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The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered completely

understood: The rates at which bipartite entangled states can be asymptotically transformed into each other are

fully determined by a single number each, the respective entanglement entropy. In the multi-partite setting, sim-

ilar questions of the optimally achievable rates of transforming one pure state into another are notoriously open.

This seems particularly unfortunate in the light of the revived interest in such questions due to the perspective

of experimentally realizing multi-partite quantum networks. In this work, we report substantial progress by de-

riving surprisingly simple upper and lower bounds on the rates that can be achieved in asymptotic multi-partite

entanglement transformations. These bounds are based on ideas of entanglement combing and state merging.

We identify cases where the bounds coincide and hence provide the exact rates. As an example, we bound rates

at which resource states for the cryptographic scheme of quantum secret sharing can be distilled from arbitrary

pure tripartite quantum states, providing further scope for quantum internet applications beyond point-to-point.

Entanglement is the feature of quantum mechanics that ren-

ders it distinctly different from a classical theory [1]. It is

at the heart of quantum information science and technology

as a resource that is used to accomplish task (and is increas-

ingly also seen as an important concept in condensed-matter

physics). Given its significance in protocols of quantum in-

formation, it hardly surprises that already early in the develop-

ment of the field, questions were asked how one form of entan-

glement could be transformed into another. It was one of the

early main results of the field of quantum information theory

to show that all pure bipartite states could be asymptotically

reversibly transformed to maximally entangled states with lo-

cal operations and classical communication (LOCC) at a rate

that is determined by a single number [2]: the entanglement

entropy, the von-Neumann entropy of each reduced state. This

insight makes the resource character of bipartite entanglement

most manifest: The entanglement content is given simply by

its content of maximally entangled states, and each form can

be transformed reversibly into another and back.

The situation in the multi-partite setting is significantly

more intricate, however [3–5]. The rates that can be achieved

when aiming at asymptotically transforming one multi-partite

state into another with LOCC are far from clear. It is not even

understood what the “ingredients” of multi-partite entangle-

ment theory are [4, 6], so the basic units of multi-partite en-

tanglement from which any other pure state can be asymp-

totically reversibly prepared. This state of affairs is unfortu-

nate, and even more so since multi-partite states come again

more into the focus of attention in the light of the observa-

tion that elements of the vision of a quantum network – or

the “quantum internet” [7] – may become an experimental

reality in the not too far future. It is not that multi-partite

entanglement ceases to have a resource character: For exam-

ple, Greenberger-Horne-Zeilinger (GHZ) states are known to

constitute a resource for quantum secret sharing [8, 9], the

probably best known multi-partite cryptographic primitive.

Progress on stochastic conversion for several copies of multi-

partite states was made recently [10, 11]. However, given a

collection of arbitrary pure states, it is not known at what rate

such states could be asymptotically distilled under LOCC.

In this work, we report surprisingly substantial progress on

the old question of the rate at which GHZ and other multi-

partite states can be asymptotically distilled from arbitrary

pure states. Surprising, in that much of the technical sub-

stance can be delegated to the powerful machinery of entan-

glement combing [12], putting it here into a fresh context,

which in turn can be seen to derive from quantum state merg-

ing [13, 14], assisted entanglement distillation [15, 16], and

time-sharing, meaning, using resource states in different roles

in the asymptotic protocol. The basic insight underlying the

analysis is that entanglement combing provides a reference,

a helpful normal form rooted in the better understood theory

of bipartite entanglement, that can be used in order to assess

rates of asymptotic multi-partite state conversion. Basically,

putting entanglement combing to good work, therefore, we

are in the position to make significant progress on the ques-

tion of entanglement transformation rates in a general setting.

Multi-partite state conversion. We consider the problem

of converting an n-partite state ρ into σ via n-partite LOCC.

In particular, we are interested in the optimally achievable

asymptotic rate for this procedure, which can be formally de-

fined as

R(ρ→ σ) = sup

{

r : lim
k→∞

(

inf
Λ

∥

∥

∥

∥

Λ
(

ρ⊗k
)

− σ⊗⌊rk⌋
∥

∥

∥

∥

1

)

= 0

}

. (1)

Here, Λ reflects an n-partite LOCC operation and ||M||1 =
Tr
√

M†M denotes the trace norm. This problem has a known

solution in the bipartite case n = 2 for conversion between ar-

bitrary pure states ψAB → φAB, rooted in Shannon theory. The

corresponding rate in this case can be written as [2]

R(ψAB → φAB) =
S (ψA)

S (φA)
, (2)
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where S (ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy.

Moreover, ψAB indicates that the state is shared between par-

ties referred to as Alice and Bob, while ψA reflects the reduced

state of Alice.

This simple picture ceases to hold in any setting beyond the

bipartite one. Indeed, significantly less is known in the multi-

partite setting for n ≥ 3 [3]. Needless to say, the bipartite

solution (2) readily gives upper bounds on the rates in multi-

partite settings. For example, for conversion between tripartite

pure states ψABC → φABC , it must be true that

R(ψABC → φABC) ≤ min

{

S (ψA)

S (φA)
,

S (ψB)

S (φC)
,

S (ψC)

S (φC)

}

. (3)

This follows from the fact that any tripartite LOCC proto-

col is also bipartite with respect to any of the bipartitions. If

the desired final state φABC is the GHZ state with state vector

|GHZ〉 = (|000〉+ |111〉)/
√

2, the bound in Eq. (3) is known to

be achievable whenever one of the reduced states ψAB, ψBC or

ψAC is separable [16].

We also note that for some states the bound in Eq. (3) is

a strict inequality. This can be seen by considering the sce-

nario where each of the parties holds two qubits respectively.

Consider now the transformation

|GHZ〉A1B1C1 ⊗ |GHZ〉A2B2C2 →
|Φ+〉A1B1 ⊗ |Φ+〉A2C1 ⊗ |Φ+〉B2C2 ,

(4)

i.e., the parties aim to transform two GHZ states into Bell

states |Φ+〉 = (|00〉 + |11〉)/
√

2 which are equally distributed

among all the parties. It is straightforward to check that in

this case the bound in Eq. (3) becomes R ≤ 1. However, the

bound is not achievable, as the aforementioned transformation

cannot be performed with unit rate [17].

Lower bound on conversion rates for three parties. The

above discussion suggests that the bound in Eq. (3) is a very

rough estimate for general transformations and is saturated

only for very specific sets of states, having zero volume in

the set of all pure states. Quite surprisingly, we will see below

that this is not the case: there exist large families of tripar-

tite pure states which saturate the bound (3). This will follow

from a very general and surprisingly simple lower bound on

conversion rate, which will be presented below in Theorem 2.

The methods developed here build upon the machinery of

entanglement combing, which was introduced and studied for

general n-partite scenarios in Ref. [12]. In the specific tri-

partite setting, entanglement combing aims to transform the

initial state ψABC into a state of the form µA1B ⊗ νA2C with pure

bipartite states µ and ν. The following Lemma restates the re-

sults from Ref. [12] in a form which will be suitable for the

purpose of this work.

Lemma 1 (Conditions from tripartite entanglement combing).

The transformation

ψABC → µA1B ⊗ νA2C (5)

Figure 1. Conversion of a multi-partite resource state ρ (a) into the

desired final stateσ (d). The conversion is achieved via entanglement

combing, i.e., via transforming the initial state ρ into singlets [black

solid lines in (b)]. One of the singlets is then converted into the

desired final state σ [gray dotted lines in (c)]. The remaining singlets

[black solid line in (c)] are then used for teleporting the parts of σ to

the remaining parties.

is possible via asymptotic LOCC if and only if

E(µA1B) + E(νA2C) ≤ S (ψA), (6a)

E(µA1B) ≤ S (ψB), (6b)

E(νA2C) ≤ S (ψC). (6c)

We refer to Appendix A for the proof of the Lemma. Us-

ing this result, we are now in position to present a tight

lower bound on the transformation rate between tripartite pure

states.

Theorem 2 (Lower bound for state transformations). For tri-

partite pure states ψABC and φABC , the LOCC conversion rate

is bounded from below as

R(ψABC → φABC) ≥ min

{

S (ψA)

S (φB) + S (φC)
,

S (ψB)

S (φB)
,

S (ψC)

S (φC)

}

.

(7)

Proof. We prove this bound by presenting an explicit protocol

achieving the bound, which is also summarized in Fig. 1. In

the first step, the parties apply entanglement combing ψABC →
µA1B ⊗ νA2C in such a way that the following equalities are

fulfilled for some r ≥ 0,

E(µA1B) = rS (φB), E(νA2C) = rS (φC). (8)

The significance of this specific choice will become clear in a

moment. In the next step, Alice and Charlie apply LOCC for

transforming the state νA2C into the desired final state φA2A3C .

Since this is a bipartite LOCC protocol, the rate for this pro-

cess is given by E(νA2C)/S (φC). Note that due to Eqs. (8), this

rate is equal to r.

In a next step, Alice applies what is called Schumacher

compression [18] to her register A3. The overall compression
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rate per copy of the initial state ψABC is given as

r̃ = rS (φA3 ) = rS (φB), (9)

where in the last equality we used the fact that S (φA3 ) =

S (φB). Due to Eqs. (8), this rate interestingly coincides with

the entanglement of the state µA1B,

r̃ = E(µA1B). (10)

In a final step, Alice and Bob distill the states µA1B into

maximally entangled bipartite singlets, and use them to tele-

port [19, 20] the (compressed) particle A3 to Bob. Due to

Eq. (10), Alice and Bob share exactly the right amount of en-

tanglement for this procedure, i.e., the process is possible with

rate one and no entanglement is left over. In summary, the

overall protocol transforms the state ψABC into φABC at rate r.

For completing the proof, we will now show that r can be

chosen such that

r = min

{

S (ψA)

S (φB) + S (φC)
,

S (ψB)

S (φB)
,

S (ψC)

S (φC)

}

. (11)

This can be seen directly by inserting Eqs. (8) into Eqs. (6).

In particular, the rate r can attain any value which is simulta-

neously compatible with inequalities

r ≤ S (ψA)

S (φB) + S (φC)
, r ≤ S (ψB)

S (φB)
, r ≤ S (ψC)

S (φC)
. (12)

This completes the proof of the theorem. �

We stress some important aspects and implications of this

theorem. Whenever the minimum in Eq. (7) is attained on

the second or third entry, the lower bound coincides with the

upper bound in Eq. (3). This means that in all these instances

the conversion problem is completely solved, giving rise to

the rate

R(ψABC → φABC) = min

{

S (ψA)

S (φA)
,

S (ψB)

S (φB)
,

S (ψC)

S (φC)

}

. (13)

Moreover, the bound in Eq. (7) can be immediately general-

ized by interchanging the roles of the parties, i.e.,

R(ψABC → φABC) ≥min

{

S (ψB)

S (φA) + S (φC)
,

S (ψA)

S (φA)
,

S (ψC)

S (φC)

}

,

(14)

R(ψABC → φABC) ≥min

{

S (ψC)

S (φA) + S (φB)
,

S (ψA)

S (φA)
,

S (ψB)

S (φB)

}

.

(15)

The best bound is obtained by taking the maximum of

Eqs. (7), (14) and (15).

Our results also shed new light on reversibility questions for

tri-partite state transformations. In general, a transformation

ψ→ φ is said to be reversible if the conversion rates fulfill the

relation

R(ψ→ φ) = R(φ→ ψ)−1. (16)

Let now ψ and φ be two states for which the bound in Theo-

rem 2 is tight, e.g., R(ψ → φ) = S (ψA)/S (φA). Due to Eq. (3)

it must be that S (ψA)/S (φA) ≤ S (ψB)/S (φB) in this case. If

this inequality is strict (which will be the generic case), we

obtain for the inverse transformation φ→ ψ

R(φ→ ψ) ≤ S (φB)

S (ψB)
<

S (φA)

S (ψA)
= R(ψ→ φ)−1, (17)

where the first inequality follows from Eq. (3). These results

show that those states which saturate the bound (3) do not

allow for reversible transformations in the generic case.

We will now comment on the limits of the approach pre-

sented here. In particular, it is important to note that the lower

bound in Theorem 2 is not optimal in general. This can be

seen in the most simple way by considering the trivial trans-

formation which leaves the state unchanged, i.e., ψABC →
ψABC . Clearly, this can be achieved with unit rate R = 1.

However, if we apply the lower bound in Theorem 2 to this

transformation, we get R ≥ S (ψA)/[S (ψB) + S (ψC)]. Due to

subadditivity, it follows that that our lower bound is in general

below the achievable unit rate in this case.

Multi-partite pure states. In the discussion so far, we have

focused on tripartite pure states. However, the presented tools

can readily be applied to more general scenarios involving an

arbitrary number of parties. In this more general setup the

parties will be called Alice (A) and N Bobs (Bi) with 1 ≤
i ≤ N. The aim of the process in this case is the asymptotic

conversion of the N + 1-partite pure state ψ = ψAB1...BN into

the state φ = φAB1...BN . The general idea for this procedure

follows the same line of reasoning as in the tripartite scenario

discussed above. In the first step, entanglement combing is

applied to the state ψ, i.e., the transformation

ψ→ µ
A1B1

1
⊗ µA2B2

2
⊗ · · · ⊗ µAN BN

N
(18)

with pure states µi. In the next step, Alice and the first Bob

B1 transform their state µ
A1B1

1
into the desired final state φ via

bipartite LOCC. In the final step, Alice applies Schumacher

compression to parts of her state φ, and sends these parts to

each of the remaining Bobs B2, . . . , BN by using entanglement

obtained in the first step of this protocol. As in the tripartite

case, this protocol can be further optimized by interchanging

the roles of the parties and applying the time-sharing tech-

nique.

Theorem 3 (Lower bound for multi-partite state conversion).

For N + 1-partite pure states ψAB1...BN and φAB1...BN , the LOCC

conversion rate is bounded from below as

R(ψAB1...BN → φAB1...BN ) ≥ min
X

{

S (ψAX)
∑

Bi<X
S (φBi )

}

, (19)

where X denotes a subsystem of all Bobs.

The theorem is proven in Appendix B. By using similar

arguments as below Eq. (3), an upper bound to the conversion

rate is found to be

R(ψAB1...BN → φAB1...BN ) ≤ min
i

S (ψBi )

S (φBi )
. (20)
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The bounds in Eqs. (19) and (20) coincide if the following

equality holds true for some 1 ≤ i ≤ N,

S (ψBi )

S (φBi )
= min

X















S (ψAX)
∑

B j<X
S (φB j )















. (21)

In those instances, Theorem 3 leads to a full solution of the

conversion problem, and the corresponding rate is given by

R(ψAB1...BN → φAB1...BN ) = min
i

S (ψBi )

S (φBi )
. (22)

Again, as in the tripartite case, the bound of Eq. (19) can be

generalized by interchanging the roles of Alice and different

Bobs.

Generalization to multi-partite mixed states. We will now

show that the ideas which led to lower bounds on conversion

rates in the previous sections can also be used in this mixed-

state scenario. We will demonstrate this on a specific example,

considering the transformation

|GHZ〉〈GHZ| → σ, (23)

where |GHZ〉 = (|0〉⊗N+1 + |1〉⊗N+1)/
√

2 denotes an N + 1-

partite GHZ state vector, and σ = σAB1...BN is an arbitrary

N+1-partite mixed state. As we show in Appendix E, by using

similar methods as in previous sections, we obtain a lower

bound on the transformation rate,

R(|GHZ〉〈GHZ| → σ) ≥ 1

E
A|B1...BN
c (σ) +

∑N
j=3 S (σB j )

, (24)

where E
A|B1...BN
c denotes the entanglement cost [21] between

Alice and all the other Bobs.

The upper bound (20) for the transformation rate R can be

generalized as (see Eq. (146) in Ref. [1])

R(ρ→ σ) ≤ min
P

E
P|P
∞ (ρ)

E
P|P
∞ (σ)

. (25)

Here, E∞(ρ) = limn→∞ Er(ρ
⊗n)/n is the regularized relative

entropy of entanglement [22, 23], and P|P denotes a biparti-

tion of all the N + 1 subsystems [24].

Applications in quantum networks. It should be clear

that the results established here readily allow to assess how

resources for multi-partite protocols can be prepared from

multi-partite states given in some form. In particular, GHZ

states readily provide a resource for quantum secret shar-

ing [8, 9] in which a message is split into parts so that no sub-

set of parties is able to access the message, while at the same

time the entire set of parties is. It also gives rise to an efficient

scheme of quantum secret sharing requiring purely classical

communication during the reconstruction phase [25].

The significance in the established results on multi-partite

entanglement transformations hence lies in the way they help

understanding how multi-partite resources for protocols be-

yond point-to-point schemes in quantum networks can be pre-

pared and manipulated. We expect this to be particularly

important when thinking of applications of transforming re-

sources into the desired form in quantum networks [26–28]:

Here, multi-partite entanglement is conceived to be created

by local processes and bi-partite transmissions involving pairs

of nodes, followed by steps of entanglement manipulation,

which presumably involve instances of classical routing tech-

niques. Hence, we see this work as a significant contribution

to how a quantum internet [7] can possibly be conceived.

Conclusions. In this work, we have reported substantial

progress on asymptotic state transformation via multipartite

local operations and classical communication, tackling an im-

portant long-standing problem which to large extent remained

open since the early development of quantitative entanglement

theory [4]. Similar techniques may also prove helpful in the

study of other quantum resource theories different from en-

tanglement, such as the resource theory of quantum coher-

ence [29] and quantum thermodynamics [30, 31].

Putting notions of entanglement combing into a fresh light,

we have been able to derive stringent bounds on multi-partite

entanglement transformations. This progress seems particu-

larly relevant in the light of the advent of quantum networks

and the quantum internet in which multi-partite features are

directly exploited beyond point-to-point architectures. It is

the hope that the present work stimulates further progress in

the understanding of multi-partite protocols.
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Appendix A: Proof of Lemma 1

The proof presented below will be based on the protocol

known as entanglement combing [12]. We will review this

protocol for a tripartite state ψ = ψABC . In this case, entangle-

ment combing transforms the state ψABC into µA1B ⊗ νA2C with

pure states µ and ν. Clearly, the transformation is not possible

if any of the inequalities (6) is violated. We will now show the

converse, i.e., any pair of pure states µA1B and νA2C which ful-

fill the inequalities (6) can be obtained from ψABC via LOCC

in the asymptotic limit. For this, we will distinguish between

the following cases.

Case 1: S (ψA) ≥ S (ψB) ≥ S (ψC). In this case, Bob can

send his part of the state ψ to Alice by applying quantum state

merging [13, 14]. This procedure is possible by using LOCC

operations between Alice and Bob. Additionally, Alice and

Bob gain singlets at rate S (ψA) − S (ψAB) = S (ψA) − S (ψC).

The overall process thus achieves the transformation (5) with

E(µA1B) = S (ψA) − S (ψC),

E(νA2C) = S (ψC).
(A1)

Alternatively, Charlie can send his part of the state ψ to Alice,

thus gaining singlets at rate S (ψA) − S (ψB). In this way they

achieve the transformation (5) with

E(µA1B) = S (ψB),

E(νA2C) = S (ψA) − S (ψB).
(A2)

In the next step we apply-time sharing, i.e., the first pro-

cedure is performed with probability p and the second with

probability (1 − p). In this way, we see that the transforma-

tion (5) is possible for any pair of states µA1B and νA2C with

the property

E(µA1B) = p
(

S (ψA) − S (ψC)
)

+ (1 − p)S (ψB),

E(νA2C) = pS (ψC) + (1 − p)
(

S (ψA) − S (ψB)
)

.
(A3)

By using subadditivity of von Neumann entropy it is now

straightforward to check that for a suitable choice of p, the

quantities E(µA1B) and E(νA2C) can attain any value compati-

ble with conditions

E(µA1B) + E(νA2C) = S (ψA), (A4a)

E(µA1B) ≤ S (ψB), (A4b)

E(νA2C) ≤ S (ψC). (A4c)

This completes the proof of Lemma 1 for Case 1.

Case 2: S (ψB) ≥ S (ψC) ≥ S (ψA). In this case, Alice,

Bob, and Charlie apply assisted entanglement distillation [15,

16], with Charlie being the assisting party. This procedure

achieves the transformation (5) with

E(µA1B) = min
{

S (ψA), S (ψB)
}

= S (ψA),

E(νA2C) = 0.
(A5)

Alternatively, they can apply assisted entanglement distilla-

tion with Bob being the assisting party, thus achieving

E(µA1B) = 0,

E(νA2C) = min
{

S (ψA), S (ψC)
}

= S (ψA).
(A6)

By applying time-sharing, we see that we can achieve the

transformation (5) with any states µA1B and νA2C fulfilling

E(µA1B) = pS (ψA), (A7a)

E(νA2B) = (1 − p)S (ψA). (A7b)

This completes the proof of Lemma 1 for Case 2.

Case 3: S (ψB) ≥ S (ψA) ≥ S (ψC). Here, we will apply a

combination of protocols used in Case 1 and 2. In particular,

Bob can send his part of the state ψ to Alice by quantum state

merging, see Eq. (A1). Alternatively, they can apply assisted
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entanglement distillation, see Eq. (A5). By time-sharing we

obtain

E(µA1B) = S (ψA) − pS (ψC),

E(νA2C) = pS (ψC).
(A8)

By a suitable choice of the probability p it is now possible to

obtain any pair of states µA1B and νA2C such that

E(µA1B) + E(νA2C) = S (ψA),

E(µA1B) ≤ S (ψA),

E(νA2C) ≤ S (ψC).

(A9)

This completes the proof of Lemma 1 for Case 3. Note that

any other case can be obtained from the above three cases by

interchanging the role of Bob and Charlie. Thus, the proof of

the Lemma is complete.

Appendix B: Proof of Theorem 3

Here, we present the proof of Theorem 3. The ideas pre-

sented in the following generalize the proof of Theorem 2 for

tripartite pure state conversion. In particular, starting with the

N + 1-partite state ψ = ψAB1...BN , we will apply entanglement

combing [12] on Alice and all other parties (here referred to as

“all the Bobs”), aiming to get bipartite entanglement between

Alice and each of the parties Bi. If Ei denotes the entangle-

ment between Alice and i-th Bob after this procedure, the rate

for state conversion from ψ to φ = φAB1...BN is bounded below

as

R(ψ→ φ) ≥ min
i

{

Ei

S (φBi )

}

. (B1)

To achieve conversion at rate mini

{

Ei/S (φBi )
}

, Alice locally

prepares the state φAÃ1...ÃN , applies Schumacher compres-

sion [18] to the registers Ãi, and distributes them among

the Bobs by using entanglement which has been combed in

the previous procedure. In the rest of this section, we will

show that combing can achieve an N-tuple of singlet rates

(E1, . . . , EN) such that

min
i

{

Ei

S (φBi )

}

≥ mψ,φ := min
X

{

S (ψAX)
∑

Bi<X
S (φBi )

}

, (B2)

where X denotes a subset of all the Bobs. When there is no

ambiguity, we will denote mψ,φ simply by m.

In the first step of the proof we will consider all possible

ways to merge Bobs’ parts of the state Bi with Alice. Since

in the scenario considered here we have N Bobs, there are N!

different ways to achieve this, depending on the order of the

Bobs in the merging procedure. We will first consider entan-

glement N-tuple (E1, . . . , EN), where Ei denotes the amount

of entanglement shared between Alice and i-th Bob after the

merging procedure. For example, taking N = 4, merging first

B1, then B2, then B3 and finally B4 to Alice will achieve the

4-tuple:

E1 = S (ψA) − S (ψAB1 ), (B3a)

E2 = S (ψAB1 ) − S (ψAB1B2 ), (B3b)

E3 = S (ψAB1B2 ) − S (ψAB1B2B3 ), (B3c)

E4 = S (ψAB1B2B3 ), (B3d)

while merging first B3, then B1, then B4 and finally B2 to Alice

will achieve the 4-tuple:

E1 = S (ψAB3 ) − S (ψAB1B3 ), (B4a)

E2 = S (ψAB1B3B4 ), (B4b)

E3 = S (ψA) − S (ψAB3 ), (B4c)

E4 = S (ψAB1B3 ) − S (ψAB1B3B4 ). (B4d)

The aforementioned N! merging procedures give rise to

N! N-tuples, which we will name the "entanglement extreme

points". We note that some of the values Ei can be nega-

tive, implying that entanglement is consumed in this case.

Proposition 2 of Ref. [12] guarantees that for any N-tuple

(E1, . . . , EN) with the properties

(i) ∀i ∈ {1, . . . ,N}, Ei ≥ 0,

(ii) (E1, . . . , EN) is in the convex polytope spanned by the

entanglement extreme points,

there exists an asymptotic LOCC protocol acting on the state

ψ and distilling singlets between Alice and each of the Bobs

Bi at rate Ei. In the following, we are interested in the renor-

malized entanglement rates

Ri =
Ei

S (φBi )
, (B5)

see also Eq. (B1). We can define for each N-tuple

(E1, . . . , EN) an N-tuple (R1, . . . ,RN). We will consider from

now on only the tuples (R1, . . . ,RN), which will also be called

"rate distributions". We will call "extreme points" the rates

distribution defined from the entanglement extreme points. It

is easily seen from previous combing condition and Eq. (B1)

that, if we find a distribution of rates (R1, . . . ,RN) satisfying

(i) ∀i ∈ {1, . . . ,N}, Ri ≥ 0,

(ii) (R1, . . . ,RN) is in the convex polytope spanned by the

extreme points,

we will be able to achieve conversion from ψ to φ with rate

R(ψ→ φ) ≥ min
i
{Ri} . (B6)

In order to prove Eq. (B2), we will find in the convex set of

the extreme points a point (R1, . . . ,RN) such that

min
i
{Ri} ≥ min

X

{

S (ψAX)
∑

Bi<X
S (φBi )

}

. (B7)

The outline of the rest of the proof is as follows: in the

first step we will construct by convexity a set of points
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(R1, . . . ,RN) satisfying RN ≥ mψ,φ from the extreme points.

We note that the convex set of these newly constructed points

will only contain rate distributions with N th coordinate supe-

rior to mψ,φ. From our constructed points, we will construct

by convexity a new set of points (R1, . . . ,RN) satisfying

RN−1 ≥ mψ,φ. This will lead to a set of point satisfying both

RN ≥ mψ,φ and RN−1 ≥ mψ,φ. The procedure will continue

with RN−2 until R1. In this way, we will achieve a distribution

(R1, . . . ,RN) satisfying ∀i ∈ {1, . . . ,N},Ri ≥ mψ,φ. Such a

distribution will ensure conversion from ψ to φ with a rate of

at least mψ,φ, as claimed.

First step. Each of the extreme points is the result of merg-

ing the Bobs to Alice in different order. Thus, we can associate

each extreme point to a permutation σ on the set {1, . . . ,N}.
We denote the set of all permutations by SN . Moreover,

σ(k) = l means that Bl is the kth Bob merged to Alice. It

implies that,

Rσ
σ(k) = Rσ

l =
S (ψABσ(1)...Bσ(k−1) ) − S (ψABσ(1)...Bσ(k−1)Bl )

S (φBl )

=
S (ψAYσ

k−1 ) − S (ψAYσ
k−1

Bl )

S (φBl )
, (B8)

where we used the notation Yσ
k
= {Bσ(1), . . . , Bσ(k)}.

Our next observation is that we can group the N! extreme

points in (N−1)! sets of N points. In the following, we denote

by cN−i the permutations defined for i ∈ {0, . . . ,N − 1} as

cN−i(k) = k, ∀k ∈ {1, . . . ,N − i − 1}, (B9a)

cN−i(N − i) = N, (B9b)

cN−i(k) = k − 1, ∀k ∈ {N − i + 1, . . . ,N}. (B9c)

Consider now a distribution (Rσ
1
, . . . ,Rσ

N
) with σ(N) = N, i.e.,

BN merged in N th position. We form a set by grouping to-

gether the N distributions (R
σ◦cN−i

1
, . . . ,R

σ◦cN−i

N
). In term of

merging order, the distribution σ ◦ cN−i give rise to the fol-

lowing ordering:

1. For k < N − i, Bσ◦cN−i(k) = Bσ(k) is merged in position k,

2. For k = N − i, Bσ◦cN−i(N−i) = BN is merged in position

N − i,

3. For N ≥ k > N − i, Bσ◦cN−i(k) = Bσ(k−1) is merged in

position k.

Distributionsσ◦cN−i are the distributions obtained by merging

Bobs 1 to N − 1 with the relative order given by σ. The only

difference is the merging position of BN .

We can order this set by the value of the N th coordinate.

Indeed,

Rσ
N ≥ R

σ◦cN−1

N
≥ R

σ◦cN−2

N
≥ · · · ≥ R

σ◦c1

N
. (B10)

Note that σ ◦ cN = σ. For a proof of Eq. (B10) in the general

case see Appendix C. There are (N − 1)! distributions satis-

fying σ(N) = N. We have (N − 1)! ordered sets of size N.

Observe that for all σ ∈ S N satisfying σ(N) = N,

Rσ
N =

S (ψAB1...BN−1 )

S (φBN )
∈
{

S (ψAX)
∑

Bi<X
S (φBi )

}

(B11)

As a consequence,

Rσ
N ≥ mψ,φ. (B12)

Two situations can happen for each of the (N − 1)! sets. The

first case is that R
σ◦c1

N
≥ mψ,φ. In this case, we can obtain the

distribution (R
σ◦c1

1
, . . . ,R

σ◦c1

N−1
,mψ,φ) from (R

σ◦c1

1
, . . . ,R

σ◦c1

N
) by

simply reducing the entanglement between Alice and BN .

The second case is that we can find i such that R
σ◦cN−i

N
≥

mψ,φ > R
σ◦cN−i−1

N
. In this case, we can consider a convex com-

bination of Rσ◦cN−i and Rσ◦cN−i−1 , in order to arrive at a resulting

distribution (R1, . . . ,RN) such that RN = mψ,φ. We also know

easily the value of most of the two distribution’s coordinates.

Indeed,

1. For k < N − i − 1, cN−i−1(k) = cN−i(k) = k, which gives

R
σ◦cN−i−1

σ◦cN−i−1(k)
=R

σ◦cN−i−1

σ(k)
=

S (ψAYσ
k−1 ) − S (ψAYσ

k )

S (φBσ(k) )
, (B13a)

R
σ◦cN−i

σ◦cN−i(k)
=R

σ◦cN−i

σ(k)
=

S (ψAYσ
k−1 ) − S (ψAYσ

k )

S (φBσ(k) )
. (B13b)

2. For k = N − i − 1, cN−i−1(N − i − 1) = N and cN−i(N −
i − 1) = N − i − 1,

R
σ◦cN−i−1

σ◦cN−i−1(N−i−1)
=R

σ◦cN−i−1

N
=

S (ψAYσ
N−i−2 ) − S (ψAYσ

N−i−2
BN )

S (φBN )
,

(B14a)

R
σ◦cN−i

σ◦cN−i(N−i−1)
=R

σ◦cN−i

σ(N−i−1)
=

S (ψAYσ
N−i−2 ) − S (ψAYσ

N−i−1 )

S (φBσ(N−i−1) )
.

(B14b)

3. For k = N− i, cN−i−1(N− i) = N− i−1 and cN−i(N− i) =

N,

R
σ◦cN−i−1

σ◦cN−i−1(N−i)
=R

σ◦cN−i−1

σ(N−i−1)
=

S (ψAYσ
N−i−2

BN ) − S (ψAYσ
N−i−1

BN )

S (φBσ(N−i−1) )
,

(B15a)

R
σ◦cN−i

σ◦cN−i(N−i)
=R

σ◦cN−i

N
=

S (ψAYσ
N−i−1 ) − S (ψAYσ

N−i−1
BN )

S (φBN )
. (B15b)

4. For k > N − i, cN−i−1(k) = cN−i(k) = k − 1,

R
σ◦cN−i−1

σ◦cN−i−1(k)
=R

σ◦cN−i−1

σ(k−1)
=

S (ψAYσ
k−2

BN ) − S (ψAYσ
k−1

BN )

S (φBσ(k−1) )
, (B16a)

R
σ◦cN−i

σ◦cN−i(k)
=R

σ◦cN−i

σ(k−1)
=

S (ψAYσ
k−2

BN ) − S (ψAYσ
k−1

BN )

S (φBσ(k−1) )
. (B16b)

Only two coordinates differ in the distributions given by

σ ◦ cN−i and σ ◦ cN−i−1. As a consequence, the distribu-

tion resulting from their convex combination will be a dis-

tribution with N th coordinate taking the value mψ,φ, while the

σ(N − i − 1)th one assumes the value

S (ψAYσ
N−i−2 ) − mψ,φS (φBN ) − S (ψAYσ

N−i−1
BN )

S (φBσ(N−i−1) )
, (B17)
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and ∀k ∈ {1, . . . ,N − 1} \ {N − i − 1}, the kth coordinate take

the value R
σ◦cN−i

σ(k)
.

We will apply this procedure for each σ ∈ SN with σ(N) =

N. We associate the resulting distributions with the σ that

gave rise to the distribution we used in the convex combina-

tion. The result are (N − 1)! distributions (Rσ
1
, . . . ,Rσ

N−1
,mψ,φ)

one for each permutation σ. For the given quantum state ψ

equipped with the partitioning in A and {B1, . . . , BN−1}, we

now define the function

S
ψ

2
: X ⊂ {B1, . . . , BN−1} → R+0 (B18)

that depends on subsets X ⊂ {B1, . . . , BN−1}, taking the values

S
ψ

2
(X) :=



































S (ψAX) − mψ,φS (φBN ),

if
S (ψAX )−S (ψAXBN )

S (φBN )
< m(ψ, φ),

S (ψAXBN ),

if
S (ψAX )−S (ψAXBN )

S (φBN )
≥ mψ,φ.

(B19)

We can rewrite the coordinates of (Rσ
1
, . . . ,Rσ

N−1
,mψ,φ) as a

function of S
ψ

2
.

1. For k < N − i−1, R
σ◦ck

N
< R

σ◦ck+1

N
≤ R

σ◦cN−i−1

N
< mψ,φ. As

a consequence,

Rσ
σ(k) =

S (ψAYσ
k−1 ) − S (ψAYσ

k )

S (φBσ(k) )
(B20)

=
S
ψ

2
(Yσ

k−1
) − S

ψ

2
(Yσ

k
)

S (φBσ(k) )
. (B21)

2. For k = N − i − 1, R
σ◦cN−i−1

N
< mψ,φ ≤ R

σ◦cN−i

N
,

Rσ
σ(N−i−1) =

S (ψAYσ
N−i−2 ) − mψ,φS (φBN ) − S (ψAYσ

N−i−1
BN )

S (φBσ(N−i−1) )
(B22)

=
S
ψ

2
(Yσ

k−1
) − S

ψ

2
(Yσ

k
)

S (φBσ(k) )
. (B23)

3. For N > k > N − i− 1, mψ,φ ≤ R
σ◦cN−i

N
≤ R

σ◦ck

N
≤ R

σ◦ck+1

N
,

Rσ
σ(k) =

S (ψAYσ
k−1

BN ) − S (ψAYσ
k

BN )

S (φBσ(k) )
(B24)

=
S
ψ

2
(Yσ

k−1
) − S

ψ

2
(Yσ

k
)

S (φBσ(k) )
. (B25)

In summary, the have just presented first step of the proce-

dure leaves us with (N−1)! distributions (Rσ
1
, . . . ,Rσ

N−1
,mψ,φ).

We introduce now generalized functions which will be used

in the following steps. We define in a recursive way the func-

tions S
ψ

j
for j ∈ {1, . . . ,N} by

S
ψ

j
: X ⊂ {B1, . . . , BN− j+1} → R+0 , (B26a)

S
ψ

1
(X) := S (ψAX), (B26b)

S
ψ

j+1
(X) :=















































S
ψ

j
(X) − m

ψ,φ

j
S (φBN− j+1 ),

if
S
ψ

j
(X)−S

ψ

j
(XBN− j+1)

S (φ
BN− j+1 )

< m
ψ,φ

j
,

S
ψ

j
(XBN− j+1),

if
S
ψ

j
(X)−S

ψ

j
(XBN− j+1)

S (φ
BN− j+1 )

≥ m
ψ,φ

j
.

(B26c)

Moreover, m
ψ,φ

j
is given as follows,

m
ψ,φ

j
:= min















S
ψ

j
(X)

∑

Bi<X
S (φBi )

, X ⊂ {B1, . . . , BN− j+1}














. (B27)

We show in Appendix (C3) that all the function S j satisfy

strong subadditivity on the subsets of Bobs such that ∀X ⊂
{B1, . . . , BN− j+1} and for Bl, Bm < X,

S
ψ

j
(XBl) + S

ψ

j
(XBm) ≥ S

ψ

j
(XBlBm) + S

ψ

j
(X). (B28)

Equipped with these tools, we are now ready to present the

general ( j + 1)th step of the procedure, where we will make

extensive use of the properties of Rσ
i

and the generalized

functions S
ψ

j
and m

ψ,φ

j
discussed above.

( j + 1)th step. In the ( j + 1)th step, there are (N − j)! distri-

butions denoted as (Rσ
1
, . . . ,Rσ

N− j
,m

ψ,φ

j
,m

ψ,φ

j−1
, . . . ,mψ,φ). One

for each σ ∈ SN with ∀k ∈ {N − j + 1, . . . ,N}, σ(k) = k. For

k ∈ {1, . . . ,N − j}, the coordinate’s values are given by

Rσ
σ(k) =

S j+1(ψAYσ
k−1 ) − S j+1(ψAYσ

k )

S (φBσ(k) )
, (B29)

We will construct by convexity (N − j − 1)! distributions

(R1, . . . ,RN− j−1,m
ψ,φ

j+1
, . . . ,mψ,φ). We proceed as before and

group distributions in (N − j − 1)! sets of N − j distributions.

We consider distributions associated with permutations σ ver-

ifying σ(N − j) = N − j. For i ∈ {0, . . . ,N − j − 1}, we define

the permutations,

c
j+1

N− j−i
(k) = k, ∀k ∈ {1, . . . ,N − j − i − 1}, (B30a)

c
j+1

N− j−i
(N − j − i) = N − j, (B30b)

c
j+1

N− j−i
(k) = k − 1, ∀k ∈ {N − j − i + 1, . . . ,N − j},

(B30c)

and we group the distributions R
σ◦c j+1

N− j−i . For the sake of clar-

ity, we drop the superscript of the c permutations and we write

N j := N − j for the rest of the proof. We arrive at a hierarchy

in the coordinates N j, i.e. (see Appendix C),

R
σ◦cN j

N j
≥ R

σ◦cN j−1

N j
≥ · · · ≥ R

σ◦c1

N j
(B31)

with

R
σ◦cN j

N j
∈
{

S j+1(X)
∑

Bi<X
S (φBi )

}

. (B32)

As a consequence,

R
σ◦cN j

N j
≥ m j+1. (B33)
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As in the first step, if R
σ◦c1

N j
≥ m j+1, then we can take the

distributions Rσ◦c1 and reduce entanglement to achieve a dis-

tribution (R
f

1
, . . . ,R

f

N j−1
,m j+1, . . . ,m). Else, we can find an i

such that

R
σ◦cN j−i

N j
≥ m j+1 > R

σ◦cN j−i−1

N j
. (B34)

Again following the same ideas as in the first step, we take

a convex combination of the two distributions R
σ◦cN j−i and

R
σ◦cN j−i−1 . The values of all coordinates are given by

1. For k < N− i− j−1, cN j−i−1(k) = cN j−i(k) = k, we obtain

R
σ◦cN j−i−1

σ◦cN j−i−1(k)
=R

σ◦cN j−i−1

σ(k)
=

S j+1(ψAYσ
k−1 ) − S j+1(ψAYσ

k )

S j+1(φBσ(k) )
, (B35)

R
σ◦cN j−i

σ◦cN j−i(k)
=R

σ◦cN j−i

σ(k)
=

S j+1(ψAYσ
k−1 ) − S j+1(ψAYσ

k )

S (φBσ(k) )
. (B36)

2. For k = N j− i−1, cN j−i−1(N j− i−1) = N and cN j−i(N j−
i − 1) = N j − i − 1, we obtain

R
σ◦cN j−i−1

σ◦cN j−i−1(N j−i−1)
=R

σ◦cN j−i−1

N j
(B37)

=
S j+1(ψ

AYσ
N j−i−2 ) − S j+1(ψ

AYσ
N j−i−2

BN j )

S (φ
BN j )

,

R
σ◦cN j−i

σ◦cN j−i(N j−i−1)
=R

σ◦cN j−i

σ(N j−i−1)
(B38)

=
S j+1(ψ

AYσ
N j−i−2 ) − S j+1(ψ

AYσ
N j−i−1 )

S (φ
Bσ(N j−i−1) )

.

3. For k = N j− i, cN j−i−1(N j− i) = N j− i−1 and cN j−i(N j−
i) = N j, we obtain

R
σ◦cN j−i−1

σ◦cN j−i−1(N j−i)
=R

σ◦cN j−i−1

σ(N j−i−1)
(B39)

=
S j+1(ψ

AYσ
N j−i−2

BN j ) − S j+1(ψ
AYσ

N j−i−1
BN j )

S (φ
Bσ(N j−i−1) )

,

R
σ◦cN j−i

σ◦cN j−i(N j−i)
=R

σ◦cN j−i

N j
(B40)

=
S j+1(ψ

AYσ
N j−i−1 ) − S j+1(ψ

AYσ
N j−i−1

BN j )

S (φ
BN j )

.

4. For k > N j − i, cN j−i−1(k) = cN j−i(k) = k − 1, we obtain

R
σ◦cN j−i−1

σ◦cN j−i−1(k)
=R

σ◦cN j−i−1

σ(k−1)
=

S j+1(ψ
AYσ

k−2
BN j ) − S j+1(ψ

AYσ
k−1

BN j )

S (φBσ(k−1) )
,

(B41)

R
σ◦cN j−i

σ◦cN j−i(k)
=R

σ◦cN j−i

σ(k−1)
=

S j+1(ψ
AYσ

k−2
BN j ) − S j+1(ψ

AYσ
k−1

BN j )

S (φBσ(k−1) )
.

(B42)

Again, only two coordinates differ between the distributions

given by σ ◦ cN j−i and σ ◦ cN j−i−1. As a consequence, the

distribution resulting from their convex combination will be a

distribution with a N th
j

coordinate of value m
ψ,φ

j+1
, a σ(N j − i −

1)th coordinate of value

S
ψ

j+1
(Yσ

N j−i−2
) − m

ψ,φ

j+1
S (φ

BN j ) − S
ψ

j+1
(Yσ

N j−i−1
BN j

)

S (φ
Bσ(N j−i−1) )

, (B43)

and ∀k ∈ {1, . . . ,N j − 1} \ {N j − i − 1}, a kth coordinate of

value R
σ◦cN j−i

σ(k)
. As in the first step, from each permutation σ ∈

SN with ∀k ∈ {N − j, . . . ,N}, σ(k) = k we have a resulting

distribution (Rσ
1
, . . . ,Rσ

N j−1
,m

ψ,φ

j+1
, . . . ,mψ,φ) that we label with

σ. All the coordinate Rσ
σ(k)

can be rewritten in term of S
ψ

j+2

such that

Rσ
σ(k) =

S
ψ

j+2
(Yσ

k−1
) − S

ψ

j+2
(Yσ

k
)

S (φBσ(k) )
. (B44)

Following this procedure until step N, we find ourselves

with the distribution (m
ψ,φ

N
,m

ψ,φ

N−1
, . . . ,m

ψ,φ

2
,mψ,φ). It remains

to be proven that ∀ j ∈ {1, . . . ,N − 1}, m
ψ,φ

j+1
≥ m

ψ,φ

j
. Tak-

ing an element of the set from which m
ψ,φ

j+1
is the minimum:

S
ψ

j+1
(X)/(

∑

Bi<X
S (φBi )), where X is a subset of {B1, . . . , BN j

},
we will show it is greater or equal to every elements of the set

from which m
ψ,φ

j
is the minimum,

M
ψ,φ

j
:=















S
ψ

j
(Y)

∑

Bi<Y
S (φBi )

,Y ⊂ {B1, . . . , BN j+1}














. (B45)

There are two cases:

1. If S
ψ

j+1
(X) = S

ψ

j
(XBN j+1), then

S
ψ

j+1
(X)

∑

Bi<X
S (φBi )

=
S
ψ

j
(XBN j+1)

∑

Bi<Y
S (φBi )

∈ M
ψ,φ

j
. (B46)

As a consequence,

S
ψ

j+1
(X)

∑

Bi<Y
S (φBi )

≥ m
ψ,φ

j
. (B47)

2. If S
ψ

j+1
(X) = S

ψ

j
(X) − m

ψ,φ

j
S (φ

BN j+1 ), we know that

S
ψ

j
(X)

∑

Bi<X
S (φBi ) + S (φ

BN j+1 )
≥ m

ψ,φ

j
. (B48)

It implies directly that

S
ψ

j
(X) − m

ψ,φ

j
S (φ

BN j+1 )
∑

Bi<X
S (φBi )

≥ m
ψ,φ

j
. (B49)

Thus, recalling that via LOCC it is always possible to reduce

bipartite entanglement between Alice and the Bobs, we can

finally achieve the distribution (mψ,φ, . . . ,mψ,φ), and the proof

of Theorem 3 is complete.
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Appendix C: Proof of Eqs. (B10) and (B31)

To prove Eq. (B31) we will show that ∀i ∈ {0, . . . ,N j − 2},
R
σ◦cN j−i

N j
≥ R

σ◦cN j−i−1

N
. First, we need to remark that according

to definition (B30),

Y
σ◦cN j−i

N j−i−1
= {Bσ◦cN j−i(1), . . . , Bσ◦cN j−i(N j−i−1)}

= {Bσ(1), . . . , Bσ(N j−i−1)}
= Yσ

N j−i−1.

Then rewriting explicitly the coordinates R
σ◦cN j−i

N j
and R

σ◦cN j−i−1

N j

we obtain

R
σ◦cN j−i

N j
=

S
ψ

j+1
(Y

σ◦cN j−i

N j−i−1
) − S

ψ

j+1
(Y

σ◦cN j−i

N j−i−1
BN j

)

S (φ
BN j )

(C1)

=
S
ψ

j+1
(Yσ

N j−i−1
) − S

ψ

j+1
(Yσ

N j−i−1
BN j

)

S (φ
BN j )

=
S
ψ

j+1
(Yσ

N j−i−2
Bσ(N j−i−1)) − S

ψ

j+1
(Yσ

N j−i−2
Bσ(N j−i−1)BN j

)

S (φ
BN j )

,

and

R
σ◦cN j−i−1

N j
=

S
ψ

j+1
(Y

σ◦cN j−i−1

N j−i−2
) − S

ψ

j+1
(Y

σ◦cN j−i−1

N j−i−2
BN j

)

S (φ
BN j )

(C2)

=
S
ψ

j+1
(Yσ

N j−i−2
) − S

ψ

j+1
(Yσ

N j−i−2
BN j

)

S (φ
BN j )

.

The “strong subadditivity” of Eq. (B28) ensures that for all

subsets Y ,

S
ψ

j+1
(YBσ(N j−i−1)) + S

ψ

j+1
(YBN j

) ≥

S
ψ

j+1
(YBσ(N j−i−1)BN j

) + S
ψ

j+1
(Y). (C3)

Eq. (B31) follows directly from it, since Eq. (C3) implies that

S
ψ

j+1
(YBσ(N j−i−1)) − S

ψ

j+1
(YBσ(N j−i−1)BN j

) ≥

S
ψ

j+1
(Y) − S

ψ

j+1
(YBN j

). (C4)

It follows that R
σ◦cN j−i

N j
≥ R

σ◦cN j−i−1

N
. Eqs. (B10) are proven in

the same manner.

Appendix D: Proof of Eq. (B28)

Given that S j satisfy strong subadditivity, we will show that

∀X ⊂ {B1, . . . , BN− j} and for Bl, Bm < X,

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) ≥ 0, (D1)

with S
ψ

j+1
defined as in Eq. (B26c).

For a given X ⊂ {B1, . . . , BN− j} and given Bl, Bm < X, each

term of the inequality (D1) can be rewritten using S
ψ

j
. For all

Y ⊂ {B1, . . . , BN− j}, the value of S
ψ

j+1
(Y) depends on the value

of S
ψ

j
(Y)− S

ψ

j
(YBN j+1). As a consequence, several cases arise

depending on the value of the four following values,

A :=
S
ψ

j
(X) − S

ψ

j
(XBN j+1)

S (φ
BN j+1 )

, (D2a)

B :=
S
ψ

j
(XBl) − S

ψ

j
(XBlBN j+1)

S (φ
BN j+1 )

, (D2b)

C :=
S
ψ

j
(XBm) − S

ψ

j
(XBmBN j+1)

S (φ
BN j+1 )

, (D2c)

D :=
S
ψ

j
(XBlBm) − S

ψ

j
(XBlBmBN j+1)

S (φ
BN j+1 )

. (D2d)

From Eq. (B28), we can deduce A ≤ B, A ≤ C, B ≤ D and

C ≤ D. We can assume without loss of generality that B ≤ C.

Thus,

A ≤ B ≤ C ≤ D (D3)

and there is only five cases to examine m
ψ,φ

j
< A, A ≤ m

ψ,φ

j
<

B, B ≤ m
ψ,φ

j
< C, C ≤ m

ψ,φ

j
< D and D ≤ m

ψ,φ

j
. We will prove

inequality (D1) for each of these case.

1. m
ψ,φ

j
< A.

We can rewrite the left-hand side of inequality (D1) as

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) =

S
ψ

j
(XBlBN j+1)+S

ψ

j
(XBmBN j+1)−S

ψ

j
(XBN j+1)−S

ψ

j
(XBlBmBN j+1).

According to Eq. (B28),

S
ψ

j
(XBlBN j+1) + S

ψ

j
(XBmBN j+1)−

S
ψ

j
(XBN j+1) − S

ψ

j
(XBlBmBN j+1) ≥ 0.

So the inequality is verified.

2. A ≤ m
ψ,φ

j
< B.

We can rewrite the left-hand side of inequality (D1) as

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) =

S
ψ

j
(XBlBN j+1) + S

ψ

j
(XBmBN j+1) − S

ψ

j
(X)+

m
ψ,φ

j
S (φ

BN j+1 ) − S
ψ

j
(XBlBmBN j+1).

According to Eq. (B28), we know that the last equa-

tion’s right side is larger than

S
ψ

j
(XBN j+1) − S

ψ

j
(X) + m

ψ,φ

j
S (φ

BN j+1 ).

The latter quantity is non-negative because m
ψ,φ

j
≥ A,

showing the validity of the inequality.
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3. B ≤ m
ψ,φ

j
< C.

Once again, we rewrite the left-hand side of the inequal-

ity (D1):

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) =

S
ψ

j
(XBl) + S

ψ

j
(XBmBN j+1) − S

ψ

j
(X) − S

ψ

j
(XBlBmBN j+1).

The “strong subbaditivity” of the function S
ψ

j
gives rise

to

S
ψ

j
(XBmBN j+1) − S

ψ

j
(XBlBmBN j+1) ≥

S
ψ

j
(XBN j+1) − S

ψ

j
(XBlBN j+1),

and this implies that

S
ψ

j
(XBl) + S

ψ

j
(XBmBN j+1) − S

ψ

j
(X) − S

ψ

j
(XBlBmBN j+1) ≥

S
ψ

j
(XBl) + S

ψ

j
(XBN j+1) − S

ψ

j
(X) − S

ψ

j
(XBlBN j+1).

Again, the “strong subbaditivity” of S
ψ

j
allow us to con-

clude that the right-hand side is positive. Thus, inequal-

ity (D1) is verified.

4. C ≤ m
ψ,φ

j
< D.

In this case, the rewriting gives,

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) =

S
ψ

j
(XBl) + S

ψ

j
(XBm) − m

ψ,φ

j
S (φ

BN j+1 )−

S
ψ

j
(X) − S

ψ

j
(XBlBmBN j+1).

D being superior to m
ψ,φ

j
implies directly that

−S
ψ

j
(XBlBmBN j+1) − m

ψ,φ

j
S (φ

BN j+1 ) > −S
ψ

j
(XBlBm).

We can lower bound the right-hand side by

S
ψ

j
(XBl) + S

ψ

j
(XBm) − S

ψ

j
(X) − S

ψ

j
(XBlBm).

Once again, the “strong subbaditivity” of S
ψ

j
allows to

conclude that the inequality (D1) is true.

5. D < m
ψ,φ

j
.

The last case is straightforward since the rewriting in

term of S
ψ

j
is

S
ψ

j+1
(XBl) + S

ψ

j+1
(XBm) − S

ψ

j+1
(X) − S

ψ

j+1
(XBlBm) =

S
ψ

j
(XBl) + S

ψ

j
(XBm) − S

ψ

j
(X) − S

ψ

j
(XBlBm).

In this case, the “strong subbaditivity” of Eq. (B28)

leads us directly to the conclusion that the inequal-

ity (D1) is true.

In conclusion, the inequality (D1) is verified for each possible

case. Thus Eq. (B28) is verified by induction.

Appendix E: Multi-partite state creation from GHZ states

In this section, we will show that any N-partite mixed state

σ = σABC...Z can be obtained from the GHZ state vector

|GHZ〉 = (|0〉⊗N + |1〉⊗N)/
√

2 via asymptotic N-partite LOCC

at a rate bounded below as

R(|GHZ〉 〈GHZ| →σ) ≥
1

E
A|BC...Z
c (σ) + S (σC) + · · · + S (σZ)

,

(E1)

where E
A|BC...Z
c denotes the entanglement cost between Alice

and the remaining N − 1 parties. For proving this statement,

we first apply entanglement combing to the N-partite GHZ

state, i.e., the asymptotic transformation

1
√

2
(|0〉⊗N + |1〉⊗N)→ µ

A1B

1
⊗ µA2C

2
⊗ µA3D

3
⊗ · · · (E2)

with N pure states µi. A necessary and sufficient condition for

this transformation is that

∑

i

E(µi) ≤ 1, (E3)

as can be seen by applying multi-partite assisted entanglement

distillation [13, 14, 16] and time-sharing. The combing is now

performed in such a way that the following equalities hold for

some parameter r ≥ 0:

E(µ
A1B

1
) = rEA|BC...Z

c (σABC...Z), (E4a)

E(µ
A2C

2
) = rS (σC), (E4b)

... (E4c)

E(µ
AN−1Z

N−1
) = rS (σZ). (E4d)

The parameter r will be determined below.

After combing, Alice and Bob use their state µ
A1B

1
for cre-

ating the desired final state σ via bipartite LOCC. The opti-

mal rate for this procedure is E(µ
A1B

1
)/E

A|BC...Z
c (σ), which is

equal to our parameter r due to Eqs. (E4). In the next step,

Bob applies Schumacher compression to those subsystems of

σ which are in his possession. The overall compression rate

per copy of the initial state vector |GHZ〉 is given as r · S (σX),

where X is the corresponding subsystem. In a final step, Bob

teleports compressed parts of the state σ to the other parties

[19, 20]. Because of Eqs. (E4), the parties share exactly the

right amount of entanglement for this procedure. The overall

process achieves the transformation |GHZ〉 〈GHZ| → σ at rate

r. Finally, by inserting Eqs. (E4) in Eq. (E3), we see that the

parameter r can take any value compatible with the inequality

r ≤ 1

E
A|BC...Z
c (σ) + S (σC) + · · · + S (σZ)

, (E5)

which completes the proof of Eq. (E1).
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