
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-010 March 26, 2009

Finding Bugs in Web Applications Using 
Dynamic Test Generation and Explicit 
State Model Checking
Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, 
Danny Dig, Amit Paradkar, and Michael D. Ernst



1

Finding Bugs in Web Applications Using Dynamic
Test Generation and Explicit State Model Checking

Shay Artzi† Adam Kie
.
zun† Julian Dolby‡

Frank Tip‡ Danny Dig∗ Amit Paradkar‡ Michael D. Ernst⋆
†MIT CSAIL, {artzi,akiezun}@csail.mit.edu

‡IBM T.J. Watson Research Center, {dolby,ftip,paradkar}@us.ibm.com
∗University of Illinois at Urbana-Champaign, dig@illinois.edu
⋆University of Washington,mernst@cs.washington.edu

✦

Abstract—
Web script crashes and malformed dynamically-generated web pages

are common errors, and they seriously impact the usability of web applica-
tions. Current tools for web-page validation cannot handle the dynamically
generated pages that are ubiquitous on today’s Internet. We present a
dynamic test generation technique for the domain of dynamic web ap-
plications. The technique utilizes both combined concrete and symbolic
execution and explicit-state model checking. The technique generates tests
automatically, runs the tests capturing logical constraints on inputs, and
minimizes the conditions on the inputs to failing tests, so that the resulting
bug reports are small and useful in finding and fixing the underlying faults.

Our tool Apollo implements the technique for the PHP programming
language. Apollo generates test inputs for a web application, monitors the
application for crashes, and validates that the output conforms to the HTML
specification. This paper presents Apollo’s algorithms and implementation,
and an experimental evaluation that revealed 302 faults in 6 PHP web
applications.

General Terms Reliability, Verification

Index Terms—Software Testing, Web Applications, Dynamic Analysis, PHP

1 I
Dynamic test generation tools, such as DART [18], Cute [36],
and EXE [7], generate tests by executing an application on
concrete input values, and then creating additional input values
by solving symbolic constraints derived from exercised control
flow paths. To date, such approaches have not been practical in
the domain of web applications, which pose special challenges
due to the dynamism of the programming languages, the use
of implicit input parameters, their use of persistent state, and
their complex patterns of user interaction.

This paper extends dynamic test generation to the domain of
web applications that dynamically create web (HTML) pages
during execution, which are typically presented to the userin a
browser. Apollo applies these techniques in the context of the
scripting language PHP, one of the most popular languages for
web programming. According to the internet research service,
Netcraft1, PHP powered 21 million domains as of April 2007,

1. See http://news.netcraft.com/.

including large, well-known websites such as Wikipedia and
WordPress.

Our goal is to find two kinds of failures in web applications:
execution failuresthat are manifested as crashes or warnings
during program execution, andHTML failuresthat occur when
the application generates malformed HTML. As an example,
execution failures may occur when a web application calls an
undefined function or reads a nonexistent file. In such cases,
the HTML output contains an error message and execution
of the application may be halted, depending on the severity
of the failure. HTML failures occur when output is generated
that is not syntactically well-formed HTML (e.g., when an
opening tag is not accompanied by a matching closing tag).
Although web browsers are designed to tolerate some degree
of malformedness in HTML, several kinds of problems may
occur. First and most serious is that browsers’ attempts to
compensate for malformed web pages may lead to crashes
and security vulnerabilities2. Second, standard HTML ren-
ders faster3. Third, malformed HTML is less portable across
browsers and is vulnerable to breaking or looking strange
when displayed by browser versions on which it is not tested.
Fourth, a browser might succeed in displaying only part of
a malformed webpage, while silently discarding important
information. Fifth, search engines may have trouble indexing
malformed pages [45].

Web developers widely recognize the importance of creat-
ing legal HTML. Many websites are checked using HTML
validators4. However, HTML validators can only point out
problems in HTML pages, and are by themselves incapable
of finding faults in applications thatgenerateHTML pages.
Checking dynamic web applications (i.e., applications that
generate pages during execution) requires checking that the

2. See bug reports 269095, 320459, and 328937 at https://bugzilla.mozilla.
org/show bug.cgi?

3. See http://weblogs.mozillazine.org/hyatt/archives/2003 03.html#
002904. According to a Mozilla developer, one reason why malformed
HTML renders slower is that “improper tag nesting [. . . ] triggers residual
style handling to try to produce the expected visual result,which can be very
expensive” [33].

4. http://validator.w3.org, http://www.htmlhelp.com/tools/validator



application creates a valid HTML page onevery possible
execution path. In practice, even professionally developed and
thoroughly tested applications often contain multiple faults
(see Section 6).

There are two general approaches to finding faults in web
applications: static analysis and dynamic analysis (testing). In
the context of web applications, static approaches have limited
potential because (i) web applications are often written in
dynamic scripting languages that enable on-the-fly creation
of code, and (ii) control in a web application typically flows
via the generated HTML text (e.g., buttons and menus that
require user interaction to execute), rather than solely via
the analyzed code. Both of these issues pose significant
challenges to approaches based on static analysis. Testingof
dynamic web applications is also challenging, because the
input space is large and applications typically require multiple
user interactions. The state-of-the-practice in validation for
web-standard compliance of real web applications involves
the use of programs such as HTML Kit5 that validate each
generated page, but require manual generation of inputs that
lead to displaying different pages. We know of no automated
tool for the validation of web applications that dynamically
generate HTML pages.

This paper presents an automated technique for finding
failures in HTML-generating web applications. Our technique
is based on dynamic test generation, using combined concrete
and symbolic (concolic) execution and constraint solving [7],
[18], [36]. We created a tool, Apollo, that implements our tech-
nique in the context of the publicly available PHP interpreter.

Apollo first executes the web application under test with
an empty input. During each execution, Apollo monitors the
program to record the dependence of control-flow on input.
Additionally, for each execution Apollo determines whether
execution failures or HTML failures occur (for HTML failures,
an HTML validator is used as an oracle). Apollo automat-
ically and iteratively creates new inputs using the recorded
dependence to create inputs that exercise different control
flow. Most previous approaches for concolic execution only
detect “standard errors” such as crashes and assertion failures.
Our approach also detects such standard errors, but is to our
knowledge the first to use an oracle to detect specification
violations in the application’s output.

Another novelty in our work is the inference of input
parameters, which are not manifested in the source code, but
which are interactively supplied by the user (e.g., by clicking
buttons in generated HTML pages). The desired behavior of a
PHP application is usually achieved by a series of interactions
between the user and the server (e.g., a minimum of five user
actions are needed from opening the main Amazon page to
buying a book). We handle this problem by enhancing the
combined concrete and symbolic execution technique with
explicit-state model checking based on automatic dynamic
simulation of user interactions. In order to simulate user inter-
action, Apollo stores the state of the environment (database,
sessions, cookies) after each execution, analyzes the output
of the execution to detect the possible user options that are

5. http://www.htmlkit.com

available, and restores the environment state before executing
a new script based on a detected user option.

Techniques based on combined concrete and symbolic exe-
cutions [7], [18], [36] may create multiple inputs that expose
the same fault. In contrast to previous techniques, to avoid
overwhelming the developer, our technique automatically iden-
tifies the minimal part of the input that is responsible for
triggering the failure. This step is similar in spirit to Delta
Debugging [8]. However, since Delta Debugging is a general,
black-boxinput minimization technique, it is oblivious to the
properties of inputs. In contrast, our technique iswhite-box:
it uses the information that certain inputs induce partially
overlapping control flow paths. By intersecting these paths,
our technique minimizes the constraints on the inputs within
fewer program runs.

The contributions of this paper are the following:
• We adapt the established technique of dynamic test

generation, based on combined concrete and symbolic
execution [7], [18], [36], to the domain of PHP web
applications. This involved the following innovations: (i)
using an HTML verifier as an oracle, (ii) inferring input
parameters that are not manifested in the source code,
(iii) dealing with datatypes and operations specific to the
PHP language, (iv) tracking the use of persistent state and
how input flows through it, and (v) simulating user input
for interactive applications.

• We created a tool, Apollo, that implements the technique
for PHP.

• We evaluated our tool by applying it to 6 real web ap-
plications and comparing the results with random testing.
We show that dynamic test generation can be effective
when adapted to the domain of web applications written
in PHP: Apollo identified 302 faults while achieving line
coverage of 50.2%.

• We present a detailed classification of the faults found by
Apollo.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of PHP, introduces our running
example, and discusses classes of failures in PHP web applica-
tions. Section 3 presents a simplified version of the algorithm
and illustrates it on an example program. Section 4 presents
the complete algorithm handling stateful execution with the
simulation of interactive user inputs, and illustrates it on an
example program. Section 5 discusses our Apollo implementa-
tion. Section 6 presents our experimental evaluation of Apollo
on open-source web applications. Section 7 gives an overview
of related work, and Section 8 presents conclusions.

2 C: PHP W A
2.1 The PHP Scripting Language

This section briefly reviews the PHP scripting language, fo-
cusing on those aspects of PHP that differ from mainstream
languages. Readers familiar with PHP may skip to the discus-
sion of the running example in Section 2.2.

PHP is widely used for implementing web applications, in
part due to its rich library support for network interaction,
HTTP processing, and database access. The input to a PHP

2



1 <?php

2

3 make_header(); // print HTML header

4

5 // Make the $page variable easy to use //

6 if(!isset($_GET[’page’])) $page = 0;

7 else $page = $_GET[’page’];

8

9 // Bring up the report cards and stop processing //

10 if($_GET[’page2’]==1337) {

11 require(’printReportCards.php’);

12 die(); // terminate the PHP program

13 }

14

15 // Validate and log the user into the system //

16 if($_GET["login"] == 1) validateLogin();

17

18 switch ($page)

19 {

20 case 0: require(’login.php’); break;

21 case 1: require(’TeacherMain.php’); break;

22 case 2: require(’StudentMain.php’); break;

23 default: die("Incorrect page number. Please verify.");

24 }

25

26 make_footer(); // print HTML footer

27 ...

27 function validateLogin() {

28 if(!isset($_GET[’username’])) {

29 echo "<j2> username must be supplied.</h2>\n";

30 return;

31 }

32 $username = $_GET[’username’];

33 $password = $_GET[’password’];

34 if($username=="john" && $password=="theTeacher")

35 $page=1;

36 else if($username=="john" && $password=="theStudent")

37 $page=2;

38 else echo "<h2>Login error. Please try again</h2>\n";

39 }

40

41 function make_header() { // print HTML header

42 print("

43 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

44 "http://www.w3.org/TR/html4/strict.dtd">

45 <HTML>

46 <HEAD> <TITLE> Class Management </TITLE> </HEAD>

47 <BODY>");

48 }

49

50 function make_footer() { // close HTML elements opened by header()

51 print("

52 </BODY>

53 </HTML>");

54 }

55 ?>

Fig. 1: A simplified PHP program excerpt from SchoolMate. This excerpt contains three faults (2 real, 1 seeded), explained in Section 2.3.

program is a map from strings to strings. Each key is a
parameter that the program can read, write, or check if it is set.
The string value corresponding to a key may be interpreted as
a numerical value if appropriate. The output of a PHP web
application is an HTML document that can be presented in a
web browser.

PHP is object-oriented, in the sense that it has classes,
interfaces, and dynamically dispatched methods with syntax
and semantics similar to that of Java. PHP also has features
of scripting languages, such as dynamic typing and aneval

construct that interprets and executes a string value that was
computed at run-time as a code fragment. For example, the
following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value3 (names of PHP variables start with the$
character). Other examples of the dynamic nature of PHP are
a predicate that checks whether a variable has been defined,
and class and function definitions that are statements that may
occur anywhere.

The code in Figure 1 illustrates the flavor of PHP. The
require statement that used on line 11 of Figure 1 resembles
the C #include directive in the sense that it includes the
code from another source file. However, the C version is
a pre-processor directive with a constant argument, whereas
the PHP version is an ordinary statement in which the file
name is computed at runtime. There are many similar cases
where run-time values are used, e.g.,switch labels need not be
constant. This degree of flexibility is prized by PHP developers
for enabling rapid application prototyping and development.
However, the flexibility can make the overall structure of
program hard to discern and it can make programs prone to
code quality problems.

2.2 PHP Example

The PHP program of Figure 1 is a simplified version of
SchoolMate6, which allows school administrators to manage
classes and users, teachers to manage assignments and grades,
and students to access their information.

Lines 6–7 read the global parameterpage that is supplied
to the program in the URL, e.g., http://www.mywebsite.
com/index.php?page=1. Line 10 examines the value of the
global parameterpage2 to determine whether to evaluate file
printReportCards.php.

FunctionvalidateLogin (lines 27–39) sets the global param-
eterpage to the correct value based on the identity of the user.
This value is used in theswitch statement on line 18, which
presents the login screen or one of the teacher/student screens.

2.3 Failures in PHP Programs

Our technique targets two types of failures that can be
automatically identified during the execution of PHP web
applications. First,execution failuresmay be caused by a
missing included file, an incorrect MySQL query, or by an un-
caught exception. Such failures are easily identified as thePHP
interpreter generates an error message and halts execution.
Less serious execution failures, such as those caused by the
use of deprecated language constructs, produce obtrusive error
messages but do not halt execution. Second,HTML failures
involve situations in which the generated HTML page is not
syntactically correct according to an HTML validator. Sec-
tion 1 discussed several negative consequences of malformed
HTML.

As an example, the program of Figure 1 contains three
faults, which cause the following failures when the program
is executed:

6. http://sourceforge.net/projects/schoolmate

3



1) Executing the program results in anexecution failure: the
file printReportCards.php referenced on line 11 is missing.

2) The program producesmalformed HTML because the
make footer method is not executed in certain situations,
resulting in an unclosed HTML tag in the output. In
particular, the default case of theswitch statement on
line 23 terminates program execution when the global
parameterpage is not 0, 1, or 2 and whenpage is not written
by functionValidateLogin.

3) The program producesmalformed HTMLwhen line 29
generates an illegal HTML tagj2.

The first failure is similar to a failure that our tool found in
one of the PHP applications we studied. The second failure
is caused by a fault that exists in the original code of the
SchoolMate program. The third failure is the result of a fault
that was artificially inserted into the example for illustration.

3 F F  PHP W A
Our technique for finding failures in PHP applications is a vari-
ation on an established dynamic test generation technique [7],
[18], [19], [36] sometimes referred to as concolic testing.For
expository purposes, we will present the algorithm in two
steps. First, this section presents a simplified version of the
algorithm that does simulate user inputs or keep track of
persistent session state. We will demonstrate this simplified
algorithm on the example of Figure 1. Then, Section 4 presents
a generalized version of the algorithm that handles user input
simulation and stateful executions, and illustrates it on amore
complex example.

The basic idea behind the technique is to execute an appli-
cation on some initial input (e.g., an arbitrarily or randomly-
chosen input), and then on additional inputs obtained by
solving constraints derived from exercised control flow paths.
We adapted this technique to PHP web applications as follows:
• We extend the technique to consider failures other than

execution failures by using an oracle to determine whether or
not program output is correct. In particular, we use an HTML
validator to determine whether the output is a well-formed
HTML page.
• The PHP language contains constructs such asisset

(checking whether a variable is defined),isempty (checking
whether a variable contains a value from a specific set),require

(dynamic loading of additional code to be executed),header

for redirection of execution, and several others that require the
generation of constraints that are absent in languages suchas
C or Java.
• PHP applications typically interact with a database and

need appropriate values for user authentication (i.e., user name
and password). It is not possible to infer these values by
either static or dynamic analysis, or by randomly guessing.
Therefore, our technique uses a pre-specified set of values for
database authentication.

3.1 Algorithm

Figure 2 shows pseudo-code for our algorithm. The inputs
to the algorithm are: a programP, an oracle for the output
O, and an initial state of the environmentS0. The output of

parameters: ProgramP, oracleO, Initial stateS0

result : Bug reportsB;
B : setOf(〈failure, setOf(pathConstraint),setOf(input)〉)
B ≔ ∅;1

toExplore≔ emptyQueue();2

enqueue(toExplore, 〈emptyPathConstraint(),emptyInput〉);3

while not empty(toExplore) and not timeExpired()do4

〈pathConstraint, input〉 ≔ dequeue(toExplore);5

output≔ executeConcrete(S0,P, input);6

foreach f in getFailures(O,output) do7

merge〈f ,pathConstraint, input〉 into B;8

newConfigs≔ getConfigs(input);9

foreach 〈pathConstrainti , inputi〉 ∈ newConfigsdo10

enqueue(toExplore, 〈pathConstrainti , inputi〉);11

return B;12

Subroutine getConfigs(input):13

configs≔ ∅;14

c1 ∧ . . . ∧ cn ≔ executeSymbolic(S0,P, input);15

foreach i = 1,. . . ,ndo16

newPC≔ c1 ∧ . . . ∧ ci−1 ∧ ¬ci ;17

input≔ solve(newPC);18

if input, ⊥ then19

enqueue(configs, 〈newPC, input〉);20

return configs;21

Fig. 2: The failure detection algorithm. The output of the
algorithm is a set of bug reports. Each bug report contains a
failure, a set of path constraints exposing the failure, anda
set of input exposing the failure. Thesolveauxiliary function
uses the constraint solver to find an input satisfying the path
constraint, or returns⊥ if no satisfying input exists. The
mergeauxiliary function merges the pair of pathConstraint
and input for an already detected failure into the bug report
for that failure.

the algorithm is a set of bug reportsB for the programP,
according toO. The report consist of a single failure, defined
by the error message and the set of statements that is related
to the failure. In addition, the report contains the set of all
inputs under which the failure was exposed, and the set of all
path constraints that lead to the inputs exposing the failure.

The algorithm uses a queue of configurations. Each config-
uration is a pair of a path constraint and an input. Apath
constraint is a conjunction of conditions on the program’s
input parameters. The queue is initialized with the empty
path constraint and the empty input (line 3). The program is
executed concretely on the input (line 6) and tested for failures
by the oracle (line 7). Then, the path constraint and input for
each detected failure are merged into the corresponding bug
report (lines 7–8).

Next, the algorithm uses a subroutine, newConfigs, to find
new configurations. First, the program is executed symbol-
ically on the same input (line 15). The result of symbolic
execution is a path constraint,

∧n
i=1 ci , that is satisfied by the

path that was just executed from entry to exit of the whole
program. The subroutine then creates new inputs by solving
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modified versions of the path constraint (lines 16–20), as
follows. For each prefix of the path constraint, the algorithm
negates the last conjunct (line 17). A solution, if it exists,
to such an alternative path constraint corresponds to an input
that will execute the program along a prefix of the original
execution path, and then take the opposite branch, presumable
covering new code. The algorithm uses a constraint solver to
find a concrete input for each path constraint (line 18).

3.2 Example

Let us now consider how the algorithm of Figure 2 exposes
the third fault in the example program of Figure 1.
Iteration 1. The first input to the program is the empty
input, which is the result of solving the empty path constraint.
During the execution of the program on the empty input, the
condition on line 6 evaluates totrue, and page is set to 0.
The condition on line 10 evaluates tofalse. The condition
on line 16 evaluates tofalse because parameterlogin is not
defined. Theswitch statement on line 18 selects the case on
line 20 becausepage has the value of0. Execution terminates
on line 26. The HTML verifier determines that the output
is legal, andexecuteSymbolicproduces the following path
constraint:

NotSet(page) ∧ page2 , 1337 ∧ login , 1 (I)

The algorithm now enters theforeach loop on line 16 of
Figure 2, and starts generating new path conditions by system-
atically traversing subsequences of the above path constraint,
and negating the last conjunct. Hence, from (I), the algorithm
derives the following three path constraints:

NotSet(page) ∧ page2 , 1337 ∧ login = 1 (II)
NotSet(page) ∧ page2 = 1337 (III)
Set(page) (IV)

Iteration 2. For path constraint (II), the constraint solver may
find the following input (the solver is free to select any value
for page2, other than 1337):page2← 0, login← 1.

When the program is executed with this input, the condition
of the if-statement on line 16 evaluates totrue, resulting in a
call to the validateLogin method. Then, the condition of the
if-statement on line 28 evaluates totrue because theusername
parameter is not set, resulting in the generation of output
containing an incorrect HTML tagj2 on line 29. When the
HTML validator checks the page, the failure is discovered
and a bug report is created and added to the output set of bug
reports.

3.3 Path Constraint Minimization

The failure detection algorithm (Figure 2) returns bug reports.
Each bug report contains a set of path constraints, and a
set of inputs exposing the failure. Previous dynamic test
generation tools [7], [18], [36] presented the whole input (i.e.,
many 〈inputParameter, value〉 pairs) to the user without an
indication of the subset of the input responsible for the failure.
As a postmortem phase, our minimizing algorithm attempts to
find a shorter path constraint for a given bug report (Figure 3).

parameters: ProgramP, oracleO, bug reportb
result : Short path constraint that exposesb.failure
c1 ∧ . . . ∧ cn ≔ intersect(b.pathConstraints);1

pc≔ true;2

foreach i = 1, . . . ,n do3

pci ≔ c1 ∧ . . . ci−1 ∧ ci+1 ∧ . . . cn;4

if !exposesFailures(pci) then5

pc≔ pc∧ ci ;6

if exposesFailures(pc) then7

return pc;8

return shortest(b.pathConstraints);9

Subroutine exposesFailure(pc):10

inputpc≔ solve(pc);11

if inputpc , ⊥ then12

outputpc≔ executeConcrete(P, inputpc);13

failurespc≔ getFailures(O,outputpc);14

return b.failure ∈ failurespc;15

return false;16

Fig. 3: The path constraint minimization algorithm. The
methodintersectreturns the set of conjuncts that are present
in all given path constraints, and the methodshortestreturns
the path constraint with fewest conjuncts. The other auxiliary
functions are the same as in Figure 2.

This eliminates irrelevant constraints, and a solution fora
shorter path constraint is often a smaller input.

For a given bug reportb, the algorithm first intersects all
the path constraints exposingb.failure (line 1). The minimizer
systematically removes one conjunct at a time (lines 3-6). If
one of these shorter path constraints does not exposeb.failure,
then the removed conjunct is required for exposingb.failure.
The set of all such required conjuncts determines the mini-
mized path constraint. From the minimized path constraint,the
algorithm produces a concrete input that exposes the failure.

The algorithm in Figure 3 does not guarantee that the
returned path constraint is the shortest possible that exposes
the failure. However, the algorithm is simple, fast, and effective
in practice (see Section 6.3.2).

Our minimizer differs from input minimization techniques,
such as delta debugging [8], [44], in that our algorithm
operates on thepath constraintthat exposes the failure, and
not theinput. A constraint concisely describes a class of inputs
(e.g., the constraintpage2 , 1337 describes all inputs different
than 1337). Since a concrete input is an instantiation of a
constraint, it is more effective to reason about input properties
in terms of their constraints.

Each failure might be encountered along several execution
paths that might partially overlap. Without any information
about the properties of the inputs, delta debugging minimizes
only a single input at a time, while our algorithm handles
multiple path constraints that lead to a failure.

3.4 Minimization Example

The malformed HTML failure described in Section 3.2 can be
triggered along different execution paths. For example, both of

5



the following path constraints lead to inputs that expose the
failure. Path constraint (a) is the same as (II) in Section 3.2.

NotSet(page) ∧ page2 , 1337 ∧ login = 1 (a)
Set(page) ∧ page = 0 ∧ page2 , 1337 ∧ login = 1 (b)

First, the minimizer computes the intersection of the path
constraints (line 1). The intersection is:

page2 , 1337 ∧ login = 1 (a∩ b)

Then, the minimizer creates two shorter path constraints by
removing each of the two conjuncts in turn. First, the mini-
mizer creates path constraintlogin = 1. This path constraint
corresponds to an input that reproduces the failure, namely
login ← 1. The minimizer determines this by executing the
program on the input (line 14 in Figure 3). Second, the mini-
mizer creates path constraintpage2 , 1337. This path constraint
does not correspond to an input that exposes the failure. Thus,
the minimizer concludes that the conditionlogin = 1, that was
removed from (a ∩ b) to form the second path constraint, is
required. In this example, the minimizer returnslogin = 1.
The result is the minimal path constraint that describes the
minimal failure-inducing input, namelylogin← 1.

4 C C  S E 
E-S M C
A typical PHP web application is a client-server application
in which data and control flows interactively between a server
that runs PHP scripts and a client, which is usually a web
browser. The PHP scripts that run on the server generate
HTML that includes interactive user input widgets such as
buttons and menu items that, when selected by the user, invoke
other PHP scripts. When these other PHP scripts are invoked,
they are passed a combination of user input and constant values
taken from the generated HTML. Modeling such user input is
important, because coverage of the application will typically
remain very low otherwise.

In Section 3, we described how to find failures in PHP web
applications by adapting an existing test generation approach
to consider language constructs that are specific to PHP, by
using an oracle to validate the output, and by supporting
database interaction. However, we did not yet supply a solution
for handling user input options that are created dynamically by
a web application, which includes keeping track of parameters
that are transferred from one script to the next—either by
persisting them in the environment, or by sending them as
part of the call.

To handle this problem, Apollo implements a form of
explicit-state software model checking. That is, Apollo sys-
tematically explores the state space of the system, i.e., the
program under test. The algorithm in Section 3 always restarts
the execution from the same initial state, and discards the state
reached at the end of each execution. Thus, the algorithm
reaches only 1-level deep into the application, where each
level corresponds to a cycle of: a PHP script that generates
an HTML form that the user interacts with to invoke the next

PHP script. In contrast, the algorithm presented in this section
remembers and restores the state between executions of PHP
scripts. This technique, known as state matching, is widely
known in model checking [22], [39] and implemented in tools
such as SPIN [11] and JavaPathFinder [21]. To our knowledge,
we are the first to implement state matching in the context of
web applications and PHP.

4.1 Interactive User Simulation Example

Figure 4 shows an example of a PHP application that is
designed to illustrate the particular complexities of finding
faults in an interactive web applications. In particular, the
figure shows: anindex.php top-level script that contains static
HTML in Figure 4(a), a generic login scriptlogin.php in
Figure 4(c), and a skeleton of a data display scriptview.php

in Figure 4(d). The PHP scripts in Figure 4 rely on a
shared include fileconstants.php that defines some standard
constants, which is shown in in Figure 4(b). Note that the
code in Figure 4 is an ad-hoc mixture of PHP statements and
HTML fragments. The PHP code is delimited by<?php and
?> tokens (For instance lines 44 and 69 in Figure 4(c)). The
use of HTML in the middle of PHP indicates that HTML is
generated as if it were the argument of a print statement. The
dirname function—which returns the directory component of a
filename—is used in therequire statements, as an example of
including a file whose name is computed at run-time.

These PHP scripts are part of the client-server work flow
in a web application: the user first sees theindex.php page
of Figure 4(a) and enters credentials. The user-input cre-
dentials are processed by the script in Figure 4(c), which
generates a response page that allows the user to enter
further input—a topic—that in turn entails further pro-
cessing by the script in Figure 4(d). Note that the user
name and password that are entered by the user during
the execution oflogin.php are stored in special locations
$ SESSION[ $userTag ] and $ SESSION[ $pwTag ], respectively.
Moreover, if the user is the administrator, this fact is recorded
similarly, in $ SESSION[ $typeTag ]. These locations illustrate
how PHP handlessession state, which is data that persists from
one page to another, typically for a particular interactionby a
particular user. Thus, the updates toSESSION in Figure 4(c)
will be seen (as the SESSION information is saved and read
locally on the server) by the code in Figure 4(d) when the user
follows the link toview.php in the HTML page that is returned
by login.php. Theview.php script uses this session information
to verify the username/password in line 46.

Our example program contains an error in the HTML
produced for the administrative details: theH2 tag that is
opened on line 62 of Figure 4(d) is not closed. While this
fault itself is trivial, finding it is not. Assume that testing
starts (as an ordinary user would) by entering credentials to the
script in Figure 4(c). A tester must then discover that setting
$user to the value ‘admin’ results in the selection of a different
branch that records the user type ‘admin’ in the session state
(see lines 34–36 inlogin.php). After that, a tester would have
to enter a topic in the form generated by the login script, and
would then proceed to Figure 4(d) with the appropriate session
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1 <html>

2 <head>Login</head>

3 <body>

4 <form name="login" action="exampleLogin.php">

5 <input type="text" name="user"/>

6 <input type="password" name="pw"/>

7 </form>

8 </body>

9 </html>

10 <?php

11 userTag = ’user’

12 pwTag = ’pw’;

13 typeTag = ’type’;

14 ?>

(a) index.php (b) constants.php

15 <HTML>

16 <?php

17 require( dirname(__FILENAME__).’/includes/constants.php’);

18

19 $user = $_REQUEST[ ’user’ ];

20 $pw = $_REQUEST[ ’pw’ ];

21

22 if (check_password($user, $pw) {

23 print "<HEAD>Login Successful</HEAD>\n";

24

25 $_SESSION[ $userTag] = $user;

26 $_SESSION[ $pwTag ] = $pw;

27 ?>

28 <BODY>

29 <FORM action="view.php">

30 <INPUT TYPE="text" NAME="topic"/>

31 </FORM>

32 </BODY>

33 <?php

34 if ($user == ’admin’) {

35 $_SESSION[ $typeTag ] = ’admin’;

36 }

37 else {

38 print "<HEAD>Login Failed</HEAD>\n";

39 }

40 ?>

41 </HTML>

42 <HTML>

43 <HEAD>Topic View</HEAD>

44 <?php

45 print "<BODY>\n";

46 if(check_password($_SESSION[$userTag], $_SESSION[$pwTag]) {

47 require( dirname(__FILENAME__).’/includes/constants.php’);

48

49 $type = $_SESSION[ $typeTag ];

50 $topic = $_REQUEST[ ’topic’ ];

51

52 if ($type == ’admin’) {

53 print "<H1>Admin ";

54 } else {

55 print "<H1>Normal ";

56 }

57 print "View of $topic</H1>\n";

58

59 /* code to print topic view... */

60

61 if ($type == ’admin’) {

62 print "<H2>Administrative Details\n";

63 /* code to print admin details... */

64 }

65 } else {

66 print "Please Log in\n";

67 }

68 print "</BODY>\n";

69 ?>

70 </HTML>
(c) login.php (d) view.php

Fig. 4: Example PHP web application.

state, which will finally generate HTML exhibiting the fault
as is shown in Figure 5(a). Thus, finding the fault requires a
careful selection of inputs to a series of interactive scripts, as
well as making sure updates to the session state during the
execution of these scripts are preserved (I.e., making surethat
the execution of the different script happen during the same
session).

4.2 Algorithm

Figure 6 shows pseudo-code for the algorithm, which extends
the algorithm in Figure 2 with explicit-state model checking to
handle the complexity of simulating user inputs. The algorithm
tracks the state of the environment, and automatically discov-
ers additional configurations based on an analysis of the output
for available user options. In particular, the algorithm (i) tracks
changes to the state of the environment (i.e., session state,
cookies, and the database) and (ii) performs an “on the fly”
analysis of the output produced by the program to determine
what user options it contains, with their associated PHP scripts.
By determining the state of the environment as it exists when
an HTML page is produced, the algorithm can determine the
environment in which additional scripts are executed as a result
of user interaction. This is important because a script is much
more likely to perform complex behavior when executed in
the correct context (environment). For example, if the web
application does not record in the environment that a user is
logged in, most subsequent calls will terminate quickly (e.g.,

when the condition in line 46 of Figure 4(d) is false) and will
not present useful information. For simplicity, the algorithm
implicitly handles the fact that there are possibly multiple entry
points into a PHP program. Thus, an input will contain the
script to execute in addition to the values of the parameters.
For instance, the first call might be to index.php script, while
subsequent calls can execute other scripts.

There are four differences (underlined in the figure) with the
simplified algorithm that was previously shown in Figure 2.

1) A configuration contains an explicit state of the environ-
ment (before the only state that was used was the initial
stateS0) in addition to the path constraint and the input
(line 3).

2) Before the program is executed, the algorithm (method
executeConcrete) will restore the environment to the state
given in the configuration (line 7), and will return the new
state of the environment after the execution.

3) When thegetConfigs subroutine is executed to find new
configurations, it analyzes the output (the actual mech-
anism of the analysis is explained and demonstrated in
Section 5.3) to find new possible transitions from the
new environment state (lines 24—26). Each transition is
expressed as a pair of a path constraint and an input.

4) The algorithm uses a set of configurations that are already
in the queue (line 14) and it performs state matching, in
order to only explore new configurations (line 11).
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1 <HTML>

2 <HEAD>Topic View</HEAD>

3 <BODY>

4 <H1>Admin View of A topic</H1>

...

5 <H2>Administrative Details

...

6 </BODY>

7 </HTML>

HTML line PHP lines in 4(d)
1 42
2 43
3 45
4 53, 57
5 62
6 68
7 70(a) HTML output (b) output mapping

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing

end tag, improper nesting of elements, or use of an element where it is not allowed

Line 5, character 1: start tag was here (c) Output of WDG Validator
Fig. 5: (a) HTML produced by the script of Figure 4(d).(b) Output mapping constructed during execution.(c) Part of output of WDG
Validator on the HTML of Figure 5(a).

parameters: ProgramP, oracleO, Initial stateS0

result : Bug reportsB;
B : setOf(〈failure, setOf(pathConstraint),setOf(input)〉)
B ≔ ∅;1

toExplore≔ emptyQueue();2

enqueue(toExplore, 〈emptyPC(),emptyInput(),S0〉);3

visited≔ {〈emptyPathConstraint(),emptyInput(),S0〉};4

while not empty(toExplore) and not timeExpired()do5

〈pathConstraint, input,Sstart〉 ≔ dequeue(toExplore);6

〈output,Send〉 ≔ executeConcrete(Sstart,P, input);7

foreach f in getFailures(O,output) do8

merge〈f ,pathConstraint, input〉 into B;9

newConfigs≔ getConfigs(input,output,Sstart,Send);10

newConfigs≔ newConfigs− visited;11

foreach 〈pathConstrainti , inputi ,Si〉 ∈ newConfigsdo12

enqueue(toExplore, 〈pathConstrainti , inputi ,Si〉);13

visited≔ visited∪ 〈Si , inputi〉;14

return B;15

Subroutine getConfigs(input,output,Sstart,Send):16

configs≔ ∅;17

c1 ∧ . . . ∧ cn ≔ executeSymbolic(Sstart,P, input);18

foreach i = 1,. . . ,ndo19

newPC≔ c1 ∧ . . . ∧ ci−1 ∧ ¬ci ;20

input≔ solve(pathConstraint);21

if input, ⊥ then22

enqueue(configs, 〈newPC, input,Sstart〉);23

foreach 〈newInputi ,newPCi〉 ∈ analyzeOutput(output) do24

if newInput, ⊥ then25

configs≔ configs∪ 〈newPCi ,newInputi ,Send〉;26

return configs;27

Fig. 6: The failure detection algorithm. The output of the
algorithm is a set of bug reports, each reports a failure and the
set of tests exposing that failure. Thesolveauxiliary function
uses the constraint solver to find an input satisfying the path
constraint, or returns⊥ if no satisfying input exists. The
mergeauxiliary function merges the pair of pathConstraint
and input for an already detected failure into the bug report
for that failure. TheanalyzeOutputauxiliary function per-
forms an analysis of the output to extract possible transitions
from the current environment state.

4.3 Example

We will now illustrate the algorithm of Figure 6 using the
example application of Figure 4. The inputs to the algorithm
are: P is the code from Figure 4, the initial state of the
environment is empty, the first script to execute is the script
in Figure 4(a), andO is the WDG HTML validator7. The
algorithm begins on line 3 by initializing the work queue with
one item: an empty input to the script of Figure 4(a) with an
empty path constraint and an empty initial environment.

iteration 1. The first iteration of the outer loop (lines 5–14)
removes that item from the queue (line 6), restores the empty
initial state, and executes the script (line 7).

No failures are observed. The call toexecuteSymbolicon
line 18 returns an empty path constraint, so the function
analyzeOutputon line 24 is executed next, and returns one
user option;〈login.php,∅,∅〉 for executinglogin.php with no
input, and the empty state. This configuration is added to the
queue (line 13) since it was not seen before.

iteration 2-5. The next iteration of the top-level loop de-
queues the new work item, and executeslogin.php with
empty input, and empty state. No failures are found. The
call to executeSymbolicin line 18 returns a path constraint
user , admin ∧ user , reg, indicating that the call to
check password on line 22 in Figure 4(c) returned false8. Given
this, the loop at lines 19–23 will generate several new work
items for the same script with the following path constraints:
user , admin ∧ user = reg, and user = admin which are
obtained by negating the previous path constraint. The loop
on lines 24—26 is not entered, because no user input options
are found. After several similar iterations, two inputs are
discovered:user = admin∧pw = admin, anduser = reg∧pw = reg.
These corresponds to alternate control flows in which the
check password test succeeds.

iteration 6-7. The next iteration of the top-level loop dequeues
an item that allows thecheck password call to succeed (assume
it selecteduser = reg...). Once again, no failures are observed,
but now the session state withuserandpw set is recorded at
line 7. Also, this timeanalyzeOutput(line 24) finds the link to
the script in Figure 4(d), and so the loop at lines 24—26 adds
one item to the queue, executingview.php with the current
session state.

7. http://htmlhelp.com/tools/validator/
8. For simplicity, we omit the details of this function. It compares the user

name and password to some constants ‘admin’ and ‘reg’.
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Fig. 7: The architecture of Apollo.

The next iteration of the top-level loop dequeues one work
item. Assume that it takes the last one described above. Thus,
it executes the script in Figure 4(d) with a session that defines
user and pw but not type. Hence, it produces an execution
with no errors.

iteration 8-9. The next loop iteration takes that last work
item, containing a user and password pair for which the call to
check password succeeds, with the user name as ‘admin’. Once
again, no failures occur, but now the session state withuser,
pw and typeset is recorded at line 7. This time, there are no
new inputs to be derived from the path constraint, since all
prefixes have been covered already. Once again, parsing the
output finds the link to the script in Figure 4(d) and adds a
work item to the queue, but with a different session state (in
this case, the session state also includes a value fortype). The
resulting execution of the script in Figure 4(d) with the session
state that includestype results in an HTML failure.

5 I
We created a tool called Apollo that implements our tech-
nique for PHP. Apollo consists of three major components,
Executor, Bug Finder, and Input Generator illustrated in
Figure 7. This section first provides a high-level overview
of the components and then discusses the pragmatics of the
implementation.

The inputs to Apollo are the program under test and
an initial value for the environment. The environment will
usually consist of a database with some values, and additional
information about username/password pairs for the database.
Attempting to retrieve information from the database using
randomly chosen values for username/password is unlikely to
be successful. Symbolic execution is equally helpless without
the database manager because reversing cryptographic func-
tions is beyond the state-of-the-art for constraint solvers.

TheExecutor is responsible for executing a PHP script with
a given input in a given state. The executor contains two sub-
components:

• The Shadow Interpreter is a PHP interpreter that we
have modified to propagate and record path constraints
and positional information associated with output. This
positional information is used to determine which failures
are likely to be symptoms of the same fault.

• The State Manager restores the given state of the envi-
ronment (database, session, cookies) before the execution,
and stores the new environment after the execution.

The Bug Finder uses an oracle to find HTML failures,
stores the all bug reports, and finds the minimal conditions on
the input parameters for each bug report. The Bug Finder has
the following sub-components:
• The Oracle finds HTML failures in the output of the

program.
• TheBug Report Repositorystores all bug reports found

during all executions.
• The Input Minimizer finds, for a given bug report,

the smallest path constraint on the input parameters that
results in inputs inducing the same failure as in the report.

The Input Generator implements the algorithm described
in Figure 6. The Input Generator contains the following sub-
components:
• The UI Option Analyzer analyzes the HTML output of

each execution to convert the interactive user options into
new inputs to execute.

• The Symbolic Driver generates new path constraints
from the constraints found during the execution.

• TheConstraint Solver computes an assignment of values
to input parameters that satisfies a given path constraint.

• The Value Generator generates values for parameters
that are not otherwise constrained, using a combination
of random value generation and constant values mined
from the program source code.

5.1 Executor

We modified the Zend PHP interpreter 5.2.29 to produce
symbolic path constraints for the executed program, using
the “shadow interpreter” approach [9]. The shadow interpreter
performs the regular (concrete) program execution using the
concrete values, and simultaneously performs symbolic execu-
tion. Creating the shadow interpreter required five alterations
to the PHP runtime:
1) Associating Symbolic Parameters with Values

A symbolic variable may be associated with each value.
Values derived from the input—that is, either read directly
as input or computed from input values—have symbolic
variables associated with them. Values not derived from
the input do not. These associations arise when a value
is read from one of the special arraysPOST, GET,
and REQUEST, which store parameters supplied to the
PHP program. For example, executing the statement$x =

$ GET["param1"] results in associating the value read from
the global parameterparam1 and bound to parameterx
with the symbolic variableparam1. Values maintain their
associations through assignments and function calls (thus,

9. http://www.php.net/
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the interpreter performs symbolic execution at the inter-
procedural level). Importantly, during program execution,
the concrete values remain, and the shadow interpreter
does not influence execution.
Unlike other projects that perform concrete and symbolic
execution [7], [18], [19], [36], our interpreter does not
associate complex symbolic expressions with all runtime
values, but only symbolic variables, which exist only
for input-derived values. This design keeps the constraint
solver simple and reduces the performance overhead. As
our results (Section 6) indicate, this lightweight approach
is sufficient for the analyzed PHP programs.

2) Storing Constraints at Branch Points
At branching points (i.e., value comparisons) that involve
values associated with symbolic variables, the interpreter
extends the initially empty path constraint with a conjunct
that corresponds to the branch actually taken in the execu-
tion. For example, if the program executes a statementif

($name == "John") and this condition succeeds, where$name
is associated with the symbolic variableusername, then the
algorithm appends the conjunctusername = "John" to the
path constraint.

3) Handling PHP Native Functions
Our modified interpreter records conditions for PHP-
specific comparison operations, such asisset and empty,
which can be applied to any variable. Operationisset
returns a boolean value that indicates whether or not a
value different fromNULL was supplied for a variable. The
empty operator returns true when applied to: the empty
string,0, "0", NULL, false, or an empty array. The interpreter
records the use ofisset on values with an associated
symbolic variable, and on uninitialized parameters.
The isset comparison creates either theNotSetor theSet
condition. The constraint solver chooses an arbitrary value
for a parameterp if the only condition forp is Set(p). Oth-
erwise, it will also take into account other conditions. The
NotSetcondition is used only in checking the feasibility
of a path constraint. A path constraint with theNotSet(p)
condition is feasible only if it does not contain any other
conditions onp. The empty comparison creates equality or
inequality conditions between the parameter and the values
that are considered empty by PHP.

4) Propagating Inputs through Sessions and Cookies
The use of session state allows a PHP application to store
user-supplied information on the server for retrieval by
other scripts. We enhanced the PHP interpreter to record
when input parameters are stored in session state. This
enables Apollo to track constraints on input parameters in
all scripts that use them.

5) Web Server Integration
Dynamic web applications often depend on information
supplied by a web-server (such as Apache), and some
PHP constructs are simply ignored by the command line
interpreter (e.g.,header). In order to allow Apollo to an-
alyze more PHP code, Apollo supports execution through
the Apache web-server in addition to the stand-alone
command line executor. A developer can use Apollo to
silently analyze the execution and record any failure found

while manually using the subject program on an Apache
server.

The modified interpreter performs symbolic execution along
with concrete execution, i.e., every variable during program
execution has a concrete value and may have additionally
a symbolic value. Only the concrete values influence the
control flow during the program execution, while the symbolic
execution is only a “witness” that records, but does not
influence, control flow decisions at branching points. This
design deals with exceptions naturally because exceptionsdo
not disrupt the symbolic-value mapping for variables.

Our approach to symbolic execution allows us to handle
many PHP constructs that are problematic in a purely static
approach. For instance, for computed variable names (e.g.,$x

= ${$foo}), any symbolic information associated with the value
that is held by the variable named byfoo will be passed to
x by the assignment10. In order to heuristically group HTML
failures that may be manifestations of the same fault, Apollo
records the output statement (i.e.,echo or print) that generated
each fragment of HTML output.

State Manager. PHP applications make use of persistent
state such as the database, session information, and cookies.
The State Manager is in charge of (i) restoring the environment
prior to each execution, and (ii) storing the new environment
after each execution.

5.2 Bug Finder

The bug finder is in charge of transforming the results of
the executed inputs into bug reports. Below is a detailed
description of the components of the bug finder.

Bug Report Repository This repository stores the bug
reports found in all executions. Each time a failure is detected,
the corresponding bug report (for all failures with the same
characteristics) is updated with the path constraint and the
input inducing the failure. A failure is defined by its char-
acteristics, which include: the type of the failure (execution
failure or HTML failure), the corresponding message (PHP er-
ror/warning message for execution failures, and validator mes-
sage for HTML failures), and the PHP statement generating
the problematic HTML fragments identified by the validator
(for HTML failures), or the PHP statement involved in the
PHP interpreter error report (for execution failures). Whenthe
exploration is complete, each bug report contains one failure
characteristics, (error message and statement involved inthe
failure) and the sets of path constraints and inputs exposing
failures with the same characteristics.

Oracle. PHP Web applications output HTML/XHTML.
Therefore, in Apollo, we use as oracle an HTML validator
that returns syntactic (malformed) HTML failures found in
a given document. We experimented with both the offline
WDG validator11 and the online W3C markup validation
service12. Both oracles identified the same HTML failures.
Our experiments use the faster WDG validator.

10. On the other hand, any data flow that passes outside PHP, such as via
JavaScript code in the generated HTML, will not be tracked bythis approach.

11. http://htmlhelp.com/tools/validator/offline
12. http://validator.w3.org
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Input Minimizer. Apollo implements the algorithm de-
scribed in Figure 3 to performpostmortemminimization
of the path constraints. For each bug report, the minimizer
executes the program multiple times, with multiple inputs
that satisfy different path constraints, and attempts to find the
shortest path constraint that results (executing the program
with an input satisfying the path constraint) in the same failure
characteristics.

5.3 Input Generator

UI Option Analyzer
Many PHP Web applications create interactive HTML pages

that contain user interface elements such as buttons and
menus that require user interaction to execute further parts
of the application. In such cases, pressing the button may
result in the execution of additional PHP source files. There
are two challenges involved in dealing with such interactive
applications. First, we need to analyze the HTML output to
find the referenced scripts, and the different values that can
be supplied as parameters. Second, Apollo needs to be able to
follow input parameters through the shared global information
(database, thesession, and thecookie mechanisms)

Apollo approach to the above challenges is to simulate
user interaction by analyzing the dynamically created HTML
output, and tracking the symbolic parameters through the
environment (with the exception of the database). Apollo
automatically extracts the available user options from the
HTML output. Each option contains the script to execute,
along with any parameters (with default values if supplied)
for that script. Apollo also analyzes recursive static HTML
documents that can be called from the dynamic HTML output,
i.e. Apollo traverses hyperlinks in the generated dynamic
HTML that link to other HTML documents on the same site.

Since additional code on the client side (for instance, Java
script) might be executed when a button is pressed, this
approach might induce false positive bug reports. In our
experiments, this limitation produced no false positive bug
reports.

For example after analyzing the output of the program of
Figure 8, the UI Option Analyzer will return the following
two options:

1) Script: “mainmenu.php”
PathConstraint:txtNick = ”Admin” ∧ Exist (pwdPassword)

2) Script: “newuser.php”
PathConstraint:∅

The Symbolic Driver implements the combined concrete
and symbolic algorithm of Figure 2. The driver has two
main tasks: select which input to consider next (line 5), and
create additional inputs from each executed input (by negating
conjuncts in the path constraint). To select which input to
consider next, the driver uses acoverage heuristic, similar
to those used in EXE [7] and SAGE [19]. Each conjunct in
the path constraint knows the branch that created the conjunct,
and the driver keeps track of all branches previously executed
and favors inputs created from path constraints that contain
un-executed branches.

<?php

echo "<h2>WebChess ".$Version." Login"</h2>;

?>

<form method="post" action="mainmenu.php">

<p>

Nick: <input name="txtNick" type="text" size="15" default="admin"/>

<br />

Password: <input name="pwdPassword" type="password" size="15"/>

</p>

<p>

<input name="login" value="login" type="submit"/>

<input name="newAccount" value="New Account"

type="button" onClick="window.open(’newuser.php’, ’_self’)"/>

</p>

</form>

Fig. 8: A simplified version of the main entry point (index.php) to
a PHP program. The HTML output of this program contains a form
with two buttons. Pressing thelogin button executesmainmenu.php and
pressing thenewAccount button will execute thenewuser.php script.

To avoid redundant exploration of similar executions,
Apollo performs state matching (performed implicitly in
Line 11 of Figure 6) by not adding already-explored tran-
sitions.

Constraint Solver. The interpreter implements a
lightweight symbolic execution, in which the only constraints
are equality and inequality with constants. Apollo transforms
path constraints into integer constraints in a straightforward
way, and useschoco13 to solve them.

This approach still allows us to handle values of the standard
types (integer, string), and is straightforward because the only
constraints are equality and inequality14.

In cases where parameters are unconstrained, Apollo uses a
combination of values that are randomly generated and values
that are obtained by mining the program text for constants (in
particular, constants used in comparison expressions).

6 E
We experimentally measured the effectiveness of Apollo by
using it to find faults in PHP web applications. We designed
experiments to answer the following research questions:

Q1. How many faults can Apollo find, and of what
varieties?

Q2. How effective is the fault detection technique of
Apollo compared to alternative approaches in terms
of the number and severity of discovered faults and
the line coverage achieved?

Q3. How effective is our minimization technique in re-
ducing the size of input parameter constraints and
failure-inducing inputs?

For the evaluation, we selected 6 open-source PHP programs
from http://sourceforge.net (see Figure 9):
• faqforge: tool for creating and managing documents.
• webchess: online chess game.
• schoolmate: PHP/MySQL solution for administering el-

ementary, middle, and high schools.
• phpsysinfo: displays system information, e.g., uptime,

CPU, memory, etc.

13. http://choco-solver.net/index.php?title=Main Page
14. Floating-point values can be handled in the same way, though none of

the examined programs required it.
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program version #files PHP LOC #downloads
faqforge 1.3.2 19 734 14,164
webchess 0.9.0 24 2,226 32,352
schoolmate 1.5.4 63 4,263 4,466
phpsysinfo 2.5.3 73 7,745 492,217
timeclock 1.0.3 62 13,879 23,708
phpBB2 2.0.21 78 16,993 18,668,112

Fig. 9: Subject programs.#files counts the.php and.inc files. PHP
LOC is the number of executable PHP lines, computed by the
interpreter as the number of lines with PHP opcodes.#downloadsis
the number of downloads fromhttp://sourceforge.net.

• timeclock is a web-based timeclock system.
• phpBB2 is a discussion forum.

6.1 Generation Strategies

We use the following test input generation strategies in the
remainder of this section:

• Apollo generates test inputs using the technique described
in Section 3.

• Randomized is an approach similar to the one proposed
by Halfond and Orso [20] for JavaScript. The test input
generation strategy generates test inputs by giving random
values to parameters. The values are chosen from constant
values that appear textually in the program source and
from default values. A difficulty is that the parameters’
names and types are not immediately clear from the
source code. The randomized strategy infers the parame-
ters’ names and types from dynamic traces—any variable
for which the user can supply a value, is classified as a
parameter.

6.2 Methodology

To answer the first research question (Q1) we applied Apollo
to 6 subject programs and we classified the discovered failures
into five groups based on their different failure characteristics:

• execution crash:the PHP interpreter terminates with an
exception.

• execution error: the PHP interpreter emits an error
message that is visible in the generated HTML.

• execution warning: the PHP interpreter emits an error
message that is invisible in the generated HTML.

• HTML error: the program generates HTML for which
the validator produces an error report.

• HTML warning: the program generates HTML for
which the validator produces a warning report.

This classification is a refinement of the one presented in
Section 2.3.

To answer the second research question (Q2) we compared
our technique to two other approaches. We compared both
the coverage achieved and the number of faults found with
the Randomizedgeneration strategy. Coverage was measured
using the line coverage metric, i.e., the ratio of the numberof
executed lines to the total number of lines with executable PHP
code in each application. We ran each test input generation

Fault Category Faults Percentage
Malformed SQL 60 71.4
Array index out of bound 5 6.0
Resource used as offset 4 4.8
Failed to open stream 4 4.8
File not found 2 2.6
Can’t open connection 2 2.6
Assigning reference 2 2.6
Undefined function 1 1.2

Fig. 11: The execution faults found by Apollo.

strategy for 10 minutes on each subject program. This time
limit was chosen arbitrarily, but it allows each strategy to
generate hundreds of inputs and we have no reason to believe
that the results would be materially affected by a different
time limit. This time budget includes all experimental tasks,
i.e., program execution, harvesting of constant values from
program source, test generation, constraint solving (where
applicable), output validation via an oracle, and line coverage
measurement. To avoid bias, we ran both strategies inside the
same experimental harness. This includes the Database Man-
ager (Section 5), which supplies user names and passwords
for database access. For our experiments, we use the WDG
offline HTML validator, version 1.2.2.

We also compared Apollo’s results to the results reported
by Minamide’s static analysis [31] on four subject programs
(Section 6.3.1 presents the results).

To answer the third research question, about the effective-
ness of the input minimization, we performed the following ex-
periments. Recall that several execution paths and inputs may
expose the same failure. Our input minimization algorithm
attempts to produce the shortest possible input that exposes
each failure. The inputs to the minimizer are the failure found
by the algorithm in Figure 6 along with all the execution paths
that expose each failure.

6.3 Results

Figure 10 tabulates the faults (we manually inspected most
of the reported failures and, to the best of our knowledge,
all reported faults are counted only once). and line coverage
results of running the two test input generation strategieson
the subject programs. TheApollo strategy found 302 faults
in the subject applications, versus only 95 faults forRandom-
ized. Moreover, theApollo test generation strategy achieved
an average line coverage of 50.2%, versus only 11.6% for
Randomized.

The coverage ofphpbb2 and timeclock is relatively small
as the output of these applications contains client-side scripts
written in JavaScript which Apollo currently does not analyze.

Figures 11 and 12 classify the faults reported by Apollo.
The execution errors (Figure 11) are dominated by database-
related errors, where the application had difficulties accessing
the database, resulting in error messages such as (1) “supplied
argument is not a valid MySQL result resource” and (2)
“Unable to jump to row 0 on MySQL result”. The two SQL-
related error messages quoted above occurred in faqforge (9
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line execution HTML validation
program strategy #inputs generated coverage % crash error warning error warning Total faults

faqforge Randomized 1461 19.2 0 0 0 10 1 11
Apollo 717 92.4 0 9 0 46 19 74

webchess Randomized 1805 5.9 1 13 2 3 0 19
Apollo 557 42.0 1 20 2 7 0 35

schoolmate Randomized 1396 8.3 1 0 0 18 0 19
Apollo 724 64.9 2 21 9 58 0 100

phpsysinfo Randomized 406 21.3 0 5 3 2 0 10
Apollo 143 56.2 0 5 4 2 0 11

timeclock Randomized 928 3.2 0 1 1 29 1 32
Apollo 789 14.1 0 1 1 64 1 67

phpbb2 Randomized 2497 11.4 0 0 3 1 0 4
Apollo 649 31.7 0 0 5 21 0 26

Total Randomized 8493 11.6 2 19 9 63 2 95
Apollo 3579 50.2 3 56 21 198 20 302

Fig. 10: Experimental results for 10-minute test generation runs. The table presents results for each subject program, and each strategy,
separately. The#inputs column presents the number of inputs that each strategy created in the given time budget. Thecoveragecolumn
lists the line coverage achieved by the generated inputs. Theexecution crashes, errors, warnings andHTML errors , warnings columns
list the number of faults in the respective categories. TheTotal faults columns sums up the number of discovered faults.

Fault Category Faults Percentage
Element not allowed 40 17.5
Missing end tag 39 17.1
Can’t generate system identifier 25 11.0
No attribute 25 11.0
Unopened close tag 21 9.2
Missing attribute 21 9.2
character not allowed 11 4.8
End tag for unfinished element 11 4.8
Incorrect attribute 8 3.5
Element declaration 8 3.5

finished prematurely
Unfinished tag 7 3.1
Duplicate specification 4 1.8
Undefined element 4 1.8
Incorrect attribute value 4 1.8

Fig. 12: The HTML faults found by Apollo.

cases of error 1) and webchess (19 cases of error 1 and 1 case
of error 2), schoolmate (20 cases of error 1 and 9 cases of
error 2), timeclock (1 case of error 1), and phpbb2 (1 case of
error 1).

These failures have the same cause: user-supplied input
parameters are concatenated directly into SQL query strings;
leaving these parameters blank results in malformed SQL
causing themysql query functions to return an invalid result.
The subject programs failed to check the return value of
mysql query, and simply assume that a valid result is re-
turned. These faults are indications of a potentially serious
problem: the concatenation of user-supplied strings into SQL
queries makes these programs vulnerable to SQL injection
attacks [10]. Thus our testing approach indicates possibleSQL
injection vulnerabilities despite not being specifically designed
to look for security issues.

The three execution crashes (when the interpreter terminates
with an exception) in Figure 10 happen when the interpreter
tries to load files or functions that are missing. For instance,
for some inputs that can be supplied to the schoolmate subject

program, the PHP interpreter attempts to load a file that
does not exist in the current distribution of schoolmate. Since
schoolmate has 63 files, and PHP is an interpreted language
that allows the use of run-time string values when loading files,
it is hard to detect such faults. Apollo also discovers a severe
fault in the webchess subject program. This fault occurs when
the interpreter tries to call to a function that is undefined since
the PHP file implementing it is not included due to a value
supplied as one of the parameters.

The 228 malformed HTML faults can be divided into sev-
eral categories (Figure 12), These faults are mainly concerned
with HTML elements that occur in the wrong place, HTML
elements with incorrect values, and with unclosed tags. The
breakdown of HTML faults is similar across the different PHP
applications.

6.3.1 Comparison with Static Analysis

Minamide [31] presents a static analysis for discovering
HTML malformedness faults in PHP applications. Minamide’s
analysis tool approximates the string output of a program
with a context-free grammar, then discovers unclosed tags
by intersecting this grammar with the regular expression of
matched pairs of delimiters (open/closed tags). By contrast,
our analysis uses an HTML validator and covers the entire
language standard.

We performed our evaluation on a set of applications
overlapping with Minamide’s (webchess, faqforge, school-
mate, timeclock). For these four overlapping subject pro-
grams, Apollo is both moreeffectiveand moreefficient than
Minamide’s tool. Apollo found 3.4 times as many HTML
validation faults as Minamide’s tool (195 vs. 56). The faults
found by Minamide’s tool are not publicly available so we do
not know whether Apollo discovered all faults that Minamide’s
tool discovered. However, Apollo found 80 execution faults,
which are out of reach for Minamide’s tool. Apollo is also
more scalable—on schoolmate, Apollo found 58 malformed
HTML faults in 10 minutes, while Minamide’s tool found
only 14 faults in 126 minutes. The considerably longer running
time of Minamide’s tool is due to the construction of large
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success path constraints inputs
program rate% orig. size reduction orig. size reduction
faqforge 64 22.3 78% 9.3 69%
webchess 91 23.4 81% 10.9 60%
schoolmate 51 22.9 62% 11.5 42%
phpsysinfo 82 24.3 82% 17.5 74%

Fig. 13: Results of minimization. Thesuccess rateindicates the
percentage of faults whose exposing input was successfully min-
imized (i.e., the minimizer found a shorter exposing input). The
orig. size columns list the average size of original (un-minimized)
path constraints and inputs. The size of a path constraint is the
number of conjuncts. The size of an input is the number of key-
value pairs in the input. Thereduction columns list the amount by
which the minimized size is smaller than the unminimized size (i.e.,
1 − minimized

unminimized). The higher the percentage, the more successful the
minimization.

automata and to the expensive algorithm for checking disjoint-
ness between regular expressions and context-free languages.

6.3.2 Path Constraint Minimization

We measure the effectiveness of the minimization algorithm
of Section 3.3 via the reduction ratio between the size of the
shortest original (un-minimized) path constraint (and input)
and the minimized path constraint (and input).

Figure 13 tabulates the results. The results show that our
input minimization technique effectively reduces the size of
inputs by at least 42%, for more than 50% of the faults.

6.4 Threats to Validity

Construct Validity. Why do we count malformed HTML
as a defect in dynamically generated webpages? Does a
webpage with malformed HTML pose a real problem or this
is an artificial problem generated by the overly conservative
specification of the HTML language? Although web browsers
are resilient to malformed HTML, we have encountered cases
when malformed HTML crashed the popular Internet Explorer
web browser. More importantly, even though a particular
browser might tolerate malformed HTML, different browsers
or different versions of the same browser may not display
all information in the presence of malformed HTML. This
becomes crucial for some websites, for example for sites
related to financial transactions. Many websites provide a
button for verifying the validity of statically generated HTML.
The challenges of dynamically generated webpages prevent the
same institutions from validating the content.

Why do we use line coverage as a quality metric? We use
line coverage only as asecondarymetric, ourprimary metric
being the number of faults found. Line coverage indicates
how much of the application was explored by the analysis.
An analysis can only find faults in lines that are covered, so
more coverage generally leads to more faults being detected.

Why do we present the user with minimized path constraints
and inputs in addition to the inputs exposing the failure?
Although an input that corresponds to a longer path constraint
still exposes the same failure, in our experience, the removal of
superfluous information helps programmers with pinpointing
the location of the fault.

Internal Validity. Did Apollo discover real, unseeded, and
unknown faults? Since we used subject projects developed
by others, we could not influence the quality of the subject
programs. Apollo does not search for known or seeded faults,
but it finds real faults in real programs. For those subject
programs that connect to a database, we populated the database
with random records. The only thing that is “seeded” into
the experiment is a username/password combination, so that
Apollo can access the records stored in the database.

External Validity. Will our results generalize beyond the
subject programs? We only used Apollo to find faults in 6 PHP
projects. These may have serious quality problems, or may be
unrepresentative in other ways. Four of the subject programs
were also used as subject programs by Minamide [31]. We
chose the same programs to compare our results. We chose
an additional subject program, phpsysinfo, since it is almost
double the size of the largest subject that Minamide used.
Additionally, phpsysinfo is a mature and active project in
sourceforge. It is widely used, as witnessed by almost half a
million downloads (Figure 9), and it is ranked in the top 0.5%
projects on sourceforge (rank 997 of 176,575 projects as
of 7 May 2008). Nevertheless, Apollo found 11 faults in
phpsysinfo.

Reliability. Are the results reproducible? The subject pro-
grams that we used are publicly available from sourceforge.
The faults that we found are available for examination at
http://pag.csail.mit.edu/apollo.

6.5 Limitations

Simulating user inputs based locally executed JavaScript
The HTML output of a PHP script might contain buttons and
arbitrary snippets of JavaScript code that are executed when
the user presses the corresponding button. The actions that
the JavaScript might perform are currently not analyzed by
Apollo. For instance, the JavaScript code might pass specific
arguments to the PHP script. As a result, Apollo might report
false positives. Apollo might report a false positive if Apollo
decides to execute a PHP script as a result of simulating a user
pressing a button that is not visible. Apollo might also report a
false positive if it attempts to set an input parameter that would
have been set by the JavaScript code. In our experiments,
Apollo did not report any false positives.

Limited tracking in native methods. Apollo has limited
tracking of input parameters through PHP native methods.
PHP native methods are implemented in C, which make
it difficult to automatically track how input parameters are
transformed into output parameters. We have modified the
PHP interpreter to track parameters across a very small subset
of the PHP native methods. Similar to [41], we plan to
create an external language to model the dependences between
inputs and outputs for native methods to increase Apollo line
coverage when native methods are executed.

Limited sources of input parameters. Apollo currently
considers as parameters only inputs coming from the global
arrays POST, GET and REQUEST. Supporting other
global parameters such asENV and COOKIE is straight-
forward.
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7 RW
An earlier version of this paper was presented at ISSTA’08 [2].
The Apollo tool presented there did not handle the problem of
automatically simulating user interactions in web applications.
Instead, it relied on a manual transformation of the program
under test to enable the exploration of a few selected user
inputs. The current paper also extends [2] by providing a
more extensive evaluation, which includes two new large web
applications, and by presenting a detailed classification of the
faults found by Apollo. In addition, the Apollo tool presented
in [2] did not yet support web server integration,

In the remainder of this section, we discuss three categories
of related work: (i) combined concrete and symbolic execu-
tion, (ii) techniques for input minimization, and (iii) testing of
web applications.

7.1 Combined Concrete and Symbolic Execution

DART [18] is a tool for finding combinations of input values
and environment settings for C programs that trigger errors
such as assertion failures, crashes and nontermination. DART
combines random test generation with symbolic reasoning
to keep track of constraints for executed control-flow paths.
A constraint solver directs subsequent executions towards
uncovered branches. CUTE [36] is a variation (calledcon-
colic testing) on the DART approach. The authors of CUTE
introduce a notion of approximate pointer constraints to enable
reasoning over memory graphs and handle programs that use
pointer arithmetic.

Subsequent work extends the original approach of com-
bining concrete and symbolic executions to accomplish two
primary goals: 1) improving scalability [1], [5], [16], [17],
[19], [29], and 2) improving execution coverage and fault
detection capability through better support for pointers and
arrays [7], [36], better search heuristics [19], [24], [28], or
by encompassing wider domains such as database applica-
tions [14].

Godefroid [16] proposed a compositional approach to im-
prove the scalability of DART. In this approach, summaries
of lower level functions are computed dynamically when these
functions are first encountered. The summaries are expressed
as pre- and post-conditions of the function in terms of its
inputs. Subsequent invocations of these lower level functions
reuse the summary. Anandet al. [1] extend this compositional
approach to be demand-driven to reduce the summary compu-
tation effort.

Exploiting the structure of the program input may improve
scalability [17], [29]. Majumdar and Xu [29] abstract context-
free grammars that represent the program inputs to produce a
symbolic grammar. This grammar reduces the number of input
strings to enumerate during test generation.

Majumdar and Sen [28] describe hybrid concolic testing,
interleaves random testing with bounded exhaustive symbolic
exploration to achieve better coverage. Inkumsah and Xie [24]
combine evolutionary testing using genetic mutations with
concolic testing to produce longer sequences of test inputs.
SAGE [19] also uses improved heuristics, calledwhite-box
fuzzing, to achieve higher branch coverage.

Emmi et al. [14] extend concolic testing to database ap-
plications. This approach creates and inserts database records
and enables testing program code that depends on embedded
SQL queries.

Wassermann et al. [42] present a concolic testing tool for
PHP. The goal of their work is to automatically identify
security vulnerabilities caused by injecting malicious strings
into SQL commands. Their tool uses a framework of finite-
state transducers and a specialized constraint solver.

Some approaches aim at checking functional correctness.
A number of tools [4], [6] use a separate implementation of
the function being tested to compare outputs. This limits the
approach to situations where a second implementation exists.

While our work builds on this significant body of research,
there are two significant differences. First, our work goes
beyond simple assertion failures and crashes by using on
an oracle (in the form of an HTML validator) to determine
correctness, which means that our tool can handle situations
where the program has functionally incorrect behavior without
relying on programmer assertions. Second, our work addresses
PHP’s complex execution model, that involves multiple scripts
invoked via user-interface options in generated HTML pages,
and communicating values via session state and cookies. The
only other concolic testing approach for PHP [42] does not
present a fully automatic solution for dealing with multiple
interrelated PHP scripts.

7.2 Minimizing Failure-Inducing Inputs

Our work minimizes the constraints on the input parame-
ters. This shortens the failure-inducing inputs and to help
to pinpoint the cause of faults. Godefroidet al. [19] faced
this challenge since their technique produces several distinct
inputs that expose the same fault. Their approach hashes all
such inputs and returns an example failure-inducing input.Our
work also addresses another issue: identifying the minimalset
of program variables that are essential to induce the failure.
In this regard, our work is similar todelta debugging[8],
[44] and its extensionhierarchical delta debugging[32].
These approaches modify the failure inducing input directly,
thus leading to a single, minimal failure-inducing input. In
contrast, our technique modifies the set of constraints on
the failure-inducing input. This creates minimalpatternsof
failure-inducing inputs, which facilitates debugging. Moreover,
our technique is more efficient, because it takes advantage of
the (partial) overlapping of different inputs.

7.3 Testing of Web Applications

The language under consideration in this paper, PHP, is quite
different from the focus of previous testing research. PHP
poses several new challenges such as dynamic inclusion of
files, and function definitions that are statements. Existing
techniques for fault detection in PHP applications use static
analysis and target security vulnerabilities such asSQL injec-
tion or cross-site scripting(XSS) attacks [23], [26], [31], [40],
[43]. In particular, Minamide [31] uses static string analysis
and language transducers to model PHP string operations to
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generatepotential HTML output—represented by a context-
free grammar—from the web application. This method can be
used to generate HTML document instances of the resulting
grammar and to validate them using an existing HTML
validator. As a more complete alternative, Minamide proposes
a matching validationwhich checks for containment of the
generated context free grammar against a regular subset of the
HTML specification. However, this approach can only check
for matching start and end tags in the HTML output, while
our technique covers the entire HTML specification. Also,
flow-insensitive and context-insensitive approximationsin the
static analysis techniques used in this method result in false
positives, while our method reports only real faults.

Kieżun et al. present a dynamic tool, Ardilla [27], to create
SQL and XSS attacks. Their tool uses dynamic tainting,
concolic execution, and attack-candidate generation and vali-
dation. Like ours, their tool reports only real faults. However,
Kieżun et al. focus on finding security faults, while we
concentrate on functional correctness. Their tool builds on and
extends the input-generation component of Apollo but does not
address the problem of user interaction. It is an interesting area
of future research to combine Apollo’s user-interaction and
state-matching with Ardilla’s exploit-detection capabilities.

McAllister et al. [30] also tackle the problem of testing
interactive web application. Their approach attempts to follow
user interactions. Their method relies on pre-recorded traces of
user interactions, while our approach automatically discovers
allowable interactions. Moreover, their approach to handling
persistent state relies on instrumenting one particular web
application framework, Django. In contrast, our approach is
to instrument the PHP runtime system and observe database
interactions. This allows handling state of PHP applications
regardless of any framework they may use.

Benediktet al. [3] present a tool, VeriWeb, for automatically
testing dynamic webpages. They use a model checker to
systematically explore all paths (up to a certain bound) of
user navigate in a web site. When the exploration encounters
HTML forms, VeriWeb usesSmartProfiles. SmartProfiles are
user-specified attribute-value pairs that are used to automati-
cally populate forms and supply values that should be provided
as inputs. Although VeriWeb can automatically fill in the
forms, the human tester needs to pre-populate the user profiles
with values that a user would provide. In contrast, Apollo
automatically discovers input values by looking at the branch
conditions along an execution path. Benediktet al. do not
report any faults found, while we report 302.

Dynamic analysis of string values generated by PHP web
applications has been considered in areactivemode to prevent
the execution of insidious commands (intrusion prevention)
and to raise an alert (intrusion detection) [25], [34], [38]. As
far as we know, our work is the first attempt atproactivefault
detection in PHP web applications using dynamic analysis.

Finally, our work is related toimplementation based(as
opposed tospecification basede.g., [35]) testing of web
applications. These works abstract the application behavior
using a) client-side information such as user requests and cor-
responding application responses [12], [15], or b) server-side
monitoring information such as user session data [13], [37],

or c) static analysis of server-side implementation logic [20].
The approaches that use client-side information or server-
side monitoring information are inherently incomplete, and
the quality of generated abstractions depends on the quality
of the tests run.

Halfond and Orso [20] use static analysis of the server-side
implementation logic to extract a web application’s interface,
i.e., the set of input parameters and their potential values. They
implemented their technique for JavaScript. They obtained
better code coverage with test cases based on the interface
extracted using their technique as compared to the test cases
based on the interface extracted using a conventional web
crawler. However, the coverage may depend on the choices
made by the test generator to combine parameter values—an
exhaustive combination of values may be needed to maximize
code coverage. In contrast, our work uses dynamic analysis
of server side implementation logic for fault detection and
minimizes the number of inputs needed to maximize the
coverage. Furthermore, we include results on fault detection
capabilities of our technique. We implemented and evaluated
(Section 6) a version of Halfond and Orso’s technique for PHP.
Compared to that re-implementation, Apollo achieved higher
line coverage (50.2% vs. 11.6%) and found more faults (302
vs. 95).

8 C
We have presented a technique for finding faults in PHP
web applications that is based on combined concrete and
symbolic execution. The work is novel in several respects.
First, the technique not only detects run-time errors but also
uses an HTML validator as an oracle to determine situations
where malformed HTML is created. Second, we address a
number of PHP-specific issues, such as the simulation of
interactive user input that occurs when user interface elements
on generated HTML pages are activated, resulting in the
execution of additional PHP scripts. Third, we perform an
automated analysis to minimize the size of failure-inducing
inputs.

We created a tool, Apollo, that implements the analysis.
We evaluated Apollo on 6 open-source PHP web applications.
Apollo’s test generation strategy achieves over 50% line cover-
age. Apollo found a total of 302 faults in these applications: 84
execution problems and 218 cases of malformed HTML.
Finally, Apollo also minimizes the size of failure-inducing
inputs: the minimized inputs are up to 5.3× smaller than the
unminimized ones.
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[27] A. Kieżun, P. Guo, K. Jayaraman, and M. Ernst. Automatic creation
of SQL injection and cross-site scripting attacks. InProceedings of
International Conference of Software Engineering (ICSE), 2009.

[28] R. Majumdar and K. Sen. Hybrid concolic testing. InICSE, 2007.
[29] R. Majumdar and R.-G. Xu. Directed test generation usingsymbolic

grammars. InASE, 2007.
[30] S. McAllister, E. Kirda, and C. Kruegel. Leveraging user interactions

for in-depth testing of web applications. InRAID ’08: Proceedings
of the 11th international symposium on Recent Advances in Intrusion
Detection, pages 191–210, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Y. Minamide. Static approximation of dynamically generated Web
pages. InWWW, 2005.

[32] G. Misherghi and Z. Su. HDD: hierarchical delta debugging. In ICSE,
2006.

[33] R. O’Callahan. Personal communication, 2008.
[34] T. Pietraszek and C. V. Berghe. Defending against injection attacks

through context-sensitive string evaluation. InRAID, 2005.
[35] F. Ricca and P. Tonella. Analysis and testing of Web applications. In

ICSE, 2001.
[36] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine

for C. In FSE, 2005.
[37] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay

and failure detection for Web applications. InASE, 2005.
[38] Z. Su and G. Wassermann. The essence of command injection attacks

in Web applications. InPOPL, 2006.
[39] W. Visser, C. S. P̆as̆areanu, and R. Pelánek. Test input generation for
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