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Many-body localization is a striking mechanism that prevents interacting quantum systems from thermaliz-

ing. The absence of thermalization behaviour manifests itself, for example, in a remanence of local particle

number configurations, a quantity that is robust over a parameter range. Local particle numbers are directly

accessible in programmable quantum simulators, in systems of cold atoms even in two spatial dimensions. Yet,

the classical simulation aimed at building trust in quantum simulations is highly challenging. In this work, we

present a comprehensive tensor network simulation of a many-body localized systems in two spatial dimensions

using a variant of an iPEPS algorithm. The required translational invariance can be restored by implementing

the disorder into an auxiliary spin system, providing an exact disorder average under dynamics. We can quanti-

tatively assess signatures of many-body localization for the infinite system: Our methods are powerful enough

to provide crude dynamical estimates for the transition between localized and ergodic phases. Interestingly, in

this setting of finitely many disorder values, which we also compare with simulations involving non-interacting

fermions and for which we discuss the emergent physics, localization emerges in the interacting regime, for

which we provide an intuitive argument, while Anderson localization is absent.

I. INTRODUCTION

While generic ergodic systems are expected to thermal-

ize under closed system evolution [1–3], constituting their

own heat bath, systems which exhibit many-body localization

(MBL) are a robust exception to this paradigm [3–6]. Such

systems do equilibrate, but retain too much memory of the

initial condition so that the time averaged states could be de-

scribed by a thermal ensemble, due to localization. The lo-

calization gives rise to quasi-local constants of motion in real

space [6–8], which need to be included in an equilibrium en-

semble, leading to a non-thermal equilibrium state. MBL can

be seen as an intricate generalization of the well-known An-

derson localization in which disorder and interactions come

together. Since its discovery in the early years of this millen-

nium [4], a plethora of theoretical works followed elucidat-

ing the rich and multi-faceted phenomenology of MBL in one

spatial dimension, ranging from a logarithmic growth of en-

tanglement [9–12] over slow information propagation [13, 14]

to an area law for the entanglement entropy [15] for highly

excited eigenstates [16, 17]. Experimental realizations have

followed for MBL systems in one spatial dimension [18–21],

corroborating some of the phenomenology.

In two spatial dimensions, MBL is significantly less under-

stood. Experiments with ultra-cold atoms have been pursued

[18], showing localization under precisely controlled condi-

tions. Yet, much of the phenomenology is less clear – to the

extent that it has been suggested that MBL may be unstable

altogether and that ergodicity could eventually be restored, al-

beit on very long time scales [22, 23]. Such assessments are

made difficult by numerical treatments being excessively chal-

lenging [24]. Steps have been taken in the numerical analysis:

Ref. [25] constructs a two-dimensional cellular automaton,

further seminal work discuss finite [26] and infinite [27] disor-

dered systems numerically, while Ref. [28] targets weakly in-

teracting systems of finite sizes. Exact diagonalization limits

discussions to either non-interacting or extremely small sys-

tems. Tensor network approaches are immensely challenged

by the entanglement build-up, even if this is slower compared

to ergodic systems [9–11]. Still, given the unfavorable scal-

ings of bond dimensions to faithfully present quantum states

as tensor networks, this still gives rise to a challenging and

intricate state of affairs.

In this work, we present a new take on the problem

of simulating time evolution of many-body localized two-

dimensional quantum systems. We discuss the physics of

infinite two dimensional systems featuring discrete disorder

using infinite projected entangled pair states (iPEPS), build-

ing upon a methodology recently introduced in Refs. [27, 29],

in turn building upon Ref. [30]. The translational invariance

inherent in this ansatz is here be restored by exploiting a

quantum dilation that embodies the classical disorder in giv-

ing rise to exact disorder averages; an ansatz suggested some

time ago [30] and recently implemented for disordered two-

dimensional systems [27] in a proof-of-principle methodolog-

ical study, using a different iPEPS update from the one sim-

ple update employed here. While the so-called full update is

known to be more accurate for ground state simulations for the

same bond dimension, whenever possible, it is an interesting

observation in its own right that simple updates – more re-

source efficient procedures – turn out to be significantly more

stable in time evolution algorithms, as experience with numer-

ical procedures has shown [27] and is convincingly confirmed

in this work, presumably for being better able to reflect local

changes in time evolution. That is to say, our scheme that we

employ here is more stable, resource efficient and provides

better control over the dynamics. For this reason, we have

been able to achieve the longest available times in 2D dynam-

ics following a global quench for strongly interacting systems

(t = 3J) to date in the thermodynamic limit, thanks to the

disorder present.

We argue that while disorder averages are comparably fea-

sible in one-dimensional studies, it is such a two-dimensional

setting for which quantum dilations to capture classical dis-

order averages is particularly practical and relevant. Intrigu-

ingly, the implementation of programmable discrete disorder
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can avoid the issue of ergodic bubbles right from the outset

[22, 23], sidelining the issue of stability of many-body lo-

calization in higher dimensions. Such an implementation of

discrete disorder gives rise to a situation that is already in-

triguing in the non-interaction case reflecting Anderson local-

ization. Building upon early work [31], there is a recent re-

vitalized interest in rigorous studies of Anderson localization

for instances of discrete disorder in the absence of interactions

[31–35]. These rigorous results prove localization in specific

regimes of discrete disorder discussed in more detail later. In-

terestingly, within the settings considered here, however, we

do not find signatures of dynamical localization on the time

scales considered. For this phenomenon, we provide an ex-

planation in terms of discrete disorder leading to an effective

hopping problem on every level. We augment this argument

by numerical simulations of a finite non-interacting system

using exact diagonalization which are further supplemented

by iPEPS. In the presence of interactions, we find signatures

of localization in the local particle number and suitable Renyi

entropies, entering a highly exciting new physical regime in

the first place, which we discuss in great detail.

We will start by discussing the underlying paradigmatic

model that is at the heart of our analysis, and then turn to

discussing the numerical methods we make use of and de-

velop to study the disordered model (both the free fermions

and iPEPS). We present the results for the non-interacting as

well as the interacting instance of the Hamiltonian. In the

method section, we will specifically describe how the trans-

lationally invariant iPEPS can be used to realize disorder by

introducing dilations. The results section includes a discus-

sion of the absence of Anderson localization and numerical

evidence supporting it from two independent techniques. We

then discuss the results for the evidence of many-body local-

ization in the interacting case. Based on the particle imbal-

ance I which we compute for different configurations of the

parameters, we are able to estimate a crude dynamical phase

diagram of MBL in 2D. The critical disorder strength is found

to be h ≈ 6 with at least four levels of disorder. We close by

summarizing the results and giving an outlook for future work

including possible experimental realizations in state-of-the-art

analog quantum simulators.

II. MODEL AND LOCALIZATION MEASURE

The model we focus on is the spin-1/2 XXZ-Hamiltonian

on a square lattice with disordered fields

H =
∑

〈i,j〉

(

Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j

)

+
∑

i

hiS
z
i , (1)

where Sx, Sy and Sz are the different Pauli spin operators

associated with a particular site. ∆ is the strength of the

anisotropy, which we either choose to be ∆ = 0, 1, which

toggles many-body interactions. The value of the magnetic

field at a particular site is given by hi. Usually hi are drawn

randomly from a continuous interval [−h, h] for each site in

the lattice, but we will soon turn to other discrete probability

measures.

The essence of MBL, so one can say, is the localization

of its constituent particles leading to a breakdown of con-

ductance [4] and thermalization [18] despite the presence of

many-body interactions. A proxy for these effects is the local

particle number dynamics following a quench from an parti-

cle imbalanced initial state. We consider a Néel state vector

of the form

|ψ0ip = | ↑, ↓, ↑, ↓, · · · , i . (2)

When subjected to the Hamiltonian evolution of a thermaliz-

ing Hamiltonian, the local particle imbalance quickly evens

out and evolves towards a homogeneous particle distribution

[36]. However, if the Hamiltonian localizes the constituent

particles, the initial particle imbalance will be measurable for

very long times [18]. We stress that the observation of a re-

maining particle imbalance for a finite time window does not

give information about the “genuine” quantum phase the sys-

tem is actually in, as for long times the system can still ther-

malize [22, 37, 38]. However, even localization for short times

can be relevant for experimental realizations [18] and practical

applications such as quantum memories [39].

III. SETTING

Usually, when working with disordered systems numeri-

cally, in order to obtain disorder averaged quantities simula-

tions need to be run multiple times and the disorder average of

the expectation values of the local observables are then calcu-

lated. In this case, a single realization of a system is not trans-

lation invariant and hence finite. There is another technique

of realizing disordered models that circumvents the above fi-

nite size effects and running the simulations multiple times to

obtain statistics for the disorder average. The method makes

use of additional auxiliary dilation spaces at every site whose

spin states in superposition that upon tracing out this degree

of freedom, one obtains the exact disorder averages, as intro-

duced in Ref. [30]. Since the combined system is translation

invariant, we can access the thermodynamic limit using trans-

lationally invariant algorithms. This is the approach we will

be taking in this work. We will describe them in more detail

in the subsequent sections.

A. Set up for iPEPS

Projected entangled pair states (PEPS) are the generaliza-

tion of matrix product states to higher dimensions [40, 41].

Similar to its one dimensional counterpart, PEPS target the

physically relevant corner of the Hilbert space that is distin-

guished by its low entanglement content while representing a

quantum state in higher dimensions [42–44] that are of phys-

ical interest. One of the many advantages of such tensor net-

work techniques is that they can directly study systems in the

thermodynamic limit, thereby overcoming finite size effects,

that one would often encounter using techniques like exact

diagonalization. In this context, the infinite projected entan-

gled pair states (iPEPS) [45] have become the state of the art
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numerical tool in simulating two dimensional systems. They

have been known to provide excellent variational ground state

energies, in some instances even outperforming the state-of-

the-art quantum Monte Carlo calculations [46]. The success

of iPEPS lies beyond simulating two dimensional simple cu-

bic lattices. It has found applications in finding ground states

of frustrated systems [47–49] and realistic materials [50–52].

They have also been used to describe thermal states in 2D [53–

56] as well as steady states of dissipative systems [57, 58].

While most of these works target the fixed points of the model,

it is also possible, in principle, to use iPEPS for studying dy-

namics of a system. This is limited to only short time scales

due to the fast growth of entanglement. The situation is true

for all Tensor networks and even more severe for two di-

mensional systems further limiting the accessible time scales

[27, 59]. In this work, we will use iPEPS to study the dynam-

ics of the XXZ-Hamiltonian (Eq. (1)) in the presence of disor-

der and look for signatures of localization in different regimes

of the anisotropy ∆, as well as number of discrete levels dA
of disorder.

In our setting, we exploit what can be called “quantum

parallelism” to realize disorder in our translationally invari-

ant system in the thermodynamic limit as first proposed in

Ref. [30] and realized in one [29, 60] and two [27] dimen-

sional disordered systems. In essence, the method implements

discrete disorder using auxiliary spin-S systems for otherwise

translational invariant Hamiltonians. There is one of these

auxiliary spaces for each real space site and they are prepared

in a superposition state of all their spin states. By adding an-

other term to the Hamiltonian that projects these values onto

the real space, we obtain discrete disorder landscapes. When

calculating expectation values of observables, the states of the

auxiliary space actually conveniently implement the disorder

average over all possible disorder realizations. We will now

break down this procedure into three important steps in order

to implement this type of disorder.

• Initialization: We initialize our physical state vector

|ψ0ip as a product that is easy to prepare experimen-

tally, more specifically the Néel state, i.e.,

|ψ0ip = | ↑ , ↓ , ↑ , ↓ , · · · i. (3)

For our simulations, we have chosen an iPEPS with a

two-site unit cell and a checkerboard pattern as shown

in Fig. 1(a). This is sufficient to realize the configura-

tions of interest. We also initialize the auxiliary state in

a product state of equal superposition state vector |+i,
i.e.,

|ψ0ia = |+ ,+ ,+ , · · · i. (4)

For a spin-S system, this superposition is given by

|+i = (2S + 1)−1/2(
∑

s |si), where s are the allowed

spin states. Hence, the number of discrete values, our

disordered field takes is 2S + 1 where S is the spin of

the auxiliary space. Thus, the number of discrete levels

of disorder, which we refer to as dA is 2 for a spin-

1/2, 3 for for a spin-1 auxiliary system and so on. We

(a) (b)

(c)

|ψ0ip |ψ0ia

|Ψ0i = |ψ0ip ⊗ |ψ0ia

FIG. 1. Initial state expressed in terms of iPEPS for (a) the physical

state vector |ψ0〉p which is a Néel state, (b) the auxiliary state vector

|ψ0〉a is a product of equal superposition states and (c) the overall

initial state vector |Ψ0〉, the tensor product of the previous two states.

The red patterns correspond to the classical interaction between the

physical and the auxiliary states which is required for introducing the

disorder. All the three states are iPEPS with bond dimension D = 1
and the lattice extends indefinitely in all the directions. A choice of

a two-site unit cell in a checkerboard pattern is enough to exactly

represent this configuration.

then take the tensor product of the initial physical state

vector and the initial auxiliary state vector and define

this to be our overall initial state from where we start

quenching, i.e.,

|Ψ0i = |ψ0ip ⊗ |ψ0ia (5)

where |Ψ0i is a product state vector and hence an iPEPS

with bond dimensionD = 1. This completes the initial-

ization protocol, which we also illustrate in Fig. 1.

• Quench: Once our initial state has been prepared,

we perform the real time evolution of our disordered

Hamiltonian. For this, the original Hamiltonian in

Eq. (1) needs to rewritten as

H =
∑

〈i,j〉

(

Sx
ipS

x
jp + Sy

ip
Sy
jp

+∆Sz
ipS

z
jp

)

+ h
∑

i

Sz
ipS

z
ia

(6)

where the first term of the Hamiltonian is the sum over

all the nearest-neighbor physical sites. The second term

couples each physical spins with its auxiliary spin but

there is no coupling between different sites. This term

projects the disorder contained in the auxiliary space

onto the physical state using the local Sz
ipS

z
ia coupling.

Sz
ia is defined such that the values of the disordered

fields are taken from a fixed interval [h,−h] with uni-

form distribution. Thus, for dA, the values will be h
and −h, for dA = 3, it would be h, 0 and −h and so

on. We will study the effect of disorder as we increase

the dimension of the auxiliary system dA thereby al-

lowing more levels of disorder configurations. We use



4

the simple update [61] to do a real time evolution of

our modified Hamiltonian starting from the initial state

vector |Ψ0i,

|Ψ(t)i = e−iHt|Ψ0i. (7)

This update scheme is not only efficient, but also more

stable while dealing with such non-equilibrium prob-

lems [27]. This might be due to the fact unlike the full

update technique, the simple update does not require to

compute the ill-conditioned norm tensor at every step.

• Readout: Once we have generated the state vector

|Ψ(t)i using the procedure described above, we can

compute the expectation values of suitable local observ-

ables. Such expectation values are already the exactly

disorder averaged expectation value of all the possible

configurations by construction. This can be easily seen

from the following calculation

E〈Ô(t)i = 〈Ψ(t)|Ô|Ψ(t)i

= 〈Ψ0|e
iHtÔe−iHt|Ψ0i

= (a〈ψ0| ⊗ p〈ψ0|)e
iHtÔe−iHt(|ψ0ip ⊗ |ψ0ia).

(8)

The on-site expectation value is calculated at the phys-

ical site as the auxiliary sites are traced out. We use an

instance of a CTMRG algorithm [62, 63] for this pur-

pose. We also use the same effective environment to

compute the different Renyi entropies of the reduced

density matrices.

Thus, the above procedure circumvents the need for having

finite systems to realize disordered systems, at the same time

avoiding the need for multiple simulations for different disor-

der configuration and taking their average.

B. Set up for non-interacting fermions

In addition to the iPEPS simulations described above, we

have also run some free fermionic calculations reminiscent of

the non-interacting case ∆ = 0 in a finite system (note that the

mapping is not exact due to the presence of Jordan-Wigner

strings in two spatial dimensions). Because the dynamics is

only governed by the single particle sector, systems of size

40 × 40 are perfectly accessible. Moreover, we can imple-

ment continuous disorder for these simulations. In accordance

with our iPEPS simulation, we again consider a Néel initial

state and evolve it in time. We measure the particle num-

ber on even and odd sites as a measure of localization [18]

as described above. Here, we are in principle not restricted

to any final time but we since we are interested in comparing

the results to the iPEPS simulations, we evolve up to a few

tunnelling times by integrating Schrödinger’s equation. Ad-

ditionally, we can access the single particle eigenstates and

single particle eigenenergies of these systems via exact diag-

onalization, which we employ to calculate the inverse partici-

pation ratio, another measure of localization.

IV. RESULTS

Results for non-interacting ∆ = 0 case. In this section,

we present results for the non-interacting case ∆ = 0. In this

regime, it is possible to solve larger two-dimensional systems

exactly in the single particle space. It has been rigorously es-

tablished that one and two dimensional systems localize for

continuous disorder [64–66]. For discrete disorder the situ-

ation is more subtle. In fact, seminal work has solved the

long-standing puzzle whether localization occurs in the first

place in one spatial dimension to the affirmative [31]: Inter-

estingly, for one spatial dimension, any probability measure

that has support on more than a single point will lead to the

Hamiltonian having pure point spectrum and exponentially

decaying eigenfunctions and hence localization, even though

bounds to localization lengths are implicit. These results are

compatible with rigorous insights into dynamical localization

for suitable random Schrödinger operators [33]. In higher di-

mensions, slightly weaker statements are shown, basically for

sufficiently large disorder [31], for disorder with sufficiently

large numbers of discrete levels of disorder [32], or for parts

of the spectrum [34, 35]. These results apply equally well to

our situation of non-interacting fermionic systems.

The dynamics of the particle number for even and for

odd sites in the non-interacting fermionic case is shown in

Fig. 2. Here, we present results for three disorder strengths

(h = 4, 10, 100) and two kinds of disorder: Continuous disor-

der is shown in red shades and a three-level discrete (spin-1)

disorder in blue shades. The two curves plotted depict the

particle number for odd and even sites, respectively. Further-

more, we plot data obtained for the infinite system with the

iPEPS code in black. This serves a more qualitative purpose

however, since the plots shown are for iPEPS with fixed bond

dimension D = 4 and therefore we should be careful in mak-

ing a one-to-one comparison with the exact diagonalization

results quantitatively. For h = 4, we find that the initial im-

balance evens out on the time scales considered. There is no

apparent difference for the two disorder models considered.

This apparent lack of localization is by no means incompat-

ible with the above proven localization: On the one hand, in

two spatial dimensions (unlike in one spatial dimension), the

disorder has to be sufficiently strong to encounter localiza-

tion. More importantly, on the other hand, the figure of merit

applied will only encounter localization on the spatial extent

of single lattice sites. Hence, the absence of localization for

the magnetization is compatible with localization for longer

localization lengths. In fact, the machinery developed here

gives rise to a tool to explore this rich physics for discrete dis-

order in higher spatial dimensions.

For h = 10, we find a first signature of localization for the

time scales considered as a weak imbalance – signified by a

gap between the two curves – remains. When comparing the

two disorder models, we already see a hint towards an obser-

vation that will become more clear in the strongly disordered

case. The continuous disorder results in a slightly larger gap.

When we set h = 100, there is a large gap for the continuous

disorder model, but only a small one for the discrete disorder

model. The simulation for the infinite system agrees very well
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with the finite calculations for t < 1. It furthermore suggests

that with increasing system size the gap closes completely.

Moreover, we find that increasing the levels of the discrete

model results in a larger gap (data not shown).

To complement this analysis, we also look at the single par-

ticle energy spectrum to understand the influence of the dis-

crete disorder and why dynamical localization may not oc-

cur for the observed times in the discrete disorder model. In

Fig. 3, we plot the spectra for both models at high disorder

h = 100. We find that the spectrum for the continuous disor-

der is apparently still continuous. When discrete disorder with

s many levels is used, the spectrum is decoupled in s blocks,

that have a weak bending caused by the hopping terms. This

is compatible with the following intuitive explanation, which

is furthermore in line with the above rigorous findings: Since

the energy gaps between the levels are very large, the system

effectively largely decouples into sites of the same disorder

strength. Depending on the position of the next site with the

same disorder value, the hopping strength will change, but es-

sentially the physics boils down to a hopping problem with

a high coordination number and random hopping strengths.

This implies that for long times, the system will evolve to-

wards a homogeneous state.

To give more substance to this heuristics, we consider the

inverse participation ratio (IPR) defined as

I|Ek〉 =
∑

i

|〈i|Eki|
4 , (9)

where |ii is a lattice site vector and |Eki is the eigenvector

with corresponding energy Ek. This provides an estimate of

the localization of the eigenvectors in the following sense. If

|Eki only has support on a single lattice site, its IPR is unity.

If, in contrast, |Eki has support on all lattice sites, the IPR will

be 1/L2. We consider a cumulative IPR for energy segments.

This means, we re-scale the spectrum according to

ǫ(E) =
E − Emin

Emax − Emin

, (10)

such that 0 ≤ ǫ ≤ 1. We then sum the IPR for all states in

re-scaled energy intervals of size 0.05. The results are dis-

played in Fig. 4. For low disorder h = 4 (squares), the IPR

is approximately the same for all three types of disorder. For

h = 10 (circles), we see that at the ends of the spectrum, the

IPR is lower for less levels of disorder. When considering the

case of high disorder h = 100, there is a strong qualitative

difference for the models. The continuous disorder results in

a very high IPR throughout the full spectrum. Not only is

the spectrum divided into blocks for the discrete disorder, the

resulting IPRs are also much smaller than in the continuous

case, indicating that these states are not localized. When in-

cluding many-body interactions, these can be interpreted as

additional onsite fields that depend on the particle configura-

tion. This renders the potential experienced by the particles

close to continuous restoring localization. We will explore

this in the following section.

A. Results for interacting ∆ = 1 case

First, we will present the results for the clean case as well as

the simplest case of disorder we can incorporate in our iPEPS

simulations using the auxiliary method. The simplest case is

with binary disorder when the auxiliary system has a local

Hilbert space (dA) of two implying that our disorder landscape

has two levels locally. We start by computing the expectation

value of the particle number as a function of real time. The

expectation values are computed at the two different physical

sites of the tensor network. Since the initial physical state is

a Néel state, its expectation values are one for the occupied

site and zero at the empty site at t = 0. As we initiate the

quench, we want to analyze how the particle number changes

with time. This is closely related to the experimentally used

imbalance [18, 36, 67] which measures the difference of par-

ticle occupation between even and odd sites. In the absence

of any disorder, this imbalance will eventually drop to zero or

in other words, the particles will spread leading to a homoge-

neous particle distribution. This is shown in the left panel of

Fig. 5 although the time scale has been cut off early to avoid

errors, according to criteria specified below.

For the calculations, we have used an iPEPS with a fixed

bond dimension D = 4, 5 and Trotter step of 0.1 and 0.01.

The reason for the comparably small bond dimension is that

the physical dimension needs to be comparably large. The

results for both the Trotter steps as well as different bond

dimensions are depicted in Fig. 5 and Fig. 6. As with all

other tensor network approaches, iPEPS cannot be used for

long time simulations due to the rapid growth of entangle-

ment [68, 69], which can only be accounted for by (in time

exponentially) large bond dimensions. This is a fundamental

challenge that can ultimately not be overcome for any univer-

sal classical simulation method, as Hamiltonian evolution is

in principle as powerful as a quantum computer (is BQP com-

plete in technical terms [70]), and hence a universal classical

efficient method of local Hamiltonian evolution for all times

is unlikely to exist [71]. Using large bond dimensions in two

dimensions is significantly more challenging compared to the

one dimensional case and comes along with significant com-

putational effort. As a consequence, the error measures must

necessarily be less stringent here compared to the situation in

one spatial dimension.

The main criterion that we make use of for stopping the

time evolution is a disagreement of the two largest available

PEPS bond dimensions (which would here be D = 4 and

D = 5), reflecting a convergence in bond dimension: This

convergence builds trust in the expectation that higher bond

dimensions provide compatible results. This is shown in Fig.

5 and Fig. 6. Some further intuition is also provided by mon-

itoring the growth of the local Renyi entropies in time start-

ing from the initial product state. We compute the Renyi en-

tropies S(ρ1) of order α = 1 and α = 1/2 for the reduced

density matrix of one site. The scaling of Renyi entropies

can be precisely related to tensor network state approxima-

tions in one spatial dimension [72]. Here, the issue at hand

is more subtle, as we operate in two spatial dimensions and

observing entropies of arbitrarily large reduced states is ex-
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cessively challenging. Still, the deviation from a saturated

value Smax = log(dp), where dp is the dimension of the local

Hilbert space of the physical spins, can be seen as an indica-

tion that the tensor network approximation is still meaningful.

We provide these numbers in the inset of Figs. 5 and 6. Fur-

thermore, we show that our time evolution is stable against

different Trotter steps δt = 0.1 and δt = 0.01, which is a key

insight in favour of the update scheme used here, as Ref. [27]

convincingly discussed issues with stability with full updates.

Along the way, we have also monitored the local truncation

error, to see that it is not significant for our purposes, again

shown in insets of Fig. 5. The local truncation error ǫ is the

sum of the squares of discarded weights during the evolution

for one site. For the case without disorder, we plot the results

for up to t = 0.8 although S(ρ1) attains its maximal value at
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FIG. 4. Cumulative inverse participation ratio for the Anderson

model with discrete and continuous disorder for different disorder

strengths. Lines are guides to the eye. When the energy levels for a

certain value ǫ are not populated, no line is drawn.

t = 1 hopping strength. The local truncation error is of the

order of 10−4 until this time).

We now introduce disorder to our system. For a disorder

strength of h = 2, we can see that the growth of entropy

for a single site reduced density matrix slows down already,

thereby allowing us to do time evolution to longer times. This

is shown in the big inset of the right panel of Fig. 5. Just like

the previous case, S(ρ1) in this case also, becomes saturated

after a few more time steps. The truncation error up to this

time scale is of the order of 10−3 (shown in the small inset).

Based on the particle number, there is still no strong indica-

tion of localization with such a weak disorder strength h = 2
and low levels of disorder dA = 2. Increasing the bond di-

mension of the iPEPS will improve the simulation by a few

time steps, but this is numerically very demanding. Similarly
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FIG. 5. Real time evolution of the Heisenberg Hamiltonian starting from a Néel state. (Left) Expectation value of the particle number as a

function of time for the two different sites for the case with no disorder h = 0. [Big inset] Renyi entropies of the reduced density matrix of

one site as a function of time for α = 1 and α = 1/2. The entropies start saturating to their maximum value. [Small inset] Accumulated local

truncation error of one site. (Right) The same evolution as above, but now with a disorder strength h = 2 and for dA = 2. The simulation time

has been extended slightly compared to the clean case without disorder. One also notices a slow down in the growth of local Renyi entropies.

The simulations are done for δt = 0.1 and 0.01 for D = 4 and δt = 0.01 for D = 5. The results are consistent with different Trotter sizes as

well as different bond dimensions building trust into our simulations.

to the non-interacting case, we will investigate the influence

of increasing the size of the local Hilbert space of the auxil-

iary system, thereby allowing more levels of disorder locally

as well as the disorder strength.

We first increase the disorder strength for the binary dis-

order case reflected by dA = 2. This is shown in the top

panel of Fig. 6. There is no significant change compared to

the case of h = 2 and dA = 2. We now increase the num-

ber of levels of disorder in our system by increasing the local

dimension of the Hilbert space of the auxiliary spins. We in-

vestigate this for dA = 3, 4, 5, 6 and for different values of

the disorder strengths h = 2, 4, 6. dA −→ ∞, corresponds to

the case of continuous disorder. In Fig. 6, we only show the

plots for dA = 2, h = 6 (top), dA = 5, h = 2 (middle)

and dA = 5, h = 6 (bottom). What we see from Fig. 6 is

that merely increasing the disorder strength h or the number

of disorder levels dA alone is not sufficient to see signatures

of localization, and ergodicity seems to be preserved, judged

from dynamical data. Only in the case with relatively strong

disorder h = 6 and many levels of disorder dA = 5 avail-

able, clear signatures of localization are encountered. As a

consequence, we are able to go to much longer times in our

simulation t = 3J . We would like to note here to the best of

our knowledge, this is the longest time achieved in time evo-

lution with 2D tensor networks in the thermodynamic limit,

facilitated by features of localization. Signatures of localiza-

tion are also reflected by the considerable slow down of the

growth of local Renyi entropies (as being shown in the inset

of the plots).

To be more comprehensive and systematic, we now con-

sider different configurations of the disorder strength h and

disorder levels dA and plot the particle imbalance I, defined

as the difference in the occupation number of the two different

sites. This is shown in Fig. 7 for the configurations (dA = 2,

h = 6), (dA = 5, h = 2), (dA = 5, h = 4) and (dA = 5,

h = 6). As we see, only in the last configuration, one can go

as far as achieving the longest time evolution, because only

then the system undergoes localization reflected by slow dy-

namics up to this time. For the other situations, one has to be

content with the available short time dynamics. To make pre-

dictions with a reliably statistical basis, we have nonetheless

extrapolated these available times using different polynomial

fits such as linear, quadratic, 4-th and a 5-th degree polyno-

mial least-square fits. This procedure does allow for crude

predictive statements on future behaviour and indeed, the par-

ticle imbalance in all these cases conveniently and convinc-

ingly drop to zero (reflecting no remaining imbalance). These

are shown by dashed lines in Fig. 7 along with the residuals

of their fit to be precise.

Based on the available information within the achievable

times, we are now able to go a step further: Building on dy-

namical data, we can arrive at crude estimates of the phase di-

agram of many-body localization in 2D based on the disorder

strength h and the levels of disorder dA, judged from dynam-

ical data. Even though these estimates are necessarily coarse-

grained, it is still exciting to see that the approach taken al-

lows to draw conclusions along these lines, in a regime that is

very little studied using analytical and numerical state-of-the-

art techniques. The results of this endeavour are shown in Fig.

8. Pink boxes indicate that the system is likely to thermalize

and is therefore ergodic, while blue boxes indicate the system

localizes for the available time scales and is therefore in the

MBL phase. This is the first dynamical phase diagram avail-

able for 2D dynamics with discrete disorder. Our dynamical

phase indicates that in order to achieve MBL in two spatial di-

mensions, one needs a critical disorder strength of h = 6 and
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FIG. 6. Similar to Fig. 5 but for stronger disorder and more disorder

levels. (Top) Relatively strong disorder h = 6 but only two levels

of disorder dA = 2. (Middle) More levels of disorder dA = 5
but weak disorder strength h = 2. (Bottom) many disorder levels

dA = 5 as well as relatively strong disorder h = 6. In all the plots,

we show simulations with bond dimensions D = 4 and 5 up to good

agreement. This is also consistent with the growth of Renyi entropies

which are shown in the insets.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.5

1

0 0.5 1 1.5

-0.05

0

0.05

0 1 2 3

0 0.5 1 1.5

-0.05

0

0.05

0 1 2 3

0

0.5

1

0 0.5 1

-0.02

0

0.02

FIG. 7. Particle imbalance I for various configurations of disorder

dimensions dA and strengths h. We show the dynamics of the longest

available times for the localized case (blue circles, h = 6 and dA =
5) which is up to three hoppings. Also shown are the cases where

the particles do not localize (yellow circles with h = 6, dA = 2, red

circles with h = 2, dA = 5 and green circles with h = 4, dA = 5).

The dynamics can be extrapolated using different polynomials such

as linear, quadratic, 4-th and a 5-th degree fit and one can notice the

imbalance dropping to zero in all these cases. Also shown are the

residuals corresponding to each fit (dashed lines). The linear fit has

the largest error while the 5-th degree polynomial fits in this sense

most accurately.

disorder levels dA = 4. The experimental work of Ref. [73]

had found a critical disorder strength of h = 5.5 for continu-

ous disorder in an Aubrey-Andre model, even though it is im-

portant to stress that the underlying Hamiltonian model is that

of a two-dimensional Bose Hubbard model. A complement-

ing theoretical work based on constructing cellular automata

had found a critical disorder strength of h = 19, aimed again

at exploring the disordered Bose-Hubbard model [25].

That is to say, we have been able to find that while discrete

disorder landscapes lead to no noticeable localization for the

two dimensional non-interacting systems we consider, they

appear to be capable of localizing interacting systems. This is

consistent with the argument given above that the interaction

can be viewed as an additional source of randomness which

depends on the adjacent particle configuration. It is also com-

patible with the rigorous findings [31–35] (as the disorder can

be too small and the magnetization does not detect a finite

correlation length), but adds scope to this, as we discuss the

impact of specific small auxiliary dimensions. Before all, our

findings can be seen as an invitation to study in depth the rich

physics of discrete disorder beyond one spatial dimension.

V. CONCLUSION AND OUTLOOK

We have studied the effect of disorder in two dimen-

sional system using two independent techniques: a free
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FIG. 8. Crude estimate of the phase diagram as being assessed from

dynamical localization as a function of the disorder dimension dA
and the disorder strength h. The criterion to assign an ergodic or

localized phase is whether the achievable simulation in time or the

polynomial interpolation exhibits a localization of the imbalance in

time or not. A disorder strength of h = 6J with at least four levels

of disorder seems necessary to give rise to many-body localization in

2D.

fermionic simulation for the non-interacting regime of the

XXZ-Hamiltonian and an iPEPS algorithm for the interacting

regime. By implementing discrete levels of disorder in the lat-

ter case as well as continuous disorder for the free fermionic

case, we have found strong numerical evidence for the many-

body localization in infinite two dimensional systems when

using a sufficient number of disorder levels as well as disor-

der strength. Based on the dynamics of the particle imbalance

for the available times, we have estimated a crude phase dia-

gram of MBL in 2D, finding the critical disorder strength to

h = 6 and at least four levels of disorder dA = 4. Surpris-

ingly, we do not find any evidence of localization for the infi-

nite two-dimensional system for the non-interacting case us-

ing discrete levels of disorder, despite the mathematical proof

of Anderson localization in two spatial dimensions with con-

tinuous disorder. We have provided an intuitive argument on

why this is the case based on a decoupling of potential levels

which leads to an effective hopping problem, one that it at the

same time compatible with the findings of Ref. [31]. Our ar-

gument is supported by strong numerical evidence based on

two independent techniques.

We argue that the significance of our work is four-fold: We

present a stable numerical machinery that is able to explore a

regime of disordered lattice models in higher dimensions that

has formerly been significantly less accessible. Our machin-

ery is more resource efficient, stable and provides better con-

trol over the dynamics. For this reason, we have been able to

go to the longest available time scale of t = 3J in 2D, thanks

to the disorder. This is a technical, algorithmic improvement.

Then, we are able to freshly explore the physics of discrete

disorder [31], a regime that we think has received less attrac-

tion in the literature than it deserves, giving the rich interplay

of discreteness of disorder and interactions, and only very re-

cently is moving into the focus of attention in the Anderson,

i.e., non-interacting, case [32–35]. It would be very inter-

esting to understand the interplay of discrete disorder also in

view of stability of MBL and Griffiths effects.

Excitingly, our tools are powerful enough to provide some

estimates of the phase diagram of many-body localization as-

sessed by investigating dynamical properties, even these esti-

mates are necessarily crude for time scales available. In light

of the enormous difficulty of achieving such estimates, for ex-

ample with quantum cellular automata [25], we think that our

dynamical method provides some handle on studying precise

interplay and a phase diagram of the disorder strength and the

number of levels of disorder with the system. The tools laid

out here can be seen as an invitation to quantitatively study

this interesting regime more thoroughly.

Finally, and maybe most importantly in the medium to long

perspective, we are able to provide benchmarks for quantum

simulators [74, 75] that are increasingly becoming available

in a number of physical platforms. With the advent of pro-

grammable randomness, this work can actually be probed di-

rectly in experiments as well. As mentioned before, the pro-

grammable nature allows to avoid rare events of small local

disorder and ergodic bubbles leading to a potential instabil-

ity [22, 23] as a design principle for choosing disorder pat-

terns. For example, the programmable, re-configurable arrays

of individually trapped cold atoms with strong, coherent in-

teractions realized by excitation to Rydberg states [76] give

rise to such a platform. In systems of trapped ions [77] and

in superconducting devices [20], large degrees of flexibility

arise in programming potentials in one spatial dimension, set-

tings in which discrete disorder can be explored. Even be-

yond programmability, the presence of one – say, fermionic

– atomic species constituting discrete disorder for another

atomic species [78, 79] opens up interesting perspectives.

Our work constitutes a basis on which a compelling conclu-

sion can be drawn for the perspective of realizing such pro-

grammable quantum simulators from a complementing per-

spective: By further developing and applying tensor network

techniques, we have entered a unprecedented regime for clas-

sical simulation techniques, concerning the dimensionality of

the system, the way disorder is realized, and at the same time

concerning the times reached. This information can be made

use of to build trust in the correctness of an eventual pro-

grammable quantum simulation in the sense of a partial cer-

tification [80] of the quantum simulation. This will work for

comparably short times – for long times, no classical efficient

computation will be able to keep track of the quantum dy-

namics [70, 71]. To access such long times, one actually has

to perform the quantum simulation in the laboratory, based

on and guided by the insight the classical simulation has pro-

vided. In this sense, our work can be viewed as a blueprint for

a programmable quantum simulation using near-term quan-

tum devices that accesses an intricate quantum phase of mat-

ter. It is the hope that the present work stimulates such further

endeavours.
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VII. APPENDIX

In this work, we use exact diagonalization (ED) and tensor

network methods. For the case of non-interacting system, we

use ED up to system size 40 × 40. For the interacting sys-

tem, we use infinite projected entangled paired states com-

bined with the quantum dilation technique discussed in the

main text, directly in the thermodynamic limit. For optimiz-

ing the tensors, we use the simple update scheme originally

introduced for ground state calculations [61]. The reasoning

for choosing this scheme over the full update has been dis-

cussed in the main text already. For the update procedure, we

use iPEPS with bond dimensions D = 4 and 5 with Trotter

steps δt = 0.1 and 0.01. The combined dimension of the

physical and the auxiliary spins used in these simulations are

d = dp × dA = 4, 6,8 and 10.

Once the tensors are optimized, we use the CTMRG tech-

nique [62, 63, 81, 82] to contract the full environment of the

tensors, thus targeting the thermodynamic limit. The CTMRG

algorithm computes the effective environment of a particular

site by contracting the whole infinite 2D lattice except the site

at which we want to compute the observables. For this, one

needs to obtain a set of fixed point tensors that makes up this

effective environment. Details on how we do this can be found

in Refs. [62, 63, 83]. The bond dimensions of the environment

used are at least the square of the bond dimension of the ipeps

(χ ≥ D2) and are sufficiently well-converged. The agreement

between the expectation values of the highest available bond

dimensions is used as one of the criteria for stopping our time

evolution.
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