., 1993; Pawlak et al., 1996; Histon

et al., 2002a). It is common view that cognitive complexity in ATC relies heavily on

controllers’ perception and recognition of the traffic situation.

Identified complexity factors have been elicited using several techniques in the past

studies. Verbal reports, questionnaires, and interviews have been used to elicit com-

plexity factors directly from air traffic controllers (Mogford et al., 1994; Wyndemere,

1996). Statistical methods have also been applied to indirectly determine potential

complexity factors using controller subjective workload ratings of different air traffic

situations (Mogford et al., 1994; Kopardekar and Magyarits, 2003; Kopardekar et al.,

2007). However, few techniques used can give in-depth information of the quantitative

relationship between each of the factors and controller cognitive complexity.

2.2.2 Complexity Metrics

The current ATC system uses the monitor alert parameter (MAP) of the Enhanced

Traffic Management System (ETMS) to measure sector level activity and the corre-

sponding air traffic controller taskload. The MAP value is designed to be the number

of aircraft that a sector/airport can accommodate without degraded efficiency during

specific periods of time (FAA, 2007). The MAP value is set based on average sector

flight time. Table 2.1 shows the MAP values established in (FAA, 2007). However,

it is widely recognized, however, that the monitor alert parameter has significant

shortcomings in its ability to accurately measure and predict sector level complex-

ity (Chatterji and Sridhar, 2001).

Researchers have invested substantial effort in formulating quantifiable metrics to

describe air traffic complexity or the limit of controller workload. The earliest such

work is done by Davis et al. (1963) and Arad (1964) (as cited in Mogford et al., 1995;
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Table 2.1: MAP Values

Average Sector Flight Time MAP Value
3 min. 5
4 min. 7
5 min. 8
6 min. 10
7 min. 12
8 min. 13
9 min. 15
10 min. 17
11 min. 18
12 min. or greater 18

Majumdar and Ochieng, 2002; Hilburn, 2004). Davis et al. (1963) find that workload

(defined as total task time) responded to both traffic density and complexity (defined

as proportion of arrival and departure traffic to overflight traffic). Arad (1964) focuses

on the impact of airspace factors on controller workload, and Jolitz (1965) finds that

the number of aircraft handled can predict controllers’ rated workload better than the

workload formula in (Arad, 1964). A number of research groups have also developed

metrics based on basic aircraft count approach. Schmidt (1976) proposes a controller

workload model which calculates the Control Difficulty Index (CDI) based on the

execution time and frequency of observable tasks. The average flight time for an

aircraft though a sector has been included to improve the basic aircraft count method

in some studies (Buckley et al., 1969; Mills, 1998). Stein (1985) uses simulation to

investigate the effect on controller workload of several factors, including total amount

of traffic, number of handoffs, localised traffic density, number of handoffs inbound,

and number of handoffs outbound.

Since the 1990s, research in ATC complexity has been motivated by the concept

of Free Flight (RTCA, 1995), which is a concept of transferring route selection and

separation assurance authority from ground to air (flight deck). Dynamic Density is

intended as an objective measure to identify situations that are complex enough such

that centralized control would still be required (RTCA, 1995). It is defined as the
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collective effect of all factors, or variables, that contribute to sector level air traffic

control complexity or difficulty at any given time (Kopardekar et al., 2007).

Multiple metrics of Dynamic Density have been proposed using a number of

variables representing complexity factors to describe the complexity level in a sec-

tor (Wyndemere, 1996; Laudeman et al., 1998; Kopardekar et al., 2002; Chatterji and

Sridhar, 2001; Masalonis et al., 2003). Most of these metrics have been developed

and validated using large data sets from real operations or human-in-the-loop sim-

ulations. The weighting of the contributing complexity factors are obtained using

regression models. Some typical factors include: the distribution of aircraft in the air

traffic situation, sector size and shape, the location of airway intersections relative to

sector boundaries, aircraft changing altitudes, and the impact of restricted areas of

airspace. For instance, Laudeman et al. (1998) calculate dynamic density as the sum

of the density of traffic weighted by the number of changes in speed, heading, and al-

titude; the proximity of aircraft; and the time until predicted conflicts. Four popular

dynamic density metrics are examined by Kopardekar and Magyarits (2003). Twelve

complexity factors with high weightings from the four metrics have been identified

and incorporated into one single metric. Further study indicates that the Dynamic

Density metric perform better than aircraft count (Kopardekar et al., 2007).

However, using Dynamic Density also has its shortcomings. Factor weightings are

applicable only to the sector in which they are collected and validated (Hilburn, 2004).

The current Dynamic Density models do not consider the complexity changes with

increased levels of automation and the prediction of complexity (Kopardekar et al.,

2007). Also, the models are not feasible for predictive air traffic management when

traffic and weather forecast are used for dynamic airspace adjustments (Kopardekar

et al., 2007).

Some complexity models also attempt to capture intrinsic complexity factors. For

example, Delahaye and Puechmorel (2000) use factors derived directly from the lo-

cation and speed of aircraft. They measure the level of complexity by Kolmogorov

entropy for different geometric traffic situation. A high entropy value means signifi-

cant disorder in the trajectories, which is interpreted as a high level of complexity in
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the system. Kolmogorov Entropy has been evaluated for four types of traffic conver-

gences.

The airspace structure is considered an important factor for understanding com-

plexity (Wyndemere, 1996; Sridhar et al., 1998; Kirwan et al., 2001; Schaefer et al.,

2001; Histon and Hansman, 2002). A small number of the complexity metrics have

include some terms related to airspace structure. For example, Wyndemere (1996)

includes a term “airspace structure” as one of the complexity factors in the proposed

metric. The impact on complexity by airspace structure is measured by the differ-

ence between aircraft heading and an identified major axis of a sector. It assumes

that the complexity increases if there are aircraft flying against the major flow of the

sector. Histon and Hansman (2002) further suggests that the cognitive complexity is

affected by controllers’ higher level organizations and conceptualization of the traffic

pattern. Two air traffic situations may have an identical dynamic density value, but

may not be of the same cognitive difficulty due to cognitive simplifications provided

by the structure in one of the situations (Histon and Hansman, 2002). Abstractions

of underlying structures that help controllers simplify and understand traffic patterns

are identified Histon et al. (2002a,b); Histon and Hansman (2002, 2008).

To summarize, although numerous complexity metrics have been developed, no

metric fully captures the notion of complexity as it is perceived by the controller (Hilburn,

2004; Loft et al., 2007). Most existing metrics will not be directly extended to evaluate

complexity under future operational concepts. They are constructed and calibrated

explicitly or implicitly based on the tasks controllers perform under current opera-

tional concepts. The basis of these metrics would be weakened because controller

tasks and responsibilities, the information systems, as well as automation tools will

be altered under future operational concepts. Furthermore, no metrics can fully cap-

ture the influence of controller strategy on cognitive complexity. Cognitive principles

and controller strategies would be a robust basis for complexity metrics that will be

applicable to future operational concepts. In addition, few statistical examination of

the relationship between complexity and observable factors have been found in the

literature.
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2.3 Four Dimensional Trajectory and Other Tran-

sitions in NextGen

NextGen operational concepts (JPDO, 2007) are still in development. They will

introduce significant changes in system architecture, technologies used in Communi-

cation, Navigation and Surveillance, decision support tools, operating procedures and

controller-pilot roles and responsibilities. These changes are expected to significantly

alter the controllers’ tasks and cognitive strategies. However, cognitive complexity

will continue to be a limiting factor on system capacity. The impact on controller cog-

nitive complexity should be considered when evaluating trade-offs of new operational

concepts. Several examples of likely changes are discussed below to illustrate aspects

of controller cognitive impacts which will be considered in evaluating trade-offs in

new operational concepts and the development of complexity metrics.

The shift to a 4DT based system is anticipated to be a key aspect of the NextGen

Concepts of operation. 4DTs include information about expected flight path and time

along the path (JPDO, 2007). Flights can be synchronized to access the airspace sys-

tem assets. The management of aggregate 4DTs also enables flexible route definitions.

Traffic flows can be shifted as necessary when the area is impacted by convective

weather to enable more effective traffic flow management.

The operational concepts of 4DT are still under development. Erzberger (2004)

proposes the Advanced Airspace Concept (AAC) in NextGen design, which is a com-

puter logic on the ground that monitors aircraft separations and uplinks modified

trajectories when potential conflicts develop. 4DTs are basic elements required in

the Advanced Airspace Concept proposed by Erzberger (2004). Wichman et al.

(2004) propose an operational concept of 4DT based air traffic management, which is

a heavily integrated air-ground system that requires compatible bandwidth data link

capabilities for maintaining the common data base for traffic management and con-

trol. Several simulation studies using varied 4DT concepts have been conducted with

different research focuses. Williams (1991) has conducted a simulation experiment

to explore integration of a 4D-equipped aircraft into a 4D ATC system. He finds the
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dissimilarities between airborne and ATC generated speed strategies to be a prob-

lem. A number of human-in-the-loop simulation studies performed by Prevot et al.

(2003a,b) examine a concept of trajectory-oriented time-based arrival management.

Data gathered in these experiments reflect the potential benefits envisioned for the

concept, such as reduced inter-arrival time variability, reduced controller workload,

and increased energy-efficient descents. The obstacles to and requirements for the im-

plementation of a 4DT concept are studied by Mueller (2004). Mueller (2004) uses

computer simulations and Unmanned Aerial Vehicle (UAV) flight tests to analyze the

navigation requirements for the 4DT concept, individual flight corridor.

In addition, the expected increase in airborne separation authority and potential

changes in controller-pilot roles and responsibilities has been studied extensively after

the concept of free flight is proposed (Hilburn et al., 1997; Corker et al., 2000;

Metzger and Parasuraman, 2001; Galster et al., 2001; Lee et al., 2003; McAnulty

and Zingale, 2005). Controllers are expected to transit from a tactical control role

to a strategic planning role, creating new monitoring tasks for controllers, which

are cognitively different from current control tasks. McAnulty and Zingale (2005)

summarize the existing literature on workload and performance issues related to pilot-

based spacing and separation. Multiple variations of pilot self-spacing are under

development. McAnulty and Zingale (2005) point out that the advanced concepts

of pilot self-separation are not mature and require further development before they

become operationally feasible.

NextGen implementation will also involve transition periods of mixed equipage,

where aircraft with different levels of onboard equipage will coexist and controllers will

apply equipment-conditional procedures. Prior studies indicate that mixed equipage

appears to interfere with air traffic controllers’ cognitive processes at multiple levels

and lead to degradation of human performance (Grossberg, 1989; Christien et al.,

2002; Major and Hansman, 2004; Pina, 2007). However, Pfleiderer (2005) suggests

that although aircraft mix appears to be associated with traffic complexity, it may

not be as influential as other complexity factors in the en route environment.
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2.4 Summary

This chapter has reviewed definitions of complexity, identified complexity factors

and major complexity metrics. Cognitive complexity directly related to controller

workload which is likely to remain one of the functional limitations on the capacity

of the air traffic control system. The traffic density (also known as traffic count,

density, or traffic load) is almost universally identified as a key complexity factor.

Most of the factors used in the current metrics are “geometric factors”; they have the

ability to measure a current air traffic situation in a calibrated and validated airspace.

However, controllers may have different cognitive complexity for the same geometric

complexity, because the geometric complexity factors do not capture the effects of the

underlying structure and its impacts on the cognitive complexity of managing that

situation. Further investigations designed to define, quantify, and assess the validity

of proposed factors as contributors to air traffic cognitive complexity are required.

New operational concepts proposed in NextGen will change the roles and tasks of

air traffic controllers. Several examples of likely changes are discussed to illustrate

aspects of controller cognitive impacts which are considered in evaluating trade-offs in

new operational concepts and the development of complexity metrics. Several studies

have explored 4DT operational concepts with various research interests. However, the

impact of new operational concepts on controller cognitive complexity has numerous

aspects that have not been explicitly investigated. Complexity metrics based on a

cognitive understanding of future operational concepts would be an effective tool in

evaluating design trades and operational considerations.
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Chapter 3

A Preliminary Structure for

Cognitively Based Complexity

Metrics

3.1 Structures of Existing Complexity Metrics

Numerous efforts have been performed to identify complexity factors and to develop

complexity metrics in the past to quantify the level of air traffic control complex-

ity (for reviews, see Mogford et al., 1995; Hilburn, 2004; Loft et al., 2007). Various

methods have been applied to categorize the identified complexity factors, such as

methods based on events (Schmidt, 1976), geometric properties of the aircraft dis-

tribution (Wyndemere, 1996; Laudeman et al., 1998), controller activities (Manning

et al., 2000; Manning and Pfleiderer, 2006), and the non linear form, Kologomorov

complexity (Delahaye and Puechmorel, 2000). Among them, two structures are most

frequently employed. One structure is through a linear sum of weighted complexity

factors e.g. (Wyndemere, 1996; Laudeman et al., 1998; Kopardekar et al., 2002). An-

other structure is based on aircraft count approach e.g. (Davis et al., 1963; Schmidt,

1976; Buckley et al., 1969; Mills, 1998; Histon et al., 2002b).

The most recent complexity metrics based on a linear sum of weighted complex-
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ity factors are the Dynamic Density metrics. Dynamic Density is designed as an

objective measure to define the complexity limit of a situation that centralized con-

trol would still be required (RTCA, 1995). It is defined as the collective effect of

all factors, or variables, that contribute to sector level air traffic control complexity

at any given time (Kopardekar et al., 2007). Multiple metrics of Dynamic Density

have been proposed using a number of variables that represent complexity factors to

describe the complexity level in a sector (Wyndemere, 1996; Laudeman et al., 1998;

Kopardekar et al., 2002; Chatterji and Sridhar, 2001; Masalonis et al., 2003). Most

of these metrics have been developed and validated using large data sets from real

operations or human-in-the-loop simulations. The weighting of the complexity fac-

tors that contribute to Dynamic Density are obtained using regression models. So

the metric need to be calibrated every time it is applied to a new sector as well as in

a new operational concept.

For the metrics based on aircraft count approach, the earliest work is performed

by Davis et al. (1963) who finds the number of aircraft to be a good indicator of

controller workload. Multiple studies have been performed to improve upon the basic

aircraft count approach, for example a method using the CDI is proposed by Schmidt

(1976) based on an analysis of event frequency and difficulty. Some other variations

of the aircraft count approach modify the count by the average flight time for an

aircraft though a sector (Buckley et al., 1969; Mills, 1998). Preliminary metrics

based on the relative contribution to the complexity of individual aircraft have also

been proposed (Histon et al., 2002b).

Although various complexity metrics have been developed, these complexity met-

rics are validated and calibrated in a particular airspace and under the actual op-

erational procedures. These metrics are typically limited in the airspace on which

it was calibrated, therefore, they are difficult to be applicable to future operational

concepts without re-construction and re-calibration. The controllers’ strategies for

mitigating cognitive complexity have not been effectively modeled in existing com-

plexity metrics, such as the controlers’ use of structure-based abstractions to simplify

cognitive complexity (Histon et al., 2002b). Furthermore, the relationship between
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complexity and individual complexity factors have not been rigorously examined in

the past. For example, the criteria for aircraft position proximity in these metrics

are primarily based on anecdotal evidence with little attention focused on examining

the values statistically. This chapter presents a preliminary structure of a complexity

metric, and a new measurement to probe controller cognitive complexity to support

the development of the proposed complexity metric.

3.2 Modified Aircraft Count

A structure for cognitive complexity metrics , Modified Aircraft Count (MAC), was

developed based on the structure which was first proposed by Histon et al. (2002b).

The structure included information of aircraft specific state, sector level state, as

well as controller strategies. Controller’s cognitive strategies should be able to be de-

composed into observable states and integrated into the complexity metric structure.

Complexity metrics that are formed on this structure would be robust to work in

different sectors and different operational concepts. Moreover, the metric structure

can provide values that are intuitive to air traffic controllers and consistent with the

current basis for limiting traffic level.

MAC = SM ×
N∑

i=0

(AMi) (3.1)

The Modified Aircraft Count represents the effective number of aircraft in a sec-

tor, which is the sum of each individual aircraft’s contribution to cognitive complexity

and then adjusted by sector level complexity factors. In this approach, the cognitive

complexity is computed from Equation 3.1. The cognitive complexity is decomposed

by individual aircraft, and each aircraft’s complexity contribution is formulated based

on an understanding of the cognitive strategies that the controllers use. The cogni-

tive complexity level is determined by each Aircraft Multiplier (AM) and a Sector

Multiplier (SM). An AM represents the relative complexity contribution of one air-

craft. Its value is normalized to a standard aircraft. Each AM is affected by multiple

28



factors of aircraft specific complexity, and then adjusted by a SM. The value of SM is

determined by sector level complexity factors, such as sector properties, sector pro-

cedure requirements, ATC automation level, and mixed equipage impact. Although

the sector effects can be included in the individual AMs, the SM term is introduced

in this structure to allow easy adjustment of sector effects when MAC is applied in

different sectors or even different operational concepts.

Aircraft Multiplier

AMi = f(ACF1, ACF2, . . . , ACFn) (3.2)

= f(ACF1)× f(ACF2)× · · · × f(ACFn) (3.3)

The Aircraft Multiplier is defined in Equation 3.2. The AM captures the complex-

ity contribution of each aircraft, which can be greater or smaller than the complex-

ity of a standard aircraft(1) depending on the effects of multiple complexity factors

(f(ACF1, ACF2, . . . , ACFn)). If we chose a standard aircraft to be a normal aircraft

in a sector that no additional attention is needed rather than being simply monitored,

the cognitive complexity contribution of the standard aircraft is assumed to be equal

to unity in this structure in order to be consistent with the basic aircraft count. The

cognitive complexity contribution of each aircraft in the sector (AMi) is compared

to the standard aircraft (1). The relative level of cognitive complexity contribution

is affected by many aircraft specific complexity factors, denoted by ACF1, ACF2, ...,

ACFn.

A list of aircraft complexity factors were identified based on a literature review,

preliminary cognitive analysis, and the expected elements of the NextGen operational

concepts. The aircraft specific complexity factors included in the AM function need to

be based on the cognitive principles that the controllers use. Although a small number

of factors need be added or eliminated depending on the details of the operational

concepts, this structure of AM function remains the same. The list of example aircraft

specific complexity factors is given in Table 3.1.
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Table 3.1: Example Aircraft Complexity Factors

Aircraft Complexity Factors (ACFi)
Aircraft Proximity
Projected Aircraft Proximity
Sector Boundary Encounters
Restricted/Military Area Encounters
Weather Impacting Area Encounters
Aircraft in Transition (Descending/Climbing)
Membership of Standard Flow (Belong to a standard flow or not)
Location Relative to Critical Points
Pilots Preference of Weather Deviation
Level of Knowledge of Aircraft Intent
Separation Responsibility (Airborne, ground, or ground-based automation)
Pilots Preference of Weather Deviation
Communication Capability (Datalink capability and flight crew communication ability)
Level of Priority ATC service (Emergency, VFR, IFR)
Traffic Restrictions or Special Requests from TMU or Other Controllers
Level of Surveillance Capability

An appropriate mathematical structure is needed to combine the identified com-

plexity factors. It is assumed that the contribution to cognitive complexity of each

aircraft specific complexity factor can be normalized to a standard aircraft. One

simple and effective solution is a product of each individual complexity factor func-

tions, f(ACFi), as shown in Equation 3.3. The value of an AM is the combined

effects of each complexity factor. For example, if an aircraft is in proximity with

another aircraft and additional attention is needed, then it’s contribution to com-

plexity will be larger than the standard aircraft and the value of f(ACFproximity) will

be larger than 1. At the same time, if the aircraft is in a standard flow, the value of

f(ACFMembershipof StandardFlow) will be less than 1. Finally, all the functions of aircraft

complexity factors are combined multiplicatively and a value of this aircraft’s AM is

obtained. The contribution of this aircraft to cognitive complexity is represented by

the value of AM.

The functions of aircraft complexity factors (f(ACFi)) have not been fully devel-
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oped. The output of the functions is the change in cognitive complexity relative to a

standard aircraft, while the input(s) are the observable parameter(s) corresponding

to the complexity factor in the function. For example, the function for proximity,

f(ACFproximity), might be a continuous function decreased with the horizontal dis-

tance between two aircraft at the same altitude.

Sector Multiplier

SM = f(SCF1, SCF2, . . . , SCFm) (3.4)

= f(SCF1)× f(SCF2)× · · · × f(SCFm) (3.5)

As implied by Equation 3.4, the sector multiplier captures the impact of sec-

tor level complexity factors (f(SCF1, SCF2, . . . , SCFm)), such as sector properties,

sector procedure requirements, ATC automation level, and mixed equipage impact.

When MAC is applied in different sectors or under different operational concepts,

MAC can be adjusted by simply changing the SM function. Possible sector level

complexity factors are listed in Table 3.2.

Table 3.2: Example Sector Complexity Factors

Sector Complexity Factors (SCFi)
Available airspace
Number and position of standard ingress / egress points
Spatial distribution of airways / navigation aids
Distribution of closest points of approach
Traffic restrictions (eg. Metering)
Level of ATC automation
Level of mix equipage

Similar to AMs, SM is a multiplicative combination of sector level complexity fac-

tor functions as in Equation 3.5. The assumption is that each function of sector level

complexity factors is able to be normalized to a baseline condition of a standard sec-

tor. For example, the total complexity in a sector can be defined as the sum of AMs,

multiplied by the inverse of available airspace, the difficulty level of sector properties,
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additional task difficulty due to traffic restrictions, level of ATC automation tools,

and level of mix equipage. The level of mixed equipage during the transition to a new

operational concept is expected to affect controller cognitive complexity on a sector

level. Controller performance is degraded when the capability and performance of

aircraft is at various levels (Grossberg, 1989; Christien et al., 2002; Major and Hans-

man, 2004; Pina, 2007). However, the function of the mix equipage, SCFmixequipage ,

should be carefully calibrated since Pfleiderer (2005) argues that aircraft mix may

not be as influential as other complexity factors in the en route environment based

on an experimental study result.

3.3 Investigation of Aircraft Complexity Factors

in MAC

In order to investigate aircraft complexity factors in MAC, part task simulations

were used to explore the impact on cognitive complexity of various future operational

concepts. Through the simulation studies, likely controller cognitive strategies will

be explored and identified. These strategies are the basis to examine whether the

cognitive decomposition in MAC is appropriate and whether the complexity factors

are consistent in different operational concepts. As an initial step, the work of this

thesis was focused on the investigation of the aircraft complexity factors in the Aircraft

Multipliers.

Two part task simulations were developed to support the analysis. Each simula-

tion was designed to explore one simplified future operational concept. The simplified

future operational concepts which would change system structures and controller cog-

nitive strategies were selected. Two simulations were designed and conducted as two

stand-alone experiments. The two experiments were, Experiment 1: Time-Based

Control at a Metering Fix, and Experiment 2: Dynamic Route Structure Control.

The details of the two experiments are presented in Chapter 4.

Furthermore, an Aircraft Complexity Assessment method has been especially de-
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veloped and applied in the two experiments to inspect the two assumptions. The

experimental results from this complexity probe method are presented in Chapter 5.

3.3.1 Aircraft Complexity Assessment Method

No complexity probe used in the past have the ability to explicitly assess each air-

craft’s contribution to cognitive complexity. Most of the techniques used to quan-

tify the impact of complexity factors are based on aggregated controller subjective

complexity ratings on a sector level. However, the information of the complexity

contributed by individual aircraft is not available through these subjective ratings.

Most common techniques and measures used to validate or calibrate complex-

ity metrics have been summarized in Table 3.3. Among these measures, physiological

measures and system performance can only indirectly reflect controller cognitive com-

plexity level. Controller activities can indicate how busy a controller is, but not how

complex the situation is. The measures of controller perceptions and reported work-

load are the subjective evaluations of the perceived complexity based on aggregated

information of current traffic situation, which is always a combined effect of all the

aircraft and various complexity factors.

Table 3.3: Example Measures Used to Validate Complexity Metrics

Measure
Group

Measure Example References

Physiological
measures

Eye blink rate, pupil diameter,
visual fixation frequency, EEG,
EMG, EOG, heart rate measures,
respiration, biochemical activity

(Hilburn et al., 1995; Athenes
et al., 2002; Averty et al., 2002)

Controller per-
ceptions and re-
ported workload

ATWIT, NASA TLX, expert
judgment/over the shoulder rat-
ings (PACE), complexity factor
rankings

(Stein, 1985; Wyndemere, 1996;
Laudeman et al., 1998; Manning
et al., 2000)

System perfor-
mance

Operational errors, delays, fuel
burn, efficiency

(Jolitz, 1965; Buckley et al.,
1969; Grossberg, 1989; Pfleiderer
et al., 2007)

Controller activ-
ities

Number and duration of commu-
nications, interface interactions,
coordination events, handoffs

(Stein, 1985; Laudeman et al.,
1998)
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A new complexity probe method, Aircraft Complexity Assessment, was proposed

in this work to assess aircraft specific complexity. In this method, experiment partici-

pants were asked to identify specific aircraft which contribute higher complexity load

to the overall complexity situation than a standard aircraft on the screen shots of a

traffic situation. The standard aircraft was selected as an aircraft on a standard route

without any potential conflicts in the two experiments. An example result from the

Aircraft Complexity Assessment method is shown in Figure 3-1. In Experiment 1 of

the study, the Aircraft Complexity Assessment was conducted during the simulation

for five times when the simulation was paused. Since the temporary stops during

the simulation had the potential to invade ongoing controller tasks, the procedure

of the Aircraft Complexity Assessment was modified to avoid the need to pause the

simulation. The assessment was conducted after each simulation run in Experiment

2. A simulation replay capability was used to help the controller to recall the traffic

situation. The replay was paused for five times and participants were asked to iden-

tify high complexity aircraft in each traffic situation shown in the replay after each

simulation run.

Figure 3-1: An Example of Aircraft Complexity Assessment Result
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High complexity aircraft were identified by experiment participants. Observable

factors which are hypothesized to drive complexity were tested based on the results

of identified high complexity aircraft. Cognitive complexity was quantitatively evalu-

ated by measuring relationships statistically between observable factors and controller

subjective reports of cognitive complexity. The probability of an individual aircraft

being considered as of high complexity was found to be affected by several observ-

able factors, including proximity to other aircraft, proximity to convective weather,

projected proximity and time, and whether the aircraft was on the standard route

structure. Each of these factors, together with the detailed results, was discussed in

Chapter 5.

3.4 Summary

The structures used in ATC complexity metrics have been reviewed. The two most

commonly used structures are a linear sum of weighted complexity factors and a

modification of aircraft count. However, the past complexity metrics are developed

and calibrated based on current operations. A complexity metric that can be appli-

cable to future operational concepts is needed. In order to be applicable to various

operational concepts, the complexity metric should be based on controller cognitive

principles that are consistent in different operations. A complexity metric structure,

Modified Aircraft Count, was proposed to incorporate controller strategies in the

structure of the metric. The basic idea of MAC was that the overall cognitive com-

plexity level was determined by each aircraft’s complexity contribution which was

captured by Aircraft Multipliers and adjusted by a Sector Multiplier. Each AM was

affected by multiple aircraft specific complexity factors. The SM was determined by

sector level complexity factors, such as sector properties, sector procedure require-

ments, ATC automation level, and mixed equipage impact. Functions of both AM

and SM were designed based on a understanding of controller strategies in various

operational concepts. This structure were hypothesized to allow easy adjustment

and to give comparable results when MAC is applied in different sectors or different
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operational concepts.

Methods to investigate aircraft complexity factors in the MAC structure were pro-

posed, including part task simulations representing future operational concepts and

a new complexity probe method, Aircraft Complexity Assessment method. The sim-

ulation studies are presented in Chapter 4. The design and procedure of the Aircraft

Complexity Assessment method is presented in this chapter. The Aircraft Complex-

ity Assessment method allowed aircraft specific complexity to be assessed through

controller subjective report. In this method, experiment participants were asked to

identify specific aircraft which contribute high complexity load to the overall com-

plexity situation on the screen shots of a traffic situation. Observable factors which

were hypothesized to drive complexity can be tested based on the traffic situation

information of identified high complexity aircraft.
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Chapter 4

Simulation Studies of Two

Simplified Future Operational

Concepts

New operational concepts have been proposed in NextGen. Significant changes in

system architecture, operating procedures, and decision support tools, will be intro-

duced. These changes are expected to significantly alter the controllers tasks and

cognitive strategies. However, cognitive complexity will continue to be a limiting

factor on system capacity. Simulation studies of two simplified future operational

concepts were designed to explore controller strategies, complexity factors in MAC,

and to evaluate the trade-offs of the two simplified future operational concepts.

The shift to a 4DT based system is anticipated to be a key aspect of the NextGen

concepts of operation. The specificity of expected flight path and time information

helps controllers to synchronize access to airspace system assets (or to restrict access,

as required) and to ensure separation (JPDO, 2007). The management of aggregate

4DTs also allows flexible route definitions in which traffic flows can be shifted as

necessary to enable more effective weather avoidance. There are some other 4DT

capabilities envisioned in NextGen, such as individual 4DTs tailored to individual

flight preferences.

Simulation studies were performed to evaluate the impact of possible future 4DT
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operational concepts on controller cognitive complexity and to investigate the most

important complexity factors driving cognitive complexity in current operation and

further operational concepts. Two experiments were designed to address the proposed

questions. Experiment 1, Time-Based Control at a Metering Fix, was designed to

investigate the potential impact on controller cognitive complexity from a simple

version of 4DT operation. Experiment 2, Dynamic Route Structure Control, was

designed to explore the proposed operational concepts of flexible route definition and

dynamic flow management in NextGen.

This chapter presents the two experiments, focusing on the experiment set-up

and the evaluation of the trade-offs of the two simplified future operational concepts

measured through controller performance and subjective workload metrics. In Chap-

ter 5, aircraft complexity factors in MAC are investigated using a complexity probe

technique within the experiments presented in Chapter 3.

4.1 Experiment 1: Time-Based Control at a Me-

tering Fix

The shift to a 4DT based system is anticipated to be a key aspect of NextGen. The

definition of 4DT by JPDO (2007) is a precise description of an aircraft path in space

and time: the “centerline” of a path plus the position uncertainty, using waypoints

to describe specific steps along the path. The specificity of 4DT enables precise

management of an aircraft’s current and future position. A major expected benefit

of 4DT is in allowing both service providers and operators to assess the effects of

proposed trajectories and resource allocation plans (JPDO, 2007). Another benefit

of 4DT is that by using conflict-free 4DT plan, controllers can focus on overall flow

management instead of individual flight management.

In the 4DT operational environment, the roles and tasks of controllers might be

different from the roles and tasks in current operational environment. As the de-

velopment of 4DT operational concepts is still ongoing, there is still lack of detail
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clarification, such as how many Controlled Time of Arrivals (CTA) should be speci-

fied along the path, who wield the authority to change CTAs, and what happens to

the non-conformance aircraft. Since controllers will probably retain the final respon-

sibility for aircraft separation, it is very likely that controllers will be able to give

CTA commands in addition to the current commands that they can give to aircraft.

When controllers have the ability to give CTA commands, the strategies controllers

use to control the traffic might alter significantly. Figure 4-1 demonstrates an example

of possible changes to controller strategies following a switch from current operation

to a simple 4DT operation with a single CTA in the sector. In current operation,

controllers usually line the aircraft up before the metering fix to maintain separation.

In 4DT operation, controllers do not need to line flights up before the metering fix

since the separation at the metering fix is precisely ensured by the time of arrival at

that fix.

(a) Position-Based Control (Cur-
rent Operation)

(b) Time-Based Control at a Me-
tering Fix (4DT Operation)

Figure 4-1: Example of Strategy Difference between Current Operation and 4DT
Operation

This experiment was designed to evaluate the impact of a simple version of 4DT

operation on controller cognitive complexity. With the introduction of a single CTA

in a sector, how will controller performance and perceived complexity change? A

human-in-the-loop fast-time simulation has been developed in MATLAB to serve as

the test bed for the experiment.
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4.1.1 Independent Variables

The objective of this experiment was to evaluate the impact of 4DT operation on air

traffic controllers’ cognitive complexity as measured by controllers’ performance and

subjective workload rating. The design matrix is shown in Figure 4-2. Two different

control types representing the current operation and a simple version of 4DT operation

respectively were the primary research interests. The baseline condition was a control

type referred to as Position-Based Control, which represents current operation in

which aircraft were controlled by vector and speed commands. 4DT condition was

represented by a control type called Time-Based Control, in which aircraft can be

controlled by time-of-arrival at a metering point in addition to vectors and speeds.

Figure 4-2: Design Matrix of Experiment 1: Time-Based Control at a Metering Fix

In Position-Based Control, the aircraft was controlled by vector and speed com-

mands (Figure 4-3). On the other hand, in Time-Based Control condition, the aircraft

can be controlled by the time-of-arrival at the metering fix in addition to vector and

speed commands. When a controlled time-of-arrival (CTA) command was given to an

aircraft, the aircraft would adjust its speed automatically to best meet time-of-arrival

command while maintain its current route. The additional functionality of controlling

time-of-arrival in Time-Based Control was facilitated by the left side of the timeline

display in the simulation (Figure 4-4). The participant can click on the timeline to

give the CTA command. Both the CTA and estimated time-of-arrival (ETA) were

shown on the lfet side of the timeline display. This functionality was not available in

Position-Based Control.
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Figure 4-3: Main Display in Experiment 1 (Position-Based Control)

Figure 4-4: Main Display in Experiment 1 (Time-Based Control)
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Another independent variable in the experiment was schedule type. The main

task designed in the experiment was management of arrival traffic through a meter-

ing point. Since a schedule at the metering point will impact the system performance,

schedule type was included as another independent variable to investigate how the

impact of Time-Based Control changes with different schedules and what the trade-

off between schedule performance and controller difficulty. Three types of schedule

were included, None, FCFS, and CPS. None means that no schedule was displayed.

FCFS was a schedule based on First Come, First Served principle. CPS which means

Constrained Position Shifting was an optimized schedule subject to operational con-

straints with maximum of 1 permissible position shift. CPS schedule has the better

performance in minimizing delay time. However, it might be the most difficult one for

controllers as it requires swaps in the aircraft sequence. The schedules were generated

by Lee’s (2008) algorithm. Details about the schedules can be found in (Lee, 2008).

In the simulation, the arrival schedule was shown on the right side of the timeline

display. Each flight had its Scheduled time-of-arrival (STA) when a schedule was

presented.

4.1.2 Dependent Variables

Metrics of controllers’ performance and perceived complexity were used to indicate the

impact on controller cognitive complexity. Controllers’ performance was measured by

schedule conformance and operational errors. The schedule conformance was included

due to the potential requirement of time conformance in NextGen environment to

increase system capacity and efficiency. The schedule conformance was calculated by

the difference between actual arrival time and scheduled arrival time. The operational

errors were measured by the number of separation violations and aircraft exiting the

airspace not through the metering fix area.

Controllers’ perceived complexity was measured using a modified Air Traffic Work-

load Input Technique (ATWIT) (Stein, 1985). The simulation was paused at specified

sample times and the perceived complexity was measured using a 7-point Likert scale

to indicate the level of cognitive complexity experienced at that moment. However,
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this technique had the potential to be invasive due to the interruptions in the simu-

lation run.

4.1.3 Apparatus, Participants, and Procedure

Apparatus A human-in-the-loop fast-time air traffic control simulation was devel-

oped in MATLAB as the test bed for this experiment. Figure 4-3 shows the main

display of the simulation in baseline condition. Three limitations of the test bed

should be to noted. In order to gather enough data in a reasonable amount of time,

the simulation is accelerated to 8 times faster than real time. To avoid overwhelming

the participants, the tasks were simplified to represent fundamental elements of air

traffic control. Another limitation was that all the traffic was at the same altitude.

The simulation included a generic arrival airspace with multiple merge points and

was generally representative of the Boston arrival flows. One metering fix was included

as the reference point for all the arrival times. The traffic consisted of four major

streams of arrival traffic and several crossing flights. The traffic level design was the

same for all six experimental conditions. In the pilot study, participants performed

with few errors at a traffic load of 12 aircraft per hour (ac/hr), the performance of

participants started to decrease when traffic reached 15 ac/hr, and the performance

was hardly acceptable when traffic increased to 20 ac/hr. Thus, each run started with

a low traffic level (12 ac/hr), increased to a high traffic level (18 ac/hr) in the middle,

and decreased to a low traffic level (12 ac/hr) again at the end.

Participants The participants for this experiment were thirteen upper class stu-

dents (5 female, 24 male) in an FAA approved Air Traffic Collegiate Training Initiative

(CTI) program at Daniel Webster College, NH. All the participants had been trained

in real-time radar control simulations in the CTI program.

The experimental tasks were briefed to the participants before the experiment

and during the practice runs. A reminder sheet with list of tasks was presented to

participants during the test runs. The tasks included:

1. To maintain separation (2.5 nmi)
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2. To direct arrival traffic to the metering fix

3. To manage arrival traffic to meet the schedule when a schedule is present

4. To proceed arrival traffic as fast as possible when no schedule is present

Procedure A tutorial that discussed the nature of the experiment and explained

the context and use of the interface was given to each participant at the beginning

of the experiment. Each participant finished two practice runs and six test runs

encompassing all the conditions in the design matrix. The order of the six test runs

was counterbalanced and partially randomized. Half of the participants started with

the Position-Based Control, while the other half started with the Time-Based Control.

Within group, the order of schedule types was randomized.

During testing, all user responses and performance data were recorded automat-

ically. The simulation was paused at five specified sample times and the perceived

complexity was measured using a 7-point Likert scale to indicate the level of cognitive

complexity experienced at that moment. The Aircraft Complexity Assessment was

conducted at the same time as the perceived complexity measurements during the

run. High complexity aircraft were identified on the screen through the aircraft com-

plexity assessment method. One should note that this method had a disadvantage of

interrupting ongoing controller tasks.

4.1.4 Results and Discussion

The impact of the simple 4DT operational concept on controller cognitive complex-

ity was investigated though controller performance and perceived complexity ratings.

The analysis was conducted to evaluate effects of control type and schedule type on

three performance measures and the perceived complexity ratings. The results indi-

cated slight benefits of Time-Based Control in comparison to Position-Based Control.

The statistical analysis showed that the effects of traffic level were marginally signifi-

cant (p-values were between 0.05 and 0.1), while the effects of structure type did not

show statistical significance for all dependent variables.

The two-way ANOVA test was used to analyze the three performance variables.
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Assumptions that the statistical model entails have been checked using Levene tests

and Shapiro-Wilk tests at significance level of α = 0.05. The number of errors was an-

alyzed using a square root transformation. All other parametric dependent variables

passed both tests for normality and heteroscedasticity.

Schedule Conformance The schedule conformance is suggested to be a desirable

requirement in future ATC system where the system will transit to a more precise

time management. The value of schedule conformance was measured by the difference

between actual arrival time and scheduled arrival time. The controller performance

in terms of schedule conformance was compared by the control type and the schedule

type. Only cases with a schedule (either FCFS or CPS), were included in the analysis.

The schedule conformance was significantly improved in Time-Based Control than in

Position-Based Control (F (1, 48) = 4.86, p = .032). However, there was no significant

difference in schedule conformance due to schedule type (F (1, 48) = 0.13, p = .722).

The interaction effect between control type and schedule type was not significant

(F (1, 48) = 0.39, p = .535).

Figure 4-5: Schedule Conformance in Experiment 1
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Operational Errors The operational errors were measured by the number of sep-

aration violations and aircraft exiting the airspace not through the metering fix area.

The number of operational errors were fewer in Time-Based Control than in Position-

Based Control. The difference was marginally significant as shown by the results of

two-way ANOVA (F (1, 72) = 3.00, p = .088). The operational errors included sepa-

ration violations and aircraft exiting the airspace not through the metering fix area.

While this result is not significant at the α = 0.05 level it does suggest that the use

of Time-Based Control may slightly reduce controller error rate. Although schedule

type didn’t affect the number of errors significantly as shown by the ANOVA results

(F (2, 72) = 0.05, p = .949), the mean difference between Time-Based Control and

Position-Based Control was larger in CPS schedule. The results suggest that Time-

Based Control can help controllers reduce the difficulty brought about by advanced

schedules. No significant interaction effects were shown in the ANOVA test results

(F (2, 72) = 0.25, p = .779).

Figure 4-6: Operational Errors in Experiment 1
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Perceived Complexity The results from perceived complexity ratings data showed

that participants experienced a lower level of complexity in Time-Based Control than

in Position-Based Control. Moreover, the ratings in the cases with a schedule were

higher than ratings in the cases without a schedule. The difference between with a

schedule and without a schedule showed that the requirement of schedule conformance

introduced complexity to participants. A non-parametric test, the Mann-Whitney

test, was used to assess the effects of control type and schedule type. The test found

that control type was marginally significant (Z = −1.71, p = .087) in explaining

differences in perceived complexity ratings. The effects of schedule type were tested

using three Mann-Whitney tests. The difference between None and FCFS schedule

types was significant (Z = −2.50, p = .012). It also showed a significant difference be-

tween None and CPS schedule types (Z = −2.69, p = .007). However, no significant

difference was shown between FCFS and CPS schedule types (Z = −0.73, p = .467).

Figure 4-7: Subjective Workload Ratings in Experiment 1
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4.1.5 Conclusion of Experiment 1

The impact of a simple version of 4DT operational concept was evaluated by controller

performance metrics and perceived complexity ratings. The results in this experiment

showed the simple version of 4DT operation enhanced controller performance and the

complexity was perceived lower. The indications from all the dependent variables

were consistent in showing the benefits of Time-Based Control, although some of

the results were marginally statistically significant. Better schedule conformance and

lower error rate were found in Time-Based Control relative to Position-Based Control.

Moreover, participants perceived lower complexity in Time-Based Control than in

Position-Based Control. The existence of schedule conformance requirements was a

major driver influencing controller performance and perceived complexity, however,

the difference between FCFS and CPS was not observed in this experiment.

4.2 Experiment 2: Dynamic Route Structure Con-

trol

NextGen (JPDO, 2007) has proposed that entire flows of aircraft and individual

trajectories can be dynamically adjusted to take advantage of opportunities and avoid

constraints safely and efficiently while reducing the overall impact of weather events.

These operations feature dynamic route structures which replace the static route

structures that characterize today’s operations.

Previous work (Histon and Hansman, 2002; Histon et al., 2002a,b) on controller

cognitive complexity suggested that structure, defined as the physical and informa-

tional elements that organize and arrange the ATC environment, plays an impoCTAnt

role in helping controllers mitigate cognitive complexity. Controllers are hypothesized

to internalize the structural influences in the form of abstractions which simplify their

working mental model of the situation. By simplifying their working mental model,

these structure-based abstractions reduce cognitive complexity. However, off-nominal

conditions such as weather disruption cause complexity to grow (Cummings and Tso-
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nis, 2006).

The operational concepts proposed in NextGen, dynamically adjusting flows of air-

craft and individual trajectories, will affect controller working mental model. The use

of dynamic route structure control can potentially enhance the use of route structure

during off-nominal conditions. Controllers can continuously utilize route structure,

which may reduce controller cognitive complexity in off-nominal conditions. How-

ever, controller structure-based abstractions may be altered since the route structure

is adjusted dynamically, which may increase controller cognitive complexity since

their working mental model needs to be adjusted at the same time. Figure 4-8 illus-

trates the difference between static route structure operational concept and dynamic

route structure operational concept. The simulation developed in Experiment 1 was

expanded to facilitate a simple version of the dynamic route structure operational

concept.

(a) Static Route Structure (b) Dynamic Route Structure

Figure 4-8: Example of Strategy Difference between Static Route Structure and Dy-
namic Route Structure

4.2.1 Independent Variables

The objective of this experiment was to evaluate the impact of Dynamic Route Struc-

ture Operation on air traffic controllers’ cognitive complexity as measured by con-

trollers’ performance and workload during weather disruptions. Two independent

variables were included: structure type (static route structure, dynamic route struc-
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ture) and traffic level (medium, high, very high). The design matrix is shown in

Figure 4-9.

Figure 4-9: Design Matrix of Experiment 2: Dynamic Route Structure

Two types of route structure were tested in the experiment. Static route structure

was used as a baseline to represent the current operation. Dynamic route structure

was used to represent the new operational concept of research interest. In static

route structure operation, aircraft have to be vectored out from their assigned route

in order to avoid the weather that is impacting the route as shown in Figure 4-10. In

dynamic route structure operation, the standard routes can be shifted to avoid the

weather. The way points on the weather impacted route are selected and placed at

new positions to shift the standard route. Thus, aircraft who have been assigned to

that modified route can continuously fly on that route while avoiding the convective

weather area(Figure 4-11).

The traffic level, represented by the number of aircraft, had been identified as

the primary driver for controllers’ cognitive complexity in many ATC complexity

researches (Hilburn, 2004). The impact of structure type might be influenced by

the traffic level. A pilot study had been performed to set the load for each traffic

level. During the pilot study, the performance of participants remained constant from

8 to 20 aircraft per hour, degraded gradually around 35 aircraft per hour, and then

declined sharply starting from 50 aircraft per hour. Three traffic levels were set as

20, 35, and 50 aircraft per hour to analyze the controller performance in the medium

to high workload range.
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Figure 4-10: Main Display in Experiment 2

Figure 4-11: Dynamic Route Structure Control Example
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4.2.2 Dependent Variables

The impact on controller cognitive complexity was measured by controllers’ perfor-

mance and subjective workload rating. Three dependent variables were used to mea-

sure three aspects of controllers’ performance: hand-off acceptance time, delivery

performance, and operational errors. Reaction time was measured by the hand-off

acceptance time, defined as the time between an aircraft entering the airspace and

it being acknowledged by controller. The delivery performance was used to measure

the efficiency of controllers’ performance. Delivery performance was defined as the

ratio of the number of successful deliveries (aircraft leaving the airspace from the exit

way point) to the number of total possible deliveries in a run. The operational errors

included the number of separation violations and the number of weather penetrations.

The primary statistical model used for the performance variables was a 2×3 two-way

ANOVA with repeated measures.

Controllers’ subjective workload was measured using the Air Traffic Workload In-

put Technique (ATWIT) (Stein, 1985), similar to Experiment 1. Subjective workload

was measured in real-time by presenting auditory and visual cues that prompt a par-

ticipant to press one of seven buttons on the workload assessment keypad (WAK)

within a specified amount of time to indicate the amount of mental workload expe-

rienced at that moment. Non-parametric statistical tests, Friedman test and Mann-

Whitney dependent test, were used for the subjective ratings data analysis.

4.2.3 Apparatus, Participants, and Procedure

Apparatus The human-in-the-loop fast-time simulation in Experiment 1 was ex-

panded to be capable of supporting the dynamic route structure control. The main

display of the simulation is shown in Figure 4-10. The simulation set-up was similar

to the one in Experiment 1, except that the simulation was accelerated by a factor

of 10. The weather was simulated by a constantly moving area with red, yellow and

green circle zones. In order to objectively investigate the usage of structure in man-

aging traffic for this experiment, the speed can only be changed within a range of
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280 to 320 knots. All the commands were given by using the computer mouse and

keyboard.

Participants Twenty nine upper class students (5 female, 24 male) in a CTI pro-

gram at Daniel Webster College participated in this experiment. All the participants

have the similar ATC knowledge background as the participants in Experiment 1.

The experimental tasks were briefed to the participants before the experiment and

during the practice runs, and presented to participants on a reminder sheet during

the test runs. The tasks included:

1. To maintain separation (3 nmi)

2. To avoid weather penetration

3. To direct arrival traffic to the exit way point

4. To deliver arrival traffic as fast as possible

Procedure A tutorial was first given the participant to explain the nature of the

experiment, the context of the interface, and the use of the simulation. Each partici-

pant experienced two practice runs and six test runs including all the six conditions

in the design matrix. The order of the six test runs was counterbalanced and partially

randomized. Half of the participants started with the static route structure, while the

other half started with the dynamic route structure. Within each type of structure,

the order of traffic levels was randomized.

During testing, all user responses and performance data were recorded automati-

cally. After each test run, the Aircraft Complexity Assessment, was conducted using

the a replay function. The replay was paused at five specific times, then the partic-

ipants were asked to identify high complexity aircraft at that traffic situation. This

method did not interact with other parts of the experiment.

4.2.4 Results and Discussion

Controller performance and subjective workload were analyzed and compared by

structure types and traffic levels. Statistical analysis of the effects of structure type
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and effects of traffic level was performed using three performance measures and the

subjective workload ratings.

For all dependent variables, the analysis showed that the effects of traffic level

were statistically significant at α = 0.05. Performance decreased and subjective

workload increased as traffic level increased. The primary research interest, the effects

of structure type, did not show statistical significance except for hand-off acceptance

time. One explanation for these results could be that the dependent variables were

not sensitive enough to show the impact on controller cognitive complexity.

The two-way ANOVA with repeated measures were used to analyze the three

performance variables. Statistical assumptions of normality and heteroscedasticity

were checked using Levene tests and Shapiro-Wilk tests at significance level of α =

0.05. All the parametric dependent variables passed the tests.
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Hand-Off Acceptance Time Hand-off acceptance time was the time between an

aircraft entering the airspace and it being acknowledged by the controller. Hand-off

acceptance time increased with higher level of traffic (F (2, 50) = 19.88, p < .001),

suggesting that controllers reacted slower as they were busier with higher level of

traffic.

Hand-off acceptance time was the only dependent variable to find significance at

the α = 0.05 level for the structure type factor. Dynamic route structure operation

led to a significant increase in hand-off acceptance time (F (1, 50) = 27.21, p < .001).

This result can be explained by the extra work required by controllers to move routes

in the dynamic route structure cases. Apart from the tasks a controller needs to

perform in the static route structure cases, he or she had a set of additional tasks in

the dynamic route structure cases, such as planning the route structure, modifying

the route structure, and managing aircraft already on the route being modified.

Figure 4-12: Hand-Off Acceptance Time in Experiment 2
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Delivery Performance The efficiency of controller performance was measured by

the delivery performance, which was defined as the ratio of the number of successful

deliveries (aircraft leaving the airspace from the exit way point) to the number of total

possible deliveries in a time period. The delivery performance significantly decreased

as the traffic increased (F (2, 50) = 46.69, p < .001). The effects of structure type on

delivery performance were marginally significant (F (1, 50) = 3.21, p = .085). While

this result is not significant at the α = 0.05 level, it does suggest that the use of

dynamic route structure may slightly improve the rate at which controllers are able

to deliver aircraft.

Figure 4-13: Delivery Performance in Experiment 2

Operational Errors The total number of operational errors including separation

violations and weather penetrations was significantly affected by the traffic level

(F (2, 50) = 141.71, p < .001). The total number of errors increased as the traffic

level increased. The results were consistent with past literature on the impact of traf-

fic load (for reviews, see Mogford et al., 1995; Majumdar and Ochieng, 2002; Hilburn,

2004; Loft et al., 2007).
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Figure 4-14: Operational Errors in Experiment 2

Structure type was not a significant factor for the number of errors (F (1, 50) =

0.72, p = .410). The results suggested that the change from static route structure to

dynamic route structure was unlikely to have any significant impact on the controllers

error rate.

In addition, different participants performed significantly differently in terms of

number of operational errors. The ANOVA results of the subject factor is F (25, 50) =

2.57, p = .002. No significant interaction effects were evident in the test results.

Subjective Workload The subjective workload data was measured using a 7-point

Likert scale. Non-parametric tests were used to assess the effects of structure type

and the effects of traffic level. A Friedman rank test was used to analyze the effects

of the three-level factor, traffic level. The test found that traffic level was significant

(χ2 = 26.17, p < .001) in explaining differences in subjective workload. The effects of

structure type were analyzed by the Mann-Whitney U test. The result showed that

there was no statistically significant difference in mean subjective workload rating

due to the type of route structure (U = 1083.50, p = .454). It was propitious that no
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statistical significance found in this case given that despite dynamic route structure

operation being a new concept for the subjects and despite additional tasks being

required in the operation, use of this new control mechanism did not adversely affect

their perceived workload.

Figure 4-15: Subjective Workload Ratings in Experiment 2

4.2.5 Conclusion of Experiment 2

The purpose of this experiment included an evaluation of the impact of the dynamic

route structure operational concept on controller cognitive complexity as measured

by controllers’ performance and subjective workload. The dynamic route structure

was hypothesized to be able to minimize the controllers’ cognitive complexity in off-

nominal airspace structure conditions such as weather disruptions.

The results of this experiment verified that traffic level was a major driver influenc-

ing controllers’ performance and subjective workload. The dynamic route structure

operation did not introduce significant changes to the operational errors and the

subjective ratings. The delivery performance improved slightly in the dynamic route

structure operation; however, the hand-off acceptance time increased in dynamic route
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structure operation, indicating that extra work was required by participants in the

dynamic route structure cases. Participants did not experience significant changes in

workload because of the new route structure control mechanism.

In light of the results reported here, it is likely that dynamic route structure oper-

ation might help enable continuous use of structure abstractions in airspace structure

disruptions like hazardous weather; however, additional controller tasks may also be

introduced by the dynamic route structure. Although the controller performance and

the subjective workload ratings did not show significant changes, the impact of differ-

ent operational concepts on controller cognitive complexity existed and was explored

using the Aircraft Complexity Assessment method.

4.3 Summary

The impact of future operational concepts on controller performance and subjective

complexity ratings have been evaluated through two fast-time simulations. The first

experiment, Time-Based Control at a Metering Fix, was designed to investigate the

potential impact on controller cognitive complexity of a simple version of 4DT oper-

ation. The second experiment, Dynamic Route Structure Control, was designed to

explore the proposed operational concepts of flexible route definition and dynamic

flow management.

In Experiment 1, a single metering fix with CTA in a sector was facilitated in

a simulation to represent a simple version of 4DT operational concept. Enhanced

controller performance and lower perceived complexity was demonstrated in the sim-

plified 4DT operational concept. In this operational concept, the expected arrival

time at a metering fix of each flight can be specified. As a result, controllers were

able to better coordinate the arrival fights to access the capacity-limited airspace. In

the second experiment on Dynamic Route Structure control, the controller perfor-

mance and the subjective workload did not alter significantly by the new operational

concept. The dynamic route structure control was hypothesized to reduce controller

cognitive complexity in weather disruption conditions through the use of continuous
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structure abstractions. However, the results did not indicate significant benefits of

Dynamic Route Structure control. In addition, the increase of hand-off acceptance

time implied that additional tasks might also be introduced to controllers by the

dynamic route structure.
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Chapter 5

Empirical Findings on Aircraft

Complexity Factors from Aircraft

Complexity Assessment

The proposed complexity probe, Aircraft Complexity Assessment, was found to be an

effective tool to explore and evaluate the complexity implications of future operational

concepts simulated in the two experiments. This complexity probe technique allowed

specific aircraft which contributed high complexity load to be identified and then the

aircraft complexity factors in the MAC structure were able to be evaluated based on

the relationship between observable factors and high complexity aircraft percentage.

Four factors were found to impact aircraft specific complexity, including proximity to

other aircraft, membership of a standard flow, proximity to weather, and projected

proximity to other aircraft.

5.1 Complexity Factor: Proximity to Other Air-

craft

The impact of aircraft horizontal proximity on aircraft complexity contribution was

analyzed using the data collected in the Aircraft Complexity Assessment method.
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Proximity has been commonly accepted as an complexity factor and has been used

in some complexity metrics (Chatterji and Sridhar, 2001; Kopardekar et al., 2002;

Laudeman et al., 1998; Wyndemere, 1996). However, the proximity used in these

metrics is calculated based on certain assumptions of distance criteria. The rela-

tionship between the distance between aircraft pairs and the impact on controller

cognitive complexity has not been quantitatively examined.

The complexity contribution of an airplane was hypothesized to increase when

its distance with other airplanes reduces. The attention to those proximate aircraft

pairs would raise for the reason that the flexibility and the time to resolve the poten-

tial conflict reduces. The empirical results from the two experiments supported the

hypothesis. Only horizontal proximity was analyzed in the study as the experiments

only simulated single altitude traffic situations. The percentage of the high complex-

ity aircraft at each criteria distance of proximity is shown in Figure 5-1, 5-2, and 5-3.

The high complexity aircraft percentage was calculated by Equation 5.1. The number

of airplanes within the range of a proximity criterion distance was counted to be the

denominator. Among these airplanes, those considered to contribute high complexity

were then recorded to be the numerator.

High complexity ac percentage at x nmi =
Ncomplex ac within xnmi

Nac within xnmi

(5.1)

Figure 5-1 is the results by operational concepts in each experiment. Several

general trends were indicated in the empirical results of both experiments. The

chance of an airplane being considered as high complexity increased when the lateral

distance between aircraft pairs became smaller. The percentage of high complexity

aircraft was at a relatively high level (above 50%) when the distance was smaller

than the separation minima (2.5 nmi in Experiment 1 and 3 nmi in Experiment 2),

especially, a significant change happened around the separation requirement (3 nmi)

in Experiment 2. In both experiments, the percentage leveled at around 10% to 20%

as the distance increased. The 10% to 20% high complexity indicated the existence

of complexity factors other than horizontal proximity. The 10% and 20% differences
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might be caused by changes in the two experiment set-ups.

(a) Experiment 1: Position-Based Control (b) Experiment 1: Time-Based Control

(c) Experiment 2: Static Route (d) Experiment 2: Dynamic Route

Figure 5-1: High Complexity Aircraft Percentage by Horizontal Distance to Other
Aircraft by Different Operational Concepts in Two Experiments
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Figure 5-2 shows the results obtained from Experiment 1: Time-Based Control at

a Metering Fix by types of operational concept and types of schedule. Figure 5-3 is

from Experiment 2: Dynamic Route Structure by different operational concepts and

traffic levels. Although the curve differed for different experimental conditions, the

general trend remained the same. Four points for the general trend were summarized

based on the observation. First, the contribution of cognitive complexity reduced

when the distance to other aircraft decreased. Second, as indicated by the large

variance of high complexity aircraft percentage in the 1 to 2 nautical miles range,

controller strategy varied when the distance is smaller than the minimum separation

requirement. Some participants gave up to solve the conflicts when the distance was

too small. Third, traffic load affected controllers’ strategy as shown in Figure 5-3. The

average high complexity aircraft curves dropped down sooner when traffic level was

high. This indicated that the controllers tended to pay more attention to near term

problems as they had less mental capacity to project future situations in higher traffic

load situation. Fourth, there were other factors contributing to cognitive complexity.

The average high complexity aircraft percentage approached around 15% as distance

increased to ∞. Apart from the observations stated above, the detailed shape and

value of the percentage curves might be affected by the simulation set-up, such as

screen size, screen resolution, and aircraft target size, etc., nevertheless the general

trend and the conclusion drawn should remain the same.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-2: The Impact of Horizontal Proximity on Aircraft Complexity by Operation
Types and Schedule Types in Experiment 1: Time-Based Control at a Metering Fix
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(a) (b)

(c) (d)

(e) (f)

Figure 5-3: The Impact of Horizontal Proximity on Aircraft Complexity by Operation
Types and Traffic Levels in Experiment 2: Dynamic Route Structure Control
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5.2 Complexity Factor: Membership of a Stan-

dard Flow

The underlying airspace structures had also been proposed as an important factor

affecting controllers’ cognitive complexity. The underlying airspace structure and

other procedural elements are important factors in reducing a controller’s cognitive

complexity through the use of structure based abstractions (Histon and Hansman,

2002; Seamster et al., 1993). Histon and Hansman (2002) find that standard flows are

one of the most important structure-based abstractions based on field observations.

Air traffic controllers classify aircraft into standard and nonstandard classes accord-

ing to their match with standard flows, which include the aircraft’s future routing,

ingress and engress points, coordination requirements, and crossing routes/altitude

profiles (Histon and Hansman, 2002; Seamster et al., 1993). Loft et al. (2007) conclude

that establishing streams simplifies the process of maintaining situation awareness,

allowing air traffic controllers to work with more aircraft simultaneously and to use

fewer control actions.

In this study, the results from the analysis of the impact of route structure on

aircraft high complexity percentage supported the hypotheses on the use of structure

in simplifying the cognitive complexity of air traffic control. In the analysis of the two

experiments, whether an aircraft belonged to a standard flow or not were determined

based its relative position to the standard route structure. If an aircraft was within 2

nautical miles of the standard routes and was flying along the routes, it was consid-

ered as an aircraft belonging to a standard flow, in other words, an on-route aircraft.

Otherwise, it was an off-route aircraft. Figure 5-4 shows that off-route aircraft were

more likely to be considered as of high complexity than on-route aircraft in both ex-

periments. Statistical significance was validated using the student t-test to compare

the difference between the on-route the off-route high-complexity aircraft percentage

(α = 0.05). The test results for the first experiment was (t(425) = 8.28, p < .001),

while for the second experiment was (t(1383) = 10.01, p < .001). The results sug-

gested that the abstracted underlying structures facilitated the process of simplifying
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(a) Experiment 1: Position-Based Control (b) Experiment 1: Time-Based Control

(c) Experiment 2: Static Route (d) Experiment 2: Dynamic Route

Figure 5-4: High Complexity Aircraft Percentage by Relative Position to Route Struc-
ture by Different Operational Concepts in Two Experiments
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and understanding traffic pattern for experiment participants. When an airplane was

off the standard route, it had a higher potential to be considered as an airplane con-

tributing higher level of complexity. Figure 5-5 and Figure 5-6 show the results by

experimental conditions in each experiment. As seen, similar effects of route structure

were observed in all conditions. In Experiment 1, the control type (Position-Based

Control and Time-Based Control) did not affect the structure influence on complex-

ity, while in Experiment 2, the structure type (Static Route Structure and Dynamic

Route Structure) slightly changed the impact of route structure on complexity. The

average percentage of high complexity aircraft for off-route aircraft was lower in Dy-

namic Route conditions than in Static Route conditions. This indicated that the

route structure played a more important role in cognitive complexity when the routes

were static than when the routes were dynamic.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-5: The Impact of Route Structure on Aircraft Complexity by Operation
Types and Schedule Types in Experiment 1: Time-Based Control at a Metering Fix
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(a) (b)

(c) (d)

(e) (f)

Figure 5-6: The Impact of Route Structure on Aircraft Complexity by Operation
Types and Traffic Levels in Experiment 2: Dynamic Route Structure Control
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5.3 Complexity Factor: Weather Impacting Area

Encounters

The complexity factor, Weather Impacting Area Encounters, can be measured by

various observable factors, such as the distance from an aircraft to the edge of the

weather impacting area, the time for an aircraft to fly into the weather impacting area,

and the relationship between the heading of an aircraft and the shape of weather. The

distance from an aircraft to the edge of the weather impacting area was analyzed to be

consistent with the aircraft proximity factor. Figure 5-7 and 5-8) show a similar trend

of the proximity of aircraft to convective weather area to the aircraft proximity. An

aircraft was more likely to contribute high complexity when it was near a convective

weather area. However, it might no longer be considered as a high complexity aircraft

after it entered the convective weather area, as seen from the drops of the high

complexity percentage when the distance to weather edge was around 1 nautical

mile. This can be explained by the fact that controllers had different strategies for

aircraft that already penetrated weather and aircraft that attempted to avoid weather

penetration. The cognitive complexity was high when participants tried to control

an aircraft to avoid the weather impact, however, the complexity might decreased

when the aircraft entered the weather impacting area since strategies were adjusted

to better meet the needs of that aircraft and the requirements of maintaining safety

for the overall situation.
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(a) Experiment 2: Static Route

(b) Experiment 2: Dynamic Route

Figure 5-7: High Complexity Aircraft Percentage by Distance to Weather by Different
Operational Concepts in Experiment 2
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(a) (b)

(c) (d)

(e) (f)

Figure 5-8: The Impact of Weather Proximity on Aircraft Complexity by Operation
Types and Traffic Levels in Experiment 2: Dynamic Route Structure Control
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5.4 Complexity Factor: Projected Proximity to

Other Aircraft

Controller cognitive complexity was also hypothesized to be affected by the projected

air traffic situation as in the mental process model proposed in (Pawlak et al., 1996).

The projection of aircraft horizontal proximity is an important part in the monitoring

process. Pawlak et al. (1996) state that monitoring is one of the processes which

involve checking the conformance of the current and projected air traffic situations

against those expected based on the controller’s current plan.

In this study, projected proximity was measured by projected nearest distance and

the time to the projected nearest distance. Nearest projected distance was defined

as the smallest distance between an aircraft pair in the future based on their current

flight plan and speed. The time to the projected nearest distance was defined as

the time in the future estimated to reach that distance for an aircraft pair. The

impact of projected proximity on cognitive complexity was found to be affected by

both the distance of projected proximity and the time to projected proximity. The

results indicated that the chance of an airplane to be high complexity was higher

when the projected smallest distance to other aircraft was small and the time to the

projected proximity was short. The analysis by operational concepts in each of the

two experiments is shown in Figure 5-9 and 5-10.
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(a) Position-Based Control (b) Position-Based Control

(c) Time-Based Control (d) Time-Based Control

Figure 5-9: The Impact of Projected Distance and Projected Time on High Complex-
ity Aircraft Percentage by Different Operational Concepts in Experiment 1: Time-
based Control at a Metering Fix
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(a) Static Route (b) Static Route

(c) Dynamic Route (d) Dynamic Route

Figure 5-10: The Impact of Projected Distance and Projected Time on High Complex-
ity Aircraft Percentage by Different Operational Concepts in Experiment 2: Dynamic
Route Structure Control
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In Experiment 1, the trends of high complexity aircraft by the time to the pro-

jected nearest distance were different in Position-Based Control and Time-Based Con-

trol as shown in Figure 5-9 and 5-11. The peak of high complexity aircraft percent

was located around 6 to 7 minutes in the future in Position-Based Control, while the

peak was located around 1 to 2 minutes in the future in Time-Based Control. The

difference in time indicated that controller strategies were altered by the simulated

operational concepts. In Time-Based Control, the time-of-arrival at the metering

fix can be controlled precisely. Thus, participants needed to manage immediately

potential conflicts caused by automated speed adjustments. On the other hand, in

Position-Based Control, the projection of future states were performed by human. As

a result, a larger time range was considered by participants. The potential conflicts

that were in the very near future were sometimes given up by the participants because

the aircraft symbols would overlap in the simulation, which made it difficult to solve

the conflicts.

Results from Experiment 2 are shown in Figure 5-10 and 5-12. The blank range

at left bottom of Figure 5-12-(b) was because that no potential conflicts were found

under that criteria. Apart from that, all other result was consistent in indicating

that high complexity was caused by potential conflicted in the near future and with

a greater possibility (less distance). Along the projected proximity distance axis,

the high complexity aircraft percentage decreased with the increase of distance. A

sharp decrease in the high complexity aircraft percentage happened when the distance

was around 5 to 10 nautical miles. Along the projected time axis, the aircraft high

complexity percentage declined as the projected time increased. This results indicated

that the uncertainty of future situations grew with the increase of time. However,

differences in high complexity aircraft percentage map were shown by different traffic

loads in Figure 5-12. The peaks of high complexity aircaft percentage area were

smaller and were compressed to the bottom left of the color map in higher traffic

load conditions. This could be explained by the impact of traffic load on controller

strategies. When the traffic load was high, the attention was more focused on the

potential conflicts in the near future and with less separation distance.
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(a) Position-Based Control, No Schedule (b) Time-Based Control, No Schedule

(c) Position-Based Control, FCFS Sched-
ule

(d) Time-Based Control, FCFS Schedule

(e) Position-Based Control, CPS Schedule (f) Time-Based Control, CPS Schedule

Figure 5-11: The Impact of Projected Proximity on Aircraft Complexity by Operation
Types and Schedule Types in Experiment 1: Time-Based Control at a Metering Fix
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(a) Static Route: Traffic Level 20 ac/hr (b) Dynamic Route: Traffic Level 20 ac/hr

(c) Static Route: Traffic Level 35 ac/hr (d) Dynamic Route: Traffic Level 35 ac/hr

(e) Static Route: Traffic Level 50 ac/hr (f) Dynamic Route: Traffic Level 50 ac/hr

Figure 5-12: The Impact of Projected Proximity on Aircraft Complexity by Operation
Types and Traffic Levels in Experiment 2: Dynamic Rout Structure Control
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5.5 Summary

The results from a new complexity probe method, Aircraft Complexity Assessment

method, was analyzed to investigate proposed aircraft complexity factors. Observ-

able factors which were hypothesized to drive complexity were tested based on the

information associated with the identified high complexity aircraft. Cognitive com-

plexity were quantitatively evaluated by measuring statistical relationships between

observable factors and the high complexity aircraft percentage. The probability of an

individual aircraft being considered as a high complexity aircraft was found to be sig-

nificantly affected by several observable situation factors, including proximity to other

aircraft, whether the aircraft is on the standard route structure or not, proximity to

weather, and projected proximity to other aircraft. The results on proximity to other

aircraft testified that the new complexity probe method was an effective tool to in-

vestigate aircraft complexity factors. The findings on membership of a standard flow

supported the hypothesis proposed in (Histon and Hansman, 2002) on controllers’

use of structure based abstractions to mitigate cognitive complexity.
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Chapter 6

Conclusion

6.1 Thesis Summary

It was the objective of this study to develop structures for ATC complexity met-

rics which include cognitive considerations and investigate complexity factors in the

metrics. The metrics should reflect the cognitive strategies expected to be used by

controllers in future operational concepts. A structure for cognitively based complex-

ity metrics, Modified Aircraft Count (MAC), was developed with the objectives of to

be robust against different operational concepts and to provide metrics with intuitive

meanings. The MAC includes aircraft specific state information, sector information,

as well as information on controller strategies. The basic idea of the MAC structure is

that the overall complexity level of a traffic situation is determined by each aircraft’s

complexity contribution and adjusted by several sector level complexity factors.

In order to explore and investigate aircraft complexity factors in MAC under

NextGen operational concepts, two experiments were designed and conducted to un-

derstand how the tasks, tools and cognitive strategies change for air traffic controllers

in future ATC systems. Two fast-time simulations were developed to represent key

elements of two future operational concepts. Experiment 1, Time-Based Control at

a Metering Fix, was designed to investigate the potential impact on controller cog-

nitive complexity of a simple version of 4DT operation. Experiment 2, Dynamic

Route Structure Control, was designed to explore the proposed operational concepts
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of flexible route definition and dynamic flow management in NextGen.

Controller performance and subjective workload were measured in the two exper-

iments. In Experiment 1: Time-Based Control at a Metering Fix, a simple version of

4DT operational concept demonstrated enhanced controller performance and lower

perceived complexity comparing to a baseline condition representing current opera-

tion. Lower error rate and better schedule conformance were found in Time-Based

Control than in the baseline condition. The specificity of expected time at a metering

fix helped controllers to synchronize access to capacity-limited airspace and ensure

separation. In Experiment 2: Dynamic Route Structure Control, the dynamic route

structure operation did not result significant changes to the operation errors and

subjective workload compared to the static route structure operation. Although the

dynamic route operational concept might help controllers to use a continuous struc-

ture abstraction during weather disruptions, additional tasks might also be introduced

by the management of dynamic routes. The results in this experiment indicated that

traffic level was a major factor influencing controllers’ performance and subjective

workload.

A new complexity probe technique, Aircraft Complexity Assessment, was pro-

posed and applied in the two experiments to assess aircraft specific complexity. In

this complexity probe, participants were asked to identify high complexity aircraft

from the screen shot of a traffic situation they had experienced. The information of

identified high complexity aircraft was then used to quantify the effects of aircraft

complexity factors, including proximity to other aircraft, membership of a standard

flow, proximity to weather, and projected proximity to other aircraft. Observable

factors which were hypothesized to drive complexity were tested in the following

manner. The relationships between observable factors and the percentage of aircraft

been considered as high complexity by controllers were analyzed to test the impact

on cognitive complexity of that observable factor. The observable factors used in

the analysis were horizontal distance to other aircraft, whether an aircraft is on route

structure or not, horizontal distance to weather, and projected horizontal distance and

time to other aircraft. The results from the impact of route structure on cognitive
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complexity supported the hypothesis on controllers’ use of structure-based abstrac-

tions in simplifying cognitive complexity proposed in (Histon and Hansman, 2002).

The new complexity probe method showed to be effective to study the functions of

aircraft complexity factors in MAC. The principle of the behavior of each complex-

ity factor were similar in different operational concepts. The chance of an aircraft

being considered as of high complexity increased if it was closer to another aircraft,

off the standard route structure, closer to the area impacted by weather, or likely to

have a conflict in the future. However, the impact on cognitive complexity of each

complexity factor was shifted by different controller strategies used in different traffic

situations. Both different operational concepts and different levels of traffic load were

observed to have effects on the changes of controller strategies.

6.2 Conclusion

The ultimate objective of this work was to develop metrics of ATC cognitive com-

plexity which will be applicable to NextGen operational concepts. New technologies

and operational concepts will change the role and tasks of air traffic controllers but

cognitive complexity will continue to be a limiting factor on system capacity. Well

grounded complexity metrics would be an effective tool both for evaluating trade offs

in future operational concepts but also managing cognitive complexity in future ATC

systems where complexity may be one of the target or limit parameters in the control

strategies.

The structure for cognitive complexity metrics, Modified Aircraft Count, was pro-

posed to capture aircraft specific information, sector state information, and informa-

tion on controller strategies. Major challenges for MAC are to formulate the impact of

each proposed complexity factors and to quantify the value of the Aircraft Multipliers

and Sector Multipliers. The new complexity probe technique, Aircraft Complexity

Assessment was designed to investigate aircraft specific complexity. The complex-

ity probe was applied in two experiments which simulated two future operational

concepts. The Aircraft Complexity Assessment appeared to be an effective complex-
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ity probe technique to retrieve information on aircraft specific complexity factors.

The results from Aircraft Complexity Assessment indicated that the impact of sev-

eral complexity factors were consistent in different operational concepts. Therefore,

complexity metrics based on cognitive principles should be applicable to different

operational concepts.

In addition, the hypothesis in (Histon and Hansman, 2002) on controllers’ use of

structure-based abstractions to simplify cognitive complexity was supported by the

findings on the complexity factor of route structure. The high complexity aircraft

percentage was different between on-route aircraft and off-route aircraft in both fu-

ture operations and current operations. Hence, it is important to consider what the

changes of structure will be in future ATC system, whether the changes can support

controllers tasks without introducing additional cognitive complexity.
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