
Nanomechanical Properties of Hydrated Organic Thin Films

By

Jae Hyeok Choi

M.S. Civil & Environmental Engineering
Yonsei University, Seoul, Korea 2000

SUBMITTED TO THE DEPARTMENT OF CIVIL & ENVIRONMENTAL

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN THE FIELD OF

NANOMECHANICS AND BIOMATERIALS / STRUCTURES AND MATERIALS

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SETEMBER 2007

C 2007 Jae Hyeok Choi. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of Author:

Department of l andvir ental E ering
/ / l Auld 1b ,2007

Certified by:

ChristineTOrtiz

- , Professor of Materials Science and Engineering

Thesis Supervisor

,/Accepted by:

Accepted by:

OF TEOHNOLOGY

NOV 09 2007

LIBRARIES

Professor Philip M. Gschwend
Professor of Civil n Environmental Engineering

Chairm of Doctoral Theiesi26iinmittee

Daniele Veneziano
Professor of Civil and Environmental Engineering

Chairmen of Departmental Committee for Graduate Student

ARCHNVES
.1

•OH•..S
r-r~~LI;~W~TtBP3~Tfnm

I I lL I



Nanomechanical Properties of Hydrated Organic Thin Films

By

Jae Hyeok Choi

SUBMITTED TO THE DEPARTMENT OF CIVIL & ENVIRONMENTAL

ENGINEERING ON AUGEST 10, 2007 IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FIELD OF NANOMECHANICS AND BIOMATERIALS

/ STRUCTURES AND MATERIALS

ABSTRACT

Hydrated organic thin films are biological or synthetic molecularly thin coatings

which impart a particular functionality to an underlying substrate and which have discrete

water molecules associated with them. Such films exist in biology (e.g. cell membrane lipid

bilayers) and have a broad array of potential engineering applications (e.g. biological implant

and sensor surfaces, marine antifouling paints etc.). This doctoral thesis focuses on two

important classes of hydrated organic thin films that were prepared and studied in vitro. The

first model system was an oligo(ethylene oxide)-based self-assembling monolayer (OEO-

SAM) which is a synthetic material that is known to exhibit exceptional resistance to

nonspecific protein adsorption and, hence, it is a viable candidate for producing implant

surfaces with improved biocompatibility. The second model system was the biologically

relevant phosphorylcholine(PC)-supported lipid layer which mimics the structure of the cell

membrane. The objective of this doctoral thesis was to quantify the functional form of the net

surface interaction (force versus separation distance, F(D)), as well as the contact mechanical

properties (e.g. elasticity, plasticity, fracture) of these two model systems under different

solution conditions, in order to formulate a hypothesis for the molecular origins of the

dominant interactions and furthermore, to gain a mechanistic understanding of their in vivo

function and performance. For the OEO-SAMs, F(D) was found to exhibit the maximum

monotonic repulsive functional form for intermediate surface packing densities (-70%) on

loading (approach) and negligible adhesion (Fadhesion<0.3nN) on unloading (retract). Both

were attributed to an electrostatic component arising from a dipole induced effective surface

charge, as well as a nm-thick hydrated water layer. For the PC lipid layers, the effect of

length scale on the yield threshold force, Fy, was studied by varying the probe tip end radius,
Rtip, used for the surface force measurements. Fy decreased by 20x (Force/Radius) as Rtip
increased from 30 nm to 80 nm, presumably due to the fact that the contact area possessed an

increased density of molecular-level defects, thereby causing stress concentrations and a



reduction in mechanical stability of the layer.
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CHAPTER 1

General Introduction

1.1 Hydrated Organic Thin Films

1.1.1. Definition

In this study, hydrated organic thin films are biological or synthetic molecularly

thin coatings that impart a particular functionality to underlying substrates and are

associated with discrete water molecules. 1' 2 Self-assembled monolayers (SAMs),

polyelectrolyte multilayers, lipid bilayers, and polymer brushes are examples of

hydrated organic thin films. They can be either monolayers or multilayers ranging from

a few nm to tens of /m in thickness.

1.1.2. Hydrated Organic Thin Films for Use as Protein Resistant Biomaterial

Coatings

Implanted biomaterials such as vascular grafts, stents, pacemakers, sensors,

catheters, joint replacements, and contact lense3 are frequently coated or functionalized

with a thin hydrated organic thin film to improve in vivo biocompatibility. 4' 5'6 These

coatings function by reducing the nonspecific protein adsorption to the biomaterial

surface, which, for blood-contacting devices for example, frequently leads to initiation

of a coagulation cascade, thrombosis, inflammation, and infection. However, the

coatings in use today are imperfect and protein adsorption invariably occurs with

sufficient time in vivo.

The interaction potential energy, U, as a function of the protein-surface

separation distance, D, (which is directly related to the intersurface force,

U(D)=-JF(D)dD) initially determines whether or not a protein will be absorbed into a



surface and at what rate. U(D) is a superposition of numerous nonspecific repulsive

components (e.g., electrostatic counterion double layer, steric, hydration) and attractive

components (e.g., van der Waals, hydrophobic, H-bonding, ionic) that can lead to

complicated functional forms that vary with the strength and range of the constituent

interactions.7'8' 9' 10 Secondary stages of protein absorption depend on biomolecular

adhesive binding processes that occur when a protein is in close contact with a surface,

the conformation, orientation, and mobility of the absorbed proteins, the timescale of

conformational changes, protein exchange and desorption, and interactions of absorbed

proteins with each other. 11" ,12 While the initial stage of the protein adsorption process is

expected to be affected by a larger spatial-length scale of averaged surface properties

and correlate with these properties, such as wetability, average surface charge per unit

area, etc. the secondary stages, when the proteins move into close contact with the

surface, are expected to be more dependent on local nanoscale variations and

heterogeneities.

There has been considerable effort to design "bioinert" surfaces4' 5'6,11,12 i.e.,

surfaces that exhibit zero interaction with the biological environment and hetice, resist

nonspecific protein adsorption, thereby exhibiting a high degree of biocompatibility.

The use of molecules with a net electrical neutral charge (e.g., poly(ethylene oxide)

(PEO) and tri-ethylene glycol (EG3)) is thought to be advantageous." Maximum

hydrophilicity is one effective method of imparting repulsion, i.e., via molecules

capable of strong hydrogen bonding with water creating an enthalpic penalty to

dehydration and disrupting the supramolecular structure imposed by incoming protein

molecules. It is suspected that the orientation, bonding strength and structure of

interfacial water in such systems is critical. 13 Electroneutrality and hydrophilicity alone



can not guarantee bioinertness, as proteins can clearly undergo hydrogen bonding,

specific biomolecular adhesive events, and other short-range attractive interactions in

the secondary stages of the adsorption process. One possible way to address this

problem is to create well-defined local nanoscale variations in composition and

chemical functionality to prevent the formation of spatial regions large enough to enable

local binding events. 14

Based on the concepts described above, some of the most effective systems for

biomaterial-coating applications have been self-assembled monolayers (SAMs)*

functionalized with a variety of end groups, 11,'12, 15 phospholipid polymers, 16, 17

poly(ethylene glycol) (PEG), 18,19,20 ,21 poly(ethylene oxide) (PEO),22 and PEO-based

polymers.23,24

Considering these effective systems, two kinds of hydrated organic thin films

were selected for study in this research. The first one is an oligo(ethylene) self-

assembling monolayers (OEO-SAMs) 15,19,20,21 and the second one is phosphorylcholine

(PC) lipid layers. 25

1.1.4 Structure and Properties of Oligo(ethylene oxide) Self-Assembling
Monolayers (OEO-SAMs)

Oligo(ethylene oxide) OEO has been proposed as an excellent candidate for the

creation of bioinert surfaces. 15' 19' 20'21 OEO has a subunit, (EO)n ([OCH 2CH2]n), which is

also called (EG)n (Figure 1-126) and this (EO)n unit plays a key role in protein resistance.

For further information, see the appendix.
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Figure 1-1 Possible confirmation of OEO in aqueous solution; OEO may take on a

trans-trans-gauche (ttg) configuration where the ether oxygen atoms have hydrogen

bonding.

In the initial study of OEO-SAMs 27 of OEO-SAMs, the protein resistance

mechanism was explained by the steric repulsion of EO units that resisted the surface-

attractive forces between the OEO-SAMs and the protein; the theory of steric repulsion

is often used to explain the protein resistance of PEO. 28 ,29 Its experiment using

reflection-absorption infrared spectroscopy (RAIRS) and electrochemical impedance

spectroscopy (EIS) shows that the helical or amorphous conformers of (EG)3 -SAMs on

Au are protein resistant, but the all-trans conformers on Ag are not.27. A recent study30

of OEG-SAMs on both Au and Ag with varying numbers of EO subunits using X-ray

photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS),

and the ellipsometric technique, shows OEG-SAMs protein resistance on Au but not on

Ag. This study was further investigated using ab initio calculations31' 32 that show that

helical conformers of (EG)3 on Au prefer to bind with water molecules more tightly

than with the all-trans conformers on Ag because strong hydrogen bonds forms

between the oxygen atoms on EG and the hydrogen atoms of the water molecules.

Other recent molecular dynamics (MD) simulation studies also show the existence of

hydrogen-bonded water layers. 33 The following study suggests that maximum

hydrogen-bonded water layers are not created by the maximum density of PEO, which



can be made on the substrate but by the optimized density of PEO to maximize the

hydrogen bonded water layers. 34 The less ordered, helical OEO-SAMs hold more water

layers by hydrogen bonding than OH- and CH 3-terminated SAMs. These thicker water

layers create a higher repulsive force under 2 nm distance when the protein (lysozyme)

approaches the surface. 35

Recently, a study by Vanderah et al.36 showed that less ordered SAMs of

methyl 1-(3-mercaptopropyl) penta(ethylene oxide), (Au-S(CH2)30 (CH2CH 20) 5CH3,

(C3EO5)) (Figure 1-2 (a), (b)) with 60-80% surface coverage* (Figure 1-237 (c)) with

controlled incubation time and a density of HS(CH 2)30 (CH2CH20) 5CH3 is more

protein resistant than highly ordered C3EOs-SAMs with 100% surface coverage and 7/2

helical conformation (approximately 2.11 nm in height)38,39 (Figure 1-2 (b), (d)). The

protein adsorption at 60-80% coverage was 0 nm for bovine serum albumin and under

0.2 nm for fibrinogen, whereas at 100% coverage it was 0.5 nm and 2 nm respectively.

This was explained by the increased flexibility of C3EOs5-SAMs with a less ordered

structure with a minimum length of C3EO 5 covering the surface. This suggests that

when the protein compresses the flexible C3EO5-SAMs with 60-80% surface coverage,

the system's free energy (the free energy of surface layer + protein) increases and

consequently induces the repulsive interaction (Figure 1-2 (c)). On the contrary, the

fully ordered C3EO5-SAMs (7/2 helical conformation, 100% surface coverage) are too

rigid to have free energy and repulsive forces (Figure 1-2 (d)).

Here, the percentage of surface coverage is relatively predictable under the assumption that the 24 hr

incubated surface coverage is 100%.
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Figure 1-2. Chemical structure and self-assembled monolayers (SAMs) of C3EOs on

Au. (a) 2D all-trans form, (b) 3D 7/2 helical conformation, (c) 60-80% surface area

coverage, (d) 100% coverage of surface.

To understand the molecular origin of this interaction mechanism, more

detailed nanomechanical experiments than the surface plasma resonance (SPR)

experiment are needed because SPR can only quantitatively explain how many proteins

are attached to the targeted surface but cannot account for the detailed intermolecular

interactions. In this current study, high resolution force spectroscopy (HRFS) is

S......i iii'



performed on C3EO5-SAMs by approaching and retracting several types of chemically

functionalized tips to understand the nanomechanical intermolecular force mechanism

of this surface. Hydrophilic OH-terminated, hydrophobic CH3-terminated, and

negatively charged hydrophobic COOH-terminated tips were selected to represent one

surface property due to their well-defined chemical functionality. A protein (human

serum albumin)-functionalized tip was also selected to study the physiological

interaction between protein and C3EO5-SAMs.

1.1.5 Structures and Properties of Phosphorylcholine (PC) Lipid Layers

The second model systems examined in this study is the polar zwitterionic

phosphorylcholine (PC) lipid, which is the basic molecular unit of cell membranes.

Among PCs, the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, unsaturated

tail) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, saturated tail), were

selected (Figure 1-3) because these two lipids provide a good comparison as they build

a lipid bilayer in an aqueous environment during different phases at the same

temperature (i.e., POPC is in a fluid phase and DPPC is in a gel phase in room

temperature). The latter creates a stronger interaction between the lipids due to the

strong hydrophobic interaction between saturated tails and because it is in a gel phase at

room temperature. (The transition temperature from a gel to fluid is about 60°C.40) In

contrast, POPC is in a fluid phase at room temperature; the transition temperature to a

fluid is -6°C.4 1



o Unsaturated Tail
0

II* o

0

CAvasn Polrw 1pd*

~~4/

Saturated Tail

* o
CAv9e Polar tird

(7,)

Figure 1-3. Chemical structure of phosphorylcholine (PC). (a) POPC, (b) DPPC,

pictures by CAvanti Polar Lipids.

These PCs form a planar bilayer on a hydrophilic surface such as mica (Figure

1-4) because PC is amphiphilic (the hydrophilic polar head group and hydrophobic tail

group42). PC can be deposited out to the substrate using several methods, such as the

Langmuir Blodgett (LB) method 43 (Figure 1-5 (a)), the vesicle fusion technique 44

(Figure 1-5 (b)) and the direct deposit method.45 In this research, the vesicle fusion

technique is used for POPC (Ch. 3-4) and the direct deposit method is used for DPPC

(Ch. 3-5).
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Figure 1-4. Lipid bilayers on the hydrophilic surface. (a) Lipid bilayers on mica, (b)
Lipid bilayers on a hydrophilic OH-terminated SAM on bare Au; the hydrophilic
head group of lipid is green dots and hydrophobic tail is two black chains.
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Figure 1-5 (a) three main steps in the Langmuir-Blodgett transfer of lipid
monolayers from water onto a solid substrate.43 (b) the vesicle fusion technique
which is working on the lower diameter (under 100nm diameter) vesicle.44

1.2 Nanomechanical Properties

1.2.1 Nanomechanical Experiments

In this research, nanomechanical forces based on distances are measured by

using HRFS when the tip approach and retract from the surface; molecules can be

functionalized on the tip or surface. These nanomechanical properties are associated

with intermolecular and surface interactions in the (a) noncontact interaction regime:

van der Waals (VDW), electrostatic, and hydrophobic forces, and in the (b) contact

la~



interaction regime: steric, yielding, and fracture forcest of the hydrated thin film itself.

Combined, these nanomechanical forces can result in a net repulsive or attractive force,

depending on the distance between molecules and surfaces or a molecule and a surface.

The nanomechanical properties can be illustrated by HRFS which is an outstanding tool

to predict adsorption kinetics,46,47,4 8,49 evaluate and prescreen candidate biomaterials for

which only extremely small quantities are available, and to assist in the chemical design

of new hemocompatible biomaterials. In addition, HRFS combined with imaging can

measure the molecular interaction force on the specially targeted area on the surface;

this imaging of the targeted area also helps to evaluate the quality of the indented area.

HRFS experiments were performed in a near-physiological environment with a

molecular force probe (MFP) by Asylum Research, Inc. (Santa Barbara, CA) (Figure 1-

6) and PicoForce atomic force microscopy (AFM) by Veeco (Woodbury, NY) (Figure

1-7) to measure force, F (nN), vs. a probe tip-sample separation distance, D (nm). Both

tools have a vertical force that measures the accuracy of picoforce scale. The PicoForce

can perform good quality imaging and execute vertical, lateral and dynamic forces.

t Yielding and fracture force are classic mechanical properties in the macro-scale: the same concept is

used for this nano-scale.
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Figure 1-6. Molecular Force Probe (MFP) from Asylum Research.

Figure 1-7. PicoForce Atomic Force Microscopy (AFM) from Veeco.



1.2.2 Theoretical Approach

The basic theoretical approach to compare with HRFS experimental results for

Force (F) with Separation Distance (D) is known as the Derjaguin- Landau-Verwey-

Overbeek (DLVO) theory.5 o'5' According to the DLVO thoery, the total interaction

force is assumed to be linearly summed as follows (where force is a function of

distance);

Fot, (D) = FVDW (D) + F tec, (D) (1)

FVDW(D) is an attractive van der Waals component and Fledtr(D) is a

repulsive electrostatic component. FvDw (D) can be calculated by the "Derjauin

approximation" (valid for R>>D)52 as shown an equation (2).

AR (2)
FVDW(D)- = 2

6D2

Here, R is assumed here to be same as the probe tip radius, Rt,,, which can

be measure by scanning electroscopic microscope (SEM).

Feect(D) can be modeled using constant surface charge approximation based

on the numerical solution to the nonlinear Poisson-Boltzmann equation. The force is

calculated from the electrostatic potential, 0, using the free energy method.62 This

long range (over 5 nm)* numerical modeling is examined in Chapter 2 to estimate the

+ For the short range (under 5 nm), the DLVO theory could not be directly compared to HRFS data of

this study because there would be more intermolecular forces not just the van der Waals force.



surface charge and the conformation of C3EOs. Once the tip penetrates the hydrated

organic thin film, as shown in Chapter 3-5, the yielding and fracture mechanism should

be considered because it will overcome the lateral confinement of the lipid layers. This

will be discussed in Chapter 3-5.

1.3 Specific Aim and Nanomechanical Experiments

To better understand intermolecular forces, non-contact and contact

nanomechanical properties such as electrostatic, steric, van der Waals and yielding

forces are studied using HRFS with nano-scale imaging.

HRFS is performed with a molecular force probe (MFP) on the C3EOs-

terminated SAM with various surface packing densities and different molecular

conformations under 0.01 M, 0.1 M, and 1 M ionic strengths (IS). The main purpose of

this research is to understand the type of nanomechanical intermolecular repulsive

forces that are dominant in the long and short term between several types of

functionalized tips and the C3EOs-terminated SAM. Another aim is to optimize protein

resistance based on molecular conformation and surface packing density.

Atomic force microscopy (AFM) imaging and HRFS with high resolution pico-

force AFM and MFP are performed using several different scale tips with lengths under

0.01 M, 0.1 M and .1 M ionic strengths (IS). Both tools are very helpful in

understanding intermolecular forces, from long distance to contact, overlapping and

penetrating distance between 'lipid monolayer and bilayer', 'lipid bilayer and bilayer',



to 'lipid bilayer to silicon nitride tip.** These experiments are key to the understanding

the nanomechanical properties of the lipid membrane under pressure (for example,

human arteries under high blood pressure, systolic: 15kPa, diastolic: 10kPas5 ) and while

interacting with proteins or cells with fusion, penetration, etc. HRFS on lipid bilayer is

then performed using several tips with different tip-end radii and geometries because the

effect of length scale and geometry on nanoscale surface interactions and the

compressibility of supported lipid bilayers are not well understood.

From these nanomechanical experiments, the protein resistant mechanism of

C3EOs-terminated SAM and the mechanical properties of PC layers are studied. This

research will contribute to understand the protein resistance mechanism of hydrated

organic thin films and help develop the bioinert surface coatings.

The boundary condition of in vivo membranes are different from that of this experiment because the

lipid layers in this research are supported by the rigid Au substrate or mica surface: the in vivo membrane

is supported by the soft body of the cell.



CHAPTER 2

Molecular Origins of the Bioinert Properties of Methyl 1-(3-

Mercaptopropyl) Penta(ethylene oxide) (C3E0 5) Self-Assembled

Monolayers (SEM).

2.1 Introduction

Oligo(ethylene oxide) OEO has been proposed as an excellent candidate to

create bioinert surfaces; i.e., surfaces that resist nonspecific protein adsorption and

exhibit a high degree of biocompatibility, 15'19,20 ,21,27 for applications such as biosensors,

biological implants, and marine antifouling coatings, among others. 54 OEO resists

blood proteins55 remarkably well, and may have better equilibrium prevention than

PEO for long term use such as coating artificial arteries. 56 OEO has a subunit, (EO)n

([OCH 2CH2]n), also called (EG)n (Figure 1-3) and it plays a key role in protein

resistance.

In the initial study of OEO-SAMs 27 of OEO-SAMs, the protein resistance

mechanism was explained by the steric repulsion of EO units that resisted the surface-

attractive forces between the OEO-SAMs and the protein; the theory of steric repulsion

is often used to explain the protein resistance of PEO.28,29 This steric repulsion has been

explained by the elastic compression of EO (or EG) units and the osmotic component

caused by the loss of hydration. Its experiment by using reflection-absorption infrared

spectroscopy (RAIRS) and Electrochemical impedance spectroscopy (EIS) shows that

the helical or amorphous conformers of (EG)3 -SAMs on Au are protein resistant, but

the all-trans conformers on Ag are not.27 A recent study on OEG-SAMs on both Au and

Ag with varying numbers of EO subunits using X-ray photoelectron spectroscopy



(XPS), infrared reflection-adsorption spectroscopy (IRRAS), and the ellipsometric

technique shows protein resistance of OEG-SAMs on Au but not on Ag.5 7 It suggests

that protein resistance increases as the conformation becomes amorphous and less

oriented and the surface-packing density decreases under 100% surface coverage of

different OEO-SAMs. 57 From IRRAS experiments, it was found that OEO-SAM with

EO6 subunits has a crystalline helical conformation on Ag but is amorphous and has a

less oriented conformation on Au. This study was further investigated using ab initio

calcuations31', 32 that show that helical conformers of (EG)3 on Au substrate tend to bind

the water molecules more tightly than the all-trans conformers on Ag because strong

hydrogen bonds form between the oxygen atoms on EG and the hydrogen atoms of the

water molecules. Other recent molecular dynamics (MD) simulation studies also show

the existence of hydrogen-bonded water layers.33 This study suggests that maximum

hydrogen bonded water layers are not made by the maximum density of PEO which can

be made on the substrate but by the optimized density of PEO to maximize the

hydrogen bonded water layers.34

Another study using scanning force microscopy (SFM) suggests that the

repulsive interaction between proteins and OEO-SAMs may be caused by the

electrostatic interactions between the charged surface of proteins and the effective

charge of OEO-SAMs that derive from the moment dipole of EO units.21 The

continuing research of the quantum mechanical study and MD simulation for OEO and

OEG in water supports its hypothesis 21 that the dipole moment and polarizability of EO

units in helical conformation 58 , 59, 60 are adequate enough to make the electrostatic

interaction effective. In addition, several possible conformers with and without water

molecules were recently studied by molecular dynamics (MD) simulation (Figure 2-1),



and show that the non-uniform gauche rotations are most stable in water.58 The less

ordered, helical OEO-SAMs were found to hold more water layers due to hydrogen

bonding than OH- and CH 3-terminated SAMs. These The greater number of water

layers create higher repulsive forces under 2 nm distance when the protein (lysozyme)

approaches the surface. 35

t t i

Figure 2-1 Several types of conformers of (EG)3 without water molecules (left

column), with one water molecule (center column), and with two water

molecules 5s

Recently, a study by Vanderah et al.36 showed that less ordered self-assembled

monolayers (SAMs) of methyl 1-(3-Mercaptopropyl) Penta(ethylene oxide), (Au-

S(CH 2)30 (CH2CH 20) 5CH3, (C3EO5)) with 60-80% surface coveragett (Figure 2-237

(b)))) with controlled incubation times and density of HS(CH 2)30 (CH 2CH20)sCH3 is

more protein resistant than the highly ordered C3EOs-SAMs with 100% surface

coverage and 7/2 helical conformation (about 2.11 nm in height) 38' 39 (Figure 2-2 (a),

tt Here, the percentage of surface coverage is decided based on the assumption that the fully incubated

surface coverage is 100%, achieved by controlling incubation time.



(c)). The protein adsorption at 60-80% coverage was 0 nm for bovine serum albumin

and under 0.2 nm for fibrinogen whereas at 100% coverage it was 0.5 nm and 2 nm

respectively. Vanderah et al. explained this was caused by the increased flexibility of

C3EO5-SAMs of the less ordered structure with the minimum length of C3EOs5 to cover

the surface. This suggests that when the protein compresses the flexible C3E0 5-SAMs

with 60-80% surface coverage, the free energy of the system (the free energy of surface

layer + protein) increases and it then induces the repulsive interaction (Figure 2-2 (b)).

On the contrary, the fully ordered C3EOs-SAMs (7/2 helical conformation, 100%

surface coverage) is too rigid to have repulsive forces (Figure 2-2 (c)).

nm

(a) (b) (c)

Figure 2-2 Self-assembled monolayers (SAMs) of C3E0 5 on Au (a) 7/2 helical
conformation, (b) 60-80% coverage of surface area, (c) 100% coverage of surface.

To understand the molecular origin of this interaction mechanism,

nanomechanical experiments more detailed than the SPR experiment are needed

because SPR can only quantitatively explain how many proteins are attached to the

targeted surface and cannot explain the detailed intermolecular interactions. In this

study, high resolution force spectroscopy (HRFS) is performed on C3EOs-SAMs by

approaching and retracting several kinds of chemically functionalized tips in order to

understand the nanomechanical intermolecular forces mechanism of this surface.

Hydrophilic OH-terminated, hydrophobic CH 3-terminated, and negatively charged

~88~4~



hydrophobic COOH-terminated tips were selected due to their well-defined chemical

functionality to represent one surface property. A protein (human serum albumin)-

functionalized tip was also selected to study the physiological interaction between

protein and C3EOs5-SAMs.

Based on the results from these previous studies, a new hypothesis was

formulated: the superior protein resistance of 60-80% surface-covered C3EOs-SAMs

results from the repulsive interactions between the dipole moment of C3EO5-SAMs

helical or amorphous conformers and the charged protein (noncontact interaction

regime, long range), and the hydrogen bonded water layers on EO groups (noncontact

interaction regime, short range). These EO groups are more exposed to the surface with

60-80% coverage than with 100% coverage, and the less ordered helical or amorphous

C3EOs5-SAMs (contact interaction regime) are more flexible than the ordered 7/2 helical

conformation on 100% surface coverage.

2.2 Material Preparation

2.2.1 Materials

All the chemicals used in this study except C3EO5 were purchased from Sigma

Aldrich Co. including 11-mercapto-lundecanol 97% (HS-(CH2)10-CO 2H, 44752-8), 11-

mercaptoundecanoic acid (HS-(CH 2)11-OH, 45056-1), 1-dodecanethiol (HS-(CH 2)11-

CH 3, 47135-4).

2.2.2 SAM Preparation

HS(CH 2)30(CH2CH20)sCH3 solution (0.5 mM) was prepared using 95% ethanol

solvent. C3EOs5-SAMs were produced by incubating gold substrates in the solution at

varying time increments to create a range of ethylene oxide coverage. To ensure a clean



surface, all gold substrates were Piranah treated (volume ratio, 1:3, H20 2:H2S0 4) for

under 5 minutes and then rinsed first by ethanol followed by DI water. The gold

substrate was dried thoroughly by nitrogen. This process was performed immediately

before functionalization.

The wettability was characterized by contact angle measurement, using a

contact-angle goniometer (Rame'-Hart, Inc., Mountain Lakes, NJ). Advancing, static,

and receding angles were recorded for the gold substrates incubated in C3EO5 -SAMs

for 5 seconds, 3, 6, 24, 27, 30 hours, and 3 days. The gold substrate was dipped in and

out of HS(CH 2)30(CH2CH 20)5 CH 3 solution (0.5 mM) for 5 seconds for incubation and

the gold surface was rinsed first with ethanol and then pure deionized water. Between 1-

5 seconds, there was no statistically significant difference in the contact angle. In

addition, Vanderah et al.'s previous study showed a consistent molecular-level structure

and arrangement during a short time scale: 5 seconds to 30 minutes.

A 5 second incubation produced a sample of the less ordered structure (60-80%

surface coverage) and 24 hours incubation produced the fully ordered structure (100%

surface coverage). These incubation times were chosen in order to replicate the surface

packing densities of Vanderah et al.'s.36 A 3 days incubation was carried out to discover

if a difference would result between 24 hours and 3 days incubation.

2.2.3 Choices and Preparation of Functionalized Tips

As mentioned in the introduction, hydrophilic OH-terminated, hydrophobic

CH 3-terminated, and negatively charged hydrophobic COOH-terminated and protein-

functionalized tips were selected to better understand the mechanism of nanomechanical

intermolecular forces of C3EO 5-SAMs.



Using 0.0255 g of 11-mercapto-undecanol, 30 zL of 1-dodecanethiol and 0.023

g of mercapto-1 undecanol in ethanol, 25 mL of 5 mM OH, CH 3, and COOH solutions

were prepared. Gold-coated Digital Instruments 0.06 N/m (Santa Barbara, CA)

cantilever tips were CH3-, OH-, and COOH- terminated by incubating them in 1-

dodecanethiol, poly(2-hydroxyethyl)methacrylate, and 11 -mercaptoundecanoic acid

solutions for 24 hours. To ensure a clean surface, all tips, as well as the gold substrates,

were Piranah treated (1:3 H2 02 :H2SO4) for 5 minutes immediately before

functionalization. Protein (Human Serum Albumin)-functionalized tips were purchased

from Novascan (spring constant, 0.06 N/m).

2.2.4 Choices of Ionic Strengths

Three different ionic strengths (IS) 0.01 M, 0.1 M and 1 M of 10 mM tris

(hydroxymethyl) aminomethane buffer with NaC1 (pH 7.8) were selected. Out of these

three ISs, 0.1 M and 1 M IS were selected because they provide a similar IS condition to

blood (0.15 M) and seawater (about 0.7 M61). Other multivalent ions exist in the blood

stream and in seawater, but because Na+ and CI are the main ions in both, they were

selected to simplify the experimental environment.

2.3 Experimental Method

Force vs. distance measurements for both approach and retract were taken in

fluid using 1-D Molecular Force Probe (MFP) (Asylum Research, Inc). It is important

to measure not only force vs. distance when the tip approaches the C3EOs-SAM surface

but also when the tip retracts from the C3EO5-SAM surface. This is because in vivo,

proteins in blood can contact the surface under high blood pressure; in the U.S. standard



blood pressure on systolic is less than 120 mmHg (2.32 psi or 15 kPa)6 2,63 which can be

over 140 mmHg with risky hypertension 64. Data was recorded for C3EO5-SAMs that

were incubated at 5 seconds, 24 hours, and 3 days versus aprotein-functionalized, OH-,

CH3-, COOH- and C3EOs-terminated SAM tips in Tris buffer (titrated to pH 7.8) as a

function of ionic strength (IS = 0.01 M, 0.1 M and 1 M). The ionic strength was

adjusted by adding NaCl. At least 30 curves were recorded over a minimum of three

locations on each sample. All experiments were performed at room temperature. The

bin size of the histogram was decided from the Sturges' rule.65

2.4 Experimental Results

2.4.1 Contact Angle Measurement

Contact angle measurements clearly show the formation of SAMs at all

incubation times and the conformational change of C3EOs5 molecules (Figure 2-3).

Compared to the hydrophobic Au substrate, 5 seconds incubated C3EO 5 is hydrophilic

and clearly shows the formation of C3EO5-SAMs. As SAMs reach a molecular

equilibrium state after 6 hours, they become relatively hydrophobic (advanced contact

angles are all near 700) compared to the 5 seconds advancing contact angle 57.04 _

0.460. Between 1 second and 5 seconds of incubation time resulted in no significant

differences in contact angles.

2.4.2 Hydrophilic OH-Terminated Probe Tip vs C3EOs5 SAM Planar Surface

Figure 2-4 shows the average HRFS of force- versus distance-curves on

approach and retract states for C3EO5-SAMs prepared with three incubation times; 5 s

(60-80% surface coverage), 24 hr (100% surface coverage), and 3 days (longer
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Figure 2-3. Static-, advancing- and receding-deionized water-contact angle measurement
of unfunctionalized Au substrate and C3E0 5 self-assembling monolayer from 95% ethanol
solution (0.5 mM) at room temperature 250 C. Each bar represents the mean of 4 locations
on one sample. The Hi-Lo bars show the standard deviation. The difference of contact
angle between Au (0% surface coverage) and 5 seconds (60-80% coverage) or 5 seconds
(60-80% coverage) and 3 hours (near to 100%) is statistically significant.

incubation time than that of 100% surface coverage) using a single hydrophilic OH-

terminated SAM probe tip. For the low surface coverage samples (5 s incubation time,

Fig. 2-4 (a), (b)), a purely repulsive monotonic interaction was observed on both

approach and retract curves in which the range was approximately 10 nm with minimal

hysteresis. A jump-to-contact (tip jump to the surface of the C3EO5-SAM layer), or a

breakthrough to the underlying substrate was not observed. For the full surface coverage

samples (24 hr incubation time, Fig. 2-4 (c), (d)), the approach curves have less

repulsive (0.01 M IS) and attractive (0.1 M, 1 M ISs) forces compared to the 5 s

incubation time (Figure 2-4 (c)). The retract curve shows higher adhesive forces as the

IS increases (Figure 2-4 (d)). For the C3EO5-SAM of 3 days incubation (over 100% of

AA



the ordered sample), both approach and retract curves show adhesive forces at 0.1 M

and 1 M ISs (Figure 2-4 (e), 9)). As incubation time increases, the pull-off distance

increases in the retract curve. The pull-off distances of 1 M IS 24 hr and 3 days on the

retract curves are over 10 nm and the forces are over 0.2 nN - 1 nN (Figure 2-5).

Overall, as the ionic strength increases, the starting distance of the repulsive force

decreases. Here, the starting distance is the distance where the repulsive force is first

observed on approach.
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Figure 2-4. Nanomechanical data for OH-terminated self-assembling monolayer (SAM)-coated

cantilever tip vs C3EO 5 SAMs on flat Au as a function of incubation time in the C3EO5 solution

(95% ethanol, 0.5 mM) and ionic strength of the aqueous media during the approach and retract.
Graphs (a), (c), and (e) are the approach curves for incubation times of 5 seconds, 24 hours, and
3 days, respectively. Graphs (b), (d), and (f) are the corresponding retract curves. A Veeco Au-
coated Digital Instruments cantilever tip was used (spring constant: 0.06 N/m, probe tip end
radius: 100 nm, displacement rate = l im/sec). All experiments were carried out with a single
probe tip.
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Figure 2-4A (Magnified from Figure 2-4). Nanomechanical data for OH-terminated self

assembling monolayer (SAM)-coated cantilever tip vs C3EO5 SAMs on flat Au as a function of

incubation time in the C3EQ5 solution (95% ethanol, 0.5 mM) and ionic strength of the aqueous

media during approach and retract Graphs (a), (c), and (e) are the approach curves for

incubation times of 5 seconds, 24 hours, and 3 days, respectively. Graphs (b), (d), and 6) are the

corresponding retract curves. A Veeco Au-coated Digital Instruments cantilever tip was used

(spring constant: 0.06 N/m, probe tip end radius: 100 nm, displacement rate = 1ltm/sec). All

experiments were carried out with a single probe tip.
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2.4.3 Hydrophobic CH3-Terminated Probe Tip vs C3EOs SAM Planar Surface

Both approach and retract curves from the C3EOs5-SAM versus the hydrophobic

CH3-terminated SAM tip show similar trends for ionic strength and incubation time as

the OH-SAM tip versus the C3EOs5-SAM (Figure 2-4 & 2-6). Compared to curves of the

OH-terminated SAM tip versus the C3EOs-SAM, the repulsive force is less at the same

incubation times and IS conditions (Figure 2-4 & 2-6). A jump-to-contact was observed

on all approach curves except for that of the low-surface coverage sample (60-80%).

2.4.4 Hydrophilic and Negatively Charged COOH-Terminated Tip vs C3EO5 SAM

Planar Surface

Under the prepared 10 mM tris buffer solution as described in the experimental

method, the carboxylic acid group is ionized and negatively charged. The pKa is

expected to be 6.4 at 0.013 M IS,66 5.7 ± 0.2 at 0.10 M IS and 4.4 ± 0.2 at 1.0 M IS.67

This is due to the fact that interfacial potentials at the monolayer surface, such as the

diffuse double-layer potential, decrease as the IS of the solution increases. : 66 As for the

CH3-terminated SAM tip or the OH-terminated SAM tip vs the C3EOs5-SAM, all

approach curves for the negatively charged COOH-terminated tip vs C3EO 5-SAM show

a repulsive force, while the retract curves show more adhesive force as the incubation

time increases. The results show that the 5 s incubated C3EO5-SAM has a repulsive

interaction with the hydrophilic and negatively charged COOH-terminated SAM

(negatively charged in this Tris buffer solution such as COO-). One noticeable

difference in this experiment using OH and CH 3-terminated SAM tip is that, for the full-

surface coverage samples (24 hr incubation time), the repulsive force on approach at 1

:: It means that the coulombic attraction between the hydrogen cations in the solution and the carboxylate

anions on the surface decreases as the IS decreases. Therefore the moiety of the carboxylic acid becomes

a stronger acid when the IS of the solution increases.



M IS is higher than others on 0.01 M and 0.1 M ISs, while that of the repulsive force at

0.01 M and 0.1 M ISs is comparable (Figure 2-8).

2.4.5 C3EOs-SAM probe tip versus C3EOs5-SAM planar surface

For the above two experiments using hydrophilic (OH-terminated) and

hydrophobic (CH 3-terminated) tips, the adhesion forces on the retract curves increase

with increased incubation time. On the contrary, the HRFS graph on retract for C3EO5-

SAM vs C3EO 5-SAM tip shows that the minor nanoscale adhesive force (<-0.3 nN) is

higher in the 5 seconds-incubated sample than the others (Figure 2-9 (b), (d), and (f0).

However, all approach curves consistently show the repulsive forces (Figure 2-9 (a), (c)

& (e)).

2.4.6 Protein (HSA) Functionalized Tip vs C3EOs-SAM

The result of the protein-functionalized tip vs the 5 s incubated C3EO5-SAM

clearly shows the repulsive protein interaction on all approach and retract curves (Figure

2-10 (a) and (b)). At 0.01 M IS of the 5 s incubated C3EOs-SAM, long range repulsive

forces are observed. As incubation time and IS increase, the adhesion forces rapidly

increase. For the 3 days incubated C3EOs-SAM, the long range of the pull-off distances

from over 40 nm to 160 nm during the retract stage suggest mechanical denaturation of

proteins caused by the attractive force between proteins and C3EO5-SAM (Figure 2-10

(f)). The interaction forces between the HSA functionalized tip vs the mica, COOH-

terminated SAM, CH3-terminated SAM, and OH-terminated SAM all show adhesive

forces during the retract stage (Figure 2-11). Among these interactions, the negatively

charged COOH-terminated SAM vs the HSA functionalized tip is less adhesive during

retract and more repulsive on approach (Figure 2-11).
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Figure 2-6. Nanomechanical data for CH3-terminated self assembling monolayer (SAM)-coated

cantilever tip vs C3E0 5 SAMs on on flat Au as a function of incubation time in the C3EO5

solution (95% ethanol, 0.5 mM) and the ionic strength of the aqueous media during approach
and retract. Graphs (a), (c), and (e) are the approach curves for incubation times of 5 seconds,
24 hours, and 3 days, respectively. Graphs (b), (d), and (f) are the corresponding retract curves.
A Veeco Au-coated Digital Instruments cantilever tip was used (spring constant: 0.06 N/m,
probe tip end radius: 96 nm, displacement rate = 1ptm/sec). All experiments were carried out
with a single probe tip.
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Figure 2-6A (Magnified from Figure 2-6). Nanomechanical data for CH 3-terminated self

assembling monolayer (SAM)-coated cantilever tip vs C3EO5 SAMs on on flat Au as a function

of incubation time in the C3E0 5 solution (95% ethanol, 0.5 mM) and ionic strength of the

aqueous media during approach and retract. Graphs (a), (c), and (e) are the approach curves for

incubation times of 5 seconds, 24 hours, and 3 days, respectively. Graphs (b), (d), and (f are the
corresponding retract curves. A Veeco Au-coated Digital Instruments cantilever tip was used
(spring constant: 0.06 N/m, probe tip end radius: 100 nm, displacement rate = lt/m/sec). All
experiments were carried out with a single probe tip.
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Figure 2-8A (magnified from Figure 2-8). Nanomechanical data for COOH-terminated self

assembling monolayer (SAM)-coated cantilever tip vs C3EO5 SAMs on on flat Au as a function

of incubation time in the C3EO5 solution (95% ethanol, 0.5 mM) and ionic strength of the
aqueous media during approach and retract. Graphs (a), (c), and (e) are the approach curves for
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corresponding retract curves. A Veeco Au-coated Digital Instruments cantilever tip was used
(spring constant: 0.06 N/m, probe tip end radius: 100 nm, displacement rate = lm/sec). All
experiments were carried out with a single probe tip.
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Figure 2-9. Nanomechanical data for C3EOs-terminated self assembling monolayer (SAM)-
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Figure 2-9A (magnified from 2-9). Nanomechanical data for C3EOs-terminated self assembling
monolayer (SAM)-coated cantilever tip vs C3EO5 SAMs on on flat Au as a function of
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(spring constant: 0.06 N/m, probe tip end radius: 100 nm, displacement rate = l /m/sec). All

experiments were carried out with a single probe tip.
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Figure 2-10A (magnified from Figure 2-10). Nanomechanical data for Protein (Human Serum

Albumin)-functionalized cantilever tip vs C3EO5 self assembling monolayers (SAMs) on flat

Au as a function of incubation time in the C3E0 5 solution (95% ethanol, 0.5 mM) and ionic

strength of the aqueous media during approach and retract. Graphs (a), (c), and (e) are the

approach curves for incubation times of 5 seconds, 24 hours, and 3 days, respectively. Graphs

(b), (d), and (f) are the corresponding retract curves. A Veeco Au-coated Digital Instruments

cantilever tip was used (spring constant: 0.06 N/m, probe tip end radius: 100 nm, displacement

rate = 1 /rm/sec). All experiments were carried out with a single probe tip.
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2.5 Discussion

To understand OEO-SAM's protein resistance mechanism, nanomechanical

HRFS tests were employed to study the intermolecular and surface forces between

C3E0 5-SAM structures and chemically terminated or HAS-functionalized probe tips,

with regard to various surface coverages and conformation. The results show that the 5 s

incubated C3EO5-SAMs (60%-70% surface coverage) have higher resistance to HAS-

functionalized tips and other types of terminated tips including the hydrophilic,

hydrophobic and negatively charged tips (Figure 2-12).

The analysis of intermolecular forces was divided into two regions according to

the distance between molecules: non-contact and contact regimes. The height of C3EOs-

SAM was estimated at about 2.11 nm across 100% of the surface, which has a 7/2

helical conformation (Figure 2-2). From this, a jump to the surface of the C3E0 5-SAM

layer was observed only at 24 hr incubation with hydrophobic C3EO5-SAM vs OH- or

hydrophilic CH3-terminated SAMs (Figures 2-4A (c) and 2-6A (c)). This was not

observed in any other experiment.

From this result, it is expected that the tip would penetrate the hydrogen-bonded

water layer (about 1-2 nm 94) to reach the rigid surface of C3EOs-SAM (100% surface

coverage), which is assumed to have no deformation. The flexible surfaces of C3EOs-

SAMs (60-80% surface coverage) still had water layers because the C3EO5 conformers

are deformable until they are fully compressed. Therefore, it is assumed that the tip does

not penetrate the C3E 5O-SAM but only compresses the C3E0 5 molecules when it

touches the surface of the C3EOs5-SAM. Under this assumption, we can expect that the

compression regime of the C3EOs-SAM on 60%-80% surface coverage will not be

greater than the height of C3EO5-SAM, 2.11 nm. Therefore, considering 60% surface
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coverage, an approximate 2 nm compression will be the maximum compression

distance of the contact regime. This compression distance may be greater at 100%

helical conformation because it is densely packed. The chemically terminated SAMs on

the tip are assumed to be more rigid than the C3EO5-SAMs since they are shorter in

length and transform on densely packed 100% surface coverage. The maximum

deformation of the chemically terminated SAMs are assumed to be under 1 nm with a 1

nm height of the chemically terminated SAMs. These SAMs are different from the

C3EO5-SAMs because they have a 7/2 helical molecular conformation, even at 100%

surface coverage.

When the tip is at the non-contact regime, where D > height, two possible

origins of repulsive intermolecular forces exist: electrostatic interaction and hydration

from templated water layers. First, we consider the electrostatic force as a potential

contribution to the net repulsive interaction at a long range, over 4-5 nm, the range at

which repulsion is expected to begin at 5 times the electrical Debye length from the

surface. The Debye - length, K 1 , can be calculated from the equation,

1/ c = 0.304 / [NaCl] 68 (only NaCl was considered, even though the ionic strength

was calculated with both NaCl and a tris buffer. For the NaC1 solution, 5' Kr =

5' 3.1nm = 15.5 nm at 0.01M IS, 5' 0.96 nm = 4.8 nm at 0.1M IS, and 5' 0.3nm =

1.5 nm at IS 1M. This explains why, as IS increases, the repulsive forces are reduced on

both approach and retract curves of 5 seconds incubated C3E0 5-SAM versus all other

types of tips with a few exceptions such as the conversion of the repulsive force and a

regime at lM IS for COOH-terminated SAM and similar repulsive forces at all ISs of

the 5 s incubated C3EOs-SAM tip vs the OH-terminated SAM tip (Figure 2-4, to be

explained upon later in this chapter). This trend occurs on all incubation times even if



adhesive forces exist on retract curves with a 24 hr and 3 days incubated C3E0 5-SAM.

By assuming there are no effects on HRFS data from the formation of gold

oxide, Au20 3, after treatment with piranha and deprotonation of the mercaptan, the

electrostatic interaction can also be explained theoretically by the effective surface

charge equation from the dipole moment. Even if the C3EO5-SAM does not have a

direct charge on the surface, it has the effective charge21 from a portion of the dipole

moment. And because C3E0 5-SAM is helical or amorphous36, it can easily be

"hydrated" (accommodating water molecules), which results in hydrogen-bonded water

layers.33, 34, 35 This "soft" permeable phenomena21 with polar groups provides an

effective surface charge, eff , with dipole density, v, and surface charge density,

69,70

o*, = [a cosh(KI) + vx sinh(Kl)]e-" (1)

where 1 is the "soft" polar region. Because the effective surface charge, eff can be

numerically calculated using the DLVO theory69' 70 from the HRFS data of 5 seconds

incubated C3EO5-SAM vs 5 seconds incubated C3EO 5-SAM (60-80% surface coverage,

0.01M IS) assuming the Hamaker constant, D is 0.33 x 10-20 J which is calculated from

the following equation71

_[ARt 1/3

Dj,,mp to-contact = 3ki-- (2)

where k is a spring constant. From this numerical calculation (Figure 2-13), the

effective surface charge, effa of the C3EOs5-SAM was estimated as -0.0069 C/m2. For

over 5 nm distance, there is almost no effect from van der Waals (VDW) force.

Therefore, even if the Hamaker constant, D, is assumed to be 0, the numerical



calculation for the effective surface charge is almost the same. Because at 0.1M IS,

5' K- 1 = 4.8nm, it is hard to assume the Hamarker constant, D, is 0 in this regime; the

electrostatic interaction regime overlaps with the van Der Waals interaction regime.

Alternatively, the effective surface charge, auf , of the C3EO5-SAM can be numerically

calculated from the HRFS curve of C3EOs-SAM vs COOH-terminated SAM because

the surface charge density of the COOH-terminated SAM is known as 0.01772-0.02173

C/m.

By using eff= -0.0069 C/m 2, I = 2 nm, x- '= 3 nm at 0.01 M, the dipole

density, v = 5.62' 10 " C xmn/m 2 is calculated. With the dipole density and 80% of

the 100% molecular packing density 4' 10- 2molecule/nm231, the dipole moment, 5.27

(the value that was divided by 1 D (debye)>> 3.33564' 10- 30C nn) was calculated. This

result is similar to values from another experiment21 and a quantum mechanical study of

OEO58 for helical conformer. Interestingly, the longer and higher range repulsive forces

on approach of HRFS were observed in the charged tips (COOH-terminated SAM tip or

HSA-functionalized tip) vs C3EOs5-SAM at 0.01 M IS than those of other tips vs C3EOs-

SAM curves. However, as the ionic strength increases, the charged tips' repulsive

forces vs those of the C3EO5-SAM decrease more than others (Figure 2-12). This agrees

with the Debye lengths of electrostatic forces of different ionic strengths; the result

shows that the electrostatic interaction more effectively relates to the repulsive forces of

the charged tips.
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The OH-terminated SAM tip vs the C3EO5-SAM had almost the same amount of

highly repulsive forces within a 10 nm range on all 0.01 M, 0.1 M and 1 M ISs.

Hydrophilic OH-terminated SAM tips should also have water layers as C3EOs5-SAM,

and this hydrophilic repulsive interaction is expected to prevail on other interface forces

on all ISs. The shorter repulsive force of the hydrophobic CH 3-terminated tip (no

hydrogen-bonded water layer) vs C3EO5-SAM (about 5 nm at 0.01 M 5 in the second

incubation is about two times less than that of the OH-terminated SAM tip vs C3EOs-

SAM) supports this idea (Figure 2-12). From these results, we can expect that the short-

range repulsion on the non-contact regime is caused by the hydrogen-bonded water

layers. This was also supported by the MD simulation and wettability experiment.74. In

addition, the hydration of the C3EO5-SAM in water results in the excluded-volume

effect and directly relates to the steric repulsion theory 75, 28,29

When the tip contacts the surface (contact regime), the molecular mobility

(flexibility) increases on the 60%-80% surface coverage case over the 100% surface

coverage case with 7/2 helical conformers, and gives the repulsive mobility as Vanderah

et al. suggested. The jump-to-surface or penetration to the surface was not observed in

the 5-second incubated C3EO5-SAM, which can be explained as this: when the tip

approaches the surface, the flexible C3EO5-SAM works as a spring to prevent the jump

force. The hydrogen-bonded water-layers are still alive in the contact regime because of

this flexible behavior of C3EOs-SAM.

2.6 Conclusion

The HRFS results clearly show a repulsive interaction between the C3EO5 SAM

at 60-80% surface coverage and the protein (human serum albumin)-functionalized tip,



as well as all hydrophilic, hydrophobic, or negatively charged tip surfaces. The overall

results support the theory that the protein resistance of the less ordered C3EOs5-SAM

(60%-80%) results from a combination of electrostatic interaction (non-contact regime,

long-range) between the hydrogen-bonded water layer (non-contact regime, short range

and possible contact regime) and mobility (flexibility) of the C3EO5-SAM (contact

regime). A detailed drawing of this protein resistant scenario and a suggestion for a

protein-resistant design are discussed in Chapter 6.



CHAPTER 3

High Resolution Atomic Force Microscopy Imaging of Supported

Lipid Bilayers

3.1 Introduction

Lipid bilayers attached to solid supports provide a versatile cell-membrane

(Figure 3-1) mimetic model system for use in applications such as biosensors, biological

arrays, and biomedical devices. They also serve as an excellent platform to quantify and

study the mechanisms of cellular processes such as adhesion, fusion, migration, and

exo- and endocytosis. 76 For this purpose, biologically relevant synthetic lipids such as

phosphorylcholine (PC) have been studied. 77, 78, 79, 80, 81, 82, 83, 84, 85, 86 In addition, recent

research shows that the zwitterionic PC moiety creates a protein-resistant property that

is more dominant on the fluid PC lipid layers.87,88,89'90, 91

Lipids are amphiphilic molecules that have a hydrophilic head group and

hydrophobic tail. Lipids form bilayers when the value of the dimensionless shape factor,

v / aol, is near to 192 (v: the volume of the tail group (hydrocarbon), a0: optimal head

group area, l,: critical chain length, which is smaller than a fully-extended hydrocarbon

chain length, l,,, aolj: the maximum volume of the tail group). If the shape factor is

under 0.5, which means v is much smaller than a0ol, lipids form a micelle instead of a

planar lipid bilayer. This criteria means that if the head group of lipid is too small or the

tail (hydrocarbon chains) is too bulky, lipids form bilayers instead of micellar structures.



Figure 3-1. Schematic of endothelium cell membrane. 93

The purpose of this chapter is to optimize the incubation methods to achieve a

well-prepared phospholipid monolayer and bilayer and to characterize the surface of

these layers by using several types of AFM tips as the environment changes such as

when ionic strength and incubation time are changed. These layers will be used later for

the nanomechanical tests discussed in Chapter 4 and 5. At the start of this research

project, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, unsaturated tail,

Figure 3-2 (a)) 94, 95, 96 was studied and later 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC, saturated tail, Figure 3-2 (b)) was studied. The latter creates a

stronger interaction between the lipids due to the strong hydrophobic interaction

between saturated tails and because it has a gel phase at room temperature (the

transition temperature from a gel to fluid is about 60C 98). In contrast, POPC is in a

fluid phase at room temperature; the transition temperature to a fluid phase is -6 C.97

DPPC has been studied with other lipids to see how the gel phase and saturated tail



affect the lipid plane's profile, characteristics of a lipid surface, and its interaction with

other molecules such as proteins. 98' 99' 100 ,10 1

AFM imaging has been used to prove that only one lipid bilayer exists' 02 and

to observe the phase change of the lipid bilayer under different conditions such as

various ionic strengths 103 and temperatures. 104 In this test as the temperature reached

the phase transition point from the solid to the fluid phase, holes in lipid bilayer

disappeared and formed a planar surface.98'1 4 This observation shows that lipids have

more flexibility and that they bind to each other loosely in the fluid phase.

Recently, Jarvis et al. succeeded in obtaining an AFM image of hydrated water

layers that cover the DPPC bilayer by using frequency modulation atomic force

microscopy (FM-AFM). 98,10 5 A detailed analysis shows a 0.28 nm thickness of two

hydrated water layers, which are strong and stable enough to serve as energy

barriers. 98,105
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Figure 3-2. Chemical structure of phosphorylcholine (PC) (a) POPC, (b) DPPC, pictures

by CAvanti Polar Lipids.

3.1.1 Theoretical Calculation of the Height of Phosphorylcholine (PC) in an



Aqueous Solution

The formation of phosphorylcholine (PC) lipids in an aqueous solution does not

result in a trans-form (Figure 3-2) but a tilted form (Figure 3-3, the head group is tilted

to the tail). The hydrogen bonded water molecules on the phosphate phosphorus and

nitrogen choline of the head group were observed in a molecular dynamics (MD)

study' 06 and an AFM experiment using a nanotube tip. 98 Therefore, the main

distribution of the lipid layers' height stems from the tail length and hydrogen bonded

water layers on the phosphate phosphorus. If just the tail group lengths from the end of

the tail to the phosphate head group are calculated (assuming that the tail is

perpendicular to the substrate), the height of one lipid layer of PCs is expected to be 1.9

nm (DPPC) and 2.1 nm (POPC) (Table 3-1). The water layer can be placed in the

middle of the lipid bilayer; the thickness and distribution of water layer depends on the

particular type of lipid and environment.10 7 Therefore, the gap between the two lipid

layers and the hydrogen bonded water can be destroyed if the tip makes strong contact

(at a higher set point) during AFM scanning; the total height of the lipid bilayer is

expected to be approximately 4-5 nm (Figure 3-4).



Water oxygen atoms r
phosphate phosphorus

Water oxygen atoms near
nitrogen choline oHe•d

HSPC1 HSPC2

G213
X4
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reference. 106

_", 4F

1



DPPC
Number A=BondUnit Bond cos Total Bond

Bond of Bonds AngleLength (pm) (A/2) Length (pm)
/ Lipid (degree)

C-C 154 17 109 0.58 1518.44
C-O 143 3 109 0.58 248.82
C-N 143 0 109 0.58 0
O-P 163 1 109 0.58 94.54
C-H 107 1 109 0.58 62.06

Tail total 1923.86

POPC

Number A=BondUnit Bond cos Total Bond
Bond of Bonds AngleLength (pm) (A/2) Length (pm)

/ Lipid (degree)
C-C 154 17 109 0.58 1518.44
C-O 143 3 109 0.58 248.82
C-N 143 0 109 0.58 0
O-P 163 1 109 0.58 94.54
C-H 107 1 109 0.58 62.06
C:C 133 1 0 1 133

Tail total 2056.86

Theoretical calculation of the length of
POPC.

the lipid tail groups for DPPC,Table 3-1.

DMPC and
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Figure 3-4. Typical structure of the phosphorylcoline lipid bilayer on a flat mica

substrate. Lipid bilayer picture from Wikipedia (http://en.wikipedia.org/wiki/

Lipid_bilayer).

3.2 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC)

3.2.1 Sample Preparation

Vesicle fusion technique

POPC (Avanti Polor Lipids Inc., Alabaster, AL) lipid bilayers were prepared

according to the vesicle fusion technique in a similar manner as were the lipid

monolayers discussed in Chapter 1.45 The lipid bilayer formed on the hydrophilic

surface via the processes of vesicle adsorption, rupture and fusion, etc. 108' 109' 110,111, 112, 113,

114,115 The driving force of vesicle rupture and fusion derives from the surface adhesion

energy. 116,117

The preparation of POPC vesicles is detailed as follows. The 0.6 mL POPC in

chloroform was dissolved in 10 mg/mL 9:1 chloroform/methanol solution. This POPC

solution was gently dried out by nitrogen. The 6 mg POPC in the chamber was

lyophilized for 8 hours. This lyophilized POPC was rediscover in 2 mL of 10 mM

degassed Tris buffer (150 mM NaCl, pH8), which was sonicated for 30 minutes and



centrifuged at 6000 rpm in 5 mL tubes (344057 from Beckman) with a 50.1 Ti swinging

rotor. Finally, the centrifuged solution was diluted to 2 mM with the Tris buffer.

After centrifuging, the POPC vesicles were characterized by a particle-size

analyzer (90 Plus particle size analyzer, Brookhaven Instruments Corporation) and

found to have a mean hydrodynamic diameter of 33.3 + 0.08 nm (Figure 3-5).

The solution with POPC vesicles was incubated on the CH 3- and OH-

terminated SAMs and rinsed after various incubation times to create the lipid monolayer

or bilayer.
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Figure 3-5. Distribution of POPC vesicle size by a particle size analyzer (90 Plus

Particle Size Analyzer, Brookhaven Instruments Corporation).

Choices and Preparation of Terminated Au Substrate and Tips

To form self-assembled monolayer (SAM) substrates and tips, the gold-coated

substrates and gold-coated Veeco pyramidal DNP silicon nitride tip (spring constant:

0.06N/m) were incubated for 24 hours in 25 mL of 5 mM solution which was prepared

using 0.0255 g of 11-mercapto-undecanol (HS-(CH 2)11-OH, 45056-1) and 30 ML of 1-

dodecanethiol (HS-(CH2)11 -CH 3, 47135-4) in an ethanol solvent. The pictures of both

_1



the CH 3- and OH- terminated tips were taken by scanning electronic microscope (SEM)

after all POPC experiments in Chapter 3 and 4 (Figure 3-6). Both the 11-

mercaptoundecanoic acid and 1-dodecanethiol were purchased from Sigma Aldrich. To

ensure a clean surface, all gold-coated tips, as well as the gold substrates, were Piranha

treated (1:3 H20 2:H2SO4) for 3 seconds on the tips and 5 minutes on the Au substrates

immediately before all functionalization. The vesicle fusion technique was used to

functionalize the lipid layers.

I

(b

Figure 3-6. Tip images from scanning electronic microscope (SEM) (a) CH 3-
terminated tip, and (b) OH-terminated tip. Gold-coated Veeco pyramidal DNP silicon
nitride tips (spring constant: 0.06N/m) were incubated in 5mM solution of 11-
Mercapto-undecanol (HS-(CH 2)11-OH) and 30 /LL of 1-dodecanethiol (HS-(CH 2)11-
CH 3) in an ethanol solvent.

Microcontact-Printing Procedure

Microcontact-printing (pCP) was used to prepare the planar surfaces with two

or more different chemically functionalized patterned areas. This technique use

patterned PDMS stamps (in this case, a hexagon or line pattern) to chemically

functionalize one pattern where the stamp first make contact with the surface. Then, the

sample is incubated in the second solution to functionalize outside of the pattern. In this



case, hydrophobic (1-dodecanethiol) and hydrophilic (11-mercapto-undecanol)

alkanethiol SAMs were functionalized in order, respectively, on the same gold surface.

The procedure was as follows (Figure 3-7). PDMS stamp was soaked in 0.3 mM 11-

mercapto-undecanol solution for SAM outside the hexagons for 1 hour. The Au

substrate was cleaned with Piranha (98% sulfuric acid + 33% hydrogen peroxide in 3:1

ratio) for 5 minutes. The soaked stamp was turned over and applied to the cleaned Au

surface for 30 seconds. The Au and stamped surface was placed in the solution so that

SAM can form inside the hexagons for 24 hours.

The POPC vesicles solution was incubated on a microcontact-printed substrate

and rinsed after the incubation in order to make the POPC monolayer and bilayer on the

same substrate. On the hydrophilic OH-terminated SAM, lipid bilayers formed because

the hydrophilic head group were first adsorbed to the hydrophilic surface and the

hydrophobic tails then met other hydrophobic tails (Figure 3-4). In contrast, only the

POPC monolayer formed on the hydrophobic CH 3-terminated SAM because the

hydrophobic tails were adsorbed to the hydrophobic surface.

Figure 3-7. The Microcontact-Printing procedure.



In the SPR experiments, 0.2 mM POPC vesicles (size < 50 nm) in 10mM Tris

buffer (150 mM NaCI, pH 7.8) were flowed onto a hydrophobic, CH 3-terminated SAM

(AuS-(CH 2)11-CH 3) on the Au substrate to create the POPC monolayer on the surface

(association kinetics on Figure 3-8). After 28 min, the surface was rinsed by only Tris

buffer (dissociation kinetics on Figure 3-8) to clean the physically observed lipids. After

2050 seconds, the SPR data showed the equilibrium formation of a full monolayer

(1380 RU, Figure 3-8). This result clearly shows the formation of a monolayer on a

hydrophobic surface. This preliminary SPR experiment confirmed the formation of the

lipid monolayer from the prepared solution of POPC vesicles.
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Figure 3-8. SPR result: a flowing POPC vesicle on the CH 3-terminated SAM. 0.2 mM
POPC vesicles (size < 50 nm) in 10 mM Tris buffer (150 mM NaC1, pH 7.8).

3.2.2 Experimental Method

Atomic force microscopy (AFM) was used primarily in the contact mode or

tapping mode with a Veeco DNP AFM probe tip to scan the lipid monolayers and

bilayers (Figure 3-9). The set point was minimized so as to minimize the pressure from

Association Kinetics

Dissociation Kinetics
Rinsed by Tris buffer

POPC lipid monolayer
concentration (1380RU)



the tip to the surface of the lipid layers. Based on the AFM images, a section analysis

was performed to check the height of the lipid layers; to prove that the formation of the

lipid bilayer or monolayer was not a multilayer, a square test was performed by

scanning the middle of the AFM image with high pressure scanning. After the high

pressure scanning, a larger AFM image was taken again to check if the height differed

between the image's inside and outside. To support the liquid environment, the Veeco

liquid cell was set up and the solution was then changed without disturbing the setup.

This enabled scanning of the same position even after changing the solution's ionic

strength.
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hydrophobic SAM

Lipid bilayer on
hydrophilic SAM

Figure 3-9. Schematic view of an AFM scan on the lipid bilayer and monolayer
which is on the surface of hydrophilic OH-terminated SAM and hydrophobic CH3-
terminated SAM (not drawn to scale).



3.2.3 POPC AFM Imaging Result & Discussion

The goals of the AFM imaging experiment were to verify the formation of a

lipid monolayer or bilayer, and to characterize the extent of formation and uniformity at

various ionic strengths.

AFM height, friction, and phase images were taken in contact and tapping

modes in 10 mM Tris buffer solution (10 mM NaC1, pH 7.8) with the PicoForce Digital

Instrument AFM and a standard Si3N4 probe tip, which is negatively charged at this pH.

These experiments showed the formation of POPC lipid mono- and bilayers on CH 3-

and OH-terminated SAMs, respectively, by comparing the experimentally measured

height difference between mono- and bilayers to the theoretical estimated values

(Section 3.1.1). Theoretical calculation of the height difference between the CH3- and

OH-terminated SAM is 0.364 nm (OH-SAM is higher) and the height of one POPC

lipid monolayer is approximately 2.1 nm as discussed in Section 3.1.1.

Before POPC incubation, jgCP AFM images of CH 3- and OH-terminated SAMs

in 10 mM Tris buffer solution (10 mM NaC1, pH 7.8) showed no statistically significant

difference between the heights outside and inside of the hexagon. However, the

boundary between the CH3- and OH-terminated SAMs was still recognizable because

there was a discernable shallow gap between them (Figure 3-10 (a)). After 15 minutes

of POPC incubation, the section profile from the AFM image on the contact mode

showed the rough surface on the outside of the hexagon, which was supposed to be a

POPC bilayer (Figure 3-10 (c)) even if the height difference between the inside and the

outside of hexagon was still clear (Figure 3-10 (b)). In order to minimize the pressure

from the tip and obtain the accurate value of the height difference, a height analysis was

performed for the overall AFM images, which were scanned continuously in tapping



mode at the same position; each AFM image was taken for each scan. Figure 3-11

shows that the height difference was consistently about 1.9 nm between the POPC

bilayer on the CH3-terminated SAM and the POPC monolayer on the OH-terminated

SAM for all AFM tapping mode images. The standard deviation of the height difference

decreased as the number of scans increased. This result clearly shows the formation of

the POPC mono- and bilayers. It is expected that the POPC incubation time should be

over 15 minutes in order to obtain well ordered POPC bilayer; the effect of the

incubation time on the formation of lipid layers is examined more later in this chapter.

Before performing the POPC incubation, friction images clearly show a

difference in friction between CH 3- and OH-terminated SAMs (Figure 3-12 (a)). After

the POPC incubation, however, there was no clear difference of friction between the

POPC bilayer on the CH 3- terminated SAM and monolayer on the OH-terminated SAM

(Figure 3-12 (b)). This proves that the head groups of POPC are on the surface of both

the monolayer and bilayer.

The inversion of the phase image was observed after the incubation of POPC

vesicles (Figure 3-13). The outside of hexagon was brighter than inside before the

incubation of POPC vesicles (Figure 3-13 (a)). This is expected to indicate that the

difference between hydrophilic and hydrophobic surfaces. However, after the

incubation of POPC vesicles (Figure 3-13 (b)), the inside of hexagon was brighter than

the outside. This inversion of the phase image in Figure 3-13 (b) is expected to indicate

the differences in height and elasticity between lipid bilayers and monolayers.
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Figure 3-10. Height images and section analysis on contact mode (a) gCP AFM
images of CH3- and OH- terminated SAMs in deionized water before POPC
incubation (control samples), (b) jtCP AFM images of SAM functionalized samples in
Tris buffer after POPC incubation, (c) cross-sectional analysis of the selected line
from the image of (b).
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Figure 3-11. Average height difference between hydroxyl and methyl SAMs before and

after POPC incubation measured in tapping mode. Three images were scanned

continuously on the same position.
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Fig 3-12. Friction images on contact mode (a) gCP AFM images of CH 3- and OH-

terminated SAMs in deionized water before POPC incubation (control samples), (b)
gCP AFM images of the SAM functionalized samples in Tris buffer after POPC
incubation.
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Figure 3-13. Phase images in tapping mode (a) gCP AFM images of CH 3- and OH-
terminated SAMs in deionized water before POPC incubation (control samples), (b)

gCP AFM images of the SAM functionalized samples in Tris buffer after POPC
incubation.



The hexagon patterns worked well for qualitative analysis, but they were less

ideal for quantitatively analysis. Because of the multidirectional boundaries, there is

greater chance that these boundaries are irregular than simpler patterns. In order to

obtain quantitatively better analysis, line patterns were used. Using these line patterns,

another set of AFM height, deflection, and friction images were taken in contact modes

in 10mM Tris buffer (150 mM NaC1, pH 7.8) with Pico Force DI AFM. The ionic

strength and pH of this environment are close to the in vivo condition where the lipid

layer faces the blood stream. Every AFM image was taken after gently replacing Tris

buffer in the enclosed fluid cell by injecting the new Tris buffer through the input pipe

and ejecting the existing tris buffer ejected through the output pipe in order to clean the

residue of POPC which did not form bilayers on the surface.

As expected from the previous hexagon gCP experiment, the AFM image

clearly showed the formation of POPC lipid mono- and bilayers on CH3- and OH-

terminated SAM. The difference in height between these two SAMs was under 0.3 nm

(Figure 3-14 (a)). However after 15 minutes incubation, the height difference increased

as shown in Figure 3-14 (b). After 3 hours of POPC incubation, a more defined height

difference, approximately 2 nm (Figure 3-14 (c)) was observed. This suggests that the

incubation of POPC vesicle needs a long incubation time (3 hours) to stabilize the

POPC layers and to lay all vesicles in the solution down on the surface.
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The 1 ljm x 1 Atm AFM images of height, deflection and friction were taken

using a OH-terminated SAM tip on the POPC incubated OH-terminated SAM in contact

mode in 10 mM Tris buffer solution (0.01 M IS, later 0.1 M and 1 M ISs, pH 7.8) with

the Pico Force DI AFM (Figure 3-15). In this experiment, 3 hours incubation, which

incubation time is similar to Silin's study80 , was consistently performed to ensure that

all the lipids stayed on the surface and the system reached an equilibrium condition. The

first image was taken before incubating POPC vesicles. It showed a rougher surface

than the POPC incubated images, but was clearly different from the bare gold surface118.

After 15 minutes incubation, it showed the stabilized POPC layered surface. However,

it is expected that there were some POPC vesicles that had not yet spread out on the

surface; on the 15 minutes incubation image, the interference from some residues of

lipids in the liquid was observed on the AFM image (Figure 3-15). The AFM image

after 3 hours incubation showed some residues of lipids and an irregular surface, but no

interference on the AFM image. In order to remove these residues, the same Tris buffer

(0.01 M IS) was used to wash the surface and another 3 hours was given to equilibrate

the surface again. Lipid bilayer became more homogeneous than before. As the IS

increased with 3 hours time intervals for the equilibrium condition, the surface appeared

to be more homogenized (figure 3-15). It is assumed that monovalent Na÷ and ClF ions

played an important role in promoting attraction between the zwitterionic head groups

with the higher ionic strength. This result is consistent with that of the high resolution

force spectroscopy (HRFS) which will be discussed in more detail in Chapters 4 and 5.

The 200 nm x 200 nm AFM images taken with the same condition as above showed

clearer difference between the lower ionic strength (0.01 M) and the higher ionic

strengths (0.1 M and 1 M) (Figure 3-16). There was no critical height change on the



higher ionic strengths. Even if the POPC layered surface seemed rougher on the 0.01 M

IS, it showed homogeneous surface as the scanning size of AFM image decreased

(Figure 3-17). This shows that the representative elementary area of the homogeneous

lipid layered surface can be changed as the ionic strength increases. This will be

discussed later in Chapter 5.

In order to verify that POPC lipids build bilayers not multilayers, a "square

test" was performed. Before scanning this 50 x 50 jm AFM image in the 10 mM Tris

buffer IS = 1 M, a 10 x 10 pm size AFM image was scanned in the center at a high set

point in order to press and broke through the lipid layers. Figure 3-15 shows the square

shape left from the 10 x 10 pim scanning, as well as the expected height difference (over

4 nm) for POPC lipid bilayers between the inside and outside of the square. This result

is similar to that of Steinem's study 102. After scanning the 50 x 50 um area several times,

the darkness of foot print, which corresponds to no lipid bilayer, was getting lighter and

it disappeared. This result shows "brushing effect" from the AFM probe tip, which

helps regularize and clean the surface of the lipid bilayer.

Overall, the AFM images of POPC clearly showed the formation of the POPC

lipid bilayers. However, because POPC was in a fluid state at room temperature, POPC

bilayer or monolayer image was less homogeneous at lower ionic strengths98
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Figure 3-15. 1 #m x 1 im AFM images for the POPC incubating time intervals (no POPC, 15 minutes, every 3 hr for incubating, rinsing and changing ionic
strength) by using OH-terminated tip and OH-terminated SAM.
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Figure 3-16. 200 nm x 200 nm AFM images for the intervals of the POPC incubating time (every 3 hr for incubating, rinsing and changing ionic strength) by
using OH-terminated tip and OH-terminated SAM.
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Figure 3-17. Several sizes of images after 3 hr incubation & 3 hr rinsing Figure 3-18. AFM images after square test on 1 M IS



After completing the POPC experiments, a DPPC lipid bilayer on mica with DI

standard SiN4 tip was selected as a finalized and simplified model for three reasons.

First, DPPC was in gel state at room temperature with a saturated tail, which helps the

solid AFM imaging and HRFS experiment. Second, the mica has flatter surface than Au.

Third, SiN 4 tips are less likely to have lipids on the surface because the upgrade direct

deposit method is used:45 This method does not incubate the lipid on the surface with

the tip and the surface together and it will not allow lipids to incubate on the tip's

surface.

3.3 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC)

3.3.1 Sample Preparation

In order to prevent the formation of the lipid layer on the tip and create a flat

surface on the targeted area, an "upgraded direct deposit method," an improved form of

the old direct deposit method98, was attempted and successfully optimized for achieving

a homogeneous DPPC bilayer region. This method ensured a consistent deposition and

distribution of lipids on the targeted area, with a consistent amount of DPPC solution

because the same amount of droplets (7 pl / droplet) were spread across the targeted area

(Figure 3-19). The sizes of the targeted areas were the same and had no markings or

walls because the thin layered mica was naturally fixed to the plastic surface by adding

small amount DI water drops between them (Figure 3-19 (a)); this plastic surface had

equally spaced holes of equal size. These drops were spread out not only to fix the mica

on the plastic surface for over one day but also to make slight physical barriers between

the inside and the outside of holes (Figure 3-19 (b)). When the DPPC solution dropped

down to each position of the mica, with a hole on the plastic, this hole could be seen



because the mica is transparent. This drop did not move beyond the hole area because

the inside of the hole did not have any support from the plastic surface. In addition, the

mica inside the hole slightly deflected until the solution dried out (Figure 3-19 (c)). This

slight deflection disappeared quickly because the ethanol + chloroform (1:1) dried out

quickly and during this time, the sonicated vesicle lipids were adjusted to bilayer formto

bilayer forms under the proper density per area (Figure 3-19 (d)). This new procedure

was developed for this study.

The summary of the procedure is as follows. 100 ig/ml of DPPC (ethanol +

chloroform 1:1) solution was prepared and sonicated for 10 minutes (3 times) with

extensive stirring between sonicating intervals. DPPC solution (about 7/l per drop) was

dropped onto the mica surface. The solution was allowed to evaporate for over 16 hr in

the hood. This dried sample was gently cleaned with 500 pl deionized water (3 times)

and left in the AFM stage for 1 hour with solution.

One interesting observation of the direct deposit method is that, at higher

concentrations of DPPC solution, over 100 Ag/ml, the lipid bilayer could also be

observed in some regions even if multi-layers were observed in other regions. This

means that at higher concentrations of DPPC solution, the well-ordered lipid bilayer

confined by multi-layers on the boundary can be made via the direct deposit method.

This is different from the island of the lipid bilayer found at lower concentrations and

similar to in vivo conditions in which homogenized confinement exists in all directions.
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Figure 3-19. Setup and procedure of direct deposit method (a) setup, (b) before
dropping, (c) immediately after dropping, (d) after drying out.

3.3.2 Selection of AFM probe tips

Several types of AFM probe tips such as Veeco DNP (spring constant: 0.06

N/m), Veeco DNP-S (sharpened) (spring constant: 0.06 N/m), pmasch sting tip (spring

constant: 0.12 N/m), and Vista (spring constant: 0.06 N/m) were used to obtain finer

AFM images (Figure 3-20). Among these tips, the DNP tip, DNP-S tip and pmnasch

sting tip were continuously used for overall experiments reported in Chapters 3, 4, and 5.

3.3.3 Experimental Method

Atomic force microscopy (AFM) was used primarily in the contact mode with

all kinds of tips listed in section 3.3.2. All experimental methods and setups for DPPC

were the same as those used for POPC as described in section 3.2.2.
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Figure 3-20. Tip images from scanning electronic microscope (SEM). (a) Veeco DNP
tip, (b) Veeco DNP-S (sharpened) tip (spring constant: 0.06N/m), (c) pmasch sting tip,
and (d) Vista tip.

3.3.4 AFM Imaging Results and Discussion

The upgraded direct deposit method was more effective than the vesicle fusion

technique in creating well-distributed, planar lipid bilayer surfaces on the targeted area

(Figure 3-21). Interestingly, the DPPC lipid monolayer can be observed clearly on the

boundary of the lipid bilayers. This is a unique observation, one that has never been

reported before. The images (Figure 3-21) and section analyses (Figure 3-22) clearly

show the formation of a lipid monolayer. The height differences between the mica and

the DPPC lipid monolayer are about 2.4± 0.3 nm, while between the mica and the

DPPC lipid bilayer, the difference is about 4.5± 0.3 nm (Figure 3-22). One more



interesting observation from this analysis is that for all section profiles on the surfaces

of DPPC layers in Figure 22, the height difference, ± 0.3 nm, on the surface of the

lipid bilayer is consistent. In the beginning of this imaging experiment, the height

difference was expected to be the periodic error from AFM but the error was not

periodic for all section profiles. Another possible interpretation [of what?] is that this

height difference was caused from the variation in the number of water layers on each

lipid bilayer's region. A recent AFM image by Fukuma et al.10 5 shows the frequent

height changes (the difference, 0.29± 0.03 nm) on one domain of the lipid bilayer; this

represents a jump from one lipid bilayer region, with just one water layer, to another

lipid bilayer region with two water layers.

For the major imaging experiments, a Veeco DNP-S (sharpened) probe tip,

which is pyramidal with an end radii of Rtip-l0 nm (normal) - 40 nm (maximum) was

used (Figures 3-21 & 22). It is assumed that this well-defined tip facilitated the

observation of the lipid monolayer at the boundary of the lipid bilayer, along with a

lower scan rate; this result was not observed when the DNP probe tip, which is

pyramidal Rti,-20 nm (normal) - 60 nm (maximum), was used. The rigid gel state of the

DPPC lipid layers at room temperature, which is different from the fluid state of the

POPC lipid layers at room temperature, may also have enabled this observation. In

addition, the upgraded direct deposit method raises the possibility of a lipid monolayer

on the boundary of the lipid bilayer rather than resulting form the vesicle fusion method.

In vesicle fusion, the lipid bilayer exists when it is a vesicle. Therefore when the

vesicles rupture and fuse to the flat mica surface, a lipid bilayer consistently forms.

However, in the direct deposit method, the boundary of the lipids bilayers will be

affected when the solution (1:1 chloroform and ethanol) dries out and forms the lipid



again after adding Tris buffer (As discussed in Chapter 3.3.1); It is expected that the

DPPC forms lipid bilayers when the bilayer vesicle solution (1:1 chloroform and

ethanol) stays on the mica surface before drying out.

In order to verify if there are other layers, the square test was performed in the

middle of the image (Figure 3-21 (a) & 22 (a)) with a high set-point on the AFM. One

interesting result not observed for POPC is that a DPPC lipid bilayer, which was

eliminated by the square test, partially recovered (Figure 3-21 (a) & 22 (a)); at some

region of the square, lipid bilayers fully recovered but not in other regions of the square.

This result was consistent for all DPPC imaging experiments, even if the sample and tip

types were changed. When the DNP-S probe tip was changed to a pmasch sting probe

tip, which is conical with a smaller end radii - 5 nm, more DPPC bilayers were

recovered than when the DNP-S probe tip was used (Figure 3-22 (c)). Because of these

recoveries from the square tests by the DNP-S and ýpmasch sting probe tip, we know

that recovery of the lipid bilayer is fast enough to perform high resolution force

spectroscopy (HRFS) on the same position of the lipid bilayer many times, which will

be discussed in Chapters 4 and 5. This recovery was also observed in other experiments

of HRFS 98 and AFM images 119. After several square tests and HRFS discussed in

Chapters 4 and 5, the end radii of all tips were measured by a scanning electronic

microscope (SEM). All the tips were worn out to a certain degree but the surface was

smooth enough to perform AFM imaging and HRFS. The maximum radii of DNP,

DNP-S and pmasch sting probe tips were Rip - 80 nm, Rtip 50 nm, Rtip - 30 nm

respectively. These tips were used for the high resolution force spectroscopy (HRFS)

experiment described in Chapters 4 and 5.

Another AFM image was taken using a Vista tip, which is conical with the end

100



radii, Rtip - 10 nm also showed the clear formation of the DPPC lipid bilayer (Figure 3-

23 (c)). At a higher IS (0.1 M), the AFM image by DNP-S tip clearly shows the

formation of the DPPC bilayer. Clearer bilayer images are observed more on the larger

area at higher ionic strengths than at lower ionic strengths (Figure 3-23 (a) & 3-24).

When the Tris buffer was changed from 0.01 M to 0.1 M, some debris was observed

(Figure 3-23 (a)), but disappeared after several scans.

It was very clear that the upgraded direct deposit method played a critical role

in obtaining the homogeneous DPPC lipid bilayers even if there were some holes in the

lipid bilayers. This area is large enough to perform high resolution force spectroscopy

(HRFS) at several positions without considering the boundary effect from holes and

deformation effect from other positions of the HRFS experiment. Some holes on the

overall area of lipid bilayers in the 0.01 M IS were also observed by others1 4.
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(a) 3 pm x 3 pm

10 nm

5 nm

0 nm

(b) 500 nm x 500 nm (c) 287.9 nm x 287.9 nm

Figure 3-21. AFM deflection images of DPPC lipid bilayer and monolayer on the boundary of bilayers. (a) 3 tpm x 3 pm (the "square test" was performed in the
middle of the left image), (b) 500 nm x 500 nm, and (c) 287.9 nm x 287.9 nm. AFM images on (b) and (c) are from the randomly selected area of (a).AFM
images on (b) and (c) were not exposed to the square test. DNP-S (sharpened) tip was used with the low scan rate (under 0.8Hz) in 10mM tris (hydroxymethyl)
aminomethane buffer (0.01M IS, pH 7.6). Sample was prepared by direct deposit method.
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Mode
& Scale

(a) 3 pm x 3 pm (b) 500 nm x 500 nm (c) 284 nm x 284 nm
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Figure 3-22. AFM height images and section analysis of lipid bilayer and monolayer on the boundary of bilayers. (a) 3 gpm x 3 pm (the "square test" was
performed in the middle of the left image), (b) 500 nm x 500 nm, and (c) 287.9 nm x 287.9 nm. Images are the same as those in Figure 3-17. DNP-S tip was
used with the low scan rate (under 0.8 Hz) in 10 mM tris (hydroxymethyl) aminomethane buffer (0.01M IS, pH 7.6). Sample was prepared by the upgraded
direct deposit method.
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(a)5pmx~pm (b) 5 plm x 5 plm ()px

Deflection

Figure 3-23. AFM images of lipid bilayer by (a) 5 tm x 5 pm by using DNP-S (sharpened) tip on 0.1M IS, (b) 5 jim x 5 gIm by using Vista tip on 0.01 M IS
(the end radii of the tip is under 10 nm diameter), and (c) 5 Atm x 5 gm by using gmasch Sting tip on 0.01M IS. Tips were used with the low scan rate under 0.8
Hz. Sample was prepared by the upgraded direct deposit method. 10 mM Tris buffer was used.
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Deflection

Figure 3-24. AFM images of the lipid bilayer by using an jimasch Sting tip after changing IS from 0.01M to 0.1M. (a) 7.5 jtm x 7.5 rpm, (b) 5 gtm x 5 jtm, and
(c) 1.2 gtm x 1.2 gim. Scanning images continuously from (a) to (c) made the surface more homogeneous. The debris (white spots on (a)) after changing from
0.01 M to 0.1 M ionic strength buffer disappeared after several scans. The low scan rate (under 0.8 Hz) was used in 10 mM tris (hydroxymethyl) aminomethane
buffer (0.1 M IS, pH 7.6). This sample was prepared with the upgraded direct deposit method.
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3.4 Conclusion

In this study, POPC and DPPC layers were made using vesicle fusion technique

and the upgraded direct deposit method. The formation of stable lipid layer by vesicle

fusion technique required long incubation time in AFM (here, 3 hr). However, the

upgraded direct deposit method spent just on 1 hr in AFM to make the sample ready for

the AFM experiment.

This upgraded direct deposit method is effective in making a consistent

deposition and distribution of lipids on the targeted area with a consistent amount of

DPPC solution because a consistent amount of droplets (7gl / droplet) are spread out on

the targeted area. This upgraded direct deposit method enabled us to observe the clear

lipid bilayer and monolayer (right next to the boundary of bilayer) together, which have

never been reported together before. It is expected that the nature of the upgraded direct

deposit method contributes to stabilizing the lipids on the flat mica surface, and enables

a monolayer to form right next to the boundary. In addition, the upgraded direct deposit

method played a critical role in obtaining the homogeneous DPPC lipid bilayer which is

large enough to perform high resolution force microscope (HRFS) at the several

positions in Chapters 4 and 5, without considering the boundary effect from holes and

deformation effect from other positions of the HRFS experiment.

To verify if these are only lipid mono- or bilayers not multilayers, the square

test was performed in the middle of the image. It was observed for the first that some

DPPC lipid bilayer area which was eliminated by the square test partially recovered.

The existence of hydrogen bonded water layers on the surface could be

expected from the section analysis of DPPC bilayer. As the ionic strength of solution

increased, the surface of lipid layers were more homogeneous. Based on these
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charaterizations of the lipid layers, POPC and DPPC layers were ready for the HRFS

experiment: as described in Chapters 4 and 5.
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CHAPTER 4

High Resolution Force Spectroscopy of Lipid Bilayers as a Function of

Solution Ionic Strengths (ISs)

4.1 Introduction

Biological membranes play important roles such as sustaining a stable and non-

clogging barrier from electrolyte solutions and transporting proteins from outside to

inside of the cell. Lipids, which form the bilayer, are the main component of biological

membranes, along with steroids and proteins; lipids also play a significant role in

stabilizing membranes.

To understand the interaction mechanisms of biological membranes such as

mechanical forces caused in cell-to-cell interactions (red blood cell vs. endothelium

cells, or the penetration of proteins through cell membranes) and to develop a protein-

resistant and versatile cell-membrane mimetic model system for blood-contact

biosensors and biomedical devices,76 it is crucial to study the nanomechanical properties

and interactions of hydrated lipid bilayers for several ionic strengths. For the protein-

resistant applications, one of the most important factors is that lipid bilayers should be

homogeneous across the entire surface to prevent clogging or coagulation in the holes

and strong enough to endure high blood pressure as discussed in section 2.2.

Previous high resolution force spectroscopy (HRFS) experiments using

nanomechanic techniques such as the surface force apparatus (SFA), scanning force

microscope (SFM), and atomic force microscope (AFM), have shown that the nanoscale

compressibility and statistical distribution of one or two yield threshold forces (rupture

or fusion forces) are needed to penetrate a lipid mono- or bilayer (so-called "yield
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threshold forces"). 103 ,120,121,122,123,124 HRFS at different ionic strengths (ISs) 103 or pHs1 25

and lateral force microscopy (LFM) (as a function of different ISs126) have been applied

to lipid bilayers using a silicon nitride (Si 3N4) tip or a chemically functionalized tip.

One key result that is consistence across these experiments is that as the IS increases,

both the yield threshold forces in the vertical HRFS to the lipid bilayer and the vertical

force needed to break the lipid bilayer laterally in the LFM also increase. This can be

explained by the screening and tighter packing effect of Na+ and Cl ions on the charges

of the zwitterionic lipid head groups10 3' 125 (Figure 4-1). The positively charged nitrogen

choline of the head group may be screened by the CI group and the negatively charged

phosphate phosphorus of the head group is screened by Na+. These ions also screen

other polar head groups in the same manner and this screening effect helps to increase

the lateral interaction of the head group and to tightly pack the lipids. Theoretical

approaches such as the simple spring model, which considers the lateral forces, and the

macroscopic Hertz model have also tried to show the increase of forces (before the force

reaches the yield threshold force of rupture 103) when the AFM tip deforms and disrupts

the surface. These studies have been aimed to better understand the rupture mechanism

of the lipid bilayer via HRFS127. The Hertz model is not well suited for the experimental

results because it is the macroscopic model, but the spring model works well on the

t

Figure 4-1. Effect of NaCl in lipid molecule packing. 125
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elastic deformation of the lipid layer.

When examining the previous research on HRFS, and the interaction between

two lipid bilayers or one lipid bilayer surface and a AFM probe tip, two regimes can be

identified: (a) a noncontact interaction regime, which may include contributions from

longer range surface forces (e.g., electrostatic force, van der Waals force) to shorter

range surface forces (e.g., hydration force) and is highly dependent on the functionality

of the head groups (b) a contact interaction regime, which includes steric

compressibility and, in addition to the other noncovalant interactions listed above for

the noncontact regime, hydrophobic interactions that derive from the lipid's tail group.

The hydrophobic interaction of the tails maintains the structure of the layer until the tip

thoroughly penetrates the layer. However, the precise mechanisms of fusion and rupture

of the lipid layers are unknown and various studies'0 3,119,'123 have not had consistent

results using HRFS on the same or similar structures of the lipid bilayer.

To clearly understand the nanomechanical properties of lipid bilayer, high

resolution force spectroscopy (HRFS) was performed for the two kinds of lipid bilayers.

At the start of this research, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC,

unsaturated tail) lipid bilayers and monolayers on both hydrophilic OH-terminated

SAMs and hydrophobic CH 3-terminated SAMs, respectively, on the Au-coated tip and

surface were tested by using a molecular force probe lD (MFP 1D) of different ionic

strengths (ISs, 0.01 M, 0.1 M, 1M). With some modification and improvement of

experimental skills, the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, saturated

tail) lipid bilayer was also studied via Picoforce's atomic force microscopy of different

ionic strengths (ISs, 0.01 M, 0.1 M, 1 M) with bare Si3N4 AFM probe tip. Because

DPPC is a gel at the room temperature (the transition temperature from a gel to a fluid is
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about 60*C 98), it has a more stable and rigid lipid bilayer at room temperature. This

makes the result of the nanomechanical test more consistent and reliable than that of

POPC, which is a fluid at room temperature (the transition temperature from a gel to a

fluid is -6°C 97). In this research, only a solid support was used to achieve the

nanomechanical properties of lipid layers without an effect from the soft surface.

4.2 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC)

4.2.1 Sample Preparation

The sample preparation is the same as was used in preparing the AFM imaging

of lipid bilayer in the chapter 3. The POPC vesicle fusion technique44 was optimized in

order to prepare the lipid bilayer for the HRFS experiments. A 0.6 mL POPC in

chloroform was dissolved in a 10 mg/mL 9:1 chloroform/methanol solution and the

POPC solution was dried by nitrogen. The 6 mg POPC in a chamber was lyophilized for

8 hours. This lyophilized POPC was redissolved in 2 mL of 10 mM of a degassed Tris

buffer (150 mM NaC1, pH8). This solution was sonicated and centrifuged. Finally the

centrifuged solution was diluted to 2 mM with the Tris buffer.

The vesicle size was checked by using by a particle size analyzer (90 plus

particle size analyzer .made by Brookhaven Instruments Corporation) in order to

maintain the diameter of the POPC vesicle under 100 nm, which helps to eventually

distribute the lipid bilayer from the vesicle as was done in chapter 3. This POPC vesicle

solution was injected onto the surface of hydrophobic CH3-terminated SAM (AuS-

(CH2)1 1-CH3) to make monolayer or hydrophilic OH-terminated SAM (AuS-(CH2)11-O

H) to make a lipid bilayer. The lipid solution was incubated for at least 15 minutes to

establish lipid bilayer.



To prepare the SAM-functionalized planar substrates and probe tips, a gold-

coated substrate and a- gold-coated Veeco DNP pyramidal silicon nitride tip (spring

constant: 0.06 N/m) were incubated for 24 hours in 25 mL of 5 mM solutions, which

were prepared using 0.0255 g of 11-Mercapto-undecanol (HS-(CH2)11-OH, 45056-1)

and 30 jiL of 1-dodecanethiol (HS-(CH2)11-CH 3, 47135-4) in ethanol. Both the 11-

mercaptoundecanoic acid and 1-dodecanethiol were purchased from Sigma Aldrich. To

insure a clean surface, all the gold-coated tips, and gold substrates were Piranah treated

(1:3 H20 2:H2 SO 4): 3 seconds for the tips and 5 minutes for the planar substrates, which

was done immediately before chemical functionalization.

All nanomechanical tests for POPC were done at room temperature. POPC has a

fluid phase in room temperature; the transition temperature to a fluid phase is -6 C97.

4.2.2 Experimental Method

A molecular force probe 1D (MFP lD, Asylum research, Inc.) was first used

for HRFS experiments on the POPC bilayer for all ISs experiments. Picoforce atomic

force microscopy (AFM, Veeco) was used for the POPC monolayer experiment. AFM

imaging was already done as described in Chapter 3 in order to ensure the formation of

the lipid bilayer. Three different ionic strengths, 0.01 M, 0.1 M and 1 M, in 10 mM tris

(hydroxymethyl) aminomethane buffer (pH 7.6) were used. As mentioned in Chapter 2,

three different ionic strengths 0.01 M, 0.1 M and 1 M were selected and adjusted by

NaCl. Considering the potential application of lipid layer to the bio-device in vivo for a

mammalian bloodstream (0.15 M) and the marine structures under sea (0.50 M - 0.86

M), 0.1 M and 1 M were selected. While other multivalent ions exist in the bloodstream

and seawater, only Na÷ and CI, which are main ions in the bloodstream and seawater,
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were selected for this study to simplify the experimental environment. In addition, to

compare these results to a low IS, 0.01 M was selected.

The schematic of HRFS for monolayers is shown on the next page (Figure 4-2).

It was expected that the lipid monolayers would be stabilized on both the CH3-

terminated SAM tip and the Au substrate after 30 minutes of incubation. Another

schematic of HRFS for bilayers is shown in Figure 4-3. It was expected that the lipid

bilayers would stabilize on both the OH-terminated SAM tip and Au substrate after 30

minutes incubation. These HRFS experiments for the POPC layers were focused on

studying the electrostatic interaction, fusion, and rupture of the lipid layers.

For all HRFS experiments, the displacement rate was set to 1 Jm/second and

the estimated nominal cantilever spring constant (set by the manufacturer) was about

0.06 N/m. Based on the thermal tune of the AFM, the spring constants of each

individual tip were measured directly.
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Figure 4-2. Schematic of HRFS experiment involving compression of opposing lipid

monolayers; the size of the lipids and CH3-terminated SAMs are not drawn to scale.
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Figure 4-3. Schematic of the HRFS experiment involving compression of opposing

lipid bilayers; the size of the lipids and OH-terminated SAMs are not drawn to scale.
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4.2.3 Experimental Results and Discussion

HRFS of the POPC monolayer adsorbed on the CH3-SAM tip on "approach"

(probe tip advancing towards surface, Fig. 4-2) to the POPC monolayer adsorbed on an

CH3-SAM planar substrate, using a molecular force probe (MFP), showed a nonlinear

net repulsive interaction starting at over 15 nm (0.01 M IS) followed by one or two

yield thresholds (Figure 4-4), which was not observed on the HRFS of the bare CH3-

SAM tip vs. the CH 3-SAM control experiment. The second yield threshold forces were

clearly distinguished for all experiments but the first lower yield threshold forces were

sometimes ambiguous (approximately 30% of data). The second yield threshold forces

were quite higher than the first one; on 1M IS, the second yield threshold force were

about 6x higher than the first one. Both first and second yield threshold forces increased

as the IS was changed from 0.01 M to 1 M (Figure 4-5 & 6). Almost all increases were

statistically significant (p < 0.001) in the force as IS was changed from 0.01 M to 0.1 M.

On the contrary, the first yield threshold distances decreased as the IS increased but the

second yield threshold forces were within the same range (Figure 4-5 & 6). It is

expected that the final yielding threshold happens almost at the same distance even if

the ionic strength increases.

The HRFS experiment on the opposing POPC bilayers which were adsorbed on

OH-SAMs in Tris buffer with different ionic strengths, 0.01 M, 0.1 M and 1 M, using a

molecular force probe (MFP) on approach (Figures 4-9, 4-10, and 4-11) showed a

nonlinear net repulsive interaction starting at over 15 nm and typically was followed by

the two threshold forces on 0.01 IS or one threshold force on 0.1 M and 1 M ISs

(Figures 4-10 & 11). As the ionic strength increased, the yield threshold forces

increased in all experiments for lipid bilayers on both the OH-terminated SAM on tip
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and surface (Figures 4-10 & 11). The distance of the initiation of a net repulsive

interaction and the yield threshold distances decreased as the ionic strength increased

(Figure 4-10 & 11); this is reasonable considering the decrease of the Debye length as

the IS increases.

On 0.1 M and 1 M ISs, the second-yield threshold forces of HRFS experiments

between the POPC monolayers on the CH 3-SAM tip and substrate were higher than

those between the POPC bilayers on the OH-SAM tip and substrate (figures 4,-6 & 10).

It is expected that the lipid monolayers were more homogenized on CH 3-SAM tips and

surfaces with hydrophobic interaction than the lipid bilayers on OH-SAM tips and

surfaces.

For overall POPC experiments, the monovalent Na+ and CF ions were, as

expected, important in making the lipid head groups hold together tightly so the yield

threshold forces increased as the ionic strength increased. This can be explained by the

screen and binding effect of ions on the charges of the zwitterionic lipid heads. 103' 125
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Figure 4-4. Examples of Individual Force-Distance curves on approach of opposing

POPC mono layers interaction (Figure 4-2). (a) 0.01 M IS and (b) 0.1 M IS. On 1 M

IS, same shape of two yield threshold forces were observed as shown in (b). Only

difference is that the yield threshold forces were higher onl M IS than on 0.1 M IS.
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Figure 4-5 Plots on approach of opposing POPC mono-layer interactions (Figure 4-

2). (a) Plots of a normalized first-yield threshold force with varying ionic strengths.

(b) Plots of the first-yield threshold distance (the initial distance of break-through

force) with varying, ionic strengths. The deference is considered extremely

statistically significant in force and distance as the IS changes from 0.01 M to 0.1 M

(force: p < 0 .0003, distance p < 0.0001).or 1 M (p < 0 .0001).
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Figure 4-6. Plots on approach of opposing POPC mono layers interaction (Figure 4-

2). (a) Plots of a normalized second yield threshold force with varying ionic

strengths. (b) Plots of the second yield threshold distance (the initial distance of

breakthrough force) with varying ionic strengths. The deference is considered to be

extremely statistically. significant in the force as IS is changed from 0.01M to 0.1M

orlM (p < 0.0001).
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The interaction mechanisms between the lipid layers are complicated; two

suggested pathways can reach the yield threshold forces by ruptures or fusions (Figure

4-12).120 Even if these are the result of interactions from my SFA experiment, from

these suggested pathways, the yield threshold mechanism of my HRFS experiment

between bilayers on the tip and surface can be expected as follows. The two-yield

threshold forces on 0.01 M IS seems to follow a hemi- and full fusion as shown in

Figure 4-12; this scenario works well in the fluid phase of the lipid.120 On 0.1 M and 1

M, only one clear yield threshold force was observed in this POPC experiment. It is

expected that with the higher ionic strength, two lipid bilayers can be compressed

together and fused or ruptured at one time because of the strong bindings of the head

group on the higher ionic strength as discussed earlier in this chapter.10 3,125

Returning to the HRFS experiment of POPC monolayers, it is assumed that the

weaker monolayer ruptured or fused first and then the stronger monolayer ruptured later.

For 30% of data, which did not show clear first-yield threshold forces, it is expected that

both layers fused or ruptured together.

To better understand the nanomechanical properties of the lipid bilayer itself,

the simpler experimental setup than used in POPC experiments was needed. Therefore,

HRFS of the DPPC lipid bilayer versus the bare Si3N4 AFM probe tip were studied as

detailed in the following section.
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Figure 4-12. Schematic drawings of potential interaction mechanisms between lipid

bilayers from SFA study. 120

4.3 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC)

4.3.1 Sample Preparation

After performing the POPC HRFS experiment, the direct deposit method for

the sample preparation was tried and successfully optimized to reach the homogeneous

DPPC bilayer region. As discussed in Chapter 3, this method is effective for ensuring

the deposit of lipids on the targeted size of area with consistent amounts of DPPC
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solution. The procedure is as follows: 100 JLg/mlDPPC (ethanol + chloroform 1:1)

solution is prepared and is sonicated 3 times for total 30 minutes (10 minutes per one

time) with extensive stirring between sonicating intervals. The DPPC solution (about 7

JLIper drop on the mica) is deposited onto the mica surface. The solution is evaporated

over 16 hr in the hood. This dried sample is then cleaned 3 times with 500 JLIdeionized

water.

4.3.2 Experimental Method

Picoforce atomic force microscopy (AFM) was used mainly to perform HRFS

of different ionic strengths (ISs, 0.01 M, 0.1 M, 1 M). In addition, scanning the DPPC

bilayer with the AFM tip helps stabilize the planar homogeneous lipid bilayer. The tip

speed was changed to 100 nm/sec (which is 10 times slower than that used in the POPC

experiment) to make the static loading and to minimize the effects from the turbulence

and vortex of the fluid and the impact. As the static loading in the macro-level gives the

lower Yielding force than the dYnamic loading, the similar trend was observed on the

nanomechanical test (Figure 4-13). The differences in yield threshold forces between

the tip speeds of 100 nm/s and 200 nm/s was statistically significant (p < 0.0168) but

between the tip speeds 1000 nm/s and 200 nm/s, the difference was not significant. This

suggests that for static l.oading,the tip speed should be under 100 nm/s. Further study is

needed to distinguish the criteria of the static loading.
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Figure 4-13. Plots of the yield threshold force with varying tip speed on approach.

The difference in yield threshold forces between 100 nm/s and 200nm/s (p < 0.0168)

is statistically significant.
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Figure 4-14. Schematic of the HRFS experiment involving the interaction of a bare

Si3N4 AFM probe tip and a single lipid bilayer supported on planar mica.
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4.3.3 Experimental Results and Discussion

HRFS of the 'silicon nitride tip (Rtip = 80nm) on "approach" (probe tip

advancing towards surface, Figure 4-14) to the DPPC bilayer adsorbed on hydrophilic

mica consistently showed single yield threshold force on 0.01 M IS and two-yield

threshold forces on 0.1 M and 1 M (Figure 4-15). The most relevant research finding in

this area was obtained-using MFP1D, which shows that only 10-15% of the HRFS

curves of 0.1 M and IM have two-yield threshold forces and other curves have single

yield threshold force. 103 In this research, however, two-yield threshold forces were

observed consistently (Figure 4-15). It is expected that the static loading speed 100

nm/sec and a homogenized lipid bilayer surface after AFM scanning help the tip reach

the two step forces. Typical individual HRFS curves (Figure 4-16, DPPC, 1 M) can be

interpreted as seven distinct regimes based on the interaction of the lipid bilayer with

the approach of the tip. The regimes of the approach curve are in the following order:

(a) "noncontact surface interaction" regime governed achieved by electrostatic

interaction, (b) "lipid bilayer contact" regime where the tip physically makes contact

with the lipid bilayer, (c) "1st elastic compression of bilayer" regime where the bilayer is

compressed by the end of the tip until the lipids hold the compressive force elastically,

(d) "1st yield threshold" where the first layer is yielded at a distance near to the height of

the lipid bilayer (e) "2nd elastic compression of bilayer" (f) 2"d yield threshold where the

second layer, which is supported by the substrate, is obtained at a distance near to the

height of the lipid monolayer (g) "substrate contact" where the end of the tip makes

direct contact with the mica substrate. At steps d and f, the punctured yield threshold

forces were observed when the tip penetrated the lipid bilayer.

In the case of the 0.01 M IS experiment, because there is only single yield
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threshold force, it is used to compare both the first and second yield threshold forces

(Figures 4-17 & 20). It is expected on the higher ionic strength, 0.1 M and 1M ISs, both

upper and lower lipid layers are yielded in order from the upper layer to the lower layer.

However, on 0.01 M IS, both layers are expected to be corrupted at once (Figure 14).

The yield threshold distance on 0.01 M IS is shorter than the threshold distances on 0.1

M and 1 M ISs (the first-yield threshold distance, Figures 18 & 20). This shows that the

entire lipid layers are holding forces and are yielded simultaneously on 0.01 M IS.

As the ionic strength increased, the final yield threshold force increased

(Figures 18 & 20). The monovalent Na+ and Cl- ions are, as discussed before, important

in making the lipid head groups hold together tightly. This can be explained by the

screen and binding effect of ions on the charges of the zwitterionic lipid heads. 103' 125
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4.4 Interpretation and Comparison with the Literature

4.4.1 One-Yield Forces vs. Double-Yield Thresholds

As shown in Section 4.3.3 experimental results and discussion of DPPC, two

yield thresholds were consistently observed on IS 0.1 M and 1 M for all of the data and

one yield threshold was consistently observed on IS 0.01 M. This result differs from

the experimental result by Garcial0 3; only 10-15% of data showed two-yield thresholds

on the higher ionic strength; these were assumed to be caused by the formation of

another lipid layer on the tip as was discussed previously.'2 4 These researchers ignored

the two yield threshold data mainly because a) the two yield thresholds were not

observed when carboxyl-chemically-functionalized tips were used and b) the total

distance for the two yield threshold from the substrate was greater than the lipid bilayer

height, and the total length of the first-yield threshold was longer than the second yield

regime.

In this research, however, as shown in the POPC experimental results and

discussion in Section 4.2.3, even if a carboxyl-chemically-functionalized hydrophobic

or hydrophilic tip was used, the experiment resulted in distinct one or two yield

threshold forces. I assumed that the formation of the lipid layers on the tip's smaller

curvature end rather than those on the planar surface would be of weaker strength and

looser formation between the lipid head groups.

And as shown in the DPPC experimental results, the distances of the yield

thresholds considering compression coincided with the height of the lipid layers. This

result is different from other references.'0 3' 124 Only a small change of the yield

threshold distance was observed based on the change in ionic strength. For the higher

ionic strengths, the yield threshold forces increased a statistically significant amount.

137



On the other hand, the reason why two yield thresholds were observed on the

higher ionic strengths on DPPC experiments was because all my experiments were

carried out after checking AFM images, which helped to form a well-defined planar

surface via the scanning by AFM tips. The proper static experiment was also

performed with a suitable tip speed (100 nm/sec), approach distance (over 500 nm) and

time interval (5-10 seconds) between each individual experiment.

Considering this definitive result of two yield thresholds of the lipid bilayer, it

is expected that with a higher ionic strength, the lateral interactive forces between the

lipid head groups or lipid tail groups will be more dominant and stronger than the

vertical forces between the lipid tails because in the lateral direction, there is strong

lateral attraction between head groups from the hydrogen bonding in water molecules,

Na+ and CI monovalant ions' screening and binding on higher ionic strengths, and the

hydrophobic later attraction of the 16 carbons (per one lipid tail) of the saturated DPPC

lipid tails. On the contrary, the vertical hydrophobic attraction between tails was weak

because there is only a one-to-one carbon interaction and there are possibly potential

concentrated water molecules between lipid tails. 107

4.4.2 Change of the Slopes between the First Elastic Compression and the Second
Elastic Compression

As shown in Figure 4-15 & 16, the HRFSs of the higher ionic strengths 0.1 M

and 1 M, the second elastic compression is stiffer than the first elastic compression.

One reference using SFA shows a similar trend but this is due to the interaction

between the lipid bilayers. 120 Before identifying the contact regime, it was expected

that the electrostatic and van der Waals forces would be dominant. When the tip

compresses lipid bilayers after initial contact, it is expected that the lateral attraction
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among head groups resulting from the hydrogen bonding of water molecules, the

screening and tighter packing effect of Na+ and CT ions on the charges of the

zwitterionic lipid head groups will govern the initial increase of the elastic

compression force and then, the strong hydrophobic interaction between the tails will

create stiffer elastic compression on the first elastic compression regime. Furthermore,

the deformations of both the upper and lower layers are expected until the upper layer

reaches the first yield threshold.

After the first yield threshold, however, a stiffer increase of the compression

forces was observed because the lower lipid layer has already been greatly compressed

at the first compression regime and is strongly connected to the rigid planar mica with

a strong hydrophilic attraction between the mica and lower lipid layer. In addition, the

hydrophobic tails on the top are also laterally strongly connected each other. It is also

expected that the lower layer, which is directly connected to the hydrophilic mica, will

have a greater homogeneously arranged array than that of the upper layer because the

mica is planar and strongly hydrophilic. And the lower lipid layer is the first formation

on the mica substrate in the upgraded direct lipid deposit method.

One interesting finding is that even if both the upper and lower bilayer had the

same structure, as the force increases the upper layer will most likely fail at the lower

yield threshold, not simply because the upper layer is directly in contact with the tip

but because of fracture mechanics whereby the relatively weaker head group will start

to fracture easily due to defects of the upper lipid layer's contacted surface. This will

be discussed in detail on the next chapter.

139



4.5 Conclusion

In this chapter, the nanomechanical properties of POPC and DPPC lipid

layers were examined using HRFS. My findings clearly show that one or two yield

threshold forces exist, whether the experimental setup is a POPC bilayer vs. a bilayer, a

POPC monolayer vs. a monolayer or bare Si3N4 tip vs. a DPPC bilayer.

The simpler experimental setup, a bare Si3N4 tip vs. a bilayer, provided

clearer experimental results. As the ionic strength increased on the same tip, the yield

threshold forces increased and on the higher 0.1 M and 1 M ionic strengths, the yield

threshold force of each layer could be detected at the proper range of distance between

the tip and layer based on the height of the each lipid layer. This finding clearly differs

from other studies as discussed in Section 4.4.1. The increased yield threshold forces

based on the increase of ionic strength can be explained as follows. In the lateral

direction, there is a stronger lateral attraction, which binds head groups tighter to each

other from monovalant Na÷ and ClF ions' screening and the binding effect on higher

ionic strengths; consequently, this helps form well-distributed hydrogen-bonded water

molecules from each head group and the closed hydrophobic lateral attraction of 16

carbons (per one lipid tail) of the saturated DPPC lipid tails.
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CHAPTER 5

Effect of Length Scale and Geometry on the Nanoscale Surface

Interactions and Compressibility of Supported Lipid Bilayers

5.1 Introduction

Chapter 5 discusses the high resolution force spectroscopy (HRFS) study of

lipid bilayers. Pyramidal Veeco DNP silicon nitride tips with typical end radii, Rtp, -20

nm but Rti, as sharp as -60 nm were used. These tips have been used both with and

without gold coating and have given stable images and HRFS results. However, as

shown in chapter 3, detailed images of the DPPC bilayer and DPPC monolayer on the

bilayer's boundary could best be observed using the sharpened, pyramidal Veeco

DNP-S probe tip with a typical RtipqlO nm with an Rtip as sharp as 40 nm. In addition,

a good AFM deflection image could be obtained using the conical pmasch sting probe

tip with a smaller end radii, Rtp -5 nm. These results indicate the potential effects of

the length scale and geometry of AFM tips on imaging. As discussed in Chapter 3, as

a result of prolonged use (in the square test, AFM imaging and HRFS tests), tips could

be worn down and their radii increased. This will be discussed further in the

experimental method.

This is the first study in which varying length scales and geometries of AFM

tips have been used in lipid research. Previous work has been limited to standard size

NP, NPS, Olympus, and other similar tips.'21' 122' 123, 12 4125'126'127. In addition, previous

work has not clearly articulated the time scale or number of tips used in a given

experiment nor have researchers documented the small differences between tips.
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Because there is always variance in manufacturers' specifications, the actual properties

(e.g., spring constant and radius) of each tip may be different. In a nanoscale

experiment, these small physical differences between AFM tips can lead to drastic

differences in final results. Thus, it is extremely important to use only one tip for a

series of experiments in order to minimize HRFS errors from tips.

On the other hand, researchers have not clearly shown how much the used

silicon nitride tip wears out after hundreds of HRFS experiments and numerous AFM

imagings. This wear and tear can cause a fundamental error in the quantitative analysis

because the forces divided by radii of the tips is compared. The radius of the tip should

be correctly measured before and after an experiment. This "worn-out" environment is

inevitable for the silicon nitride tip but it is still used for AFM imaging and HRFS

experiments because it can make the finer end radii of the tip by oxide sharpening.128

This chapter details how HRFS was employed to study the effects of length

scale and geometry on the nanoscale interactions and compressibility of supported lipid

bilayers. My ultimate goal is to better understand the transition from localized

molecular deformations of small groups of phospholipids to the more homogenized

continuum-like responses of many lipids. This study on the effect of length scale and

geometry has not been carried out before in lipid-related research.

5.2 Materials

5.2.1 Selection of Lipid

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) on mica was used as a

model system because the gel-type DPPC bilayer at room temperature showed stable

AFM images and HRFS results as described in Chapters 3 and 4.
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5.2.2 Sample Preparation

The direct deposit method that was described in chapters 3 and 4 was used

again in this experiment (Figure 3-15). A drop (7 gl) of 100 jgg/ml DPPC solution (1:1

methanol + chloroform) was deposited on the planar mica surface and allowed to dry

for 24 hr. Next, two ionic strengths, 0.01 M and 0.1 M, of 10 mM Tris

(hydroxymethyl) aminomethane buffer (pH 7.6) was added to the DPPC's dried

surface.

5.2.3 Selection of Tips

Two types of AFM tips were used to investigate the tip's length scale and

geometry effects. Pyramidal Veeco DNP silicon nitride probe tips with typical Rip,-20

nm and maximum Rip -60 nm, and conical pmasch sting probe tips with smaller, Rip

-5 nm were used for the HRFS study; results obtained using these two different tips

were compared.

5.3 Experimental Method

Before performing the HRFS experiment, the square test described in Chapter

3 was performed first for all the tips including the DNP tip to ensure that only one lipid

bilayer was established. As discussed in Chapter 3, because of the square test, several

imagings and HRFS tests, tips were worn out and the radii of tips were increased with

Rip-80nm (DNP) and Rtip-50nm (DNP-S), and Rtip-30nm (Pmasch sting probe tip).

The tips that were used in chapter 3 for the square test and imaging were used for

HRFS in the consecutive manners. After the square tests, AFM imaging and HRFS,

using a scanning electronic microscope (SEM) were employed to view the tips.

Nanomechanical experiments performed on areas perpendicular to the sample plane on
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the "approach" (tip advancing towards the sample surface) with a tip speed 100 nm/sec

were carried out, under a static loading condition in a 10 mM Tris (hydroxymethyl)

aminomethane buffer (0.01M ionic strength or 0.1M, pH 7.6). The tip speed for the

static loading is detailed in Section 4.3.2.

5.4 Results and Discussion

5.4.1 0.01 M IS condition

The yield threshold forces, Fys, required for the tip to penetrate the lipid

bilayers were quantified. It was observed that Fy increased as the probe size decreased

(Figure 5-1). Fys were 35 ± 14 mN/m (Rti, -80nm), 234 ± 38 mN/m (Rtip-50 nm), and

693 + 280 mN/m (Rti, -30nm) (Figure 5-2 (a)). The intermediate-sized (middle) tip

(R, -50 nm) experienced one lower Fy, 90 ± 19 mN/m before reaching the final Fy

(Figure 5-2 (a)). It is assumed that this tip size can achieve the optimum range needed

to observe the yield threshold force of each layer. If the tip size is too big, lipid bilayers

will be ruptured simultaneously. In contrast, if the tip size is too small, it will penetrate

the lipid bilayers with friction rather than disrupt each layer. The Fy values reflected a

statistically significant difference. In contrast, the yield threshold distances were

consistently lower than the height of the DPPC bilayer (Figure 5-2 (b)) within a similar

range. The compression (repulsion) for the lipid bilayer was initiated at the height near

the DPPC bilayer and remained compressed until it reached the yield threshold. The

smaller tip (Rtip -30 nm) was expected to create higher compression and localized

molecular deformations for all the layers rather than each individual layer. However,

the larger tip seemed to have a yield threshold force on the lower level because the

stress concentration and fracture on the weaker or dislocated region; the failure of the

144



structure under the yield strength of the material used can be explained by using the

stress concentration on defects (fracture mechanism). Assuming a hemispherical

geometry, a 0.5 nm2/lipid molecule, and the 4.5 nm height of the lipid bilayer from the

AFM imaging, the smallest tip (Rti -30nm) interacted with --101 molecules at the

yield distance (4.23 nm), the intermediate tip interacted with -163 molecules at the

first yield distances (4.24 nm) and 200 molecules at the second yield distances (1.93

nm; the lower layer was from 4.5/2 = 2.25 nm) and the largest tip (Rtip -80 nm)

interacted with -1,098 molecules at the yield distance (3.4 nm). The observed trend for

decreasing Fy with increasing Rti, might be attributed to probing a larger number of

molecular scale holes, dislocations or imperfect lipid bilayer regions causing increased

stress concentration and eventually failure. In order to support this hypothesis, the

following analysis was carried out.

The largest tip (Rti -80 nm) exhibited a discontinuous jump without a change

of the force in the constant compliance regime after the yield threshold force, Fy was

reached. This result indicates that the fracture mechanism is dominant once the yield

threshold force is reached. The middle tip (Rtip -50 nm) exhibited first discontinuous

jump after the first-yield threshold force, 1st Fy was reached. After the second yield

threshold force was reached, a continuous increase in force and compression was

observed until the constant compliance regime was reached at the ultimate force, Fu.

Similarly, for the smallest probe tip (Rtip -30 nm), a continuous increase in force and

compression was observed until the constant compliance regime was reached at the

ultimate force, Fu achieved after the yield threshold force, Fy, was reached. The

ultimate forces were 234 ± 38 mN/m (Rip,- 50nm), and 966 ± 321 mN/m (Rti,-30 nm)

(Figure 5-3 (b)) and the difference between Fu and Fy (Fu-y,) and between the mean
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values were 35 mN/m (R1 -p -50 nm) and 273 mN/m (Rp -30 nm). These results

indicate that an inelastic or hardening homogeneous compression without instability on

the smallest tip plays a greater role than the fracture mechanism. The reason why the

difference Fu-y of the smallest tip is greater than that of middle tip is because the

smallest tip penetrates the entire bilayer whereas the middle tip penetrates just the

lower layer of the bilayer.
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nm) probe tips.
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Some of the results of smallest tip did not have the yield threshold forces but

the repulsive force increased to the ultimate force, Fu. This could be easily

distinguished from the empty region where the tip directly touched the mica (Figure 5-

3(a)). These results are assumed to be caused by the less-packed, dislocated or

imperfect lipid bilayer region as conferred in the suggested hypothesis.

To check how much of these HRFS data were distributed across a certain area,

an equally spaced (100 nm) HRFS was performed for a well-defined DPPC bilayer

(Figure 5-4(b) and 5-5(b)) and compared with the two smaller tips with 0.01M IS

(Figure 5-4(c) and 5-5(c)). In Figure 5-4(c), the dark gray square indicates one (the

smallest tip) or two (the mid-sized tip) clear yield threshold forces and the light gray

square shows that it has an ambiguous or no yield threshold force (as discussed in the

previous page) and that the repulsive force gradually increases. White squares mean

there was no detection of a yield threshold force and distance. This suggests that there

are holes that are not within the lipid bilayer's domain. For the middle and smallest tips,

88% (Rtip -50 nm) and 57% (Ri, -30 nm) respectively, the overall positive HRFS data

shows a clear yield threshold force (the increase of the repulsive force after the yield

threshold force was observed for all of the data). The rest of the HRFS data (12% (Rtip

-50 nm) and 43% (Rti, -30 nm) of the data within the lipid domain) had an unclear or

no yield threshold force and the repulsive force gradually increased until it reached the

ultimate force, Fy (Figure 5-4 (c) & 5-5 (c)).

These results were consistent with my hypothesis. As the tip size decreases,

there are more possibilities to meet the less packed, dislocated or imperfect lipid bilayer

region outside of the well-packed region the well packed region. Because of this, the

inelastic hardening mechanism (less stress concentration) during penetration is more
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dominant than the fracture mechanism of the larger tip.
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Figure 5-3 (a) Nanomechanical data on the approach of (a) pmasch sting (Rtip ~-30

nm), silicon nitride cantilever tip on DPPC lipid bilayers (unclear yield threshold) on

flat mica or flat mica with Tris buffer (0.01 M IS); (b) Plots of normalized ultimate

forces of the DPPC bilayers (0.01 M IS) when the tip reaches the compliance regime

of HRFS with DNP (Rtip -80 nm), DNP-S (Rtip -50 nm) and gmasch sting (Rtip -30

nm) probe tips.
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(a) Force distribution (2
nd Fy)

(700nm x 700nm, IS = 0.01 M)

(b) 500nm x 500nm by Sting tip
(IS = 0.01 M)

(c) Yield threshold Distribution
(700m x 700nm, IS = 0.01 M)
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Figure 5-4 (a) Force distribution (700 nm x 700 nm size); (b) AFM image (500 nm x 500 nm size); and (c) Threshold distribution (700 nm x 700 nm size) of

HRFS data with DNP-S (Rtip -30 nm) probe tip (0.01 M IS). Spacing in each HRFS experiment is 100 nm and the HRFS experiment was performed only one

time in each position. The dark gray boxes indicate a clear yield threshold (well-packed DPPC layers), light gray boxes, an unclear yield threshold (less packed

DPPC layers), and white boxes indicates no yield threshold (no DPPC layers).
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Figure 5-5 (a) Force distribution (b) AFM image, and (c) Threshold distribution (1 pm x 1 gm size) of HRFS data with gLmasch sting (Rtip~30 nm) probe tip

(0.1 M IS). Spacing in each HRFS experiment is 100 nm and the HRFS experiment was performed only one time in each position. The dark gray boxes

indicate a clear yield threshold (well-packed DPPC layers), light gray boxes, an unclear yield threshold (less packed DPPC layers), and white boxes indicates

no yield threshold (no DPPC layers).
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In contrast, as the tip size decreases, there are more also more possibilities for

the tip to meet the finer, well-packed lipid bilayer, which is why the yield threshold

forces increased as the tip size deceased. Considering only the ultimate forces of the

middle and smallest tip, the Fu of the smallest tip was quite a bit higher than that of the

middle tip. Considering the effects of fracture energy and inelastic hardening energy

and a statistical view, the HRFS results of the smallest tip are mostly governed by

inelastic energy but those of the middle tip are affected more by fracture energy even if

the inelastic hardening energy is combined.

Therefore, as the tip size increases, there are more possibilities for probing

more molecular scale holes, dislocations or imperfect lipid bilayer regions within a

well-packed region. This causes an increased stress concentration and eventually failure

of the fracture mechanism as suggested above in this section. The force distribution of

the medium-sized tip and the smallest tip (Figure 5-4 (a) and 5-5 (a)) also supports this

hypothesis. The force distribution of the middle-sized tip has a very stable force on an

entire area with small amounts of unclear or no threshold positions, but the force

distribution of the smallest tip has unclear or no threshold positions adjacent to clear

threshold positions. The clear yield threshold force position is surrounded by the

unclear or no yield threshold force positions when considering all directions shown in

Figure 5-5.

As for the largest tip (R,ip -80 nm), several HRFS experiments were performed

at one position with time intervals (over 30 seconds) and the tip moved to another

position. As shown in other studies 103',104, 1 9 and this research (in chapters 3 and 4), the

DPPC bilayer reforms itself quickly after HRFS so HRFS experiments can be

reproduced on the same position multiple times.
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5.4.2 O.1M IS condition

The HRFS results on 0.1M IS showed higher yield threshold forces than those

on 0.01M IS using the same size tips (Figure 5-6). The result was discussed earlier in

Chapter 4: that monovalent Na' and C1- ions play an important role in causing the

zwitterionic head groups to hold each other more strongly with higher ionic strengths.

Consequently, the AFM image clearly shows a well-packed surface (Figure 5-8 (b)).

The yield threshold force of the smallest tip (Rtip -30 nm, 1095 ± 28 mN/m) was much

higher than the final yield threshold force of the largest tip (Rip -50 nm, 55 ± 8 mN/m)

(Figure 5-6 (a)). However, the yield threshold distance (2.8 ± 0.85 nm) of the smallest

tip with 0.1M IS decreased from that of the smallest tip with 0.01M IS. This

phenomenon is also thought to be caused by the stronger binding effect of the head

group, which enables the lipid bilayer to more effectively hold the compression force

from the tip. The 85% (Rip -50 nm) HRFS data, (excluding the white squares (no-color

space)), had a distinct yield threshold force (the increase of the repulsive force after the

yield threshold force was observed for all of the data). Considering only 57% of the

HRFS data had a clear yield threshold force with 0.01 M IS, this evidently shows how

important it is to increase the ionic strength to create a densely packed surface.

Furthermore, all subsequent HRFS data showed the formation of the lipid bilayer

except the first four and the last one segment of data (the white area) with no lipid

bilayer.

This ionic strength is similar to the in vivo state when the membrane faces the

blood stream (0.15 M IS). This result clearly shows that the lipid bilayer clearly forms a

well-packed surface on in vivo state.

The force distribution of the HRFS result shows a periodical increase of the



force in the scale from 10 to 50 nN in any direction as shown in Figure 5-8; the

positions of the highest yield threshold forces (40-50 nN) were well distributed with

the distance of several hundred nanometers; the highest yield threshold forces (40-50

nN) were not detected for more than three consecutive times in all directions. It is

expected that even if the lipids are well packed and ordered across an overall area, there

are still more densely packed areas. It is also expected that the additional components

(cholesterol, other lipids, etc.) of an actual human membrane such as that of an

endothelium cell, help to establish the rigid, more densely packed surface.

5.5 Conclusion

Larger HRFS tips have a greater chance of making contact with a surface on a

less ordered regime that has defects or dislocations in homogeneous groups of lipid

bilayer. This causes stress concentration and failure on the defects and dislocations,

which strongly suggests that the fracture mechanism prevails on the yielding

mechanism. To the contrary, a shorter scale tip can make contact with only a

homogenized regime or a non-homogenized regime. Therefore, HRFS will have either

an unknown yield threshold force on the non-homogenized regime or a clear yield

threshold force on the homogenized regime. This means that yielding mechanism

prevails on the fracture mechanism. As the ionic strength increases, the DPPC bilayer

surface is more homogeneous and achieves higher yielding threshold forces across the

entire area.
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(a) Force distribution
(1pm x 1plm, IS = 0.1M)

(b) 1 .2plm x 1 .2plm by Sting tip
(IS = 0.1M)
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Figure 5-8 (a) Force distribution, (b) AFM image, and (c) Threshold distribution (1 pm x I pm size) of HRFS Data with pmasch sting (Rtip~30nm) probe tip

(0.1 M IS). Each space between HRFS experiment is 100nm and only one time HRFS experiment was performed per one position. Colors stand for dark

gray: clear yield threshold (well packed DPPC layers), light gray: unclear yield threshold (less packed DPPC layers), white: no yield threshold (no DPPC

layers).
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CHAPTER 6

Summary and Future Research Directions

6.1 Introduction

This study explored the nanomechanical properties of two prospective protein-

resistant hydrated organic thin films: a synthetic polymer, oligo ethylene oxide (C3EO5)

self-assembled monolayer (SAM), and biomimic polar zwitterionic phosphorylcholine

(PC) lipid bilayers. Based on the results of this research, in this chapter, I offer options

for designing a protein-resistant surface and provide suggestions for future directions of

study.

6.2 Protein Resistant Design for Synthetic Polymer

The result of the high-resolution force spectroscopy (HRFS) study clearly

shows a repulsive interaction between the C3EO5 SAM at 60-80% surface coverage and

the protein (human serum albumin) functionalized tip or any other hydrophilic,

hydrophobic, or negatively-charged tip. The results showed that the repulsive forces are

caused not only by the "flexibility" (mobility) of the C3EO5 SAM in a contact regime

but also by the "long-range electrostatic repulsion" from the negative charge of the

protein-functionalized tip vs. the effective negative surface charge from the bigger

dipolar moment of a less ordered C3EO5 chemical structure at 60-80% surface coverage

in a noncontact interaction regime, (Figure 6-1). Moreover, the short-range hydrogen

bonded water-layers in a noncontact regime also were shown to cause repulsive forces

(Figure 6-1). In the case of hydrogen-bonded water layers, more repulsive forces occur

when more hydrophilic ethylene oxide groups are exposed on the surface. These three

components are necessary to create a protein resistant surface.
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In short, the design of a protein resistant oligo ethylene oxide surface requires a

proper surface-packing density that can maximize the dipole moment (from helical or

amorphous conformation) and the formation of a water layer and the flexibility of the

oligo ethylene oxide itself. However, if the surface packing density is too low, the

effect from the Au substrate should be considered. Therefore, it is important to find the

proper surface-packing density that can enable the entire surface coverage to screen the

effect from the substrate with the less-ordered conformation, which can maximize the

dipole moment of both the structure and the hydrated water layers. In addition, the

durability of the thiol-bonded SAM on the Au substrate should be evaluated for long-

term usage.

Alternatively, instead of using the Au substrate, a graft copolymer that has two

subunits can be employed (Figure 6-2). The structure unit 1 should be attached to the

targeted surface by chemical bonding. By changing the sequence of Structural Unit 2,

which can be an oligo ethylene oxide, the grafting density can be controlled. If

Structural Unit 1 is also hydrophilic, it can also improve protein resistance because it

helps to create hydrated water layers.



..------ Structural Unit 2------

' -B- B -B-B-

I I

*-'"-----A- A A A A_-----A-A-A-A-------

Structural Unit 1
Figure 6-2. Example of a graft copolymer. A & B are monomers. Structural Unit 1 is
composed of A monomers and Structural Unit 2, of B monomers.

Another key factor to be considered is the length and shape of Structural Unit 2.

If it is much longer than the size of the protein, it does not provide resistance to the

small and elliptical-shaped proteins (the thickness along the semi-major axis is about 2-

3 nm)' 29 because these small proteins can get stuck between the long chains. In this

sense, it is best to use a short oligo ethylene oxide, the height of which is about 2 nm

for C3EO5 rather than long chains such as PEO and PEG.

In short, to design an optimal protein-resistant surface by using a grafted

ethylene-oxide-based oligomer or polymer, the surface-packing density and length of

the chemical structure should be optimized to maximize the dipole moment, the

hydrated surface water layers and the flexibility of the chemical structure.

6.3 Protein Resistant Design for Phosphorylcholine (PC) Lipid Bilayers

This study examined the nanomechanical properties of zwitterionic DPPC and

POPC lipid bilayers. As discussed in Chapters 1 and 3, these lipid bilayers are protein

resistant because of the hydrophilic and zwitterionic head groups. One of the most

important factors of a protein-resistant design for PC lipids is that the lipid bilayers
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should be homogeneous across the overall surface to prevent clogging or coagulation in

the holes. On the other hand, this homogeneous surface should be strong enough to

endure high pressures such as in high blood pressure (human medical) contexts.

Therefore, we must understand the structural properties of the lipid bilayers. As shown

in Chapters 4 and 5, the lipid bilayers have high yield threshold forces whereby the

overall surface becomes more homogeneous as the ionic strength increases. It is quite

noticeable that with 0.1 M IS, which is similar to the IS of human blood, the DPPC lipid

bilayer has good structural properties in an overall area even if yield threshold forces

periodically rise and fall based on the positions of HRFS experiment. It seems that this

periodic change in structural property is the nature of the PC lipid bilayer. In addition,

the proper incubating approach, the direct-deposit method, can improve the

homogeneity of the lipid layer.

Another factor that can improve the design of a protein-resistant homogeneous

PC lipid bilayer is the length of the hydrophobic tail group; the longer the tail group the

better it will bind and stabilize lipids.

To apply this lipid layer system to an actual product such as a bio-device or

artificial artery, one could modify the lipid tail group polymerization with a proper

incubating method. In this way, the lipid group will consistently remain on the surface

and retain its strong mechanical property.

As shown in the study of the lipid bilayer, the length scale and geometry of

the AFM probe tip are crucial to understanding and designing solid nanomechanical

properties because the improper use of the tip can underestimate or overestimate the

nanomechanical properties of hydrated organic thin films.

163



6.4 Future work

This research suggests three directions for future study. First, the optimization

of the graft copolymer, which was discussed in Section 6.2, could be studied to further

maximize protein resistance. A study using HRFS and AFM imaging of the graft

copolymer could be compared to the MD simulation of it to better understand the

protein-resistant mechanism.

Second, the durability of the OEO-SEMs needs to be further studied in order to

apply them to biosensors, biological implants, and marine antifouling coatings, etc.

Also, the enhanced attachment of OEO-SEMs on the substrate and the prevention of the

degradation of OEO-SEMs should be studied.

Third, the potential protein resistance of the PC Lipid bilayer combined with

other components such as oligosaccharides and sterols that mimic the endothelium cell

could be studied via HRFS and MD simulations. Because oligosaccharides are

hydrophilic and because sterols increase the structural strength of the lipid layers, both

seem to improve protein resistance. The polymerization of these combinations could be

applied to actual bio-devices.

Forth, the length scale (from microscale to nanoscale) and geometry effect of

the AFM probe tip on the thin films need to be further studied because as they relate to

the study of the representative elementary volume (REV) of nanometer- and

micrometer-scale materials. If the length scale of the tip is too much larger or smaller

than that of REV, it can not detect the proper nanomechanical properties of material. In

addition, the proper tip speed of HRFS should be studied in greater depth in order to

measure the proper nanomechanical properties of the application of the materials.



APPENDIX

Self-Assembled Monolayers (SAMs)

The chemisorption of linear thiols (in this research, OEO-SAMs) to Au (111)

creates an equally spaced and stable SAM with 100% surface packing density130,131,132

(Figure A-1). The thiol.bonding on Au is more favorable than other kinds of bonding.

The thiol bonding mechanism is still being studied. 133,'134. To explore the binding state

of the Au-S head group, X-ray photoelectron spectroscopy (XPS) has been used to

show the S 2p photoemission spectra. 134 The size of S 2p spectra is changed according

to the packing density of thiol-bonded self assembled monolayer on Au. 134
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Figure A-i (a) STM image (6nm x 6nm) of Oxtanethiol on Au (111). The (23'3 3)

unit mesh and c(4x2) superlattice unit cell are outlined'31 . (b) Plot of cross-section B

in (a) running in the Au nearest-neighbor (NN) direction. (C and D) Cross-sectional

plots running in two of the Au next-nearest-neighbor (NNN) directions. 31 (c) High-

resolution STM image showing c(4 x 2) superstructure containing three different

molecular states in a unit cell (3.8 nm x 3.8 nm)'32 . (d) Schematic model

describingthe c(4x2)- superstructure. White circles correspond to gold atoms and

colored circles correspond to alkanethiol molecules.' 3 2
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