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Abstract 
 

Obesity is now considered a global epidemic and is predicted to become the number one 

preventive health threat in the industrialized world. Presently, over 60% of the U.S. adult 

population is overweight and 30% is obese. This is of concern because obesity is linked 

to leading causes of death, such as heart and pulmonary diseases, stroke, and type 2 

diabetes. The dramatic rise in obesity rates is attributed to an environment that provides 

easy access to high caloric food and drink and promotes low levels of physical activity. 

Unfortunately, many people have a poor understanding of their own daily energy 

(im)balance: the number of calories they consume from food compared with what they 

expend through physical activity. Accelerometers offer promise as an objective measure 

of physical activity. In prior work they have been used to estimate energy expenditure 

and activity type. This work further demonstrates how wireless accelerometers can be 

used for real-time automatic recognition of physical activity type, intensity, and duration 

and estimation of energy expenditure. The parameters of the algorithms such as type of 

classifier/regressor, feature set, window length, signal preprocessing, sensor set utilized 

and their placement on the human body are selected by performing a set of incremental 

experiments designed to identify sets of parameters that may balance system usability 

with robust, real-time performance in low processing power devices such as mobile 

phones. The algorithms implemented are evaluated using a dataset of examples of 52 

activities collected from 20 participants at a gymnasium and a residential home. The 

algorithms presented here may ultimately allow for the development of mobile phone-

based just-in-time interventions to increase self-awareness of physical activity patterns 

and increases in physical activity levels in real-time during free-living that scale to large 

populations. 
 

KEYWORDS: Activity recognition, context awareness, energy expenditure, physical 

activity, wearable sensors, obesity, mobile phone, pattern recognition, machine learning, 

ubiquitous, pervasive, just-in-time. 
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1 Introduction 

Due to its dramatic increase over the past decades, obesity is now considered a global 

epidemic that may dramatically impact health in the industrialized world [1]. The 

prevalence of obesity from 1960 to 1994 in the U.S alone increased approximately 50% 

from 13.4% to 22.3%. At present, 65% of adult Americans aged 20 years and older are 

considered overweight (a body mass index [BMI] ≥ 25 kg/m
2
) and 30% are considered 

obese (BMI ≥ 30 kg/m
2
). Further, 16% of children and teenagers (age 6-19) are presently 

considered overweight and the percentages are rising [2].  

If this trend in obesity continues and no action is taken, the majority of the U.S. adult 

population could be overweight within a few generations [3]. Extrapolating from existing 

data from the World Health Organization [1], approximately half (45-50%) of the U.S. 

adult population could be obese by year 2025. This is an alarming statistic because 

obesity is linked to leading causes of death in the U.S., such as heart and pulmonary 

diseases, stroke, and type 2 diabetes [2]. Obesity is also a risk factor for chronic 

conditions such as high blood cholesterol, hypertension, and osteoarthritis [4].  

Obesity is a complex condition caused by the interaction of many factors such as such 

as genetic makeup, neuroendocrine disorders, emotions, and even secondary effects from 

medical treatments. The rise in obesity, however, is generally believed to result from a 

caloric imbalance. Most Americans have (1) high caloric intake due to easy access to 

foods and beverages with a high caloric content and (2) extremely low levels of  physical 

activity relative to that caloric intake [5-7]. Increased calorie intake may have resulted 

from pervasive advertising and ubiquity of the fast food industry [8], easy access to 

energy-dense packaged foods such as snacks and soft beverages [9], and  the expanding 

portion sizes of meals and food packages [10]. Advances in transportation and household 

appliances have also contributed by minimizing everyday physical activity and 

encouraging sedentary behaviors. Many leisure activities such as sports and outdoor 

activities have been increasingly replaced by sedentary behaviors such as television 

viewing, arcade videogame playing (particularly in children), and internet surfing [11, 

12]. In fact, a study by Harris Interactive released in 2003 [13] found that Americans 13 

years and older spend on average eight hours a day sitting and four hours a day watching 

TV, playing video games, or surfing the web. 

Energy intake and energy expenditure are determined by the individual‘s daily 

behavior and, consequently, addressing behavior change has been an important focus of 

work in treating obesity. For example, clinical behavioral interventions attempt to modify 

behavior related to physical activity and diet by educating individuals about the benefits 

of daily exercise, healthier food choices, and portion sizes. These interventions have 

shown some level of success in reducing body mass index (BMI) and increasing physical 

activity levels in the short-term (e.g. [14]). Nevertheless, this success may primarily 

result from the network of health care professionals and researchers constantly 

monitoring each individual‘s behavior, making the interventions too costly to scale to the 

entire population. When people are left to manage their own weight, without the constant 

support of professionals, they struggle to maintain newly acquired healthy behaviors [15, 

16]. In fact, ninety five percent of people who have lost weight during these interventions 

regain approximately one third of the lost weight during the following year and are 
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usually back to their initial weight within three to five years [17]. Ultimately, if cost-

effective long-term behavior change is required, individuals must initiate and sustain 

healthy habits related to physical activity and diet without continuous monitoring by 

health professionals.  

Daily information about physical activity level, energy expenditure, and energy intake 

is central to weight control since energy balance is defined by the interaction between 

these variables [6, 12, 18]. Presently, many people have little or no idea how much daily 

meaningful physical activity they get and how that compares to the minimum standards 

suggested by medical professionals and their estimated caloric intake. Consequently, 

there is a need for tools that allow people to measure their physical activity intensity and 

intake over the course of a day to allow them to make informed decisions and perform 

energetic trade-offs (e.g. increase physical activity while overeating or reduce food 

consumption while sedentary). Moreover, tools that automatically inform individuals 

about how small changes in behavior (e.g. in non-exercise activity) could positively 

impact their daily energy expenditure might allow people to plan personalized 

modifications to daily routine that are more likely to be conducive to incremental 

adoption and subsequently sustained over long periods of time.  

Unfortunately, existing technologies in the area of physical activity are mostly 

designed for those individuals who have already achieved a high level of physical fitness, 

such as athlete runners. For example, the Nike+iPod sport kit [19] allows individuals to 

track the speed, distance, pace and calories burned while running by slipping a motion 

sensor in the Nike+iPod ready shoe and snapping a wireless receiver unit into the iPod 

nano MP3 player. The Adidas+Polar training system [20], another recently introduced 

technology, integrates a heart rate monitor on a shirt,  a stride sensor on a shoe, and a 

wristwatch computer to monitor work out zones based on heart rate, speed and distance 

data. These new portable technologies demonstrate the use of real-time biofeedback as a 

way to motivate behavior modification, since heart rate data and energy expenditure is 

used to maintain the work out at particular zones. Still, the challenge remains to come up 

with technologies that can be used by those who have difficulty maintaining a healthy 

weight and minimum levels of physical activity every day. 

In summary, there is a need for weight maintenance technologies that (1) use 

automation so that they can scale well in cost to the majority of the population, (2) 

present information about physical activity levels, energy expenditure, and energy intake 

in real-time over the course of a day to help people to make more informed decisions 

related to physical activity and diet, (3) create opportunities for interventions that permit 

incremental changes that do not necessitate sudden and drastic modifications to daily 

routine, (4) teach individuals skills that will help them in maintaining their weight in the 

long term, and that (5) are inexpensive, easy to use and unobtrusive so that people are 

willing to use them longitudinally during free-living.  

1.1 The Opportunity 

As the popularity of portable handheld computers such as mobile phones increases and 

their cost decreases, opportunities for novel healthcare applications arise. Mobile phones 

are often carried with people nearly everywhere they go, and people generally keep them 

functioning and charged [21]. Consequently, they can be used to gather and deliver 
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tailored health-related information continuously over long periods of time during free-

living conditions. 

One important area where mobile phones and wearable accelerometers can be applied 

in combination is in creating valid and reliable measures of physical activity and energy 

expenditure. Automatic detection of physical activity and/or energy expenditure would 

enable new types of health assessment and intervention tools that help people maintain 

their energy balance and stay physically fit and healthy. For example, mobile phones 

could be used to run algorithms that automatically recognize physical activities and 

estimate energy expenditure from body-worn accelerometers and display this information 

as behavioral feedback in real-time. Indeed, with the advent of accelerometer-enabled 

mobile phones (e.g. [22-25]), some applications such as mobile phone based pedometers 

and activity level monitors have started to emerge [25, 26].  

Another powerful extension of mobile technology is to use  it to deliver ―just-in-time‖ 

interventions at the point of decision, for example, to encourage a positive behavior 

change [27, 28]. In this scenario, accelerometer-based mobile phones or mobile phones 

combined with wearable accelerometers distributed at strategic body segments can be 

used to detect activities of interest (e.g. walking slowly) and encourage increases in 

intensity levels (e.g. brisk walking over walking slowly). Obviously, for these types of 

applications to be possible, activity recognition algorithms running on mobile phones 

have to be capable of recognizing the intensity of physical activity.  

A new area of research where mobile phones and wearable accelerometers might also 

be applied is non-exercise activity thermogenesis (NEAT) [29]. Recent results suggest 

that small changes to daily routine such as walking upstairs vs. riding the elevator, sitting 

fidgeting feet vs. sitting and brisk walking vs. walking can accumulate over the course of 

a day to meaningful amounts.  

Mobile phones could also be used to acquire information related to food intake, body 

weight and body composition automatically and use it to provide useful estimates of 

energy balance over time. In fact, Some mobile phone based commercial applications 

such as MyFoodPhone  [30] and Sensei [31] have already started to appear. These 

applications allow individuals to collect dietary information on phones and, if desired, 

receive useful feedback from dietitians. Unfortunately, better applications are still 

required that do not either rely on experts to manually analyze data or end-users to 

painstakingly enter information about what they eat using a phone.  

1.2 Challenges of Estimating Energy Balance 

Unfortunately, the accurate measurement of physical activity, energy expenditure, and 

energy intake is challenging and, at present, there is no technology that allows people to 

measure these variables comfortably, accurately, and continuously over the course of a 

day and obtain real-time feedback. Existing technologies capable of measuring these 

variables accurately that are used in research (e.g. diet and physical activity diaries, 

indirect calorimetry, doubly labeled water, and chemical analysis of duplicate food 

samples) impose a considerable degree of burden to the end user due to (1) the need of 

maintaining detailed daily records related to physical activity and diet or (2) the use of 

intrusive and expensive medical equipment available only at specialized laboratories. 

When methods more suitable for free-living conditions are used to estimate these 
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variables (e.g. recall surveys, end of study interviews, and non-detailed diaries), they 

provide too coarse of an estimate to allow for useful consumer-based applications.  

Motion sensors (accelerometers) are commonly used in exercise physiology research to 

measure physical activity quantitatively and estimate energy expenditure during free-

living. A common method used during large scale medical research studies is to place a 

single accelerometer (e.g. Actigraph [32]) at the hip to obtain an estimate of physical 

activity level (e.g. light, moderate, vigorous) and energy expenditure due to overall body 

motion (e.g. ambulation). This method may perform poorly on some activities that 

involve primarily upper or lower body motion, which can be difficult to detect from a 

single accelerometer at the hip [33, 34]. Another disadvantage of this and another 

existing technologies (e.g. [33, 35, 36]) is that they do not provide any information about 

the type of activity being performed. 

Recognizing activity type (e.g. washing dishes vs. wiping a surface) across individuals 

is challenging because individuals perform activities differently. Although there has been 

extensive research in the area, most algorithms implemented have been evaluated off-line 

and consequently, it is not clear if they are capable of real-time performance (e.g. [37-

40]). Those few algorithms that recognize activities in real-time either recognize a limited 

set of activities involving mainly postures and ambulation (e.g. [41-44]) or are in a 

prototype research stage (e.g. [45, 46]). Furthermore, to the best of the author‘s 

knowledge, there are presently no technologies or algorithms available to automatically 

recognize the intensity of physical activity (e.g. walking at 3mph vs. walking at 4mph). 

As a result, the only available methods to capture to capture information about the 

intensity of physical activity are direct observation and physical activity diaries. 

Estimation of energy expenditure presents some additional challenges over physical 

activity recognition. For example, energy expenditure needs to be estimated in a subject 

independent manner due to the unavailability of the necessary equipment to allow people 

to collect energy expenditure data about their activities during free-living. Furthermore, 

one of the main challenges in estimating energy expenditure is inter-individual variations 

since two individuals performing the same activity would present different energy 

expenditure measurements depending on their fitness level, age, and gender. Another 

challenge is that resistance or work load effort involved in activities such as walking 

uphill or carrying a heavy box are difficult to detect from accelerometers. Heart rate data, 

on the contrary, is able to detect these changes in physical effort, but it suffers from inter-

individual variations due to different fitness levels of individuals and intra-individual 

variations due to emotional states, nicotine, and temperature among others [47-49].  

There are still some questions in physical activity recognition and energy expenditure 

estimation research that prior work has partially addressed or not addressed at all. Some 

of these questions include: What features computed over the accelerometer data allow 

better recognition of activities and estimation of energy expenditure? What sliding 

window lengths (or epochs) provide the highest performance? Do multiple 

accelerometers at different body segments improve performance? How does the 

performance of relatively simple classifiers amenable for real-time performance compare 

to more complex state-of-the-art classification algorithms? Do non-linear regression 

techniques improve energy expenditure estimates significantly? Do activity dependent 

regression models improve energy expenditure estimation? Does the combination of 

accelerometer and heart rate data improve performance? What is the minimum number of 
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accelerometers required to recognize activities and estimate energy expenditure? Where 

these accelerometers should be placed to maximize usage comfort and performance? The 

work presented in this thesis explores some possible answers to all of the above questions 

by performing a set of experiments to find a reasonable compromise that balances the 

various criteria required to create activity recognition and energy expenditure algorithms 

amenable for real-time performance in low processing power devices.  

1.3 System Goals 

The main goal of the work presented in this thesis is to demonstrate the viability of 

technology that can reliably detect information about activity type and intensity, and 

estimate energy expenditure from accelerometers in real-time. Such technology might 

eventually enable the development of a consumer-based energy expenditure meter that is 

easy to use, unobtrusive, inexpensive, always on and near the user, accurate, and that can 

be used longitudinally during free living conditions. Knowledge of physical activity and 

energy expenditure information in real-time over the course of a day could increase 

individuals‘ self-awareness and allow them to perform energetic trade-offs that might 

help in maintaining a healthy weight (e.g. exercise more when overeating or eating less 

when sedentary). 

1.4 Experimental Goals 

In this work, algorithms for automatic detection of physical activity type and intensity 

and energy expenditure estimation using multiple wireless accelerometers are evaluated 

on a dataset collected from 20 participants. The dataset consists on data collected at a 

gymnasium under relatively controlled laboratory conditions and at a residential home 

under less controlled free-living conditions. During the data collections, participants wore 

seven wireless accelerometers, a heart rate monitor, and a portable indirect calorimeter to 

collect data about motion patterns associated with activities, heart rate, and energy 

expenditure. This dataset is particularly challenging (for the algorithms implemented) 

since it consists on data collected for 52 different activities, 26 of which have different 

intensity levels and 18 of them which include examples of the unconstrained motion 

found in household activities. The parameters of the activity recognition and energy 

expenditure algorithms such as type of classifier/regressor, feature set, window length, 

sensor set utilized and their placement on the human body are selected by performing a 

set of incremental experiments. These experiments have the goal of identifying a set of 

parameters that could enable robust real-time performance. Once the parameters are 

selected, the activity recognition algorithm is evaluated on various sets of activities. First, 

the algorithm is evaluated over all the 52 activities contained in the dataset. Then, it is 

evaluated again over all activities but without differentiating among activities containing 

different intensity levels. Later, the algorithm is evaluated over activities involving 

postures and ambulation, and then over activities involving postures, ambulation and two 

MET intensity levels, and finally; the algorithm is evaluated by only recognizing 

postures. The results presented in each of the experiments are clustered according to five 

activity categories to better understand the performance of the algorithm: Postures, 
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ambulation, exercise activities, resistance exercise activities, and household activities. To 

the best of the author knowledge, the dataset collected for this work is larger and more 

complex that other datasets used in activity recognition studies published to date.  

 

This thesis explores the following: 

 

 The development of algorithms that recognize physical activities and estimate 

energy expenditure from accelerometer data in real-time amenable for 

implementation in low-processing power devices such as mobile phones. 

 The development of algorithms that recognize not only the physical activity type 

(e.g. walking vs. cycling) but also the intensity (e.g. walking at 3mph vs. walking 

at 4mph) of some activities. 

 The development of a system that simultaneously recognizes activities and 

estimates energy expenditure from a set of three accelerometers worn at the hip, 

dominant wrist, and dominant foot. 

 The exploration of the impact in performance of different signal processing 

techniques (e.g. band-pass filtering, data smoothing) and feature computation 

methods (e.g. feature computation per axis and per sensor) during activity 

recognition and estimation of energy expenditure. 

 The examination of the impact in performance per activity of varying the sliding 

window length used during physical activity recognition and estimation of energy 

expenditure. 

 The exploration of the subsets of features with highest performance (out of a set 

of 41 features) during the recognition of physical activities and estimation of 

energy expenditure. 

 The study of the impact in performance achieved by incorporating heart rate data 

during physical activity recognition (e.g. to better recognize the intensity of 

activities) and estimation of energy expenditure.  

 The exploration of the minimum set of sensors to utilize and their locations in the 

human body (out of a total set of seven) that maximize performance and usage 

comfort during recognition of physical activities and estimation of energy 

expenditure. 

 The exploration of how well can different sets of activities be recognized in 

increasing order of complexity such as postures (4 activities), 

postures+ambulation (8), postures+ambulation+MET intensity (11), all activities 

with no intensities (31), and  all 52 activities (including exercise and household 

activities and the garbage or unknown activity). 

 The evaluation of activity recognition and energy expenditure estimation 

algorithms in a subject dependent and independent manner. 

 The evaluation of the training data requirements for subject dependent recognition 

of activities. 

 The comparison in performance between complex state-of-the-art 

classifiers/regressors and simpler classifiers/regressors amenable for real-time 

performance during the recognition of activities and estimation of energy 

expenditure. 
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 The real-time evaluation of the final version of the activity recognition algorithm 

implemented during a short study where individuals interactively provide the 

training data required to recognize 10 activities of their choice.  

 The investigation of the performance achieved if activity dependent regression 

models are used to estimate energy expenditure. 

 The exploration of the difference in performance between estimating energy 

expenditure using regression techniques and scoring of activities using the 

Compendium of Physical Activities. 

 The development of a system to recognize activities and estimate energy 

expenditure that might enable mobile phone based interventions for obesity in the 

near future that are (1) scalable to large populations due to the use of readily 

available mobile phones and low-cost sensors, and (2) that can be used 

longitudinally during free-living conditions due to their ease-of-use and low 

burden. 

 

1.5 Organization of Thesis 

This thesis is organized as follows. Chapter 2 presents a usage scenario and extended 

examples of how the work developed in this thesis might be used in mobile phone energy 

measurement interventions. The chapter also describes the system components required 

to achieve such interventions and their desired characteristics. In Chapter 3, background 

in prior research and methods in the areas of physical activity recognition and energy 

expenditure estimation is introduced. Chapter 3 also highlights some of the research 

challenges and open questions in these areas and explains the existing technological 

limitations that have prevented the development of mobile phone physical activity 

detection and energy expenditure estimation interventions. Chapter 4 presents an 

overview of the system designed and implemented in this work, the research approach 

followed to collect the data to develop and evaluate the algorithms, and the incremental 

set of experiments designed to select the parameters of the algorithms presented. Chapter 

5 starts by discussing how results are reported and analyzed for the activity recognition 

and energy expenditure estimation algorithms and continues by presenting the results 

obtained in each experiment designed to select the parameters of these algorithms. In 

addition, Chapter 5 presents the evaluation of the final version of each algorithm in full 

detail. Finally, Chapter 6 presents the main contributions of this work, a discussion of 

unresolved issues concerning long term deployment of the systems implemented, and 

some recommendations for future work.   
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2 The System Goal 

As the popularity of portable handheld computers such as mobile phones increases and 

their cost decreases, novel healthcare opportunities arise. Mobile phones are often carried 

with people nearly everywhere they go [21] and people generally keep them functioning 

and charged. Consequently, they can be used to deliver and gather tailored health-related 

information in free-living situations. The work presented in this thesis attempts to take 

advantage of this opportunity by developing activity recognition and energy expenditure 

estimation algorithms that are amenable for real-time implementation in mobile phones. 

These algorithms, in combination with a small set of wireless accelerometers could allow 

the development of a consumer-based energy expenditure meter that is easy-to-use, 

unobtrusive, fun and that could be utilized longitudinally during free-living conditions. 

This section explains the different technology components required to achieve such 

scenario, and explores different alternatives to utilize the real-time information related to 

physical activity and energy expenditure during free-living.  

2.1 Mobile Phone Energy Balance Interventions 

Most interventions for obesity have relied on healthcare professionals (e.g. clinical 

behavioral interventions), required drastic modifications to daily routine (e.g. low calorie 

diets and exercise routines), or imposed a high level of burden on users (e.g. dietary 

records). Moreover, most technology currently available to asses physical activity is 

either only utilized by people who have already achieved a good level of physical fitness 

(e.g. iPod+Nike sport kit [19]) during short periods of time or by medical professionals 

during research studies (e.g. Actigraph [32]).  

As a result, one of the main goals of this work is to provide a technical foundation on 

which others can develop mobile phone energy expenditure interventions that can be used 

longitudinally during free-living, that are inexpensive, and scalable to large populations 

because they do not rely on humans and because they utilize technologies readily 

available (mobile phones and wireless accelerometers).  

 

2.1.1 Mobile Phone Energy Balance Interventions Wish List 

The technical contributions of this work support the development of a real-time physical 

activity detection and energy expenditure device. This might enable interventions to be 

considered that take advantage of real-time physical activity type and intensity detection 

to achieve the following properties:  

 

 Presents real-time information at convenient times or at the point of decision. The 

intervention might provide real-time information about physical activity type and 

intensity over the course of a day. Knowledge of physical activity type might make it 

possible to determine good times to present feedback (e.g., during bouts of physical 

activity).  
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 Provides objective feedback. People sometimes have difficulty judging if they have 

met guidelines for physical activity, such as 30 minutes of ―brisk walking.‖  An 

objective measure of energy expenditure or time spent in certain types of activities 

might help people make more informed decisions about how and when they get 

physical activity.  

 Provides tailored feedback. By tracking physical activity type and intensity over 

long periods of time, interventions may then be able to present tailored feedback to 

motivate behavior change (e.g., today‘s activity is 10% less vigorous than 

yesterday‘s).  

 Permits incremental behavior change. Real-time feedback about physical activity 

may enable new interventions focused on rewarding positive behaviors rather than 

only suggesting new behaviors that require drastic modifications to daily routine. 

Interventions may help people integrate more intensity into the activities they 

already do, rather than simply suggesting that people make radical changes to 

schedules that they feel they cannot achieve (e.g., going to the gym for 30 minutes a 

day).  

 

2.1.2  Required Components 

This section briefly discusses the system components required to implement mobile 

phone based interventions that utilize physical activity type, intensity, and energy 

expenditure information. The necessary system components are (1) an activity 

recognition system and (2) an energy expenditure estimation system. Here, it is assumed 

that the system is implemented on a mobile phone platform. In this work we demonstrate 

the technology is feasible for real-time performance on a PC but anticipate that real-time 

performance should be possible on emerging mobile phone technology as well. 

Implementation on a phone would permit real-time interventions based on automatically 

detected physical activity type and intensity.  

 

2.1.2.1 Automatic Recognition of Physical Activities 

 

The physical activity recognition system recognizes a variety of everyday postures, 

physical activities, household activities and common exercise routines from a small set of 

wearable accelerometers using pattern classification techniques. This systems needs to be 

capable of (1) real-time performance with short classification delays in mobile phones, 

(2) recognition of activity type (e.g. walking vs. cycling), intensity (e.g. walking at 5mph 

vs. walking at 6mph), duration (e.g. seconds, minutes, hours), and frequency (e.g. daily, 

weekly, etc), (3) recognition of activities in a subject independent manner or in a subject 

dependent manner but with small training data requirements (e.g. few minutes per 

activity). Finally, the algorithm should only utilize a small number of accelerometers that 

can be worn comfortably at strategic but convenient body locations. This maximizes ease 

of use during free-living.  

This thesis will present an activity recognition algorithm that recognizes various sets of 

physical activities (up to 52) from just three triaxial accelerometers worn at the hip, 

dominant wrist, and dominant foot (on top of shoe laces). These sensors could be 
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embedded in convenient easy-to-wear devices such as wristwatches, shoe pods or simply 

put inside the pocket in the case of the accelerometer at the hip. The algorithm was 

trained over data collected from 20 participants performing 52 activities at two locations: 

a gymnasium and an instrumented residential home. The algorithm is capable of real-time 

performance with short classification delays (5.6s) on existing laptop computers. The 

algorithm is also amenable for implementation in mobile phones due to its low 

computational requirements. Section 5.4 presents in-depth details on this physical activity 

recognition algorithm implemented.  

 
 

2.1.2.2 Estimation of Energy Expenditure 

 

The energy expenditure estimation system combines data collected from multiple 

wearable sensors (e.g. accelerometers or heart rate monitors) and user specific 

information, such as age, gender, weight, and height to generate estimates of energy 

expenditure (e.g. in METs or kcal/min) over the course of a day. The energy expenditure 

estimation system needs to be capable of (1) real-time performance with short estimation 

delays in mobile phones, (2) estimation of energy expenditure accurately for all types of 

activities, including activities with upper body, lower body, and overall body motion, and 

(3) estimation of energy expenditure in a subject independent manner, since the 

equipment required to collect energy expenditure data is expensive and unavailable to 

most people. Similarly the algorithm should provide the estimates from a small set of 

sensors strategically placed on the human body to maximize comfort and performance. 

The energy expenditure estimation algorithm implemented in this work estimates 

energy expenditure by applying different models depending on the types of activities 

being performed by individuals. The activity dependent models were trained on data 

collected from 16 individuals (6hrs per individual) collected at a gym and at a residential 

home. The algorithm performs in real-time with short classification delays (5.6s) and is 

able to estimate energy expenditure for activities that have proven difficult in the past. 

These activities include upper body activities (e.g. bicep curls and bench weight lifting) 

and non-ambulatory lower body activities (e.g. cycling). This energy expenditure 

estimation algorithm also relies on the data collected by three wireless accelerometers 

placed at the hip, dominant wrist, and dominant foot. This was found to be the good 

sensor combination to capture upper body, lower body and overall body motion. As 

stated previously, these three sensors could be ultimately embedded in easy-to-wear 

devices such as wristwatches, shoe pods, and belt-clips. 

Presently, existing techniques that produce the most accurate measurements of energy 

expenditure are either only suitable for laboratory due to the specialized equipment and 

expertise required (e.g. indirect calorimetry), used in small population studies due to their 

high cost (e.g. doubly labeled water), or do not provide continuous measurement with 

low user burden (e.g. activity diaries). The algorithm presented in this work allows the 

automatic estimation of energy expenditure and recognition of activity context during 

free-living from a small set of wearable accelerometers. This system improves on 

currently utilized accelerometer-based techniques by improving energy expenditure 

estimation for activities involving upper body and lower body activity and by also 

recognizing the activity type and intensity being performed. 
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2.1.3  Scenarios Exploiting Real-Time Feedback 

This section explores how the technical results for physical activity type and intensity 

detection and energy expenditure estimation presented later in this thesis might be used in 

novel, real-time interventions.   

 

Real-Time Personalized Behavioral Feedback Mobile-phone Screensaver 

 

Personalized behavioral feedback related to physical activity and energy expenditure 

could be presented as background images or screen savers on mobile phones over the 

course of a day. In this way, users could have access to this information in real-time by 

simply staring at the phone for a couple of seconds, such as when answering a phone call 

or checking on the time. The main advantage of this approach is the low level of burden 

imposed on users since no action other than staring at the phone‘s screen is necessary to 

initiate the feedback. Another advantage is that users can choose to ignore this 

information if they are busy, so this intervention is unlikely to be perceived as intrusive 

or burdensome. The information presented might be helpful to facilitate self-regulation 

by allowing individuals to perform energetic trade-offs during the course of the day, and 

to encourage a positive behavior change.  

 

End-of-day Behavioral Feedback Graphs 

 

Another method that can be utilized to provide daily behavioral feedback related to 

physical activity and energy expenditure is to display end-of-day behavioral feedback 

graphs. These graphs could show the energy expended through non-exercise and exercise 

activity partitioned per activity performed. These graphs would have the objective of 

increasing individuals‘ understanding on how energy is spent while performing different 

activities over the course of a day. Some examples of end-of-day behavioral graphs are 

shown in Figure 2-1 and Figure 2-2.  

 

Encouraging Increases in Non-exercise Physical Activity 

 

A relatively new and promising area of research is non-exercise activity thermogenesis 

(NEAT). This are of research suggests that small behavior modifications to daily routine 

(e.g. sitting fidgeting legs vs. sitting, standing vs. sitting, and brisk walking vs. walking 

slowly). can sum up over the course of a day and boost overall energy expenditure and 

thus have a protective effect against weight gain [29, 50, 51]. This is because most of the 

energy expended everyday comes from non-exercise activity. Thus, if a mobile phone 

could recognize non-exercise activities and their associated energy expenditure, it could 

suggest small changes in daily routine that might impact daily energy expenditure 

positively. The main advantage of this type of intervention is that small behavioral 

modifications are likely to be not perceived as drastic changes but have the potential to 

help in controlling weight problems.  
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Figure 2-1: Non-exercise activity (NEAT) partitioned according to activity performed over the course 

of a day. 

 

 

 
 

Figure 2-2: Daily exercise activity partitioned per activity performed.  Graphs like this one could be 

presented at the end of the day to increase self-awareness related to physical activity of individuals. 

 

 

Just-in-time Interventions to Increase Physical Activity Levels 

 

Real-time information about activity type, intensity and duration might allow the 

development of just-in-time interventions to foster increases in physical activity levels. 

For example, a mobile phone capable of recognizing different intensities of walking (e.g. 

walking at 2, 3, and 4mph) could encourage someone already walking to either increase 

the walking speed or the duration of walking to boost overall energy expenditure. The 

phone could also provide positive behavioral feedback by present information about the 

extra number of calories burned by increasing activity intensity or duration.  
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2.1.3.1 Why These Interventions Have not Been Possible Before? 

 

The types of interventions previously mentioned have not been possible yet due to 

hardware and algorithmic limitations. For example, some of the hardware limitations 

include unavailability of real-time data due to the lack of power efficient wireless 

communication protocols to receive/send data from multiple sensors simultaneously and 

continuously and inconvenient sensors form factor for longitudinal use. Some of the 

algorithmic or software limitations that have prevented real-time interventions like the 

ones described are: (1) Coarse estimates since most existing technologies to measure 

physical activity provide too coarse of an estimate to allow useful applications (e.g. 

pedometers and single accelerometers at the hip), (2) Poor energy expenditure estimation 

performance over upper and lower body activity such as when using a single 

accelerometer at the hip, (3) Limited or no contextual information since existing 

technologies available to measure physical activity provide limited or not contextual 

information about the type, intensity, and duration of the physical activities being 

performed. (4) Lack of efficient algorithms that run in real-time on low-processing power 

devices. Most algorithms available for recognizing activities and estimating energy 

expenditure have been implemented to run offline and have not been tested for real-time 

performance. Section 3.3 presents a detailed discussion on why these types of 

interventions have not been previously possible after a discussion of the advantages and 

disadvantages of existing technology to measure physical activity and estimate energy 

expenditure. 

 

2.1.3.2 Ensuring Ease-Of-Use 

 

Mobile phone based applications that recognize activities, estimate energy expenditure, 

and trigger interventions would have to be easy to use so that they are used longitudinally 

during free-living. Ensuring ease-of-use involves addressing factors such as usage 

comfort of the sensors, the number of sensors utilized and their location in the human 

body, training time requirements of the algorithms if subject dependent training is used, 

capability of real-time performance, real-time recognition delay, and invariance to small 

changes in sensor location and orientation during the installation process. Low training 

data requirements during subject dependent training is important because it determines 

the time end-users would have to spend providing examples of the activities to recognize. 

The longer this time, the more likely end-users will find this training procedure difficult 

to complete or annoying. Similarly, real-time performance during subject dependent 

training is particularly important since it would allow individuals to test the performance 

of the algorithms quickly so the procedure is not perceived as burdensome.  Finally, 

invariance to small changes in sensor orientation and location during installation on the 

body is important since these will occur during free-living conditions and the algorithms 

have to be able to perform well despite these variations. Section 3.2.6 describes prior 

work addressing some factors involved in creating systems easy to use and describes how 

the work presented this thesis addresses them.  
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2.1.3.3 Gathering Person-Specific Training Data from End Users  

 

Previous work in activity recognition (e.g. [38]) suggests that subject independent 

recognition of activities is significantly more difficult than subject dependent recognition 

of activities. As a result, activity recognition algorithms are likely to perform better if 

users provide examples of the activities to recognize. Thus, activity recognition 

algorithms using subject dependent training will require efficient and intuitive user 

interfaces that allow users to interactively train and test the algorithms. Furthermore, 

intuitive user interfaces would also be required to allow individuals to ‗fix‘ the 

recognition algorithms when they do not function properly. This could be achieved by 

either requesting more training data for activities with low performance or by allowing 

end-user to modify the inner workings of the algorithms. Section 5.4.9.1 explains how 

training data requirements for subject dependent recognition of activities are evaluated in 

this work. Section 5.5 presents the evaluation of the user interface implemented in this 

work to train and test the activity recognition algorithms implemented in real-time. 

 

2.2 Other applications 

The algorithms implemented in this work to automatic recognize activities from sensor 

data can also be exploited by other context-aware applications in other domains. For 

example, they can be utilized in context sensitive reminders [52-56], context aware 

experience sampling for health research [57, 58], physical therapy or recovery [59, 60], 

sports training [60-63], personal health tracking [64-66], interactive games [67-69], 

autism research [70, 71], availability and interruptability prediction [72, 73], and 

automatic annotation of important events [73-76]. Thus, all these application areas would 

also benefit from activity recognition algorithms that can run in real-time in existing or 

future mobile phones.  
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3 Research Challenges and Prior Work 

This section discusses prior work in the areas of activity recognition and energy 

expenditure estimation from wearable sensors such as accelerometers and heart rate 

monitors, highlighting the advantages and disadvantages of each approach and challenges 

that remain. Finally, the section states the assumptions in which the work presented in 

this thesis relies, and emphasizes the user interface challenges associated with creating 

mobile phone physical activity and energy expenditure interventions. 

3.1 Assumptions 

Mobile phones are carried with people nearly anywhere they go and their popularity is 

increasing among all socio-economic groups [21]. As a result, this work attempts to take 

advantage of this trend and develop some of the required technology to achieve mobile 

phone interventions that use physical activity type and intensity detection in the near 

future. One of the assumptions of this work is that the majority of mobile phones by year 

2015 will have a CPU capable of running at a speed of least at 1GHz. This processing 

power could allow running activity recognition and energy expenditure algorithms like 

the ones presented in this work in a manner that is not too perceptible to end users (e.g. 

no apparent delays observed). It is also assumed that the accelerometers required by the 

system presented in this work to sense human motion could be embedded on devices 

already worn at convenient locations such as wrist watches, mobile phones, belt clips, 

and shoe pods. This would make the accelerometers easy and comfortable to wear 

continuously. Another assumption is that by year 2015, power efficient and standard 

wireless communication protocols (e.g. similar to WiBree [77] or ZigBee [78]) will exist 

that will allow the wireless wearable accelerometers to easily communicate with mobile 

phones.  

3.2 Challenges for Each System Component 

This subsection describes the research challenges and open questions in the areas of 

activity recognition and energy expenditure estimation. The subsection also discusses 

some of the most recent work in these areas from a hardware and algorithmic perspective.  

 

3.2.1 Off-the-Shelf Devices to Recognize Physical Activity 

One popular approach to the assessment of physical activity in free-living populations is 

ambulatory monitoring. Ambulatory monitoring can be classified as (1) the use of various 

types of motion sensors (e.g. pedometers and accelerometers [79, 80]), (2) the use 

physiological sensors such as heart rate (HR) [81, 82] and body temperature, and (3) the 

use of combinations of these (e.g. [48, 83, 84]).  
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Pedometers [85, 86] work by measuring the vertical motion generated at the hip by 

locomotion using a spring-suspended lever arm switch. They primarily assess locomotion 

or ambulatory activities by counting steps. However, pedometers only provide 

information about the number of steps performed and no information about upper body or 

non-ambulatory lower body activity. 

Accelerometers assess physical activity by measuring the intensity of body segment, 

limb, or trunk acceleration that is proportional to muscular force. The intensity of motion 

measured is usually presented in the form of counts over a specific time period (or epoch) 

usually of 60 seconds that represent an estimate of the overall physical activity level. 

Unfortunately most commercially available activity monitors (accelerometers) either 

measure only rough physical activity levels (e.g. light, moderate and vigorous) or a small 

set activities (e.g. postures and ambulation). For example, the Actigraph activity monitor 

[32] is a uniaxial accelerometer normally mounted at the hip that provides activity counts 

at pre-defined time intervals (e.g. 60s) and that can be used to detect time spent in 

different activity levels (e.g. light, moderate, vigorous) using a variety of offline 

algorithms [87, 88]. Since this activity monitor is normally placed at the hip, it is best 

suited to measure physical activity involving overall body motion, such as ambulatory 

activities. A recently introduced algorithm by Crouter et al. [34] uses data from this 

device to recognize sedentary, ambulatory (e.g. walking and running) and lifestyle 

activities from raw activity counts and the coefficient of variation computed over 10s 

windows. Nevertheless, the algorithm runs offline and has difficulties detecting non-

ambulatory lower body activity such as cycling mostly due to the difficulty of measuring 

non-ambulatory lower body activity using a single accelerometer at the hip as discussed 

by the authors. 

Hearth rate (HR) monitors (e.g. [89]) are physiological sensors that can indirectly 

measure physical activity because heart rate (HR) is proportional to the intensity of 

movement and oxygen supplied to skeletal muscles [90]. Most heart rate monitors come 

in chest strap form factor and work by measuring the time intervals between peaks of the 

ECG signal (heart beats). Hear rate information can be utilized to measure time spent in 

different intensity levels (e.g. light, moderate, vigorous) using mostly subject specific 

regression equations (e.g. [91, 92]). Although heart rate monitors are adequate for short 

duration exercise sessions, their use and acceptance for prolonged periods of time is 

presently questionable because they are uncomfortable and their electrodes can cause 

skin irritation and dermatitis. Recently, Adidas, in collaboration with Polar, introduced a 

new chest-based heart rate monitor in a shirt form factor that may be more comfortable to 

wear than other existing chest strap monitors [93]. However, the technology is relatively 

expensive and is mainly targeted for people already physically fit such as runners and 

athletes.  

One of the few commercially available device capable of recognizing activities such 

ambulation, stationary biking, resting, and weight lifting from several physiological 

sensors is the bodybugg armband [42, 94]. This device is worn at the dominant upper arm 

(biceps area) and uses a biaxial accelerometer and four additional sensors (skin 

temperature, galvanic skin response, heat flux, and ambient temperature) to recognize 

activities and estimate energy expenditure. To the best of the author‘s knowledge, only 

one published paper exists that evaluates the performance of the bodybugg at recognizing 

activities ([94]). In this technical report, the authors report recognition accuracies of 
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99.8% for ambulatory activities, 99.8% for stationary biking, 99.3% for resting, and 

97.6% for bench weight lifting over 350 hours of data collected from several studies 

(number of participants not specified). The authors also point that the latest version of the 

proprietary algorithm (4.2) achieves accuracies of 90% for lying down and sleeping, 

99.8% for road biking, and a total accuracy of 96.9%. The algorithms to detect activity 

are proprietary, and the web-based software available to end-users of the bodybugg 

system [95] only report contextual information for the following activities: Lying down, 

sleeping, and four MET intensity levels (sedentary, moderate, vigorous, and very 

vigorous). Finally, recent studies evaluating the performance of the device in estimating 

energy expenditure have found that the device significantly underestimate energy 

expenditure for lower body activities [96]. This is not surprising because the bodybugg is 

worn at the upper arm and consequently may not fully measure non-ambulatory lower 

body activity. This same limitation can be expected to impact any algorithm that attempts 

to use bodybugg data to detect specific lower body activities. 

The Intelligent Device for Energy Expenditure (IDEEA) monitor [41] is another off-

the-shelf device that, according to its creator, can detect postures (e.g. lie, recline, sit, 

stand, and lean), ambulatory activities (e.g. walk, run, ascending/descending stairs) and 

transitions between some activities [97]. Unfortunately, to the best of the author‘s 

knowledge, there is no independent validation of the performance of this device in 

recognizing activities. Moreover, the recognition algorithms are proprietary and cannot 

be re-used or improved upon. The device uses five biaxial accelerometers placed at the 

limbs and hip to recognize the activities of interest. In its current implementation, the 

device restricts the wearer‘s movements because wires are run from a data collection unit 

placed at the hip to each of the five accelerometers.  

In summary, there are few off-the-shelf devices that allow the detection of physical 

activities, and those that are available detect only time spent at different physical activity 

levels or a limited set of postures and ambulatory activities. Only the IDEAA performs 

specific activity detection in real-time, but a cumbersome wired system is required.  

 

3.2.2  Physical Activity Recognition Algorithms 

Over the past couple of years, a wide variety of algorithms using supervised classifiers 

have been applied to the problem of recognizing physical activities from accelerometer 

data. The classifiers utilized in the algorithms have included generative classifiers such as 

dynamic and static Bayesian networks (e.g. [38, 39, 98, 99]), a variety of discriminative 

classifiers such nearest neighbors, decision trees, and support vector machines (e.g. [38, 

40]), ensembles of classifiers (e.g. [37, 40]), and combinations of all of the above (e.g. 

[37]).  

Among the most popular classifiers applied to the problem are dynamic Bayesian 

networks (DBNs). A DBN is formed when a static Bayesian network is ‗unrolled‘ over 

several times slices (time intervals) and graphical dependencies are specified among 

them. These dependencies among consecutive time slices allow DBNs to capture first 

order temporal information of the problem at hand. DBNs also allow common sense 

knowledge of the problem to be encoded in the internal structure of the network by 

manually specifying the nodes and links of the network. For example, the work by Raj et 

al. [98, 99], handcrafted the internal structure of a DBNs to simultaneously recognize 
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human activities from accelerometer data and location from GPS traces. Nevertheless, the 

results presented [98] indicate that the performance of the handcrafted DBN was no 

different from the performance of a hidden Markov Model (simpler DBN) learned 

automatically from the data and ignoring GPS traces for activity recognition. In addition, 

this approach is not scalable since it depends on experts coding common sense 

knowledge in the network structure that is likely to change depending on the activities to 

recognize. Due to the high computational complexity necessary to perform exact 

inference in DBNs, approximate inference algorithms such as  particle filters [100] are 

often utilized [98, 99]. The number of particles used by this algorithm to perform 

inference can be adjusted depending on the processing power available on a particular 

device (e.g. in handheld devices); Nevertheless, its performance degrades as the number 

of particles is reduced.        

Simpler DBNs such as hidden Markov models (HMMs) that have shown excellent 

performance in speech recognition applications have also been widely applied to classify 

activities from accelerometer data (e.g. [39, 45, 101-103]). The most common approach 

used is to train one HMM per activity to recognize using the Baum-Welch algorithm 

[104]. Once the models are trained, the classification is performed by choosing the model 

(HMM) that results in the highest log-likelihood over the observation sequence (sequence 

of feature vectors) as computed using the forward-backwards algorithm [104]. Even 

though this approach successfully incorporates intra-activity sequential information, its 

main disadvantage is its high computational requirements because one HMM per activity 

to recognize is required. Moreover, the forward-backwards algorithm has to be run as 

many times as there are activities (i.e., HMM models) to recognize so it is 

computationally expensive. Another disadvantage of this approach is that the number of 

internal hidden states needs to be specified a priori either using expert knowledge of the 

activities structure or learning it from training data using a cross-validation procedure.  

Another approach to recognizing activities using HMMs is to use a single HMM where 

each internal state represents one of the activities to recognize [37]. In this approach, 

sequences of activities performed can be inferred online using the Viterbi algorithm [104] 

or particle filtering [100]. The main advantage of this approach is the incorporation of 

information about the transitions between activities (inter-activity sequential information) 

via the transition matrix of the system and the reduction of computational complexity 

(with respect to the use of one HMM per activity). One obvious disadvantage of this 

approach is that since only one hidden state is used to represent each activity, some 

internal temporal structure for each activity is lost (intra-activity sequential information). 

Recent work has also attempted to recognize activities from accelerometer data 

applying a hybrid approach that combines discriminative and generative classifiers [37]. 

Discriminative classifiers differentiate among activities of interest by building a decision 

boundary or mathematical function that separates the features representing each class as 

much as possible with respect a given criterion. Generative classifiers on the other hand, 

first attempt to create a model that describes how the data for each activity is being 

generated before building a mathematical function to discriminate among the activities in 

the feature space. The combination of discriminative and generative classifiers is useful 

because discriminative classifiers are known to outperform generative classifiers in 

classification tasks [105], and generative approaches such as HMMs incorporate first 

order temporal information on how features or even activities transition over time. 
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Consequently, the approach improves discrimination among the activities of interest and 

performs temporal smoothing over the activity classifications. The results presented in 

the work by Lester et al. [37] show that overall accuracy was improved 4% with respect 

to the performance of the discriminative classifier alone (Adaboost combined with 

decision stumps). Unfortunately, this slightly higher performance comes at the expense of 

higher computational requirements, because the computational complexity of 

discriminative and generative classifiers is combined in this approach. Thus, for practical 

applications, it is questionable if the small improvement achieved in performance justifies 

the extra computation incurred by combining these two algorithms.  

Other less computationally expensive Bayesian networks such as the naïve Bayesian 

classifier [106] have also been applied to detect activities from wearable accelerometers 

[38, 40, 45, 107, 108]. In the naïve Bayesian classifier, the class (or activity) node is the 

parent to all attribute nodes (or features) and thus, its main assumption is that all the 

attribute variables are conditionally independent given the class. It calculates the most 

probable class given the data (attributes) using Bayes rule. Despite its simplicity, this 

classifier has obtained excellent results with respect to more complex classifiers in 

realistic datasets [109-111], One disadvantage of simple Bayesian networks is that they 

do not capture temporal information automatically unless it is encoded in the features 

extracted. The main advantage is that naïve Bayesian classifiers are fast to train and also 

perform fast classifications in comparison with DBNs.  

Decision tree (DT) classifiers such as the C4.5 algorithm [112] are among the most 

used to recognize activities from wearable accelerometers [38, 40, 45, 107, 113, 114]. 

This is because of the following reasons: (1) They learn classification rules that are 

believed to be easier to interpret than the ones learned by other methods such as neural 

networks (although for real-world problems, these rules can be quite complex and not 

trivial to interpret) (2) they incorporate information gain feature selection during the 

learning process that identifies the most discriminatory features to use, and (3) they 

perform fast classifications making them suitable for real-time implementation. A 

disadvantage of decision trees is that they tend to overfit the data if they are trained on 

small datasets and may not combine probabilistic evidence as well as other methods. 

Furthermore, decision trees are static classifiers that do not incorporate any temporal 

transition information of the modeled activities unless it is encoded in the features used. 

When the activity recognition results presented in prior work are analyzed, it is found 

that their evaluation suffers from some limitations. For example, some pieces of work 

only use total classification accuracy as the performance measure and completely ignore 

the number of false positives generated by the algorithm as well as other important 

performance measures such as those discussed in Section 5.1. For instance, the work in 

[115] is among the few ones to quantify the number of false positives as number of 

insertions and substitutions over the recognized sequences of activities. Other prior work 

reports results on small datasets collected at laboratory settings from as few as five 

participants (e.g. [37, 40, 101, 103, 116]) or researchers themselves (e.g. [101, 103]), 

possibly introducing an unintentional bias towards simplification of how activities are 

performed. Most prior work only performs offline evaluation of the algorithms; 

exceptions are [41, 43, 45, 46, 59, 76, 117, 118]. There are also some important questions 

that have only been partially addressed in prior work. For example, what is a good 

compromise between classifier and feature set complexity to allow an acceptable level of 
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real-time performance over a given set of activities? How the sliding window length 

impacts performance for different types of activities? What is the minimum set of sensors 

to use and where should they be worn to recognize a given set of activities? How sensor 

placement impacts performance for different activities? The answer to these questions 

strongly depends on the activities to recognize, so it is necessary to explore these 

questions over a large set of activities. Finally, no prior work to the best of the author‘s 

knowledge addressed the problem of recognizing the intensity of physical activity (e.g. 

running at 5mph vs. 6mph). The following paragraphs describe some few pieces of work 

that have explored some of the important questions raised in this paragraph. 

The work by Bao and Intille [38] has been one of the few pieces of work to evaluate 

the activity recognition algorithms proposed on data collected for a relatively large set of 

20 activities performed by 20 participants in non-laboratory settings during semi-

naturalistic conditions. For each participant, an average of 90 minutes of data was 

collected. The authors report accuracies ranging from 85-95% for ambulatory activities, 

postures, and more complex activities such as brushing teeth and folding laundry using 

the C4.5 decision tree classifier. The same work also determined that user-independent 

recognition of twenty activities is possible from five biaxial accelerometers with an 

overall accuracy of 73%. The authors also perform experiments to determine the 

minimum number of accelerometers required to recognize the twenty activities of interest 

and find that it is possible to achieve an accuracy of ~81% just using two biaxial 

accelerometers located at the thigh and dominant wrist. 

Identifying a minimal or reasonable number of sensors to recognize activities and their 

placement on the human body has been explored in at least three pieces of prior work 

[39, 45, 116]. The work by Kern et al. [116] analyzed 18.7 minutes of data collected for 

eight activities (sit, stand, walk, upstairs, downstairs, handshake, writing and typing) by 

one of the authors and  found that sensors located at the dominant part of the body (e.g. 

right side for right handed people) are better at discriminating most of the eight activities. 

Similarly, the combination of a sensor at the hip and another at the ankle achieves the 

best performance in recognizing lower body activities. The work also found that during 

subject dependent training, single sensors at the lower body (e.g. hip, knee, and ankle) 

achieved similar performance so that they could potentially be used interchangeably to 

recognize lower body activities. When the performance of single sensors was analyzed in 

recognizing upper body motion, it was found that the single sensor with best performance 

was the one placed at the shoulder, and the best sensor combination was shoulder and 

wrist. The work by Blum [45] performed a similar analysis and found that just two 

accelerometers at the hip and dominant wrist are sufficient to recognize eight postures 

with an accuracy of 85% from a dataset consisting of 24 hours of data collected by the 

author. The work by Olguin Olguin [39] also performed an analysis of the number of 

sensors to use and their location using HMMs to recognize the following eight activities: 

Sit-down, Run, Squat, Walk, Stand, Crawl, Lay down, and Hand movements. Three 

accelerometers located at the hip, chest, and dominant wrist was used to recognize the 

activities. As expected the sensor combination with highest overall accuracy of 92% was 

the wrist+hip+chest sensor combination on data collected from three participants 

performing each activity three times. The results also indicate that the single 

accelerometer with best overall accuracy (62%) is the one at the chest. Adding another 

accelerometer either at the hip or dominant wrist improved overall accuracy to ~81%.  
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The work by Ravi et al. [40] explored the performance of different classifiers in 

recognizing activities such as decision tables, decision trees, support vector machines, 

nearest-neighbor, and naïve Bayes classifiers individually and in different meta-classifier 

configurations such as boosting, bagging, stacking, and plurality voting. The results 

presented were evaluated over data collected from two participants performing eight 

activities (ambulatory activities, sit-ups, vacuuming and brushing teeth) several times 

while wearing a single triaxial accelerometer at the pelvic region. In general, it was found 

that meta-classifiers outperformed base-level or single classifiers as expected. It was also 

found that boosted support vector machines (SVMs) achieve the highest overall accuracy 

of 73% followed by the naïve Bayesian classifier with an overall accuracy of 64% during 

subject independent evaluation. For subject dependent evaluation, the highest overall 

accuracy was obtained for plurality voting (99.6%) followed by Boosted SVMs (99.4%). 

The naïve Bayesian classifier also achieved a good overall accuracy of 98.9% during 

subject dependent training.  By analyzing the difference between the performance of the 

naïve Bayes classifier and the Boosted SVMs of 9% for subject independent training and 

0.5% for subject dependent training, the authors concluded that it was clear that meta-

classification offers a significant improvement during subject independent evaluation. 

The work by Huynh and Schiele [119] analyzed a the importance of five features and 

different window lengths (0.25-4s) to recognize six activities: walking, standing, jogging, 

skipping, hopping, and riding a bus. The data used to perform the experiments consisted 

on 200 minutes of data collected by two participants. The main finding of the paper, as 

expected intuitively, is that there is no single window length or feature that maximizes 

performance for all activities. Instead, the choice of window length and feature set to use 

depends on the activities to recognize. It was also found that one of the best features to 

use is the FFT coefficients, but that the coefficients to use depend on the activities being 

recognized. This is expected, since different activities are performed at different speeds 

and thus, are represented by different frequencies (FFT coefficients). The findings for the 

window length experiment performed in this work suggest that the best overall 

performance for all activities was obtained with window lengths between one and two 

seconds. This might be explained by the fact that the fundamental period of the activities 

explored in this work can be captured with these window lengths. It was also found that 

standing requires relatively short window lengths (e.g. 0.25 - 0.5s). Also, longer window 

lengths are required for activities with longer fundamental durations such as skipping and 

hopping.  

The work presented in this thesis improves on prior work by exploring how various 

algorithmic and feature computation tradeoffs impact activity type recognition in a 

relatively large and complex dataset incorporating examples of 52 activities collected 

from 20 participants at two locations (gymnasium and home).  

3.2.3  Existing Devices and Techniques to Measure Energy Expenditure 

Real-time and reliable measurement of energy expenditure (EE) would create new health 

intervention opportunities, as described in Section 2.1.3. Presently, the methods that 

generate the most accurate measurement of energy expenditure are: (1) direct 

calorimetry, (2) indirect calorimetry [120], (3) doubly labeled water (DLW) [121], and 

(4) physical activity scoring using direct observation and the Compendium of Physical 

Activities [122]. Unfortunately, none of these methods can be applied to large-scale 
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population studies because of their high cost, intrusiveness, complexity, and specialized 

resources and personnel required. For example, direct calorimetry estimates energy 

expenditure by directly measuring the heat released by living organisms at rest or during 

physical activity. Heat released from the body can be measured by confining subjects to a 

metabolic chamber equipped with specialized sensors. It can also be measured using 

infrared thermo sensitive cameras, but this technique is primarily employed in measuring 

EE in preterm infants [123]. Although direct calorimetry produces high quality estimates 

of EE, it is expensive, intrusive and difficult to perform since specialized equipment and 

personnel are required. Indirect calorimetry, also known as respirometry, estimates 

energy expenditure by measuring the volume of oxygen consumption (VO2) and carbon 

dioxide production (VCO2) in living organisms. The relationship between energy 

expenditure and oxygen uptake is linear because every cell in the human body requires 

oxygen to generate the energy required for cellular work (ATP). Indirect calorimetry is 

measured using either (1) closed respirometry or (2) open respirometry. In closed 

respirometry, O2 uptake and CO2 production are measured by placing the subject in a 

small sealed room (e.g. [124]). The main disadvantage of this method is its high cost and 

the confinement of the subject to a laboratory room that restricts and modifies his/her 

behavior. In open respirometry, O2 uptake and CO2 production are analyzed (after being 

collected using face masks or plastic canopies) using metabolic carts [125, 126] or 

portable indirect calorimeters (e.g. [125, 127]). The main disadvantage of open 

respirometry is that the equipment is expensive, uncomfortable, and obtrusive even when 

portable indirect calorimeters (e.g. [127, 128]) are used. Despite its disadvantages, 

indirect calorimetry is considered a reference method to measure EE and is one of the 

most widely used by the medical community. 

The use of the doubly labeled water technique (DLW) is considered the ‗gold-standard‘ 

in measuring total energy expenditure (TEE) in free living conditions because it does not 

interfere with individual‘s daily activities. This method consists of the oral administration 

of two stable isotopes (oxygen 18 (
18

O) and deuterium (
2
H)) to participants and the 

monitoring of their elimination rates from the body via urine samples. In this way, total 

carbon dioxide production can be determined and used to compute an estimate of total 

energy expenditure. Although the main advantage of this method is its non-intrusiveness, 

its  main disadvantage is that it only provides an overall estimate of the total energy 

expenditure at the end of the measurement period (e.g. usually 7-18 days [47]) and no 

information about physical activity type, intensity, or duration. One important 

disadvantage of all the previously discussed techniques to estimate energy expenditure is 

that they provide no contextual information about the physical activities being performed. 

Knowledge of the physical activities performed by individuals and their associated 

intensities is important because it can be used to (1) improve the energy expenditure 

estimates, (2) to motivate behavior change, and (3) to better understand relationships 

between physical activity and behavior.  

A method to estimate energy expenditure that provides rich contextual information 

about the activities performed is physical activity scoring using the Compendium of 

Physical Activities [122]. This technique involves recording the duration, intensity and 

frequency of physical activities and scoring these parameters by consulting the 

Compendium of Physical Activities [122]. The Compendium of Physical Activities 

contains the energy cost incurred in performing various activities and intensities in 
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METs. METs are defined as the number of calories expended by an individual while 

performing an activity in multiples of his/her resting metabolic rate (RMR). Thus, METs 

can be converted to calories by measuring or estimating and individual‘s RMR. Some 

limitations of this method in estimating energy expenditure are that (1) the energy 

expenditure values listed on the Compendium of Physical Activities only represent the 

average energy cost for the physical activities and the subject population explored in the 

Compendium of Physical Activities study, and (2) that other conditions on how the 

activity is performed such as terrain inclination and intensity levels not included in the 

Compendium of Physical Activities cannot be evaluated [47]. Furthermore, the accuracy 

of the energy estimate produced by this method strongly depends on the quality of the 

RMR estimate and the physical activity information collected. Despite these limitations, 

this method has been one of the most widely used in published medical research. The 

intensity, duration and frequency of physical activities can be best compiled through 

direct observation. Direct observation [129], considered the ―gold standard‖ for 

assessment in medical and psychological research studying behavior in natural settings, 

does not suffer from selective recall if performed by trained observers. Direct observation 

techniques include a person following the subject and the use of continuous video, audio 

or sensor data recordings to acquire information related to the behaviors of interest in 

natural environments. Even though direct field observation can provide valuable 

qualitative and quantitative measures, it is costly, time-consuming, and disruptive. This 

technique also raises privacy concerns since researchers need to invade private settings 

such as the home.  

Other less accurate methods that researchers have used to measure physical activity and 

energy expenditure in large subject population studies are: (1) self-reported information 

such as recall surveys, end of study interviews, and diaries, and (2) ambulatory 

monitoring using motion and/or physiological sensors. Recall surveys such as 

questionnaires (e.g. [130-133]) are widely used for assessment of behavior in naturalistic 

settings. However, this method is known to suffer from recall and selective reporting 

biases - users can often not remember what they did and/or do not report what they 

actually did. Furthermore, most questionnaires used in epidemiological studies don‘t 

provide detailed information on the type, intensity or duration of activities. End of study 

interviews consist of interviewing the participants at the conclusion of a study. Interviews 

have shown to be particularly effective for critiquing ideas or gathering information about 

the participants‘ tasks and activities if performed properly. Often however, participants 

know more than they say in a single or even several interviews [134], and will tend to 

have difficulty understanding and recalling how context impacts their behavior (i.e. 

exhibiting selective recall and selective reporting  biases [135]). In fact, several studies 

have shown that is harder for participants to recall moderate or light activities than 

vigorous bouts of activities [136, 137]. While using diaries, participants write down what 

they do during the day either as they do it or at regular, finely-spaced intervals [138]. 

This method completely relies on the ability of participants to recall (from short and long 

term memory) the information relevant to the behaviors of interest. Diaries provide better 

data than questionnaires, recall surveys or end of study interviews but they are 

burdensome for the user and the quality of the data depends entirely on the participant‘s 

compliance. Recent improvements over paper diaries include web-based diaries, PDA-

based diaries [139], and electronic experience sampling [140, 141]. These improved 
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diaries are less susceptible to subject recall errors than other self-report feedback 

elicitation methods [135, 142]. Nonetheless, these also suffer from the disadvantages of 

self-report methods such as subject inconvenience, reporting bias, poor memory, and 

poor compliance [143]. The physical activity information collected using self-report can 

be converted to energy expenditure estimates by scoring the information using the 

Compendium of Physical Activities. Nevertheless, these EE estimates are usually coarse 

and less accurate than EE estimates computed from detailed physical activity information 

collected via direct observation.  

One of the most popular methods to estimate energy expenditure in free-living 

populations is ambulatory monitoring using pedometers, accelerometers, and 

physiological sensors such as heart rate, body temperature, body flux, and galvanic skin 

response. Ambulatory monitoring offers some advantages over self-reported data such as 

reduced report bias and subject burden (when compared with diaries).  

The number of steps measured using pedometers can be combined with demographic 

information (weight, height, age and gender) to produce rough estimates of energy 

expenditure due to ambulatory activity. Ambulatory activities such as walking account 

for a major proportion of daily energy expenditure [144], so pedometers are considered a 

good starting point for computing a daily energy expenditure estimate. One disadvantage 

of pedometers is that they are incapable of measuring energy expenditure due to stress 

effort in activities such as lifting heavy objects from the floor. 

Similarly, the activity counts or acceleration values collected using accelerometers can 

be combined with demographic information and regression techniques [34, 47, 145-152] 

or physical models of the human body [153, 154] to produce energy expenditure 

estimates. The complexity of accelerometry to measure energy expenditure ranges from 

the use of single uniaxial accelerometers [35, 36, 155, 156], biaxial and triaxial 

accelerometers ([151, 157-161]), to the use of multiple biaxial or triaxial accelerometers 

[41, 49, 146, 148, 162, 163]. The previously discussed Actigraph activity monitor [32] is 

one of the most popular uniaxial accelerometers used to estimate energy expenditure in 

the medical community [34, 164, 165]. The only accelerometer-based device available 

off-the-shelf that measures energy expenditure using multiple accelerometers (five 

biaxial) is also the previously discussed IDEEA monitor [41]. As explained before, the 

system requires wires that restrict the wearer‘s physical movements and its current cost 

(~$4000) is prohibitive for large scale deployments. One disadvantage of accelerometers 

is that they cannot distinguish between the energy costs of performing activities involving 

different resistance levels or work loads such as carrying light vs. a heavy loads and 

walking downhill vs. uphill. Currently most accelerometers available off-the-shelf allow 

the collection of data in non-volatile memories from 1 to 42 days depending on the 

sampling rates used and are relatively accessible ranging from $70 to $400 dollars. 

However, no off-the-shelf accelerometers make the data available wirelessly for real-time 

processing. This is unfortunate because real-time data could allow the development of 

powerful interventions to increase energy expenditure in free-living. Table 3-1 presents a 

summary of the most popular ambulation monitoring devices used to estimate energy 

expenditure. 

Heart rate information (e.g. beats-per-minute) can be converted to energy expenditure 

by generating subject dependent or independent regression equations between heart rate 

and volume of oxygen uptake (VO2) as collected from laboratory experiments  



57 

 

 
Device Sensors Used Body locations Storage 

Capacity 

(days) 

Cost 

($) 

Pedometer 

Omron HJ-112 [85] 

Spring-suspended lever arm 

switch 

Waist 7 25 

Pedometer 

Yamax Digiwalk CW-200 [86] 

Spring-suspended lever arm 

switch 

Waist, neck, ankle 0 20 

Actigraph GT1M  (previously CSA) 
[166] 

Uniaxial accelerometer Wrist, ankle or 
waist 

42* 400-1500 

Tri-trac (CT1  and RT3)  [167] Triaxial accelerometer Waist 21 100-500 

Actitrac, Digitrac and Biotrainer 

[157] 

Actitrac and Biotrainer (biaxial), 

Digitrac (triaxial)  

Wrist, ankle or 

waist 

5-62 70 

Actiwatch [168] 
(also ActiCal) 

Uniaxial accelerometer and 
Light 

Wrist, ankle or 
waist 

11-44 1075 

X-Max CalTrac [35] Biaxial accelerometer Waist 0 70-90 

Tracmor [169] Triaxial accelerometer Wrist, ankle or 

waist 

NA NA 

Actillume Actigraph [155] Uniaxial accelerometer 

And light 

Wrist, ankle or 

waist 

NA NA 

Bodybugg armband [158] Biaxial accelerometer + other 

sensors 

Dominant upper 

arm 

14 400-600 

IDEEA [41] Five biaxial accelerometers Body segment, 

limb or hip. 

2.5 4000 

Table 3-1: Most popular ambulatory monitoring technologies available off-the-shelf to estimate 

energy expenditure and measure physical activity. NA stands for non applicable. 

 

[32, 47, 170, 171]. The main challenges in using heart rate information to estimate energy 

expenditure are intra-individual and inter-individual variations in heart rate. For example, 

intra-individual variations in heart rate include changes in heart rate due to emotional 

states, nicotine, digestion, altitude and temperature [172]. Inter-individual variations in 

heart rate are mainly due to differences among individuals in fitness level, age, sex, and 

gender [173]. Heart rate also exhibits a delayed response to physical activity and remains 

altered once a physically demanding activity has finished. Finally heart monitors do not 

provide information about the type or frequency of physical activities (e.g. running at 

6mph for 5min).  

There have been several attempts to estimate energy expenditure by combining several 

sensor modalities [83, 96, 174, 175]. For instance, one of the few device of this kind 

available off-the-shelf to estimate energy expenditure during free-living is the previously 

discussed bodybugg armband [158]. The bodybugg combines information from its five 

sensors with proprietary algorithms to estimate energy expenditure. Even though energy 

expenditure comparisons between the bodybugg and indirect calorimetry have shown low 

error rates (10-15%), two recent validation studies suggest that the device‘s energy 

expenditure estimate may not be consistent across different types of activities [176, 177]. 

Furthermore, the energy expenditure algorithm used by the bodybugg Armband has been 

found to significantly underestimate lower body activity (e.g. cycle ergometry) and 

overestimate upper body activity (e.g. arm ergometry) [96]. This is because its location at 

the upper arm prevents it from detecting lower body motion generated by non-ambulatory 

activities. In late 2007, a new digital watch was introduced that allows the bodybugg 

system to display real-time information about energy interventions, the bodybugg system 

presently does not make the real-time data available to other applications nor does it use 

the data to enable physical activity interventions.  
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Method Advantages Disadvantages 

Direct calorimetry -Very accurate 

 

-Expensive  

-Intrusive 
-Restricts daily activity 

-Requires specialized equipment and expertise. 

Indirect Calorimetry -Very accurate 

 

-Expensive  

-Cumbersome to wear (portable versions) 
-Restrictive (room calorimetry) 

Requires specialized equipment and expertise. 

Doubly labeled water -Very accurate  

-Unobtrusive since does not interfere with 
subject‘s daily activities.  

 

-Expensive ($1500 per person) 

-Only measures average TEE over periods of 1-3 
weeks.  

-Requires specialized equipment and expertise. 

Physical Activity 

Scoring Using the 

Compendium of 

Physical Activities  

-Provides qualitative and quantitative 
information.  

-Provides contextually rich information 

(activity data) 
-Relatively low cost  if self-reported 

information is used 

-Relatively easy to administer if self-report 

is used 

 

-Expensive (direct observation) 
-Disruptive (direct observation) 

-Time consuming (direct observation) 

- Suffer from selective recall and reporting bias 
(self report) 

- Burdensome for subjects (if diaries or 

experience sampling is used) 

-Possible compliance problems (diaries and 

experience sampling) 

Pedometry -Small and easy to wear technology 

-Low cost and off the shelf availability. 

-Crude EE estimates based on ambulatory 

activity. 
-Does not measure upper body activity or 

muscular contraction. 

Accelerometry -Small and easy to wear technology 

-Moderate cost and off the shelf 
availability. 

-Can provide contextual information 

-Only measures motion of body segment they are 

attached to. 
-Do not measure EE related to muscle 

contraction, work load, or resistance effort 

-Conversion of acceleration counts to EE is 
challenging.  

Heart rate monitors -Moderate cost 

- Physiological parameter that provides 
intensity, frequency and duration 

information about physical activity.  

-Low burden for short data collections. 

-HR varies within individuals due to factors other 

than physical activity such as emotional states, 
nicotine, temperature, etc. 

-HR varies across individuals due to differences 

in fitness level, age, gender, etc. 
-Compliance issues in longitudinal studies. 

-Not clear how to convert HR to EE in a subject 

independent manner 

Table 3-2: Comparison of advantages and disadvantages of existing methods used to estimate energy 

expenditure. 

 

In summary, the energy expenditure estimation methods using various forms of 

ambulatory monitoring previously reviewed all have their strengths and weaknesses, and 

while they are adequate for some purposes, none are satisfactory for accurately 

determining energy expenditure over weeks or months of a free-living population. As a 

result, this work explores how energy expenditure estimation can be improved to be more 

accurate and amenable for longitudinal use in free-living. This is achieved by 

investigating the following questions: (1) Which features computed over the 

accelerometer data provide better estimates? (2) What sliding window lengths (epochs) 

are better for estimating energy expenditure? (3) Do multiple accelerometers at different 

Body segments improve the estimates? (4) Do non-linear regression techniques improve 

the estimates significantly? (5) Do activity dependent regression models improve energy 

expenditure estimation? Finally this work also explores if the combination of acceleration 

and heart rate data improves the energy expenditure estimates.  
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3.2.4  Energy Expenditure Estimation Algorithms 

There exists a large body of algorithmic approaches to estimate energy expenditure from 

accelerometer data. These approaches can be broadly classified in (1) those that use 

physical models of the human body, and (2) those that use regression algorithms. The 

algorithms that use physical models of the human body to estimate energy expenditure 

(e.g. [153, 154]) usually attempt to first estimate velocity or position information from 

accelerometer data by integrating the accelerometer signals. Unfortunately, this is a 

difficult task since errors in the acceleration signal accumulate rapidly over time due to 

the integration (summation) of values containing small amounts of error. Once velocity 

and/or position are known, these algorithms use kinetic motion and/or segmental body 

mass to estimate energy expenditure. Some algorithms such as [154] attempt to 

circumvent the problem of integrating the accelerometer signal to estimate velocity or 

position by learning the coefficients of the kinetic equations describing the human body 

motion directly from training data (acceleration and energy expenditure data). Although 

the use of physical models of the human body in the estimation of energy expenditure 

makes perfect sense, no prior work to the best of the author‘s knowledge has shown that 

this approach has considerable advantages over the use of regression algorithms.  

Regression algorithms, on the contrary, estimate energy expenditure by directly 

mapping accelerometer data to energy expenditure using linear and/or non-linear models.  

In their simplest form, these algorithms attempt to estimate energy expenditure from a 

single accelerometer (usually an Actigraph [32]) placed at the hip using simple linear 

regression (e.g. [145-148]). Some prior work also uses multiple linear regression models 

to improve the estimates [149]. Estimating energy expenditure from an accelerometer at 

the hip using linear regression may not fully capture the complex relationship between 

acceleration and energy expenditure [34, 178]. As a result, some work has explored the 

idea of using non-linear regression models to estimate energy expenditure from a single 

accelerometer at the hip [34, 150, 151, 179]. Most prior work estimates energy 

expenditure over sliding windows (epochs) of one minute in length and uses only the 

number of acceleration counts (per minute) to estimate energy expenditure. However, 

some recent work suggests that the utilization of shorter window lengths might improve 

the estimates of energy expenditure [34, 180]. Other recent work [34, 152] also suggests 

that computing more complex features over the accelerometer signal such as the 

coefficient of variation, the inter-quartile interval, the power spectral density over 

particular frequencies, kurtosis, and skew can improve the estimates of energy 

expenditure by capturing motion information that would otherwise be lost if simple 

accelerometer counts are used to estimate energy expenditure.    

 Presently, the two state-of-the-art algorithms to estimate energy expenditure from a 

single accelerometer mounted at the hip are the work by Crouter et al. and Rothney [34, 

152, 181]. The main idea behind the algorithm presented by Crouter et al. [34] is to 

classify activities into three categories before estimating energy expenditure: (1) 

sedentary activities, (2) ambulatory activities such as walking and running, and (3) 

lifestyle activities. Once the activities are recognized, different regression models are 

applied for each activity type to estimate energy expenditure. The algorithm recognizes 

sedentary activities by simply setting a threshold over the acceleration counts. Once they 

are recognized, they are assigned an energy expenditure equivalent of 1 MET. 

Ambulatory activities such as walking and running are differentiated from lifestyle 
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activities by setting a threshold over the coefficient of variation (CV) as computed over 

10s sliding windows. If walking and/or running are detected, a linear regression model is 

applied to estimate their energy expenditure; otherwise, an exponential regression model 

is applied to estimate the energy expenditure associated with lifestyle activities. The work 

by Rothney [152, 181] estimates energy expenditure by first computing features over the 

accelerometer signal such as the coefficient of variation, the inter-quartile interval, the 

power spectral density over particular frequencies, kurtosis, and skew and then uses these 

features to train an artificial neural network (non-linear regression model) to estimate 

energy expenditure. The artificial neural network is trained on nearly 24 hours of data 

collected from 102 participants which makes this work one of the most extensive with 

respect to amount of data used. This work also incorporates demographic data as features 

into the model (neural network) to compensate for inter-individual variations in energy 

expenditure. It is important to consider inter-individual variations because two 

individuals performing the same activity might generate similar acceleration signals but 

different energy expenditure signals due to differences in age, gender, height, weight and 

ethnicity. One clear disadvantage of these two methods to estimate energy expenditure is 

that they have difficulties capturing upper body and non-ambulatory lower body motion 

because of the use of a single accelerometer at the hip. For example, the work by Crouter 

et al. [34] completely excluded the cycling activity from analysis (even when data was 

collected for it) because the accelerometer at the hip did not produce any readings for this 

activity. Furthermore, the largest errors obtained in this work occurred for activities 

involving upper body motion such as basketball, racquetball, vacuuming, and mowing 

the lawn. The work Rothney [152, 181] did not present performance results per activity, 

so the performance over the biking activity cannot be determined. Other prior work also 

indicates that accelerometers mounted at the hip significantly underestimate lower body 

activities such as cycling and sliding [33]. 

There has also been some prior work attempting to combine the advantages of 

accelerometers and heart rate monitors in estimating energy expenditure [48, 83, 84, 174, 

175, 182-186]. For example, the work by Strath et al. [83, 174] combined accelerometer 

and heart rate data by employing two different HR-EE regression equations depending on 

upper body or lower body activity. Upper body activity was detected using one 

accelerometer at the arm and lower body activity by an accelerometer at the leg. More 

recent work by Brage et al. [46, 175] takes advantage of the synchronization between 

heart rate and accelerometer data by applying a branched regression model technique to 

combine heart rate and accelerometer data. The branched modeling technique weights 

two different regression equations differently depending on the intensity of motion 

experienced by an accelerometer at the hip and the intensity of physical activity detected 

by the heart rate monitor. One equation models accelerometer data only and another heart 

rate data only. The work by Strath et al. and Brage et al. showed significant 

improvements over the isolated use of accelerometer or heart rate data. Section 5.6.1 will 

later summarize some of the most recent results obtained when estimating energy 

expenditure from accelerometers and heart rate monitors.  
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3.2.5  Exploiting Real-Time Physical Activity Feedback to Motivate Behavior 
Change 

Existing technologies that provide automatic feedback related to physical fitness 

unobtrusively during free-living are mostly designed for those individuals who have 

already achieved a good level of physical fitness such as athlete runners. For example, the 

Nike+iPod sport kit [19] allow individuals to track the speed, distance, pace and calories 

burned while running by slipping a motion sensor in the Nike+iPod ready shoe and 

snapping a wireless receiver unit into the iPod nano MP3 player. Another recently 

introduced technology is the Adidas+Polar training system [20] that integrates a heart rate 

monitor on a shirt,  a stride sensor on a shoe, and a wristwatch computer to monitor work 

out zones based on heart rate, speed and distance data. The utilization of these new 

portable technologies is a good example of real-time biofeedback as a way to motivate 

behavior modification since heart rate data and energy expenditure is used to maintain the 

work out at particular zones. Still, the challenge remains to come up with technologies 

that can be used by those who have difficulty maintaining healthy levels of physical 

activity every day. 

Algorithms that automatically recognize activities and estimate energy expenditure 

using portable devices such as mobile phones offer the potential to provide longitudinal 

feedback related to physical activity and diet during free-living conditions. In its simplest 

form, feedback can be presented in the form of graphs showing how a person is getting 

meaningful physical activity. Mobile technologies that recognize activities or estimate 

energy expenditure could deliver ―just-in-time‖ interventions at the point of decision [27, 

28, 187]. For example, mobile devices could motivate increases in physical activity by 

detecting physical activities of interest (e.g. walking) and utilizing positive feedback 

combined with persuasive techniques [188] to encourage increases in activity levels (e.g. 

walking at 4mph vs. walking at 3mph.). Recent applications have started to explore this 

idea. The work by Bickmore et al. [189] developed an animated PDA-based advisor to 

motivate increases in physical activity over the course of a day. The authors are planning 

to extend this work by adding an accelerometer to provide positive feedback in real-time 

after a bout of walking or to encourage compliance when users have previously 

committed to exercise at a given date/time. One recently developed application exploring 

real-time feedback on mobile phones is UbiFit Garden [190]. In this work, a hip-worn 

accelerometer-based sensing device [44] is combined with a mobile phone to provide 

real-time feedback related physical activity performed over the course of a day. The 

feedback is graphically represented as a garden with flowers representing levels of 

physical activity and butterflies representing physical activity goals.  

Another area in which real-time activity recognition and energy expenditure algorithms 

can be applied to provide valuable feedback to users in non-exercise activity 

thermogenesis (NEAT) [51, 191]. This relatively new area of research has attracted much 

interest because it suggests that small increments in non-exercise physical activity such as 

standing, brisk walking, using stairs and fidgeting can accumulate over the course of a 

day to boost overall energy expenditure. In fact, a recent study [192] demonstrated that 

the caloric difference between obese sedentary individuals and obese sedentary 

individuals increasing NEAT activity levels can be as high as 300kcal per day.  Other 

studies also suggest that replacing TV watching by moderate non-exercise physical 

activity can lead to reductions in body weight [193, 194]. Activity recognition algorithms 
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combined with energy expenditure algorithms might be used to provide detailed feedback 

about the number of calories burned per activity performed so that individuals can better 

understand how they expend their daily energy, and perhaps, plan increases in non-

exercise activity that fit their daily routine.   

Finally, another interesting application of real-time feedback is to combine it with fun 

games to make it more amenable to children and adults [6]. This approach attempts to 

replace the sedentary behaviors usually involved in playing video games with workout 

routines or small increases in overall body motion.  For instance, Dance Dance revolution 

is a video game that takes advantage of these concepts to motivate physical activity while 

playing a videogame. As arrows move across the screen representing dance movements, 

the player steps on the corresponding arrows printed on a 3-foot-square metal mat that 

replaces the conventional game pad.  The game has been so successful that has sold about 

2.5 million copies, and by 2009 more than 750 public schools will begin using the video 

game to motivate physical activity among their students [195]. The new Nintendo Wii 

console [67] can be used in a similar way requiring users to perform arm-gestures to 

control the gaming interaction. Real-time sensing may create new opportunities for 

games that encourage NEAT during everyday activities such as television watching 

[196].  

 

3.2.6  Ensuring Ease-Of-Use 

Ensuring ease-of-use involves addressing factors such as comfort of the sensors, the 

number of sensors used and their location in the human body, training time requirements 

of the algorithm, capability of real-time recognition of activities, and real-time 

recognition delay. Wearability of sensors has received little attention in prior work 

because sensors have been mainly used during pilot research studies of relatively short 

duration. For example, most existing wireless accelerometers capable of broadcasting 

data in real-time (e.g. [44, 197, 198]) have cumbersome form factors and casings ill-

suited for longitudinal use. Some existing off-the-shelf devices (e.g. [32, 36, 157]) have 

more convenient form factors, but they are incapable of making the data available in real-

time. The system presented in this work uses wireless accelerometers (MITes [199]) that 

have smaller form factors than most existing accelerometers and suitable casing and 

battery life to allow continuous data collection over the course of a day during research 

studies.  

Previous work making recommendations for the minimum number of sensors to use 

and their locations on the body has been performed the analysis over a limited set of 

activities and little data collected from one to three subjects [39, 45, 116]. The exception 

is the work in [38], which analyzes results over different combinations of sensors for 20 

activities on data collected from 20 participants. This work continues to explore that 

question using a significantly larger dataset of 52 activities on data collected from 20 

participants at two locations: a gymnasium and a home. 

To the best of the author‘s knowledge, no prior work has explored the training data 

requirements of activity recognition algorithms because it has been assumed that subject 

independent recognition of activities will be possible one day. On the contrary, this work 

explores if it is possible to create subject-dependent activity recognition algorithms that 

require small amounts of training data and if the data required has the potential to be 
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provided interactively. As a result, this work performs experiments to determine the 

minimum amount of training data required to recognize an activities reliably during 

subject dependent training.  

Few accelerometer-based activity recognition algorithms presented in prior work have 

been tested in real-time. For example, the e-watch [43, 117] is one of the few research 

technologies with a convenient form factor capable of recognizing activities in real time. 

However, given its location and form factor (wristwatch), it can mainly recognize upper 

body activities and ambulatory activities involving overall body motion. Other research 

technologies capable of real-time performance use a single accelerometer at the hip to 

perform the inference (e.g. [59, 118]).  As a result, they are constrained to recognize 

activities involving overall posture, and motion such as walking and running. The few 

real-time activity recognition systems that use several accelerometers to perform the 

recognition (e.g. [41, 45, 76]) recognize activities that have been fixed a priory, and thus 

the systems do not allow users to specify and train new activities to recognize. In fact, to 

the best of the author‘s knowledge, no prior work has presented a real-time system to 

recognize activities that allows users to specify and train the activities that they want to 

be recognized. The closest system is presented by Feldman et al. [46], but the activities 

targeted by the system are mainly upper body activities (hand gestures). Therefore, this 

work develops an activity recognition and energy expenditure estimation system that uses 

one or several accelerometers and evaluates the performance of the activity type 

recognition algorithm in real-time during a short study where participants train and test 

the recognition algorithms to recognize different activities of their interest themselves.   

Finally, real-time classification delay is important to consider because the longer the 

user has to wait for a recognition result, the less likely it is that users will have the 

patience to train and test the performance of the algorithms in real-time. Similarly, longer 

recognition delays degrade the performance of other applications (e.g. interventions) that 

may use the recognition results and require high-precision prompting. This work includes 

an analysis of how the sliding window length impacts the recognition performance; a 

window length is selected that minimizes classification delay while maximizing 

performance.  

3.3 Summary of Technological Limitations to Enable Real-Time PA 
Type and Intensity Detection  

In summary, the combination of easy-to-use and easy-to-wear sensors and activity 

recognition and energy expenditure algorithms that can run in existing mobile phones 

would allow the development of interventions that (1) have the potential to scale to large 

populations due to the utilization of mobile phones and low-cost sensors that can be mass 

produced easily. (2) that are easy to use and impose minimum burden on the user, (3)  

that provide end-user value on a daily basis by presenting real-time information at the 

point of decision (related to physical activity and energy expenditure) that is usually 

unknown to individuals, so that people continue to use them for months or years with 

little effort, (4) that could potentially incorporate persuasive techniques to engage the 

user in his/her interactions with the system, and (5) that are fun, easy-to-use and 

engaging. 
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 The types of interventions previously mentioned have not been developed yet due to 

hardware and algorithmic limitations. For example, some of the hardware limitations that 

have prevented these interventions are: (1) Unavailability of real-time data. Most existing 

accelerometers available to measure physical activity store the data in onboard memories 

and do not make the data available in real-time. The only few accelerometers that make 

the data available in real-time are relatively expensive technologies in a prototype stage 

such as [197, 198]. Making the data available in real-time is important because other 

applications can use it to trigger just-in-time interventions. (2) Unavailability of 

technologies to receive data from multiple sensors simultaneously. Most existing 

technologies that allow the collection of data from multiple accelerometers (e.g. [32]) 

rely in offline analysis of the data. This is because data is stored locally in the devices and 

thus, data has to be first downloaded from the multiple devices and synchronized offline. 

There are also few technologies that allow the simultaneous reception of data from 

several sensor types (e.g. accelerometers and heart rate monitors). This prevents real-time 

applications that use multiple data types in real-time. Naturally, if data cannot be received 

from multiple accelerometers and/or sensor types in real-time, applications that use this 

data cannot be implemented. (3) Inconvenient form factors. Existing accelerometers have 

inconvenient form factors to be used inconspicuously for prolonged periods of time.   

Some of the algorithmic or software limitations that have prevented real-time 

interventions are: (1) Coarse estimates. Most existing technologies to measure physical 

activity provide too coarse of an estimate to allow useful applications. For example, 

pedometers [85] only provide rough estimations of ambulatory energy expenditure and 

single accelerometers at the hip have difficulties capturing upper body and non-

ambulatory lower body motion. As a result, they usually underestimate energy 

expenditure during lifestyle activities [200]. (2) Limited or no contextual information. 

Technologies available to measure physical activity provide limited or not contextual 

information about the type, intensity, and duration of the physical activities being 

performed (e.g. Actigraph [32], and the bodybugg [42]). Contextual information about 

physical activities is important for educating the user about physical activity patterns, for 

motivating a positive behavior change, for estimation of energy expenditure, and for the 

development of powerful physical activity interventions that are triggered based on the 

activities being performed. (3) Lack of efficient algorithms that run in real-time on low-

processing power devices. Most algorithms available for recognizing activities and 

estimating energy expenditure have been implemented to run offline and have not been 

tested for real-time performance. As a result, data has to be downloaded from the data 

collection devices before feedback related to physical activity and energy expenditure can 

be obtained. This is inconvenient for both end-users and researchers during large-scale 

longitudinal studies.   

There are also some open questions that have prevented the development of real-time 

interventions related to physical activity. For example, the number of sensors and their 

placement in the human body required to recognize activities and to estimate energy 

expenditure is still unknown. Obviously, the answer to this question depends on the target 

activities, but there is no prior work that analyzes the answer to this question over a large 

set of activities. It is also not clear what computationally efficient algorithms achieve the 

best performance at recognizing activities and estimating and estimating energy 

expenditure and how their performance compare to more complex state-of-the-art 
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algorithms. It is also unclear what set of features need to be computed to recognize 

activities and estimate energy expenditure efficiently and with good performance from 

accelerometer data. Finally, the impact of utilizing different sliding window lengths in 

recognizing activities and estimating energy expenditure has not being explored in full 

detail. The work presented in this thesis explores the answer to these questions by 

evaluating the recognition and energy expenditure estimation for a set of 52 activities and 

subsets of them.  
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4 Approach and Procedure 

This section presents an overview of the design of the activity recognition and energy 

expenditure estimation systems presented in this work. The section also describes the 

research approach followed to collect the necessary data to develop and evaluate these 

algorithms  

4.1 Overview of Research Approach 

The procedure followed in this work to develop the activity recognition and energy 

expenditure algorithms consisted of three steps. (1) First, activity and energy expenditure 

data were collected from 20 participants at a gymnasium and residential home to develop 

train and test the algorithms. At the gymnasium, data about exercise related physical 

activity were collected under relatively controlled conditions because several stationary 

exercise machines are used to collect the data (e.g. cycling, rowing, and treadmill 

machines). During the home data collection, participants performed a variety of everyday 

household activities under more naturalistic conditions. (2) Once the data were collected, 

a set of systematic experiments was performed to determine a reasonable set of activity 

recognition and energy expenditure algorithm parameters that enable real-time 

performance. Some of these parameters include the classifier (or regression algorithm), 

the signal processing techniques, the sliding window length, and the feature set to use. 

Also, experiments were performed to determine the minimum set of sensors to use, 

sensor placement on the body, and the impact on performance when heart rate data were 

incorporated. The experiments were organized so that each incrementally answers a 

relevant question about the algorithm parameters, starting from the most restrictive 

parameters (e.g. classifier or regression algorithm, feature set) and moving to the least 

restrictive parameters (sensor modality, window length). (3) Finally, once all the 

parameters were selected by running offline experiments, the final activity recognition 

algorithm was implemented on a laptop computer and its real-time performance was 

evaluated in a small feasibility demonstration.  

4.2 Overview of System Design 

The system presented in this work consists of two mayor components: (1) A real-time 

physical activity recognition system, and (2) a real-time energy expenditure estimation 

system. Both systems recognize activities and estimate energy expenditure from data 

provided by several wireless accelerometers placed at different body locations. In some 

cases a heart rate monitor is also used. The physical activity recognition system 

recognizes a variety of everyday postures, exercise routines, and household activities. 

The energy expenditure estimation system converts overall body motion (acceleration) 

and heart rate into energy expenditure estimates (in METs) over the course of a day. The 

following sections describe the wearable sensors used and the data collection protocols 
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followed to collect the necessary data to develop and evaluate the activity recognition and 

energy expenditure estimation algorithms. 

 

4.2.1 Wearable Sensors 

The wearable sensors used to collect the necessary data to develop and evaluate the 

activity recognition and energy expenditure algorithms were: (1) a wireless sensing 

platform called MIT environmental sensors (MITes) [199], and (2) some off-the-shelf 

sensors such as the MT1 Actigraph [32], the HJ-112 pedometer [201], the bodybugg 

armband [202], and the Cosmed K4b2 indirect calorimeter [203]. The following sections 

describe these sensors in more detail.  

 

4.2.1.1 MIT Environmental Sensors (MITes) 

 

The MIT environmental sensors (MITes) [199] were used to collect the accelerometer 

and heart rate data. The wireless accelerometers measure 3-axis acceleration in a range of 

±2G with a 9-bit resolution. They are small (3.2x2.5x0.6cm), light (8.1g including 

battery), and easy to wear without constraining the wearer‘s movements. The battery life 

on a CR2032 battery is up to 31 hours. The MITes toolkit also includes a heart rate 

transceiver powered by a 9V battery that converts the beats per minute (BPM) data from 

a Polar wearable chest strap transmitter (WearLink) to the same format as the 

accelerometer data and forwards it to the same receiver used by the accelerometers in 

real-time. The wireless receiver included in this kit is small (see Figure 4-3), and can be 

easily attached to any USB port of a PC/Computer or mobile phone with USB host 

capabilities. The wireless link uses 16-Bit CRC error checking and consequently, the 

probability of data corruption due to noise is low. When CRC detects packet corruption, 

the packet is discarded. The raw data broadcasted by the MITes sensor nodes 

(accelerometers and heart rate transceiver) are time stamped after reception by the data 

collection software running on the laptop computer where the wireless receiver is 

attached. The sampling rate of the sensors depends on the number of sensors used per 

receiver (samplingRate=180Hz/numberOfSensors). As a result, during some data 

collection protocols followed in this work, two receivers are used (four sensors per 

receiver) to achieve a relatively high sampling rate of 45Hz when collecting data from 

seven accelerometers and a heart rate monitor. Figure 4-1a shows an image of the MITes 

wireless accelerometers and Figure 4-1b an image of the heart rate transceiver with 

corresponding 9V battery attached. 

 

4.2.1.2 The MT1 Actigraph 

 

The MT1 Actigraph accelerometer [32] is a small (3.8 x 3.7 x 1.8cm.) and lightweight 

(27g) uniaxial accelerometer that can measure accelerations in the range of 0.05–2 G 

sampled at 30Hz and band-limited between 0.25–2.5 Hz with a 12-bit resolution. This 

accelerometer and its previous version (the CSA activity monitor) are the commonly used 

for physical activity and energy expenditure studies. The MT1 Actigraph is shown in 
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Figure 4-1: Wearable sensors used during the data collections. (a) Wireless accelerometers, (b) heart 

rate transceiver, (c) MT1 Actigraphs, (d) Polar WearLink chest strap heart rate monitor, (e) HJ-112 

pedometer, and (f) the bodybugg armband.  

 

 

Figure 4-1c. During the data collection protocols, participants wore either one Actigraph 

at the hip or two Actigraphs placed at the dominant wrist and dominant side of the hip.  

The Actigraphs were set to record data using one second epochs (1s windows), and they 

were synchronized immediately before the data collection with the computer collecting 

MITes data.   

 

4.2.1.3 The Polar Chest Strap Heart Rate Monitor  

 

The Polar WearLink chest strap heart rate monitor [204] was used during the data 

collections to measure participants‘ heart rate in beats-per-minute (BMP). This heart rate 

monitor has been found to be a valid instrument for measuring heart rate in several 

studies [205-207]. The Polar WearLink chest strap is shown in Figure 4-1d. Before 

utilizing the heart rate data collected using the WearLink chest strap, a 15s running 

average filter was applied to the data to minimize noisy readings.  

 

4.2.1.4 The Cosmed K4b2 Indirect Calorimeter 

 

The Cosmed K4b2 indirect calorimeter [125] is an apparatus that measures oxygen 

uptake (VO2) and carbon dioxide (VCO2) production by means of a face mask. VO2 

values (in ml/min) can be converted to resting metabolic equivalents (METs) by dividing 

by the subject body weight and 3.5 (One MET is equivalent to 3.5ml of VO2 per kilogram 

per minute). The device weighs less than 1kg and is composed of a face mask, a data 

collection unit, and a rechargeable battery. Figure 4-4 shows an example of how 
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participants wore the Cosmed K4b2 system. The data collection unit and battery pack 

were affixed to the participant‘s chest using a special harness consisting of adjustable 

belts. Before the data collection, the equipment was calibrated according to the 

manufacturer‘s specifications and synchronized with the time of the computer saving 

MITes data. Data were recorded in the unit‘s memory and later downloaded to a PC 

computer. The Cosmed device provides breath-by-breath data that are usually averaged 

over 30-60s intervals during energy expenditure research studies (e.g. [200]). In this 

work, a 15s running average filter was applied to minimize noisy readings. To account 

for the weight of the Cosmed K4b2 device and the other sensors used, 0.99Kg was added 

to the participant‘s weight in all MET calculations. The Cosmed K4b2 device has been 

found to be a valid and accurate device to measure energy expenditure in prior studies 

[200, 208, 209]. However, the quality of the measurements obtained strongly depends on 

the quality of the attachment of the face mask to participants.  

Prior work utilizing the Cosmed K4b2 indirect calorimeter to measure energy 

expenditure has found standard deviations per activity ranging from 0.13 to 1.63MET. 

For example, the work by Bassett et al. [200] measured standard deviations per activity 

ranging from 0.31 to 1.58 MET for a set of 20 activities including household and exercise 

activities with moderate intensities. The work by Strath et al. [174] found standard 

deviations between 0.4 to 1.1MET over 14 lifestyle activities, and the work by Crouter et 

al. [34] standard deviations between 0.13 and 1.63MET for 18 exercise and lifestyle 

activates. The standard deviations obtained for the data collections performed in this 

work are discussed in Section 5.6.2.  

 

4.3 Activity Recognition Algorithms 

The process of recognizing activities from sensor data can be described in five steps: (1) 

signal processing, (2) signal or data segmentation, (3) feature computation, (4) 

classification, and (5) temporal smoothing. The first step is signal processing and, in the 

case of wireless sensor data, it usually includes band-pass filtering of the signals to 

eliminate undesirable noise and signal interpolation to fill out sensor values lost during 

wireless transmission. Depending on the sensors used, signal processing could also 

include signal calibration to compensate for slight sensor-to-sensor variations in output 

values due to hardware differences.  

Signal segmentation refers to the process of grouping sensor values over time. This is 

necessary because features are computed not over single sensor values but over 

sequences of sensor values accumulated over time. Some common approaches to signal 

segmentation are the use of sliding windows, overlapping sliding windows, and signal 

spotting. The sliding windows technique consists on accumulating the sensor data over 

windows of specific length, where there is no time overlap between consecutive 

windows. Overlapping sliding windows, on the contrary, allow for some overlap between 

consecutive windows (e.g. 50%). Overlapping sliding windows are sometimes used 

because they are believed to minimize the edge conditions that arise when partitioning 

the data into independent sequential windows. Sliding windows and overlapping sliding 

windows have shown to be useful for analyzing periodic signals generated by repetitive 

motion such as running [37, 38, 40, 45, 103, 210, 211]. The length of the windows used 
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in these two segmentation techniques can vary depending on the activity being 

recognized from less than one second to a minute or longer. The length of the window 

introduces a real-time recognition delay equivalent to the duration of the window. The 

longer the window duration is, the longer the real-time recognition delay will be. Signal 

spotting [115, 212, 213] is widely applied in gesture recognition where the goal is to 

identify the start and end times of rarely occurring movements of interest from a stream 

of non-relevant signals or movements. In a simple manner, signal spotting could be 

implemented by, for example, setting a threshold over the variance of the signals for a 

given window of time. This would allow the identification of ‗chunks‘ of signal data 

where the amount of motion observed is significant.  

Features must be computed from the segmented sensor data to capture important 

temporal and spatial relationships. How these features are computed impacts the 

performance of the pattern classification algorithms. In fact, the features extracted are as 

important as, if not more important than the classifiers used to obtain good performance. 

Examples of time and frequency domain features often extracted include variance, mean, 

correlations, energy, entropy, and FFT coefficients [37, 38, 40, 103, 210, 211], among 

others.  

Once features are computed, pattern classification algorithms are employed to 

discriminate among the activities of interest. There exist a wide variety of generative and 

discriminative classification algorithms, with different computational requirements and 

discriminatory power. Discriminative classifiers differentiate among activities of interest 

by building a decision boundary or mathematical function that separates the features 

representing each class as much as possible with respect a given criterion. Generative 

classifiers on the other hand, first attempt to create a model that describes how the data 

for each activity is being generated before building a mathematical function to 

discriminate among the activities in the feature space. Some examples of generative 

classifiers include Bayesian networks (e.g. the naïve Bayes classifier [106]) and dynamic 

Bayesian networks (e.g. hidden Markov models [214]), and some examples of 

discriminative classifiers include boosting classifiers (e.g. Adaboost [215]), decision tree 

algorithms (e.g. C4.5 classifier [112])   and support vector machines [216].  

The final and sometimes optional step in activity recognition consists on performing 

temporal smoothing. Since classifications are performed over small windows of data and 

usually those windows are each considered independently of the others, the classification 

results usually contain spurious classifications. For example, if running is performed over 

ten consecutive windows, a classifier might confuse running with walking for a small 

subset of these windows. The confusion indeed makes sense since both activities involve 

similar motion patterns; nevertheless, the fact that most of those 10 windows are 

classified as running suggests that the activity being performed is running. One reason 

for the generation of spurious classifications in the previous scenario is that temporal 

information about the activity being performed is not incorporated. In other words, the 

classifier does not know that instantaneously switching back and forth between running 

and walking is difficult and, for other activities, not even possible. One simple strategy to 

partially mitigate this problem has been the use of a majority filter. This filter consists on 

simply reporting the activity with most classifications (majority class) over the past n 

number of windows as the latest classification result. Another possible strategy is to 

incorporate information about the transition probability between activities. For example, 
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it is more likely to transition from sitting to standing than from sitting to walking. In fact 

some algorithms such as hidden Markov models attempt to implicitly include this 

information.   

The design goals for the activity recognition algorithm developed in this work in 

decreasing order of importance are (1) real-time performance, (2) recognition of physical 

activity type and intensity, (3) subject independent performance (if possible) or subject 

dependent performance with small training data requirements, (4) minimization of the 

number of sensors required to recognize activities while maintaining good performance, 

(5) placement of sensors in the most comfortable body locations, (6) as much invariance 

to small changes in the sensor placement on the human body as possible, and (7) small 

real-time classification delay.  Section 5.4 presents a set of incremental experiments 

specially designed to explore the feasibility of the aforementioned design goals.  

 

4.4 Energy Expenditure Estimation Algorithms 

The standard procedure used to estimate energy expenditure from accelerometer data in 

prior work consists of the following steps: (1) collect accelerometer and energy 

expenditure data for a specific set of activities of interest by having n number of subjects 

wear an accelerometer (e.g. an Actigraph [32]) at the hip and an indirect calorimeter (e.g. 

the portable Cosmed K4b2 indirect calorimeter [125]. Another option is to place 

participants inside room indirect calorimeters (e.g. Vanderbilt indirect calorimetry room 

[124]) (2) Eliminate the portions of data where energy expenditure does not reach steady 

state by removing a portion of the data (e.g. 30-40%) at the beginning of each activity. 

(3) Partition the data collected into training data (usually 60-70% of total data) and test 

data (usually 30-40% of data). (4) Compute the absolute value of the acceleration signal 

and sum it sample by sample over one-minute windows (if not already computed by the 

activity monitor). This feature is usually referred as activity ―counts‖ and represents the 

overall motion experienced by an accelerometer over a one minute interval. If the 

accelerometer used has multiple acceleration axes (e.g. if a biaxial or triaxial 

accelerometer is used), the summation is usually performed over all axis to produce a 

single value representing the overall motion experienced by the sensor in all directions. 

(5) Compute the mean value over the same one minute windows for the ground truth 

energy expenditure data collected using the indirect calorimeter (given in METs or 

Kcal/min). (3) Employ a regression algorithm to map activity counts to energy 

expenditure using the training data. (4) Test the performance of the regression algorithm 

by predicting energy expenditure over the test data using the model learned from the 

training data. 

In summary, the standard procedure followed to estimate energy expenditure from 

accelerometer data is a simplified version of the procedure presented in the previous 

section to recognize activities. The main differences are the following: (1) regression 

algorithms such as multivariable linear regression are used instead of classification 

algorithms to predict energy expenditure, (2) the segmentation technique usually 

employed is non-overlapping sliding windows of 60s in length, and (3) in most prior 

work the only feature computed from the accelerometer data is number of activity counts. 

When multiple accelerometers are used, multivariable regression algorithms such as 
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multivariable linear regression are employed to produce the mapping between 

acceleration and energy expenditure. 

The design goals for the energy expenditure estimation algorithm presented in this 

work are the same as the goals presented in Section X for the activity type recognition 

algorithm. This work extends the standard procedure used estimate energy expenditure by 

exploring (1) if non-linear regression algorithms and activity dependent regression 

models improve energy expenditure estimates, (2) if shorter window lengths with shorter 

real-time estimation delays produce acceptable estimates, (3) if computing more complex 

features over the accelerometer data improve the estimates, and (4) if a minimum set of 

multiple sensors at strategic and comfortable body locations improve the estimates. One 

of the main goals is also to identify regression algorithms, window lengths, features, and 

accelerometers (number and placement) that produce an energy expenditure estimation 

algorithm amenable for real-time performance. 

 

4.5 Interactive Training of Algorithms in Real-Time 

Previous work on activity recognition (e.g. [38]) suggests that subject independent 

recognition of activities is more difficult than subject dependent recognition of activities. 

This means that a recognition algorithm performs better if all users provide examples of 

all the activities to recognize. Thus, it might be expected that some degree of subject 

dependent training will be necessary to recognize activities during free-living conditions 

reliably. 

This work evaluates the activity recognition algorithms implemented using both -- 

subject dependent and independent training. The training data requirements during 

subject dependent training are also evaluated. This analysis is important because it gives 

an idea of the minimum amount of training data that users might have to provide to the 

recognition algorithms to achieve a reasonable performance. Finally, the activity 

recognition algorithm developed in this work is implemented and evaluated in real-time. 

This is achieved by having several participants interactively train and test the 

performance of the algorithm over activities specified by participants themselves. The 

main goal of this real-time evaluation is to determine how difficult it would be for end-

users to interactively train and test the activity recognition algorithms in practice. The 

energy expenditure estimation algorithm, on the other hand, is evaluated primarily using 

subject independent training because of the unavailability of the specialized equipment 

(portable indirect calorimeter) required to collect the energy expenditure data during free-

living. Nevertheless, once the final algorithm is presented, its performance is also 

evaluated during subject dependent training. 

The main goal of the user interface of the application developed to test the performance 

of the activity recognition algorithms in real-time is to allow users to (1) type in the 

activities they want the activity recognition algorithm to recognize, (2) provide the 

required training data automatically by simply performing the activities of interest 

sequentially for a given period of time (e.g. 2 minutes), and (3) test the performance of 

the recognition algorithm immediately after the training process has finished. More 

details on this interactive application can be found in Section 5.5. 
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4.6 Data Collection 

Three different datasets were used during the development of the activity recognition and 

energy expenditure estimation algorithms in this work. The first one, referred as the 

Boston Medical Center Protocol, was a small dataset consisting of 14 activities collected 

from two participants by researchers at the Boston Medical Center. This dataset was used 

to validate the energy expenditure data collected for developing the energy expenditure 

estimation algorithm in this work. The second dataset, referred as the Stanford and 

Boston University protocol, consists of data collected during two independent data 

collection sessions at those institutions where acceleration and heart rate data was 

collected from participants to develop the activity recognition algorithms. Finally, the 

third dataset referred as the MIT dataset, is the most extensive data set since 

accelerometer, heart rate, and energy expenditure data was collected from 20 participants 

at two locations (a gymnasium and residential home) for 52 different activities. The 

following sections discuss each of the data collection sessions in more detail. Researchers 

interested in using these datasets should contact the author or visit 

http://architecture.mit.edu/house_n/data 

 

4.6.1  Boston Medical Center Protocol 

This is a dataset consisting of 14 activities collected from two participants by researchers 

at the Boston Medical Center. The activities for which data was collected are shown in 

Appendix A10. This data was used to validate the energy expenditure data collected in 

the MIT protocol for the development of the energy expenditure estimation algorithm. 

This comparison was possible because the 14 activities contained in this protocol are a 

subset of the 52 activities contained in the MIT protocol. Section 5.6.2 presents the 

results of the validation study. The main difference between the Boston Medical Center 

protocol and the MIT protocol is that different indirect calorimeters were used during the 

data collections. The Boston Medical Center protocol used the Parvo Medics TrueOne 

2400 metabolic measurement system [126], and the MIT protocol used the Cosmed K4b2 

indirect calorimeter [125]. The number and placement of all other wearable sensors 

remained the same for both protocols. For more details on the placement of the other 

sensors refer to Section 4.6.3. Figure 4-2 shows an example of the data collection setup 

during the cycling activity for the Boston Medical Center protocol. 

 

4.6.2  Stanford and Boston University Protocol 

For this protocol, a total of 21 participants with ages ranging between 18 and 65 years old 

and with varying levels of physical fitness were recruited at two separate medical 

laboratories: (1) Stanford Medical School and (2) The Boston Medical Center. The 

participants were screened for any medical condition that would contraindicate moderate 

to vigorous intensity exercise using the Physical Activity Readiness Questionnaire (PAR-

Q) [217] and the Stanford Brief Physical Activity Survey (SBAS) [133] before inclusion 

in the study.  
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Figure 4-2: Example of the data collection setup for the Boston Medical Center Protocol. The 

indirect calorimeter used was the Parvo Medics TrueOne 2400. Participant‟s face has been blurred 

to preserve anonymity. 

 

During the data collections, researchers placed five accelerometers on each subject, with 

one at each of the following locations: top of the dominant wrist just behind the wrist 

joint, side of the dominant ankle just above the ankle joint, outside part of the dominant 

upper arm just below shoulder joint, on the upper part of the dominant thigh, and on the 

dominant hip. The wireless accelerometers were attached to subjects using cotton elastic 

sweat bands or non-restrictive adhesive bandages. All the accelerometers were 10G 

except the accelerometer on the hip, which was 2G. Prior work suggests that body 

extremities can reach 12G in rare circumstances [218], but at the hip 2G should be 

sufficient to avoid saturation. The heart rate monitor was worn on the chest. The location 

of each sensor is indicated in Figure 4-3. After the sensors were placed, each participant 

was asked to sit still and, after a stabilization period, resting HR was measured by 

measuring pulse for one minute. The participant‘s age-predicted maximum HR 

(MHR=220-age) was calculated. During the data collection, if the participant reached 

85% of this value, participants were instructed to stop the activity being performed and 

take a two minute rest break.  That activity was not attempted again.   

A combined 21 participants each performed 30 gymnasium activities, with 12 and 9 

datasets being collected from each site, respectively. The list of activities broken down by 

type and intensity differences is shown in Appendix A11. Each activity was performed 

for two minutes. The research assistant would wait until the participant had started the 

activity and appeared to be engaged confidently in the activity before indicating the 

activity was started using annotation software. In most of the gym activities, the gym 

equipment could be set at a particular speed and/or resistance level. For cycling or 

rowing, the ―light,‖ ―moderate,‖ and ―hard‖ resistance settings were made by setting the 

speed (e.g., rpm) and then as the participant peddled or rowed, adjusting the resistance  
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(a) 

 
(b) 

Figure 4-3: Five triaxial wireless accelerometers, a polar chest strap heart rate monitor, a MITes 

heart rate transceiver with 9V battery attached, and a USB wireless receiver, and (b) Placement of 

the sensors on the body. Green dots indicate accelerometer locations and blue the heart rate monitor 

location. 

 
Variable Men (n = 8) Women (n = 12) All Participants (n = 20) 

Age (yr) 27.8 ± 7.2   [22.0 - 42.0] 29.2 ± 6.4  [18.0 - 40.0] 28.6 ± 6.6  [18.0 - 42.0] 

Body Mass (Kg) 85.1 ± 11.0 [73.2 - 103.8] 75.5 ± 17.3  [60.7 - 119.1] 79.3 ± 15.6  [60.7 - 119.1] 

Height (m) 1.9 ± 0.0  [1.79 - 1.9] 1.7 ± 0.0  [1.54 - 1.82] 1.7 ± 0.1  [1.54 - 1.9] 

Fat percent (%) 12.2 ± 4.6  [5.5 - 20.3] 30.7 ± 7.9  [19.8 - 52.3] 23.3 ± 11.4  [5.5 - 52.3] 

Water percent (%) 58.9 ± 4.7  [50.0 - 65.5] 48.2 ± 4.9  [35.4 - 54.4] 52.7 ± 7.2  [35.4 - 65.5] 

Bone mass (Kg) 3.6 ± 0.3  [3.2 - 4.0] 2.7 ± 0.5  [2.2 - 3.9] 3.0 ± 0.6  [2.2 - 4.0] 

Table 4-1: Physical characteristics of the 20 study participants. Values are means (SD) with range 

shown in parenthesis. n is the number of subjects. 

 

until the participant reported that they were in the desired intensity level.   

The activities for this protocol were selected because (1) they are listed in the 

Compendium of Physical Activities [219], (2) because they include examples of upper, 

lower, and overall body motion, (3) and because these activities are of practical interest to 

the medical community because they are prescribed as part of weight management 

programs. From Appendix A11, we can observe that the activities with different intensity 

levels are walking, cycling, and rowing. For walking, intensity was varied by changing 

the treadmill speed (e.g. 2, 3, and 4 mph) and inclination (e.g. 4, 8, and 12 degrees). 

These walking speeds and inclinations were used for all participants. For cycling, the 

cycle speed (e.g. 60, 80, and 100rpm) and the cycle resistance level were set to settings 

that participants subjectively considered equivalent to light, moderate, and hard. Finally, 

for rowing, the rowing speed was maintained constant at 30 strokes per minute (spm) 

while the resistance was varied until reaching levels that participants considered light, 

moderate, and hard. The average duration of each activity was 1.9min except for jumping 

jacks, sit-ups, push-ups, and bicep curls that have an average duration of 0.87min. This is 

because these activities are physically demanding, and most participants were not able to 

perform them for at least 2min. The Stanford University dataset differs slightly from the 

Boston Medical Center dataset because due to lab constraints, data for the move weight, 

and calisthenics activities were not collected, and the rowing activity was replaced by the 

arm ergometry activity. Nevertheless, the Stanford University dataset still contains the 
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same number of activities with different intensity levels as the Boston Medical Center 

dataset (walking, cycling, and arm ergometry). The activity recognition results utilizing 

the datasets collected at Stanford and Boston University are presented in the work by 

Munguia Tapia et al. (2007) [220].   

 

4.6.3  MIT Protocol 

For this data collection protocol, total of 20 participants with an age range between  18 

and 42 years old and with varying levels of physical fitness were recruited at MIT. The 

participants were screened for any medical condition that would contraindicate moderate 

to vigorous intensity exercise using the Physical Activity Readiness Questionnaire (PAR-

Q) [217] and the Stanford Brief Physical Activity Survey (SBAS) [133] before inclusion 

in the study. Each participant‘s age, gender, ethnicity, height, weight, and body 

composition parameters were recorded at the beginning of the study. Each participant‘s 

height was measured using  a measuring tape and body weight and composition 

parameters using a Tanita Body Composition Scale Model BC-536 [221]. Table 4-1 

shows the physical characteristics of the 20 participants included in the study. 

The participants were asked to perform a script of physical activities at two locations 

while they wore a variety of sensors that measured body motion (acceleration), heart rate, 

and energy expenditure. One data collection session took place at MIT Zesiger Sports and 

Fitness Center and the other at a residential home called the PlaceLab [222]. Participants 

were expected to complete both data collection sessions, which lasted approximately 

three hours each.   

During the data collections, participants wore seven wireless accelerometers [199], a 

chest strap heart rate monitor [199, 223], two Actigraph activity monitors [166], a HJ-122 

pedometer [85], a bodybugg armband [158], and a K4b2 portable indirect calorimeter 

[125]. The wireless accelerometers and heart rate monitor collected data about 

participant‘s motion, and heart rate, and the portable indirect calorimeter ‗ground truth‘ 

energy expenditure data. The wireless accelerometers were placed at the following 

locations: At the feet (on top of the shoe laces), wrists, hip (non-dominant side), 

dominant upper arm, and dominant thigh. The Actigraph monitors were placed at the 

dominant wrist, and at the dominant side of the hip. The bodybugg armband was placed 

at the dominant upper arm, near the bicep muscle, the pedometer at the hip, and the heart 

rate monitor on the chest. Accelerometers were held in place using cotton elastic sweat 

bands or non-restrictive adhesive bandages. The K4b2 Cosmed indirect calorimeter [125] 

was calibrated according to the manufacturer‘s specifications and affixed to the 

participant‘s chest using a special harness consisting of adjustable belts. The location of 

each sensor is shown in Figure 4-4. 

The Actigraph is commonly used to estimate energy expenditure by the medical 

community in free-living and was used for comparison purposes. The bodybugg data was 

not utilized in this work due to the lack of access to expensive proprietary software 

($5,000).  The wireless accelerometers and heart rate transceiver used in this study are 

part of an existing wireless sensing platform called MIT environmental sensors or 

(MITes)[199]. All other sensors are available off-the-shelf [89, 125, 158, 166]. A 

member of our research group followed the participants to label (using the data collection 

laptop computer) the start and end times activities as they were performed. 
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Figure 4-4: Example of how participants wore the sensors used during the data collections at the (a) 

gymnasium (shown here) and (b) home. Participant‟s face has been blurred to preserve anonymity. 

 

During both data collection sessions, participants were asked to lie down for a period of 

five minutes once sensors were properly installed on the subject so that resting metabolic 

rate and resting heart rate could be measured. The participant‘s age-predicted maximum 

HR (MHR=220-age) was also calculated. During the experiment, if a participant reached 

85% of this value, he or she was instructed to stop the activity being performed and take a 

2 minute rest break.  That activity was not attempted again.   

After lying down for five minutes, subjects were asked to perform a script of activities 

depending on the location of the data collection. Appendix A12 presents the script of 

activities for the gymnasium and the home, respectively. Appendix A12 also presents a 

detailed list of the activities and a brief explanation of the data collection conditions for 

each activity. Each activity was performed for three to four minutes, except for physically 

demanding activities that were executed for as long as the subject‘s physical fitness 

allowed. A research assistant would wait until the participant had started the activity and 

appeared to be engaged confidently in the activity before indicating that the activity was 

started using the annotation software.  

One important difference between this protocol and the Stanford and Boston University 

protocol is that this study does not define the intensity levels light, moderate, and hard 

depending on the subject‘s exertion perception. In other words, the intensity levels (speed 

of execution of activity, resistance level, or weight loads used) were set in advance and 

used for all subjects. The intent was to minimize inter-individual variations due to 

different fitness levels of individuals. Appendix A4 describes the speeds of execution, 

resistance level, and weight loads used for each activity involving different intensity 

levels. 



78 

 

Variable Men (n = 7) Women (n = 9) All Participants (n = 16) 

Age (yr) 25.71 ± 4.61  [22.0 - 35.0] 29.56 ± 7.16  [18.0 - 40.0] 27.88 ± 6.30  [18.0 - 40.0] 

Body Mass (Kg) 84.30 ± 11.66  [73.2 – 103.8] 72.28 ± 12.05  [60.7 - 101.8] 77.54 ± 13.03  [60.7 - 103.8] 

Height (m) 1.85 ± 0.04  [1.79 - 1.9] 1.67 ± 0.09  [1.54 - 1.82] 1.75 ± 0.12  [1.54 - 1.9] 

Fat percent (%) 12.11 ± 4.99  [5.5 - 20.3] 28.14 ± 4.67  [19.8 - 34.2] 21.13 ± 9.44  [5.5 - 34.2] 

Water percent (%) 59.11 ± 5.05  [50.0 - 65.5] 49.66 ± 2.88  [46.5 - 54.4] 54.07 ± 6.24  [46.5 - 65.5] 

Bone mass (Kg) 3.56 ± 0.29  [3.2 – 4.0] 2.70 ± 0.56  [2.2 - 3.9] 3.10 ± 0.62  [2.2 - 4.0] 

Table 4-2: Physical characteristics of the 16 participants included in the MIT energy expenditure 

datasets. Values are means ± SD with range shown in parenthesis and n is the number of subjects. 

 

Finally, the set of activities contained in this protocol were included because they are 

common everyday activities or exercises for which data could be collected in the gym or 

home setting available, and because most of them are listed in the Compendium of 

Physical Activities [219]. Appendix A4 presents the amount of training data collected for 

each activity. 

 

4.6.4  MIT Energy Expenditure Dataset 

After visually inspecting all of the datasets collected during the MIT protocol, 13 data 

collection sessions with suspiciously low energy expenditure readings were identified. 

These low energy expenditure readings might indicate an improper attachment of the 

Cosmed K4b2 indirect calorimeter face mask during the data collection. Improper 

attachment of the face mask is known to produce low energy expenditure readings 

because air (VO2 and VCO2) escapes from the mask and, consequently, is not measured 

by the indirect calorimeter data collection unit. Some subjects did express at times that 

the face mask felt too tight, and as a result, it had to be loosened, increasing the 

likelihood of air leaks. In other cases, the face mask did not properly match the subject‘s 

face anatomy, even when the closest face mask size was selected from those available 

with the Cosmed K4b2 equipment.  

In total, 13 sessions out of a total of 40 were removed from analysis. These sessions 

removed included data collections at the gymnasium, the residential home, or both. 

Appendix B17 presents a list of the data collection sessions included in the MIT energy 

expenditure dataset. A data collection session was eliminated if any of the activities 

performed (during the data collection), presented an energy expenditure value below 

~40% of the values observed for other participants or with respect to the Compendium of 

Physical Activities. All sessions were removed before performing any of the experiments 

presented in this work. The new dataset created after eliminating the sessions with low 

readings is referred as the MIT energy expenditure dataset, and contains data for 16 

different subjects. Table 4-2 presents the characteristics of the 16 subjects included in the 

MIT energy expenditure dataset. Appendix B16 presents the average energy expenditure 

(in METs and Kcal/min) and average heart rate per activity when non-steady state data is 

eliminated and when it is not.  
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5 Evaluation 

This section presents a summary of the standard quantitative measures in which activity 

recognition and energy estimation algorithms are commonly evaluated. Useful evaluation 

measures that are important to consider but are usually neglected when evaluating the 

algorithms are discussed. The measures used to evaluate the algorithms developed in this 

work are introduced, and the section discusses why is it difficult to compare results 

obtained with different algorithms developed in previous work and what will be 

considered to be a ―good‖ result in this thesis. 

5.1 Reporting and Analyzing Activity Recognition Results 

This section explains what performance measures will be used to evaluate the activity 

recognition algorithms developed in this work and why. 

 

5.1.1  Standard Quantitative Measures  

Activity recognition algorithms are often evaluated based on how well they recognize all 

the target activities of interest with respect to overall standard performance measures. 

Such measures might include accuracy, true positive rate, false positive rate, true 

negative rate, false negative rate, precision, recall, F-Measure, area under ROC curve, 

and some others recently introduced [224, 225]. Appendix A1 presents a brief description 

of some of these standard evaluation measures. However, even when improving the 

recognition over all of the activities of interest is important, overall improvements as 

represented by specific performance measures can be deceiving. For example, overall 

performance can increase even when the performance on some individual activities 

might, in fact, decrease. Furthermore, when improvements indeed occur over all or some 

activities without affecting performance on others, these improvements can be so small 

(e.g. 95.5% over 94.2% accuracy) that the increase in the complexity of the algorithm 

might not justify the improvement obtained. Consequently, it can be argued that epsilon 

improvements in overall performance do not necessarily represent significant 

improvements over results obtained with previously developed algorithms unless the new 

algorithms provide some other benefit, such as faster run-time or training performance or 

better interactive training potential.  

The target domain dictates the relative importance of recognizing particular activities. 

For example, an algorithm might improve the recognition accuracy of ascending stairs 

which might allow better differentiation between walking and ascending stairs. This 

improved differentiation might be considered a strong result by exercise physiologists 

interested in estimating energy expenditure during free living given the significantly 

different energy expenditure costs associated with these activities.  

Therefore, the algorithms developed in this work will be evaluated by (1) paying 

special attention to the individual performance on activities and classes of activities that 

are considered important for the medical community (e.g. cycling, ascending/descending 
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stairs, postures, moderate intensity, among others) and (2) utilizing other important 

evaluation measures commonly neglected while evaluating results in previous work. 

 

5.1.2  Neglected Performance Measures  

The end goal of this work is to move towards a consumer-based system for helping 

people measure and motivate behavior changes. Therefore, factors beyond recognition 

accuracy must be considered. Additional dimensions along which algorithms can be 

evaluated are briefly explained below.   

 

5.1.2.1 Complexity of the Activities to Recognize  

 

Algorithms can be evaluated based on the complexity of the activities they recognize. 

The complexity of activities can vary depending on the number of activities, the types of 

activities, and the complexity of the training data collected for those activities (e.g. lab vs. 

free-living). It is extremely important to consider the complexity of the activities being 

studied when evaluating algorithms, because by carefully picking the number of 

activities, the types of activities, and the data collection method, excellent results can be 

obtained by many classification algorithms. 

 

 Number of activities to recognize: Recognizing five activities is easier than 

recognizing twenty or fifty activities. As the number of activities increases, the 

classifier has to learn how to discriminate among a larger set of activities, which is 

usually harder. Discrimination is also harder if activities are ―similar‖ to one 

another. In this work the recognition rate as compared to chance is listed when 

reporting all results.  

 Complexity of the types of activities to recognize: Activities that are static in nature 

such as postures (e.g. lying down and standing still), are easier to recognize than 

activities that are periodic in nature such as running and cycling. Furthermore, 

activities that involve different intensity levels (e.g. running at 4mph vs. running at 

5mph) are also harder to recognize because of their motion similarity and therefore 

similarity in the feature space. Likewise, activities involving highly unconstrained 

motions impacted by objects in the environment such as cleaning and making the 

bed are more difficult to recognize than periodic activities when only accelerometer 

data from limb motion is available.   

 Complexity of the training data collected for the activities: Activities for which 

training and test data is collected in laboratory settings are usually easier to 

recognize than activities for which training and test data is collected during free-

living conditions. Subjects will usually behave differently and in less constrained 

ways outside of formal laboratory settings. This work utilizes data collected for 52 

activities at a gym during relatively controlled conditions (since exercise equipment 

such as a treadmill, cycling machine, etc was utilized) and from a residential home 

during less controlled conditions. It can be argued that this is a relatively complex 

dataset containing a large set of activities. However, direct observation was utilized 

during both data collections to acquire the labels of the activities being performed 



 81 

by participants. Thus, the results presented in this thesis would require validation 

over datasets collected when direct observation is not utilized. 

 

In this work, the performance of the activity recognition algorithms will be evaluated on 

different subsets of activities, ranging from relatively easy (postures in a gym) to difficult 

(cleaning activities collect in a home setting).  First, a worse-case scenario of activity 

recognition complexity will be used when selecting the parameters of the recognition 

algorithm (e.g. classifier, window length, features, etc). This worse-case scenario consists 

of recognizing 52 different activities, 26 of which have different intensity levels and 18 

of them include examples of the unconstrained motion found in household activities. 

Once the parameters are selected, the recognition performance of the algorithm will be 

evaluated on various groups of activities. First, the algorithm will be evaluated by only 

recognizing postures. Then, it will be evaluated on postures and ambulation, then on 

exercise activities with different intensity levels (periodic motion), and finally for 

household activities (unconstrained motion). The algorithm will also be evaluated when 

recognizing all the activities but without differentiating among activities containing 

different intensity levels. The datasets on which the algorithms are evaluated were 

collected in both (1) relatively controlled laboratory conditions and (2) less controlled 

free-living conditions. To the best of the author knowledge, the dataset collected for this 

work is larger and more complex that other datasets used in activity recognition studies 

published to date.  

 

5.1.2.2 Training Data Requirements of an Algorithm  

 

Algorithms can also be evaluated based on the type of training data available (e.g. subject 

dependent vs. independent) and the amount of training data that they require.  

 

 Subject independent recognition of activities: Ideally, an activity recognition 

algorithm would be trained on a given subject population and then recognize 

activities accurately on unseen populations without requiring further person-specific 

training data. Unfortunately, previous work (e.g. [38]) strongly suggests that subject 

independent recognition of activities is difficult to achieve for diverse sets of 

activities due to the high variability in the way that individuals perform activities. 

Body type can also impact sensor readings (e.g., hip sensors at different angles of 

tilt due to body shape).   

 Amount of training data required for subject dependent recognition of activities: In 

general, previous work on activity recognition suggests that algorithms will perform 

better with more person-specific training data. For many activities, providing this 

data can be time consuming and burdensome, so ideally training data requirements 

would be kept to a minimum. For example, an algorithm that takes only 1min to 

train might allow end-users to iteratively test and perhaps improve the recognition 

of poorly recognized activities by providing more training examples in-situ. 

Algorithms with long training times (e.g. several hours or days) might exhaust end-

user‘s patience while subject dependent training is required. 
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This work will evaluate the performance of the algorithms developed using subject 

independent and subject dependent training. The differences in performance using both 

training methods will be reported overall and per activity. Moreover, the training data 

requirements for subject dependent training will also be evaluated by training the 

algorithms using different amounts of training data to determine the minimum amount 

required to obtain good recognition performance.    

 

5.1.2.3 Sensor Data Requirements of the Algorithm 

 

The number of sensors required to recognize activities, the types of sensors used, and 

their location on the human body can also dramatically impact algorithm performance:  

 

 Number of sensors required to recognize activities: Algorithms that recognize 

activities from a small set of sensors are easier to use in real-world applications and 

have lower computational requirements (since fewer sensor signals need to be 

analyzed) than algorithms that use large sets of sensors. Fewer sensors usually mean 

the technology can be deployed more affordably.  

 Intrusiveness of the sensors required to recognize activities: A recognition 

algorithm that requires sensors such as ECG or EMG monitors that must be 

inconveniently stuck on the body may be perceived as more difficult to use, more 

uncomfortable, and more of a burden than an algorithm that uses sensors such as 

accelerometers that can be easily and comfortably slipped on the body.   

 Location of the sensors required to recognize activities: Sensors worn at socially 

accepted and comfortable locations on the body are more likely to be used for 

longer periods of time. Sensors that might be integrated into existing clothing or 

devices already worn (watches, shoes) and carried (phones) are preferable.    

 

This thesis will evaluate tradeoffs between different types (e.g. accelerometers vs. heart 

rate monitors), numbers, and locations of sensors to determine sets of sensors to use that 

provide good recognition with minimal usability burden.  

 

5.1.2.4 Usability Factors Imposed by an Algorithm 

 

Some other usability factors in addition to usage comfort of the sensors and training time 

requirements of the algorithm are: 

 

 Real-time recognition of activities: An algorithm capable of recognizing activities 

in real-time, particularly from hand-held devices such as mobile phones, would 

permit many new health interventions using just-in-time feedback to be created 

[28].  

 Real-time recognition delay (lag): Some real-time recognition algorithms introduce 

lag between activity occurrence and detection. Shorter recognition delays may 

allow for better point of decision interventions.  
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This work will analyze the usability factor imposed by the activity recognition algorithm 

carefully, since one of the main goals of this work is to develop an algorithm amenable 

for longitudinal use during free-living. First, it will be determined if reasonable 

recognition of activities can be obtained using classifiers suitable for real-time 

performance in low-processing power devices such as mobile phones. Secondly, it will be 

decided if subject independent recognition of activities is possible with reasonable 

performance. If not, the training data and training time requirements of the algorithm will 

be evaluated in a subject dependent manner. Experiments will also be conducted to find 

the minimum number of least intrusive sensors to wear and their more comfortable 

location on the human body.  

 

5.1.3  Comparison Challenges  

In general, it is difficult to compare the performance of newly developed algorithms with 

respect to the performance obtained by algorithms in previous work. This is because 

different pieces of work explore different types and numbers of activities, datasets are 

collected from different subject populations under different conditions (e.g. lab vs. non-

lab), and the duration of the data collections is different (activity examples have different 

lengths). 

For example, Table 5-1 presents the comparison of two state-of-the-art activity 

recognition algorithms: The work by Bao and Intille [38] and the work by Lester et al. 

[37]. The work by Bao and Intille is one of the first pieces of work to explore a relatively 

large set of activities (20) collected from a large number of subjects (20) during semi-

naturalistic and controlled conditions. The algorithm presented recognizes activities from 

up to five accelerometers and is evaluated using subject dependent and subject 

independent training. Moreover, experiments are performed to determine the minimum 

set of sensors with best performance and their locations on the human body. One of the 

main finding is that an accuracy of 81% can be obtained for a complex set of activities 

(postures, ambulation, and household activities) using only two sensors located at the 

thigh and the wrist. The work also indicates that some activities are well recognized using 

subject independent training but others do appear to require subject dependent training. 

The work by Lester et al. explores the recognition of ten activities from eight sensor types 

located at the shoulder. The algorithm is evaluated on the data collected from two 

subjects during everyday naturalistic conditions. Their main finding is that using different 

sensor types at a single location can offset the need to place sensors at different locations, 

making the system easier to use and wear. The algorithm developed is a complex 

combination of discriminative classifiers (e.g. a modified version of AdaBoost) and 

generative classifiers (hidden Markov Models). The work obtains a final recognition 

accuracy of 95% while recognizing ten activities involving mainly postures and 

ambulation. 

From Table 5-1, it can be seen that comparing these two activity recognition 

algorithms is a complex task. Some of the performance dimensions were not evaluated, 

the number of activities explored and their complexity is different, and the datasets were 

collected under different conditions. As a result, it is challenging to determine what a 

meaningful  
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Performance Dimension Bao and Intille ‟04 ([38]) Lester et al. ‟05 ([37]) 

Overall performance Yes ( 84% accuracy) Yes (95% accuracy) 

Performance per activity Yes (True positive rate) Yes (precision and recall) 

Complexity of activities to recognize   

    Number of activities 20 10 

    Complexity of activity type Activities included Postures (static), 

ambulation (periodic), and household 

activities (unconstrained motion). 

Activities included Postures (static) and 

ambulation (periodic) 

    Complexity of training/testing data 20 subjects, data collected under semi-

naturalistic and controlled conditions, data 

collection boards did not restrict subject‘s 
movement. 33 hours of total data with an 

average of 2.6min of data per activity. 

2 subjects, 12 hours of total data 

collected under naturalistic conditions. 

On average, one hour of data per 
activity. 

Training data requirements   

    Subject independent recognition Yes Yes 

    Subject dependent recognition Yes No 

    Amount of training data required No No 

Sensor data requirements   

    Number of sensors Five biaxial accelerometers located at hip, 

wrist, arm, ankle and thigh 

Eight sensors located on the shoulder: a 

triaxial accelerometer, microphone, 
IR/Visible light, high frequency light, 

barometric pressure, humidity, 

temperature and compass. 

    Intrusiveness of sensors Yes (only unobtrusive sensors used) Yes (only unobtrusive sensors used) 

    Location of sensors Yes, accelerometers at thigh and wrist 

achieved best performance 

No 

Usability   

    Comfort Analysis performed to determine best 
sensor location but data collection boards 

are bulky and heavy. 

Yes, only sensors at a single location 
(shoulder) are used. No analysis on 

multiple locations is performed though. 

    Training data requirements No No 

    Training time requirements No No 

    Real-time performance No (offline analysis only) No (offline analysis only) 

    Real-time classification delay No (offline analysis only) No (offline analysis only) 

    Interpretability of recognizer No No 

    Ability to fix errors No No 

    Cost No No 

Table 5-1: Comparison of two state-of-the-art activity recognition algorithms along all the 

performance dimensions discussed in Sections 5.1.1 and 5.1.2. The comparison is difficult, and it is 

not clear what algorithm would perform better under similar conditions. 

 

improvement is over these works when only considering one of the performance 

dimensions (e.g. overall accuracy).    

 

5.1.4  Comparison Strategy in this Work  

In this work, the activity recognition algorithms will be evaluated across all the 

performance dimensions discussed in Sections 5.1.1 and 5.1.2. The experiments 

performed will mostly be used to compare incrementally to previous results obtained in 

this work, particularly when selecting the parameters (e.g. classifier, window length, 

features) of the recognition algorithm. The goal is to converge on a functional system that 

is balanced in all dimensions as much as possible, where testing is done on a relatively 

large and complex set of activities relative to past work. Where possible, comparisons 

will be made against results presented in previous work by other authors, but they will be 

presented cautiously given how challenging this task is as explained in the previous 

section.  
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This work will utilize the following performance measures that can be computed from 

the confusion matrix to evaluate recognition algorithms: overall accuracy, true positive 

rate per activity, false positive rate per activity, F-Measure per activity, and the confusion 

matrix itself. These standard performance measures are briefly explained in Appendix 

A1. Furthermore, the results presented in each experiment will be clustered based on 

activity categories that are useful for interpreting the results. These categories are: (1) 

postures, (2) ambulation, (3) exercise activity, (4) resistance exercise activity, and (5) 

household activity. Appendix A2 explains what activities are considered under each 

clustering category. As stated in the previous sections, subject dependent and 

independent evaluation will be performed when necessary. 

Based on the results obtained in previous work, this work will consider a good result to 

recognize the set of 52 activities contained in the MIT dataset with overall accuracies 

equal or greater than 80% in a subject dependent, or even better, independent manner. 

Another strong result would be to recognize the activities from only one or two sensors, 

with an overall decrease in accuracy of less than 5% and no significant decrease in 

performance per activity. Under the same conditions (number of activities, types of 

activities, number of subjects, number of sensors, evaluation criteria, etc), this work will 

also consider an overall performance improvement of 15% or greater as significant 

improvement over previous work provided that the complexity of the algorithms is 

comparable or even lower.  

5.2 Reporting and Analyzing Energy Estimation Results 

The same evaluation dimensions discussed in the previous section can also be used to 

evaluate the performance of energy expenditure estimation algorithms. However, there 

are four main differences with respect to evaluating activity recognition algorithms: (1) 

The performance measures used are different since energy estimation involves numeric 

prediction, (2) there is less agreement in the literature on which performance measures to 

use while reporting results, (3) results presented are more difficult to compare against one 

another since energy expenditure can be predicted as net energy or gross energy and 

reported in different units (e.g. Kcal/Min, METs), and (4) most previous work has been 

done on data collected at a laboratory from few activities (usually walking and running 

on a treadmill) under steady-state assumption of energy expenditure. 

 

5.2.1 Standard Quantitative Measures  

Energy expenditure estimation algorithms can be evaluated by comparing two numeric 

values: the ground truth energy expenditure values acquired usually from an indirect 

calorimeter and the predicted energy expenditure values estimated by the algorithm from 

the sensor data. In this scenario, errors can occur due to erroneous readings from the 

indirect calorimeter itself and the estimation errors performed by the algorithm. The 

errors produced by the estimation algorithm can be evaluated by computing the 

difference (error) between the calorimeter values and the predicted values according to a 

performance measure. However, there is little agreement as to which error measures to 

use to report results in the literature. For example, some of the most often used error 
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measures are: root mean squared error (RMSE), standard error of the estimate (SEE), 

Pearl‘s correlation coefficient ( r ), squared Pearl‘s correlation coefficient ( 2r ), mean 

absolute error (MAE), maximum absolute error deviation (MAED), relative absolute 

error (RAE), root relative squared error (RRSE), percentage difference, difference in total 

energy expenditure, and mean error scores, among others. Often, scatter plots and Bland-

Altman plots are also used to present the results. This makes comparison of existing and 

previous work difficult, as explained in the next section.  

 

5.2.2  Neglected Measures   

The same performance dimensions used to evaluate activity recognition algorithms can 

be used to evaluate energy expenditure estimation algorithms. However, one important 

difference with respect to activity recognition is that most previous work in estimating 

energy expenditure from wearable sensors has been performed over data collected at the 

laboratory from a limited set of activities. Algorithms in prior work have most often been 

trained and tested using data collected from treadmill activities such as walking and 

running at different speeds. The datasets may not reflect the variations found in other 

exercise or lifestyle activities. Consequently, it is no surprise that regression models 

trained only on these activities  have been found to slightly overestimate the energy cost 

of walking and light activities and greatly underestimate the energy expenditure 

associated with moderate-intensity lifestyle activities [200]. There are few exceptions to 

this trend of training and testing algorithms on treadmill activities [34, 152]. In work by 

[34], models were trained over data collected for 18 activities from 20 subjects and in a 

work by [152], data was collected for 12 activities over nearly 24hours for 102 subjects.  

Another potential limitation of previous work in energy expenditure estimation is that 

the regression models are usually trained assuming steady-state energy expenditure 

conditions. That is, researchers eliminate the periods of time in which energy expenditure 

is not in steady state before training and testing the algorithms. Steady-state is usually 

defined as a coefficient of variation (CV) of less or equal to 5 or 10% computed over 

windows of 1-5mins [47]. Another common practice is to ignore 30 to 40% of the data 

located at the beginning and/or end of each activity to eliminate non-steady state 

conditions. This may be problematic because energy expenditure might not reach steady-

state conditions during free-living. Figure 5-1a shows real energy expenditure data 

collected from subject MIT-001 performing 32 activities at a gymnasium. It can be seen 

that energy expenditure reaches steady state at the end of most periodic activities such as 

walking, running, cycling, and rowing, but it never reaches steady state for some 

physically demanding activities such ascending stairs and calisthenics activities. Figure 

5-1b shows the same energy expenditure data with non-steady state periods eliminated 

(30% of the beginning of each activity eliminated) and Figure 5-1c the same data 

concatenated. What is more, Figure 5-1c also shows the data corresponding to walking 

and running at different speeds highlighted in red, which would normally be the only data 

used to train and test energy expenditure estimation algorithms. Finally, Figure 5-1d 

shows the energy expenditure data collected over more naturalistic conditions while the 

same subject performs 19 activities in a real home for three hours. It can be clearly seen 

that energy expenditure almost never reaches the steady state condition.  



 87 

 
Figure 5-1: Energy expenditure data collected using the Cosmed K4b2 indirect calorimeter from 

subject MIT-001. (a) data collected at the gymnasium from 32 activities (b) same gym data with non-

steady-state data eliminated and treadmill activities highlighted in red, (c) same data when non-

steady-state data has been eliminated and the remaining data has been concatenated (note that in this 

plot, the time axis has a different scale than for plot a and b) and (d) energy expenditure data 

collected in a real home while performing 19 activities. 
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5.2.3  Comparison Challenges  

Comparing the performance of energy expenditure estimation algorithms is even more 

difficult than comparing activity recognition results for three reasons: (1) There is less 

agreement in the literature on which performance measures to use while reporting results 

as explained in Section 5.2.1, (2) energy expenditure can be predicted as net energy or 

gross energy expenditure, and (3) the results can be reported in different units (e.g. 

Kcal/min, METs). 

Energy expenditure can be estimated either as net energy expenditure or gross energy. 

gross energy expenditure is the total energy expended by the body at any given time and 

is composed of resting energy expenditure and kinetic energy expenditure (due to body 

motion). Net energy expenditure corresponds only to the kinetic energy or energy spent 

during actual motion. Thus, it can be estimated from gross energy by subtracting the 

resting metabolic rate (resting energy). Consequently, energy expenditure estimation 

algorithms that estimate net energy cannot be directly compared to algorithms that 

estimate gross energy expenditure easily unless resting metabolic rate is known. Another 

factor that complicates comparison across algorithms is that energy expenditure can be 

predicted and reported in different units. For example, most algorithms that include 

subject characteristics (e.g. gender, weight, and age) in their regression equations to 

compensate for variations across subjects report energy expenditure in Kcal/Min. Other 

algorithms try to reduce the impact of differences across subjects by predicting energy 

expenditure in units that are normalized with respect to one or some subject 

characteristics (e.g. weight) such as METs (35 ml of oxygen per kg per min).  Conversion 

between values therefore requires knowledge of subject characteristics that are usually 

reported using summarization statistics over groups of subjects (e.g. means and standard 

deviations) in the literature. 

Table 5-54 shows a summary of the most recent state-of-the-art work in energy 

expenditure estimation algorithms. From the results column in this table, it can be seen 

how difficult it is to compare results across different pieces of work. Some results are 

presented using different performance measures such as SEE, MAED, MAE, RMSE, r, 

r
2
, and reported in different units such as METs, Kcal/min, and Kcal. Furthermore, some 

of these pieces of work do not provide the necessary data to convert among different 

units. Consequently, this work will primarily compare the results obtained by 

experimenting with different regression algorithms, feature sets, and sliding window 

lengths incrementally over the dataset collected for this work during the development of 

the final algorithm. When possible, results will be compared against results obtained in 

previous work, but this will be avoided as much as possible given the difficulty of doing 

so as explained in this section.  

 

5.2.4  Comparison Strategy in this Work  

In this work, the energy expenditure estimation algorithms will be evaluated across all the 

performance dimensions discussed in Sections 5.2.1 and 5.2.2. In addition, the following 

error measures will be used while evaluating the energy expenditure estimation 

algorithms: the root mean squared error or standard error of the estimate (RMSE or SEE), 

Pearl‘s correlation coefficient ( r ), mean absolute error (MAE), and maximum absolute  
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error deviation (MAED). Appendix B1 presents a brief description of each of these 

measures and the formulas for computing them. Special attention will be put in 

improving the energy expenditure estimation for some activities whose energy 

expenditure estimation has proven difficult in previous work and that are important for 

the medical community. Some examples of these activities include lower body activities 

such as cycling and sitting fidgeting feet and legs, and upper body activities such as bicep 

curls, bench weight lifting, doing dishes, washing windows, and scrubbing surfaces. The 

experiments are performed incrementally, where parameters are selected (e.g. regression 

algorithm, feature set, sliding window length) based on improvement over prior results on 

the same dataset. The goal of this systematic procedure is to converge on a system that is 

balanced in all dimensions.  

This work will compare the performance of accelerometers and a Polar heart rate 

monitor to determine if one modality or the combined modalities provide the best 

performance. Recent work [152] suggests that energy expenditure estimation can be 

improved by (1) computing features over the raw accelerometer data and (2) utilizing 

non-linear regression models such as neural networks to perform the estimation. 

However, an open question is which of these two steps contributes the most to the 

improvement of energy expenditure estimation. Thus, this work will compute a large set 

of features over the accelerometer and heart rate data and evaluate the performance over 

subsets of those features using linear regression and non-linear regression algorithms. 

The work will also evaluate the performance of different subsets of accelerometers worn 

at different body locations to find a reasonable compromise set of sensors that enable 

good EE estimation without undue subject burden. Most previous work on energy 

expenditure estimation provides estimates over sliding windows of one minute. 

Intuitively, one might expect that better results and smaller real-time estimation delays 

can be obtained by utilizing smaller window lengths [34, 180]. As a result, this work will 

evaluate the impact of estimating energy expenditure over shorter windows of time to 

determine if they provide better performance and shorter estimation delays. State-of-the-

art work in estimating energy expenditure [34, 96] also suggests that activity dependent 

regression models might be required to improve energy expenditure estimation. 

Therefore, this work will evaluate the performance of estimating energy expenditure by 

creating regression models that depend on the activity being performed. Section 5.6.1 

will later explore some of the latest results obtained in recent work when accelerometer 

and heart rate data is utilized to estimate energy expenditure. The section will also 

discuss what might be considered a good result with respect to prior work.  

5.3 Training Procedures and Assumptions 

This section presents the training and testing procedures used to evaluate the performance 

of the activity recognition and energy expenditure algorithms in this work. The section 

also explains some of the assumptions made during the evaluation of the algorithms. 
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5.3.1  Subject Dependent Evaluation 

One way to test algorithms on relatively small datasets of examples is using 10-fold 

stratified cross-validation [226]. For subject dependent evaluation, cross validation was 

performed over each subject‘s data and the results obtained were averaged over all the 

subjects. This training/testing technique gives an idea of how well the algorithm 

recognizes activities or estimate energy expenditure when subjects provide 2-4min of 

example data for each activity to train the algorithm. The use of 10-fold stratified cross-

validation was chosen because previous work suggests that 10 is a reasonable number of 

folds to use to evaluate the performance classifiers and regression algorithms [226]. This 

technique is known as individual calibration (IC) in the medical literature. 

 

5.3.2  Subject Independent Evaluation 

Ideally, an algorithm that recognizes activities or estimates energy expenditure would not 

require training data from a particular individual; instead it would use a corpus of training 

data acquired in advance from other individuals. To evaluate if subject-independent 

training is possible, the algorithms were trained with the data of all the subjects but one 

and tested the performance on the left-out subject. This procedure was repeated for all the 

subjects and the results were averaged.  This technique is also known as group calibration 

(GC) in the medical community. 

 

5.3.3  The Addition of the Garbage or Unknown Class 

It is a common practice in the activity recognition field to include an additional class 

called the garbage, zero or unknown class to the activities or classes of interest that 

contains all the periods of time with no associated labels during the data collection. The 

addition of this class is believed to provide a more realistic evaluation of the activity 

recognition algorithms because the classifier has to discriminate between the actual 

activities of interest and periods of time where the subject performs activities that are not 

relevant. In some cases, however, when the classes or activities of interest are mutually 

exclusive, the addition of the garbage class damages the classification performance 

because it can include examples of the activities of interest that were not labeled during 

the data collection. In this work, in an attempt to evaluate the algorithms in the most 

realistic conditions, the garbage class was added to many experiments even though the set 

of activities explored in this work is mutually exclusive.  

 

5.3.4  Transitions Between Activities 

Transitions between activities are particularly problematic when (1) utilizing heart rate 

data to recognize activities and (2) when estimating energy expenditure. The reason is 

that heart rate and energy expenditure are not stable during the beginning and end of 

activities. This is particularly true for physically demanding activities such as ascending 

stairs and performing sit-ups, where heart rate and energy expenditure keep increasing 

over time and steady-state conditions are almost never reached. Moreover, heart rate and 
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energy expenditure can remain altered for relatively long periods of time once physically 

demanding activities have been finished. As a result, there is high variability in the 

features computed over heart rate data that might be difficult to model by the recognition 

algorithms. Similarly, standing still might exhibit different levels of energy expenditure 

depending if someone was previously sitting on a chair or running on a treadmill at 

5mph. In this work, the accelerometer and heart rate data associated with non-steady-state 

energy expenditure were not eliminated during the training and testing of energy 

expenditure estimation algorithms in an effort to make the evaluation as realistic as 

possible.  

 

5.3.5  Assumption Made During the Estimation of Energy Expenditure  

This work makes the assumption that energy expenditure may not reach steady state for a 

particular activity. In other words, segments of data were ground truth energy expenditure 

did not reach steady state are not eliminated from the training data. This assumption is 

opposite and more realistic than the steady-state assumption normally made by the 

medical community while estimating energy expenditure. Using this assumption, the 

energy expenditure algorithms presented in this work are tested over worst case scenario 

conditions. Furthermore, if non-steady state data were to be eliminated, performance of 

the algorithms presented would most likely increase due to a reduction in the complexity 

of the data. The algorithms developed to estimate energy expenditure predict gross 

energy expenditure. This means that the algorithms developed produce energy 

expenditure estimates for sedentary activities involving no motion.  That is, the energy 

expenditure algorithms estimate resting metabolic rate (energy expenditure values close 

to ~1MET) when no motion is observed for a given activity. Finally, energy expenditure 

is predicted in METs and not in Kcal/min or other unit of energy. This is because MET 

units reduce inter-individual variations by normalizing energy expenditure with respect to 

the weight of the participants. 

 

5.4 Activity Recognition algorithm Experiments 

In general, it is not possible to optimize all aspects (parameters) of an algorithm at once. 

Consequently, this section presents a set of systematic experiments to determine the 

classifier, signal processing techniques, sliding window length, and feature set to utilize 

in order to select a reasonable and practical set of parameters to achieve real-time 

performance. The section also presents experiments to determine the minimum set of 

sensors to use, the impact on recognition rates of adding heart rate monitoring, and where 

accelerometers they be worn on the human body to maximize usage comfort and 

performance. The experiments are organized so that each answers a relevant question 

about the algorithm parameters incrementally, starting from the most restrictive 

parameters (e.g. classifier, feature set) to the least restrictive parameters (sensor modality 

and location). In each case, decisions are made that will support both good recognition 

rates and real-time performance.   
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The experiments in general will be performed under a worse-case activity recognition 

scenario where the algorithm has to discriminate among the 51 activities contained in the 

MIT dataset.  Furthermore, a garbage or unknown class is added containing all the 

unlabeled segments of data in the MIT dataset. The addition of this class is a common 

procedure in the activity recognition community and is mainly used to allow the classifier 

to distinguish between activities of interest and random activities that might be contained 

in a dataset or performed by the subject in real-life. However, the unknown class might 

contain examples of the activities of interest that were just not labeled during the data 

collection that might damage the classification performance. In the experiments presented 

in this section, the addition of the unknown class has the sole purpose of evaluating the 

recognition algorithms under worse-case scenario conditions. In summary, the 

experiments performed can be assumed to be worse-case activity recognition conditions 

due to the following facts: (1) The large number of activities (52) to recognize, (2) the 

inclusion of 26 activities with different intensity levels, (3) the inclusion of 18 household 

activities containing examples of unconstrained motion, (4) the inclusion of a garbage 

class (unknown activity) containing all the time periods with no associated activity labels, 

and (5) the attempt to recognize all activities in a subject independent manner (which is 

more challenging that recognizing activities in a subject dependent manner). 

The results presented in this section will be also clustered under activity categories that 

are helpful while analyzing the results. These activity categories are: Postures, 

ambulation, exercise, resistance exercise, and household activities. All the activities 

explored in this work are assumed to be mutually exclusive. 

Finally, all the experiments presented in this section utilize the following signal 

preprocessing and segmentation strategies: 

 

5.4.1  Cubic Spline Interpolation 

Since wireless accelerometer are used to collect the human motion information, 

acceleration samples (sensor values) can be lost during wireless transmission (from the 

sensing nodes on the body to the wireless receiver) due to environmental noise or body 

blocking of the signals (i.e. blocking of signal due to the high water content of the human 

body). Consequently, interpolation of the signal is required to fill out the missing sensor 

values (samples). This work utilizes cubic spline interpolation to fill out samples lost 

during wireless transmission when the number of total samples lost is less than 20% of 

the number of samples contained in a given window. If the number of samples lost is 

greater than 20%, the total window of data is discarded since there is not enough 

information to interpolate the signal reliably. The threshold of 20% was chosen after 

visualizing the results of interpolating the signal when different percentages of samples 

are lost. The signal quality after interpolation when 20% of the samples are lost is of 

reasonable quality. Larger thresholds tend to distort the signal shape and quality.   

 

5.4.2  Band-pass and Low-pass Filtering of Accelerometer Signals 

Once the accelerometer signals are interpolated, their information is separated into 

motion and posture information by applying a band-pass filter between the frequencies of  
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Band-Pass Chebyshev Type I IIR Filter 

Parameters 

Value Low-Pass Equiripple FIR Filter 

Parameters 

Value 

Sampling Frequency (Fs) 45 Sampling Frequency (Fs) 45 

First Stopband Frequency 0.1 Filter Order 10 

First Passband Frequency 0.2 Passband Frequency (Fpass) 1 

Second Passband Frequency 18 Stopband Frequency (Fstop) 5 

Second Stopband Frequency 20 Passband Weight (Wpass) 1 

First Stopband Attenuation (dB) 60 Stopband Weight (Wstop) 1 

Second Stopband Attenuation (dB) 80 Density factor (dens) 20 

Passband Ripple (dB) 1   

Table 5-2: Parameters used in the design of the Band-Pass Chebyshev Type I infinite impulse 

response (IIR) Filter  designed to filter the accelerometer signals between 0.1 and 20Hz and the 

equiripple low-pass finite impulse response filter  (FIR) designed to filter the accelerometer signals 

below 1Hz. All frequency values are in Hz. 

 

0.1 to 20Hz and a low-pass filter with a cutoff frequency of 1Hz respectively. Band-pass 

filtering the signal between 0.1 and 20Hz has to goals: (1) to eliminate the static 

acceleration or DC component of the signal that captures posture information about the 

orientation of the sensor with respect to ground (<0.1Hz) and (2) to eliminate the signal 

components generated by non-human motion and high frequency noise (>20Hz). Low-

pass filtering at a cutoff frequency of 1Hz has the opposite purpose: To eliminate most of 

the signal generated by dynamic human motion and to preserve the information generated 

by static human motion or posture information. Again, this information is represented by 

the DC component of the accelerometer signal. The band-pass filter applied is a 

Chebyshev Type I infinite impulse response filter (IIR) designed using the CHEBY1 

MATLAB [227] function and also re-implemented in Java. The low-pass filter applied is 

an equiripple finite impulse response filter (FIR) designed using the FIRPM function in 

MATLAB and re-implemented in Java. Table 5-2 shows the design parameters of the 

filters. The reason why motion and posture information are separated by applying these 

filters is that different types of features will be computed over these two signals to better 

capture the motion and posture information. Appendix A3 presents the list of features 

explored in this work and a brief explanation on how they are computed. The prefix 

―AC‖ in the features indicates they were computed over the band-pass filtered 

accelerometer signal and the prefix ―DC‖ indicates that they were computed over the 

low-pass filtered accelerometer signal. 

 

5.4.3  Non-overlapping Sliding Windows Segmentation 

After the accelerometer signals have been interpolated and filtered, they are segmented 

into non-overlapping sliding windows. This segmentation consists in simply partitioning 

the acceleration signal into consecutive windows of fixed length. For most experiments, 

the window length used is 5.6s since it is the optimal window length found as explained 

in Section 5.4.6. The use of non-overlapping sliding windows was preferred over 50% 

overlapping windows, a common applied segmentation technique while recognizing 

activities from accelerometer data, because of its lower computational requirements since 

half of the classifications are required for real-time performance. 
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Classifier Classifier Description Parameters Ref 

Nearest 

Neighbor 

 (NN) 

A memory-based classifier with a non-linear decision boundary 

that classifies examples based on their similarity with the 
training data.  New data points are classified by simply 

returning the class of the closest training point. 

 

Nearest neighbors classifier with no 

distance weighing, the Euclidean 
distance as similarity function, and 

brute-force linear search of 

neighbors.  
 

[228] 

Naïve 

Bayesian  

(NB) 

 

A generative probabilistic classifier with a linear decision 

boundary. Experimental testing has demonstrated that naive 

Bayes networks are surprisingly good classifiers on some 
problem domains, despite their strict independence assumptions 

between attributes and the class. 

Naïve Bayes classifier using a one 

dimensional continuous Gaussian 

distribution (,) per feature per 
class. Prior distributions are learned 

from the data. 

[229] 

LogitBoost 

 

A Boosting algorithm based on the log likelihood-loss and 

Newton optimization. LogitBoost is a statistical version of 
AdaBoost, of one of the most successful boosting algorithms, 

that has been found to perform better in more realistic and 

noisier datasets. LogitBoost produces more accurate classifiers 
from a sequence of base weak classifiers learned iteratively 

from reweighed versions of the original data. During each 

iteration, the weight of instances difficult to classify is 

increased. Consequently, weak classifiers learned later in the 

process focus their classification effort on examples that have 

been found difficult to classify in previous iterations. 

LogitBoost with decision stumps 

(decision trees with two leaf nodes) 
as base classifiers, with 10 boosting 

iterations, shrinkage set to 1.0, a 

weight threshold of 100, likelihood 
threshold of -1.79E308 and no 

resampling.     

 

  

[215] 

 

C4.5 

 

A state-of-the-art decision tree classifier with non-linear 

decision boundaries that are parallel to the features axis. The 

algorithm grows the decision tree one node at a time by 
selecting the best attribute to split on based on the information 

gain criterion. Once the tree is built, instances are classified by 

transversing the tree from the root to the corresponding leaf 
node that contains the example classification. 

C4.5 decision tree classifier using 

pruning with a confidence (certainty) 

factor of 25% (0.25), subtree rising 
when pruning, minimum of two 

instances per leaf, and no Laplace 

smoothing on leaves.  

[112] 

Table 5-3: Brief description of the classifiers explored in this section, their parameters used during 

the experiments presented in this section and references to papers describing them in full detail. 

 

5.4.4  Can Fast Run-Time Classifiers Produce Acceptable Performance? 

This section explores if classifiers amenable for real-time performance due to their fast 

training and classification times can achieve similar results than other popular or state-of-

the-art classifiers with longer training and classification times. The Weka toolkit [226] 

was used to compare the performance of the following classifiers: The nearest neighbor 

classifier (NN) [228], the Naïve Bayesian (NB) classifier [229], the LogitBoost classifier 

[215], and the C4.5 decision tree classifier [112]. The NN classifier was chosen because 

it is one of the oldest and most widely used algorithms in existence. The NB classifier 

because it is a probabilistic classifier that has been found to perform extremely well in a 

variety of realistic datasets despite its simplicity, the LogitBoost because it is a state-of-

the-art boosting algorithm that has been found to outperform AdaBoost (leading boosting 

algorithm) in a variety of classification tasks, and the C4.5 classifier for being one of the 

most popular decision tree classifiers due to its fast classification, high performance,  and 

the interpretability of the classification rules it generates. Table 5-3 presents a brief 

description of each of these classifiers and the values of their parameters used during the 

experiments. 

The performance and computational requirements of the classifiers shown in Table 5-4 

is tested under two extreme conditions: (1) a best-case scenario where a small set of 

features is needed to recognize the activities of interest, and (2) a worse-case scenario 

where a large set of features is required to recognize the activities. In the best case 

scenario, the classifiers were trained and tested using the ACAbsArea feature set 

computed over each of the three axis (x, y, and z) of the seven accelerometers giving a 
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 Feature Set NN  NB LogitBoost C4.5 

Total  training time 

(Average time per  instance) 

ACAbsArea 0.03s 

(7.8ms) 

0.8s 

(0.02ms) 

457s  

(11.1ms) 

 54s 

(1.3ms) 

Total classification time 

(Average time per instance) 

ACAbsArea 24s 
(11.3ms) 

1.3s 
(0.6ms) 

0.09s 
(0.04ms) 

0.14s 
(0.06ms) 

Total  training time 

(Average time per  instance) 

MaxAcceleration 0.8s 

(0.01ms) 

58s 

(1.4ms) 

33000s 

(816.7ms) 

1662s 

(40.6ms) 

Total classification time 

(Average time per instance) 

MaxAcceleration 2823s 

(1319.0ms) 

53s 

(25.1ms) 

0.16s 

(0.07ms) 

0.17s 

(0.08ms) 

Table 5-4: The total training time and classification times (in seconds) required to train the classifiers 

using the data from subjects MIT-002 to MIT-020 (19 subjects) and classify the activity examples of 

subject MIT-001. The features used are the ACAbsArea (21) and MaxAcceleration (247) computed 

over sliding windows of 5.6s.    

 

total of 21 features (Features used, such as ACAbsAreas are fully described in Appendix 

A3). In the worse-case scenario, the classifiers where evaluated by computing the 

following set of features per acceleration axis: ACAbsArea, DCArea, ACTotalAbsArea, 

DCMean, ACAbsMean, DCTotalMean, ACTotalSVM, ACRange, ACSegmentalforce, 

ACTotalSegmentalForce, ACVar, ACAbsCV, ACEnergy, ACEntropy, ACFFTPeaks, 

ACDomFreqRatio, ACBandEnergy, ACModVigEnergy, ACLowEnergy, ACCorr, ACKur, 

ACSkew, ACMCR, ACQ1, ACQ2, ACQ3, ACIQR, and ACPitch. This feature set is 

referred as the MaxAcceleration set and consists of a total of 247 features. Appendix A3 

presents the description of each of these features and how to compute them. 

Features are computed over sliding windows of 5.6s in length after interpolating and 

band-pass and low pass filtering the raw accelerometer signals as explained in Section 

5.4.2. Section 5.4.6 will later explain why this window length is a good one to use. The 

classifiers are attempting to discriminate among the 52 activities contained in the MIT 

dataset (including the unknown class) in a subject dependent and independent manner. 

This allows to testing the performance and computational requirements of the classifiers 

in a worse-case activity recognition scenario, as explained in the introduction. 

Since the main goal of this section is to identify the classifiers more amenable for real-

time performance, the section starts by discussing the training and testing time 

requirements of the classifiers. Table 5-4 presents the training and classification times (in 

milliseconds) required by the classifiers when recognizing the 52 activities contained in 

the MIT dataset using ACAbsArea and the  MaxAccelerationSet feature sets in a subject 

dependent and independent manner using a 1GHz Intel core microprocessor. The total 

training time shown is the time required to train the classifiers using the data from 

subjects MIT-002 to MIT-020 (19 subjects) and the total classification time is the time 

required to classify the activity examples of subject MIT-001. The average training and 

classification time per activity example is shown in parenthesis. 

From Table 5-4, it can be seen that the NN classifier achieves the lowest training times 

since training only requires the computation of a matrix containing the distances among 

all training examples. The classification times for the NN classifier however, are the 

longest ones from all the classifiers explored because every single example to classify has 

to be compared against all the examples available in the training data. When computing 

the MaxAcceleration, the NN classifier requires a classification time of 1.3s that might be 

unacceptable in some activity recognition applications. What is more, in order to work, 

the NN classifier requires storing in memory all the training examples available (46,216 

in the MIT dataset). This might be a limitation in handheld devices with limited RAM 
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memory such as existing mobile phones. Clearly in its current implementation, the NN 

algorithm is not too amenable for real-time performance in small mobile devices. The NB 

classifier has the second fastest training times from all the classifiers since training 

involves only computing the sample means and standard deviations over each feature per 

class. Its classification times are midrange, since they are 52 times faster than the NN 

classifier but 335 times slower than the classification times of the LogitBoost and C4.5 

classifiers when using the MaxAcceleration feature set. The classification model 

generated by the NB classifier requires to store in memory the parameters of a univariate 

Gaussian distribution for each of the features and for each of the classes. When using the 

MaxAcceleration feature set, the number of parameters is 25,688. Furthermore, 

classification of new examples using the NB classifier requires the evaluation of 12,844 

Gaussian distributions, a task that might prove difficult to achieve in low-processing 

power devices. The LogitBoost and C4.5 decision tree classifiers exhibit the fastest 

classification times from all the classifiers explored. This is because classification 

involves only the evaluation of simple if-then rules generated by the decision stumps in 

the case of the LogitBoost classifier and the decision tree in the case of the C4.5 

classifier. One important disadvantage of the LogitBoost over the C4.5 classifier is its 

extremely long training times. The LogitBoost classifier took 9.3hours to train while the 

C4.5 classifier only 27.7min when using the MaxAcceleration feature set. This is because 

training the LogitBoost classifier requires the training of weak classifiers (decision 

stumps) in repeated iterations (10 in this experiment) to create the final ensemble of 

classifiers. Long training times might be particularly unacceptable if subject dependent 

training is required to recognize activities, since end-users might not be able to test the 

performance of the classifier immediately after the system has been trained. It is 

important to remember that the training and testing times presented in this section for the 

MaxAcceleration feature set is a worse-case scenario where the largest and most complex 

feature set is utilized (all accelerometer-based features shown in Appendix A3). Training 

and testing times will obviously reduce as the number of features is reduced. Section 5.5 

will later show that real time performance can be achieved by utilizing a subset of the 

most discriminant features contained in the MaxAcceleration set. 

In summary, the two classifiers more amenable for real-time performance are (1) the 

C4.5 decision tree classifier and the (2) NB classifier. The C4.5 classifier is a good choice 

when classifying activities from low-processing power hand-held devices due to its fast 

classification times, mid-size classification models, and medium range training times. 

The NB classifier is a good option when low training times are particularly important and 

processing requirements are available to evaluate the Gaussian functions required by the 

algorithm in real-time. Now, it is necessary to compare the performance of the C4.5 and 

NB classifiers against those obtained by the NN and LogitBoost classifiers. 

Table 5-5 and Table 5-6 present the performance of evaluating the classifiers using the 

MaxAcceleration feature set using subject dependent and independent training 

respectively over the MIT dataset. First, it can be seen that the performance of subject 

dependent training is considerably higher (~81-88%) than the performance obtained 

using subject independent training (~33-59%). The probability of random guessing in this 

scenario is 1.9% for 52 activities. The best overall performance in both cases is achieved 

using the LogitBoost classifier. This is because weak classifiers learned in the final 

iterations of boosting concentrate their classification efforts on instances that are difficult 
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Activity Category NN NB LogitBoost C4.5 

All (accuracy) 82.5 ± 2.1 83.1 ± 2.1 88.2 ± 1.4 81.7 ± 1.5 

Postures 91.9±6.3  

(0.0±0.0) 

89.2±6.8  

(0.1±0.22) 

95.1±4.7  

(0.0±0.0) 

92.2±5.8  

(0.1±0.0) 

Ambulation 88.4±8.4  
(0.2±0.1) 

93.8±6.3  
(0.1±0.1) 

88.9±7.3  
(0.1±0.0) 

84.4±9.1  
(0.2±0.1) 

Exercise 83.9±11.5  

(0.2±0.1) 

90.9±9.2  

(0.1±0.1) 

90.6±8.5  

(0.0±0.0) 

88.6±9.9  

(0.15±0.1) 

Resistance 

Exercise 

78.5±13.8  
(0.3±0.2) 

88.7±10.0  
(0.2±0.2) 

87.0±9.6  
(0.1±0.0) 

84.8±10.7  
(0.2±0.1) 

Household 84.0±9.7  

(0.4±0.3) 

84.1±7.7  

(0.5±0.4) 

82.2±9.6  

(0.1±0.1) 

75.1±9.9  

(0.4±0.2) 

Unknown 70.55 ± 7.03 

(3.7 ± 1.1) 

63.53 ± 8.43 

(3.5 ± 0.7) 

86.89 ± 3.94 

(7.71 ± 1.38) 

74.81 ± 5.54 

(7.63 ± 1.35) 

Table 5-5: True positive rate and false positive rate (shown in parenthesis) clustered per activity 

category while classifying the 52 activities contained in the MIT dataset in a subject dependent 

manner. Classifiers were trained by computing the MaxAcceleration (247) feature set per 

accelerometer axis over sliding windows of 5.6s.  

 

 
Activity Category NN NB LogitBoost C4.5 

All (accuracy) 48.9 ± 5.1 33.9 ± 4.5 59.59 ± 4.43 49.4 ± 4.9 

Postures 50.7±16.2  

(0.3±0.2) 

36.3±14.2  

(1.6±0.7) 

71.9±28.2  

(0.2±0.3) 

66.8±31.3  

(0.2±0.3) 

Ambulation 44.7±26.7  

(0.7±0.6) 

54.6±31.6  

(1.2±1.1) 

54.3±30.1  

(0.7±0.7) 

41.4±26.0  

(0.8±0.8) 

Exercise 44.5±24.8  

(0.6±0.4) 

48.2±29.8  

(0.8±0.7) 

51.8±31.5  

(0.6±0.6) 

39.8±33.6  

(0.5±0.6) 

Resistance 

Exercise 

34.1±21.5  
(0.7±0.5) 

34.5±28.6  
(1.1±0.9) 

40.1±31.5  
(0.8±0.8) 

31.5±29.6  
(0.8±0.7) 

Household 45.3±19.6  

(1.3±0.7) 

32.1±18.8  

(1.6±0.8) 

49.7±25.2  

(0.6±0.6) 

37.9±24.4  

(0.9±0.7) 

Unknown 48.2 ± 5.6 
(13.0 ± 4.0) 

11.7 ± 5.3 
(2.4 ± 2.8) 

73.5 ± 5.2 
(17.8 ± 7.2) 

65.3 ± 6.6 
(24.0 ± 7.2) 

Table 5-6: True positive rate and false positive rate (shown in parenthesis) clustered per activity 

category while classifying the 52 activities contained in the MIT dataset in a subject independent 

manner. Classifiers were trained by computing the MaxAcceleration (247) feature set per axis over 

sliding windows of 5.6s. 

 

to classify in previous iterations, giving the classifier and advantage when handling 

activity examples difficult to classify. The overall performance of NN, NB and C4.5 is 

quite comparable during subject dependent training (see Section 5.3.1 and 5.3.2 for a 

description of subject dependent vs. independent training procedures). One important 

difference of the NB classifier is that it tends to classify ambulation, exercise, resistance 

exercise and household activities slightly better than the other classifiers. However, its 

performance while classifying the unknown activity is the worst of all the classifiers 

during both, subject dependent and independent training. One explanation might be that 

the NB classifier is recognizing more unlabeled activity examples contained in the 

unknown  class as real activities of interest that the other classifiers. This can be seen 

from the large number of false positives generated by the other classifiers for the 

unknown class, since they classify the other activities of interest as the unknown class. 

This can be a side effect of the large number of examples contained in the unknown class 

with respect to the number of examples contained in other classes (Appendix A4 shows 

the number of training examples available per class). The NB classifier might be able to 

recognize the activities of interest better with respect to the unknown class given the high 

probability seen by the evidence (features) for the other activities despite the high prior 
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probability assigned to the unknown class. The other classifiers, on the contrary, decide to 

classify some of the examples of the activities of interest as belonging to the unknown 

class. The NB classifier also has more problems when recognizing postures as compared 

to the other classifiers. This is because it confuses most postures with the lying down 

posture given that this posture has a higher number of examples with respect to the other 

postures.  

During subject independent training, the NB classifier also has a lower recognition rate 

for postures and for the unknown class with respect to the other classifiers for the same 

reasons previously explained. It also tends to recognize ambulation, exercise and 

resistance exercise slightly better than the C4.5 decision tree classifier. The overall 

performance of the C4.5 classifier is the second highest from all the classifiers and is 

comparable to the performance obtained with the NN classifier. Interestingly, the C4.5 

classifier presents the largest false positive rate for the unknown class, reflecting the fact 

that it might be influenced by the large number of training examples available for this 

class. Finally, the lowest recognition performance from all the activity categories during 

subject independent training is obtained for resistance exercise activities. These activities 

are difficult to discriminate from accelerometer data since most of them do not involve 

changes in the motion patterns of the activity, but changes in the effort required to 

perform the activities. Interestingly, this low performance is not so obvious during 

subject dependent training for this category. It is possible that different subjects perform 

slight changes in the motion patterns of an activity when different resistance levels are 

used that the classifiers are able to successfully learn to discriminate among the activities.  

In order to better understand the performance differences among classifiers, figures 

were generated to graphically highlight the per class performance across classifiers. 

Figures Figure 5-2 through Figure 5-5 show the performance per class for the classifiers 

while using subject dependent and independent training respectively. The figures show 

the performance per class as a grayscale image normalized with respect to the lowest and 

highest performance across all classifiers. For example, in Figure 5-2, the maximum true 

positive rate of 99.7% is represented by the color white and the minimum of 45.7% by 

the color black. With this coding scheme, areas of poor performance can be easily 

identified as dark (black) areas in the image. 

Figure 5-2 shows the true positive rate per activity for all the classifiers as evaluated 

using subject dependent training. From the image it is easy to see that the classifier with 

best performance per class is the LogitBoost classifier (since it has lighter colors overall), 

followed by the NB classifier. As discussed previously, the NB classifier has difficulties 

recognizing the unknown class and outperforms the LogitBoost and C4.5 classifiers while 

recognizing household activities. One possible explanation for this behavior is that the 

Gaussian distributions used by the NB classifier to represent features are able to better 

learn distinctive motion patterns per subject such as the circular motion of hands while 

scrubbing a surface, or while washing windows that are not learned by the other 

classifiers due to the high motion variability in these activities.  

Figure 5-3 shows the false positive rate per activity as a grayscale image for all the 

classifiers. Similarly, poor areas of performance are identified by dark areas. It can be 

seen that largest number of false positives (7.63%) is generated by the LogitBoost and 

C4.5 classifiers for the unknown class. Again, this is because some examples of real  
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NN NB LogitBoost C4.5
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Walking - Treadmill 3mph - Treadmill 9  - hard
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Carrying groceries
Doing dishes
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Ironing

Making the bed
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Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
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Wiping/Dusting
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Figure 5-2: True positive rate per activity for all the classifiers using the MaxAcceleration feature set 

and subject dependent evaluation. The grayscale image is scaled so that the maximum true positive 

rate of 99.7% is represented by the color white and the minimum of 45.7% by the color black. In 

other words, poor areas of performance are shown in black. 
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Wiping/Dusting
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Figure 5-3: False positive rate per activity for all the classifiers using the MaxAcceleration feature set 

and subject dependent evaluation. The grayscale image is scaled so that the minimum false positive 

rate of 0% is represented by the color white and the maximum of 7.63% by the color black. In other 

words, poor areas of performance are shown in black. 
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Figure 5-4: True positive rate per activity for all the classifiers using the MaxAcceleration feature set 

and subject independent evaluation. The grayscale image is scaled so that the maximum true positive 

rate of 96.7% is represented by the color white and the minimum of 4.5% by the color black. In 

other words, poor areas of performance are shown in black. 

 

NN NB LogitBoost C4.5

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling
unknown

Carrying groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-5: False positive rate per activity for all the classifiers using the MaxAcceleration feature set 

and subject independent evaluation. The grayscale image is scaled so that the minimum false positive 

rate of 0.01% is represented by the color white and the maximum of 24% by the color black. In other 

words, poor areas of performance are shown in black. 

 

activities are classified as the unknown class. The unknown class contains examples of the 

other activities of interest that were just not labeled during the data collections. The C4.5  

classifier also generates a larger number of false positives for household activities when 

compared to the NB classifier. However, the number of false positives for the NB 
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classifier is concentrated in the unknown class. In general, the NN classifier presents a 

high number of false positives for resistance exercise activities such as bench weight 

lifting and bicep curls.  

Figures Figure 5-4 and Figure 5-5 show the true positive rate and false positive rate per 

activity for all the classifiers using the MaxAcceleration feature set and subject 

independent evaluation. These figures highlight three main differences between the NB 

and the other classifiers: (1) the NB classifier tends to recognize some periodic activities 

such as ascending stairs, descending stairs, walking at 2mph, and cycling at 60 and 

100rpm better than the other classifiers. This is also true for household activities 

including periodic motion such as scrubbing a surface, stacking groceries, sweeping, 

vacuuming, and writing. This is perhaps because the Gaussian distributions capture the 

periodicity of the motion across different subjects better than the non-linear decision 

boundaries used by the other classifiers. (2) In activities involving similar motion patterns 

but different resistance levels (e.g. light, moderate, hard), the classifier tends to classify 

better the activity with the medium resistance level (moderate). This is because activities 

with moderate intensity represent the average amount of motion for all the activity 

intensities. The other classifiers, on the contrary, learn to discriminate equally well 

among all the different intensity levels of the same activity. (3) Finally, the false positive 

rate in the NB classifier tends to be more uniformly distributed across all the activities. In 

contrast, the other classifiers tend to concentrate the number of false positives in a single 

class: the unknown class. 

Since one of the main differences between the NB and the C4.5 classifiers seems to be 

the recognition performance over the unknown class, a new set of experiments was 

performed to compare these classifiers when the unknown class is left out. Table 5-7 

shows the performance of these classifiers during subject dependent and independent 

training. The feature set used to train the classifiers was the MaxAcceleration set 

computed over windows of 5.6s in length. It can be seen that the overall performance of 

the NB classifier is slightly better during both subject dependent and independent 

training. During subject dependent training, the C4.5 classifier recognizes postures and 

exercise activities slightly better than the NB classifier. The NB classifier, on the other 

hand, classifies ambulation and household activities slightly better than the C4.5 

classifier. During subject independent training, the same conditions are true except that 

now, the NB classifier also outperforms the C4.5 decision tree classifier during exercise 

and resistance exercise activities. 

To better compare the performance of the NB and the C4.5 decision tree classifier, 

grayscale images comparing their performance per class were again generated. These 

images are shown in Figures Figure 5-6 through Figure 5-9. Figure 5-10 and Figure 5-11 

show the confusion matrices for subject dependent and independent training using the 

MaxAcceleration feature set. 

In general, as shown by figures Figure 5-6 and Figure 5-7, both classifiers have 

difficulties recognizing household activities during subject dependent training. For 

example, the classifiers confuse activities involving standing and walking such as making 

the bed and taking out trash. They also confuse activities involving standing and upper 

body motion such as washing windows and wiping/dusting. The classifiers also confuse 

activities involving walking and upper body motion such as sweeping and mopping. In 

summary, the NB classifier has more problems in recognizing sweeping, wiping/dusting,  
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 Subject Dependent Subject Independent 

Activity 

Category 

NB C4.5 NB C4.5 

All (accuracy) 90.6 ± 1.8 89.4 ± 2.2 57.8 ± 4.4 53.3 ± 5.3 

Postures 90.9±6.1  
(0.1±0.1) 

95.9±4.4  
(0.1±0.1) 

72.4±17.1  
(1.0±0.5) 

79.5±26.1  
(0.3±0.4) 

Ambulation 94.7±5.8  

(0.1±0.1) 

90.9±7.1  

(0.2±0.1) 

64.7±27.8  

(0.9±1.0) 

49.0±29.1  

(1.2±1.1) 

Exercise 91.9±8.9  
(0.1±0.1) 

93.2±7.6  
(0.1±0.1) 

53.9±27.0  
(0.8±0.7) 

49.6±32.4  
(0.9±0.9) 

Resistance 

Exercise 

89.7±9.7  

(0.2±0.2) 

89.8±8.8  

(0.2±0.2) 

43.3±26.7  

(1.0±0.8) 

36.0±31.9  

(1.3±1.1) 

Household 86.2±7.5  

(0.4±0.3) 

82.9±8.4  

(0.4±0.2) 

49.7±23.2  

(0.9±0.6) 

50.4±24.5  

(1.2±0.9) 

Table 5-7: True positive rate and false positive rate (shown in parenthesis) clustered per activity 

category while classifying the 51 activities contained in the MIT dataset using the NB and C4.5 

classifier without the unknown class. Classifiers were trained by computing the MaxAcceleration 

(247) feature set per axis over sliding windows of 5.6s.  

 

 

 

 

NB C4.5

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

Carrying groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-6: Comparison of true positive rate per activity for the NB and C4.5 Classifiers using the 

MaxAccelerationSet1 without the Unknown Class evaluated using subject dependent training. The 

grayscale image is scaled so that the maximum true positive rate of 99.9% is represented by white 

and the minimum of 67.7% by black.  
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NB C4.5

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

Carrying groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-7: Comparison of false positive rate per activity for the NB and C4.5 Classifiers using the 

MaxAccelerationSet1 without the Unknown Class evaluated using subject dependent training. The 

grayscale image is scaled so that the minimum false positive rate of 0.0% is represented by white and 

the maximum of 1.1% by black. 

 

 

 

NN NB

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

Carrying groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-8: Comparison of true positive rate per activity for the NB and C4.5 Classifiers using the 

MaxAccelerationSet1 without the Unknown Class evaluated using subject dependent training. The 

grayscale image is scaled so that the maximum true positive rate of 98.8% is represented by white 

and the minimum of 11.3% by black.  
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NN NB

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

Carrying groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Playing videogames
Scrubbing a surface
Stacking groceries

Sweeping
Typing

Vacuuming
Walking around block

Washing windows
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-9: Comparison of false positive rate per activity for the NB and C4.5 Classifiers using the 

MaxAccelerationSet1 without the Unknown Class evaluated using subject dependent training. The 

grayscale image is scaled so that the minimum false positive rate of 0.0% is represented by white and 

the maximum of 4.1% by black. 

 

taking out trash, and bench weight lifting (hard and moderate). The C4.5 Classifier 

presents more difficulties recognizing making the bed, wiping/dusting, taking out trash, 

moping and sweeping. Figure 5-7 also shows that the number of false positives is more 

evenly distributed among all the classes that in the NB classifier. In the NB classifier, the 

number of false positives in concentrated in the washing windows activity. 

During subject independent training, the performance of both classifiers as shown by 

Figure 5-8 is not easy to compare. Both classifiers are good at recognizing some sets of 

activities while bad at recognizing others. The NB classifier has more difficulties 

recognizing bench weight lifting light, bicep curls (light and hard), rowing moderate, and 

watching TV than the C4.5 classifier. At the same time, the C4.5 classifier has more 

difficulties recognizing gardening, and walking activities in general than the NB 

classifier. Figure 5-8 and Figure 5-9 show that the NB classifier is particularly bad at 

recognizing postures. For example, it confuses activities involving different postures such 

as watching TV, playing video games, kneeling, and sitting with lying down. 

In summary, the overall performance of the NB classifier is slightly better during 

subject dependent (1.3%) and independent training (4.5%) than the one of the C4.5 

classifier when the unknown class is not included. However, both classifiers have 

strengths and weaknesses. For example, the NB classifier seems is good at recognizing 

periodic activities but is bad at recognizing postures. The C4.5 classifier is good at 

recognizing postures, and its performance over activities with different intensity levels is 

more uniformly distributed than when using the NB classifier. When the unknown class is 

eliminated, the C4.5 classifier has a false positive rate per activity more evenly 

distributed across all activities than the NB classifier. When taking into account the 

classification time, the C4.5 classifier has an advantage since it can classify new 

examples 312 times faster than the NB classifier. The NB classifier, in contrast, can be  
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(b) C4.5 Classif ier
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A -> Bench_weight_lifting_-_hard 

B -> Bench_weight_lifting_-_light 

C -> Bench_weight_lifting_-_moderate 

D -> Bicep_curls_-_hard 

E -> Bicep_curls_-_light 

F -> Bicep_curls_-_moderate 

G -> Calisthenics_-_Crunches 

H -> Calisthenics_-_Sit_ups 

I -> Cycling_-_Cycle_hard_-_Cycle_80rpm 

J -> Cycling_-_Cycle_light_-_Cycle_100rpm 

K -> Cycling_-_Cycle_light_-_Cycle_60rpm 

L -> Cycling_-_Cycle_light_-_Cycle_80rpm 

 

M -> Cycling_-_Cycle_moderate_-_Cycle_80rpm 

N -> Lying_down 

O -> Rowing_-_Rowing_hard_-_Rowing_30spm 

P -> Rowing_-_Rowing_light_-_Rowing_30spm 

Q -> Rowing_-_Rowing_moderate_-_Rowing_30spm 

R -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

S -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

T -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

U -> Sitting 

V -> Sitting_-_Fidget_feet_legs 

W -> Sitting_-_Fidget_hands_arms 

X -> Stairs_-_Ascend_stairs 

Y -> Stairs_-_Descend_stairs 

Z -> Standing 

[ -> Walking_-_Treadmill_2mph_-_Treadmill_0_ 

\ -> Walking_-_Treadmill_3mph_-_Treadmill_0_ 

] -> Walking_-_Treadmill_3mph_-_Treadmill_3__-

_light 

^ -> Walking_-_Treadmill_3mph_-_Treadmill_6__-

_moderate 

_ -> Walking_-_Treadmill_3mph_-_Treadmill_9__-

_hard 

` -> kneeling 

a -> Carrying_groceries 

b -> Doing_dishes 

c -> Gardening 

d -> Ironing 

e -> Making_the_bed 

f -> Mopping 

g -> Playing_videogames 

h -> Scrubbing_a_surface 

i -> Stacking_groceries 

j -> Sweeping 

k -> Typing 

l -> Vacuuming 

m -> 

Walking_around_block 

n -> Washing_windows 

o -> Watching_TV 

p -> Weeding 

q -> Wiping/Dusting 

r -> Writing 

s -> taking_out_trash 

Figure 5-10: Confusion matrices for the NB and C4.5 classifier without the unknown class using 

subject dependent evaluation and the MaxAcceleration feature set. 
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(a) NB Classif ier
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(b) C4.5 Classif ier
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A -> Bench_weight_lifting_-_hard 

B -> Bench_weight_lifting_-_light 

C -> Bench_weight_lifting_-_moderate 

D -> Bicep_curls_-_hard 

E -> Bicep_curls_-_light 

F -> Bicep_curls_-_moderate 

G -> Calisthenics_-_Crunches 

H -> Calisthenics_-_Sit_ups 

I -> Cycling_-_Cycle_hard_-_Cycle_80rpm 

J -> Cycling_-_Cycle_light_-_Cycle_100rpm 

K -> Cycling_-_Cycle_light_-_Cycle_60rpm 

L -> Cycling_-_Cycle_light_-_Cycle_80rpm 

 

M -> Cycling_-_Cycle_moderate_-_Cycle_80rpm 

N -> Lying_down 

O -> Rowing_-_Rowing_hard_-_Rowing_30spm 

P -> Rowing_-_Rowing_light_-_Rowing_30spm 

Q -> Rowing_-_Rowing_moderate_-_Rowing_30spm 

R -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

S -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

T -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

U -> Sitting 

V -> Sitting_-_Fidget_feet_legs 

W -> Sitting_-_Fidget_hands_arms 

X -> Stairs_-_Ascend_stairs 

Y -> Stairs_-_Descend_stairs 

Z -> Standing 

[ -> Walking_-_Treadmill_2mph_-_Treadmill_0_ 

\ -> Walking_-_Treadmill_3mph_-_Treadmill_0_ 

] -> Walking_-_Treadmill_3mph_-_Treadmill_3__-

_light 

^ -> Walking_-_Treadmill_3mph_-_Treadmill_6__-

_moderate 

_ -> Walking_-_Treadmill_3mph_-_Treadmill_9__-

_hard 

` -> kneeling 

a -> Carrying_groceries 

b -> Doing_dishes 

c -> Gardening 

d -> Ironing 

e -> Making_the_bed 

f -> Mopping 

g -> Playing_videogames 

h -> Scrubbing_a_surface 

i -> Stacking_groceries 

j -> Sweeping 

k -> Typing 

l -> Vacuuming 

m -> Walking_around_block 

n -> Washing_windows 

o -> Watching_TV 

p -> Weeding 

q -> Wiping/Dusting 

r -> Writing 

s -> taking_out_trash 

Figure 5-11: Confusion matrices for the NB and C4.5 classifier without the unknown class using 

subject independent evaluation and the MaxAcceleration feature set. 
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trained 28 times faster than the C4.5 classifier. Taking into account all the advantages and 

disadvantages of both classifiers, this work will utilize the C4.5 decision tree classifier as 

the final classification algorithm for the remainder of this thesis.  

Lastly, the answer to the question posed by this section is yes. Fast run time classifiers 

such as the C 4.5 decision tree classifier and the NB classifier can achieve performances 

similar to the ones obtained by popular classifiers such as the NN classifier and state-of-

the-art classifiers such as the LogitBoost Classifier. Upcoming sections will perform 

experiments to determine the set of parameters (e.g. feature set and window length) 

required to make the training process of the C4.5 classifier more amenable for real time 

performance without sacrificing recognition performance too much. 

 

5.4.5  Can Features Computed Over Each Sensor Reduce Computational 
Requirements Without Sacrificing Performance? 

In the previous section, as in most previous work, features were computed over each of 

the axis (x, y, and z) of the accelerometer signal. Nevertheless, computing features over 

each axis adds substantial computational load, particularly when complex features are 

computed over a large number of sensors. For example, if the FFT coefficients are being 

computed as features when using three triaxial accelerometers, the FFT algorithm would 

have to be run nine times (3 accelerometers times 3 axes) every time a new example has 

to be classified. As a result, it is worth exploring if it is possible to compute features per 

sensor and achieve similar performance as when computing features per axis. If this is in 

fact possible, at least a threefold improvement in computational performance would be 

obtained in the feature computation step. Further computational improvements would 

also be obtained during training and classification since fewer features are required.  

Features can be computed per sensor by first summarizing the overall acceleration 

(motion) experienced by each sensor in all axes. This can be done by computing the sum 

of the acceleration over all axes (x, y, and z) sample by sample. Another technique is to 

compute the signal vector magnitude (SVM) over all axes. However, the SVM is 

computationally expensive since it requires the computation of square and root square 

operations. The formulas for the two techniques are shown in Table 5-8. 

 

Sum  zyxSum   

Signal Vector Magnitude 222 zyxSVM   

Table 5-8: Two techniques used to summarize the acceleration (motion) experienced by a sensor: The 

sum over all acceleration axes (x, y, and z) and the signal vector magnitude. 

 

In this section, the performance of computing features per sensor is evaluated by 

summarizing the motion experienced by each sensor using the sum operation. The 

experiments compare the performance of the NB and C4.5 classifiers when features are 

computed per axis and per sensor using the MaxAcceleration feature set over sliding 

windows of 5.6s. The classifiers are trying to recognize the 51 activities in the MIT 

dataset without including the unknown class. The unknown class was not added during 

these experiments to maximize the interpretability of the results per class. The 

experiments are evaluated using subject dependent and independent training. 
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 Subject Dependent Evaluation 

Activity 

Category 

NB 

Per Sensor 

NB 

Per Axis 

Change in 

Performance 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Change in 

Performance 

All (accuracy) 88.5 ± 3.6 90.6 ± 1.8 -2.16 87.3 ± 3.8 89.4 ± 2.2 -2.06 

Postures 94.7±4.4  

(0.0±0.1) 

90.9±6.1  

(0.1±0.1) 

3.8 

(-0.1) 

96.5±3.9  

(0.1±0.1) 

95.9±4.4  

(0.1±0.1) 

0.6 

(0) 

Ambulation 91.8±6.3  
(0.2±0.2) 

94.7±5.8  
(0.1±0.1) 

-2.9 
(0.1) 

87.4±8.2  
(0.4±0.2) 

90.9±7.1  
(0.2±0.1) 

-3.5 
(0.2) 

Exercise 90.0±9.2  

(0.2±0.2) 

91.9±8.9  

(0.1±0.1) 

-1.9 

(0.1) 

91.9±7.6  

(0.2±0.2) 

93.2±7.6  

(0.1±0.1) 

-1.3 

(0.1) 

Resistance 

Exercise 

85.9±10.9  
(0.4±0.3) 

89.7±9.7  
(0.2±0.2) 

-3.8 
(0.2) 

86.4±9.3  
(0.3±0.2) 

89.8±8.8  
(0.2±0.2) 

-3.4 
(0.1) 

Household 81.6±9.8  

(0.6±0.4) 

86.2±7.5  

(0.4±0.3) 

-4.6 

(0.2) 

80.0±9.8  

(0.6±0.4) 

82.9±8.4  

(0.4±0.2) 

-2.9 

(0.2) 

Table 5-9: True positive rate, false positive rate (shown in parenthesis) and change in performance 

while computing features per sensor and per axis clustered per activity category while classifying the 

51 activities contained in the MIT dataset using the NB and C4.5 classifier without the unknown 

class. Classifiers were trained by computing the MaxAccelerationSet1 (247 over sliding windows of 

5.6s using subject dependent training. 

 

 
 Subject Independent Evaluation 

Activity 

Category 

NB 

Per Sensor 

NB 

Per Axis 

Change in 

Performance 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Change in 

Performance 

All (accuracy) 47.6 ± 6.0 57.9 ± 4.4 -10.23 45.5 ± 7.7 53.3 ± 5.3 -7.88 

Postures 42.7±22.0  

(1.4±0.8) 

72.4±17.1  

(1.0±0.5) 

-29.7 

(0.4) 

58.7±38.4  

(0.7±1.0) 

79.5±26.1  

(0.3±0.4) 

-20.8 

(0.4) 

Ambulation 47.8±34.8  
(1.3±1.4) 

64.7±27.8  
(0.9±1.0) 

-16.9 
(0.4) 

37.8±26.6  
(1.4±1.6) 

49.0±29.1  
(1.2±1.1) 

-11.2 
(0.2) 

Exercise 42.2±30.8  

(1.1±1.1) 

53.9±27.0  

(0.8±0.7) 

-11.7 

(0.3) 

39.1±28.5  

(1.2±1.5) 

49.6±32.4  

(0.9±0.9) 

-10.5 

(0.3) 

Resistance 

Exercise 

30.9±27.5  
(1.3±1.2) 

43.3±26.7  
(1.0±0.8) 

-12.4 
(0.3) 

25.9±25.3  
(1.6±1.8) 

36.0±31.9  
(1.3±1.1) 

-10.1 
(0.3) 

Household 32.5±24.1  

(1.2±1.0) 

49.7±23.2  

(0.9±0.6) 

-17.2 

(0.3) 

32.3±26.8  

(1.6±1.5) 

50.4±24.5  

(1.2±0.9) 

-18.1 

(0.4) 

Table 5-10: True positive rate, false positive rate (shown in parenthesis) and change in performance 

while computing features per sensor and per axis clustered per activity category while classifying the 

51 activities contained in the MIT dataset using the NB and C4.5 classifier without the unknown 

class. Classifiers were trained by computing the MaxAccelerationSet1 (247 over sliding windows of 

5.6s using subject independent training. 

 

Table 5-9 presents a comparison of the performance of the NB and C4.5 classifiers while 

computing features per sensor and per axis using subject dependent training. It can be 

seen that the overall decrease in performance for both classifiers is very close and 

corresponds to a decrease of approximately 2%. The decrease in performance for the NB 

classifier is larger for household activities (-4.6%) and resistance exercise activities (-

3.8%). One explanation for the performance decrease in resistance exercise activities is 

that subjects perform characteristic motions in several axes while struggling with 

different load or resistance levels. An interesting result is that the performance for 

postures increases when computing features per sensor for both classifiers during subject 

dependent training. It seems that computing features per axis while recognizing postures 

in a subject dependent manner introduces more variability in the features leading to a 

decrease in performance. Moreover, the smallest decrease in performance for both 

classifiers occurs for exercise activities. Exercise activities include activities with very 

characteristic periodic motions differentiated by the use of particular limbs such as bicep 
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NB Per Sensor NB Per Axis C4.5 Per Sensor C4.5 Per Axis

Bench weight lifting - hard
Bench weight lifting - light

Bench weight lifting - moderate
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Figure 5-12: True positive rate per activity using the MaxAcceleration feature set computed per 

sensor and per axis and evaluated using subject dependent training with the NB and C4.5 classifiers. 

The grayscale image is scaled so that the maximum true positive rate of 100% is represented by 

white and the minimum of 60.3% by black. In other words, poor areas of performance are shown in 

black. 

 

curls, cycling, and calisthenics activities (crunches, sit-ups) and ambulation (walking and 

running). Consequently, they can be well differentiated without analyzing the motion per 

axis. 

Table 5-10 presents the performance while computing features per sensor and per axis 

for both classifiers using subject independent training. The overall decrease in 

performance of approximately 9% for both classifiers is larger than the decrease observed 

during subject dependent training. The decrease for the NB classifier is 10% and for the 

C4.5 classifier is 7.8% (slightly lower). In contrast to subject dependent training, it can be 

seen that a decrease in performance occurs for all the activity categories. The most 

dramatic decrease occurs for postures (29% for NB and 20% for C4.5) and household 

activities (17% for NB and 18% for C4.5). It can be concluded that analyzing motion per 

axis is more important during subject independent training since this extra information 

compensates for the high variability found in the performance of activities across 

subjects. The smallest decrease in performance occurs again for exercise activities 

because they are mainly discriminated by analyzing the motion of different body limbs 

moving at different speeds. 

In an effort to better identify the differences per activity while computing features per 

sensor and per axis, images were generated to highlight the differences in performance  
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Figure 5-13: False positive rate per activity using the MaxAcceleration feature set computed per 

sensor and per axis and evaluated using subject dependent training with the NB and C4.5 classifiers. 

The grayscale image is scaled so that the minimum false positive rate of 0.0% is represented by white 

and the maximum of 1.9% by black. In other words, poor areas of performance are shown in black. 

 

per activity. The images are grayscale images normalized so that the worse performance 

per activity is shown in black and the best performance per activity is shown in white.  

Table 5-10 shows the true positive rate for both classifiers when features are computed 

per sensor and per axis using subject dependent training. One of the first differences one 

might notice is that both classifiers are having difficulties recognizing wiping/dusting. 

When inspecting the confusion matrices for the C4.5 classifier shown in Figure 5-16 and 

Figure 5-17, it can be seen that this activity is being confused with ironing, doing dishes, 

and washing windows. These are all activities involving the standing posture and upper 

body motion. The reason why the classifiers are even able to differentiate (to some 

extent) between these activities when motion is analyzed per sensor is the computation of 

features that capture posture information such as the DCAreas and DCMeans features 

(these features are explained in Appendix A3). For example, the classifiers are able to 

differentiate between wiping/dusting and washing windows due to the different posture of 

the dominant arm during the activities. Analyzing motion by axis helps in discriminating 

between these activities better as can be observed from Figure 5-12 and Figure 5-13. For 

the same reasons, the C4.5 classifier also confuses washing windows with wiping/dusting 

and scrubbing a surface. The activities least affected by not analyzing motion per axis are 

activities involving periodic motion and movement of distinctive limbs such as cycling, 

calisthenics, walking and running.  
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Figure 5-14: True positive rate per activity using the MaxAcceleration feature set computed per 

sensor and per axis and evaluated using subject independent training with the NB and C4.5 

classifiers. The grayscale image is scaled so that the maximum true positive rate of 98.8% is 

represented by white and the minimum of 4.2% by black. In other words, poor areas of performance 

are shown in black. 

 

Figure 5-13 presents the false positive rate per activity for both classifiers. According 

to the figure, the number of false positives for the NB classifier is concentrated in the 

washing windows activity since it is confused with other activities involving standing and 

upper body motion as previously explained. In general, it can be seen that analyzing 

motion per axis decreases the number of false positives per class. 

Figure 5-14 and Figure 5-15 show the true positive and false positive rate per class 

when evaluating the classifiers in a subject independent manner. In general, the 

performance per class follows the same behavior as the one observed during subject 

dependent training. However, the performance of some activities involving different 

resistance levels such as cycling, walking (at different inclinations), and bicep curl is 

dramatically affected by not computing features per axis in both classifiers. As explained 

before, subjects might perform motions in different axis while struggling with different 

loads that might help in the discrimination between these activities. In addition, the 

performance on some activities with different postures such as standing, playing video 

games and weeding is also highly affected for the NB classifier. In the previous section, it 

was explained that the NB classifier has problems recognizing postures, and it seems that  
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Figure 5-15: False positive rate per activity using the MaxAcceleration feature set computed per 

sensor and per axis and evaluated using subject dependent training with the NB and C4.5 classifiers. 

The grayscale image is scaled so that the minimum false positive rate of 0.0% is represented by white 

and the maximum of 5.9% by black. In other words, poor areas of performance are shown in black. 

 

computing features per axis helps this classifier to better differentiate between activities 

involving different postures. When analyzing the confusion matrix for the C4.5 classifier 

during subject independent training (shown in Figure 5-17a), it can also be observed that 

this classifier is confusing activities involving different postures such as watching TV, 

playing video games, and typing when features are computed per sensor. Furthermore, it 

can also be seen that the C4.5 classifier also confuses walking at different speeds with 

running.   

Finally, Figure 5-14 shows the true positive rate for both classifiers when subject 

independent training is used. Again, the true positive rate per class tends to be higher 

when features are computed per axis. It can also be seen that the C4.5 classifier has a 

false positive rate per class more evenly distributed across all activities and that the false 

positive rate for the NB classifier is higher for the activity lying down. 

In summary, performance is affected less during subject dependent training than during 

subject independent training when features are computed per sensor. The decrease in 

performance with respect to feature computation per axis was ~2% for subject dependent 

training and ~9% for subject independent training. Using both training methods, the 

activities most affected where the ones involving similar postures (e.g. watching TV and 

playing video games), similar motion of limbs (e.g. wiping/dusting vs. ironing), and  



 113 

C L A S S I F I E D   A S

O
 R

 I
 G

 I
 N

 A
 L

  
 L

 A
 B

 E
 L

(a) C4.5 Classif ier Per Sensor

A B C D E F G H I J K L M N O P Q R S T U VW X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s

 

C L A S S I F I E D   A S

O
 R

 I
 G

 I
 N

 A
 L

  
 L

 A
 B

 E
 L

(b) C4.5 Classif ier Per Axis
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A -> Bench_weight_lifting_-_hard 

B -> Bench_weight_lifting_-_light 

C -> Bench_weight_lifting_-_moderate 

D -> Bicep_curls_-_hard 

E -> Bicep_curls_-_light 

F -> Bicep_curls_-_moderate 

G -> Calisthenics_-_Crunches 

H -> Calisthenics_-_Sit_ups 

I -> Cycling_-_Cycle_hard_-_Cycle_80rpm 

J -> Cycling_-_Cycle_light_-_Cycle_100rpm 

K -> Cycling_-_Cycle_light_-_Cycle_60rpm 

L -> Cycling_-_Cycle_light_-_Cycle_80rpm 

 

M -> Cycling_-_Cycle_moderate_-_Cycle_80rpm 

N -> Lying_down 

O -> Rowing_-_Rowing_hard_-_Rowing_30spm 

P -> Rowing_-_Rowing_light_-_Rowing_30spm 

Q -> Rowing_-_Rowing_moderate_-_Rowing_30spm 

R -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

S -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

T -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

U -> Sitting 

V -> Sitting_-_Fidget_feet_legs 

W -> Sitting_-_Fidget_hands_arms 

X -> Stairs_-_Ascend_stairs 

Y -> Stairs_-_Descend_stairs 

Z -> Standing 

[ -> Walking_-_Treadmill_2mph_-_Treadmill_0_ 

\ -> Walking_-_Treadmill_3mph_-_Treadmill_0_ 

] -> Walking_-_Treadmill_3mph_-_Treadmill_3__-

_light 

^ -> Walking_-_Treadmill_3mph_-_Treadmill_6__-

_moderate 

_ -> Walking_-_Treadmill_3mph_-_Treadmill_9__-

_hard 

` -> kneeling 

a -> Carrying_groceries 

b -> Doing_dishes 

c -> Gardening 

d -> Ironing 

e -> Making_the_bed 

f -> Mopping 

g -> Playing_videogames 

h -> Scrubbing_a_surface 

i -> Stacking_groceries 

j -> Sweeping 

k -> Typing 

l -> Vacuuming 

m -> 

Walking_around_block 

n -> Washing_windows 

o -> Watching_TV 

p -> Weeding 

q -> Wiping/Dusting 

r -> Writing 

s -> taking_out_trash 

Figure 5-16: Confusion matrices comparing the performance of the C4.5 classifier when the 

MaxAcceleration feature set is computed per sensor and per axis using subject dependent training. 
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(b) C4.5 Classif ier Per Axis
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B -> Bench_weight_lifting_-_light 

C -> Bench_weight_lifting_-_moderate 

D -> Bicep_curls_-_hard 

E -> Bicep_curls_-_light 

F -> Bicep_curls_-_moderate 

G -> Calisthenics_-_Crunches 

H -> Calisthenics_-_Sit_ups 

I -> Cycling_-_Cycle_hard_-_Cycle_80rpm 

J -> Cycling_-_Cycle_light_-_Cycle_100rpm 

K -> Cycling_-_Cycle_light_-_Cycle_60rpm 

L -> Cycling_-_Cycle_light_-_Cycle_80rpm 

 

M -> Cycling_-_Cycle_moderate_-_Cycle_80rpm 

N -> Lying_down 

O -> Rowing_-_Rowing_hard_-_Rowing_30spm 

P -> Rowing_-_Rowing_light_-_Rowing_30spm 

Q -> Rowing_-_Rowing_moderate_-_Rowing_30spm 

R -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

S -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

T -> Running_-_Treadmill_6mph_-_Treadmill_0_ 
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Figure 5-17: Confusion matrices comparing the performance of the C4.5 classifier when the 

MaxAcceleration feature set is computed per sensor and per axis using subject independent training.
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activities involving different resistance levels (e.g. bicep curls moderate vs. hard). The 

activities least affected by feature computation per sensor were activities involving 

characteristic motion of a particular limb (e.g. cycling vs. running) or activities involving 

motion at different speeds (e.g. running at 5mph vs. 6mph). Consequently, feature 

computation per sensor can be used with only a 2% loss in recognition performance with 

subject dependent training, particularly when the activities of interest can be 

differentiated by the use of a particular limb, or motion at a particular speed without a 

considerable decrease in performance. From this point on, results will be presented 

utilizing feature computation per axis to better differentiate between the activities of 

interest and show the best possible performance during subject independent evaluation. 

While this is more computationally expensive, it might improve activity recognition 

performance in latter sections that analyze other parameters of the activity recognition 

algorithm. Finally, at three-fold increase in computational performance can be achieved 

by switching from feature computation per axis to feature computation per sensor at 

expense of some decrease in the performance for some activities if the amount of 

processing power is limited in some applications (e.g. in real-time applications 

implemented to run on mobile phones).  

One possible criticism of the experiments performed in this section is that the analysis 

was performed using a large set of features (MaxAcceleration feature set). This might be 

a problem because the training and testing data might not be enough to reliably evaluate 

the difference in performance between feature computation per sensor and per axis. This 

is less of a problem for the C4.5 classifier since it performs feature selection during the 

training process and only utilizes the set of most discriminant features in the models 

generated. However, future work is required to analyze the difference between feature 

computation per sensor and per axis over subsets of accelerometer features to see if the 

results presented in this section hold when the number of features is decreased (at least 

for the naïve Bayes classifier).  

 

5.4.6  What is the Optimal Sliding Window Length to Use?  

Acceleration signals need to be broken down into windows of specific lengths so that 

features summarizing the mathematical properties of the signals can be computed. 

Selecting an appropriate sliding window length is a trade-off between the quality of some 

of the features computed and the real-time classification delay. The quality or resolution 

of some features such as the FFT transformation and the Pearson‘s correlation 

coefficients strongly depend on the window length used. Usually, the longer the window 

length, the better these features can be estimated. On the other hand, the longer the 

window length, the longer the end-user of an activity recognition system has to wait for a 

recognition result.  Another trade-off involved in selecting the window length is the 

ability to capture the motion patterns associated with the activities of interest. Long 

windows might introduce additional variability in the motion patterns observed for some 

highly unconstrained activities (e.g. household activities) while very short windows 

might not be able to capture the fundamental variability that characterizes a given activity  

(e.g. periodicity of motion during walking or running).  

In this section, the most appropriate sliding window length is determined by measuring 

the performance of the C4.5 decision tree classifier over the two features whose quality is  
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Number of Samples Time (s) 

64 1.4 

128 2.8 

256 5.6 

512 11.3 

1024 22.7 

2048 45.5 

4098 91 

Table 5-11: Window lengths explored while selecting the optimal window length to use for the 

activity recognition algorithm. The length is shown in number of acceleration samples and 

corresponding time in seconds, assuming a sampling rate of 45Hz.  

 

most likely to vary with the window length: The FFT Peaks (ACFFTPeaks) and the 

Pearson‘s correlation coefficients (ACCorr). As a baseline, the performance is also 

computed utilizing the ACAbsAreas feature. The features will be first computed over 

window lengths ranging from 1.4 to 91 seconds (64 -2048 accelerometer samples) using 

feature computation per sensor, and later on a reduced set of window lengths using 

feature computation per axis. This procedure is followed to minimize the time and 

number of experiments to run. Window lengths shorter that 1.4s were not considered 

because they are intuitively too short to capture the repetitive motion patterns found in 

some periodic activities such as walking slowly at 2mph. Similarly, window lengths 

longer than 91s were not considered due to the extremely long real-time classification 

delay they introduce into the system.  

The length of the sliding windows is constrained to be a power of two by the 

algorithms required to compute the Fourier and Wavelet transformations efficiently. 

Table 5-11 shows the windows lengths explored in this section in number of acceleration 

samples and corresponding time in seconds assuming a sampling rate of 45Hz. Figure 

5-18 and Figure 5-19 present the true positive rate per activity category while evaluating 

the performance of the C4.5 decision tree classifier over different window lengths using 

the ACAbsAreas and FFTCorr feature set (ACFFTPeaks and ACCorr features) computed 

per sensor during subject dependent and independent training. Appendix A5 presents the 

same results in a tabular form. 

The figures illustrate that during subject dependent training, the true positive rate for 

all activities reaches a maximum at a window length of 22.7s for the ACAbsArea feature 

and 5.6s for the FFTCorr feature set. After these maxima, the true positive rate for all the 

activities starts declining sharply. This is because increasing the window length reduces 

the number of activity examples available for training. For example, increasing the 

window length from 5.6s to 45s reduces the number of training examples per activity by a 

factor of 8. Since the MIT dataset contains between 1 and 4.5min of data for each 

activity, a window length of 45s reduces the number of training examples to be only 

between 1 and 6 per activity. In general, it can be observed that the performance for most 

activities increases as the window length increases. This makes sense since the quality or 

resolution of features such as the FFT and the correlation coefficients usually increases 

with increasing window lengths. The increase in performance when longer window 

lengths are used is more dramatic for household and ambulation activities when using the 

ACAbsArea feature and for household and resistance exercise activities while using the 

FFTCorr feature set. In fact, the performance over household activities keeps increasing 

even when the performance over all the activities has started decreasing for the FFTCorr  
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Figure 5-18: True positive rate per activity category when computing the ACAbsAreas feature per 

sensor over sliding windows of varying lengths using the C4.5 classifier during (a) subject dependent 

and (b) independent evaluation.  
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Figure 5-19: True positive rate per activity category when computing the FFTCorr feature set 

(ACFFTPeaks and ACCorr features) per sensor over sliding windows of varying lengths using the 

C4.5 classifier during (a) subject dependent and (b) independent evaluation. 
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Figure 5-20: True positive rate per activity using the FFTCorr  feature set computed per sensor and 

evaluated using subject independent training with the C4.5 classifier. The grayscale image is scaled 

so that the maximum true positive rate of 100% is represented by white and the minimum of 0% by 

black. In other words, poor areas of performance are shown in black. 

 

feature set. This indicates, as one might expect, that longer window lengths (e.g. 22-45s) 

are necessary to capture the high motion variability found in household activities.  

The only activity category whose performance does not increase with longer window 

lengths is postures. The performance over postures reaches a maximum at a window 

length of 2.8s when the ACAbsArea feature is used and at 5.6s when the FFTCorr feature 

set is used. This is because longer window lengths introduce more motion variability that 

can be thought as noise for the static nature of the posture information represented by the 

DC level or static component of acceleration signals.  

During subject independent training, the performance over all activities increases with 

increasing window lengths until a window length of 44.5s is reached in both feature sets 

(ACAbsArea and FFTCorr). After a window length of 44.5s, the performance decreases 

for ambulatory activities when the ACAbsArea feature is used and for resistance exercise 

activities when the FFTCorr feature set is used. After inspecting the performance per 

activity, one of the major problems of using long window lengths was found: Poor 

performance over short duration activities. For example, physically demanding activities 

such as bench weight lifting and bicep curls (included in the resistance exercise category) 

were only performed for less than a minute. Consequently, during training, the C4.5 

classifier has few or no training examples for some of these activities.  
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(a) Performance Using the FFTCorr Feature and Subject Dependent Training
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(b) Performance Using the FFTCorr Feature Set and Subject Independent Training
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Figure 5-21: True positive rate per activity category when computing the FFTCorr feature set 

(ACFFTPeaks and ACCorr features) per axis over sliding windows of varying lengths using the C4.5 

classifier during (a) subject dependent and (b) independent evaluation. 
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To better understand this problem, a grayscale image was created to highlight the 

difference in performance per class using the FFTCorr feature set and subject 

independent training.  

The image (shown in Figure 5-20) presents the best true positive rate of 100% as white 

and the worse of 0% as black. This image also shows that the performance over short 

duration activities such as ascending and descending stairs, and physically demanding 

activities performed for short periods of time such as crunches and sit-ups gets 

progressively worse as the window length is increased. This limitation of long window 

lengths is of practical concern, since activities shorter than the window length will be 

most likely merged with activities of longer duration performed before or  after the short 

duration activity or confused with other activities by the recognition algorithm. For 

example, ascending stairs for 20 seconds after having walked for three minutes will be 

most likely recognized as walking if sliding window lengths longer than 30 or 40s are 

used. Figure 5-20 also shows that the performance for some periodic activities such as 

cycling, walking and running gets progressively better with longer window lengths. As 

explained before, this is because their periodicity is better captured by the FFT 

transformation as its resolution increases with increasing window lengths. Finally, the 

reason why the performance for most activities (including postures) increases with 

increasing window lengths during subject independent evaluation is that differences in 

the way subjects performed the activities are smoothed out when longer windows of time 

are used, leading to an improved performance. The performance also increases because 

the number of training examples is decreased (to some extent although there are still 

enough training examples during subject independent evaluation) as longer window 

lengths are used, lowering the chances of misclassification. Unlike the subject dependent 

scenario, here, the performance for most activities keeps increasing, even after window 

lengths of 91s. This is because during subject independent training the data of all the 

subjects minus one is used for training and enough training data exists to train the 

algorithm using long window lengths. Figure 5-21 shows the true positive rate for 

different window lengths when the FFTCorr feature set is computed per axis and the 

performance is evaluated in a subject dependent and independent manner using the C4.5 

classifier. From the figure, it is clear that feature computation per axis exhibits the same 

performance behavior observed for feature computation per sensor in Figure 5-18 and 

Figure 5-19. The figure also shows that during subject dependent training a window 

length of 5.6s represents the optimal choice for recognizing postures and near the optimal 

choice for overall performance. During subject independent training, the performance 

over all activities and activity categories also increases with increasing window lengths as 

observed before. 

In conclusion, one of the main findings of this section is that the optimal window 

length to utilize depends on the activity being recognized. This finding is in agreement 

with prior work by [119] that also found that the best window length to utilize depends on 

the activity being recognized. However, utilizing one window length per activity is 

computationally expensive since all the features used need to be re-computed over every 

different window length utilized. Thus, this work will perform activity recognition using 

only a single window for all activities. After analyzing the performance of different 

window lengths during subject dependent and independent evaluation, it has been 

determined that the best single window length to use in this work is 5.6s. This is because 
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the performance of this window length using the ACAbsArea and FFTCorr feature sets is 

either near optimal (ACAbsArea) or optimal (FFTCorr) during subject dependent 

training. Furthermore, this short window length allows optimal performance while 

recognizing postures during subject dependent evaluation. This short window of 5.6s 

length also allows the accurate recognition of short duration activities such as bench 

weight lifting, bicep curls, ascending and descending stairs, and intense calisthenics 

activities such as crunches and sit-ups. More importantly, the classification delay 

introduced by this window length is short enough to allow fast interventions at the point 

of decision that could be triggered almost as soon as the activity of interest is recognized. 

One obvious disadvantage of such short duration window is an expected lower 

performance on some household activities with high motion variability such as making 

the bed, taking out trash, stacking groceries, gardening and weeding. Intuitively, the high 

variability in motion presented by these activities would be better captured using long 

windows since these activities can be performed in different ways from day to day by the 

same individual and naturally by different individuals under different household layouts. 

 

5.4.7  Which Features Provide the Most Discriminatory Information and Have the 
Lowest Computational Cost?  

Features are computed over acceleration signals to capture specific motion characteristics 

(e.g. magnitude, periodicity, spectral content) that might allow better discrimination 

between the activities of interest. Nevertheless, it is important to carefully consider the 

type and the number of features used since some of them might not provide enough 

discriminant information and others might be too computationally expensive to achieve 

real-time performance.  

Therefore, this section presents experiments to determine the subset of features (from 

the ones shown in Appendix A3) that discriminate better between the activities of interest 

and that have the lowest computational cost. This is performed by first ordering the 

features according to their importance (information they provide) using the information 

gain criterion. This technique is known as information gain feature selection and will be 

performed when computing features per sensor and per axis over windows of 5.6s in 

length (a good compromise window length as reported in section 5.4.3). These 

experiments are performed in a best case scenario where all the seven accelerometers are 

used for recognizing activities. Once subsets of potentially high discriminating features 

are found, their performance will be evaluated using the C4.5 decision tree classifier in a 

subject dependent and independent manner. As in previous experiments, the classifier 

attempts to discriminate between the 52 activities contained in the MIT dataset, including 

the unknown class. Finally, once the best feature subsets are identified their performance 

will be evaluated utilizing only some subsets of the sensors (accelerometers). This will 

help to identify the feature set that provides the most information when only few sensors 

are used to recognize activities. 

A complete list of all the features explored in this section is shown in Appendix A3. 

These features consist on a superset of features used in previous work that have shown 

good performance as well as some new features not explored before. Table 5-12 presents 

a list of the features and a brief explanation of the information they attempt to capture. 

Features are computed after preprocessing the acceleration signals to better differentiate  
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Information captured by the features Features 

Measures of body posture Mean (DCMean), mean over all axes or sensors (DCTotalMean), area under signal 

(DCArea), and mean distances between axes (DCPostureDist). 

Measures of motion shape Means over absolute value of signal (ACAbsMean), area under absolute value of 

signal (ACAbsArea), area under absolute value of signal summarizing overall 

motion (ACTotalAbsArea), mean of signal vector magnitudes over all samples 
(ACTotalSVM), entropy of the signal (ACEntropy), skewness of the signal 

(ACSkew), kurtosis of the signal (ACKur), and quartiles of the signal (ACQ1, 

ACQ2, ACQ3). 

Measures of motion variation Variance of the signal (ACVar), Coefficient of variation of the absolute value of 
the signal (ACAbsCV), inter-quartile range of signal (ACIQR), and range of the 

signal (ACRange).  

Measures of motion spectral content Fast Fourier transform coefficients (ACFFTCoeff), Fast Fourier Transform Peaks 
(ACFFTPeaks), and fast Wavelet transform coefficients (FWTCoeff).  

Measures of motion energy Total energy of signal (ACEnergy), energy between frequencies 0.3-3.5Hz 

(ACBandEnergy), energy between frequencies 0-0.7Hz (ACLowEnergy), energy 

between frequencies 0.71-10Hz (ACModVigEnergy), heart rate above resting heart 
rate (HRAboveRest), and heart rate scaled between resting heart rate and heart rate 

while running at 5mph on a treadmill (ScaledHR).  

Measure of trend in physical activity The slope of the regression line computed over the heart rate data (HRTrend) 

Measures of motion periodicity Pitch of the signal (ACPitch), ratio of energy in dominant frequency and energy in 
the other bands of the spectrum (ACDomFreqRatio), mean crossing rate of the 

signal (ACMCR). 

Measures of motion similarity across body 
segments 

Correlation coefficients among all accelerometer signals (ACCorr).  

Measures of force employed per body 

segment 

Segmental force computed by multiplying the sum over the absolute value of the 

accelerometer signal by the mass of the corresponding body segment (ACSF), sum 
of all the segmental force for all body segments (ACTotalSF). 

Measures of subject characteristics Gender, age, height, and weight. 

Measure of subject fitness Body mass index (BMI), fat percentage (FatPercent), heart rate reserve (HRR). 

Table 5-12: Features explored in this work and the information they capture about motion or 

physical activity. A complete description of the features can be found in Appendix A3. 

 
Information Gain Per Sensor Information Gain Per Axis 

Feature (1-14) Feature(15-28) Feature (1-14) Feature (15-28) 

ACTotalSF (1) ACModVigEnergy (7) ACTotalAbsArea (1) DCMean (21) 

ACTotalAbsArea (1) DCMean (7) ACTotalSVM (1) ACLowEnergy (21) 

ACTotalSVM (1) DCPostureDist (21) ACAbsArea (21) DCPostureDist (21) 

ACSF (5) ACMCR (7) ACAbsMean (21) ACModVigEnergy (21) 

ACAbsArea (7) ACLowEnergy (7) ACIQR (21) ACFFTPeaks (210) 

ACAbsMean (7) ACFFTPeaks (70) ACQ3 (21) ACDomFreqRatio (21) 

ACIQR (7) ACDomFreqRatio (7) ACQ1 (21) ACBandEnergy (21) 

ACQ3 (7) ACBandEnergy (7) ACRange (21) ACQ2 (21) 

ACQ1 (7) ACQ2 (7) ACPitch (21) ACEnergy (21) 

DCTotalMean (1) ACEnergy (7) DCTotalMean (1) ACAbsCV (21) 

ACPitch (7) ACAbsCV (7) ACMCR (21) ACKur (21) 

ACRange (7) ACKur (7) ACEntropy (21) ACCorr (210) 

ACEntropy (7) ACCorr (21) ACVar (21) ACSkew (21) 

ACVar (7) ACSkew (7) DCArea (21)  

DCArea (7)    

Table 5-13: Acceleration features in decreasing order of importance according to the information 

gain criterion for (a) feature computation per sensor and (b) feature computation per axis. Features 

were computed over sliding windows of 5.6s over the MIT dataset. Feature 1 is the most important. 

 

between motion information and posture information.  The features intended to capture 

motion information are computed over the accelerometer signals after applying a band-

pass filter between the frequencies of 0.1 and 20Hz. It has been shown in prior work that 

human acceleration has amplitudes below 12G and frequencies below 20Hz for most 

activities [218]. This preprocessing has two goals: (1) eliminate the DC or static 

component of the acceleration signal due to the orientation of the sensors with respect to 

ground (posture information) and (2) filter high frequency noise and motion not  



 124 

 
Information captured by the features Features 

Measures of body posture DCTotalMean, DCArea, DCMean, and DCPostureDist. 

Measures of motion shape ACTotalAbsArea, ACTotalSVM, ACAbsArea, ACAbsMean, ACQ3, ACQ1, 
ACEntropy, ACQ2,  ACKur, and ACSkew. 

Measures of motion variation ACIQR, ACRange, ACVar, and ACAbsCV,  

Measures of motion spectral content ACFFTPeaks  

Measures of motion energy ACLowEnergy or ACModVigEnergy, ACBandEnergy, and ACEnergy,  

Measures of motion periodicity ACPitch, ACMCR, and ACDomFreqRatio. 

Measures of motion similarity across body 
segments 

ACCorr 

Measures of force employed per body 

segment 

ACTotalSF and ACSF. 

Table 5-14: Features ordered in decreasing order of importance (from left to right) according to the 

information gain criterion clustered according to the information they capture from the 

accelerometer signals. 

 

generated by the human body. The features intended to capture posture information are 

computed over the accelerometer signals after low-pass filtering them at a cut-off 

frequency of 1Hz. This has the purpose of eliminating most of the signal information due 

to body motion and preserving the information due to static acceleration or posture. 

Features that capture motion information start with the prefix ―AC‖ and those that 

capture posture information start with the prefix ―DC‖. Table 5-13 shows the acceleration 

features in decreasing order of importance according to the information gain criterion 

when features are computed over all the accelerometers per sensor and per axis 

respectively. The first thing to notice is that the ordering of the features in both tables is 

almost identical, suggesting that the importance of the features does not change 

significantly when features are computed per sensor and per axis. Overall, features that 

capture information about the motion of activities (starting with prefix ―AC‖) are ranked 

with higher importance than features that capture information about the activity posture 

(starting with prefix ―DC‖). This is because most of the activities contained in the dataset 

are activities that can be differentiated just by analyzing their distinctive motion 

signatures. Furthermore, the top ranking features are the ones that capture information 

about the overall motion of the human body while performing an activity such as the 

ACTotalSF, ACTotalAbsArea, and ACTotalSVM. This is because these features are 

computed over signals that summarize the overall motion (acceleration) experienced by 

the human body while performing the activities of interest. The reason why the 

ACTotalSF feature is outperforming the ACTotalAbsArea feature is that the ACTotalSF 

feature multiplies the acceleration signal per body segment by the mass of the body 

segment, thus, including additional information as to which body segment is generating 

the motion. Interestingly, the tables also show that some of the most discriminant features 

such as the ACSF, ACAbsArea, and the ACAbsMean are some of the features with the 

lowest computational requirements. The column labeled as ―Information Gain Per Axis‖ 

in Table 5-13 does not show the ACTotalSF and ACSF features because its computation 

does not depend on computing features per axis or per sensor by definition and where 

already shown in column ―Information Gain Per Sensor‖ in Table 5-13. 

After analyzing Table 5-13, the acceleration features where rearranged so that their 

importance is shown according to the information they capture. The rearranged features 

are shown in Table 5-14. In this table, the features are ordered according to their 

importance from the most important at the left to the least important at the right of the 

table. When generating Table 5-14, the ordering of the features importance matched  
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Features subsets 

 

Evaluation 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

ACEnergy Subject 

Dependent 

41.9 ± 10.2 20.3±14.0  

(1.3±0.5) 

62.7±15.5  

(0.8±0.4) 

44.0±15.3  

(1.0±0.4) 

35.0±13.6  

(1.2±0.4) 

14.8±11.6  

(1.3±0.6) 

ACLowEnergy Subject 

Dependent 

38.8 ± 8.8 18.6±14.8  

(1.5±0.7) 

44.5±15.7  

(1.1±0.4) 

41.0±15.0  

(0.9±0.4) 

27.7±12.4  

(1.1±0.5) 

9.1±7.0  

(1.2±0.6) 

ACModVigEnergy Subject 
Dependent 

39.6 ± 9.4 19.2±14.2  
(1.4±0.5) 

47.0±13.7  
(1.1±0.4) 

44.9±15.1  
(0.9±0.4) 

31.7±12.9  
(1.2±0.5) 

9.7±7.2  
(1.4±0.7) 

ACBandEnergy Subject 

Dependent 

51.1 ± 7.9 35.7±17.1  

(1.0±0.5) 

56.0±15.9  

(1.0±0.4) 

57.7±17.9  

(0.7±0.3) 

42.5±17.4  

(1.0±0.4) 

27.1±13.8  

(1.2±0.5) 

ACEnergy Subject  
Independent 

27.9 ± 4.9 7.75±8.02  
(1.25±0.51) 

19.9±18.7  
(1.2±0.9) 

14.5±13.9  
(0.8±0.5) 

9.1±10.6  
(0.9±0.5) 

3.6±4.2  
(0.8±0.4) 

ACLowEnergy Subject 

Independent 

31.0 ± 5.6 12.80±8.43  

(1.63±0.70) 

15.7±12.5  

(1.3±0.7) 

14.4±11.4  

(0.7±0.5) 

9.1±8.7  

(0.7±0.4) 

1.6±2.2  

(0.4±0.2) 

ACModVigEnergy Subject 

Independent 

30.8 ± 4.8 9.7±8.16  

(1.25±0.52) 

20.9±17.0  

(1.2±0.7) 

20.8±15.1  

(0.7±0.5) 

12.1±10.6  

(0.9±0.5) 

3.1±3.5  

(0.8±0.3) 

ACBandEnergy Subject 

Independent 

34.1 ± 4.5 18.4±5.6  

(1.00±0.4) 

20.6±17.1  

(1.2±0.72) 

16.9±16.5  

(0.7±0.5) 

9.0±10.2  

(0.8±0.5) 

7.8±7.6  

(0.8±0.4) 

Table 5-15: Performance of the features that capture motion energy using the C4.5 classifier when 

features are computed per sensor over the MIT dataset evaluated in a subject dependent and 

independent manner. 

 

perfectly for the two columns labeled as ―Information Gain Per Sensor‖ and ―Information 

Gain Per Axis‖ in Table 5-13 except for two of the features that capture the energy of 

motion: ACLowEnergy and ACModVigEnergy. The ACModVigEnergy shows higher 

ranking in column ―Information Gain Per Sensor‖ but lower ranking in column 

―Information Gain Per Axis‖ with respect to the ACLowEnergy feature. Consequently, 

their importance cannot be disambiguated from these columns in Table 5-13. In order to 

disambiguate their importance, an experiment was run by measuring the performance of 

all the features that capture energy motion over the MIT dataset using the C4.5 classifier 

when features are computed per sensor using subject dependent and independent 

evaluation. The results are shown in Table 5-15. From the table, it can be seen that the 

most discriminant feature is the ACBandEnergy, followed by the ACEnergy or 

ACLowEnergy, and the ACModVigEnergy. Even when the ordering of importance for 

some of these features is not completely disambiguated by this experiment, one thing is 

clear: the best feature to use to capture the energy of motion is the ACBandEnergy 

feature. This is because this feature is computed over the frequencies in which the 

majority of human activity is believed to lie [218].  From Table 5-15, it can also be seen 

that the ACLowEnergy feature is good at discriminating sedentary or low energy 

activities such as postures while the ACModVigEnergy features is good at discriminating 

activities with higher motion energy such as ambulation and exercise activity, just as one 

might intuitively expect. One reason why the ACLowEnergy feature outperforms the 

ACEnergy and ACModVigEnergy features during subject independent evaluation is that 

this feature includes frequency zero or the DC component of the acceleration signal, thus, 

giving it an advantage over the other features while recognizing postures. However, this 

also makes the ACLowEnergy feature more dependent on the magnitude of the 

accelerometer signal. This dependency might be undesirable since the magnitude of the 

acceleration signal changes with slight variations in the way accelerometers (sensors) are 

worn. 

Two features that were not included during the information gain feature selection 

experiment in Table 5-13 were the Fast Fourier transform coefficients (ACFFTCoeff) and  
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Features 

subsets 

(Feature size) 

 

Evaluation 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

 

 

Subject 

Dependent 

55.1 ± 8.0 45.9±15.8  

(0.9±0.4) 

60.2±14.2  

(0.7±0.3) 

61.4±16.5  

(0.6±0.2) 

53.2±16.0  

(0.8±0.3) 

33.3±12.2  

(1.4±0.6) 

ACFFTPeaks 
(70) 

Subject 
Dependent 

65.5 ± 6.4 54.1±14.7  
(0.7±0.3) 

73.6±11.2  
(0.6±0.2) 

73.1±12.5  
(0.4±0.2) 

64.1±14.4  
(0.6±0.3) 

49.6±15.2  
(1.0±0.4) 

ACFWTCoeff 

(1785) 

Subject 

Dependent 

28.7 ± 6.4 24.0±9.3  

(1.4±0.4) 

17.6±9.7  

(1.5±0.5) 

23.7±12.1  

(1.4±0.4) 

17.3±8.9  

(1.6±0.5) 

11.4±6.5  

(1.9±0.7) 

ACFFTCoeff 
(889) 

Subject 
Independent 

36.8 ± 3.8 23.2±14.8  
(0.9±0.4) 

24.3±18.6  
(1.0±0.7) 

25.5±21.0  
(0.7±0.5) 

17.9±16.1  
(0.9±0.6) 

14.2±11.9  
(1.2±0.5) 

ACFFTPeaks 

(70) 

Subject 

Independent 

41.6 ± 4.3 27.2±19.6  

(0.8±0.5) 

28.2±22.7  

(0.9±0.7) 

28.2±24.3  

(0.6±0.6) 

20.1±18.4  

(0.8±0.6) 

19.8±16.6  

(1.0±0.6) 

ACFWTCoeff 
(1785) 

Subject 
Independent 

26.6 ± 3.5 17.1±10.0  
(1.0±0.4) 

14.9±11.0  
(1.3±0.5) 

16.7±14.4  
(0.9±0.4) 

11.6±10.4  
(1.0±0.5) 

6.9±5.9  
(1.4±0.4) 

Table 5-16: Performance of the features that capture the spectral content of motion computed per 

axis using the C4.5 classifier and evaluated in a subject dependent and independent manner.  

 
Information captured by the features Features 

Measures of body posture DCArea, DCMean, DCPostureDist,  and DCTotalMean, , 

Measures of motion shape ACAbsArea, ACAbsMean, ACQ3, ACQ1, ACQ2, ACTotalAbsArea, ACTotalSF, 

ACTotalSVM A, ACEntropy, ACKur, and ACSkew. 

Measures of motion variation ACIQR, ACVar, ACRange, and ACAbsCV,  

Measures of motion spectral content ACFFTPeaks, ACFFTCoeff, and FWTCoeff.  

Measures of motion energy ACBandEnergy ACEnergy, ACLowEnergy, or ACModVigEnergy.  

Measures of motion periodicity ACPitch, ACMCR, and ACDomFreqRatio. 

Measures of motion similarity across body 
segments 

ACCorr 

Measures of force employed per body 

segment 

ACTotalSF and ACSF. 

Table 5-17: Final ordering of the features according to their importance (decreasing order of 

importance from left to right) according to all the experiments performed in this section. 

 

the Fast Wavelet transform coefficients (ACFWTCoeff). These features were not included 

in the experiment to prevent their large vector sizes (889 and 1785 respectively) to 

interfere with the ordering of the results. Therefore, a new experiment was run to 

determine which of the features that capture the motion spectral content is more 

discriminating. This was achieved by measuring the performance of these features 

computed per sensor over the MIT dataset in a subject dependent and independent 

manner. The results in Table 5-16 shows that the most discriminating feature is the 

ACFFTPeaks during both subject dependent and independent training. It can also be 

observed that the order of importance of the ACFFTCoeff and the ACFWTCoeff features 

corresponds to their inverse ordering with respect to their sizes. This indicates that their 

performance is low because of their large size and not because of the information they 

provide. In fact, the ACFFTPeaks feature summarizes just some of the information 

contained in the ACFFTCoeff feature. It is thus, clear that the large amount of 

information contained in the ACFFTCoeff and the ACFWTCoeff features needs to be 

summarized to prevent poor performance when the number of features is large with 

respect to the amount of training data available. One way to achieve this is to utilize 

feature extraction techniques such as linear discriminant analysis (LDA) or principal 

component analysis (PCA) to reduce the size of the features. However, this will not be 

explored in this work due to the high computational requirements of these techniques. 

Finally, in order to corroborate the ordering of importance of the remaining features in 

Table 5-14, their individual performance was tested over the MIT dataset using feature 
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computation per sensor and subject independent evaluation. Appendix A6 presents the 

results obtained. The analysis shows that the order of importance for the features that 

capture the periodicity of motion (ACPitch, ACMCR, and ACDomFreqRatio) is the same 

as the one shown in Table 5-14. The ordering of the features that capture posture 

information also remains the same except for the DCMean and DCArea features. The 

experiment shows that the DCMean feature slightly outperforms the DCArea feature in 

capturing posture information (2% improvement). This is because the DCArea feature is 

more affected by motion than the DCMean feature. While the DCArea feature takes into 

account all the motion over a given window, the DCMean feature only computes the 

average value of the motion over the window, making it more robust to motion variability 

and noise. However, the DCMean feature is more computationally expensive than the 

DCArea feature since it requires the computation of averages. As a result, the order of 

importance of these features was not modified.  

Finally, the appendix shows that the ordering for some of the features that capture 

information about the motion shape needs to be modified. Table 5-14 shows that the 

performance of features computed over signals summarizing the overall motion 

experienced by the whole body such the ACTotalAbsArea and the ACTotalSVM features 

have more importance than the same features computed over signals summarizing motion 

per sensor or axis such as the ACAbsArea and ACAbsMean. Appendix A6 on the 

contrary, shows that the ACAbsArea and ACAbsMean features are more informative. 

Intuitively, this makes sense since these features incorporate the additional information of 

which body segment is generating the motion. Consequently, the ordering of importance 

for these features will be reversed. Table 5-17 shows the final ordering of importance of 

all the accelerometer features explored in this work according to all the experiments 

performed in this section. 

Once the order of importance of all the features with respect to the information they 

capture was determined, experiments were performed over different subsets of the most 

discriminant features of each category (information they capture) to determine the best 

performing ones. Five feature subsets were selected for presenting their results because 

one or more of the following reasons: Their performance was among the highest, they 

were fast to compute, they were more invariant to the magnitude of the acceleration 

signals, or because they could serve as a comparison baseline. These feature subsets were 

labeled as follows: (1) All features: This feature set includes all the features computed 

over the accelerometer data and serves as a baseline of the performance that can be 

achieved if all the features are used without regard to computational speed. (2) Fast to 

compute: This feature set includes the best performing features found over most 

categories that are fast to compute. (3) Fast to compute reduced: This set includes the two 

features that showed the best performance from all the features and were the easiest to 

compute. This set also serves as a baseline of the performance that can be obtained with 

the simplest possible features. (4) Invariant total: This set includes all the features that 

are more invariant to the magnitude of the acceleration signal. Invariance to the 

magnitude of the acceleration signal is important because it can change due to hardware 

differences among sensors or with differences in the positioning of the sensors on the 

body. (5) Invariant reduced: This feature set is a subset of the Invariant total feature set 

containing only the most discriminant features. The performance of these five feature  
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Features subsets 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

All Features:  

MaxAcceleration 

80.6 ± 3.6 89.3±7.3  

(0.1±0.1) 

81.6±9.0  

(0.3±0.1) 

87.2±10.1  

(0.2±0.1) 

81.9±11.6  

(0.3±0.1) 

72.2±10.4  

(0.5±0.3) 

Fast to compute:  

ACAbsArea, DCArea, 
ACVar, ACRange, 

ACMCR 

81.5 ± 3.5 91.8±6.9  

(0.1±0.1) 

81.1±9.8  

(0.4±0.2) 

87.5±9.4  

(0.2±0.1) 

82.1±11.2  

(0.3±0.2) 

74.1±10.5  

(0.5±0.3) 

Fast  to compute reduced: 

ACAbsArea, DCArea, 

82.2 ± 3.3 92.0±5.9  

(0.1±0.1) 

81.0±8.9  

(0.4±0.2) 

88.0±9.4  

(0.2±0.1) 

82.7±10.2  

(0.3±0.2) 

75.0±9.9  

(0.5±0.3) 

Invariant: total 
DCPostureDist, ACVar, 

ACBandEnergy, 
ACLowEnergy, 

ACModVigEnergy, 

ACEntropy, ACFFTPeaks, 
ACPitch, ACMCR and 

ACCorr 

80.6 ± 3.8 89.4±8.2  
(0.2±0.1) 

81.5±9.4  
(0.4±0.2) 

87.3±10.0  
(0.2±0.1) 

82.0±11.3  
(0.3±0.2) 

71.8±11.3  
(0.6±0.3) 

Invariant reduced 

DCPostureDist, ACVar, 
ACBandEnergy, 

ACFFTPeaks, 

80.7 ± 3.6 90.4±7.8  

(0.2±0.1) 

80.7±9.4  

(0.4±0.2) 

87.9±10.0  

(0.2±0.1) 

82.2±11.3  

(0.3±0.2) 

73.1±11.0  

(0.5±0.3) 

Table 5-18: Performance of the four best feature subsets found in this work while computing features 

per sensor and evaluating the results in a subject dependent manner.  

 

 

 

 
Features subsets 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

All Features:  

MaxAcceleration 

44.8 ± 6.1 

 

42.9±35.2  

(0.4±0.5) 

29.0±25.7  

(0.9±1.0) 

27.4±30.1  

(0.6±0.7) 

20.0±25.0  

(0.8±0.8) 

23.8±22.7  

(0.9±0.7) 

Fast to compute:  
ACAbsArea, DCArea, 

ACVar, ACRange, 

ACMCR 

41.6 ± 6.5 41.6±33.3  
(0.4±0.6) 

24.4±24.4  
(1.0±1.0) 

23.7±28.1  
(0.7±0.8) 

16.9±22.2  
(0.9±0.9) 

21.8±23.3  
(0.9±0.8) 

Fast to compute reduced: 

ACAbsArea, DCArea, 

40.1 ± 5.9 39.78±31.23  

(0.49±0.60) 

22.48±24.87  

(1.02±1.14) 

24.5±29.0  

(0.7±0.8) 

16.3±23.7  

(0.9±1.0) 

18.7±20.9  

(0.9±0.8) 

Invariant  total 

DCPostureDist, ACVar, 
ACBandEnergy, 

ACLowEnergy, 

ACModVigEnergy, 
ACEntropy, 

ACFFTPeaks, ACPitch, 

ACMCR and ACCorr 

43.9 ± 6.9 40.4±33.6  

(0.4±0.5) 

28.5±25.7  

(1.0±0.9) 

27.7±29.9  

(0.7±0.7) 

20.2±24.4  

(0.9±0.8) 

23.3±22.5  

(1.0±0.8) 

Invariant reduced 
DCPostureDist, ACVar, 

ACBandEnergy, 

ACFFTPeaks, 

43.4 ± 5.8 38.7±35.6  
(0.5±0.8) 

28.3±26.0  
(1.0±1.0) 

28.6±30.8  
(0.7±0.8) 

20.6±25.5  
(0.9±0.9) 

23.5±23.6  
(1.0±0.8) 

Table 5-19: Performance of the four best feature subsets found in this work while computing features 

per sensor and evaluating the results in a subject independent manner.  
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Features subsets 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

All Features:  

MaxAcceleration 

81.76 ± 1.57 92.2±5.9  

(0.1±0.1) 

84.4±9.2  

(0.3±0.1) 

88.7±9.9  

(0.2±0.1) 

84.8±10.8  

(0.2±0.1) 

75.2±10.0  

(0.4±0.2) 

Fast to compute:  

ACAbsArea, DCArea, 
ACVar, ACRange, 

ACMCR 

82.61 ± 1.70 93.4±5.2  

(0.1±0.1) 

85.2±9.4  

(0.3±0.1) 

88.4±9.8  

(0.2±0.1) 

84.2±11.1  

(0.2±0.1) 

77.4±10.0  

(0.4±0.2) 

Fast to compute reduced: 

ACAbsArea, DCArea, 

83.27 ± 1.64 94.0±5.1  

(0.1±0.1) 

86.1±8.0  

(0.2±0.1) 

89.4±8.6  

(0.1±0.1) 

85.6±9.6  

(0.2±0.1) 

77.7±9.3  

(0.4±0.2) 

Invariant: total 

DCPostureDist, ACVar, 

ACBandEnergy, 
ACLowEnergy, 

ACModVigEnergy, 

ACEntropy, ACFFTPeaks, 

ACPitch, ACMCR and 

ACCorr 

80.45 ± 2.02 90.3±8.3  

(0.1±0.1) 

82.9±9.8  

(0.3±0.1) 

88.2±9.5  

(0.2±0.1) 

84.1±10.4  

(0.2±0.1) 

72.8±10.3  

(0.5±0.2) 

Invariant reduced 

DCPostureDist, ACVar, 
ACBandEnergy, 

ACFFTPeaks, 

81.0 ± 1.9 93.1±6.0  

(0.1±0.1) 

82.4±10.4  

(0.3±0.1) 

88.8±9.7  

(0.2±0.1) 

84.0±10.8  

(0.3±0.1) 

74.3±10.5  

(0.4±0.2) 

Table 5-20: Performance of the four best feature subsets found in this work while computing features 

per axis and evaluating the results in a subject dependent manner.  

 

 

 

 
Features subsets 

 

All 

Activities 

 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

All Features:  

MaxAcceleration 

49.4 ± 4.9 66.9±31.4  

(0.3±0.4) 

41.4±26.0  

(0.8±0.8) 

39.8±33.7  

(0.6±0.6) 

31.5±29.7  

(0.8±0.8) 

37.9±24.4  

(0.9±0.7) 

Fast to compute:  
ACAbsArea, DCArea, 

ACVar, ACRange, 

ACMCR 

48.2 ± 3.8 64.6±29.4  
(0.3±0.4) 

33.8±26.1  
(0.9±0.8) 

40.9±34.3  
(0.7±0.7) 

28.1±29.3  
(0.9±0.9) 

39.3±23.4  
(0.9±0.6) 

Fast to compute reduced: 

ACAbsArea, DCArea, 

47.0 ± 4.7 60.0±32.5  

(0.3±0.4) 

35.2±27.3  

(0.9±0.8) 

41.9±35.1  

(0.6±0.6) 

29.9±30.3  

(0.8±0.8) 

36.1±24.0  

(1.0±0.7) 

Invariant: total 

DCPostureDist, ACVar, 
ACBandEnergy, 

ACLowEnergy, 

ACModVigEnergy, 
ACEntropy, 

ACFFTPeaks, ACPitch, 

ACMCR and ACCorr 

47.3 ± 5.9 59.2±34.4  

(0.4±0.5) 

38.4±27.0  

(0.8±0.8) 

37.0±30.3  

(0.6±0.6) 

28.3±26.8  

(0.8±0.7) 

35.9±23.3  

(0.9±0.6) 

Invariant reduced 
DCPostureDist, ACVar, 

ACBandEnergy, 

ACFFTPeaks, 

47.0 ± 4.1 54.5±34.0  
(0.4±0.5) 

38.4±26.1  
(0.9±0.8) 

38.4±31.9  
(0.6±0.7) 

29.4±28.2  
(0.8±0.8) 

37.2±23.4  
(0.9±0.6) 

Table 5-21: Performance of the four best feature subsets found in this work while computing features 

per axis and evaluating the results in a subject independent manner.  
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subsets using feature computation per sensor, per axis, subject dependent and 

independent evaluation is presented in Table 5-18 through Table 5-21. 

Overall, Table 5-18 and Table 5-20 illustrate that the best performing feature sets for 

subject dependent training in decreasing order of performance are: Fast to compute 

reduced, fast to compute, invariant reduced, invariant total, and all features. It is  

surprising that features so easy to compute such as the ACAbsArea and the DCArea 

contained in the Fast to compute reduced set can achieve the best performance during 

subject dependent training. One explanation might be that subjects perform activities in 

such a distinctive manner that these simple features are enough to discriminate among all 

the activities of interest well enough. The performance per activity during subject 

dependent training (as shown in Appendix A6) is also consistently higher for the fast to 

compute reduced feature set than for the other feature sets except for few activities such 

as callisthenic crunches, Cycling hard at 80rmp, running at 4mph, walking at 3mph (3 

grade incline), and vacuuming. Nevertheless, the difference in performance on these 

activities with respect to the all features and invariant total feature sets ranges only from 

2.0 to 5.3%. 

The best performing feature sets during subject independent evaluation from Table 

5-19 and Table 5-21 in decreasing order of performance are: All features, invariant total, 

invariant reduced, fast to compute, and fast to compute reduced. It is clear, thus, that for 

subject independent training more features are required to capture the high variability 

found in the way activities are performed from individual to individual. In this scenario, 

the overall decrease in performance obtained by using the fast to compute feature set with 

respect to the performance of the all features and invariant reduced feature sets is ~2% 

during both feature computation per sensor and per axis.  

When the differences in performance are analyzed per activity during subject 

independent training, it is found that all the feature subsets explored have difficulties 

recognizing activities involving the same speed and type of motion but different 

resistance levels. These activities include bench weight lifting and bicep curls with 

different weight loads, walking at the same speed (3mph) but different inclination grades, 

and rowing at the same speed but with different resistance levels. This is expected, since 

the accelerometer signals look alike given that the activities are performed at the same 

speed and with a very similar motion patterns. Section 5.4.8 will later explore if this 

activities can be better discriminated by incorporating heart rate information. All the 

feature sets have also difficulties recognizing activities that were performed with high 

degree of variability from subject to subject such as gardening, weeding, and taking out 

trash. These activities are also difficult to discriminate because they include short periods 

of time where other activities being recognized are executed such as walking, standing, 

and kneeling.  

When the performance per activity of the subsets is compared against the performance 

of the all features subset, it is found that they have different strengths and weaknesses. 

Figure 5-22 and Figure 5-23 show the differences in true positive and false positive rate 

per activity coded as a grayscale image. The grayscale images show the performance per 

activity scaled so that the best performance is shown in white and the worst performance 

is shown in black. In other words, poor areas of performance are shown as dark regions in 

the image. Again, it can be seen that the best performing feature subset is the all features 

set. When comparing the differences of the fast to compute and invariant reduced feature  
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Feature Computation Per Sensor and Subject Independent Evaluation

Reduced
All Features Fast to Compute Fast to Compute Invariant Total Invariant Reduced

Bench w eight lif ting - hard
Bench w eight lif ting - light

Bench w eight lif ting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm
Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying dow n

Row ing - Row ing hard - Row ing 30spm
Row ing - Row ing light - Row ing 30spm

Row ing - Row ing moderate - Row ing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

unknow n
Carrying groceries

Doing dishes
Gardening

Ironing
Making the bed

Mopping
Playing videogames

Scrubbing a surface
Stacking groceries

Sw eeping
Typing

Vacuuming
Walking around block

Washing w indow s
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-22: True Positive Rate per Activity when the different subsets of features are computed per 

sensor using the C4.5 decision tree classifier and subject independent evaluation. The grayscale 

image is scaled so that the maximum true positive rate of 79.1% is represented by white and the 

minimum of 1.3% by black. In other words, poor areas of performance are shown in black. 

 

sets against the all features set it is found that the invariant reduced feature set has more 

problems recognizing activities involving different postures than the fast to compute 

feature set. These activities include sitting, standing, kneeling, bench weight lifting, bicep 

curls, and rowing at 30spm. On the contrary, the fast to compute feature set has more 

difficulties than the invariant reduced feature set in recognizing some activities involving 

periodic motion such as carrying groceries, ascending and descending stairs, cycling at 

80rmp, calisthenics sit-ups, rowing moderate at 30spm, and typing. These differences in 

performance can be explained by the fact that the fast to compute feature set includes the 

ACAbsArea and DCArea features that capture posture information better than the 

invariant reduced feature set. Similarly the invariant reduced feature set includes the 

ACFFTPeaks feature that provides powerful information about the periodicity of 

activities, thus giving it an advantage over the fast to compute feature set. One might 

expect that a new feature set created by merging the fast to compute and invariant 

reduced feature sets would address the short comings of both feature sets. However, this 

new feature set would be more computationally expensive and not invariant to the 

magnitude of the acceleration signal.  

To better understand the impact of utilizing fewer sensors to recognize activities on the 

feature sets, an experiment was performed using the fast to compute and invariant 

reduced feature sets to recognize activities using the C4.5 classifier over different subsets  
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Feature Computation Per Axis and Subject Independent Evaluation

Reduced
All Features Fast to Compute Fast to Compute Invariant Total Invariant Reduced

Bench w eight lif ting - hard
Bench w eight lif ting - light

Bench w eight lif ting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cycling - Cycle hard - Cycle 80rpm
Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Lying dow n

Row ing - Row ing hard - Row ing 30spm
Row ing - Row ing light - Row ing 30spm

Row ing - Row ing moderate - Row ing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

unknow n
Carrying groceries

Doing dishes
Gardening

Ironing
Making the bed

Mopping
Playing videogames

Scrubbing a surface
Stacking groceries

Sw eeping
Typing

Vacuuming
Walking around block

Washing w indow s
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-23: True Positive Rate per Activity when the different subsets of features are computed per 

axis using the C4.5 decision tree classifier and subject independent evaluation. The grayscale image is 

scaled so that the maximum true positive rate of 93.8% is represented by white and the minimum of 

4.8% by black. In other words, poor areas of performance are shown in black. 

 

of sensors. Table 5-22 and Table 5-23 present the performance of these two feature sets 

when recognizing activities using (1) three sensors worn at the dominant wrist, hip, and 

dominant foot, (2) a single sensor worn at the hip, (3) a single sensor worn at the 

dominant wrist, and (4) a single sensor worn at the dominant foot evaluated in a subject 

dependent and independent manner. From the tables, we can see that during subject 

dependent training, the fast to compute feature set achieves the best performance when all 

the sensors are used and when three sensors located at the wrist, hip and foot are used. 

Nevertheless, the invariant reduced feature set has a slightly higher performance than the 

fast to compute feature set when only one sensor is used to recognize activities. Overall, 

the performance of both feature sets during subject dependent training is very similar and 

both show approximately the same decrease in performance when the number of sensors 

is reduced. Therefore, it can be concluded from the results presented in this work that 

both feature sets achieve similar performance when recognizing activities in a subject 

dependent manner.   

The same behavior is found during subject independent training. The fast to compute 

feature set performs well when at least one sensor per limb is used and the invariant 

reduced feature set outperforms considerably the fast to compute feature set when only 

one sensor is used. The difference in performance is higher (3 and 9%) when only one  
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Features 

subsets 

 

Sensor 

subset 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

Invariant 

Reduced 

All 80.5 ± 2.0 90.3±8.3  

(0.1±0.1) 

82.9±9.8  

(0.3±0.1) 

88.2±9.5  

(0.2±0.1) 

84.1±10.4  

(0.2±0.1) 

72.8±10.3  

(0.5±0.2) 

Fast to 
Compute 

All 82.6 ± 1.7 93.4±5.2  
(0.1±0.1) 

85.2±9.4  
(0.3±0.1) 

88.4±9.8  
(0.2±0.1) 

84.2±11.1  
(0.2±0.1) 

77.4±10.0  
(0.4±0.2) 

Invariant 

Reduced 

Hip 

DWrist 

DFoot 

79.2 ± 2.6 91.6±7.7  

(0.1±0.1) 

81.6±9.1  

(0.3±0.2) 

85.9±11.7  

(0.2±0.1) 

80.8±12.4  

(0.3±0.2) 

74.0±10.1  

(0.4±0.2) 

Fast to 

Compute 

Hip 

DWrist 

DFoot 

80.4 ± 2.1 90.6±7.4  

(0.1±0.1) 

83.9±9.3  

(0.3±0.1) 

86.8±9.7  

(0.2±0.1)  

81.9±11.0  

(0.3±0.2) 

74.0±10.1  

(0.4±0.2) 

Invariant 
Reduced 

Hip 73.5 ± 2.9 86.5±9.8  
(0.2±0.1) 

80.4±11.0  
(0.3±0.2) 

81.2±13.6  
(0.3±0.2) 

74.3±15.8  
(0.4±0.2) 

61.7±13.0  
(0.6±0.2) 

Fast to 

Compute 

Hip 72.4 ± 2.7 87.8±9.3  

(0.1±0.1) 

80.3±11.8  

(0.4±0.2) 

80.3±13.9  

(0.3±0.2) 

73.3±14.8  

(0.4±0.2) 

58.8±13.3  

(0.7±0.3) 

Invariant 

Reduced 

DWrist 65.2 ± 3.8 85.0±11.9  

(0.2±0.1) 

68.1±13.1  

(0.5±0.2) 

69.3±15.6  

(0.4±0.2) 

61.5±15.8  

(0.6±0.2) 

54.2±13.4  

(0.7±0.3) 

Fast to 

Compute 

DWrist 67.0 ± 3.7 85.8±11.5  

(0.2±0.1) 

69.7±14.1  

(0.5±0.2) 

69.4±17.1  

(0.4±0.2) 

61.6±17.3  

(0.5±0.3) 

57.3±12.6  

(0.7±0.3) 

Invariant 
Reduced 

DFoot 68.8 ± 3.8 88.2±12.1  
(0.2±0.1) 

68.1±11.5  
(0.5±0.2) 

78.1±14.0  
(0.3±0.2) 

67.1±16.8  
(0.5±0.2) 

56.9±15.4  
(0.7±0.3) 

Fast to 

Compute 

DFoot 66.4 ± 3.5 91.0±8.4  

(0.1±0.1) 

65.3±12.0  

(0.6±0.2) 

77.4±14.5  

(0.3±0.2) 

64.5±15.8  

(0.5±0.2) 

51.9±14.6  

(0.8±0.3) 

Table 5-22: Performance of the two feature subsets with highest performance and lowest 

computational requirements when features are computed per axis and subject dependent evaluation 

is used. DWrist stands for dominant wrist and DFoot for dominant foot. The activities to recognize 

are the 52 activities contained in the MIT dataset including the unknown class. 

 

 
Features 

subsets 

 

Sensor 

subset 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

Invariant 

Reduced 

All 47.3 ± 5.8 59.2±34.4  

(0.4±0.5) 

38.4±27.0  

(0.8±0.8) 

37.0±30.3  

(0.6±0.6) 

28.3±26.8  

(0.8±0.7) 

35.9±23.3  

(0.9±0.6) 

Fast to 

Compute 

All 48.2 ± 3.8 64.6±29.4  

(0.3±0.4) 

33.8±26.1  

(0.9±0.8) 

40.9±34.3  

(0.7±0.7) 

28.1±29.3  

(0.9±0.9) 

39.3±23.4  

(0.9±0.6) 

Invariant 

Reduced 

Hip 

DWrist 

DFoot 

43.8 ± 5.4 50.1±33.2  

(0.5±0.7) 

33.6±25.7  

(0.9±0.8) 

33.6±29.7  

(0.7±0.7) 

27.2±27.0  

(0.8±0.7) 

34.7±23.0  

(0.9±0.6) 

Fast to 

Compute 

Hip 

DWrist 

DFoot 

44.3 ± 4.9 52.0±31.1  

(0.3±0.4) 

33.3±27.2  

(0.9±0.9) 

35.9±32.3  

(0.6±0.6) 

28.5±28.2  

(0.8±0.8) 

32.5±23.4  

(1.0±0.7) 

Invariant 
Reduced 

Hip 36.1 ± 4.1 35.0±22.9  

(0.8±0.7) 

28.0±22.9  

(1.0±0.8) 

26.2±24.8  

(0.7±0.6) 

20.5±20.6  

(0.8±0.7) 

22.5±17.8  

(1.2±0.6) 

Fast to 
Compute 

Hip 26.5 ± 5.5 19.1±18.5  

(0.8±0.8) 

20.8±22.8  

(1.0±0.9) 

17.4±19.7  

(0.7±0.7) 

10.1±14.7  

(0.8±0.6) 

11.7±14.2  

(1.4±0.8) 

Invariant 
Reduced 

DWrist 36.9 ± 5.2 30.8±31.1  

(0.8±0.8) 

28.0±22.6  

(1.0±0.9) 

26.9±21.6  

(0.7±0.5) 

25.4±19.3  

(0.8±0.5) 

29.6±17.7  

(1.1±0.7) 

Fast to 
Compute 

DWrist 35.1 ± 4.8 31.2±26.6  

(0.8±0.7) 

23.8±20.8  

(1.0±0.8) 

23.7±21.9  

(0.7±0.6) 

21.8±18.1  

(0.9±0.6) 

28.6±18.4  

(1.1±0.7) 

Invariant 
Reduced 

DFoot 33.9 ± 3.6 41.1±27.4  

(0.7±0.7) 

26.3±18.6  

(1.1±0.8) 

28.1±22.1  

(0.7±0.5) 

20.5±18.7  

(0.8±0.6) 

17.2±13.4  

(1.2±0.7) 

Fast to 

Compute 

DFoot 27.1 ± 4.1 29.7±20.1  

(0.6±0.8) 

24.9±20.2  

(1.1±0.9) 

23.7±18.9  

(0.7±0.8) 

14.1±16.5  

(1.0±0.9) 

7.2±8.9  

(1.4±1.1) 

Table 5-23: Performance of the two feature subsets with highest performance and lowest 

computational requirements when features are computed per axis and subject independent 

evaluation is used.  DWrist stands for dominant wrist and DFoot for dominant foot. The activities to 

recognize are the 52 activities contained in the MIT dataset including the unknown class. 
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sensor is worn at the hip and at the dominant foot. The results indicate that the invariant 

reduced feature set has important advantages over the fast to compute feature set, 

particularly during subject independent training. 

It can be concluded from the results presented in this section, that the best feature set to 

use is the invariant reduced feature set. Even when this feature set is more 

computationally expensive than the fast to compute feature set, it has important 

advantages such as invariance to the magnitude of the accelerometer signal and higher 

performance during subject independent training. If invariance to the magnitude of the 

accelerometer signal is not important and if activities are recognized in a subject 

dependent manner, the fast to compute feature set can be used to recognize activities with 

extremely low computational requirements. For the remaining of this thesis, the invariant 

reduced feature set will be used to recognize activities in future experiments. 

 

5.4.8  Does the Incorporation of Heart Rate Data Improve Recognition of Activities? 

Accelerometers are good at recognizing activities with different postures or distinctive 

motions of the body segments at particular speeds. However, they may not be well suited 

for recognizing activities that involve similar motion signatures but different resistance 

work or effort. Examples of some of these activities include cycling at 80rmp at different 

resistance levels, performing bicep curls with different weights at the same speed of 

motion, and walking on a treadmill at 3mph with different inclination grades. On the 

other hand, heart rate has a linear relationship with energy expenditure and can detect 

changes in effort or resistance load [47, 48, 81]. This section explores whether combining 

accelerometer and heart rate data improves the recognition of activities involving the 

same motion characteristics (e.g. speed) but different resistance work. 

First, a baseline is obtained by recognizing activities utilizing only features computed 

from heart rate data. This also serves the purpose of identifying the most discriminant 

features based on heart rate. Later, the most discriminating heart rate features are 

incorporated to the best set of accelerometer-based features found in the previous 

sections. As in previous experiments, the activities to recognize are the 52 activities 

contained in the MIT dataset, including the unknown class.  

In general, heart rate data from devices that are relatively convenient to wear for 

moderate periods of time such as the Polar chest strap tends to be noisy, particularly for 

activities with high degree of motion such as running on a treadmill at 5 or 6mph. This is 

because the quality of heart rate data depends on the good attachment of the heart rate 

monitor to the chest of the subject. The more the heart rate monitor moves, the noisier the 

heart rate data. Thus, in order to reduce the noise, a 15s running average filter is applied 

over the heart rate data before the segmentation and feature computation steps. This filter 

is applied over windows of 15s because it was found via informal testing to reduce noise 

considerably while minimizing the delay introduced in some activities with rapid changes 

in heart rate such as ascending and descending stairs. Heart rate data is then segmented 

by accumulating the data over sliding windows of specific lengths. When the 

accelerometer data is included, the heart rate window length extends from the end of the 

acceleration window backwards in time (see Figure 5-24). Accelerometer features are 

computed over windows of 5.6s (optimal window length found in Section 5.4.6), so the 

two types of features are being computing using different window lengths.  
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Figure 5-24: Graphic representation of the segmentation of heart rate and accelerometer data using 

the sliding window approach. Note that the windows for accelerometer and heart rate data are of 

different lengths and that the heart rate sliding window extends from the end of the end of the 

accelerometer window backwards in time. 

 

Heart rate windows and their associated acceleration windows are discarded when no 

sensor values are available for heart rate over a given window. The results presented in 

this section are evaluated using subject dependent and independent training. 

 

5.4.8.1 How Well can Activities be Recognized from Heart Rate Data? 

 

This subsection has two goals: (1) to identify the heart rate features with highest 

discriminant power and (2) to establish a baseline as to how well can the activities of 

interest be recognized from heart rate data alone. The heart rate features explored in this 

section are: HRMean, HRAboveRest, ScaledHR, HRVar, and HRTrend. Appendix A3 

provides an explanation of how these features are computed. These features attempt to 

capture either the level of physical effort associated with an activity (HRMean, 

HRAboveRest, and ScaledHR), its variability (HRVar), or tendency (HRTrend). 

First, information gain feature selection was performed over the heart rate features. 

This sorts the features in order of importance according to the information they provide. 

The ordering of the features from most important to least important obtained from the 
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procedure is as follows ScaledHR, HRAboveRest, HRMean, HRTrend, and HRVar. The 

three most important features ScaledHR, HRAboveRest, and HRMean capture the same 

information. However, the better performance of ScaledHR is expected since this feature 

normalizes the heart rate data of an individual to lie between resting heart rate (a value of 

zero for this feature) and the average heart rate value obtained while the subject runs on a 

treadmill at 5mph (a value of 1 for this feature). Using this normalization, two individuals 

with different fitness level performing the same activity could have different heart rate 

values but relative to their heart rate values at rest and while running at 5mph, they could 

be performing in the same intensity zone. Thus, this normalization helps to minimize the 

inter-individual variations in heart rate values due to differences in the fitness level. 

Ideally, this feature would normalize heart rate between resting heart (RHR) rate and 

maximal heart rate (MHR). Unfortunately, for this to be possible, a maximal physical 

exertion test would be required. These tests are inconvenient in practice because they 

require an exhaustive exercise session where the physical condition of the subject is push 

to the limit to measure heart rate during maximal exertion. Some individuals not 

physically fit or with other medical conditions might not even be able to perform such a 

test. Furthermore, these tests would be impractical to impose for a consumer-based 

mobile phone application – the ultimate goal. The least important features are HRTrend 

and HRVar (an experiment will later characterize how least important they are). These 

features capture the variability or tendency of the heart rate data. The HRTrend feature, in 

particular, tells if heart rate data is increasing (positive value for the feature), decreasing 

(negative value) or in steady state (near a value of zero) over time. This might be 

important information to capture because heart rate for some physically demanding 

activities such as ascending stairs, crunches and sit-ups constantly increases continuously 

as the activity is performed, possibly for the duration of the activity if a person is not very 

fit and the maximal exertion is not reached Consequently, when features such as 

ScaledHR are computed over these activities, they show high variability in their values 

that leads to a low recognition performance by the C4.5 classifier. One possible 

explanation for the low ranking of these features (HRVar and HRTrend) is that they were 

computed over a short duration window (5.6s). Later in this section, experiments will be 

performed to measure the impact of utilizing longer window lengths over these features.  

To corroborate the ordering of importance found using information gain feature 

selection, the performance over individual features was tested using the C4.5 classifier 

during subject dependent and independent training. The results are illustrated in Table 

5-24 and Table 5-25. The ordering during subject dependent training is the same as the 

one found during information gain feature selection. For subject independent training, the 

ordering with respect to overall performance is reversed for the ScaledHR and 

HRAboveRest features. However, when analyzing the result per activity category it can be 

seen that the ScaledHR feature is outperforming the HRAboveRest feature in most activity 

categories. The main difference in overall performance between these features is due to 

the performance over the unknown class. The HRAboveRest feature achieves a true 

positive rate of 88.0% for this class while the ScaledHR feature achieves only a true 

positive rate of 80.3%. When the true positive rate is analyzed per activity during subject 

dependent evaluation, it is found that the activities with highest performance are lying 

down (87-89%), running at 5mph (7-31%), and running at 6mph (12-29%).  
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Heart Rate Features  

(Number of features) 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR (1) 37.7 ± 7.0 27.4±17.4  

(1.0±0.7) 

26.6±20.5  

(1.1±0.6) 

30.3±22.7  

(1.0±0.6) 

24.5±18.8  

(1.0±0.6) 

16.3±14.0  

(1.2±0.6) 

HRAboveRest (1) 37.4 ± 7.4 26.8±18.1  

(1.0±0.8) 

27.2±20.8  

(1.1±0.6) 

29.9±22.5  

(1.0±0.6) 

24.5±18.8  

(1.1±0.6) 

16.2±14.4  

(1.2±0.7) 

HRMean (1) 37.4 ± 6.6 26.5±18.5  
(1.0±0.6) 

27.4±20.9  
(1.1±0.6) 

30.6±22.5  
(1.0±0.6) 

24.9±18.7  
(1.10±0.6) 

16.8±13.8  
(1.2±0.7) 

HRVar (1) 29.7 ± 8.5 6.8±9.1  

(0.9±1.0) 

1.4±2.8  

(0.5±0.5) 

6.5±9.3  

(0.6±0.5) 

5.9±8.7  

(0.5±0.4) 

2.0±3.6  

(0.5±0.5) 

HRTrend (1) 29.3 ± 8.3 
 

4.9±5.9  
(0.9±0.9) 

1.9±3.3  
(0.5±0.4) 

6.3±8.6 
(0.7±0.6) 

6.2±8.3  
(0.7±0.6) 

1.7±2.9  
(0.5±0.4) 

Table 5-24: Performance of recognizing the 52 activities contained in the MIT dataset (including the 

unknown class) from heart rate features only over windows of 5.6s using the C4.5 decision tree 

classifier during subject dependent evaluation. 

 

 
Heart Rate Features  

(Vector size) 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR (1) 30.0 ± 6.3 15.2±4.9  

(0.9±0.8) 

5.5±4.2  

(0.4±0.4) 

4.4±4.3  

(0.5±0.5) 

1.0±1.9  

(0.4±0.3) 

1.3±1.6  

(0.4±0.2) 

HRAboveRest (1) 31.4 ± 7.0 15.2±4.2  
(0.8±0.8) 

1.8±2.9  
(0.2±0.2) 

1.85±3.1  
(0.3±0.2) 

0.7±1.4  
(0.2±0.1) 

0.9±1.2  
(0.2±0.1) 

HRMean (1) 27.8 ± 7.3 4.2±3.2  

(1.1±1.4) 

1.7±3.0  

(0.2±0.2) 

1.6±2.7  

(0.3±0.3) 

0.6±1.1  

(0.2±0.2) 

0.6±1.4  

(0.2±0.2) 

HRVar (1) 29.9 ± 7.6 0.0±0.0  

(0.0±0.0) 

0.0±0.0  

(0.0±0.0) 

0.8±1.9  

(0.0±0.0) 

0.8±2.0  

(0.0±0.0) 

0.0±0.0  

(0.0±0.0) 

HRTrend (1) 29.8 ± 7.9 0.0±0.0  
(0.0±0.0) 

0.0±0.0  
(0.0±0.0) 

0.0±0.0  
(0.0±0.0) 

0.0±0.0  
(0.0±0.0) 

0.0±0.0  
(0.0±0.0) 

Table 5-25: Performance of recognizing the 52 activities contained in the MIT dataset (including the 

unknown class) from heart rate features only over windows of 5.6s using the C4.5 decision tree 

classifier during subject independent evaluation. 

 

These activities are better discriminated because heart rate reaches steady state for a good 

proportion of the activity length and because they represent the extreme values that heart 

rate data can reach. The overall performance of the HRVar and HRTrend features during 

subject independent evaluation is deceiving. From Table 5-25, it can be seen that their 

performance for all activity categories is zero, while their overall performance is around 

29%. This is because the unknown class, which is the class with largest number of 

examples (see Appendix A4), has a true positive rate of near 100% when both features 

are used. To prevent this from happening in the following experiments, the unknown 

class is no longer included for the remaining of this section. 

Given that the main difference found between the HRAboveRest and ScaledHR feature 

is the performance over the unknown class, new experiments were run to better 

understand the performance per activity when this class is not included. Table 5-26 

presents the new results obtained. The table shows that the performance using both 

features is very similar during subject dependent training. When the true positive rate is 

analyzed per class for both features, it is found that the best performance is achieved for 

lying down (87%), cycling hard at 80rmp (65%), cycling light at 60rmp (66.5%), running 

at 5 and 6mph (56-64%), and walking at different speeds and inclinations (47-55%). 

Again, this is because these activities include periods where the heart rate data reaches 

steady state and that the classifier utilizes to discriminate among the activities.  
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Features 

 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR 

Subject Dependent 

38.4 ± 7.8 37.7±22.3  

(1.5±1.0) 

39.0±22.2  

(1.7±0.8) 

38.3±23.9  

(1.4±0.8) 

34.2±20.6  

(1.6±0.9) 

24.0±18.0  

(2.0±1.1) 

HRAboveRest 

Subject Dependent 

38.0 ± 7.7 37.6±21.7  

(1.5±1.0) 

39.5±22.1  

(1.7±0.8) 

37.7±23.6  

(1.4±0.8) 

34.2±20.2  

(1.6±0.9) 

23.6±17.3  

(2.1±1.1) 

ScaledHR 
Subject Independent 

13.8 ± 3.2 16.2±5.9  
(1.7±1.2) 

14.2±9.3  
(2.3±1.3) 

9.0±7.5  
(1.6±1.0) 

4.1±5.2  
(1.7±0.8) 

4.3±4.9  
(1.7±0.9) 

HRAboveRest 

Subject Independent 

11.9 ± 3.32 17.5±7.0  

(1.7±1.3) 

5.7±7.4  

(2.2±1.0) 

4.8±7.2  

(1.7±0.8) 

3.8±5.4  

(1.8±0.8) 

4.3±5.0  

(1.7±0.8) 

Table 5-26: Performance of recognizing the 51 activities contained in the MIT dataset (without 

including the unknown class) in a subject independent manner using the C4.5 decision tree classifier 

trained over the ScaledHR and HRAboveRest features over a heart rate sliding window of 5.6s  

 

The activities with poorest performance are those whose heart rate value keeps increasing 

as the activity is performed such as ascending stairs (2.9%) and bench weight lifting hard 

(8.7%). When the confusion matrix is analyzed for subject dependent training (shown in 

Appendix A7), it can be seen that there exists a high degree of confusion among 

household activities.  

This is because heart rate has similar values for most of these activities and there is no 

single heart rate value characterizing each of the activities. Interestingly, the household 

activities better recognized were sedentary activities where the heart rate value reaches 

steady state such as ironing (36%), playing video games (34%), typing (30%), and 

writing (48%). The confusion matrix also shows that sedentary and ambulatory activities 

are being confused with household activities. This is because most household activities 

include short periods of time where postures and ambulatory activities are executed.  

The results using subject independent evaluation show in Table 5-26, suggest that the 

ScaledHR feature has a slightly higher performance (~2%) than the HRAboveRest feature. 

This better performance is more apparent for ambulation an exercise activities where the 

true positive rate doubles for the ScaledHR feature. This can be explained by the fact that 

the ScaledHR feature helps in normalizing the heart rate signal so that differences in 

fitness level of individuals are minimized. The notable low performance during subject 

independent training with respect to subject dependent training is due mainly to the 

different fitness level of the individuals. Two individual performing the same activity, but 

with different fitness levels, would have heart rate readings with different values. 

Although the ScaledHR feature attempts to mitigate this problem, it is clear that new 

ways to compensate for this variation among individuals are required.  

One way to mitigate the differences in the fitness level of individuals would be to 

include features that attempt to capture this information such as the body weight of an 

individual (weight) and the percentage of fat of an individual (FatPercent). Therefore, an 

experiment was run to determine if the addition of these features improves subject 

independent recognition of activities when heart rate data alone is used. Table 5-27 

presents the results. The table also includes another feature that attempts to better 

describe the fitness level of an individual. This feature is labeled as FitnessIndex and is 

computed by dividing the number of steps by the average heart rate value (in beats-per-

minute) of a subject while running on a treadmill at 5mph. This feature is an 

approximation to the fitness index suggested in [230]. The results show that comparing  
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Features 

 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR 13.8 ± 3.2 16.2±5.9  

(1.7±1.2) 

14.2±9.3  

(2.3±1.3) 

9.0±7.5  

(1.6±1.0) 

4.1±5.2  

(1.7±0.8) 

4.3±4.9  

(1.7±0.9) 

ScaledHR + 

Weight 

12.9 ± 5.3 19.0±13.5  

(2.6±2.7) 

14.4±18.1  

(3.0±2.9) 

9.4±12.8  

(2.1±1.9) 

5.7±10.0  

(2.2±1.9) 

5.2±9.3  

(2.6±2.3) 

ScaledHR + 
FatPercent 

12.0 ± 3.9 19.3±15.3  
(2.7±3.0) 

11.2±13.3  
(2.7±2.6) 

7.5±10.3  
(2.1±2.2) 

4.1±8.5  
(2.2±2.1) 

4.1±7.3  
(2.5±2.1) 

ScaledHR + 

FitnessIndex 

13.8 ± 3.6 20.5±15.5  

(2.6±2.5) 

14.1±17.9  

(2.8±2.4) 

10.4±16.4  

(2.0±1.9) 

6.7±13.9  

(2.2±1.9) 

6.5±10.0  

(2.5±2.1) 

Table 5-27: Performance of combining features that attempt to describe the fitness level of an 

individual with heart rate features (ScaledHR) during subject independent evaluation using the C4.5 

decision tree classifier. The target activities were the 51 activities contained in the MIT Dataset, 

without including the unknown class. 

 

the difference in overall performance is again deceiving. For example, the overall 

performance for ScaledHR+Weight is lower than for the ScaledHR feature alone,  

but the performance per activity category shows that the ScaledHR+Weight features have 

a slightly higher performance ranging from 1 to 4%. Cautious analysis of the 

performance per activity when the Weight, FatPercent, and FitnessIndex features are 

added to the ScaledHR feature (Tables can be found in Appendix A7) show that the 

addition of these features changes the distribution of the performance per activity little. 

As a result, there is no clear advantage of incorporating these features. One explanation 

why these features do not improve recognition of activities is that the number of subjects 

is relatively low (20) to capture the fitness differences across individuals.  

Since the performance of heart rate features such as ScaledHR, HRVar, and HRTrend 

can vary depending on the window length used, an additional experiment was run to 

measure this effect. During this experiment, the heart rate window length was varied 

from 5.6s to 45.5s while the performance over these features was measured using the 

C4.5 decision tree classifier. Figure 5-25 presents the results obtained from the 

experiment for the ScaledHR feature. The results for the HRVar and HRTrend can be 

found in Appendix A7. During subject dependent training, Figure 5-25 shows that the 

window length with higher performance over all and per activity category is 5.6s. After 

this window length, the performance for all the activities and each activity category drops 

significantly. The main reason why performance decreases as the window length is 

increased is a reduction in the number of training examples available. Longer window 

lengths also introduce more variability in the heart rate data readings for some activities 

such as postures and thus, further decreases performance as seen in Figure 5-25a. During 

subject independent training, on the contrary, the performance per activity seems to 

improve as observed when increasing the window length for accelerometer-based 

features. This is because longer window lengths have a smoothing effect over the heart 

rate data that reduces inter-subject variability. The effect of increasing the window length 

for the HRVar and HRTrend features (as shown in Appendix A7) during subject 

dependent training has a similar effect as the one observed for the ScaledHR feature. The 

only difference is that for these features, a little improvement in performance (~1-2%) is 

observed for the ambulation, exercise, resistance exercise, and household activities at a 

window length of 11.3s. Nevertheless, the decrease in performance at this window length  
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(b) Performance Using the ScaledHR Feature Set and Subject Independent Training
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Figure 5-25: Performance of the ScaledHR feature computed over varying window lengths using the 

C4.5 classifier and evaluated using (a) subject dependent training and (b) subject independent 

training. 
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(11.3s) for postures is about 4.3%. For subject independent training, it is found that the 

performance using the HRVar and HRTrend features decreases as the window length 

increases.  This is because the variability and trend of the heart rate data is less distinctive 

for each activity as the window length is increased since increasing window lengths have 

a smoothing effect on the data. In summary it can be concluded that the optimal window 

length to use for heart rate data is 5.6s. This window length has the highest performance 

during subject dependent training for the ScaledHR feature and is the optimal window 

length to use for the HRVar and HRTrend features. The performance during subject 

independent training improves for the ScaledHR feature as the window length increases, 

but the overall improvement obtained is only about 2% when increasing the window 

length from 5.6s to 45.5s.  

Given the low performance obtained while recognizing activities from heart rate data 

alone, one might predict that combining heart rate with accelerometer data might not 

substantially improve recognition of activities unless the C4.5 classifier could learn to 

utilize it only to discriminate among activities involving different effort or resistance 

level. Although this option will be explored in the next section, another alternative is to 

force the C4.5 classifier to use heart rate data only to discriminate among these activities. 

This can be achieved by first classifying the activity type using accelerometer data, and 

then utilizing a classifier trained only on heart rate data to discriminate among the 

intensity levels of an activity. Consequently, to test this idea, we trained five independent 

classifiers utilizing the ScaledHR feature to discriminate among the different intensity 

levels of an activity in a subject independent manner. Table 5-28 presents the overall 

accuracy of each classifier and Appendix A7 presents the accuracies per activity. It can 

be seen that even just recognizing among the intensity level of few activities using heart 

rate data is difficult. The best accuracy achieved is 51% for the classifier that 

discriminates between the intensity levels of bench weight lifting, and the worse accuracy 

of 29% is for the rowing at 30spm classifier. The performance of the rowing at 30spm 

classifier is perhaps the worst because the resistance level of the rowing machine used 

during the data collection changes only slightly compared to the other machines used. 

Thus, heart rate readings do not change dramatically for the different intensity settings. In 

fact, the resistance of a rowing machine is mostly set by the pulling effort and expertise 

of each individual at the machine. It follows that even when this hierarchical approach is 

followed to incorporate heart rate data, the discrimination among intensity levels of an 

activity would still be poor for subject independent recognition. Again, the main problem 

is the diverse heart rate readings obtained for each activity due to differences in subjects‘ 

fitness. Another option would be to utilize subject dependent training to discriminate 

among the intensity levels of an activity, but this requires the subject to provide examples 

of the activities of interest. The main challenge then would be to come up with strategies 

to make the training process easy and amenable to end-users. 

This section has shown that recognizing activities from heart rate data alone is difficult, 

particularly in a subject independent manner. Even when the best performing feature is 

used (ScaledHR), the best total accuracy obtained is 38.4 ± 7.8 for subject dependent 

training and 13.8 ± 3.2 for subject independent training. The main problem found so far is 

that the values of heart rate data are different for two individuals performing the same 

activity but with different fitness level and without requiring burdensome training  
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Intensity Activity Classifier Intensities Total Accuracy 

Bicep Curls  Weight Load: Light (0.9Kg), moderate (2.2Kg), and hard 

(3.6Kg) 

42.1 ± 10.8 

Bench Weight Lifting Weight Load: Light (0.9Kg), moderate (3.1Kg), and hard 

(7.7Kg) 

51.3 ± 20.0 

Cycling at 80rmp Resistance level: Light (2), moderate(7), and hard (13) 41.0 ± 15.5 

Rowing at 30spm Resistance level: Light (2), moderate(5), and hard (8) 29.7 ± 11.2 

Walking at 3mph Treadmill inclination: 0, 3, 6, 9 43.2 ± 11.6 

Table 5-28: Performance of five independent C4.5 classifiers trained utilizing the ScaledHR feature 

to discriminate among the different intensity levels of an activity. The ScaledHR feature was 

computed over windows of 5.6s in length. 

 

procedures measuring maximal expenditure we have no mechanism to normalize them. 

After plotting misclassification histograms, it was also found that the errors were 

concentrated at the beginning and end of activities. This is because heart rate lags 

physical activity and remains altered once the activity has finished (errors at the end of 

activity or beginning of the next one). Furthermore, for vigorous activities of short 

duration such as ascending stairs, crunches, and sit-ups, heart rate constantly increases 

resulting in classification errors all across the activity. Finally, another problem with 

heart rate data while recognizing sedentary activities is that heart rate can also be altered 

by emotional states, stress, biological processes, and even smoking. This problem was not 

apparent in our dataset but it might be of potential concern in practice. 

The poor performance obtained by recognizing activities from heart rate data alone in 

this section might be a consequence of the static nature of the classification approach 

followed, where no temporal information about the variability of heart rate over time is 

incorporated. More computationally expensive classification techniques such as hidden 

Markov models (HMMs) or dynamic Bayesian networks (DBNs) might improve the 

classification results obtained in this section by incorporating temporal information about 

how hear rate changes over time as activities change. This approach was not explored in 

this work due to its high computational requirements since one of the main goals of this 

work is to come up with classification strategies amenable for real-time performance in 

existing handheld devices. 

 

5.4.8.2 How Well can Activities be Recognized by Combining Acceleration and 

Heart Rate Data? 

 

In this section, the best performing heart rate feature found (ScaledHR) in the previous 

section is added to the best set of acceleration-based features (invariant reduced feature 

set) found in previous sections. Table 5-29 presents the results of combining both feature 

sets using the C4.5 classifier during subject dependent and independent evaluation. Both 

feature sets are computed over windows of 5.6s. The detailed results per activity can be 

found in Appendix A7.  

Table 5-29 shows that the improvement in overall performance when the ScaledHR 

feature is incorporated is approximately 1.6% during both subject dependent and 

independent evaluation.  When the performance per class is inspected for subject 

dependent training (shown in Appendix A7), it is found that the C4.5 classifier indeed 

learns to improve the performance of activities involving different levels of effort or  
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Features subsets  Evaluation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

Invariant Reduced  

 

Subject 

Dependent 

87.93 ± 

2.08 

96.9±4.1  

(0.1±0.1) 

88.8±8.4  

(0.2±0.2) 

92.6±7.7  

(0.1±0.1) 

88.0±9.5  

(0.2±0.2) 

80.6±9.0  

(0.4±0.2) 

Invariant Reduced 

+ ScaledHR 

Subject 

Dependent 

89.49 ± 

1.81 

96.9±4.1  

(0.1±0.1) 

91.7±7.3  

(0.2±0.1) 

93.3±7.6  

(0.1±0.1) 

90.4±8.7  

(0.2±0.2) 

82.0±8.5  

(0.4±0.2) 

Invariant Reduced  Subject 
Independent 

50.63 ± 
5.18 

77.0±24.0  
(0.5±0.7) 

46.6±27.1  
(1.2±1.0) 

46.6±31.6  
(0.9±0.9) 

34.1±29.9  
(1.2±1.0) 

43.8±25.6  
(1.3±0.9) 

Invariant Reduced 

+ ScaledHR 

Subject 

Independent 

52.28 ± 

5.84 

76.2±24.6  

(0.5±0.7) 

51.8±28.8  

(1.0±1.0) 

46.4±31.5  

(0.8±0.9) 

36.6±31.4  

(1.1±1.0) 

43.7±25.8  

(1.3±0.8) 

Table 5-29: Performance of recognizing activities when the most discriminating accelerometer 

(invariant reduced feature set) and heart rate feature (ScaledHR) are computed per axis and fed to 

the C4.5 classifier to recognize the 51 activities contained in the MIT dataset without including the 

unknown class. 

 

resistance load without changing the performance for the other activities. The 

performance improves for cycling at 80rmp hard and moderate (improvement between 

+1.6 and +4.5%), Rowing at 30spm light, moderate and hard (+1.9-2.9%), walking at 

3mph on a treadmill at inclinations of 0, 3, 6, and 9 (+3.7-12.5%), wiping/dusting 

(+4.6%), and taking out trash (+3.2%). stacking groceries (+3%), sweeping (+2.3%), 

Vacuuming (+1.5%), The performance also increases for washing windows, carrying 

groceries, and scrubbing a surface, but the increase is less than +1%. During subject 

independent evaluation, the performance also increases between +2.4% and +28.7% for 

some activities such as cycling at 80rmp hard, rowing at 30spm moderate, running at 

5mph, walking on a treadmill at different inclinations, and taking out trash. However, 

even when the improvement seems considerable for some activities (e.g. 28.7% for 

walking at 3mph with an inclination of 9), other activities such as bicep curls hard and 

moderate, rowing at 30spm hard, and running at 6mph suffer a decrease in performance 

as high as 8%. Therefore, the improvement achieved by incorporating heart rate data 

during subject independent training is less obvious than the one obtained for subject 

dependent training. The confusion matrices for the combination of the invariant reduced 

and ScaledHR features are shown in Appendix A7. From these matrices, it can be seen 

that most of the confusion during subject dependent training happens among household 

activities. In subject independent training, confusions are concentrated among household 

activities, and between ambulation and postures and household activities. 

In conclusion, the overall improvements achieved while incorporating heart rate data 

during both, subject dependent and independent training is only 1.6%. The improvement 

is more obvious for subject dependent activities where the performance is increased 

between 1.6 and 12.5% for activities involving different levels of effort or resistance 

load. Nevertheless, the improvement obtained might not justify (1) the burden associated 

with wearing a heart rate monitor or (2) the need for personalized training. As a result, 

from this point on, this thesis will only utilize accelerometer-based features (invariant 

reduced feature set) to recognize the activities of interest.  
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Evaluation Method All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

Subject dependent 
without Unknown class 

Random guess: 1.96% 

87.9 ± 2.0 96.9±4.1  
(0.1±0.1) 

88.8±8.4  
(0.2±0.2) 

92.6±7.7  
(0.1±0.1) 

88.0±9.5  
(0.2±0.2) 

80.6±9.0  
(0.4±0.2) 

Subject dependent 

with unknown class 
Random guess: 1.92% 

81.0 ± 2.0 93.1±6.0  

(0.1±0.1) 

82.4±10.4  

(0.3±0.1) 

88.8±9.7  

(0.2±0.1) 

84.0±10.8  

(0.3±0.1) 

74.3±10.5  

(0.4±0.2) 

Subject independent 

without unknown class 

Random guess: 1.96% 

50.6 ± 5.2 77.0±24.0  

(0.5±0.7) 

46.6±27.1  

(1.2±1.0) 

46.6±31.6  

(0.9±0.9) 

34.1±29.9  

(1.2±1.0) 

43.8±25.6  

(1.3±0.9) 

Subject independent 
with unknown class 

Random guess: 1.92% 

47.0 ± 4.2 54.5±34.0  
(0.4±0.5) 

38.4±26.1  
(0.9±0.8) 

38.4±31.9  
(0.6±0.7) 

29.4±28.2  
(0.8±0.8) 

37.2±23.4  
(0.9±0.6) 

Table 5-30: True positive and false positive rate (shown in parenthesis) of the C4.5 classifier when 

recognizing the 51 activities contained in the MIT dataset either including or not including the 

unknown class. The feature set used is the invariant reduced computed per axis over windows of 5.6s 

in length over all the seven accelerometers.  The accuracy of random guessing is 1.92% (for 52 

activities) when the unknown class is included and 1.96% (for 51 activities) when it is not. 

 

5.4.9 How Well Can All Activities Be Recognized Using the Selected Classifier, 
Window Length, Feature Set, and Signal Preprocessing Techniques? 

This section presents the performance of the final implementation of the activity 

recognition algorithm using the set of parameters incrementally selected in the previous 

sections. These parameters consist of the C4.5 decision tree classifier, the invariant 

reduced feature set (ACVar, ACFFTPeaks, ACBandEnergy, and DCPostureDist), feature 

computation per axis, and sliding windows of 5.6s in length. 

First, the performance of the algorithm is evaluated over the 51 activities contained in 

the MIT dataset using subject dependent and independent training. The results are 

presented for both cases -- when the unknown class is included and when it is not. The 

inclusion of the unknown class is used to test the performance of the recognition 

algorithm under somewhat more realistic conditions where there are examples of 

untrained or ill-defined activities. Once these results are presented, the training data 

requirements for subject dependent training are evaluated by training the algorithm with 

decreasing amounts of data. Finally, an experiment is performed to determine a good 

number of accelerometers to use and their locations in the human body, considering both 

recognition performance and everyday convenience.  

Table 5-30 presents the true positive and false positive rate obtained during subject 

dependent and independent training while the unknown class is included and when it is 

not. The table illustrates that the best performance overall (87.9%) and per activity 

category is obtained for subject dependent training when the unknown class is not used. 

When the unknown class is added, overall performance drops 7% for subject dependent 

training and 3.6% for subject independent training. This is expected, since the unknown 

class contains examples of the activities of interest that were just not labeled during the 

data collection. The unknown class may also contain examples of activities very similar 

to the target classes. The difference in performance of 34-37% between subject 

dependent and independent training is considerable. This reflects the higher difficulty of 
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recognizing activities across individuals since each individual perform activities 

differently.  

During subject dependent training, the best performance is obtained for postures and 

the worse performance is obtained for household activities. Postures are recognized well 

because the accelerometer signals they generate are static in nature (DC component of the 

signal), so there is not much variation to model. Moreover, the window length of 5.6s 

used is optimal for postures, as explained in Section 5.4.6. Obviously, variations in the 

posture signals increase when multiple individuals are considered thus decreasing 

performance between 20-39% during subject independent training. Household activities 

are the most difficult to recognize during subject dependent training because they involve 

a high degree of variation in the signal even when a single individual performs the 

activities. Some of these activities such as wiping/dusting, making the bed, taking out 

trash, and stacking groceries even involve multiple postures and ambulation modes that 

change based on how the person interacts with objects in the environment. Consequently 

they are confused with postures and ambulatory activities, as seen from the confusion 

matrices shown in Figure 5-26. Another reason why household activities are not well 

recognized is because they may require windows longer than 5.6s due to their high 

motion variability, and they may involve execution of sequences of events (e.g. standing, 

walking). Finally, from Table 5-30, it can be seen that the true positive rate for 

ambulation, exercise, and resistance exercise activities is very close, ranging from 82 to 

92% during subject dependent training. During subject independent training, the 

performance for ambulation and exercise activities is also close (46% when the unknown 

class is used and 38% when it is not); however, the performance is worse for resistance 

exercise activities. This is due to a combination of two factors: (1) High variability in the 

way activities are performed across individuals and (2) the difficulty in recognizing 

activities with similar motion signatures (e.g. speed of execution) but different levels of 

resistance or work load from accelerometers.  

When the performance per activity is evaluated from Appendix A8, it is found that the 

activities with lowest performance are resistance exercise activities such as bench weight 

lifting and bicep curls with different weights, rowing at 30spm and cycling at 80rmp at 

different resistance levels, walking at 3mph at different inclination grades, and some 

household activities such as weeding, gardening, making the bed, and taking out trash.  

As explained before, this is because accelerometers are not good at detecting changes in 

effort or resistance load, and because household activities are highly variable, even within 

an individual. Surprisingly, during subject dependent training, some resistance exercise 

activities such as bench weight lifting and bicep curls with different weights, and cycling 

at 80rpm at different resistance levels are recognized with high true positive rates ranging 

from 88.4 to 99.5%. Even activities such as rowing at 30spm at different resistance levels 

and walking at 3mph at different inclination grades are relatively well recognized with 

true positive rates ranging from 76 to 88.9%. This seems to indicate that changes in 

weight load, resistance level, or grade of inclination induce a change in the motion 

signature of the activity that is distinctive of each individual. For example, someone 

struggling with a heavier weight during bicep curls might unconsciously reduce the 

performance speed of the activity. This reduction in speed is detected by the 

accelerometers and captured by the features so that the classifier learns to differentiate 

among the different intensity levels of an activity.  One important caveat here is that this  
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A -> Bench_weight_lifting_-_hard 

B -> Bench_weight_lifting_-_light 

C -> Bench_weight_lifting_-_moderate 

D -> Bicep_curls_-_hard 

E -> Bicep_curls_-_light 

F -> Bicep_curls_-_moderate 

G -> Calisthenics_-_Crunches 

H -> Calisthenics_-_Sit_ups 

I -> Cycling_-_Cycle_hard_-_Cycle_80rpm 

J -> Cycling_-_Cycle_light_-_Cycle_100rpm 

K -> Cycling_-_Cycle_light_-_Cycle_60rpm 

L -> Cycling_-_Cycle_light_-_Cycle_80rpm 

M -> Cycling_-_Cycle_moderate_-_Cycle_80rpm 

N -> Lying_down 

O -> Rowing_-_Rowing_hard_-_Rowing_30spm 

P -> Rowing_-_Rowing_light_-_Rowing_30spm 

Q -> Rowing_-_Rowing_moderate_-_Rowing_30spm 

R -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

S -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

T -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

U -> Sitting 

V -> Sitting_-_Fidget_feet_legs 

W -> Sitting_-_Fidget_hands_arms 

X -> Stairs_-_Ascend_stairs 

Y -> Stairs_-_Descend_stairs 

Z -> Standing 

[ -> Walking_-_Treadmill_2mph_-_Treadmill_0_ 

\ -> Walking_-_Treadmill_3mph_-_Treadmill_0_ 

] -> Walking_-_Treadmill_3mph_-

_Treadmill_3__-_light 

^ -> Walking_-_Treadmill_3mph_-

_Treadmill_6__-_moderate 

_ -> Walking_-_Treadmill_3mph_-

_Treadmill_9__-_hard 

` -> kneeling 

a -> Carrying_groceries 

b -> Doing_dishes 

c -> Gardening 

d -> Ironing 

e -> Making_the_bed 

f -> Mopping 

g -> Playing_videogames 

h -> Scrubbing_a_surface 

i -> Stacking_groceries 

j -> Sweeping 

k -> Typing 

l -> Vacuuming 

m -> Walking_around_block 

n -> Washing_windows 

o -> Watching_TV 

p -> Weeding 

q -> Wiping/Dusting 

r -> Writing 

s -> taking_out_trash 

Figure 5-26: Confusion matrices for the C4.5 classifier when recognizing the 51 activities in the MIT 

dataset without including the unknown class during (a) subject dependent and (b) independent 

training. The feature set used is the invariant reduced computed per axis over windows of 5.6s in 

length. The maximum number of confusions per cell is 95 and 262 for subject dependent and 

independent training respectively.   



 147 

 

slight reduction in motion patterns detected by the accelerometers could be different if 

sensors are worn with slight different variations in orientation and position from day to 

day. Therefore, future work should analyze the impact of slight variations in sensor 

placement and orientation on data collected over multiple days for the same person 

during subject dependent training. 

Figure 5-26 presents the confusion matrices for subject dependent and independent 

training as a grayscale image scaled to highlight large number of classification confusions 

in black and low number of classification confusions in white. It can be seen that most 

confusions happen among household activities for both, subject dependent and 

independent training. In particular, activities involving postures and ambulation such as 

taking out trash, making the bed, sweeping, vacuuming, mopping, wiping/dusting are 

either confused among each other or with ambulatory activities. Ambulatory activities 

such as carrying groceries, walking around block, walking at 2mph, and walking at 3mph 

are also being confused among each other. Finally, activities involving similar posture 

and upper body motion such as wiping/dusting, washing windows, ironing, and doing 

dishes are also being confused, particularly during subject independent training. 

  

5.4.9.1 How Much Training Data is Required During Subject Dependent 

Training? 

 

The performance of subject dependent training is consistently and considerably better 

than subject independent training. These results strongly suggest that for activity 

recognition to be practical with a large number of diverse target activities such as those 

used here, some level of personalized training will be desirable. Thus, one of the main 

questions to answer is how much training data is required to achieve a reasonable 

performance while minimizing training time. This section explores this question by 

measuring the performance the final activity recognition algorithm implemented when 

varying amounts of training data are used. 

For this experiment, the amount of data collected from each activity example provided 

by participants was partitioned in 75% training data and 25% testing data. The 25% of the 

data located at end of each activity example is utilized to test the performance of the 

recognition algorithm while 75% of the data at the beginning of each activity example is 

used to train the recognition algorithm. During the analysis, the performance of the 

recognition algorithm is measured when the 75% of the data located at the beginning of 

each activity is decreased from its original length of 100% to a final length of 10% in 

decrements of 20% and used to train the recognition algorithm. During this procedure, 

true positive rate is evaluated on the 25% of the data located at the end of each activity 

example. Figure 5-27 illustrates the procedure followed by representing how the data 

from an activity example is utilized to train and test the recognition algorithm during this 

analysis. This procedure was followed to keep the amount of testing data constant while 

the amounts of training data were varied.  

Ideally, the amount of training data for each activity would be the same to perform a 

fair comparison among all activities. This is not the case during the analysis performed in 

this section since most activity examples have different lengths (as shown in Table 5-31).  
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 (Start)       Activity Example        (end) 

75% 25% 
 Experiment 1: 100% training data      100%  
Experiment 2: 80% training data     80%  
Experiment 3: 60% training data    60%   
Experiment 4: 40% training data   40%    
Experiment 5: 20% training data  20%     
Experiment 6: 10% training data 10%      

Figure 5-27: Graphical representation of the experiment performed to measure the performance of 

utilizing different amounts of training data during subject dependent training. The right side of the 

table represents the duration of an individual activity example performed by one of the participants. 

The start of the activity is represented by the (start) tag and the end by the (end) tag. The 25% of the 

data located at the end of the activity example (shown in blue) is used for testing the algorithm while 

the varying amounts of the 75% of the data at the start of the activity are used for training (shown in 

red). Unused segments of data per experiment are shown in white. 

   
 

Percentage of 

training data 

used 

Percentage of 

total activity 

length 

Length of activity training examples in minutes 
Lying down Postures Physically 

demanding 

activities 

Rest of 

Activities 

- 100% 5 2 1.5 - 2.0 3 - 3.5 

100% 75% 3.7 1.5 1.1 – 1.5 2.2 – 2.6 

80% 60% 3.0 1.2 0.9 – 1.2 1.8 – 2.1 

60% 45% 2.2 0.9 0.6 – 0.9 1.3 -  1.5 

40% 30% 1.5 0.6 0.4 – 0.6 0.9 -  1.0 

20% 15% 0.7 0.3 0.2 – 0.3 0.4 -  0.5 

10% 7.5% 0.3 0.15 0.1 – 0.15 0.2 -  0.3 

Table 5-31: Percentage of training data used in comparison with the average total amount of data 

available per activity and corresponding duration (in minutes) of training data with respect to some 

activity categories. 

 
activity 

Category 

CV 100% 80% 60% 40% 20% 10% 

All 87.9 ± 2.0 80.8 ± 3.4 76.2 ± 4.7 70.5 ± 4.7 63.7 ± 5.5 48.2 ± 4.8 34.4 ± 4.7 

Postures 96.9±4.1  

(0.1±0.1) 

96.6±11.9  

(0.2±0.3) 

95.3±12.9  

(0.3±0.4) 

87.2±23.9  

(0.4±0.6) 

76.8±34.6  

(0.7±1.1) 

42.1±34.6  

(1.5±1.2) 

24.3±1.5  

(2.7±1.1) 

Ambulation 88.8±8.4  

(0.2±0.2) 

92.1±12.8  

(0.3±0.4) 

90.7±11.9  

(0.2±0.3) 

83.1±16.6  

(0.4±0.5) 

69.0±25.4  

(0.7±0.7) 

37.0±30.4  

(0.9±0.9) 

0.0±0.0  

(0.0±0.0) 

Exercise 92.6±7.7  

(0.1±0.1) 

84.2±20.4  

(0.3±0.4) 

80.8±24.4  

(0.4±0.5) 

75.9±25.3  

(0.6±0.6) 

67.8±29.8  

(0.7±0.7) 

56.2±31.3  

(0.9±0.8) 

47.7±33.5  

(1.6±1.4) 

Resistance 

Exercise 

88.0±9.5  

(0.2±0.2) 

78.4±23.2  

(0.4±0.5) 

73.7±27.1  

(0.6±0.6) 

68.3±27.5  

(0.8±0.7) 

58.9±31.0  

(0.9±0.8) 

44.7±30.8  

(1.2±1.0) 

37.3±29.6  

(1.8±1.4) 

Household 80.6±9.0  

(0.4±0.2) 

73.1±21.1  

(0.6±0.6 

69.2±23.9  

(0.8±0.8) 

65.0±25.6  

(0.9±0.9) 

59.0±29.6  

(1.0±0.9) 

43.9±29.3  

(1.5±1.4) 

28.4±26.8  

(1.9±1.5) 

Table 5-32: True positive rate and false positive rate (shown in parenthesis) during subject 

dependent recognition of activities when varying amounts of training data are used. The target 

activities are the 51 activities contained in the MIT dataset without including the unknown class. CV 

stands for 10-fold stratified cross-validation.  All seven accelerometers are utilized in this experiment. 

 

One possible way to force the activity examples to have the same length would be to cut 

their length so it is the same as the one for the activity example with shortest duration. 

However, this procedure was not followed during this analysis because some physically 

demanding activities such as bench weight lifting hard, cycling at 80rmp hard, running at 

6mph, sit-ups, and crunches have very short durations ranging from 20s to less than a 

minute. Reducing the duration of all activity examples to this short duration would make 

the analysis performed in this section difficult do to the unavailability of enough data. 

Another possibility could be to eliminate the short duration activities from the analysis  
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Figure 5-28: True positive rate during subject dependent recognition of activities when varying 

amounts of training data are used. The target activities are the 51 activities contained in the MIT 

dataset without including the unknown class. In this experiment, all seven accelerometers are 

utilized. 

 

but this would prevent the presentation of results for these activities. Table 5-31 presents 

the average amount of training data available per activity in minute so that the results 

presented in this section can be better interpreted.  

Appendix A4 presents the average amount of training data available per activity in the 

MIT energy expenditure dataset. Table 5-31 shows a summary of this information as well  

as the duration of each activity example as a function of the percentage of training data 

used. It can be seen that the total amount of data available for each activity is on average  

5min for lying down since heart rate and resting metabolic rate were measured during this 

activity, 2min for the remaining the postures, 1.5-2.0min for some physically demanding 

activities such as bench weight lifting hard, cycling at 80rmp hard, running at 6mph, sit-

ups, and crunches and 3.0-3.5min for all other activities. Data for some physically 

demanding activities such as sit-ups, crunches, and bench weight lifting hard were 

collected over several repetitions of the activity, thus, leading to multiple short duration 

examples (<1min in length). There are also three examples for the ascending and 

descending stairs activities per data collection (participant) because the length of the 

stairs from the ground floor to the 4th
rd

 floor allowed only the collection of 1min of data 

continuously for these activities.  

Table 5-32 and Figure 5-28 present the results of varying the amount of training data 

while recognizing the 51 activities contained in the MIT dataset when the unknown class 

is not included. Table 5-32 also shows the performance of 10-fold stratified cross-

validation (CV) as a comparison baseline. The performance using CV is higher than 

when using 100% of the training data (75% of activity duration) because there is more 

training and testing data available during CV as observed in practice. From Table 5-32, 
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we can observe that, as expected, overall performance and performance per activity 

category decreases as the amount of training data is decreased. The overall accuracy of 

80% while using 100% of the training data suggests that reasonable recognition results 

can be achieved when just two and three minutes of data for most activities is provided. 

The activity categories with lower true positive rates are ambulation, resistance exercise, 

and exercise activity. The poorer performance over these activities is due to the difficulty 

involved in discriminating among the intensity levels of the activities from accelerometer 

data, as explained previously, and the smaller amounts of data available for physically 

demanding activities. The decrease in overall accuracy of only 4.6% when the percentage 

of training data is reduced from 100% to 80% suggests that the amount of training data 

can be as little as 2min per activity without significant decrease in performance. The true 

positive rate overall and per activity category starts decreasing sharply when only 40% of 

the training data is used. In this setting, there is about 1min of training data for most 

activities and approximately 0.5min of data for postures and physically demanding 

activities. Thus, with a window length of 5.6s, there are only between 5 and 10 training 

examples per activity. It is thus, expected to observe a sharp decrease in performance 

after this point since having less than 5  examples per activity to train a classifier seems 

unreasonable.  

In conclusion, the experiment suggests that it is possible to provide only 2min of 

training data per activity and achieve an overall accuracy of 76% when discriminating 

between 51 activities, and true positive rates per activity category ranging from 69 to 

95%. Nevertheless, it might be possible to obtain higher performance even with less 

training data if discrimination among the intensity levels of an activity is not required or 

if the number of activities to recognize is reduced. Section 5.5 will later evaluate the real-

time performance of subject dependent recognition of activities during a short study 

where participants provide 2min of training data per activity to recognize. 

 

5.4.9.2 What is a Good Compromise on the Number and Placement of Sensors to 

be Work for Recognition of Activities? 

 

This section evaluates the performance of the activity recognition algorithm when 

different combinations of sensors (accelerometers) are used during subject dependent and 

independent training. The main objective is to determine a good compromise on the 

number and placement of sensors to use, balancing recognition performance with usage 

comfort and sensor cost. 

Table 5-33 and Table 5-34 present the results obtained while recognizing the 51 

activities in the MIT dataset (without the unknown class) using different combinations of 

accelerometers with the C4.5 classifier, the invariant reduced feature set computed per 

axis, and windows of 5.6s in length. The unknown class is not used during this analysis to 

prevent its large number of examples (with respect to the other activities) from altering 

the results obtained. Figure 5-29 and Figure 5-30 present the true positive rate as a 

grayscale image scaled so that the best true positive rate is shown in white and the worse 

is shown in black. In other words, the image highlights the difference in performance per 

activity category by showing good areas of performance in white and poor areas of 

performance in black. The prefix ―D‖ in the sensor location label (e.g. DWrist) used in  
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Sensor Combination All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 87.9 ± 2.0 96.9±4.1  
(0.1±0.1) 

88.8±8.4  
(0.2±0.2) 

92.6±7.7  
(0.1±0.1) 

88.0±9.5  
(0.2±0.2) 

80.6±9.0  
(0.4±0.2) 

Hip + DWrist + DFoot 86.3 ± 1.6 96.6±4.2  

(0.1±0.1) 

87.8±8.5  

(0.3±0.2) 

90.5±8.4  

(0.2±0.1) 

85.4±9.9  

(0.3±0.2) 

79.0±9.7  

(0.5±0.3) 

Hip + DWrist 83.6 ± 2.3 95.7±4.3  

(0.1±0.1) 

86.5±9.2  

(0.3±0.2) 

86.3±12.9  

(0.2±0.2) 

81.6±13.2  

(0.3±0.2) 

75.4±10.4  

(0.6±0.3) 

Hip + DFoot 84.8 ± 2.3 96.6±3.8  

(0.1±0.1) 

87.1±8.4  

(0.3±0.2) 

90.4±8.3  

(0.2±0.1) 

84.4±10.9  

(0.3±0.2) 

76.0±11.1  

(0.6±0.3) 

DWrist + DThigh 81.6 ± 2.6 95.5±5.8  

(0.1±0.1) 

81.5±10.6  

(0.4±0.2) 

87.5±9.9  

(0.2±0.2) 

80.6±11.5  

(0.4±0.2) 

72.6±10.6  

(0.6±0.3) 

DWrist + DFoot 81.1 ± 2.1 95.8±4.1  
(0.1±0.1) 

79.9±9.6  
(0.4±0.2) 

86.9±10.5  
(0.2±0.2) 

78.2±13.1  
(0.4±0.3) 

73.6±10.7  
(0.6±0.3) 

Hip 80.5 ± 2.7 94.8±5.5  

(0.1±0.1) 

86.5±8.8  

(0.3±0.2) 

85.7±12.9  

(0.2±0.2) 

79.2±14.3  

(0.4±0.3) 

68.7±11.8  

(0.7±0.3) 

DWrist 70.7 ± 3.7 91.0±8.6  
(0.1±0.1) 

73.5±11.8  
(0.6±0.3) 

73.1±14.1  
(0.5±0.3) 

65.0±15.7  
(0.7±0.3) 

61.5±12.7  
(0.9±0.3) 

DFoot 74.8 ± 3.7 93.3±7.7  

(0.1±0.1) 

73.6±11.0  

(0.6±0.3) 

84.1±12.3  

(0.3±0.2) 

72.4±15.7  

(0.5±0.3) 

63.4±14.8  

(0.8±0.4) 

DUpperArm 74.4 ± 3.9 88.0±9.8  

(0.2±0.2) 

81.7±10.4  

(0.4±0.2) 

79.1±12.0  

(0.4±0.2) 

69.8±14.9  

(0.6±0.3) 

61.2±12.6  

(0.9±0.3) 

DThigh 74.6 ± 2.9 93.1±7.1  

(0.1±0.1) 

76.1±12.3  

(0.5±0.3) 

84.8±11.9  

(0.3±0.2) 

73.9±15.1  

(0.5±0.3) 

59.4±13.3  

(0.9±0.4) 

Table 5-33: Performance of the C4.5 classifier using the invariant reduced feature set computed per 

axis over windows of 5.6s in length using different subsets of accelerometers while recognizing the 51 

activities contained in the MIT dataset in a subject dependent manner (without including the 

unknown class). The guessing accuracy is 1.96% for all the activity categories shown in the table. 

 

 
Sensor Combination All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 50.6 ± 5.2 77.0±24.0  

(0.5±0.7) 

46.6±27.1  

(1.2±1.0) 

46.6±31.6  

(0.9±0.9) 

34.1±29.9  

(1.2±1.0) 

43.8±25.6  

(1.3±0.9) 

Hip + DWrist + DFoot 46.6 ± 7.5 66.9±32.3  
(0.6±1.0) 

39.6±27.3  
(1.3±1.1) 

39.2±31.1  
(1.0±0.9) 

30.9±28.6  
(1.2±1.1) 

42.9±24.0  
(1.3±1.0) 

Hip + DWrist 42.7 ± 5.9 46.1±34.3  

(1.0±1.1) 

37.9±27.3  

(1.4±1.3) 

35.4±27.1  

(1.1±1.0) 

29.1±23.7  

(1.2±1.0) 

42.9±23.5  

(1.3±0.9) 

Hip + DFoot 41.0 ± 6.5 57.5±33.6  
(0.8±1.1) 

35.6±28.3  
(1.3±1.2) 

39.1±31.7  
(1.0±1.0) 

28.5±29.2  
(1.2±1.1) 

32.4±22.5  
(1.6±1.1) 

DWrist  + DThigh  46.5 ± 4.9 55.4±34.2  

(0.8±0.9) 

44.1±24.1  

(1.2±0.9) 

45.6±29.5  

(0.8±0.8) 

33.0±27.3  

(1.1±0.9) 

39.7±21.7  

(1.4±0.9) 

DWrist + DFoot 44.0 ± 7.3 62.8±29.5  

(0.6±0.9) 

37.9±25.0  

(1.3±1.1) 

36.5±28.1  

(1.0±0.9) 

30.4±24.9  

(1.1±0.9) 

40.1±23.4  

(1.5±1.0) 

Hip 36.2 ± 6.2 40.1±27.7  

(1.0±1.0) 

37.5±26.3  

(1.4±1.1) 

35.3±29.1  

(1.0±1.0) 

26.5±24.9  

(1.2±1.0) 

28.2±20.2  

(1.7±0.9) 

DWrist 36.6 ± 7.6 35.3±33.1  

(1.0±1.0) 

32.6±26.2  

(1.3±1.1) 

31.7±23.6  

(1.1±0.8) 

28.3±21.8  

(1.2±0.8) 

36.2±20.1  

(1.5±1.0) 

DFoot 33.0 ± 5.4 46.9±32.1  
(1.1±1.4) 

32.6±20.2  
(1.4±1.1) 

33.7±22.9  
(1.1±0.9) 

24.7±21.9  
(1.2±0.9) 

22.6±16.8  
(1.7±1.0) 

DUpperArm 37.2 ± 3.5 39.2±24.3  

(1.0±0.9) 

42.3±23.0  

(1.3±1.0) 

43.4±22.9  

(0.9±0.9) 

28.2±20.9  

(1.2±1.0) 

24.2±16.5  

(1.8±0.9) 

DThigh 29.0 ± 4.6 19.4±20.4  
(1.4±1.3) 

38.4±23.8  
(1.3±0.9) 

40.4±27.6  
(1.0±1.1) 

23.7±23.8  
(1.3±1.2) 

17.3±14.7  
(2.0±1.3) 

Table 5-34: Performance of the C4.5 classifier using the invariant reduced feature set computed per 

axis over windows of 5.6s in length using different subsets of accelerometers while recognizing the 51 

activities contained in the MIT dataset in a subject independent manner (without including the 

unknown class). The guessing accuracy is 19.6% for all the activity categories shown in the table. 

 



 152 
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Figure 5-29: True Positive Rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject dependent evaluation. The grayscale image is 

scaled so that the maximum true positive rate of 96.9% is represented by white and the minimum of 

59.4% by black. In other words, poor areas of performance are shown in black. 

 

(b) Subject Independent Performance
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Figure 5-30: True Positive Rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject independent evaluation. The grayscale image 

is scaled so that the maximum true positive rate of 77.0% is represented by white and the minimum 

of 17.3% by black. In other words, poor areas of performance are shown in black. 
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the tables and figures stands for ―dominant‖ and implies that the sensor was worn at the 

dominant limb of the subject (e.g. right wrist if subject was right handed). Refer to Figure 

4-4 for an image of the placement of sensor during the data collections. 

The results show that the three sensor subsets with best performance (after the one 

using all the sensors) during subject dependent evaluation are the Hip+DWrist+DFoot, 

Hip+DWrist, and Hip+DFoot. For subject independent evaluation, the best three subsets  

are Hip+DWrist+DFoot, DWrist+DThigh, and DWrist+DFoot.  Therefore, the 

Hip+DWrist+DFoot combination has the higher performance overall and per activity for 

both, subject dependent and independent training. The performance of this sensor 

combination drops only 1.6% during subject dependent training and 4% during subject 

independent training with respect to the performance obtained using all seven sensors. 

The fact that the Hip+DWrist+DFoot sensor combination achieves the best performance 

intuitively makes sense, since this sensor combination captures upper body motion 

(DWrist), lower body motion (DFoot), and overall body motion at the Hip. The other 

sensor combinations explored do not capture motion information at least in one the 

aforementioned locations (upper, lower or overall). When the Hip+DWrist+DFoot sensor 

combination is used, the activity categories that suffer the greatest decrease in 

performance (with respect to the all sensors combination) are ambulation (1-7%), 

exercise (2.1-7%) and resistance exercise (2.6-7.4%). The reason is that activities 

involving resistance or load effort such as bench weight lifting, bicep curls, cycling at 

80rpm (different resistance levels), walking at 3mph (different inclinations), and rowing 

at 30spm (different resistance levels) are better recognized when more sensors are used. 

As explained in previous sections, changes in resistance or load induce changes in the 

motion signature of an activity (e.g. execution speed) that allow discrimination between 

the intensity levels. When the number of sensors is decreased, these slight differences in 

motion are more difficult to detect, leading to poorer performance on these activities. The 

performance per activity for the Hip+DWrist and Hip+DFoot sensor combinations was 

analyzed to determine why these combinations are the two second best performing ones 

during subject dependent training even when they do not measure both lower body or 

upper body motion (other than through the hip_. It was found that for the Hip+DWrist 

sensor combination, the performance over activities involving lower body motion such as 

cycling, sitting fidgeting feet and legs, ascending and descending stairs indeed decreases, 

particularly during subject independent training. However, during subject dependent 

training, the decrease in performance for these activities ranges only from 1% to 8%. It 

appears that during subject dependent training, the small changes induced in the 

acceleration signal at the hip while performing lower body activities are enough to allow 

good performance over these activities. For the Hip+DFoot sensor combination, it was 

found that the performance over activities involving upper body motion such as bench 

weight lifting, doing dishes, playing video games, scrubbing a surface, typing, writing, 

washing windows, wiping and dusting was also lower. Nevertheless, the performance on 

some activities also including upper body motion such as ironing and sitting fidgeting 

hands and arms did not change. Again, it appears that changes in the acceleration signal 

at the hip induced while performing upper body activities are enough to allow good 

performance over some of these activities.  

During subject independent training, the two second best performing sensor 

combinations were DWrist+DThigh and DWrist+DFoot. Both sensor combinations place 
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one sensor at the upper body and one sensor at the lower body. In particular, the 

performance of the DWrist+DThigh sensor combination is as good as the performance 

obtained for the Hip+DWrist+DFoot sensor combination (0.04% performance 

difference). The accelerometer located at the thigh (DThigh) provides more reliable 

information than the accelerometer located at the foot (DFoot) because it experiences less 

variation in the signal. The foot has a higher degree of motion (or freedom) than the thigh 

and consequently, produces more variable signals during ambulation, exercise, and 

resistance exercise.   

Unfortunately, the thigh is a problematic location to wear a sensor on because the 

sensor can be easily knocked off during ambulation and because the attachment of a 

sensor at this body location is difficult. For example, if bandages are used, they tend to 

loosen up over time and slip from this body location. If other elastic materials are used, 

they need to be placed so tight that they might become uncomfortable to wear.    

Finally, when the performance of single sensors is analyzed during subject dependent 

training, it is found that the sensors with best performance in decreasing order are Hip, 

DFoot, and DThigh. The sensor at the hip has a consistently higher performance per 

activity category than the DFoot and DThigh sensors. The performance per activity 

category for the DFoot and DThigh sensors is very similar. From Table 5-33, it can be 

observed that the activity category that suffers the largest decrease in performance when 

single sensors are used to recognize activities is household activities. This is an expected 

result, since household activities involve a high degree of variation in upper body and 

lower body motion during their execution. During subject independent training, the single 

sensors with higher performance in decreasing order of importance are DUpperArm, 

DWrist, and DHip. The difference in overall accuracy when using these sensors is less 

than 1% though. The single sensor at the hip has more problems recognizing resistance 

exercise activities than the DUpperArm sensor but it is slightly better at recognizing 

household activities. The DWrist sensor on the other hand, is better at recognizing 

household activities than the DUpperArm and Hip sensors. This is because most 

household activities involve some degree of upper body motion. Finally, a note of caution 

is required while interpreting the relatively good performance obtained during subject 

dependent evaluation of the single sensors placed at the Hip, DFoot, and DThigh. During 

the real-time study performed in Section 5.5, it was found that the performance over these 

sensors is not as good as the one implied by the results obtained during the experiments 

performed in this section. The results of the real-time evaluation indicate, as expected, 

that the sensor placed at the hip has difficulties recognizing activities involving upper 

body and non-ambulatory lower body activities. Similarly, the sensors at the dominant 

foot and thigh present difficulties recognizing upper body activities. Consequently, the 

good performance obtained for these sensors in this section might be a result of 

overfitting, even when stratified crossvalidation was utilized to evaluate their 

performance during subject dependent training.   

In summary, it was found that the sensor combination Hip+ DWrist+DFoot obtains a 

performance close to the one obtained using all the seven sensors during subject 

dependent and independent evaluation. This sensor combination was also found to 

consistently outperform the other sensor combinations explored in this section. This is an 

intuitive result since this sensor combination captures upper, lower, and overall body 

motion. The two second best performing sensor combinations during subject dependent 
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training were the ones placing a sensor at the hip and another one either at the upper body 

(Hip + DWrist) or lower body (Hip + DFoot). During subject independent training, the 

two second best performing sensor combinations were the ones placing one sensor at the 

upper body (DWrist) and another sensor at the lower body (e.g. DThigh or DFoot). Based 

on these experiments, for this set of activities, wearing three sensors located at the hip, 

dominant wrist, and dominant foot seems to provide a reasonable compromise between 

performance and ease-of-use. During free-living, the sensor at the wrist could be worn as 

a bracelet, the sensor at the hip as a clip on addition to the belt or pants, and the sensor at 

the foot as a shoe pod with clip on capabilities so it can be conveniently attached to the 

shoe laces. Furthermore, in the future, these sensors could be miniaturized and embedded 

in wristwatches, shoes, and perhaps, even in the elastic material surrounding the hip 

utilized in underwear (a convenient location for the hip sensor provided it is small enough 

to be comfortable to wear).  

 

5.4.9.3 How Well Can All Activities be Recognized Without Differentiating Among 

Intensity Levels?  

 

In the previous section, it was found that some of the activities presenting the lowest 

performance were activities involving different intensity levels, particularly when the 

intensity changes due to the use of different resistance levels or work loads. As a result, 

this section explores how well activities can be recognized without differentiating among 

the intensity levels of an activity. This is performed by merging all activities with 

different intensity levels into a single activity. For example, all the intensity levels for 

cycling at different speeds and resistance levels are merged into a single class called 

cycling. The same procedure is repeated for walking, running, rowing, bench weight 

lifting, bicep curls, and sitting, leaving a total of 31 activities to be recognized. This gives 

a guessing accuracy of 3.2% when the unknown class is not incorporated and 3.1% when 

it is. The column labeled as ―All Activities with No Intensity‖ in Appendix A2 shows a 

detailed list of the activities whose intensity levels were merged. The activity recognition 

algorithm used uses the following parameters: the C4.5 classifier, the invariant reduced 

feature set, feature computation per axis, and a sliding window length of 5.6s.  

Table 5-35 presents the performance obtained during subject dependent and 

independent training while the unknown class is included and when it is not. The highest 

performance overall and per class is again obtained during subject dependent training 

when the unknown class is not used. When the unknown class is incorporated, overall 

performance drops 8% for subject dependent training, and 12% for subject independent 

training. The decrease in performance during subject dependent training is similar to the 

one obtained while recognizing the intensity level of activities (7%). For subject 

independent training, however; the decrease in performance is three times greater than 

the one obtained when intensity levels are being recognized. Note that during these 

comparisons, decreases in performance are computed when the number of activities being 

recognized is the same (51 for the previous section and 31 for this section), so the 

difference in random guessing is not relevant. This is because the unknown class is being 

confused more with walking and sitting now that their intensity levels have been merged. 

During the unknown activity (segments of data not labeled during the data collection),  
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Evaluation Method All Postures Ambulation Exercise Resistance 

Exercise 

Household 

Subject dependent 

without Unknown class 
Random guessing: 3.2% 

91.4 ± 1.6 97.3±2.9  

(0.1±0.1) 

94.4±4.8  

(0.2±0.2) 

97.9±2.9  

(0.1±0.1) 

92.4±4.8  

(0.2±0.2) 

79.5±9.1  

(0.5±0.2) 

Subject dependent 

with unknown class 

Random guessing: 3.1% 

83.3 ± 1.9 93.9±5.0  

(0.2±0.1) 

87.5±7.2  

(0.6±0.2) 

94.2±4.7  

(0.2±0.1) 

87.3±6.6  

(0.4±0.2) 

73.1±10.4  

(0.4±0.2) 

Subject independent 
without unknown class 

Random guessing: 3.2% 

72.0 ± 5.7 83.9±13.5  
(0.6±0.8) 

78.4±20.3  
(0.8±0.7) 

82.0±25.0  
(0.4±0.7) 

75.6±21.3  
(0.8±0.9) 

43.5±25.9  
(1.2±0.9) 

Subject independent 

with unknown class 
Random guessing: 3.1% 

59.9 ± 6.6 60.4±33.5  

(0.5±0.6) 

63.1±24.9  

(1.0±0.6) 

67.6±30.6  

(0.3±0.3) 

65.2±25.1  

(0.8±0.5) 

34.8±24.0  

(0.8±0.5) 

Table 5-35: True positive rate and false positive rate (shown in parenthesis) of the C4.5 classifier 

when recognizing 31 activities without intensity levels during subject dependent and independent 

evaluation. The feature set used is the invariant reduced feature set computed per axis over windows 

of 5.6s in length over all the seven accelerometers. The probability of random guessing for all activity 

categories presented in this table is 3.1% when the unknown class is used and 3.2% when it is not. 

 

subjects were standing or sitting while resting, or walking while transitioning from one 

activity to another (e.g. transitioning from one exercise machine to another during the 

gym data collection or transitioning among rooms during the household data collection).  

The improvement in performance of +21% obtained for subject independent training 

when the intensity levels of activities are not being recognized is substantial although this 

comparison is unfair since the probability of random guessing has increased from 1.96%  

to 3.2% now that intensity levels are not recognized. The improvement during subject 

dependent training; however, is only +3.5%. As explained in the previous section, this is 

because during subject dependent training, the recognition algorithm is able to 

differentiate well between the intensity levels of an activity because changes in resistance 

level or work load induce changes in the motion signature of activities that are detected 

by the accelerometers.  

Table 5-29 shows the confusion matrices for subject dependent and independent 

training when the unknown class is not used. The grayscale images were normalized to 

highlight the activities being confused the most (shown in black), and the ones confused 

the least (shown in white). For subject dependent training, the activities confused the 

most are sweeping with mopping, since both include similar upper body motion and 

walking, and making the bed with taking out trash, since both include upper body motion 

and sequences of standing and walking. The confusion matrix for subject dependent 

training also shows that most of the confusions happen among household activities. As 

explained before, they involve high degree of variability in their motion and performance 

as well as sequences of standing and walking behaviors. Finally this confusion matrix 

also shows that walking is being slightly confused with ascending and descending stairs. 

This is expected due to the similarity of motion involved in these activities. 

The confusion matrix for subject independent training shows that the activities being 

confused the most are activities with similar postures such as sitting, watching TV, and 

playing video games, and activities involving similar posture and upper body motion such 

as writing, typing, and playing video games. Moreover, walking is also being confused 

with running and with descending stairs. This is expected since they all involve similar 

motion patterns that can be confused, particularly during subject independent evaluation.  
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A -> Bench_weight_lifting 

B -> Bicep_curls 

C -> Calisthenics_-_Crunches 

D -> Calisthenics_-_Sit_ups 

E -> Cycling 

F -> Lying_down 

G -> Rowing 
 

H -> Running 

I -> Sitting 

J -> Stairs_-_Ascend_stairs 

K -> Stairs_-_Descend_stairs 

L -> Standing 

M -> Walking 

N -> kneeling 

O -> Doing_dishes 
 

P -> Gardening 

Q -> Ironing 

R -> Making_the_bed 

S -> Mopping 

T -> Playing_videogames 

U -> Scrubbing_a_surface 

V -> Stacking_groceries 

W -> Sweeping 
 

X -> Typing 

Y -> Vacuuming 

Z -> Washing_windows 

[ -> Watching_TV 

\ -> Weeding 

] -> Wiping/Dusting 

^ -> Writing 

_ -> taking_out_trash 
 

Figure 5-31: Confusion matrices for the C4.5 classifier when recognizing 31 activities without 

intensity levels and without the unknown class during (a) subject dependent and (b) independent 

evaluation. The feature set used is the invariant reduced feature set computed per axis over windows 

of 5.6s in length. The maximum number of errors in a given cell of a confusion matrix is 73 and 169 

for subject dependent and independent training respectively. 
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Sensor Combination All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 91.4 ± 1.6 97.3±2.9  
(0.1±0.1) 

94.4±4.8  
(0.2±0.2) 

97.9±2.9  
(0.1±0.1) 

92.4±4.8  
(0.2±0.2) 

79.5±9.1  
(0.5±0.2) 

Hip + DWrist + DFoot 90.2 ± 1.6 97.6±3.1  

(0.1±0.1) 

92.4±6.3  

(0.3±0.2) 

97.3±2.9  

(0.1±0.1) 

91.3±5.6  

(0.3±0.2) 

77.1±10.4  

(0.5±0.3) 

Hip + DWrist 88.4 ± 2.2 97.0±4.2  

(0.1±0.1) 

90.7±6.1  

(0.3±0.2) 

96.9±3.3  

(0.1±0.1) 

89.2±5.2  

(0.3±0.2) 

73.1±10.7  

(0.6±0.3) 

Hip + DFoot 88.9 ± 1.9 97.2±3.2  

(0.1±0.1) 

92.2±5.9  

(0.3±0.3) 

97.4±3.2  

(0.1±0.1) 

90.3±6.4  

(0.3±0.2) 

73.8±11.6  

(0.6±0.3) 

DWrist + DThigh 87.8 ± 2.2 96.8±3.5  

(0.1±0.1) 

87.9±5.4  

(0.4±0.2) 

97.7±3.9  

(0.1±0.1) 

88.3±6.8  

(0.3±0.2) 

71.3±10.9  

(0.7±0.3) 

DWrist + DFoot 87.4 ± 2.1 96.8±3.3  
(0.1±0.1) 

85.4±6.4  
(0.4±0.2) 

96.5±3.8  
(0.1±0.1) 

88.4±6.9  
(0.3±0.2) 

71.2±11.7  
(0.7±0.3) 

Hip 85.9 ± 2.2 95.1±5.3  

(0.1±0.1) 

91.0±6.0  

(0.4±0.2) 

96.9±3.4  

(0.1±0.1) 

86.2±6.1  

(0.4±0.3) 

66.6±11.9  

(0.7±0.3) 

DWrist 80.4 ± 3.4 90.9±7.6  
(0.2±0.2) 

79.9±8.8  
(0.8±0.4) 

93.4±5.5  
(0.3±0.2) 

82.1±7.3  
(0.7±0.3) 

58.2±12.8  
(0.9±0.4) 

DFoot 83.4 ± 3.1 94.5±6.8  

(0.1±0.1) 

84.1±8.0  

(0.5±0.3) 

95.5±4.8  

(0.2±0.2) 

85.3±8.8  

(0.4±0.3) 

62.3±15.1  

(0.9±0.4) 

DUpperArm 82.6 ± 3.9 88.9±8.4  

(0.3±0.2) 

88.6±6.1  

(0.4±0.2) 

96.1±4.2  

(0.2±0.2) 

84.1±7.2  

(0.5±0.3) 

59.3±14.5  

(0.9±0.4) 

DThigh 82.9 ± 2.8 94.8±6.2  

(0.2±0.2) 

86.6±5.9  

(0.4±0.2) 

97.7±3.3  

(0.1±0.1) 

83.9±7.5  

(0.4±0.2) 

58.8±13.1  

(0.9±0.4) 

Table 5-36: Performance of the C4.5 classifier while recognizing 31 activities with no intensity levels 

and without the unknown class using different sensor combinations during subject dependent 

training.  The feature set used is the invariant reduced feature set computed per axis over windows of 

5.6s in length. 

 

 
Sensor Combination All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 72.0 ± 5.7 83.9±13.5  

(0.6±0.8) 

78.4±20.3  

(0.8±0.7) 

82.0±25.0  

(0.4±0.7) 

75.6±21.3  

(0.8±0.9) 

43.5±25.9  

(1.2±0.9) 

Hip + DWrist + DFoot 67.6 ± 10.6 72.5±28.1  
(1.0±1.5) 

67.8±24.2  
(1.3±1.3) 

71.5±30.9  
(0.5±0.7) 

69.6±26.1  
(0.9±0.8) 

43.2±25.0  
(1.3±1.0) 

Hip + DWrist 64.5 ± 8.7 46.9±26.9  

(1.3±1.2) 

65.1±26.3  

(1.3±1.1) 

70.0±30.0  

(0.8±1.3) 

67.0±25.8  

(1.2±1.1) 

43.1±22.8  

(1.3±0.9) 

Hip + DFoot 61.0 ± 8.4 60.2±30.9  
(1.3±1.5) 

64.2±23.1  
(1.3±1.1) 

70.1±32.1  
(0.5±0.7) 

63.2±26.2  
(1.1±1.0) 

31.4±22.8  
(1.6±1.3) 

DWrist + DThigh 67.5 ± 5.7 63.4±29.8  

(1.2±1.2) 

72.2±19.7  

(1.0±1.0) 

77.3±27.7  

(0.4±0.7) 

70.4±21.0  

(0.9±0.7) 

39.5±22.2  

(1.4±0.8) 

DWrist + DFoot 65.5 ± 9.6 75.2±25.0  

(1.0±1.2) 

65.4±22.0  

(1.3±1.1) 

65.5±26.3  

(0.6±1.0) 

68.8±23.9  

(1.0±0.9) 

39.9±23.9  

(1.4±0.9) 

Hip 55.8 ± 9.3 41.9±23.4  

(1.6±1.2) 

64.9±25.2  

(1.4±1.0) 

62.1±30.9  

(0.9±1.4) 

58.0±27.7  

(1.5±1.3) 

27.2±18.9  

(1.7±1.0) 

DWrist 57.4 ± 10.4 44.1±32.6  

(1.5±1.3) 

57.1±24.6  

(1.7±1.1) 

65.3±29.0  

(1.0±1.1) 

62.8±24.9  

(1.4±1.0) 

34.9±18.9  

(1.5±1.0) 

DFoot 52.9 ± 6.4 54.7±32.0  
(1.9±2.0) 

57.5±21.0  
(1.6±1.3) 

55.3±24.2  
(1.1±1.2) 

57.4±24.3  
(1.4±1.1) 

21.5±17.5  
(1.7±1.0) 

DUpperArm 57.5 ± 4.3 40.4±20.8  

(1.4±1.2) 

79.9±20.2  

(0.8±0.8) 

72.3±28.5  

(0.8±1.1) 

63.9±20.9  

(1.4±1.1) 

22.9±16.6  

(1.7±1.0) 

DThigh 49.0 ± 5.9 28.0±23.6  
(1.9±1.4) 

68.1±20.1  
(1.1±1.0) 

65.5±27.7  
(1.0±1.3) 

52.8±19.4  
(1.6±1.2) 

16.2±13.8  
(2.0±1.4) 

Table 5-37: Performance of the C4.5 classifier while recognizing 31 activities with no intensity levels 

and without the unknown class using different sensor combinations during subject independent 

training.  The feature set used is the invariant reduced feature set computed per axis over windows of 

5.6s in length. 
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(a) Subject Dependent Performance
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Figure 5-32: True Positive Rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject dependent evaluation. The grayscale image is 

scaled so that the maximum true positive rate of 97.9% is represented by white and the minimum of 

58.2% by black. In other words, poor areas of performance are shown in black. 

 

(b) Subject Independent Performance

All Postures Ambulation Exercise Resistance Household

All sensors

Hip + DWrist + DFoot

Hip + DWrist

Hip + DFoot

DWrist + DThigh
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Figure 5-33: True Positive Rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject independent evaluation. The grayscale image 

is scaled so that the maximum true positive rate of 83.9% is represented by white and the minimum 

of 16.2% by black. In other words, poor areas of performance are shown in black. 
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As in subject dependent training, most confusions also happen among household 

activities.  

Figure 5-38 and Figure 5-39 present the true positive and false positive rate obtained 

when different combinations of sensors are used to recognize activities. As in the 

previous section, Figure 5-38 and Figure 5-39 present the true positive rate as a grayscale 

image, scaled to highlight the differences in performance. The best performance is shown  

in white while the worse performance is shown in black. From these tables and figures, it 

can be observed that the best performance overall and per class is obtained using the 

Hip+DWrist+DFoot sensor combination. The decrease in performance for this sensor 

combination with respect to the performance obtained using all the sensors is 1.2% for 

subject dependent training and 4.4% for subject independent training. Again, the 

performance decreases more for subject independent training because more sensors are 

required to capture inter-individual variations in the way activities are performed. The 

second best performing sensor combinations for subject dependent training are 

Hip+DWrist, and Hip+DFoot. These are the same sensor combinations with higher 

performance found in the previous section when the intensity level of activities was being 

discriminated. For subject independent training, the sensor combinations with higher 

performance are also the same: DWrist+DThigh, and DWrist+DFoot. The performance 

of the combination DWrist+DThigh is also very close to the performance obtained with 

the Hip+DWrist+DFoot sensor combination (0.1% difference). So far, it can be 

concluded that the best sensor combination for recognizing activities during subject 

dependent and independent training is Hip+DWrist+DFoot. Nonetheless, during subject 

independent training, the DWrist+DThigh sensor combination can be also used with a 

very little decrease in overall performance. The main difference between these sensor 

combinations is that the DWrist+DThigh sensor combination achieves a higher 

performance ranging from +0.8 to +4.4% for the ambulation, exercise, and resistance 

exercise activity categories. This can be explained by the fact that the DThigh sensor 

experiences less variability than the DFoot sensor while activities are performed. The 

Hip+DWrist+DFoot sensor combination on the other hand, is significantly better at 

recognizing postures (+9% better), and slightly better at recognizing household activities 

(+3.7% better). It seems that the sensor at the hip is responsible for the better 

performance over these activities.  

When the performance of single sensors is analyzed from Figure 5-32 and Figure 5-33, 

it can be seen that again, the activities that the activities with lower performance are 

household activities. The single sensors with higher overall performance in decreasing 

order are Hip, DFoot, and DThigh during subject dependent training and DUpperArm, 

DWrist, and Hip during subject independent training. This is also the same ordering of 

sensors found in the previous section, when the intensity level of activities is being 

recognized. The relatively good single sensor performance of the sensor at the hip during 

subject dependent training is due to the fact that upper body and lower body activity 

induce small changes in the acceleration signal at this sensor that allow the recognition of 

some of these activities. The performance of the DUpperArm sensor during subject 

independent training can be explained by the fact that this sensor is able to sense upper 

body motion with less variability than the sensor at the wrist, and that it can also detect 

changes in posture almost as well as the sensor at the hip. The sensor at the hip has the 

advantage of recognizing household activities slightly better (4.3%) than the DUpperArm 
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sensor because the overall body motion experienced in some activities stacking groceries, 

gardening and weeding is better detected at this body location. The DWrist sensor is also 

better than the DUpperArm sensor in recognizing household activities and postures 

during subject independent training. 

In conclusion, when the intensity level of activities is not of interest, the activities in 

the MIT dataset can be recognized with an overall accuracy of 91.4% during subject 

dependent training and with an accuracy of 72% during subject independent training. The 

improvement in performance is higher (+21%) during subject independent training. The 

best sensor combination to use to recognize these activities is again the 

Hip+DWrist+DFoot combination. If a single sensor is to be used to recognize activities, 

its location depends on the activities of interest. For example, if ambulatory, exercise, or 

resistance exercise activities are to be recognized the best single sensor to utilize is the 

DUpperArm. If postures and household activities need to be recognized, the DWrist 

sensor seems to be the best one to utilize. Finally, the sensor that provides average 

performance over all activity categories is the sensor at the hip. These results need to be 

interpreted with caution, since the location of the sensors to use strongly depends on the 

activities being recognized. The relatively higher performance obtained for the 

DUpperArm and DWrist sensors with respect to the performance of the Hip sensor might 

be due to the fact that most activities contained in the MIT dataset involve upper body 

motion.   

      

5.4.9.4 How Well Can Postures, Ambulation, and Two MET Intensity Categories 

be Recognized?  

 

This section explores how well postures, ambulation, and two MET intensity categories 

can be recognized utilizing all and several sensor combinations during subject dependent 

and independent training. The activity recognition algorithm is the same as the one used 

in the previous sections and has the same parameters: the C4.5 classifier, the invariant 

reduced feature set, feature computation per axis, and a sliding window length of 5.6s. 

The activities explored in this section are 11 in total and consist of the following 

activities: Lying down, standing, sitting, kneeling, walking at 2mph and 3mph, running at 

4, 5, and 6mph, and the moderate and vigorous MET intensity categories. Appendix A2 

shows a detailed list of the activities that were merged into the moderate and vigorous 

intensity categories according to their associated number of METs from the Compendium 

of Physical Activities [122]. The random guessing probability for these activities is 9%. 

Exploring this set of activities and these two MET intensity categories (moderate and 

vigorous) makes sense from a medical point of view for the following reasons: (1) Most 

daily energy expenditure is spent in sedentary or light activities such as postures and 

ambulation. Consequently, if these activities are well recognized in a subject independent 

manner, better energy expenditure algorithms can be created that estimate energy 

depending on the activity being performed. Furthermore, if walking and running speeds 

are also recognized, one might expect further improvements in the estimation of energy 

expenditure. (2) When medical interventions are designed to foster an increase in 

physical activity levels, it is important to know if the target population is exercising at 

moderate or vigorous intensity levels. If they are, there may be no need for an  
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Evaluation Method All Postures Ambulation Moderate Vigorous Unknown 

Subject dependent 

without unknown class 

Random guessing: 9% 

96.5 ± 1.1 96.5±3.8  

(0.1±0.1) 

96.0±4.5  

(0.1±0.1) 

96.4±1.7  

(2.4±1.2) 

93.3±3.5  

(1.3±0.6) 

- 

Subject dependent 
with unknown class 

Random guessing: 8.3% 

89.5 ± 1.5 94.1±5.9  
(0.1±0.1) 

88.2±8.2  
(0.3±0.1) 

84.0±3.0  
(3.8±0.8) 

89.6±4.1  
(1.3±0.4) 

89.7 ± 2.1  
(8.7 ± 1.7) 

Subject independent 

without unknown class 
Random guessing: 9% 

81.3 ± 4.7 91.3±9.3  

(0.5±0.8) 

64.4±33.6  

(1.0±1.1) 

86.8±5.4  

(13.0±5.4) 

66.0±15.4  

(5.3±2.9) 

- 

Subject independent 

with unknown class 

Random guessing: 8.3% 

70.8 ± 5.2 72.3±25.0  

(0.4±0.5) 

49.5±32.8  

(0.7±0.7) 

58.3±8.4  

(8.0±1.9) 

59.3±13.9  

(2.6±0.8) 

82.4 ± 3.3 

(29.9 ± 7.7) 

Table 5-38: Performance of the C4.5 classifier when recognizing postures, ambulation, and two MET 

intensity categories when the unknown class is included and when it is not. The feature set used is the 

invariant reduced feature set computed per axis over windows of 5.6s in length over all the seven 

accelerometers during. The probability of random guessing is 9% when the unknown class is not 

utilized and 8.3% when it is utilized. 

 
 Subject Dependent Subject Independent 

Class TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Lying down 99.9 ± 0.3 0.0 ± 0.0 99.7 ± 0.3 99.3 ± 1.3 0.1 ± 0.4 99.1 ± 1.9 

Standing 93.3 ± 7.0 0.1 ± 0.1 94.5 ± 6.0 94.2 ± 12.1 0.2 ± 0.7 92.8 ± 13.6 

Sitting 96.1 ± 3.9 0.2 ± 0.2 96.2 ± 3.2 73.7 ± 19.3 1.6 ± 1.8 73.3 ± 16.8 

kneeling 96.6 ± 3.9 0.0 ± 0.1 97.3 ± 3.2 97.9 ± 4.4 0.1 ± 0.2 97.4 ± 5.1 

Walking - Treadmill 2mph - 
Treadmill 0  

97.8 ± 2.4 0.2 ± 0.1 96.4 ± 2.8 75.8 ± 34.2 0.3 ± 0.4 77.7 ± 29.5 

Walking - Treadmill 3mph - 

Treadmill 0 

99.0 ± 1.2 0.2 ± 0.1 98.9 ± 0.8 89.0 ± 23.3 0.7 ± 1.0 89.6 ± 20.5 

Running - Treadmill 4mph - 
Treadmill 0  

97.7 ± 2.3 0.1 ± 0.1 97.0 ± 2.6 53.0 ± 36.1 1.9 ± 2.3 47.9 ± 30.6 

Running - Treadmill 5mph - 

Treadmill 0  

94.7 ± 3.3 0.1 ± 0.1 94.9 ± 2.8 52.8 ± 34.1 1.4 ± 1.1 47.5 ± 26.2 

Running - Treadmill 6mph - 

Treadmill 0  

91.0 ± 13.2 0.1 ± 0.1 91.9 ± 10.2 51.3 ± 40.0 0.8 ± 0.9 45.0 ± 33.4 

Moderate 96.4 ± 1.7 2.4 ± 1.2 96.4 ± 1.4 86.8 ± 5.4 13.0 ± 5.4 83.8 ± 3.6 

Vigorous 93.3 ± 3.5 1.3 ± 0.6 93.8 ± 2.9 66.0 ± 15.4 5.3 ± 2.9 69.2 ± 10.7 

Table 5-39: Performance per activity while recognizing postures, ambulation, and two MET intensity 

categories using the final implementation of the activity recognition algorithm. The algorithm 

consists of the C4.5 classifier using the invariant reduced feature set computed per axis over windows 

of 5.6s in length.  The probability of random guessing is 9% for all activities shown in this table. 

 

intervention. However, if they are not, it might be important to know what activities are 

being performed (e.g. postures, ambulation type and intensity) to plan the intervention 

according. An intervention might encourage the transition from sedentary activities to 

ambulatory or exercise activities, or an intervention might promote a person to increase in 

intensity of ambulatory activities during everyday living (e.g. encourage walking at 3mph 

over walking at 2mph).  

Table 5-38 presents the results obtained during subject dependent and independent 

training while the unknown class is used and when it is not. Again, presenting results 

incorporating the unknown class has the sole purpose of testing the performance of the 

recognition algorithm in a worse-case difficulty scenario. The best performance of 96.5% 

is achieved, as expected, during subject dependent training when the unknown class is not 

used. It can be observed that the overall accuracy in recognizing the 11 activities 

explored is excellent during subject dependent training (96.5%) and reasonably good 

during subject independent training (81.3%). The performance when the unknown class is  
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A -> Lying_down 

B -> Moderate 

C -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

D -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

E -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

F -> Sitting 
 

G -> Standing 

H -> Vigorous 

I -> Walking_-_Treadmill_2mph_-_Treadmill_0_ 

J -> Walking_-_Treadmill_3mph 

K -> kneeling 

Figure 5-34: Confusion matrices for the C4.5 classifier when recognizing postures, ambulation, and 

two MET intensity categories when the unknown class is not included during (a) subject dependent 

and (b) independent evaluation. The feature set used is the invariant reduced feature set computed 

per axis over windows of 5.6s in length. The maximum number of errors in a given cell of a confusion 

matrix is 247 and 1330 for subject dependent and independent training respectively.  
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Sensor Combination All Postures Ambulation Moderate Vigorous 

All sensors 96.5 ± 1.1 96.5±3.8  

(0.1±0.1) 

96.0±4.5  

(0.1±0.1) 

96.4±1.7  

(2.4±1.2) 

93.3±3.5  

(1.3±0.6) 

Hip + DWrist + DFoot 95.3 ± 1.1 95.5±3.8  
(0.1±0.2) 

96.4±5.1  
(0.1±0.1) 

94.9±1.5  
(3.3±0.8) 

91.4±2.6  
(1.9±0.7) 

Hip + DWrist 94.9 ± 1.4 94.7±5.1  

(0.1±0.2) 

94.0±7.2  

(0.2±0.1) 

94.8±1.4  

(3.5±1.4) 

90.7±4.1  

(2.1±0.8) 

Hip + DFoot 95.8 ± 1.0 95.5±4.0  
(0.1±0.2) 

96.4±4.1  
(0.1±0.1) 

95.4±1.6  
(2.7±0.7) 

92.7±3.0  
(1.7±0.7) 

DWrist + DThigh 94.3 ± 1.4 95.6±4.1  

(0.1±0.2) 

92.7±5.9  

(0.2±0.2) 

94.4±1.7  

(3.7±1.2) 

89.6±4.7  

(2.4±0.7) 

DWrist + DFoot 93.8 ± 1.6 95.5±3.7  

(0.1±0.1) 

94.3±6.7  

(0.2±0.1) 

93.3±1.8  

(4.3±1.5) 

88.2±4.4  

(2.7±0.8) 

Hip 94.8 ± 1.5 92.7±5.5  

(0.2±0.2) 

95.1±5.2  

(0.2±0.1) 

94.4±1.6  

(3.2±1.4) 

91.4±4.0  

(2.2±0.8) 

DWrist 89.6 ± 3.0 91.3±7.6  

(0.3±0.2) 

87.9±10.8  

(0.4±0.3) 

89.4±3.3  

(7.1±2.5) 

82.4±6.7  

(4.2±1.4) 

DFoot 92.9 ± 2.2 94.1±7.4  

(0.2±0.2) 

93.5±4.6  

(0.2±0.2) 

92.5±2.3  

(4.6±1.7) 

86.6±5.1  

(3.1±1.0) 

DUpperArm 93.8 ± 1.8 91.0±6.9  

(0.3±0.2) 

95.6±3.9  

(0.2±0.1) 

93.3±1.8  

(4.0±1.5) 

89.7±4.2  

(2.5±0.9) 

DThigh 94.2 ± 1.3 95.2±4.8  
(0.2±0.2) 

93.0±5.7  
(0.2±0.2) 

93.7±1.7  
(3.7±1.3) 

90.7±3.8  
(2.2±0.6) 

Table 5-40: Subject dependent performance of the C4.5 classifier when recognizing postures and 

ambulation using the invariant reduced feature set computed per axis over windows of 5.6s in length 

using different subsets of accelerometers.  The unknown class was not included in this experiment. 

The probability of random guessing is 9% for all activity categories shown in this table. 

 

 

 
Sensor Combination All Postures Ambulation Moderate Vigorous 

All sensors 81.3 ± 4.7 91.3±9.3  
(0.5±0.8) 

64.4±33.6  
(1.0±1.1) 

86.8±5.4  
(13.0±5.4) 

66.0±15.4  
(5.3±2.9) 

Hip + DWrist + DFoot 76.2 ± 8.4 80.7±25.2  

(0.7±0.9) 

62.1±33.7  

(1.3±1.2) 

85.6±6.1  

(15.7±6.1) 

58.4±16.2  

(7.5±5.6) 

Hip + DWrist 72.5 ± 7.6 52.3±26.3  
(1.4±1.8) 

59.6±29.3  
(1.5±1.5) 

84.0±7.6  
(14.4±4.8) 

60.0±14.6  
(8.8±7.4) 

Hip + DFoot 72.9 ± 8.9 75.2±25.5  

(1.3±1.4) 

57.3±33.2  

(1.5±1.6) 

81.9±8.5  

(15.9±7.2) 

58.0±17.5  

(7.0±3.3) 

DWrist + DThigh 78.6 ± 5.3 69.7±28.3  
(1.1±1.2) 

72.9±25.2  
(0.9±1.0) 

83.2±7.5  
(12.1±3.1) 

67.2±11.4  
(6.9±4.3) 

DWrist + DFoot 74.5 ± 6.9 83.3±23.1  

(0.7±1.0) 

57.3±34.5  

(1.6±1.8) 

82.2±6.9  

(15.7±4.4) 

57.5±11.7  

(7.4±2.6) 

Hip 72.0 ± 7.4 51.0±24.7  

(1.4±1.4) 

60.7±30.2  

(1.5±1.4) 

82.8±7.9  

(15.7±5.0) 

57.6±12.6  

(8.0±6.6) 

DWrist 68.5 ± 6.6 52.6±28.4  
(1.7±1.7) 

48.5±29.3  
(1.5±1.5) 

81.3±4.6  
(18.5±5.6) 

55.2±10.6  
(8.6±2.2) 

DFoot 67.1 ± 9.1 67.7±30.2  

(1.5±1.4) 

50.1±32.2  

(1.8±1.9) 

79.8±8.1  

(19.6±6.4) 

45.8±15.8  

(8.5±3.9) 

DUpperArm 75.7 ± 4.0 55.0±22.8  
(1.4±1.4) 

71.7±26.7  
(1.0±1.2) 

83.3±6.6  
(16.3±5.0) 

63.8±11.3  
(5.8±2.0) 

DThigh 67.9 ± 7.4 40.8±30.4  

(2.5±2.2) 

69.6±28.2  

(0.8±0.9) 

73.4±9.3  

(20.6±8.4) 

69.1±13.6  

(7.4±5.7) 

Table 5-41: Subject independent performance of the C4.5 classifier when recognizing postures and 

ambulation using the invariant reduced feature set computed per axis over windows of 5.6s in length 

using different subsets of accelerometers.  The unknown class was not included in this experiment. 

The unknown class was not included in this experiment. The probability of random guessing is 9% 

for all activity categories shown in this table. 
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(a) Subject Dependent Performance

All Postures Ambulation Moderate Vigorous

All sensors

Hip + DWrist + DFoot

Hip + DWrist

Hip + DFoot

DWrist + DThigh

DWrist + DFoot
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DFoot
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Figure 5-35: True positive rate per sensor combination while recognizing postures, ambulation, and 

two MET intensity categories using the C4.5 classifier when features are computed per axis over 

windows of 5.6s during subject dependent evaluation. The grayscale image is scaled so that the 

maximum true positive rate of 96.5% is represented by white and the minimum of 82.4% by black. 

In other words, poor areas of performance are shown in black. 

 

(b) Subject Independent Performance
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Figure 5-36: True Positive Rate per sensor combination while recognizing postures, ambulation, and 

two MET intensity levels using the C4.5 classifier when features are computed per axis over windows 

of 5.6s during subject independent evaluation. The grayscale image is scaled so that the maximum 

true positive rate of 91.3% is represented by white and the minimum of 40.8% by black. In other 

words, poor areas of performance are shown in black. 
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included drops between 7-10% because it contains unlabeled examples of sitting, 

standing, and walking at different speeds.  

Table 5-39 presents the performance per activity and Figure 5-23 the confusion 

matrices for subject dependent and independent training. The confusion matrices are 

grayscale images scaled to highlight large number of confusions in black and low number 

of confusions in white. During subject dependent training, the true positive rate over 

postures, ambulation, and the moderate MET category is very similar (~96%). The 

activity category with lower performance is vigorous, with a performance of 93.6%. This 

is because the vigorous intensity category is being confused with the moderate intensity 

category during both subject dependent and independent evaluation as shown by the 

confusion matrices (Figure 5-34). This confusion happens because these intensity 

categories include activities with similar motion patterns such as cycling, crunches and 

sit-ups that were just partitioned due to their associated MET intensities into the 

moderate and vigorous MET intensity categories. Figure 5-23 also shows that there is a 

considerable degree of confusion between lying down and the vigorous MET intensity 

level. This is because the examples for the activities crunches and sit-ups were merged 

into the vigorous MET intensity level. These two activities include examples of lying 

down, particularly when participants rested for a couple of seconds between repetitions. 

When the performance per activity is inspected for subject dependent training, it can be 

seen that the lowest performance is obtained for running at 5mph (94.7%) and 6mph 

(91%), standing (93%), and the vigorous category (93%). The performance is relatively 

low for running at 6mph (91%) because most subjects only performed this activity for 

less than 2min due to its physical difficulty. Finally the confusion matrix (Figure 5-34) 

for subject dependent training also illustrates that sitting is being confused with the 

moderate intensity category. This is because some activities included in the moderate 

intensity category such as bench weight lifting and bicep curls are performed in a in a 

sitting position. 

When the performance per activity is analyzed for subject independent training, it is 

found that the worse performance is obtained while discriminating among the intensity 

levels or speeds of running (TP rate between 51-53%) and for the vigorous intensity 

category (66%). Inspection of the confusion matrix (Figure 5-23) also reveals confusions 

among the different speeds of running, confusion between sitting and the moderate 

intensity category, and confusion between the moderate and vigorous categories for the 

same reasons explained before.   

Finally, the performance of recognizing postures, ambulation, and the two MET 

intensity categories was evaluated when utilizing different sensor combinations. Table 

5-40 and Table 5-41 present the results obtained. Figure 5-35 and Figure 5-36 also 

present the true positive rate as a grayscale image normalized to show the best 

performance in white and the worse performance in black. These tables and figures show 

that the three best performing sensor combinations for subject dependent training in 

decreasing order are Hip+DFoot, Hip+DWrist+DFoot, and DHip. This ordering is 

different from the one obtained in previous sections, and suggest that when the number of 

activities to recognize is decreased the number of sensors can also be decreased without 

significant decreases in performance. When comparing the results per activity category 

for the Hip+DFoot and for the Hip+DWrist+DFoot sensor combinations, it is found that 

their performance is very similar. It seems that the DWrist sensor becomes less useful 
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when gymnasium and household activities with high energy upper body motion are 

merged into the moderate MET intensity category. The sensor at the hip detects this 

upper body motion indirectly well enough to allow discrimination, at least during subject 

dependent training. The fact that the Hip sensor is the third best performing sensor also 

suggests that this sensor captures lower body motion indirectly well enough to 

discriminate between the different intensity levels of walking and running. It is thus clear 

that the best single sensor to utilize while recognizing the set of activities explored in this 

section is the sensor at the hip. When the performance per activity for this sensor is 

compared against the performance of the Hip+DFoot sensor combination, it is found that 

it has a slightly lower performance for the postures (-2.8%) and ambulation (-1.3%) 

categories. In general, the change in performance obtained while evaluating different 

sensor combinations to recognizing activities is higher for subject independent training 

than for subject dependent training.  

The three best performing sensor combinations found for subject independent training 

in decreasing order are DWrist+DThigh, Hip+DWrist+DFoot, and DUpperArm. The 

order is also different from the one obtained in previous sections. Now, the combination 

of a sensor at the dominant wrist and at the dominant thigh (DWrist+DThigh) slightly 

outperforms the combination Hip+DWrist+DFoot. This increased performance is 

distributed across the ambulation (+10%) and the vigorous MET intensity category 

(+8.8%). The Hip+DWrist+DFoot sensor combination; however, is better at recognizing 

postures (+10%). The best single sensor to utilize during subject independent training is 

the DUpperArm, followed by the Hip sensor, and the DWrist sensor. The DUpperArm 

sensor is better in recognizing ambulation and the vigorous intensity category that the 

sensor at the Hip. This is because it better recognizes the upper body activity found in 

these activities. The sensor at the hip (Hip) is better at recognizing ambulation than the 

sensor wrist (DWrist). This is because the sensor at the wrist experiences more variability 

in the accelerometer signals due to the higher degree of freedom of the wrist. 

In summary, the best compromise sensor combination to use for detecting postures, 

ambulation, and the two MET intensity categories is still the Hip+DWrist+DFoot sensor 

combination. However, because the number of activities explored has been reduced or 

merged into the moderate and vigorous intensity categories, the number of sensors can be 

reduced. For example the Hip+DFoot or DHip sensor combinations can be used during 

subject dependent training and the DWrist+DThigh or DUpperArm combinations during 

subject independent training with little decrease in performance. 

 

5.4.9.5 How Well can Postures and Ambulation be Recognized?  

 

This section explores how well postures and ambulation with no intensity levels can be 

recognized from several combinations of accelerometers using the final implementation 

of the activity recognition algorithm. Thus, this experiment is performed by eliminating 

all the activities that are not postures or ambulation from the MIT dataset and by merging 

the different intensity levels of ambulatory activities such as walking and running into a 

single class. The column labeled as ―Postures and Ambulation‖ in Appendix A2 shows 

what activities are considered in this experiment and what intensity levels of walking and 

running are being merged. The activities to recognize are the following eight activities:  
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Evaluation Method All Postures Ambulation Unknown 

Subject dependent 

without Unknown class 

Random guessing: 12.4% 

98.4 ± 0.8 98.9±1.9  

(0.1±0.1) 

95.4±3.9  

(0.4±0.4) 

- 

Subject dependent 
with unknown class 

Random guessing: 11.1% 

91.4 ± 1.7 93.8±5.1  
(0.3±0.2) 

87.9±5.4  
(1.1±0.4) 

89.9 ± 2.7    
 (7.1 ± 1.9) 

Subject independent 

without unknown class 
Random guessing: 12.5% 

92.9 ± 3.9 96.4±8.9  

(0.3±0.9) 

85.3±15.5  

(2.1±2.2) 

- 

Subject independent 

with unknown class 

Random guessing: 11.1% 

78.5 ± 8.8 71.8±22.7  

(0.7±0.6) 

68.4±24.2  

(1.8±1.1) 

87.4 ± 4.0 

 (24.2 ± 3.7) 

Table 5-42: True positive and false positive rate (shown in parenthesis) for the C4.5 classifier while 

recognizing postures and ambulation without intensity levels during subject dependent and 

independent evaluation. The feature set used is the invariant reduced feature set computed per axis 

over windows of 5.6s in length over all the seven accelerometers. The random guess probability for 

all activities shown in this table is 12.4% when the unknown class is not included and 11.1% when it 

is included. 

 

 
 Subject Dependent Subject Independent 

Class TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Lying down 99.9 ± 0.3 0.1 ± 0.1 99.8 ± 0.3 100.0 ± 0.0 0.2 ± 0.9 99.6 ± 1.9 

Standing 97.5 ± 3.9 0.2 ± 0.2 96.5 ± 3.7 96.3 ± 9.6 0.7 ± 2.3 92.7 ± 15.5 

Sitting 99.0 ± 1.3 0.1 ± 0.1 99.2 ± 0.8 90.9 ± 21.7 0.3 ± 0.5 92.3 ± 19.3 

kneeling 99.0 ± 2.0 0.0 ± 0.1 99.1 ± 1.6 98.4 ± 4.3 0.0 ± 0.1 98.6 ± 2.5 

Walking 98.9 ± 0.9 0.7 ± 0.7 99.0 ± 0.8 93.2 ± 6.5 4.9 ± 3.5 93.3 ± 4.4 

Running 99.2 ± 1.4 0.2 ± 0.2 98.8 ± 1.2 85.6 ± 23.7 1.6 ± 2.8 85.6 ± 22.5 

Stairs - Ascend stairs 93.1 ± 5.1 0.3 ± 0.2 93.4 ± 3.9 94.4 ± 6.4 0.7 ± 0.9 91.5 ± 6.6 

Stairs - Descend stairs 90.6 ± 8.4 0.4 ± 0.3 91.4 ± 6.8 68.0 ± 25.6 1.3 ± 1.5 68.5 ± 24.4 

Table 5-43: Performance per activity obtained for the C4.5 classifier when recognizing postures and 

ambulation without intensity levels and without the unknown class during subject dependent and 

independent evaluation. The feature set used is the invariant reduced feature set computed per axis 

over windows of 5.6s in length over all seven accelerometers. The random guess probability for all 

activities shown in this table is 12.4%.  

 

Lying down, standing, sitting, kneeling, walking, running, ascending stairs, and 

descending stairs. These eight activities produce a random guessing probability of 12.5%. 

The parameters used in the activity recognition algorithm are the C4.5 classifier, the 

invariant reduced feature set computed per axis, and a sliding window length of 5.6s. 

Table 5-42 presents the true positive and false positive rate per activity category when 

the unknown class is included and when it is not. It is clear that the performance obtained 

while recognizing only postures and ambulation without intensity levels is excellent.  

The best overall accuracy of 98% is obtained during subject dependent training when the 

unknown class is not used. The performance obtained during subject independent training 

is 92.9% when the unknown class is not used and 78.5% when it is used. This large 

decrease in performance (-14.4%) obtained when including the unknown class is due to 

the fact that the unknown class has unlabeled examples of sitting, standing, and walking.  

As a result, when the unknown class is included, it is confused with these activities 

resulting in the decreased performance observed.  

Table 5-43 shows the true positive rate, false positive rate, and F-Measure per activity 

during subject dependent and independent training when the unknown activity is not 

used. The performance per activity during subject dependent training is excellent, ranging  
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A -> Lying_down 

B -> Running 

C -> Sitting 

D -> Stairs_-_Ascend_stairs 

E -> Stairs_-_Descend_stairs 

F -> Standing 

G -> Walking 

H -> kneeling 

Figure 5-37: Confusion matrices for the C4.5 classifier when recognizing postures and ambulation 

without intensity levels and without considering the unknown class during subject dependent and 

independent evaluation. The feature set used is the invariant reduced feature set computed per axis 

over windows of 5.6s in length over all accelerometers. The maximum number of errors in a given 

cell of a confusion matrix is 26 and 168 for subject dependent and independent training respectively.
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Sensor Combination All Postures Ambulation 

All sensors 98.4 ± 0.8 98.9±1.9  

(0.1±0.1) 

95.4±3.9  

 (0.4±0.4) 

Hip + DWrist + DFoot 98.1 ± 1.1 98.8±2.4  

(0.1±0.1) 

94.5±4.9 

  (0.5±0.5) 

Hip + DWrist 97.7 ± 1.0 98.2±2.8  

(0.1±0.2) 

93.0±5.0 

  (0.6±0.5) 

Hip + DFoot 98.1 ± 1.1 98.6±2.7  
(0.1±0.2) 

94.3±5.4 
  (0.5±0.5) 

DWrist + DThigh 97.0 ± 0.6 99.0±1.5  

(0.1±0.1) 

90.2±5.2 

  (0.8±0.5) 

DWrist + DFoot 96.4 ± 1.4 97.5±2.9  
(0.2±0.2) 

88.1±6.1 
  (1.0±0.6) 

Hip 97.36 ± 1.2 97.4±3.8  

(0.1±0.2) 

92.1±6.3 

  (0.7±0.5) 

DWrist 94.3 ± 1.9 94.2±6.3  

(0.3±0.4) 

84.7±7.6 

  (1.5±0.8) 

DFoot 95.6 ± 1.8 95.9±5.7  

(0.3±0.3) 

86.4±6.5 

  (1.1±0.7) 

DUpperArm 96.0 ± 2.4 92.9±8.0  

(0.4±0.4) 

91.1±6.7 

  (0.9±0.8) 

DThigh 96.6 ± 0.9 98.8±2.0  
(0.1±0.2) 

89.1±5.6 
  (0.9±0.5) 

Table 5-44: Subject dependent performance over different combination of sensors for the C4.5 

classifier when recognizing postures and ambulation without intensity levels and without the 

unknown class. The feature set used is the invariant reduced feature set computed per axis over 

windows of 5.6s in length. The random guess probability for all activities shown in this table is 

12.5%.  

 

 

 
Sensor Combination All Postures Ambulation 

All sensors 92.9 ± 3.9 96.4±8.9  

(0.3±0.9) 

85.3±15.5   

(2.1±2.2) 

Hip + DWrist + DFoot 86.5 ± 5.6 88.7±17.9  

(1.0±1.7) 

74.0±23.3  

 (3.5±3.5) 

Hip + DWrist 81.9 ± 6.5 59.6±27.3  

(2.5±3.8) 

73.6±20.2  

 (3.2±2.4) 

Hip + DFoot 83.6 ± 7.2 78.5±24.8  

(1.6±2.0) 

69.5±26.1  

 (3.7±3.6) 

DWrist + DThigh 84.9 ± 9.4 73.4±32.2  
(2.0±3.1) 

76.8±18.5  
 (2.7±3.0) 

DWrist + DFoot 85.5 ± 8.4 90.7±15.6  

(1.0±1.8) 

71.3±22.0  

 (3.7±3.7) 

Hip 81.0 ± 5.9 55.5±29.1  
(2.9±3.6) 

73.5±20.8  
 (3.1±2.3) 

DWrist 79.3 ± 8.4 58.5±28.4  

(2.8±3.3) 

73.0±19.1  

 (3.6±3.3) 

DFoot 77.9 ± 10.6 75.7±27.0  

(2.4±2.4) 

66.8±23.6  

 (4.6±4.1) 

DUpperArm 86.5 ± 4.3 60.8±20.9  

(2.1±2.0) 

85.9±15.7  

 (2.1±2.5) 

DThigh 79.9 ± 9.4 68.4±31.7  

(3.1±3.2) 

72.3±18.8  

 (3.2±3.5) 

Table 5-45: Subject independent performance over different combination of sensors for the C4.5 

classifier when recognizing postures and ambulation without intensity levels and without the 

unknown class. The feature set used is the invariant reduced feature set computed per axis over 

windows of 5.6s in length. The random guess probability for all activities shown in this table is 

12.5%.  
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(a) Subject Dependent Performance
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Figure 5-38: True Positive rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject dependent evaluation. The grayscale image is 

scaled so that the maximum true positive rate of 99.0% is represented by white and the minimum of 

84.7% by black. In other words, poor areas of performance are shown in black.  

 

(b) Subject Independent Performance
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Figure 5-39: True Positive Rate per sensor combination using the C4.5 classifier when features are 

computed per axis over windows of 5.6s during subject independent evaluation. The grayscale image 

is scaled so that the maximum true positive rate of 96.4% is represented by white and the minimum 

of 55.5% by black. In other words, poor areas of performance are shown in black. 
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from 90 to 99.9%. The activity with lowest performance (90%) is descending stairs 

because it is being confused with walking and ascending stairs due to the motion 

similarity (see Figure 5-37). Other activities being confused during subject dependent 

evaluation are walking with running, descending stairs with ascending stairs, and 

standing with sitting. 

 During subject independent training, the true positive per class is higher than 93.2% 

for all the activities except for running (85.6%) and descending stairs (68%). Running  

and descending stairs also have a relatively large false positive rate of 1.6 and 1.4% 

respectively. This is because running is being confused with walking, and descending 

stairs is being confused with walking and ascending stairs. In fact, the walking activity 

has a false positive rate of 4.9% because this class is being predicted when the running 

and descending stairs activities are performed. Confusion among ambulatory activities is 

expected, particularly during subject independent training due to the motion similarity 

among the activities.  

Table 5-44 and Table 5-45 present the true positive and false positive rate when 

different sensor combinations are used to recognize activities during subject dependent 

and independent training. Figure 5-38 and Figure 5-39 also illustrate the true positive rate 

as a grayscale image normalized to highlight good performance in white and poor 

performance in black. For subject dependent training, the sensor combinations with 

higher performance are Hip+DFoot, Hip+DWrist+DFoot, and Hip+DWrist. The 

combinations Hip+DFoot and Hip+DWrist+DFoot have the same overall accuracy of 

98.1% and very similar performance per activity category. Again, one sensor at the hip 

and one sensor either at the upper or lower body achieves a performance similar to the 

one obtained using the Hip+DWrist+DFoot sensor combination. During subject 

dependent training, all the sensor combinations explored achieve an overall accuracy 

greater than 94.3%. When the performance of single sensors is analyzed during subject 

dependent training, the sensor that achieves the best overall accuracy is the sensor at the 

hip (97.3%), followed by the sensor at the thigh (96.6%), and the sensor at the dominant 

upper arm (96%). Consequently, the best single sensor to utilize during subject dependent 

training is the Hip sensor. The sensor at the thigh, achieves a slightly higher performance 

(+1.4%) than the one at the hip in recognizing postures. 

During subject independent training, the sensor combinations with best performance 

are Hip+DWrist+DFoot, DUpperArm, and DWrist+DFoot. The combinations 

Hip+DWrist+DFoot, DUpperArm have the same overall accuracy but the 

Hip+DWrist+DFoot combination shows a higher performance for postures (+20%) while 

the DUpperArm sensor presents a higher performance for ambulation (+12%). Thus, the 

additional sensors allow better discrimination among postures. One possible explanation 

of why the DUpperArm sensor has a higher performance in recognizing ambulation is 

that it experiences less random variations during these activities than the sensors DWrist 

and DFoot. During the data collections, it was observed that sensors at the wrists and at 

the feet generally experience more variation in the accelerometer signals due to the 

higher degree of motion available at these body parts. For example, while sitting, subjects 

fidget the feet in random patterns. This was also observed during the bicep curls and 

bench weight lifting activities where subjects impatiently fidget feet while experiencing 

physically intense effort. The accelerometers at the wrists also experience a high degree 

of variability because hands are constantly in motion, particularly during unconstrained  
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Evaluation Method All Lying down Standing Sitting Kneeling Unknown 

Subject dependent 

without unknown class 

Random guessing: 25% 

99.3 ± 0.7 99.9 ± 0.2   

(0.5 ± 0.8) 

97.7 ± 3.2    

(0.1±0.3) 

98.6 ± 2.7 

(0.3 ± 0.5) 

98.6 ± 2.8 

(0.1 ± 0.2) 

- 

Subject dependent 
with unknown class 

Random guessing: 20% 

97.6 ± 0.9 99.5 ± 1.1 
(0.4 ± 0.3) 

83.4 ± 12.4 
(0.5 ± 0.3) 

86.6 ± 11.7 
(0.5 ± 0.4 

95.4 ± 5.7 
(0.1 ± 0.2) 

98.2 ± 0.7 
(4.1 ± 2.5) 

Subject independent 

without unknown class 
Random guessing: 25% 

98.0 ± 4.9 100.0 ± 0.0 

(1.4 ± 6.0) 

98.1 ± 8.5  

(0.8 ± 2.9) 

95.9 ± 17.7 

(0.9 ± 3.0) 

100.0 ± 0.0 

(0.0 ± 0.0) 

- 

Subject independent 

with unknown class 

Random guessing: 20% 

93.4 ± 2.8 90.7 ± 18.4 

(0.5 ± 1.0) 

68.5 ± 24.8 

(0.7 ± 0.6) 

36.2 ± 40.2 

(1.1 ± 1.0) 

94.8 ± 7.6 

(0.4 ± 1.4) 

97.4 ± 1.8 

(16.5 ± 10.2) 

Table 5-46: True positive rate and false positive rate (shown in parenthesis) per activity for the C4.5 

classifier when recognizing postures in a subject dependent and independent manner. The feature set 

used is the invariant reduced feature set computed per axis over windows of 5.6s in length over all 

seven accelerometers.  The random guess probability is 25% when the unknown class is not included 

and 20% when it is included. 

 

activities such as household cleaning. The relatively poor performance of these sensors 

can be seen from Figure 5-39 as dark areas for the ambulation category. The best single 

sensors to use to recognizing postures and ambulation in a subject independent manner 

are DUpperArm, Hip, and DThigh. The DUpperArm sensor is better for recognizing 

ambulation, while the DThigh sensor is better at recognizing postures. The sensor at the 

hip presents average performance (with respect to DUpperArm and DThigh) in 

recognizing postures and ambulation. 

In conclusion, a good combination to use for recognizing postures and ambulation 

without intensity levels during subject dependent training is Hip+DWrist. The best single 

sensor is the Hip sensor. During subject independent training, the best sensor 

combination to use is either DWrist+DFoot or Hip+DWrist+DFoot. The single best 

sensor to use is sensor at the dominant upper arm (DUpperArm). Thus, when only 

postures and ambulation need to be recognized, two sensors are enough to achieve good 

discrimination performance among these activities.  

 

5.4.9.6 How Well can Postures be Recognized? 

 

This section explores how well can postures be recognized using the final implementation 

of the activity recognition algorithm while different combination of sensors are used. 

This is performed by eliminating all the activities that are not postures from the MIT 

dataset and by merging the activities sitting fidgeting feet and legs and sitting fidgeting 

hands and arms with the sitting activity. The column labeled as ―Postures‖ in Appendix 

A2 shows the activities that were included in this experiment. The total number of 

activities to recognize is then four, giving a random guess probability of 25% when the 

unknown class is not included and 20% when it is included. 

Table 5-46 presents the total accuracy, as well as the true positive and false positive 

rate per activity obtained from this experiment when the unknown class is included and 

when it is not. The overall accuracy obtained during subject dependent and independent 

training is excellent, ranging from 93 to 99%. Obviously, this is the result of the limited 

number of activities being recognized (4). The lowest performance is observed for  
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   A -> Lying_down 

B -> Sitting 

C -> Standing 

D -> kneeling 

Figure 5-40: Confusion matrices of the C4.5 classifier when recognizing postures without the 

unknown class during (a) subject dependent and (b) independent training. The feature set used is the 

invariant reduced feature set is computed per axis over windows of 5.6s in length over all the sensors. 

The maximum number of errors in a given cell of a confusion matrix is 5 and 19 for subject 

dependent and independent training respectively.  
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Sensor Combination All Lying down Standing Sitting Kneeling 

All sensors 99.3 ± 0.7 99.9 ± 0.2 

(0.5 ± 0.8) 

97.7 ± 3.2    

(0.1±0.3) 

98.6 ± 2.7 

(0.3 ± 0.5) 

98.6 ± 2.8 

(0.1 ± 0.2) 

Hip + DWrist + DFoot 99.1 ± 0.9 99.9 ± 0.4 

(0.2 ± 0.6) 

97.2 ± 3.8 

(0.3 ± 0.5) 

98.6 ± 3.1 

(0.3 ± 0.5) 

98.0 ± 2.9 

(0.2 ± 0.3) 

Hip + DWrist 98.8 ± 0.7 99.9 ± 0.3 
(0.5 ± 0.8) 

97.7 ± 3.5 
(0.6 ± 0.7) 

97.7 ± 2.9 
(0.3 ± 0.5) 

95.8 ± 4.6 
(0.2 ± 0.4) 

Hip + Foot 99.2 ± 0.8 99.9 ± 0.3 

(0.3 ± 0.7) 

97.41 ± 4.2   

(0.3 ± 0.5) 

98.8 ± 2.6 

(0.3 ± 0.5) 

98.0 ± 2.9 

(0.0 ± 0.21) 

DWrist + DThigh 98.9 ± 0.7 99.9 ± 0.2 
(0.8 ± 0.9) 

95.80 ± 4.6   
(0.3 ± 0.3) 

97.9 ± 2.3 
(0.4 ± 0.4) 

97.9 ± 2.4 
(0.2 ± 0.4) 

DWrist + DFoot 99.0 ± 0.7 99.9 ± 0.4 

(1.0 ± 1.4) 

97.27 ± 3.4   

(0.2 ± 0.4) 

98.6 ± 2.71   

(0.2 ± 0.4) 

97.1 ± 3.6 

(0.1 ± 0.3) 

Hip 98.6 ± 0.9 99.9 ± 0.3 
(0.5 ± 0.8) 

95.81 ± 4.9   
(0.7 ± 0.6) 

97.9 ± 2.9 
(0.4 ± 0.5) 

95.8 ± 4.6 
(0.3 ± 0.6) 

DWrist 97.7 ± 1.7 99.9 ± 0.2 

(1.2 ± 1.2) 

94.18 ± 7.2   

(1.0 ± 1.3) 

95.7 ± 5.1 

(0.2 ± 0.5) 

91.8 ± 8.9 

(0.8 ± 0.9) 

DFoot 98.0 ± 2.4 99.4 ± 1.6 

(2.5 ± 3.9) 

97.19 ± 5.3    

(0.4 ± 0.7) 

97.9 ± 4.4    

(0.5 ± 0.8) 

91.8 ± 12.0 

( 0.3 ± 1.0) 

DUpperArm 96.7 ± 2.7 99.9 ± 0.2 
(0.6 ± 0.8) 

89.9 ± 10.1 
(1.4 ± 1.7) 

95.4 ± 7.8    
(0.5 ± 0.9) 

88.5 ± 10.6 
( 1.5 ± 1.3) 

DThigh 99.0 ± 0.7 99.9 ± 0.2 

(0.4 ± 0.7) 

95.9 ± 4.8 

(0.2 ± 0.3) 

98.4 ± 2.2 

(0.4 ± 0.4) 

98.1 ± 2.4 

(0.3 ± 0.5) 

Table 5-47: True positive and false positive rate (shown in parenthesis) during subject dependent 

training for the C4.5 classifier when recognizing postures without the unknown class over different 

sensor combinations. The feature set used is the invariant reduced feature set computed per axis over 

windows of 5.6s in length.  

 

 

 
Sensor Combination All Lying down Standing Sitting Kneeling 

All sensors 98.0 ± 4.9 100.0 ± 0.0  

(1.4 ± 6.0) 

98.1 ± 8.5  

(0.8 ± 2.9) 

95.9 ± 17.7 

(0.9 ± 3.0) 

100.0 ± 0.0  

(0.0 ± 0.0) 

Hip + DWrist + DFoot 90.6 ± 13.9 95.8 ± 12.3   
(1.9 ± 7.4) 

80.1 ± 35.9   
(3.3 ± 5.9) 

88.5 ± 30.1   
(4.3 ± 6.4) 

94.0 ± 22.9    
(3.0 ± 8.4) 

Hip + DWrist 79.4 ± 13.5 97.5 ± 11.0    

(5.0 ± 22.4) 

51.6 ± 40.5   

(6.3 ± 6.3) 

65.3 ± 43.2   

(6.5 ± 14.8) 

50.9 ± 45.4    

(11.2 ± 5.8) 

Hip + Foot 83.3 ± 13.9 95.0 ± 15.1   
 (1.6 ± 7.1) 

64.3 ± 46.8   
(9.1 ± 6.8) 

59.8 ± 49.2   
(9.8 ± 6.5) 

100.0 ± 0.0    
(3.9 ± 11.2) 

DWrist + DThigh 82.1 ± 12.4 90.5 ± 17.0    

(4.5 ± 11.1) 

67.9 ± 37.9   

(4.8 ± 5.5) 

83.9 ± 32.0   

(10.1 ± 13.7) 

65.1 ± 32.4    

(4.9 ± 5.1) 

DWrist + DFoot 92.4 ± 10.5 97.1 ± 11.0    

(1.9 ± 7.4) 

86.7 ± 30.2   

(3.7 ± 5.9) 

84.9 ± 31.7   

(2.7 ± 5.1) 

94.0 ± 22.9    

(1.9 ± 7.4) 

Hip 71.4 ± 11.6 96.0 ± 12.2    

(5.0 ± 22.4) 

31.5 ± 35.9   

(13.7 ± 10.2) 

38.7 ± 40.9   

(8.6 ± 8.0) 

35.1 ± 38.9   

(13.0 ± 10.7) 

DWrist 66.9 ± 18.4 79.4 ± 23.4    

(9.1 ± 20.7) 

44.3 ± 34.4   

(14.0 ± 14.9) 

70.1 ± 37.8   

(14.2 ± 16.2) 

43.5 ± 37.2   

(11.1 ± 11.5) 

DFoot 75.9 ± 14.0 84.8 ± 23.4    
(7.0 ± 10.7) 

65.4 ± 43.04   
(8.6 ± 6.9) 

64.2 ± 46.3   
(7.6 ± 6.6) 

82.0 ± 27.0   
(11.9 ± 17.0) 

DUpperArm 75.4 ± 9.0 96.5 ± 11.4    

(6.8 ± 17.1) 

37.9 ± 31.4   

(9.3 ± 9.9) 

50.7 ± 38.3   

(7.0 ± 8.0) 

41.3 ± 23.9   

(10.7 ± 7.3) 

DThigh 69.3 ± 22.9 85.9 ± 22.6   
(14.1 ± 12.6) 

54.2 ± 37.9   
(4.2 ± 5.6) 

56.3 ± 37.3   
(19.4 ± 26.0) 

60.7 ± 39.7    
(6.4 ± 4.8) 

Table 5-48: True positive and false positive rate (shown in parenthesis) during subject independent 

training for the C4.5 classifier when recognizing postures without the unknown class over different 

sensor combinations. The feature set used is the invariant reduced feature set computed per axis over 

windows of 5.6s in length. 
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(a) Subject Dependent Performance

All Lying down Standing Sitting Kneeling

All sensors

Hip + DWrist + DFoot

Hip + DWrist

Hip + DFoot

DWrist + DThigh

DWrist + DFoot

Hip

DWrist

DFoot

DUpperArm

DThigh

 
Figure 5-41: True positive rate per sensor combination during subject dependent evaluation using 

the C4.5 classifier when features are computed per axis over windows of 5.6s. The grayscale image is 

scaled so that the maximum true positive rate of 99.9% is represented by white and the minimum of 

88.5% by black. In other words, poor areas of performance are shown in black. 

 

(b) Subject Independent Performance

All Lying down Standing Sitting Kneeling

All sensors

Hip + DWrist + DFoot

Hip + DWrist

Hip + DFoot

DWrist + DThigh

DWrist + DFoot

Hip

DWrist

DFoot

DUpperArm

 
Figure 5-42: True positive rate per sensor combination during subject independent evaluation using 

the C4.5 classifier when features are computed per axis over windows of 5.6s. The grayscale image is 

scaled so that the maximum true positive rate of 100% is represented by white and the minimum of 

31.5% by black. In other words, poor areas of performance are shown in black. 
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standing (97-98%) and sitting (98-95%) during subject dependent and independent 

training when the unknown class is not used. When the unknown activity is incorporated, 

the performance drops dramatically for sitting and standing during subject independent 

training. This is because subjects were mainly standing and sitting while resting during 

the unlabeled periods of time of the data collection (unknown activity). 

The confusion matrices for subject dependent and independent training shown in 

Figure 5-40 illustrate that the activities most confused are standing with sitting, and 

sitting with kneeling. The confusion matrix for subject independent training also shows a 

relatively high degree of confusion between lying down and sitting. These confusions 

however, are not large enough to affect the recognition performance as shown in Table 

5-46.  

 Table 5-47 and Table 5-48 present the true positive and false positive rate obtained 

when different sensor combinations are used. Figure 5-41 and Figure 5-42 show the true 

positive rate as a grayscale image normalized to highlight the differences in performance 

per class. The best performance is represented by the color white and the worse by the 

color black. Consequently, poor areas of performance can be identified by dark regions in 

the image. 

These tables show an excellent performance for all the sensor combinations explored 

during subject dependent training. For example, all sensor combinations using two or 

more sensors have a true positive rate greater or equal than 98.8%. The best performing 

sensor combinations are Hip+DFoot, Hip+DWrist+DFoot, and DWrist+DFoot. The 

maximum difference in performance between these sensor combinations is just 0.2%. 

Again, the combination of a sensor at the hip and a sensor at the lower body is 

performing as well as the combination of a sensor at the hip, a sensor in the upper body 

and a sensor in the lower body. The single sensors with higher performance for subject 

dependent training in decreasing order are DThigh, Hip, and DFoot. The DThigh sensor 

is slightly better (+2.3%) than the Hip sensor at recognizing kneeling. The sensor DFoot 

is slightly better in recognizing standing (+1.4%) than the DThigh and DFoot sensors. 

The worse performing sensor is the DUpperArm sensor with an overall true positive rate 

of 96.7%. It seems that during subject dependent training, all the sensor combinations 

explored can be used to recognize postures with excellent results.  

For subject independent training, the best sensor combinations in decreasing order are 

DWrist+DFoot, Hip+DWrist+DFoot, and Hip+DFoot. It is interesting to note that the two 

sensor combinations with higher performance include the sensors DWrist and DFoot. 

When either of these sensors is not included in a sensor combination, the performance 

drops approximately 9%. Consequently, during subject independent training, the best 

sensor combination to use to recognize postures is DWrist+DFoot. The single sensors 

with best overall performance during subject independent training are DFoot (75.9%), 

DUpperArm (75.4%), and Hip (71%). The decrease in performance with respect to the 

DWrist+DFoot combination when these single sensors are used is around 17%. When the 

performance per posture is inspected, it is found that the sensor DFoot also outperforms 

the other single sensors in almost all categories. The DUpperArm sensor only 

outperforms the DFoot sensor in recognizing lying down (+11.7%) while the DWrist 

sensor outperforms all the other single sensors in recognizing sitting. The confusion 

matrix for the DFoot sensor shows that the postures being confused the most are standing 

and sitting. This is expected since the orientation of this sensor is very similar or identical  
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  Subject Dependent Subject Independent 

Activities to 

recognize 

Random  

Guess 

Total 

Accuracy 

TPR Range FPR Range Total 

Accuracy 

TPR Range FPR Range 

All  (51) 1.9% 87.9  2.0 80 - 96 0.1 - 0.4 50.6  5.1 34 - 47 0.5 – 1.3 

All with no 

intensities  (31) 

3.2% 91.4  1.6 80 - 98 0.1 – 0.5 72.0  5.7 44 - 84 0.4 – 1.2 

Postures, 

ambulation and 

two MET 

intensity 

categories  (11) 

9% 96.5  1.1 93 - 97 0.1 – 2.4 81.3  4.7 64 - 91 0.5 – 13 

Postures and 

Ambulation with 

no intensity  (8) 

12.5% 98.4  0.8 95 - 98 0.1 – 0.4 92.9  3.9 85 – 96 0.3 – 2.1 

Postures  (4) 25% 99.3  0.7 98 - 100 0.1 – 0.5 98.0  2.8 96 – 100 0 – 1.4 

Table 5-49: Random guess, total accuracy, and ranges for the true positive (TPR) and false positive 

rates (FPR) obtained over all activity categories when recognizing different sets of activities from the 

MIT dataset in a subject dependent and independent manner without including the unknown class.  

 

during both activities. The DFoot sensor can better recognize sitting over standing when 

the foot‘s orientation with respect to ground changes (e.g. foot is raised from the floor in 

an angle) or when feet are moved in distinctive patterns during sitting such when 

fidgeting feet.  

In conclusion, if subject dependent training is to be used, any of the sensor 

combinations explored can produce an excellent performance in recognizing postures  

 (TPR>96.7%). During subject independent training, the best sensor combination to use is 

the DWrist+DFoot. This sensor combination produces a true positive rate of 92.4% with 

a maximum false positive rate of 3.7% per posture.   

 

5.4.9.7 Summary of Results 

 

The results presented in this section indicate that the highest total accuracy obtained 

while recognizing all the 51 activities contained in the MIT dataset (without the unknown 

class) using the final implementation of the activity recognition algorithm is 87.9% for 

subject dependent training and 50.6% for subject independent training. The performance 

of 50.6% obtained during subject dependent training is low, but it represents a substantial 

improvement over the performance obtained by random guessing (2%). As the number of 

activities to recognize is decreased either by excluding or merging activities, total 

accuracy and performance per class increases as shown in Table 5-49. The table also 

illustrates that excellent recognition results can be obtained using subject dependent 

training.  During subject independent training, a reasonable performance of 72% can be 

obtained if discrimination among the intensity levels of activities is not required.  

When different sensor combinations are analyzed to find the best performing ones with 

most convenient locations, it is found that the best combination to use is 

Hip+DWrist+DFoot for both, subject dependent and independent training. This is 

because this sensor combination is able to detect upper body motion, lower body motion, 

and overall body motion at the hip. Table 5-50 shows the three best sensor combinations 

and the three best single sensors to utilize while recognizing several sets of activities 

during subject dependent and independent training. From the table, it can be concluded  
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 Subject Dependent Subject Independent 

Activities to recognize  

(Number of activities) 

Sensor 

combinations with 

higher performance 

Single sensors 

with higher 

performance 

Sensor combinations 

with higher 

performance 

Single sensors 

with higher 

performance 

All (51) Hip + DWrist  + 

DFoot 
Hip + DWrist 

Hip + DFoot 

Hip 

DFoot 
DThigh 

Hip + DWrist  + DFoot 

DWrist + DThigh 
DWrist  + DFoot 

DUpperArm 

DWrist 
Hip 

All with No intensities (31) Hip + DWrist  + 

DFoot 
Hip + DWrist 

Hip + DFoot 

Hip 

DFoot 
DThigh 

Hip + DWrist  + DFoot 

DWrist + DThigh 
DWrist  + DFoot 

DUpperArm 

DWrist 
Hip 

Postures, ambulation and two 
MET intensity categories (11) 

Hip + DFoot 
Hip + DWrist + 

DFoot 

DHip 

Hip 
DThigh 

DUpperArm 

DWrist + DThigh 
Hip + DWrist  + DFoot 

DUpperArm 

DUpperArm 
Hip 

DWrist 

Postures and Ambulation with no 
intensity (8) 

Hip + DFoot 
Hip + DWrist + 

DFoot 

Hip + DWrist 

Hip  
DThigh 

DUpperArm 

Hip + DWrist  + DFoot 
DUpperArm 

DWrist + DFoot 

DUpperArm 
Hip 

DThigh 

Postures (4) Hip + DFoot 

Hip + DWrist + 

DFoot 
DWrist + DFoot 

DThigh 

Hip  

DFoot 

DWrist + DFoot  

Hip + DWrist  + DFoot 

Hip + DFoot 
 

DFoot 

DUpperArm 

Hip 

Table 5-50: The three sensor combinations and the three single sensors with higher performance 

while recognizing different sets of activities from the MIT dataset using the final implementation of 

the activity recognition algorithm. The performance is higher for sensor combinations shown at the 

top and lower for the sensor combinations shown at the bottom. 

 

that during subject dependent training, a sensor located at the hip and another sensor 

located either at the dominant wrist (Hip+DWrist) or the dominant foot (Hip+DFoot) 

achieves reasonable performance. This is because upper body and lower body activity 

induce changes in the acceleration at the hip that allows some degree of discrimination 

among upper body and lower body activities.  

During subject independent training the best performing sensor combinations are the 

ones utilizing a sensor located at the dominant wrist to detect upper body motion and  

Another sensor located either at the dominant thigh or foot to detect lower body motion 

(DWrist+DThigh or DWrist+DFoot). Finally, when the number of activities to recognize 

is decreased, the number of sensors can also be decreased with relatively small decreases 

in performance. From Table 5-50, it can also be seen that the best single sensors to use 

while recognizing activities in a subject dependent manner are Hip, DThigh, and DFoot. 

For subject independent training they are DUpperArm, DWrist, and Hip. The good 

performance of the DUpperArm sensor might be explained by the fact that most activities 

contained in the MIT dataset include a high degree of upper body motion and ambulatory 

activities in the case of household activities. 

5.5 How Does the Activity Recognition Algorithm and its Interactive 
Training Interface Perform in Real-Time?  

This section presents exploratory results of evaluating the real-time implementation of 

the activity recognition system as well as a user interface designed to train the algorithm 

interactively. The results presented are based on a short study performed with five 
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participants that trained and tested the performance of the activity recognition algorithm 

in real-time at MIT. 

The final activity recognition algorithm and a user interface that allows users to 

interactively train the algorithm were implemented in Java and executed on a laptop 

computer with a 1GHz Intel core microprocessor running the Windows Vista operating 

system. The only difference in the implementation of the algorithm with respect the 

parameters found in this work was the utilization of a slightly shorter sliding window of 

4.2s in length (instead of a window length of 5.6s). This is because the sampling 

frequency per sensor was increased in practice from 45Hz to 60Hz when the  number of 

sensors was reduced from seven to three [199]. The new window length was the closest 

one to the original (5.6s) permitted by the constraint of using a number of samples in a 

power of two (e.g. 256) to efficiently estimate the fast Fourier transform algorithm. 

Five participants, three males and two females, from the author‘s research group were 

recruited to participate in this short study and provided with the instructions presented in 

Appendix A9. Three of the participants were familiar with the activity recognition 

research being carried out at the lab, and one of them had taken several courses in 

machine learning and pattern classification. The two other participants had a background 

in architecture and were not familiar with the inner workings of the algorithms or 

technical aspects of the research. Participants were asked to ―train a computer program to 

recognize 10 physical activities, exercises, postures, or activities done in a particular 

posture of their choice‖. Participants were also instructed to wear three MITes wireless 

accelerometers [199] at the hip, dominant wrist, and dominant foot. Figure 5-43 presents 

an image indicating the placement of the wireless accelerometers on the body during this 

short study. Once the accelerometers were attached to the body, participants were asked 

to type in 10 physical activities, exercises, postures, or activities done in a particular 

posture that they wanted the computer program to recognize and that could be executed 

continuously for 2 minutes. Once the activities were entered, the application guided the 

participant to provide examples of the activities specified by performing each of them for 

two minutes continuously. The application showed the activity the participant needed to 

perform and indicated training progress using a counter that reached zero once the 

participant had completed two minutes worth of examples for a particular activity, 

checking for signal loss and ensuring that all examples are of good signal quality. Finally, 

once the training phase was finished, the application trained the activity recognition 

algorithm on the data provided and started recognizing the activities entered in real-time. 

After training the activity models, the application also tested the performance over the 

training examples collected using 10-fold cross-validation and recorded the results in a 

file for later analysis. The cross-validation evaluation over the activity examples collected 

took from 2.5 to 4.4 seconds, depending on the complexity of the activities provided. 

Participants were finally instructed to evaluate the performance of the algorithm by re-

executing the activities as many times as they wished. They were also encouraged to 

experiment and suggest ideas on how the training or recognition of activities could be 

improved in future versions of the system. 

5.5.1  Real-Time and 10 Fold Cross-Validation Performance  

Table 5-51 presents the activities specified by the participants, the total accuracy per 

subject, and the range of the true positive and false positive rates obtained per activity  
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Figure 5-43: Placement of the three wireless accelerometers during the real-time evaluation 

experiment. The sensors were worn at the hip, dominant wrist, and dominant foot, right on top of the 

shoe laces. 

 

using 10 fold cross-validation. Appendix A9 presents the performance measures per 

activity and the confusion matrix for each subject. The table shows that participants 

provided a wide set of activities, ranging from postures (e.g. sitting still) to complex 

activities involving a high degree of variability in motion such as Taekwondo forms. The 

total accuracy per subject presented in the table was high, consistent with the results 

presented in Section 5.4.8.1, ranging from 78.9% to 91.7%. In general, the algorithm  

performed extremely well on most of the activities provided by participants, reflecting 

the high accuracies obtained from the cross-validation evaluation. The worst case 

accuracy of 78.9% was obtained for Subject 3 because he specified several activities 

involving very similar upper body motion such as throwing, bowling, and tennis serve; 

these were confused several times during testing.  

Table 5-52 lists the activities confused most often when participants tested the 

performance of the activity recognition algorithm in real-time. In general, the algorithm 

had problems differentiating activities with similar postures and upper body motion (e.g. 

hand movement). This is because the motion of the upper limbs is relatively 

unconstrained and the algorithms seem to have difficulty differentiating random motion 

patterns that occur occasionally from the distinctive patterns associated with an activity. 

For example, Table 5-51 and Table 5-52 show that the worse performance was obtained 

for Subject 3 because three of the activities he wanted to recognize (throwing, bowling, 

and tennis serve) involved very similar high energy motion on the hands. These activities 

were also difficult to recognize because they are disjointed and not strongly periodic. For 

example, during tennis serve, the subject executed the motion walking some steps 

forward and had to return to his original position after completing the example, which 

introduced examples of walking in the sequences. The same situation was observed for 

the throwing and bowling activities. Another problem experienced during these activities 

(throwing, bowling, and tennis serve) was the higher loss of wireless signals due to the 
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high energy motion involved and the position of the hands during these activities. 

Another example of activities being confused by similar posture or upper body motion 

can be observed in Table 5-52 for Subjects 4 and 5. For example, drawing on paper and 

talking on the phone (while sitting) were confused with eating because all involved the 

sitting position and upper body motion. During drawing, the subject brought the pencil to 

her mouth several times, which looks similar to eating. When talking on the phone, the 

subject frequently switched the phone from hand to hand while he performed gestures 

with the opposite arm (as when explaining something). For subject 5, the activities 

confused were knitting with filing nails, filing nails with applying cream, and wash dish 

with wash hands. Again, all these activities involve similar posture and movement of the 

upper arms. Knitting and filing nails were also confused because they involve motion at 

the fingers that is poorly detected by the accelerometer at the wrist. One interesting 

observation related to the confusion between filing nails and applying cream observed 

during real-time testing and later confirmed by inspecting the C4.5 classifier, was that 

during training, the C4.5 classifier attempted to find any difference between the activities 

that did not involve the use of the upper arms. For example, applying cream (sitting on a 

chair) was not detected if the subject did not raise her dominant leg from the floor to 

apply cream on it. In general, the algorithm performed best recognizing activities 

involving characteristic motion of a particular limb, a particular speed of execution, or 

repetitive execution style, as expected. 

 

5.5.2  Training Usability 

Subjects reported being more conscious of time when they provided examples of the 

activities to recognize for two minutes. They expressed that at first they thought that two 

minutes was a short time but that during the study it felt much longer. Obviously some 

activities indeed did take longer to train because data was not collected when wireless 

signals were. However, subjects commented on training length even during training of 

activities where the accelerometer signal was of excellent quality. Participants suggested 

that the training process would be more amenable and realistic if examples could be 

collected when activities are executed in free-living. Two participants suggested using a 

mobile phone application to allowed people to collect activity examples by simply 

specifying the amount of data to be collected (e.g. in minutes) at the press of a button. 

Data would be collected immediately after entering the time and pressing the button and 

would stop being collected right after the timer expired. Participants were members of the 

House_n research group and their familiarity with wearable devices, particularly mobile 

phone technologies was high. Therefore, it is not surprising that they suggested mobile 

phone based solutions to the activity recognition interactive training problem.  

Participants were more tolerant of the errors committed by the system when they made 

sense to the subjects. For example when wash hands and wash dishes were being 

confused, one subject with a background in architecture with no programming experience 

declared ―this makes sense; this computer is wrong but pretty smart‖. The same subject, 

as well as others, also expressed a desire for being able to ―fix‖ the recognition algorithm 

by providing more training examples for activities being poorly recognized or confused. 

Nevertheless, participants showed some level of frustration when the activity being 

recognized made no sense to them. For example, during the confusion between talking on  
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Subject Activities performed Total Accuracy 

(%) 

True Positive 

Range (%) 

False Positive 

Range (%) 

1 Bouncing on a ball 
Waving hand 

Shaking my leg 

Taekwondo Form #1 
Side stretch 

Jumping jacks 
Punching as I walk forward 

Lifting dumbbells 

Riding a bike 
Playing the drums 

89.6 
 

89.3 – 94.8 0.8 - 1.0 

2 Walking 

Sitting still 

Scratching head 
Carrying box 

Washing dishes 

Shaking hands 

Tossing ball in air 

Typing 
Talking on phone 

91.7 84.5 – 98.2 0.4 – 0.17 

3 Throwing 

Bowling 
Bouncing 

Typing 

Stepping 
 

Stretching arm 

Walking 
Tennis serve 

Stretching legs 

Bending 

78.9 70.7 – 93.2 1.3 – 3.8 

4 Walk 

Type in computer 
Washing window 

Drawing in paper 

Wiping surface 

Talking on the phone 

Sweeping 
Combing my hair 

Hammering a nail 

Eating 

89.3 74.1 – 94.8 0.6 – 2.1 

5 Walk 
Bicep curls 

Stretching 

Applying cream 
Brushing teeth 

Wash dish 
Knitting 

Wash hands 

Filing nails 
Play piano 

85.2 77.6 – 94.8 0.6 – 2.7 

Table 5-51: Performance obtained by recognizing participant‟s activities using a C4.5 classifier with 

the invariant reduced feature set computed per axis over window lengths of 5.6s in length. 

Performance was measured using 10-fold cross-validation. The random guess probability is 10% for 

all activities shown in this table. 

 

 

 
Subject Activities Most Often Confused Brief Explanation 

Activity Performed Activity Confused With 

1 Playing the drums Shaking my leg 
 

Participant shook leg rhythmically when playing the drum. 

1 Taekwondo Form #1 

 

Punching as I walk forward 

 

One of the sequences in the form involved punching walking 

forward.  

2 Typing Sitting Sitting recognized as typing when subject typed slowly. 

3 Throwing 
Bowling 

Tennis serve 

Throwing 
Bowling 

Tennis serve 

Activities often confused due to their similarity in upper body 
limb motion. 

3 Bending Stretching legs The lower body limb motion was very similar for these 

activities. 

4 Drawing on paper Eating These activities were confused due to their similar posture 

(sitting) and upper body motion. The algorithm usually 

defaulted to eating when drawing and talking on the phone were 
performed. 

4 Talking on the phone 

 

Eating 

5 Knitting 
 

Filing nails 
 

Similar posture of overall body (sitting), posture of hands, and 
high motion on the fingers poorly detected by the accelerometer 

at the wrist. 

5 Filing nails 

 

Applying cream 

 

Same posture (sitting) and motion upper body motion similarity. 

5 Wash dish Wash hands 
 

Similar body posture (standing) and motion at the upper body 
(hands). 

Table 5-52: Activities confused the most found when participants tested the performance of the 

activity recognition algorithm in real-time. 
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the phone and eating, one of the participants with no familiarity with computer 

programming, machine learning or pattern classification techniques lightheartedly 

expressed, ―stupid computer, does it look to you like I am eating? Maybe you are 

hungry‖. The confusion between the activities did indeed make sense to the algorithm 

designer because of the postures and upper limb body motion involved, but the 

participant did not understand at all why the confusion was happening.  

In summary, the exploratory study confirms that a real-time implementation of the final 

activity recognition algorithm proposed in Section 5.4 can do well detecting activities 

with a modest amount of training data. In this case, cross-validation accuracies per 

subject ranged from 78.9% to 91.7%. In general, the algorithm performed best 

recognizing activities involving characteristic motion of a particular limb, a particular 

speed of execution, or repetitive execution style. Not surprisingly, the algorithm has more 

difficulties when trying to discriminate activities involving similar posture and similar 

motion, particularly at the upper body. This is most likely because the motion of upper 

limbs is so unconstrained in everyday life that during the short execution of some 

activities it is perceived as noise by the recognition algorithm. The study also suggests 

that better tools are necessary to allow people to (1) collect data during free-living 

conditions and to (2) fix the algorithms when activities are either being poorly recognized 

or confused with others. Both are challenging problems to solve and test. This 

exploratory study also suggests, however, that excellent results can be obtained using 

subject dependent training even when relatively small amounts of training data per 

activity is available. The challenge, therefore, is to create the necessary user interface 

applications to allow end-users who are unfamiliar with sensors or machine learning to 

easily and interactively provide the training data in a manner that is not perceived as 

intrusive, tedious, or boring. This will require the development of tools that acquire 

training data in fun, entertaining, and educational ways, perhaps by interleaving activity 

recognition applications with other applications, such as games. 
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5.6 Energy Expenditure Algorithm Experiments 

This section presents a set of experiments to determine an effective regression algorithm, 

feature set, sliding window length, feature computation method, and signal filtering 

techniques amenable for real-time estimation of energy expenditure. The section also 

presents experiments to measure the impact of adding sensors worn on various body 

locations and the value of adding a wireless heart rate sensor when estimating energy 

expenditure. The experiments are organized so that each answers a relevant question 

about the algorithm parameters incrementally, starting from the most restrictive 

parameters (e.g. regression algorithm, feature set) to the least restrictive parameters 

(sensor modality and location). Where tradeoffs must be made, settings that might permit 

real-time performance are preferred.   

 

5.6.1 Overview 

All the experiments presented in this section are evaluated utilizing the MIT energy 

expenditure dataset (see Section 4.6.4). This data set is particularly challenging for 

energy estimation for the following reasons:  (1) it contains energy expenditure data for a 

large number of activities (52) collected from 16 subjects, (2) it includes energy 

expenditure data for 26 activities with different intensity levels such as walking at 

different speeds and inclinations, running at different speeds, cycling at different speeds 

and resistance levels, and rowing at different resistance levels, (3) it incorporates energy 

expenditure data for 18 household activities containing examples of the unconstrained 

motion found in everyday life, and (4) it includes data for an activity labeled as garbage 

class or unknown activity that contains the energy expenditure data for all the time 

periods with no associated activity labels during the data collection. The energy 

expenditure of the garbage class is difficult to estimate because it contains data for 

periods when participants were resting after an exercise session and, consequently, the 

heart rate and energy expenditure data sometimes have high readings but there is no 

accelerometer motion associated with these readings.  

Currently, equipment to collect energy expenditure data of free-living individuals is 

bulky and expensive. Therefore, it is unlikely that the equipment would be available to a 

new user of an affordable, consumer-based EE estimation system – the goal of this work. 

Therefore, in this section results are only presented for subject independent training. As 

in the previous section, the results presented in this section will also be clustered by 

activity categories that are helpful while analyzing the results. These activity categories 

are postures, ambulation, exercise, resistance exercise, and household activities. 

Appendix A2 presents a table indicating what activities are included in each of the 

aforementioned categories.  

Finally, all the experiments presented in this section utilize same signal preprocessing 

and segmentation strategies, described in Sections 5.4.2 and 5.4.3.  
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Activity MIT Dataset 

METs (Mean ± Std) 

Boston University  Dataset 

METs (Mean ± Std) 

Difference between MIT 

and Boston university 

readings 

Lying down 0.9 ± 0.1 0.9 ± 0.1 0.0 

Standing 1.0 ± 0.2 0.9 ± 0.0 0.1 

Sitting 1.0 ± 0.2 0.9 ± 0.0 0.1 

Walking - Treadmill 3mph  0  3.4 ± 0.4 3.2 ± 0.1 0.2 

Walking - Treadmill 3mph  6  4.9 ± 0.4 4.9 ± 0.2 0.0 

Walking - Treadmill 3mph  9  5.7 ± 0.6 5.7 ± 0.5 0.0 

Running - Treadmill 5mph  0  7.0 ± 0.8 6.9 ± 1.3 0.1 

Cycling - 100 rpm  1.0 kg 5.8 ± 0.8 5.7 ± 1.3 0.1 

Cycling - 60 rpm  1.0 kg 3.3 ± 0.5 3.1 ± 0.6 0.2 

Cycling - 80rpm  1.5 kg 5.6 ± 0.7 5.9 ± 2.5 -0.3 

Calisthenics - Bicep curls  5lb 1.4 ± 0.5 2.5 ± 0.3 -1.1 

Calisthenics - Crunches 1.4 ± 1.2 1.8 ± 0.0 -0.4 

Calisthenics - Sit ups 4.3 ± 1.2 0.6 ± 0.0 3.7 

Unknown Activity 2.4 ± 1.0 2.2 ± 0.3 0.2 

Table 5-53: Average energy expenditure readings in METs for 14 activities (mean and standard 

deviation) collected using the Cosmed K4b2 indirect calorimeter from 16 subjects at MIT and the 

Parvo Medics indirect calorimeter  from 2 subjects at the Boston Medical Center 

 

5.6.2  MIT Energy Expenditure Dataset Validation 

The quality of the energy expenditure data collected from an indirect calorimeter depends 

on the brand of device, the proper calibration of the equipment before the data collection, 

and the proper attachment of the face mask required to collect the O2 and CO2 readings. 

Consequently, collecting good quality energy expenditure data can be a challenging task. 

The goal of this section is to validate the quality of the energy expenditure data collected 

for this work by comparing it to the quality of energy expenditure data collected for 

similar activities by researchers at another institution utilizing an indirect calorimeter of 

different brand.  

The energy expenditure data collected for this work was measured using the Cosmed 

K4b2 portable indirect calorimeter [125]. The K4b2 indirect calorimeter has been found 

to be a valid instrument to measure energy expenditure as compared with the Douglas 

bag in a wide range of activities and intensities [208]. However, the quality of the data 

collected can suffer from improper calibration of the equipment or improper attachment 

of the face mask to the face of the participant.  

To validate that the portable K4b2 indirect calorimeter used in this work was providing 

quality data, the energy expenditure data collected using this indirect calorimeter for 14 

activities was compared against the energy expenditure data collected for these same 

activities by researchers at the Boston Medical Center utilizing the Parvo Medics 

TrueOne 2400 stationary metabolic measurement system [126]. Before performing the 

comparison, the data collected using the K4b2 indirect calorimeter was filtered using a 

15s running average filter to reduce noisy readings. Table 5-53 presents the average 

number of METs obtained per activity for the data collected at MIT and the Boston 

Medical Center. The duration of each activity is between 3-4mins for both datasets, 

except for physically demanding activities such as crunches, sit-ups and bicep curls that 

sometimes have durations of less than one minute. Non-steady state energy expenditure 

readings were not eliminated for any of the activities in both datasets. 

Visual inspection of Table 5-53 reveals that the difference in average METs readings 

per activity is near zero for most activities. This indicates that the data collected at both 
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institutions is comparable in quality. The only two activities that show a large difference 

are bicep curls and sit-ups. Bicep curls present a lower value for the MIT dataset perhaps 

because a bicep curls chair that allowed reclining the elbows was used during the MIT 

data collection. During the Boston Medical Center data collection, the subjects executed 

bicep curls without reclining the elbows on any surface. The extremely low value 

associated with sit-ups of 0.6 METs for the Boston Medical Center dataset suggests either 

a problem while collecting the data for this activity (e.g. air escaping from collector tube) 

or that the short duration of the examples for this activity (<40s) was not enough to reach 

steady state. Finally, it can be observed from the table that the standard deviation over the 

MIT dataset is higher than the one observed for the Boston Medical Center dataset. This 

is because the MET values were computed over 16 subjects for the MIT dataset and only 

over two subjects for the Boston Medical Center dataset.  

In conclusion, from Table 5-53, we can see that the energy expenditure data collected 

for most activities is very similar; suggesting that the quality of the data collected using 

the Cosmed K4b2 indirect calorimeter is reasonable for the experiments performed in this 

work. Prior work utilizing the Cosmed K4b2 indirect calorimeter to measure energy 

expenditure such as the one performed by Bassett et al. [200] has measured standard 

deviations ranging from 0.31 to 1.58 MET for a set of 20 activities including household 

and exercise activities with moderate intensities. The work by Strath et al. [174] found 

standard deviations between 0.4 to 1.1MET over 14 lifestyle activities, and the work by 

Crouter et al. [34] standard deviations between 0.13 and 1.63MET for 18 exercise and 

lifestyle activates.  Therefore, the standard deviations obtained for the MIT energy 

expenditure dataset during this analysis ranging between 0.1 and 1.2MET are within the 

limits reported in prior work.  

 

5.6.1 How Well Has Energy Expenditure been Estimated From Accelerometer and 
Heart Rate Data in the Past? 

This section discusses some of the most recent results in the area of energy expenditure 

estimation from accelerometer and heart rate data. The objective is to give the reader 

some background to better interpret the results later presented in this thesis. In addition, 

this section defines what would be considered to be a significant result in this work with 

respect to prior work. There is a large body of research in estimating energy expenditure 

from accelerometer and heart rate data. As a result, this section discusses only some 

relevant results published after year 2000.  

Presently, the two state-of-the-art algorithms to estimate energy expenditure from a 

single accelerometer placed at the hip are the work by Crouter et al. [34] and Rothney 

[152, 181]. Crouter et al. [34] discriminates between sedentary, ambulatory, and lifestyle 

activities using the coefficient of variation computed over windows of 10s in length and 

applies two different regression equations for ambulatory and lifestyle activities. When 

sedentary activities are detected, a constant MET value of 1 is predicted. The subject 

independent evaluation of this algorithm presented by the authors indicates that energy 

expenditure can be predicted with a correlation coefficient (r) of 0.96, a standard error of 

the estimate (SEE) of 0.73MET, and a maximum absolute error deviation (MAED) of 

0.75MET (with respect to ground truth energy expenditure). The algorithm was evaluated 

over 17 activities collected from 20 subjects. These results are strong with respect to prior 
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work; nevertheless, the performance measures presented are computed over mean values 

per activity instead of over prediction values obtained over minute-by-minute windows. 

In other words, error measures are computed by comparing the mean value of the 

predictions for each activity and the mean value of the energy expenditure measured 

using the indirect calorimeter for each activity. This smoothes out possible over and 

under predictions that could have happened during minute by minute estimates.  This 

study also excluded the data collected for the cycling activity from analysis because the 

Actigraph activity monitor placed at the hip was not able to record any activity counts for 

this activity. This reveals one of the main problems of predicting energy expenditure 

from accelerometers at the hip: poor estimation of energy expenditure for upper body and 

non-ambulatory lower body motion. Analysis of performance per activity for this study 

showed that the largest errors occurred for activities involving upper body motion such as 

basketball, racquetball, vacuuming, and mowing the lawn. This is consistent with other 

studies that have found that accelerometers mounted at the hip significantly 

underestimate lower body activities such as cycling and sliding [33]. The work by 

Crouter et al. also explored the performance of commonly employed regression equations 

such as the Freedson equation [145], the Swartz equation [148], and the Heldenman 

equation[146] in estimating energy expenditure. The study found that these equations 

overestimate energy expenditure for activities with associated energy expenditures of less 

than 2METs and underestimate the energy expenditure for activities with energy 

expenditure values greater than 2MET.  

The work by Rothney [152, 181] presents an algorithm that estimates energy 

expenditure using an artificial neural network (ANN) trained with the following features 

computed from a single accelerometer at the hip over one minute windows: Power 

spectral density, number of signal peaks, inter-quartile range, and coefficient of variation. 

The ANN is trained from nearly 24 hours of data collected from 81 participants. This 

approach achieves a correlation coefficient of r=0.93 and a root mean squared error 

(RMSE) of 0.47kcal/min. The difference in total daily energy expenditure achieved is 

21±115 kcal/day. This compares favorably with the measurement intervals of 100-

250kcal/day required for sustainable weight loss interventions. This work also explored 

the performance of the IDEEA device [41] and an Actigraph at the hip using the 

Freedson equation in estimating energy expenditure. The results obtained were r=0.92, 

RMSE=0.59 kcal/min for the IDEEA monitor and r=0.9, RMSE=0.74 kcal/day for the 

Actigraph located at the hip. Thus, the improvement in the correlation coefficient 

achieved by this method ranges between 0.01 and 0.03 units and between 0.12 and 0.27 

kcal/min for the RMSE error.  

Prior work by Basset et al. [200] found that the Caltrac, Kenz, Yamax SW-701, and 

CSA activity monitors (using different regression equations) underestimate energy 

expenditure for lifestyle activities such as ironing, cooking, washing dishes and 

overestimate energy expenditure for walking. The same work also found that energy 

expenditure was best predicted using the Hendelman‘s regression equation computed 

from the counts generated by a single CSA activity monitor placed at the hip over 28 

activities. The mean error score (criterion - prediction) obtained was 0.05MET. However, 

this evaluation measure does not accurately reflect estimation error since 

underestimations (predicted<real) and overestimations (predicted>real) might cancel out 

during the averaging of error scores giving a false impression of low overall error. The 
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mean absolute error (MAE) or the root mean squared error (RMSE) that computes the 

absolute value of the error score or the squared of the error score before averaging would 

have produced a more reliable estimate of the real error. One disadvantage of the 

Hendelman‘s equation is that it predicts 2.9 MET by default when no motion is present so 

it would likely overestimate energy expenditure over the course of a normal day [200]. 

The mean error scores obtained were 0.97 MET for the work energy theorem [32] from a 

CSA monitor, 0.47 MET for the Freedson‘s equation [145] using a CSA monitor, 0.83 

MET using the Caltrac, 0.96MET using Kenz (select 2), and 1.12 MET using the Yamax 

device. The correlation coefficients between these sensors and energy expenditure 

readings obtained were r=0.62 for work energy theorem and CSA; r=0.32 for Freedson‘s 

equation and CSA; r=0.58 for Caltrac; r=0.55 for Kenz; and r=0.49 for Yamax. The 

authors explain that these relatively low correlations were obtained because the activities 

explored included a wide variety of moderate intensity activities. The authors also point 

out that previous studies analyzing only treadmill walking and jogging have reported 

correlations between 0.80 and 0.92 [145, 146, 178, 231-233]. 

Prior work has also explored the combination of acceleration and heart rate data to 

predict energy expenditure. For example, The work by Haskell et al. [48] found that the 

correlation coefficient increased from r=0.83 to r=0.9 (+0.07units) when an 

accelerometer at the arm was incorporated to heart rate data during subject dependent 

estimation of energy expenditure. This result was obtained over data collected from 19 

participants performing a wide range of activities in a laboratory setting. The same work 

found that the difference in the correlation coefficient between subject independent and 

subject dependent estimation of energy expenditure was only 0.09units (r=0.94 for 

subject dependent and r=0.85 for subject independent).  

The work by Strath et al. [83] explored the estimation of energy expenditure by 

applying two different subject dependent heart rate regression equations depending on 

upper body or lower body motion as detected by two accelerometer placed at the wrist 

and thigh (HR+M technique). The model was trained over arm and leg activities 

(treadmill waking and arm ergometry) collected from 30 participants at a laboratory and 

tested over lifestyle activities performed for 15min each by the same individuals. It was 

found that a linear regression equation trained over heart rate data alone (subject 

dependent training) achieved a correlation coefficient of r=0.81, and on average 

overestimated energy expenditure by 0.4 MET. When two different heart rate regression 

equations were applied depending on upper or lower body motion, the correlation 

coefficient increased to r=0.9. This combination was also found to not significantly over 

or under estimate energy expenditure. Follow up validation work performed also by 

Strath et al. [174] found that energy expenditure can be predicted in a subject dependent 

manner with r=0.79 and SEE=0.76 MET using the heart rate flex method (FlexHR). 

Other work (e.g. [234, 235]) has also found correlation coefficients between  0.54 and 

0.98 using the Flex HR method (subject dependent training). In contrast, Strath et al. 

[174] found that the HR+M technique achieved a performance of r=0.9 and 

SEE=0.55MET. This work also found that the FlexHR method overestimated energy 

expenditure over most activities while the HR+M technique did not. Thus, the difference 

in performance found in this work was 0.11units for the correlation coefficient and 

0.21MET for the SEE. These results were obtained from data collected from 10 

participants performing physical tasks in a field setting over 6 hours.  
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Most recent work by Strath et al. 2005 [49] compared the performance of two methods 

that combine acceleration and heart rate data: The HR+M technique [83] (previously 

discussed) and the branched model [175]. This work evaluated the performance of these 

techniques in a subject dependent and independent manner, and compared their 

performance with the one obtained using a single accelerometer at the hip. The subject 

dependent results obtained were r=0.9, RMSE=0.64 MET for the HR+M technique and  

r=0.86, RMSE=0.67 MET for the Branched model. During subject independent 

evaluation, the performance found was r=0.81, RMSE=1.07 MET for the HR+M 

technique, r =0.86 and RMSE=0.76 MET for the Branched model, and r=0.64 and 

RMSE=1.22 METs when energy expenditure is predicted using the Freedson equation 

from a single accelerometer at the hip. Thus, the difference in performance between 

subject dependent and independent training for the HR+M technique is 0.09units for the 

correlation coefficient, and 0.43 MET for the RMSE. For the branched model, the 

difference is 0 for the correlation coefficient and 0.09 for the RMSE. The difference in 

performance between the branched model (best performing) and a single accelerometer at 

the hip was 0.22 for the correlation coefficient and 0.46 for the RMSE during subject 

independent evaluation. 

The work by Swartz et al. [148] explored the performance obtained while estimating 

energy expenditure by combining a CSA accelerometer at the hip and another one at the 

dominant wrist. The data used in the evaluation was collected from 70 participants 

performing one to six activities from categories such as yardwork, housework, family 

care, occupation, recreation and conditioning. Linear regression equations were created 

for the sensor at the hip, the wrist, and the hip and wrist combination. The results 

obtained were r=0.56 and SEE= 1.1MET for the hip sensor, r=0.18 and SEE=1.38MET 

for the wrist sensor, and r=0.58 and SEE=1.14MET for the combination hip and wrist. 

The work found that the variance explained by the accelerometer at the wrist was only 

5% and the variance explained by the accelerometer at the hip was 31.7%. Consequently, 

the authors concluded that the addition of the accelerometer at the wrist was not worth 

the extra cost and data analysis involved. Unfortunately, it is unclear from this work if 

energy expenditure is estimated in a subject dependent or independent manner. 

Furthermore, the result obtained in this work contradict prior findings by Melanson and 

Freedson [233]. These authors estimated energy expenditure using three accelerometers 

at the hip, wrist, and ankle during walking and jogging and found that activity counts 

significantly correlated with energy expenditure, no matter what accelerometer is used to 

estimate energy expenditure. The correlation coefficients found ranged from 0.66 to 0.81. 

The authors also found that the combination hip and wrist or wrist and ankle produced 

the highest correlation coefficient of r=0.94.  

Finally, recent work [96] validating the performance of the SenseWear Pro armband  in 

estimating energy expenditure in a subject independent manner found performances of 

r=0.77 and percent difference of 6.9  8.5% for walking, r=0.28 and percent difference of 

28.9  13.5% for  cycle ergometry, r = 0.63 and  percent difference of 17.7  11.8% for 

stepping exercise, and r = 0.74 and percent difference: 21.7  8.7% for arm ergometry 

using data collected from 40 participants. Thus the lowest correlation coefficient and 

largest percentage error was obtained for cycling ergometry. This is because from its 

location at the upper arm, this armband presents difficulties detecting non-ambulatory  
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Work Approach Features Sensors Num Results 

2006 

[34] 
Use single accelerometer at 

hip but create activity 

dependent regression models 

Classify activities into 

walking/running, lifestyle, and 
sedentary and apply different 

regression models to each. 

Activity 

counts, 
coefficient of 

variation 

One uniaxial 

accelerometer at 
hip 

 

17/20 

3hrs 
per 

subject  

Subject independent 

Maximum absolute error 
deviation  

MAED = 0.75 

Within 0.75 of Measured 
METs. 

 r = 0.96, SEE = 0.73 MET. 

 

2007 

[152] 
Use single accelerometer at 

hip but extract features over 

signal and use non-linear 

regression 

Use a neural network to map 

features computed over the 
accelerometer data into energy 

expenditure.  

Peak intensity, 

IQI,  min CV, 

low Energy, 
and moderate 

to vigorous 

energy. 

2-axis 

accelerometer at 

hip 

12/81 

24hrs 

per 
subject 

Subject independent 

Neural network: 

r=0.93, RMSE=0.47 kcal/min 

Difference in TEE of  21115 

kcal/day 

IDEEA monitor: 
r=0.92, RMSE=0.59 kcal/min 

Actigraph at hip, Freedson 

equation 
r=0.9, RMSE=0.74 kcal/day 

2005 

[49] 
Combine accelerometer and 

heart rate data and use 

different regression equations 

for upper or lower body 

motion. 

Estimate energy expenditure 
using two models: arm-leg 

HR+M and branched model 

Activity 

counts, 

 HR above 
resting HR 

Three 

accelerometers at 

hip, wrist, and 
thigh and a chest 

heart rate monitor 

 
 

2/10 

6hours 

per 
subject 

Subject dependent 

Arm-leg- heart rate + M:  

r = 0.9, RMSE = 0.64 MET 
Branched model: 

r=0.86, RMSE =  0.67 MET 

Subject independent 

Arm-leg- heart rate + M:  

r =0.81, RMSE = 1.07 MET 
Branched model: 

r =0.86, RMSE = 0.76 MET 

hip accelerometer  alone using 
Freedson Eq: 

r = 0.64, RMSE = 1.22 METs 

2004 

[96] 
Combine multiple sensor 

types at single body location 

Estimate energy expenditure 

from five wearable sensors 

located at the dominant arm 
over the triceps muscle using 

proprietary regression 

formulas. 

Proprietary 

features 
extracted from 

the five 

sensors 

2-axis acc, heat 

flux, galvanic skin 
response, skin 

temperature, and 

near body 
temperature. 

 

 

4/40 

1.6 
hours 

per 

subject 

Subject independent 

walking 
r=0.77, percent difference: 6.9 

 8.5% 

cycle ergometry 
r=0.28, percent difference:  

28.9  13.5%  

stepping exercise 
 r = 0.63, percent difference: 

17.7  11.8%  

arm ergometer 
r = 0.74, percent difference: 

21.7  8.7%  

2001 
[83] 

Apply to different heart rate 

regression equations 

depending on upper body or 

lower body motion as 

detected by an accelerometer 

at the wrist and an 

accelerometer at the thigh. 

Activity 
counts, beats 

per minute 

Three CSA 
Actigraphs at the 

arm, thigh, and 

hip. 
 

 

2/30 
 

Subject independent 

hip accelerometer  alone using 

Freedson Eq: 

r=0.73, average 
underestimation of 1.1MET 

Subject dependent 

Heart rate: r=0.81, average 
overestimation of 0.4MET 

Heart rate and Arm + thigh 

accelerometers 
r=0.9, No significant over or 

under prediction 

Table 5-54: Summary of some relevant results in energy expenditure estimation from accelerometer 

and heart rate data after year 2001. The numbers in the column labeled as Num indicate Number of 

activities/number of subjects. 

lower body activity. As discussed in Section 3.2.3, the armband utilizes five sensors to 

estimate energy expenditure from its location at the dominant upper arm:  A 2-axis  
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accelerometer, heat flux, galvanic skin response, skin temperature, and near body 

temperature.   

Table 5-54 presents a summary of some of the most recent results (after 2001) obtained 

while estimating energy expenditure from accelerometers and heart rate monitors.  

In summary, it can be concluded from prior work that in general, subject dependent 

regression models perform better than subject independent models [49, 152]. However, 

the difference in performance is relatively small. For example, the difference in 

performance between subject dependent and independent training for two state of the art 

methods that combine accelerometer and heart rate data ranges from 0 and 0.09 for the 

correlation coefficient and between 0.09 and 0.43MET for the RMSE [49]. The 

difference in performance between the branched model (state-of-the-art algorithm that 

combines accelerometer and heart rate data) and a single accelerometer at the hip was 

0.22 for the correlation coefficient and 0.46 for the RMSE during subject independent 

evaluation [49].  

When energy expenditure is estimated from a single accelerometer at the hip, the state 

of the art results are the ones obtained by Crouter et al.: r=0.96, SEE=0.73MET, and 

MAED=0.75MET obtained over 17 activities. Prior algorithms have achieved correlation 

coefficients between 0.80 and 0.92  for treadmill walking and jogging activities [145, 

146, 178, 231-233]. When the number of activities is increased, the correlation 

coefficient decreases according. For example, the work in [200] found correlation 

coefficients between 0.32 and 0.62 using four different brands of activity monitors placed 

at the hip. 

Finally, the performance of utilizing several accelerometers to improve energy 

expenditure estimation is controversial. The work by Swartz et al. [148] found that the 

addition of an accelerometer at the wrist to an accelerometer at the hip improved the 

correlation coefficient only 0.02units and SEE by 0.04MET. Conversely, the work by 

Melanson and Freedson [233] found that activity counts significantly correlated with 

energy expenditure, no matter what accelerometer was used. The authors also found that 

the sensor combination hip and wrist or wrist and ankle produced the highest correlation 

coefficient of r=0.94. The analysis was performed on data collected from 15 subjects 

performing treadmill walking and running activities at different grades. 

Therefore, in this work, it would be considered a significant result if energy 

expenditure for 52 activities can be estimated with a correlation coefficient between 0.80 

and 0.92. This range is the best one obtained for jogging and walking using a single 

accelerometer at the hip and using heart rate data in a subject independent manner. A 

strong result would also be to obtain a RMSE between 0.64 and 0.86, the lowest RMSE 

obtained by combining accelerometer and heart rate data (HR+M and branched model) 

and using a single accelerometer at the hip (RMSE~0.73) as evaluated over less than 18 

activities. An excellent result would also be to corroborate that the utilization of several 

accelerometers improves energy expenditure estimation, as one might intuitively expect 

at least for activities involving upper body and lower body motion. 
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5.6.2 How Well Can Energy Expenditure be Estimated Using Leading Algorithms 
from Prior Work? 

This section explores the performance of several energy expenditure estimation 

algorithms that can be considered either state-of-the-art or popular by the medical 

community during research studies. These algorithms include the Crouter et al. 2006 [34] 

Actigraph based algorithm, estimation of energy expenditure using multivariable linear 

regression, estimation of energy expenditure using the Compendium of Physical 

Activities assuming the activities performed are known (e.g. from questionnaires or 

diaries), and estimation of energy expenditure using activity dependent regression models 

such as multivariable linear regression and non-linear regression when the activities 

performed are also known. The section also compares the performance of the different 

approaches to establish a performance baseline as a way to compare results obtained in 

upcoming sections where a new energy expenditure estimation algorithm is proposed.  

 

5.6.2.1 How Well Can Energy Expenditure be Estimated Using a State-of the-Art 

Actigraph-Based Algorithm? 

 

There exist several algorithms that have been developed to estimate energy expenditure 

from the acceleration counts (per minute) generated by the Actigraph activity monitor 

[32] (uniaxial accelerometer). Most of these algorithms assume that the device is worn at 

the hip (e.g. [145, 146, 148, 200]) and predict energy expenditure over one minute 

intervals. The current state-the-art Actigraph-based algorithm is the recently published 2-

regression method proposed by Crouter et al. [34]. The main idea behind this algorithm is 

to classify activities into three categories before estimating energy expenditure: (1) 

sedentary activities, (2) ambulatory activities such as walking and running, and (3) 

lifestyle activities. Once the activities are recognized, different regression models are 

applied for each activity type to estimate energy expenditure. The algorithm recognizes 

sedentary activities by simply setting a threshold over the acceleration counts. Once they 

are recognized, they are assigned an energy expenditure equivalent to 1MET. 

Ambulatory activities such as walking and running are differentiated from lifestyle 

activities by setting a threshold over the coefficient of variation (CV) as computed over 

10s windows. If walking and/or running are detected, a linear regression model is applied 

to estimate their energy expenditure; otherwise, an exponential regression model is 

applied to estimate the energy expenditure associated with lifestyle activities. The pseudo 

code for this algorithm is presented in Figure 5-44.  

This section explores how well energy expenditure can be estimated utilizing this 

algorithm by running it over the Actigraph data collected at the hip during the data 

collections performed for this work. The Actigraph data was originally collected using a 

1s epoch (window) and thus, it had to be converted to 10s epochs as required by this 

algorithm. The algorithm was re-implemented in Java in order to present energy 

expenditure estimation results per activity. In order to validate the proper implementation 

of the algorithm in Java, its output (overall energy expenditure estimate) was compared 

against the output generated by the original implementation of this algorithm included in 

the Actigraph activity monitor software [32]. 
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Figure 5-44: Pseudo code for the 2-regression Crouter et al. [34] Actigraph-based energy expenditure 

estimation algorithm. CV stands for coefficient of variation and is computed by dividing the standard 

deviation by the mean over a window of 10s.  

 

 

Table 5-55 presents the performance over all the activities and Table 5-56 the 

performance per activity category when estimating energy expenditure using the Crouter 

et al. algorithm over the MIT energy expenditure dataset. From Table 5-55, it can be seen 

that the coefficient of correlation is 0.36 (relatively low) and that the RMSE is 2.66 

METs. Table 5-56 shows that the root mean squared error (RMSE) is lower for postures 

and household activities and higher for resistance exercise, all exercise in general, and 

lower body activities. The algorithm generates small errors for postures because they are 

easily recognized by simple thresholding of the acceleration counts and assigned a MET 

value of one. Household activities have a small error because most of them involve either 

lifestyle activities or ambulation that the algorithm differentiates well using the 

coefficient of variation to then apply the corresponding regression model. A high error 

was expected for exercise and resistance exercise activities for two reasons: (1) 

accelerometers have difficulties recognizing the effort and resistance load associated with 

some of these activities (e.g. rowing at 30spm at different resistance levels), and (2) most 

activities in these categories include either lower body (e.g. cycling) or upper body 

motion (e.g. bench weight lifting and bicep curls) that is difficult to measure properly 

from an single accelerometer (Actigraph) located at the hip. In fact, the lower body 

category also presents a high error due to the poor detection of motion at the legs during 

cycling. When Actigraph vs. Cosmed energy expenditure is plotted (as shown in 

Appendix B1), it can be observed that the energy expenditure predicted for activities 

involving upper or lower body motion such as cycling, bench weight lifting, and bicep 

curls is 1MET (energy expenditure associated with sedentary activities). This is because 

these activities are confused with sedentary activities by the algorithm due to the inability 

of the accelerometer at the hip to capture these motions. Figure 5-45 presents the energy 

expenditure estimated for subject MIT-018 during the (a) cycling activity and (b) the 

bicep curls activity using the Crouter et al. algorithm from a single Actigraph 

accelerometer at the hip. The important thing to notice from these Figures is that the  
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Error Measures over all activities Error Measures 

Values in METs 

Correlation Coefficient (r)     0.36 ± 0.09 

Root Mean Square Error   (RMSE)   2.66 ± 0.62 

Mean Absolute Error  (MAE)       1.94 ± 0.45 

Maximum absolute error Deviation  (MAED)       6.94 ± 1.77 

Table 5-55: Error statistics for estimating energy expenditure for 52 activities using the 2-regression 

Crouter et al. Actigraph-based algorithm with respect to the energy expenditure measured using the 

Cosmed K4b2 indirect calorimeter for the MIT energy expenditure dataset (n=16).   

 

 
Activity 

category 

RMSE 

(MAE) 

Postures 0.6±0.2  (0.5±0.2) 

Ambulation 2.4±0.5  (2.4±0.5) 

Exercise 2.8±0.8  (2.8±0.8) 

Resistance 3.4±0.7  (3.4±0.7) 

Household 1.0±0.3  (1.0±0.3) 

Upper Body 1.2±0.3  (1.2±0.3) 

Lower Body 2.7±0.5  (2.7±0.5) 

Table 5-56: Root Mean Squared Error and Mean Absolute Error (shown in parenthesis) per activity 

category when estimating energy expenditure using the 2-regression Crouter et al. Actigraph-based 

algorithm. Errors are computed with respect to the energy expenditure measured using the Cosmed 

K4b2 indirect calorimeter for the MIT energy expenditure dataset (n=16).  

 

 

 
Error Measures over all activities Error Measures 

Values in METs 

Correlation Coefficient (r)     0.40 ± 0.14 

Root Mean Square Error   (RMSE)   3.23 ± 0.39 

Mean Absolute Error  (MAE)       2.45 ± 0.18 

Maximum absolute error Deviation  (MAED)       7.01 ± 2.27 

Table 5-57: Performance over all activities when estimating energy expenditure for 11 activities using 

the 2-regression Crouter et al. algorithm over the Boston University dataset (n=2).  

 

 

 
 Activity RMSE MAE MAED 

 Lying down 0.24 ± 0.02 0.17 ± 0.02 0.66 ± 0.11 

 Standing 0.10 ± 0.00 0.08 ± 0.01 0.18 ± 0.02 

 Sitting 0.11 ± 0.02 0.10 ± 0.02 0.15 ± 0.05 

 Walking - Treadmill 3mph  0  4.53 ± 0.41 4.52 ± 0.40 5.05 ± 0.50 

 Walking - Treadmill 3mph  6  3.30 ± 0.95 3.26 ± 0.96 4.11 ± 1.00 

 Walking - Treadmill 3mph  9  2.62 ± 1.03 2.54 ± 1.03 3.56 ± 1.20 

 Running - Treadmill 5mph  0  3.16 ± 0.74 2.89 ± 0.77 5.03 ± 0.96 

 Cycling - 60 rpm  1.0 kg 3.06 ± 0.83 3.05 ± 0.82 3.28 ± 0.95 

 Cycling - 80rpm  1.5 kg 5.65 ± 1.70 5.63 ± 1.72 6.00 ± 1.58 

 Cycling - 100 rpm  1.0 kg 5.46 ± 1.18 5.38 ± 1.11 5.99 ± 1.44 

 Unknown 3.31 ± 0.50 2.77 ± 0.23 6.71 ± 2.70 

Table 5-58: Performance per activity when estimating energy expenditure using the 2-regression 

Crouter et al. algorithm over the Boston University dataset (n=2). RMSE stands for root mean 

squared error, MAE for mean absolute error, and MAED for maximum absolute error deviation.  

 

 

 

 

 



 196 

 

(a) 

 
 

 

(b) 

 

 
Figure 5-45 Graphical representation of the energy expenditure estimated for the (a) cycling activity 

and (b) bicep curls activity using the Crouter et al. method from a single Actigraph placed at the hip 

for subject MIT-018. The label „Prediced‟ corresponds to the estimated energy expenditure and the 

label „Cosmed‟ to the ground truth energy expenditure data collected from the Cosmed K4b2 

indirect calorimeter.  
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inability of a single accelerometer at the hip to measure lower body and upper body 

activity produces underestimations of energy expenditure for the cycling and bicep curls 

activities. Obviously, any accelerometer placed at the hip might generate readings for 

intense upper body or lower body activity if it is not properly attached; nevertheless, 

estimates of energy expenditure from these readings would be unreliable because they 

could be generated by any type of activity and would most likely bias the energy 

expenditure predictions for other activities if a single regression model is utilized for all 

activities. 

When the errors per activity are analyzed for the Crouter et al. algorithm over the MIT 

energy expenditure dataset as shown in Appendix B1, it is found that the highest 

maximum absolute error deviations happen for the following activities: bench weight 

lifting different weight loads (2.2-2.32 METs), sit-ups (4.5), cycling at different resistance 

levels (5.6-6.6), rowing at different resistance levels (5.5-6.5), ascending stairs (4.3), 

walking on a treadmill at different inclinations (4.2-5.9), and for the unknown activity 

(5.4).  All of these activities include changes in resistance or work load effort or upper 

body motion that is poorly detected by an accelerometer at the hip. The unknown class 

has a high MAED because it consisted primarily of resting episodes after exhausting 

exercise where the subject was standing or sitting. Consequently, the MET readings 

where high during these periods of time because subjects had just finished the exercise 

routine but the amount of motion from the accelerometer was uncharacteristically low.  

The Crouter et al. algorithm was also run over the Boston Medical Center dataset 

(n=2). Table 5-57 and Table 5-58 present the results. From these tables, it can be 

observed that the coefficient of correlation of 0.4 is very similar to the one obtained over 

the MIT dataset (0.36). Table 5-57 shows that the RMSE obtained over this dataset is 

higher (+0.57MET) than the one obtained over the MIT dataset. This increased error is 

the result of the poorer performance for cycling activities as compared with the MIT 

dataset and the higher impact of this error over the reduced set of activities in this dataset 

(11). The Actigraph readings for cycling were close to zero for all the activity duration 

(see the Actigraph vs. Parvo indirect calorimeter plots in Appendix B1) As a result, 

cycling was confused with sedentary activities and assigned a MET value of one. If one 

compares the plots of energy expenditure predictions from the Actigraph for both 

datasets, one finds that the Actigraph readings are not zero during cycling for some MIT 

data collections (e.g. subject MIT-004 in Appendix B1). The reason is that the Actigraph 

was located inside a pouch on a belt during the MIT data collections that oscillated more 

during the cycling activity than the Actigraph used in the Boston Medical Center data 

collection. This Actigraph was tightly attached using a belt clip and Velcro.   

In conclusion, the prediction of energy expenditure using the Crouter et al. method 

from an accelerometer at the hip performs poorly for activities involving primarily upper 

body or lower body motion and activities involving load or resistance effort. One 

potential problem with the Crouter algorithm, as well as with other standard EE 

estimation algorithms used in the medical community, is the prediction of energy 

expenditure over one minute intervals. This relatively long window of time may be a 

problem because (1) EE for short duration activities (<1min) might be poorly predicted 
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and (2) this window introduces a relatively long real-time prediction delay that might be 

restrictive for some real-time medical interventions.  

 

5.6.2.2 How Well Can Energy Expenditure be Estimated Using Simple Linear 

Regression Algorithms? 

 

This section explores how well energy expenditure can be estimated using simple 

regression algorithms in order to obtain a baseline on performance. Table 5-59 presents 

the form of the simple regression equations explored in this section to estimate energy 

expenditure. The equations in the table are presented in increasing order of complexity. 

The general procedure followed in this section is to first present the form of the energy 

expenditure prediction equation (from Table 5-59), explain the intuition behind the form 

of the equation being assumed, and then to learn the equation coefficients from the 

energy expenditure data contained in the MIT energy expenditure dataset. The 

coefficients of the formulas are found by minimizing the least-squares error with respect 

to the data in the MIT energy expenditure dataset. This is achieved by utilizing the 

LSQCURVEFIT function in MATLAB [227]. This function is able find the coefficients 

that best fit the linear or non-linear equation provided in the least-squares sense with 

respect to the training data provided (MIT energy expenditure dataset). The value of the 

initial guess used for all the coefficients was one. 

Equation (a) is the simplest one in Table 5-59 and predicts energy expenditure by 

simply multiplying the overall motion experienced by the body (ACTotalAbsArea) by a 

constant. Appendix A3 provides an explanation of the ACTotalAbsArea feature, as well 

as the other features used in the equations shown in Table 5-59 (ACAbsArea, ACTotalSF, 

and ACSF). The intuition behind equation (a) is that energy expenditure should be 

proportional to the overall amount of motion (acceleration) experienced by the body. The 

proportionality constant simply scales overall motion to match the ground truth energy 

expenditure values. Table 5-60 presents the coefficients of equation (a) as learned from 

the data and Table 5-61 presents the performance of predicting energy expenditure over 

the data in the MIT dataset using subject independent training. Table 5-61 shows that the 

overall RMSE is 1.75 METs, and that the correlation coefficient is relatively high 0.68 

(maximum possible is one). The improvement in performance over Crouter et al. is 0.32 

units for the correlation coefficient and 0.91MET for the RMSE. This is a considerable 

improvement and is achieved mostly due to the utilization of more sensors (7) that are 

capable of measuring upper body and lower body motion. The table also shows that the 

lowest RMSE errors are obtained for the household activity category. This is because 

most activities in the household category include motion patterns that are easy to detect 

from accelerometers (e.g. ambulation). The household activities that show the highest 

errors are activities involving effort due to resistance or work load such as carrying 

groceries, gardening, weeding, scrubbing a surface, and washing windows whose RMSE 

error oscillates around 1 MET. The activity categories with higher RMSE errors are 

exercise and resistance exercise. This is also because some activities in this category 

involve different resistance levels or work loads such as cycling and rowing at different 

resistance levels.  
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Equation Form of prediction equation assumed 

(a) METs = C1ACTotalAbsArea 

(b) METs = C1ACTotalAbsArea + C2 

(c) METs = C1ACAbsAreaHip+ C2ACAbsAreaNDWrist + 

             C3ACAbsAreaDWrist + C4ACAbsAreaDFoot + 

             C5ACAbsAreaNDFoot + C6ACAbsAreaDThigh +  

             C7ACAbsAreaDUpperArm + C8 

(d) METs = C1ACTotalSF + C2 

where 

ACTotalSF = 0.578ACAbsAreaHip+ 0.05ACAbsAreaNDWrist + 

            0.05ACAbsAreaDWrist + 0.161ACAbsAreaDFoot + 

            0.161ACAbsAreaNDFoot   

(e) METs =  C1ACAbsAreaHip+  

              C2ACAbsAreaNDWrist + C3ACAbsAreaDWrist +    

              C4ACAbsAreaDFoot +   C5ACAbsAreaNDFoot  

             + C6 

Table 5-59: Form of the simple regression equations explored to estimate energy expenditure from 

the MIT energy expenditure dataset. Appendix A3 explains how ACTotalAbsArea is computed.  

 
Equation Activities Prediction equation learned from data 

(a) All METs = 0.021ACTotalAbsArea 

(b) All METs = 0.013ACTotalAbsArea + 1.58 

(c) All METs = -0.026ACAbsAreaHip+ 0.012ACAbsAreaNDWrist + 

            0.019ACAbsAreaDWrist + 0.019ACAbsAreaDFoot + 

            0.015ACAbsAreaNDFoot + 0.024ACAbsAreaDThigh +  

            0.017ACAbsAreaDUpperArm + 1.49 

(d) All METs = 0.080ACTotalSF + 1.83 

(e) All METs = -0.0086ACAbsAreaHip+  

           0.015ACAbsAreaNDWrist + 0.025ACAbsAreaDWrist  +    

           0.021ACAbsAreaDFoot +   0.021ACAbsAreaNDFoot  

           + 1.53 

(e) Accelerometer 

Recognizable 

Activities 

METs = 0.022ACAbsAreaHip+  

           0.020ACAbsAreaNDWrist + 0.017ACAbsAreaDWrist  +    

           0.0097ACAbsAreaDFoot +   0.014ACAbsAreaNDFoot  

           + 1.34 

(e) Postures and 

Ambulation 
METs = 0.029ACAbsAreaHip+  

           0.018ACAbsAreaNDWrist + 0.012ACAbsAreaDWrist  +    

           0.009ACAbsAreaDFoot +   0.019ACAbsAreaNDFoot  

           + 0.88 

Table 5-60: Regression equations and their coefficients learned from the energy expenditure data 

contained in the MIT energy expenditure dataset. 

 
Equation Correlation All  Postures Ambulation Exercise Resistance Household 

(a) 0.68 ± 0.06 1.75 ± 0.38 

(1.33 ± 0.27) 

0.8±0.2  

(0.7±0.2) 

1.4±0.5  

(1.3±0.5) 

2.1±0.8  

(2.0±0.8) 

1.6±0.6  

(1.5±0.6) 

0.9±0.2  

(0.8±0.2) 

(b) 0.68 ± 0.06 1.36 ± 0.31 
(1.03 ± 0.17) 

0.8±0.2  
(0.7±0.2) 

1.0±0.4  
(0.9±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.6  
(1.3±0.6) 

0.7±0.2  
(0.6±0.2) 

(c) 0.68 ± 0.06 1.36 ± 0.30 

(1.02 ± 0.17) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.6±0.2) 

(d) 0.65 ± 0.07 1.41 ± 0.33 
(1.07 ± 0.18) 

0.9±0.2  
(0.9±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.6  
(1.2±0.6) 

0.7±0.2  
(0.7±0.2) 

(e) 

 

0.67 ± 0.05 1.37 ± 0.30 

(1.03 ± 0.17) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.7±0.2) 

Table 5-61: Correlation coefficient (r), root mean squared error, and mean absolute error (shown in 

parenthesis) obtained when estimating energy expenditure using the regression formulas shown in 

Table 5-58. 
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(a) (b) (c) (d) (e)

Bench w eight lif ting - light
Bench w eight lif ting - moderate

Bench w eight lif ting - hard
Bicep curls - light

Bicep curls - moderate
Bicep curls - hard

Calisthenics - Crunches
Calisthenics - Sit ups

Cycling - Cycle light - Cycle 100rpm
Cycling - Cycle light - Cycle 60rpm
Cycling - Cycle light - Cycle 80rpm

Cycling - Cycle moderate - Cycle 80rpm
Cycling - Cycle hard - Cycle 80rpm

Lying dow n
Row ing - Row ing light - Row ing 30spm

Row ing - Row ing moderate - Row ing 30spm
Row ing - Row ing hard - Row ing 30spm

Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget feet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling

unknow n
Carrying groceries

Doing dishes
Gardening

Ironing
Making the bed

Mopping
Playing videogames

Scrubbing a surface
Stacking groceries

Sw eeping
Typing

Vacuuming
Walking around block

Washing w indow s
Watching TV

Weeding
Wiping/Dusting

Writing
taking out trash

 
Figure 5-46: Root mean squared error (RMSE) when predicting energy expenditure using the 

equations in Table 5-59 shown as a grayscale image. The image is scaled to present the lowest RMSE 

of 0.36 in white and the highest of 3.7 in black. The X axis corresponds to the regression equation 

used to predict energy expenditure from Table 5-59. 

 

The poor performance over these activities can also be seen in Figure 5-46. Figure 5-46 

presents the RMSE as a grayscale image scaled to highlight differences in performance 

per activity. The image represents a RMSE of 0.36 MET in white and a RMSE of 3.7 

MET in black. From this figure, it can also be seen that the RMSE of running at different 

speeds is high. This is because equation (a) lacks a constant or coefficient representing 

the DC offset of energy expenditure. When the performance per activity is inspected for 

the postures category, it is found that they all have RMSE errors close 1MET. This 

suggests that the energy predicted for postures by equation (a) is zero. This intuitively 

makes sense, since equation (a) does not have a coefficient representing the DC offset of 

the energy expenditure signal. As a result, since postures involve almost no motion, the 

ACTotalAbsArea feature is zero and the predicted energy is zero for these activities.  
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In response to the shortcomings of equation (a), a coefficient representing the DC 

offset of the energy expenditure signal was added resulting in equation (b). From Table 

5-61 and Figure 5-46 it can be observed that the performance over postures, running at 

different speeds, bench weight lifting, cycling and rowing has been improved. Table 5-61 

shows that the performance over the ambulation and household activities has also been 

improved. However, the table deceptively shows that the performance for postures has 

not changed. When the performance per activity is inspected (see Appendix B2 for 

detailed results per activity), it is found that the performance for standing, sitting, and 

kneeling has been improved, but the performance over sitting fidgeting hands arms and 

sitting fidgeting legs has increased. As a result, the overall RMSE over the postures 

category remains the same as for equation (a). The value of the DC coefficient (1.58 

MET) for equation (b) shown in Table 5-60 implies that the energy expenditure 

associated with sedentary activities (with MET values close to 1) will be always 

overestimated. This is because if there is no motion, the minimum prediction would be a 

value of 1.58 MET. This might be because a single regression model is utilized to 

estimate energy expenditure and thus, it has to optimize the coefficients for all activities 

simultaneously. As a result, this model is forced to increase the DC coefficient to produce 

better estimates for physically demanding activities that produced high values of energy 

expenditure such as cycling, bicep curls, and bench weight lifting. 

 Equation (c) in Table 5-59 improves over equation (b) by estimating energy 

expenditure multiplying the motion (acceleration) experienced by each body segment 

(with an accelerometer attached to it) by a constant. This equation also includes a 

coefficient representing the DC offset of the energy expenditure signal so that energy 

expenditure for sedentary activities can be better predicted. These coefficients can be 

thought as weights that can be tuned by the regression model during learning to better 

represent the individual contribution of each body segment to energy expenditure. 

Inspection of the results per activity from Figure 5-46 and Appendix B2 indicates that the 

RMSE slightly redistributes over all activities. As a result, Table 5-61 indicates that the 

overall RMSE and RMSE per activity category remain practically unchanged. Thus there 

is no clear advantage of using equation (c) over equation (b). In fact, equation (b) should 

be preferred over equation (c) given its lower computational requirements when only 

overall body motion (e.g. ACTotalAbsArea or ACAbsArea feature) is utilized to estimate 

energy expenditure. This might be because the overall amount of motion is the same 

when it is summed over all body segments or analyzed per body segment. 

Another simple technique that can be used to predict energy expenditure derived from 

the work energy theorem is to compute the force associated with each body segment and 

multiply it by a scaling constant to obtain energy expenditure. Segmental force can be 

estimated by multiplying the motion or acceleration experienced at each body segment 

(ACAbsArea) by the approximate mass of the body segment. Equation (d) performs 

exactly this operation by obtaining the body segment masses from the Depmster‘s body 

segment model [236]. Equation (d) also includes a constant representing the DC offset of 

the energy expenditure signal. When the performance of equation (d) is evaluated, it is 

found that the overall coefficient of correlation decreases by 0.03 and overall RMSE 

decreases 0.05 METs as shown in Table 5-58. At first glance, this result is counter 

intuitive since it makes perfect sense to think that the energy expenditure associated with 

manipulating a body segment is directly proportional to the mass of that body segment. 
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When the results are inspected per activity, it is found that energy expenditure prediction 

worsens for sedentary activities such as writing, typing, playing video games, sitting, and 

standing and for some resistance activities such as rowing and cycling. Performance 

decreases for sedentary activities because the DC offset learned using equation (d) is 1.83 

and will always over predict the energy expenditure associated with sedentary activities. 

The only activities for which performance improves between 0.1 and 0.57 METs by the 

use of equation (d) are activities involving motion at the upper limbs such as bicep curls, 

sitting fidgeting hands arms, carrying groceries, scrubbing a surface, and  

wiping/dusting. This might be a result of equation (d) better capturing energy expenditure 

at the upper body due to the weighing of the accelerometer signal by the mass of the 

arms.  

In order to better understand why equation (d) does not improve performance over 

equation (c), the coefficients representing the mass associated with each body segment 

were learned from the MIT dataset instead of being specified a priori using the Dempter‘s 

body segment model. This corresponds to equation (e) in Table 5-59.  Ideally, when the 

coefficients are learned from the data, they should reflect the mass distribution of the 

body segments. For example, the coefficient for the accelerometer at the hip should be 

larger than the coefficient for the accelerometers at the wrists (arms) and feet (legs). 

Similarly, the coefficient for the accelerometers at the feet (legs) should also be larger 

than the coefficient for the accelerometers at the wrists (arms). Table 5-60 presents the 

coefficients learned from all the activities contained in the MIT EE dataset for equation 

(e). It is clear that not all coefficient values reflect the mass distribution of the body 

segments. For example, the coefficient of the accelerometer at the hip has a negative 

value and the coefficients for the wrists are not equal. The coefficient at the dominant 

wrist is also larger than the coefficient for both feet. One explanation for the distribution 

of values obtained for the coefficients is that most activities in the MIT EE dataset 

include different levels of resistance or work load effort associated with upper body and 

lower body extremities. For example, the high values of energy expenditure obtained 

during bench weight lifting, which primarily involve upper body motion, could distort 

(increase) the coefficient values associated with the wrists. A similar situation would 

happen during cycling at different resistance levels, leading to distorted values for the 

coefficients of all body segments. If this explanation is correct, that would indicate that 

energy expenditure is strongly depend on the activity being performed and that energy 

expenditure predicted for any activity involving the sightless amount of effort or 

resistance work using equations similar to equation (d) would be off.  This might be one 

reason why the Crouter et al. regression model has been shown to estimate energy 

expenditure well since it utilizes activity dependent regression models for sedentary, 

ambulation and lifestyle activities. 

To test if activities involving resistance or work load effort are distorting the 

coefficient values learned for the body segments in equation (e), they were eliminated 

from the training data. Appendix B3 shows what activities were preserved in the training 

data under the column labeled as ―Accelerometer recognizable‖.  Table 5-60 presents the 

coefficients learned for equation (e) using the ―Accelerometer recognizable‖ activities 

set.  It can be seen that now the hip has a positive coefficient larger than the coefficient 

for the wrists (arms) and feet (legs). Moreover, the coefficient for the DWrist is close to 

the value of the NDWrist and the DFoot coefficient is close to the NDFoot coefficient. 
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However, the coefficient for the wrists (arms) is larger than the coefficients for the legs. 

This is because some activities contained in the ―Accelerometer recognizable‖ category 

either contain some degree of effort or high motion associated with upper body activity 

such as doing dishes, gardening, weeding, wiping/dusting and ironing. In a final attempt 

to improve the distribution of the coefficient values equation (e) was re-trained using 

only postures and ambulation activities. The activities included in this category are also 

shown in Appendix B3 under the column labeled as ―Posture and Ambulation‖. The final 

row of Table 5-60 present the final coefficients learned from this activity category. It can 

be seen that the distribution of the weights indeed improved since the coefficient for the 

hip increased, and the coefficient at the NDFoot also increased now being larger than the 

coefficients at the wrists (arms). The value of the coefficient representing the DC offset 

of the energy expenditure signal also improved since now is closer to 1MET, the ideal 

value for sedentary activities. 

In summary, energy expenditure can be estimated using simple multivariable linear 

regression algorithms such as equation (c) obtaining a final correlation coefficient of 0.68 

and a root mean squared error of 1.36MET. The incorporation of a coefficient 

representing the DC offset of the energy expenditure signal improves the estimate for 

sedentary activities such as postures, and other activities such as cycling and running. 

Finally, energy expenditure cannot be predicted reliably utilizing equation (d) (based on 

the work energy theorem) because different activities include different levels of upper 

body and lower body effort. Consequently, the importance weight or coefficient for each 

limb is dependent on the activity being performed. For example, if bench weight lifting is 

being performed, the acceleration at the upper limbs needs to be weighted more to predict 

energy expenditure reliably. Similarly, during cycling at high resistances, the weight for 

the lower limbs needs to be increased according. Nonetheless, during activities such as 

walking and running, the weight for upper body and lower body limbs could potentially 

be very close, thus contributing equally to overall energy expenditure. The results 

obtained using equation (c) are better than the ones obtained using the Crouter et al. 

algorithm. Obviously, this is mostly due to the utilization of seven sensors that better 

capture overall, upper body and lower body motion. The upcoming sections will 

investigate how well can energy expenditure can be estimated by creating regression 

models that depend on the activity being performed. In this way, the regression 

coefficients for the models used can have optimal values depending on the activity being 

performed. 

 

5.6.2.3 How Well Can Energy Expenditure be Estimated Using the Compendium 

of Physical Activities?  

 

One of the standard methods that the medical community utilizes to estimate energy 

expenditure during free-living is to collect information about subjects‘ activities using 

direct observation or self-report and later rate their energy expenditure according to the 

Compendium of Physical Activities [122]. The Compendium of Physical Activities 

consists of a list of the most common everyday physical activities and their associated 

average energy expenditure in metabolic equivalents (METs). Given the popularity of 

this method, this section explores how well it can estimate energy expenditure over the  
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Error Measures Comparable Activities Closest Activities 

Total Correlation Coefficient 0.86 ± 0.10 0.80 ± 0.09 

Total Root Mean Square Error 1.27 ± 0.33 1.61 ± 0.41 

Total  Mean Absolute Error 0.85 ± 0.21 1.12 ± 0.28 

Maximum  Absolute Deviation 4.17 ± 0.86 5.57 ± 1.33 

Table 5-62: Performance of estimating energy expenditure using the Compendium of Physical 

Activities over the comparable and closest activity sets.  Energy expenditure was predicted over 

windows of one minute in length. 

 

 
Activity Set Total Number 

of Activities 

Postures Ambulation Exercise Resistance Household 

Comparable 29 0.2±0.1  

(0.2±0.1) 

1.4±0.5  

(1.3±0.5) 

2.1±0.7  

(2.0±0.8) 

2.1±0.4  

(2.0±0.4) 

0.9±0.3  

(0.9±0.3) 

Closest 52 0.3±0.2  

(0.3±0.2) 

1.5±0.4  

(1.4±0.4) 

2.3±0.7  

(2.2±0.7) 

2.0±0.5  

(2.0±0.6) 

0.9±0.3  

(0.9±0.3) 

Table 5-63: Root mean squared error and mean absolute error (shown in parenthesis) per activity 

category when estimating energy expenditure using the Compendium of Physical Activities over the 

comparable and closest activity sets. 

 

MIT dataset assuming that the activities performed are known from the activity labels 

collected during the data collections.  

This experiment is performed over two sets of activities: (1) the comparable set of 

activities and (2) the closest set of activities. The comparable set of activities includes 

only the activities in the MIT dataset that are directly comparable with those found in the 

Compendium of Physical Activities. In other words, this set of activities completely 

matches the physical activity description, speed of execution, and/or resistance level 

found in the Compendium of Physical Activities. The closest set of activities consists of 

all the activities contained in the MIT dataset and their corresponding closest match 

found in the compendium. For example, cycling at 80rmp at a moderate intensity level 

(resistance level of 7 in a Precor C846 recumbent stationary bicycle) was not found in the 

Compendium. However, the closest activity in the compendium is cycling at a 100W 

power level. Appendix B4 presents the activities contained in the MIT dataset, their 

corresponding closest activities from the Compendium, and whether or not they are 

included in the comparable activity set. 

Table 5-62 presents the performance of estimating energy expenditure using the 

Compendium of Physical Activities over the comparable and closest activities sets 

assuming the activity being performed is known. In order to be able to compare the 

estimation performance with the results obtained using the Crouter et al. Actigraph-based 

algorithm, energy expenditure is predicted over windows of one minute in length. Table 

5-62 shows that the correlation coefficient and RMSE error obtained over both activity 

sets are higher than the results obtained using the Crouter et al. Actigraphs-based 

algorithm (r=0.4, RMSE=3.23). As expected, performance is slightly better over the 

comparable activities set because it contains 23 fewer activities than the closest activity 

set. The maximum absolute error deviation of 4.2 METs and 5.6 METs for the 

comparable and closet activity sets, respectively, is also lower than the one obtained 

using the Crouter et al. method (7.0 METs). The largest decrease in RMSE error with 

respect to the Crouter et al. method was observed for the following activity categories: 

postures (-0.4 METs), ambulation (-1 MET), exercise (-0.7 METs), and resistance 

exercise (-1.3 MET).  
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When the RMSE per activity is analyzed from Appendix B5, it is found that the 

Compendium tends to overestimate the energy expenditure associated with some 

household activities such as gardening, making the bed, scrubbing a surface, weeding 

and vacuuming. These activities are highly variable and unconstrained since they can be 

performed with differently styles, intensities and objects (e.g. industrial vacuum cleaner 

vs. portable vacuum cleaner). Therefore, their energy expenditure value is difficult to 

predict from just the average value listed in the Compendium of Physical Activities. The 

Compendium of Physical Activities also overestimates energy expenditure for some 

physically demanding activities such as ascending stairs, sit-ups, and running at 6mph. 

This is because the activity examples collected for these activities have individual 

durations of less than a minute, thus preventing energy expenditure from reaching steady 

state (which is the average value listed in the Compendium of Physical Activities). This 

effect can also be seen in Appendix B5, which presents plots of the energy expenditure 

estimated using the Compendium of Physical Activities vs. the measurements using the 

Cosmed K4b2 indirect calorimeter. Finally, energy expenditure is better predicted for 

activities that reached steady state during the data collection such as postures and 

ambulation (walking and running). 

In summary, if the activity performed is known, energy expenditure can be estimated 

well by simply predicting the average METs value associated with an activity. Obviously, 

the quality of the estimate depends on how close the average METs value utilized on the 

predictions and the truth energy expenditure of the activity of interest are. The main 

disadvantages of applying this method to estimate energy expenditure are: (1) the type 

and duration of the physical activities performed needs to be known in advance and (2) 

the physical activities performed need to be listed in the Compendium of Physical 

Activities.  

 

5.6.2.4 Estimating Energy Expenditure Using One Linear Regression Model per 

Activity.  

 

The results presented in previous sections and some recent work [34, 96] suggest that 

energy expenditure can be better estimated if the activities being performed are known. 

For example, Section 5.6.2.2 indicated that the optimal value for the coefficients of a 

regression equation used to estimate energy expenditure depend on the activity being 

performed. For example, during the execution of bicep curls, it might be necessary to 

assign a greater weight to the regression coefficients representing the acceleration at 

upper extremities. Conversely, during cycling, it might be necessary to assign a greater 

weight to the coefficients representing the acceleration at the lower limbs. One way to 

achieve this it to model energy expenditure utilizing independent regression models 

whose coefficients can be tuned depending on the activities being performed. In fact, 

Section 5.6.2.3 showed that a good performance in energy expenditure estimation with 

respect to state-of-the-art Actigraph algorithms can be achieved by simply predicting the 

average energy expenditure value for each activity. As a result, this section explores how 

well energy expenditure can be estimated if it is modeled using one independent 

multivariable linear regression model per activity. 
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Error Measures Results 

Total Correlation Coefficient     0.87 ± 0.10 

Total Root Mean Square Error      1.02 ± 0.45 

Total Mean Absolute Error         0.63 ± 0.19 

Maximum Absolute Error Deviation        4.21 ± 2.89 

Table 5-64: Performance obtained over the MIT energy expenditure dataset while estimating energy 

expenditure using one multivariable linear regression model per activity. The regression models per 

activity were trained using the ACAbsArea feature computed per sensor over windows of one minute 

in length. Performance is measured with respect to energy expenditure data collected from the 

Cosmed K4b2 indirect calorimeter 

 
Activity Category RMSE (MAE) 

Postures 0.3±0.2  (0.3±0.2) 

Ambulation 0.9±0.7  (0.8±0.7) 

Exercise 1.1±0.9  (1.1±0.8) 

Resistance 0.8±0.5  (0.8±0.5) 

Household 0.5±0.3  (0.4±0.3) 

Upper Body 0.4±0.3  (0.4±0.2) 

Lower Body 0.9±0.5  (0.8±0.5) 

Table 5-65: Root mean squared error and mean absolute error (shown in parenthesis) obtained over 

the MIT energy expenditure dataset when estimating energy expenditure using one multivariable 

linear regression model per activity. The regression models per activity were trained using the 

ACAbsArea feature computed per sensor over windows of one minute in length. Performance is 

measured with respect to energy expenditure data collected from the Cosmed K4b2 indirect 

calorimeter 

 

Table 5-64 presents the performance of predicting energy expenditure over the MIT 

dataset using one multivariable linear regression model per activity. For simplicity, the 

activities performed are assumed to be known from the labels and timestamps recorded 

during the data collections. Performance is measured using the ACAbsArea feature, one 

of the most commonly employed features when estimating energy expenditure in prior 

work. Appendix A3 explains how the ACAbsArea feature is computed. Energy is 

estimated over windows of one minute in length to facilitate comparison with prior work. 

Table 5-64 shows that the coefficient of correlation (0.87) and RMSE error (1.02) 

obtained are the lowest achieved so far. This indicates that performance is clearly 

improved when activity dependent regression models are used. Appendix B7 presents 

plots of energy expenditure estimated versus measured using the Cosmed K4b2 indirect 

calorimeter for two subjects. The plots show that energy expenditure estimated closely 

follows energy expenditure measured except for activities involving different levels of 

resistance or work load. This is because the effort associated with these activities is not 

captured well from accelerometers since the motion signature of activities (e.g. speed of 

execution or motion patterns involved) does not change or is not detectable in a subject 

independent manner. 

Table 5-65 shows the performance per activity category obtained using one linear 

regression model per activity. The best performance is obtained over postures and 

household activities and the worse over exercise, resistance exercise, and lower body 

activities, as found in previous sections. Lower body activities present a relatively high 

RMSE because this category consists mainly of the cycling activities that contain 

different levels of resistance work not detectable from accelerometers. Overall, the 

performance per activity category is also the highest found so far. 
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When the performance per activity is inspected from Appendix B7, it is found that the 

activities with lowest RMSE are bench weight lifting (0.16 MET), doing dishes (0.16 

MET), and watching TV (0.18 MET). The activities with higher RMSE are calisthenics 

crunches and sit-ups, descending stairs, and running on a treadmill at different speeds. 

The maximum absolute error deviation is also the highest for these activities. As 

explained before, error is high for crunches and sit-ups because they were executed for 

short periods of time (<1min) and steady-state energy expenditure was never reached. 

The high error in descending stairs can be explained also by its short duration (<1min) 

and by the fact that it was executed almost immediately after ascending stairs. As a 

result, the indirect calorimeter readings were still high (from ascending stairs) when this 

activity was being executed. Thus, the amounts of motion present during the execution of 

this activity did not justify the high energy expenditure values observed. Finally, the poor 

performance over the running activities can be explained by the different physical fitness 

level of individuals. For example, energy expenditure observed during running was 

higher for obese participants than for lean and physically fit participants. 

In conclusion, the results presented in this section indicate that the use of activity 

dependent regression models improve energy expenditure estimation considerably. One 

obvious concern with the applicability of method in practice is that activities have to be 

first recognized in order to apply the corresponding regression models. Section 5.6.11.2 

will later explore how well energy expenditure can be estimated in practice using this 

method by recognizing activities using the algorithm implemented in Section 5.4.9.  

 

5.6.2.5 How Well Can Energy Expenditure be Estimated Using One Non-Linear 

Regression Model per Activity? 

 

Following up on the preceding section, this section explores the performance of 

estimating energy expenditure using one non-linear regression model per activity when 

the activities performed are assumed to be known. The non-linear regression model used 

is a M5‘ model tree trained using the ACAbsArea feature computed per sensor over 

windows of one minute in length. Appendix A3 explains how the ACAbsArea feature is 

computed. The parameters of the M5‘ model tree used are shown in Table 5-70. The 

main objective of this section is to measure the improvement in performance with respect 

to one linear regression model per activity.  

Table 5-67 presents the error measures obtained when estimating energy expenditure 

using one non-linear regression model per activity over the MIT energy expenditure 

dataset. The table shows that performance is improved for all error measures. For 

example, the correlation coefficient improves +0.04 units and RMSE improves 0.14 MET 

with respect to one linear regression model per activity. The largest improvement in 

performance of 0.85 MET is observed for the maximum absolute error deviation.  

Table 5-67 illustrates the root mean squared error and mean absolute error per activity 

category. It can be seen that RMSE error is uniformly distributed for the household and 

upper body activity categories (0.4 MET) and for the ambulation, resistance exercise and 

lower body activity categories (0.8 MET). RMSE error is higher (1 MET) for exercise 

activities because this category contains more activities than the other categories (n=19). 

The only RMSE error that does not improve with respect to Table 5-65 and practically  
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Error Measures Results 

Total Correlation Coefficient     0.91 ± 0.04 

Total Root Mean Square Error      0.88 ± 0.25 

Total  Mean Absolute Error         0.59 ± 0.15 

Maximum Absolute Deviation        3.36 ± 1.18 

Table 5-66: Performance obtained over the MIT energy expenditure dataset when estimating energy 

expenditure using one non-linear regression model (M5‟ model tree) per activity. The regression 

models per activity were trained using the ACAbsArea feature computed per sensor over windows of 

one minute in length. Performance is measured with respect to energy expenditure data measured 

using the Cosmed K4b2 indirect calorimeter 

 
Activity Category RMSE (MAE) 

Postures 0.2±0.2  (0.2±0.2) 

Ambulation 0.8±0.4  (0.7±0.4) 

Exercise 1.0±0.6  (1.0±0.6) 

Resistance 0.8±0.5  (0.7±0.5) 

Household 0.4±0.3  (0.4±0.2) 

Upper Body 0.4±0.3  (0.4±0.2) 

Lower Body 0.8±0.4  (0.8±0.4) 

Table 5-67: Root mean squared error and mean absolute error (shown in parenthesis) obtained over 

the MIT energy expenditure dataset when estimating energy expenditure using one non-linear 

regression model (M5‟ model tree) per activity. The regression models per activity were trained using 

the ACAbsArea feature computed per sensor over windows of one minute in length. Performance is 

measured with respect to energy expenditure data measured using the Cosmed K4b2 indirect 

calorimeter 

 

remains unchanged is the error for the resistance exercise category.  Apparently, this 

error is already as low as it can be given that energy expenditure associated with different 

resistance level and work load effort is poorly detected using accelerometers. 

When the RMSE is inspected per activity and compared to the one obtained using one 

linear regression model per activity, it is found that it slightly improves for most activities 

and that improvement is higher for crunches (-1.6 MET), ascending stairs (-0.9 MET), 

and bicep curls moderate (-0.44 MET). The maximum absolute error deviation for these 

activities also improves substantially (0.9-1.7 MET). Intuitively this improvement makes 

sense, since the energy expenditure associated with these activities increases  

exponentially over time, and is better captured using non-linear regression models.   The 

same improvements in RMSE are observed when visualizing the energy expenditure 

plots presented in Appendix B8. 

In summary, utilizing one non-linear regression model per activity improves 

performance considerably over one linear regression model per activity for some 

activities. Knowledge of which activities are improved the most might allow the 

application of non-linear regression models only for those activities that benefit from it, 

thus, successfully reducing computational complexity since linear models would still be 

applied for most activities.  

 

5.6.2.6 Summary of Baseline Results 

 

In summary, the results presented in previous sections indicate that overall performance 

and performance per activity are improved the most when the activities performed are 

known. Section 5.6.2.3 illustrated that excellent results with respect to state-of-the-art  
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Error Measures Crouter et 

al. 

Actigraph 

Compendium 

Comparable 

Activities 

Compendium 

Closest 

Activities 

Linear 

Regression 

 

One Linear 

Regression 

model per 

activity 

One non-linear 

regression 

model per 

activity 

Total Correlation 

Coefficient     

0.36 ± 0.09 0.86 ± 0.10 0.80 ± 0.09 0.73 ± 0.06 0.87 ± 0.10 0.91 ± 0.04 

Total Root Mean 
Square Error      

2.66 ± 0.62 1.27 ± 0.33 1.61 ± 0.41 1.28 ± 0. 29 1.02 ± 0.45 0.88 ± 0.25 

Total  Mean 

Absolute Error 

1.94 ± 0.45 0.85 ± 0.21 1.12 ± 0.28 0.95 ± 0.16 0.63 ± 0.19 0.59 ± 0.15 

Maximum 

Absolute 
Deviation 

6.94 ± 1.77 4.17 ± 0.86 5.57 ± 1.33 4.12 ± 1.21 4.21 ± 2.89 3.36 ± 1.18 

Table 5-68: Comparison of the performance obtained using the energy expenditure estimation 

methods explored in this section. All methods estimate energy expenditure over sliding windows of 

one minute in length. The methods that utilize linear or non-linear regression are trained using the 

ACAbsArea feature computed per sensor. 

 
Activity 

Category 

Crouter  

et al. 

Actigraph 

Compendium 

Comparable 

Activities 

Compendium 

Closest 

Activities 

Linear 

Regression 

 

One Linear 

Regression 

model per 

activity 

One Non-linear 

regression model 

per activity 

Postures 0.6±0.2  

(0.5±0.2) 

0.2±0.1   

(0.2±0.1) 

0.3±0.2  

(0.3±0.2) 

0.6±0.2  

(0.6±0.2) 

0.3±0.2  

(0.3±0.2) 

0.2±0.2   

(0.2±0.2) 

Ambulation 2.4±0.5  
(2.4±0.5) 

1.4±0.5  
 (1.3±0.5) 

1.5±0.4  
(1.4±0.4) 

1.0±0.5  
(1.0±0.5) 

0.9±0.7  
(0.8±0.7) 

0.8±0.4  
 (0.7±0.4) 

Exercise 2.8±0.8  

(2.8±0.8) 

2.1±0.7  

 (2.0±0.8) 

2.3±0.7  

(2.2±0.7) 

1.5±0.8  

(1.4±0.7) 

1.1±0.9  

(1.1±0.8) 

1.0±0.6  

 (1.0±0.6) 

Resistance 3.4±0.7  
(3.4±0.7) 

2.1±0.4  
 (2.0±0.4) 

2.0±0.5  
(2.0±0.6) 

1.3±0.6  
(1.3±0.6) 

0.8±0.5  
(0.8±0.5) 

0.8±0.5  
 (0.7±0.5) 

Household 1.0±0.3  

(1.0±0.3) 

0.9±0.3  

 (0.9±0.3) 

0.9±0.3  

(0.9±0.3) 

0.7±0.3  

(0.6±0.3) 

0.5±0.3  

(0.4±0.3) 

0.4±0.3  

 (0.4±0.2) 

Upper Body 1.2±0.3  
(1.2±0.3) 

0.8±0.3 
  (0.8±0.3) 

1.3±0.3  
(1.3±0.3) 

0.7±0.3  
(0.7±0.3) 

0.4±0.3  
(0.4±0.2) 

0.4±0.3  
 (0.4±0.2) 

Lower Body 2.7±0.5  

(2.7±0.5) 

- 1.3±0.5  

(1.3±0.5) 

1.6±0.8  

(1.6±0.8) 

0.9±0.5  

(0.8±0.5) 

0.8±0.4  

 (0.8±0.4) 

Table 5-69: Root mean squared error and mean absolute error (shown in parenthesis) obtained using 

the different energy expenditure estimation methods explored in this section. All methods estimate 

energy expenditure over sliding windows of one minute in length. The methods that utilize linear or 

non-linear regression are trained using the ACAbsArea feature computed per sensor. 

 

Actigraph-based algorithms can be obtained by just predicting the average energy 

expenditure associated with each activity from the Compendium of Physical Activities. 

The results obtained with this method are also competitive with the performance obtained 

using multivariable linear regression and the ACAbsArea feature computed over all the 

seven accelerometer sensors. Section 5.6.8 will later explore the impact of reducing the 

number of sensor while estimating energy expenditure using multivariable linear 

regression. Clearly, another advantage of estimating energy expenditure by recognizing 

activities is that the knowledge of the activities performed is important information that 

can be used for medical purposes or in just-in-time interventions to motivate increases in 

physical activity levels.    

Energy expenditure estimation can be further improved by applying linear and non-

linear activity dependent models. The performance of both methods improves over a 

single multivariable linear regression model applied to all activities at once. In particular, 

one non-linear regression model per activity improves performance for activities whose 

energy expenditure patterns are non-linear such as ascending stairs and crunches. These 
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results hold when there is enough data to train the linear or non-linear regression models 

per activity as in the analysis presented previously, since only one feature ACAbsArea is 

utilized. Results might be different; for example, if more features are used to estimate 

energy expenditure and the amounts of data available are insufficient to train the large 

number of linear and/or non-linear regression models (as later found in Section 5.6.3). 

Table 5-68 and Table 5-69 present a comparison of the performance obtained using the 

different methods explored in this section to estimate energy expenditure. Table 5-68 

shows that the Crouter et al. Actigraph-based energy expenditure estimation method 

presents the worse performance. The most likely reason for this poor performance is that 

this method predicts energy expenditure from just one accelerometer located at the hip 

(Actigraph) while the methods that use linear or non-linear regression utilize the data 

from the best case scenario of seven accelerometers located at different body segments. 

Using one single accelerometer at the hip to estimate energy expenditure (as most 

medical research studies do) has the disadvantage of poorly detecting energy expenditure 

associated with upper body and lower body activity. In fact, most of the energy 

expenditure predicted from an accelerometer at the hip comes from ambulatory activities. 

Table 5-69 clearly shows that the Crouter et al. method has the worst performance in 

estimating energy expenditure for upper body and lower body activities. For example, the 

Crouter et al. method presents a RMSE of 6.4 MET for cycling hard at 80rmp while 

multivariable linear regression using all sensors presents an error of just 2.9 MET, mostly 

due to the inability of the accelerometers to capture information that can differentiate 

cycling at different resistance levels. Similarly, the Crouter et al. method presents a 

RMSE error of ~2.0 MET for bicep curls moderate and hard while linear regression 

presents an error between 0.2-0.5 MET for these activities. Energy expenditure 

algorithms capable of detecting upper body and lower body activity are likely to be 

superior in performance to algorithms based on single accelerometers located at the hip.  

The following sections will perform systematic experiments in increasing order of 

complexity to determine the most suitable parameters for the energy expenditure 

estimation algorithm developed in this work with the ultimate goal of achieving real-time 

performance. 

 

5.6.3  Can Fast Run-Time Regression Algorithms Produce Acceptable Performance? 

This section compares the performance of regression algorithms with fast prediction 

times that are amenable for real-time performance with other regression algorithms with 

longer training and prediction times. The goal of the section is to identify the regression 

algorithm that provides the best trade-off between computational complexity and 

performance. 

The algorithms compared in this section are multivariable linear regression, M5‘ 

regression and model trees [237, 238], and epsilon support vector regression (ε-SVR) 

[239, 240]. The  performance of multivariable linear regression, M5‘ regression trees, and 

M5‘ model trees was evaluated using the Weka toolkit [226], and the performance of 

epsilon support vector regression was evaluated using the LibSVM library for support  

vector machines [241]. Table 5-70 presents a brief description of each regression 

algorithm as well as the parameters used for each of them during the experiments.  
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Regression 

Algorithm 

Description Parameters Ref 

 Linear 

Regression 

 (LR) 

A regression algorithm that models the statistical 
relationship between predictor (x) and predicted (y) 

variables employing the following linear equation: 

0

1

wxwy
n

i

ii 


 

 

The coefficients w are found by minimizing the sum of 

the square of the residuals (yi - xi) or least square error 
with respect to a set of training data points. 

 

Multivariable linear regression using the 
M5 attribute selection method (based on 

the Akaike information criterion), 

elimination of collinear attributes, and a 
Ridge parameter value of 1.0E-8. 

 

 

M5‟ 

Regression 

Trees 

 (RT) 

 

A non-linear regression algorithm that builds tree-based 
models very similar to decision trees but that have 

numerical values representing the predicted variable at 

their leaves instead of predicted class values.  

Regression tree built with the M5‘ 
algorithm using pruning, a minimum of 

four instances per leaf, and smoothed 

predictions. 

[237] 
[238] 

M5‟ 

Model  

Trees 

(MT) 

 

A non-linear regression algorithm that builds tree-based 

models very similar to regression trees but that have 
multivariate linear models at their leaves instead of class 

values. As a result, predicted variables are approximated 

by piecewise linear functions. This algorithm can handle 
problems with higher dimensionality than MARS [242] 

and generate smaller and more accurate trees than CART 

[243].    

Model tree built with the M5‘ algorithm 

using pruning, a minimum of four 
instances per leaf, and smoothed 

predictions. 

 

[237] 
[238] 

Epsilon 

Support 

Vector 

Regression 

(-SVR) 

A regression algorithm based on support vector machines 
[216] that, when used in combination with a radial basis 

function kernel, is able to learn complex non-linear 

relationships between predictor and predicted variables.  
 

Epsilon support vector regression using a 
radial basis function kernel, the shrinking 

heuristics, and parameters cost (C), gamma 

(), and epsilon () found by performing a 
grid search over the parameter space. The 

optimal values found for these parameters 

were: 
ACAbsArea feature 

C=64, =1.0, and =0.5 

MaxAcceleration feature set 

C=8.0, =0.0625, =0.0625 

[239] 
[240] 

Table 5-70: Brief description of the regression algorithms explored in this section and their 

parameters. Ref stands for reference and points to literature describing the algorithms in full detail. 

 
 Feature Set LR  RT MT ε-SVR 

Total  training time 

(Average time per  instance) 

ACAbsArea 0.71s 
(0.03ms) 

211.5s 
(8.1ms) 

285s 
(11ms) 

176s 
(7.4ms) 

Total prediction time 

(Average time per instance) 

ACAbsArea 1.0s 

(0.5ms) 

0.9s 

(0.5ms) 

1.0s 

(0.5ms) 

8.5s 

(4.0ms) 

Total  training time 

(Average time per  instance) 

MaxAcceleration 285.8s 
(12.064ms) 

528s 
(22.32ms) 

1387s 
(58.5ms) 

4227s 
(178.4ms) 

Total prediction time 

(Average time per instance) 

MaxAcceleration 1.5s 

(0.7ms) 

1.4s 

(0.7ms) 

4.4s 

(2.1ms) 

82.8s 

(38.7ms) 

Table 5-71: Total training and prediction times in seconds obtained during the first round of subject 

independent training for the linear and non-linear regression algorithms explored in this work. The 

total number of instances learned is 25, 832. 

 

In this work, support vector regression (SVR) was chosen over multilayer neural 

networks regression for four reasons. (1) Unlike neural networks, SVR does not suffer 

from local minima problems since training involves solving a linearly constrained 

quadratic programming problem that always has a unique and globally optimal solution 

[239]. (2) SVR has fewer parameters to optimize (e.g. C, , and  when the radial basis 

function kernel is used) than neural networks (e.g. number of network layers, number of 

nodes per layer, learning rate, momentum, form of transfer function, number of epoch, 



 212 

etc). Furthermore, there exist well-tested procedures to systematically find the optimal 

values for SVR parameters when the radial basis function kernel is used [244]. (3) SVR 

has capacity control of the regression function learned, which means that the complexity 

of the solution found is the minimal required to solve the problem at hand. (4) Finally, 

SVR has been found to be resistant to overfitting and to the curse of dimensionality 

[239].  

The performance of each algorithm is analyzed in two extreme computational 

complexity conditions: (1) a best case scenario where energy expenditure is predicted 

from just one feature per sensor (ACAbsArea), and (2) a worse-case scenario where 

energy expenditure is predicted using all the accelerometer-based features computed per 

sensor (MaxAcceleration feature set). Features are computed over sliding windows of 

5.6s in length.  

Table 5-71 presents the total training and prediction times for each of the algorithms 

explored in seconds as well as the average training and prediction times per example 

(instance) in milliseconds. First, it can be observed that the training and prediction times 

are lower for the ACAbsArea feature set than for the MaxAcceleration feature set. This is 

because the ACAbsArea feature set has a vector size of only 7 while the MaxAcceleration 

feature set has a vector size of 247. The table shows that the algorithms with longer 

training times are model trees and ε-SVR. This is because model trees have to learn the 

tree structure from the data using the M5‘ algorithm and also one multivariable linear 

regression model (over subsets of the features) per leaf node. For ε-SVR, training 

involves the solution of a quadratic optimization problem that is computationally 

expensive (  were n is number of training examples and NSV number of 

support vectors [245]) and that is why it presents the long training times observed in 

Table 5-71. From the table, it can also be observed that the prediction times for linear 

regression, regression trees, and model trees are considerably lower than prediction times 

for ε-SVR. This is because prediction in linear regression only involves summations and 

multiplications over the features. For regression trees, it mainly involves the evaluation of 

fast if-then clauses over several feature values that depend on the structure of the tree 

learned. Once a leaf node is reached, the prediction made is a simple constant 

representing the average value of the predicted variable for the training examples that fall 

under that branch of the tree. In model trees, prediction also involves the evaluation of 

several if-then clauses over several feature values but it also requires the evaluation of the 

multivariable linear regression model at the leaf node. On the contrary, prediction in ε-

SVR involves dot products over the number of support vectors found during training 

(subset of training data points that represent the final solution). As a result, prediction 

time depends on the number of support vectors found for a given problem. For the 

ACAbsArea feature, the number of support vectors found consists of 38% of the total 

number of training data points (25,832). For the MaxAcceleration set, the number of 

support vectors found is 30% of the total training examples. This large number of support 

vectors lead to the long prediction times observed in Table 5-71. The large number of 

support vectors found also suggests that energy expenditure prediction over the MIT EE 

dataset is difficult.  In summary, from Table 5-71, we can conclude that the regression 

algorithms with best prediction times in increasing order are regression trees, linear 

regression, model trees, and support vector regression. The ordering of the algorithms 

with respect to training times in increasing order is: linear regression, regression trees,  
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Algorithm Correlation 

Coefficient 

All  Postures Ambulation Exercise Resistance Household 

LR 0.68 ± 0.06 1.36 ± 0.30 
(1.02 ± 0.17) 

0.7±0.2  
(0.7±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.4±0.6  
(1.3±0.6) 

0.7±0.2  
(0.6±0.2) 

RT 0.73 ± 0.07 1.25 ± 0.29 

(0.88 ± 0.18) 

0.6±0.3  

(0.5±0.2) 

1.1±0.5  

(1.0±0.5) 

1.3±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.5) 

0.6±0.3  

(0.5±0.2) 

MT 0.72 ± 0.08 1.24 ± 0.29 
(0.86 ± 0.19) 

0.6±0.3  
(0.5±0.2) 

1.1±0.4  
(0.9±0.4) 

1.3±0.7  
(1.2±0.7) 

1.1±0.6  
(1.0±0.6) 

0.6±0.3  
(0.5±0.2) 

ε-SVR 0.74 ± 0.06 1.28 ± 0.29 

(0.89 ± 0.21) 

0.5±0.2  

(0.4±0.2) 

1.1±0.5  

(1.0±0.5) 

1.3±0.7  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.6±0.3  

(0.5±0.3) 

Table 5-72: Root mean squared error and mean absolute error (shown in parenthesis) per activity 

category when estimating energy expenditure using different regression algorithms and the 

ACAbsArea feature computed per sensor over sliding windows of 5.6s in length. 

 

 
Algorithm Correlation 

Coefficient 

All  Postures Ambulation Exercise Resistance Household 

LR 0.74 ± 0.10 1.24 ± 0.30 
(0.91 ± 0.20) 

0.7±0.3  
(0.6±0.3) 

1.2±0.5  
(1.0±0.5) 

1.2±0.7  
(1.1±0.7) 

1.1±0.6  
(1.0±0.6) 

0.7±0.3  
(0.6±0.3) 

RT 0.75 ± 0.06 1.21 ± 0.31 

(0.86 ± 0.20) 

0.6±0.3  

(0.5±0.3) 

1.1±0.4  

(0.9±0.4) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.5) 

0.6±0.2  

(0.5±0.2) 

MT 0.64 ± 0.17 1.56 ± 0.67 
(0.94 ± 0.24) 

1.0±1.5  
(0.7±0.7) 

1.2±0.5  
(1.0±0.5) 

1.3±0.7  
(1.2±0.7) 

1.1±0.6  
(1.0±0.5) 

0.8±0.5  
(0.6±0.4) 

ε-SVR 0.80 ± 0.06 

 

1.10 ± 0.27 

(0.78 ± 0.17) 

0.5±0.2  

(0.4±0.2) 

0.9±0.4  

(0.8±0.4) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.6±0.2  

(0.5±0.2) 

Table 5-73: Root mean squared error and mean absolute error (shown in parenthesis) per activity 

category when estimating energy expenditure using different regression algorithms and all the 

accelerometer-based features (MaxAcceleration) computed per sensor over sliding windows of 5.6s in 

length. 

 

model trees, and support vector regression. Given that training time is not too important 

in energy expenditure prediction (since subjects cannot perform subject dependent 

training due to the lack of equipment), the best algorithms to use in increasing order of 

desirability based on runtime are: linear regression, regression trees, and model trees. 

Table 5-72 presents the root mean squared error and mean absolute error per activity 

category found using the regression algorithms explored when the ACAbsArea feature is 

computed per sensor over windows of 5.6s in length. Surprisingly, the table shows that 

the performance of linear regression is very close to the performance of all the other more 

complex non-linear regression algorithms. One possible explanation for this is that the 

complexity of energy expenditure prediction in the MIT energy expenditure dataset is so 

high that linear regression performs as good as the other algorithms due to the 

unavailability of enough amounts of training data. In other words, due to the relatively 

small amount of training data available (6 hours of data for 16 subjects), regression trees, 

model trees and ε-SVR may be unable to learn models that outperform linear regression 

considerably. Nevertheless, Table 5-72 still shows that the performance of regression 

trees, model trees, and ε-SVR is higher than the performance of multivariable linear 

regression. For example, the improvement achieved by ε-SVR over LR is +0.4 units for 

the coefficient of correlation, and +0.08 MET for the root mean squared error. Obviously, 

the extra computation incurred by ε-SVR does not justify the epsilon improvement in 

performance obtained over this dataset. As observed in previous sections, Table 5-72 also 

shows that the activity categories whose energy expenditure is easier to estimate are 

postures and household activities. This is because they consist primarily of activities with 

sedentary and light levels of energy expenditure whose motion is easy to detect from  
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LR RT MT epsilon-SVR

Bench weight lif ting - hard
Bench weight lif ting - light

Bench weight lif ting - moderate
Bicep curls - hard
Bicep curls - light

Bicep curls - moderate
Calisthenics - Crunches

Calisthenics - Sit ups
Cy cling - Cy cle hard - Cy cle 80rpm

Cy cling - Cy cle light - Cy cle 100rpm
Cy cling - Cy cle light - Cy cle 60rpm
Cy cling - Cy cle light - Cy cle 80rpm

Cy cling - Cy cle moderate - Cy cle 80rpm
Ly ing down

Rowing - Rowing hard - Rowing 30spm
Rowing - Rowing light - Rowing 30spm

Rowing - Rowing moderate - Rowing 30spm
Running - Treadmill 4mph - Treadmill 0
Running - Treadmill 5mph - Treadmill 0
Running - Treadmill 6mph - Treadmill 0

Sitting
Sitting - Fidget f eet legs

Sitting - Fidget hands arms
Stairs - Ascend stairs

Stairs - Descend stairs
Standing

Walking - Treadmill 2mph - Treadmill 0
Walking - Treadmill 3mph - Treadmill 0

Walking - Treadmill 3mph - Treadmill 3  - light
Walking - Treadmill 3mph - Treadmill 6  - moderate

Walking - Treadmill 3mph - Treadmill 9  - hard
kneeling
unknown

Carry ing groceries
Doing dishes

Gardening
Ironing

Making the bed
Mopping

Play ing v ideogames
Scrubbing a surf ace

Stacking groceries
Sweeping

Ty ping
Vacuuming

Walking around block
Washing windows

Watching TV
Weeding

Wiping/Dusting
Writing

taking out trash

 
Figure 5-47: Root mean squared error per activity as a gray scale image obtained when estimating 

energy expenditure with different linear and non-linear regression algorithms using all the 

accelerometer-based features computed per sensor over sliding windows of 5.6s in length. The image 

has been scaled to show the lowest RMSE of 0.2MET in white and the largest of 2.3MET in black. 

 

accelerometers. Some household activities such as scrubbing a surface, carrying 

groceries, and washing windows do involve some level of effort not detectable from 

accelerometers. The level of effort, however, is substantially lower than that found during 

gymnasium activities. The table also shows that the activity categories that present the 

higher RMSE are exercise and resistance exercise. This is because they involve high 

levels of energy expenditure in most cases due to different levels of resistance level or 

work load that is not detectable from accelerometers. Some of these activities include 

walking at different incline grades, rowing and cycling at different resistance levels, 

bench weight lifting, and bicep curls. 

Table 5-73 presents the same results as Table 5-72 but when the MaxAcceleration 

feature set is used. In general, the table presents the same tendencies found in Table 5-72. 
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RMSE is lower for the postures and household activity categories and higher for exercise 

and resistance exercise activities. Nonetheless, the table shows that the performance of 

model trees suffers with the increase in the number of features (7 to 247). The 

performance of model trees is worse than the performance for linear regression because 

there is not enough training data available at the leaf nodes of the tree to train the 

associated multivariable linear regression models. Regression trees on the contrary does 

not suffer from this phenomenon because they predict energy expenditure by estimating 

average EE values over the set of examples falling under 

Each leaf node of the tree and these values (averages) can be learned well even from 

small number of examples.  

The performance of ε-SVR on the other hand, is the highest in the table reflecting well 

the fact that ε-SVR is usually little affected by the curse of dimensionality (decrease in 

performance due to the increase of predictor variables) [239]. Performance per activity 

for the different regression algorithms can be found in Appendix B9. Figure 5-47 presents 

the root mean square error per activity for all the regression algorithms as a gray scale 

image normalized to show the lowest RMSE of 0.2 MET in white and the largest of 2.3 

MET in black.  Overall, the figure shows that all algorithms have difficulties predicting 

energy expenditure for the same activities. These activities are activities involving 

different intensity levels due to changes in speed, resistance level, or work load, activities 

involving high levels of energy expenditure, and activities of short duration.  Figure 5-47 

also illustrates the best overall performance of ε-SVR and the poor performance of the 

model tree with respect to the performance of linear regression.  

In conclusion, the results presented in this section indicate that two good choices of 

algorithms to use when predicting energy expenditure are multivariable linear regression 

and regression trees. This is because these algorithms have fast prediction times and their 

performance is close to the best performance obtained using epsilon support vector 

regression. The advantage of regression trees over multivariable linear regression is that 

regression trees are able to learn non-linear relationships in the data. The disadvantage is 

that its training time is considerably longer than the training time for multivariable linear 

regression, particularly when a small number of features are used. The small differences 

found in this work between linear and non-linear regression algorithms agree with prior 

work that has also found that non-linear regression algorithms do not improve 

performance substantially over linear regression techniques [246]. However, the main 

reason suspected for this little difference is unavailability of enough training data. 

   

5.6.4  Does Band-Pass Filtering of the Acceleration Signals Improve Performance? 

One procedure commonly applied in prior work during the estimation of energy 

expenditure from accelerometer data is to band-pass filter the raw acceleration signals 

between 0.1 and 20Hz (e.g. [32, 47, 153, 200]). The rationale behind this is that low pass 

filtering the signal at 20Hz eliminates signal components generated by non-human 

motion and high frequency noise and that high pass filtering at 0.1Hz eliminates posture 

information in the form of static acceleration (DC signal component) that does not 

contribute to energy expenditure considerably. However, to the best of the author‘s 

knowledge, no work has evaluated the impact in performance of band-pass filtering the 

accelerometer signals. As this section investigates the difference in performance obtained  
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Error Measures 

ACAbsArea Feature ACFFTPeaks Feature 

Without  

Band-pass  

Filtering 

With   

Band-pass 

Filtering  

Without  

Band-pass  

Filtering 

With  

 Band-pass 

Filtering  

Correlation Coefficient     0.56 ± 0.11 0.68 ± 0.06 0.68 ± 0.16 0.72 ± 0.07 

Root Mean Square Error      1.66 ± 0.50 1.36 ± 0.30 1.34 ± 0.34 1.28 ± 0.30 

Mean Absolute Error         1.32 ± 0.40 1.02 ± 0.17 1.01 ± 0.24 0.93 ± 0.17 

Maximum Absolute Error Deviation        5.55 ± 1.16 5.02 ± 1.08 5.48 ± 1.32 5.48 ± 1.10 

Table 5-74: Performance obtained while estimating energy expenditure using multivariable linear 

regression when band-pass filtering is applied and when it is not. The features computed are 

ACAbsArea and ACFFTPeaks computed per sensor over sliding windows of 5.6s in length.  

 

when band-pass filtering is applied and when it is not during the estimation of energy 

expenditure.  

The experiments performed in this section utilize multivariable linear regression to 

measure the impact of applying and not applying the band-pass filter during the 

estimation of energy expenditure. The band-pass filter applied is a Chebyshev infinite 

impulse response filter designed using the parameters shown in Table 5-2. Performance is 

measured using two features: ACAbsArea and ACFFTPeaks. This is because the quality 

of these features is likely to be affected by the application of the band-pass filter.  

Table 5-74 shows the performance of applying and not applying the filter while 

estimating energy expenditure using multivariable linear regression and the ACAbsArea 

and ACFFTPeaks features computed per sensor over windows of 5.6s in length. 

Performance per activity is shown in Appendix B10. The table clearly shows that the 

performance is higher when the filter is applied. In fact, the improvement in performance 

observed is more substantial than the improvements observed using more complex non-

linear regression algorithms (see Section 5.6.3). For example, RMSE increased +0.3 

MET for the ACAbsArea feature and +0.06 MET for the ACFFTPeaks feature. 

Performance improves for the ACAbsArea feature because band-pass filtering smoothes  

the signals this reducing the amount of noise. Similarly, performance improves for the 

ACFFTPeaks feature because high frequency noise is reduced leading to more consistent 

estimations of the frequency components of the signal. Performance improves less for the 

ACFFTPeaks feature because it is less dependent on the magnitude of the accelerometer 

signal (since it does not include the DC component of the signal), and the magnitude of 

the accelerometer signal is the most affected by the application of the filter. 

In summary, the results presented in Table 5-74 indicate that band-pass filtering the 

signal significantly improves the performance of energy expenditure estimation. As a 

result, all experiments presented in this thesis utilize band-pass filtering between 

frequencies of 0.1 and 20Hz. One potential problem with band-pass filtering the 

acceleration signals is that potentially useful information about postures (static 

acceleration) is lost. It might be possible that this information is indeed necessary to 

better estimate energy expenditure since different postures have different energy 

expenditure costs [122] (e.g. 1 MET for lying down vs. 1.2 MET for standing) even when 

they involve no motion. Furthermore, energy expenditure can add up for postures 

executed over long periods of time. As a result, Section 5.6.7 will later explore the 

performance of energy expenditure estimation when features that capture posture 

information are used and when they are not.  
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5.6.5  Can Feature Computation Per Axis Improve Performance Over Feature 
Computation per Sensor?  

Most prior work in energy expenditure estimation utilizes features computed over signals 

summarizing the overall motion (acceleration) experienced by a particular body segment. 

For example, the overall motion experienced by a triaxial accelerometer at the hip is 

summarized by computing the sum ( zyx  ) or the signal vector magnitude over the 

accelerometer axes ( 222 zyx  ). The rationale behind this is that overall motion per 

body segment is sufficient to estimate energy expenditure well since energy expended is 

directly proportional to the amount of motion per body segment. One advantage of this 

approach, referred as feature computation per sensor in this work, is that the amount of 

computation is reduced since features are computed over a single signal instead of over 

three different signals (x, y, and z). Nevertheless, some prior work [33, 151, 160, 247] 

[218] also suggests that analyzing motion over individual axis (e.g. x, y, or z), particularly 

the vertical component of acceleration, can improve energy expenditure estimates. As a 

result, this section investigates the difference in performance obtained when estimating 

energy expenditure using features computed over signals summarizing overall motion per 

sensor and using features computed over individual acceleration axis (referred as feature 

computation per axis).  

In the experiments presented in this section, feature computation per sensor is 

performed by first summarizing the motion experienced at each sensor by summing the 

acceleration values at each individual axis ( zyx  ) sample by sample. Feature 

computation per axis is performed by computing the features of interest over each 

individual axis (x, y, and z). Thus, feature vectors corresponding to feature computation 

per axis are three times longer that feature vectors for feature computation per sensor.  

The performance of feature computation per sensor and per axis is measured by 

estimating energy expenditure in two extreme conditions: (1) when few simple features 

are used to estimate energy expenditure (ACAbsArea), and (2) when all the 

accelerometer-based features are used to estimate energy expenditure. The performance 

over both feature sets is also analyzed using a linear regression algorithm (multivariable 

linear regression) and a non-linear regression algorithm (M5‘ model trees). All features 

are computed over sliding windows of 5.6s in length. As will be explained later, this is 

the final window length selected for estimating energy expenditure in Section 5.6.6. 

Table 5-75 presents the performance obtained over the MIT energy expenditure dataset 

when energy expenditure is estimated using multivariable linear regression and the 

ACAbsArea feature computed per sensor and per axis. Results per activity can be found 

in Appendix B11. The table shows that feature computation per axis improves the 

coefficient of correlation 0.03 units and RMSE 0.07 METs. The improvement obtained in 

RMSE is distributed across the postures, exercise, and resistance exercise activity 

categories. When the RMSE per activity is inspected (see Figure 5-48) it is found that 

performance is slightly better (-0.2 to -0.8 MET) for activities involving postures and 

upper body motion such as writing, typing, wiping/dusting, playing video games, doing 

dishes, and sitting fidgeting hands and arms, and bicep curls.   At the same time, the 

performance over bench weight lifting (another activity involving upper body motion) 

slightly decreased between 0.1 and 0.3 MET.  
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Activity Category Linear Regression 

Per Sensor 

Linear Regression 

Per Axis 

Change in RMSE 

Performance 

(Per Axis – Per Sensor) 

Correlation Coefficient 0.68 ± 0.06 0.71 ± 0.13 - 

All 1.36 ± 0.30 (1.02 ± 0.17) 1.29 ± 0.29 (0.92 ± 0.18) 0.07  Improvement 

Postures 0.7±0.2  (0.7±0.2) 0.5±0.2  (0.4±0.2) 0.2  Improvement 

Ambulation 1.1±0.4  (1.0±0.4) 1.1±0.4  (1.0±0.4) 0  Unchanged 

Exercise 1.5±0.7  (1.4±0.7) 1.3±0.8  (1.2±0.8) 0.2  Improvement 

Resistance Exercise 1.4±0.6  (1.3±0.6) 1.2±0.7  (1.1±0.7) 0.2  Improvement 

Household 0.7±0.2  (0.6±0.2) 0.7±0.3  (0.6±0.3) 0  Unchanged 

Table 5-75: Correlation coefficient, root mean squared error, and mean absolute error (shown in 

parenthesis) per activity category when estimating energy expenditure with multivariable linear 

regression using the ACAbsArea feature computed per sensor and per axis over windows of 5.6s in 

length. 

 

 
Activity Category M5‟ Model Tree 

Per Sensor 

M5‟ Model Tree 

Per Axis 

Change in RMSE 

Performance 

(Per Axis – Per Sensor) 

Correlation Coefficient 0.72 ± 0.08 0.70 ± 0.15 - 

All 1.24±0.29 (0.86±0.19) 1.34±0.43 (0.92 ± 0.23)          0.1  Decline 

Postures 0.6±0.3  (0.5±0.2) 0.5±0.2  (0.4±0.2)   0.1 Improvement 

Ambulation 1.1±0.4  (0.9±0.4) 1.1±0.4  (1.0±0.4) 0 Unchanged 

Exercise 1.3±0.7  (1.2±0.7) 1.3±0.9  (1.2±0.8) 0 Unchanged 

Resistance Exercise 1.1±0.6  (1.0±0.6) 1.3±0.8  (1.1±0.7)          0.2  Decline 

Household 0.6±0.3  (0.5±0.2) 0.7±0.3  (0.6±0.3)          0.1  Decline 

Table 5-76: Correlation coefficient, root mean squared error, and mean absolute error (shown in 

parenthesis) per activity category when estimating energy expenditure with a M5‟ model tree using 

the ACAbsArea feature set computed per sensor and per axis over windows of 5.6s in length. 

 

 
Activity Category Linear Regression 

Per Sensor 

Linear Regression 

Per Axis 

Change in RMSE 

Performance 

(Per Axis – Per Sensor) 

Correlation Coefficient 0.74 ± 0.10 0.73 ± 0.12 - 

All 1.24 ± 0.30 (0.91 ± 0.20) 1.27 ± 0.26 (0.93 ± 0.19)      0.03  Decline 

Postures 0.7±0.3  (0.6±0.3) 0.6±0.3  (0.5±0.3) 0.1  Improvement 

Ambulation 1.2±0.5  (1.0±0.5) 1.1±0.5  (0.9±0.4) 0.1 Improvement 

Exercise 1.2±0.7  (1.1±0.7) 1.2±0.7  (1.1±0.7)           0  Unchanged 

Resistance Exercise 1.1±0.6  (1.0±0.6) 1.1±0.6  (1.0±0.6)           0  Unchanged 

Household 0.7±0.3  (0.6±0.3) 0.8±0.4  (0.7±0.4)         0.1  Decline 

Table 5-77: Correlation coefficient, root mean squared error, and mean absolute error (shown in 

parenthesis) per activity category when estimating energy expenditure with multivariable linear 

regression using the MaxAcceleration feature set computed per sensor and per axis over windows of 

5.6s in length. 

 

 
Activity Category M5‟ Model Tree 

Per Sensor 

M5‟ Model Tree 

Per Axis 

Change in RMSE 

Performance 

(Per Axis – Per Sensor) 

Correlation Coefficient 0.64 ± 0.17 0.64 ± 0.12 - 

All 1.56 ± 0.67 (0.94 ± 0.24) 1.46 ± 0.23 (1.02 ± 0.16)  0.1  Improvement 

Postures 1.0±1.5  (0.7±0.7) 0.6±0.3  (0.5±0.3) 0.4  Improvement 

Ambulation 1.2±0.5  (1.0±0.5) 1.3±0.7  (1.2±0.6)         0.1  Decline 

Exercise 1.3±0.7  (1.2±0.7) 1.5±0.8  (1.3±0.7)          0.2 Decline 

Resistance Exercise 1.1±0.6  (1.0±0.5) 1.3±0.6  (1.2±0.5)          0.2 Decline 

Household 0.8±0.5  (0.6±0.4) 0.9±0.5  (0.8±0.4)          0.1 Decline 

Table 5-78: Correlation coefficient, root mean squared error, and mean absolute error (shown in 

parenthesis) per activity category when estimating energy expenditure with the M5‟ model tree using 

the MaxAcceleration feature set computed per sensor and per axis over windows of 5.6s in length.  
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Figure 5-48: Root mean squared error represented as a gray scale image when energy expenditure is 

estimated using multivariable linear regression using the ACAbsArea feature computed per sensor 

and per axis over windows of 5.6s in length. The image is scaled to show the lowest RMSE of 0.3 

MET in white and the largest RMSE of 3.1 in black. 

 

It seems that analyzing motion per sensor improves energy expenditure for upper body 

activities except for bench weight lifting. One possible reason for this is that the motion 

of bench weight lifting is so periodic that it is well captured using feature computation per 

sensor and using feature computation per axis only reduces the amount of training data 

available to train each predictor variable.  

Table 5-76 presents the performance of estimating energy expenditure using an M5‘ 

model tree and the ACAbsArea feature computed per sensor and per axis over windows of 

5.6s in length. The first thing to notice is that the performance obtained during feature 

computation per sensor is better than the performance obtained during feature 

computation per axis when multivariable linear regression is used. This is expected since 

model trees are more complex regression algorithms capable of learning non-linear 
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relationships in the data. However, when the performance per sensor and per axis are 

compared for the M5‘ model tree, it is found that feature computation per axis has a 

lower performance than feature computation per sensor. One possible explanation is that 

feature computation per axis produces a three-fold increase in the vector size of the 

features and consequently, the training data available at the leaf nodes of the M5‘ tree is  

insufficient to learn the multivariable linear regression models associated with each leaf 

node. Table 5-77 and Table 5-78 also illustrate the decline in performance of feature 

computation per axis when the number of features used is large. Given the amount of 

training data available in this work, it is unclear if feature computation per axis will 

improve performance over feature computation per sensor. The only improvement 

observed in this section was obtained with the ACAbsArea feature, which has a very low 

feature vector size of 7.  

In conclusion, the results presented in this section suggest that when the number of 

features is low, feature computation per axis slightly improves performance over feature 

computation per sensor. The improvement in performance observed using the 

ACAbsArea feature and multivariable linear regression was +0.03 units for the correlation 

coefficient and 0.07 MET for the RMSE. Even so, when the number of features used is 

large and/or the regression algorithm used has large training data requirements, feature 

computation per axis damages performance by increasing the total number of features by 

a factor of three when not enough data is available for training. For these reasons, from 

this point on, feature computation per sensor will be used when presenting results in 

upcoming sections.  

 

5.6.6 What is the Optimal Sliding Window Length to Use?  

Most existing algorithms that estimate energy expenditure from accelerometer data 

generate estimates over sliding windows of one minute in length. This relatively long 

window length (also known as the epoch) was originally used due to hardware limitations 

in storage capacity and battery life of the first off-the-shelf accelerometers that appeared 

in the market. Nowadays, however, these limitations no longer exist. It may make sense 

to reduce the size of this window for two reasons: (1) shorter windows will allow shorter 

real-time estimation delays that would also enable faster interventions at the point of 

decision, and (2) motion can vary considerably over one minute windows, so reducing 

the window length might improve estimation of energy expenditure. As a result, this 

section explores the impact in performance of varying the length of the sliding window 

during the estimation of energy expenditure.  

The length of the sliding window also affects the quality or resolution of some of the 

features used in this work such as the FFT transformation and the Pearson‘s correlation 

coefficients. Usually, the longer the window length, the better these features can be 

estimated. On the other hand, the longer the window length, the longer the end-user of an 

energy expenditure estimation system has to wait for a recognition result. Consequently, 

this section determines the most appropriate window length by measuring the 

performance of multivariable linear regression and M5‘model trees over the two features 

whose quality is most likely to vary with the window length: FFT peaks (ACFFTPeaks) 

and Pearson correlation coefficients (ACCorr). As a baseline, the performance is also 

computed utilizing the ACAbsArea feature. Linear regression and model trees are used in 
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this experiment because they represent the linear and non-linear regression algorithms 

with best performance over all features as found in Section 5.6.3.  

The features will be first computed over window lengths ranging from 1.4 to 91 

seconds (64 to 2048 accelerometer samples) using linear regression and feature 

computation per sensor, and later on a reduced set of window lengths using the M5‘ 

model tree algorithm. This procedure is followed to minimize the time and number of 

experiments to run while maximizing interpretability of results. Window lengths shorter 

than 1.4s were not considered because they are intuitively too short to capture the 

repetitive motion patterns found in some periodic activities such as walking slowly at 

2mph. Similarly, window lengths longer than 91s were not considered due to the 

extremely long real-time classification delay they introduce into the system.  

The lengths of the sliding windows explored in this section are constrained to be a 

power of two by the algorithms required to compute the Fourier and Wavelet 

transformations efficiently. Table 5-11 shows the window lengths explored in this section 

in number of acceleration samples and corresponding time in seconds assuming a 

sampling rate of 45Hz.  

Figure 5-49 presents the plot of the root mean squared error obtained while varying the 

window length from 1.4s to 91s. Appendix B12 presents the same information in a 

tabular manner. The plot indicates that the RMSE error decreases as the window length is 

increased when both the ACAbsArea and FFTCorr feature sets are used. For example, 

RMSE decreases -0.22 MET when the window length is increased from 1.4 to 91s for the 

ACAbsArea feature and -0.16 MET for the FFTCorr feature set.  

This modest improvement might be due to the increased smoothing of the values for 

the ACAbsArea feature and for the ground truth energy expenditure signals. Another 

possible reason for the improvement is that the quality or resolution for the ACFFTPeaks 

and ACCorr features increases as longer window lengths are used. Figure 5-49 also 

illustrates that the RMSE for the ambulation and exercise categories remains practically 

unchanged up to a window length of 22.7s for the ACAbsArea feature and up to a 

window length of 44.5s for the FFTCorr feature set. Figure 5-49 shows that the RMSE 

for the postures category increases at window lengths of 11.3s and 45.5s, but later 

decreases at a window length of 91s. Plot Figure 5-49a on the contrary, illustrates that the 

RMSE for postures indeed decreases as the window length is increased, most likely due 

to the smoothing effect of longer windows. 

When the RMSE is analyzed per activity for the FFTCorr feature set (see Figure 5-51 

and Appendix B12), it is found that it changes little among all activities up to a window 

length of 11.3s. Once this window is reached, RMSE for all activities decreases between 

0.1-0.2 METs at a window of 11.3s and between 0.1-0.6 METs at a final window length 

of 90s. One possible reason why the improvements are so minimal is that the estimated 

and ground truth energy expenditure values follow one another independently of the 

window length utilized. In other words, the error depends on the difference between the 

estimated and ground truth energy expenditure signals so changing how these signals are 

partitioned does not impact error significantly. One of the main problems of using long 

windows; however, is that performance decreases for physically intense activities of short 

duration such as ascending stairs and descending stairs. This can be seen in Figure 5-51 

where the error is the maximum (black area) for these activities at a window length of 

90s. The examples collected for these activities have individual durations of less than a  
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Figure 5-49: Root mean squared error obtained when estimating energy expenditure in a subject 

independent manner over the MIT dataset using multivariable linear regression, the ACAbsArea and 

FFTCorr (ACFFTPeaks+ACCorr) feature sets computed per sensor over windows of varying lengths.   
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Figure 5-50: Root mean squared error obtained when estimating energy expenditure in a subject 

independent manner over the MIT dataset using a M5‟ model trees, the ACAbsArea and FFTCorr 

(ACFFTPeaks+ACCorr) feature sets computed per sensor over windows of varying lengths.   
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Figure 5-51: Root mean squared error (RMSE) represented as a grayscale image when estimating 

energy expenditure using multivariable linear regression using the FFTCorr feature set computed 

per sensor over sliding windows of varying length. The image is scaled to show the largest RMSE of 

2.2MET in black and the lowest RMSE of 0.3MET in white. 

 

minute, and are followed by resting periods. As a result, their energy expenditure is 

poorly detected with a window length of 90s because energy expenditure associated with 

ascending stairs is averaged with the energy expenditure associated with resting. This 

effect can also be seen for running at 6mph in Figure 5-51 since its error increases after a 

window length of 11.3s. This is because most examples for this physically demanding 

activity have durations of less than 1.5min. Another problem is that at large window 

lengths, the number of training examples per activity is reduced considerably thus 

impacting performance. Figure 5-51 also shows that RMSE decreases between -0.1 and -

0.6 METs for household activities.  

Figure 5-50 presents plots of the root mean square error per activity category when the 

M5‘ model tree is used to predict energy expenditure using the ACAbsArea and FFTCorr 
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features over varying window lengths. Overall, the plots in Figure 5-50 indicate that the 

RMSE also decreases as the window length is increased. The RMSE is slightly lower (-

0.14 MET for ACAbsArea and -0.03 for the FFTCorr feature set) than the one obtained 

using linear regression because model trees can capture non-linear relationships in the 

data. However, one might question if the improvement obtained  justifies the utilization 

of this more complex algorithm. As the window is increased from 5.6s to 91s, overall 

RMSE decreases 0.27 MET for the ACAbsArea feature and 0.23 MET for the FFTCorr 

feature set. The improvement obtained is little and the activity categories that present the 

higher decrease in error are ambulation (0.3-0.5 MET) and exercise (0.3-0.4 MET). The 

category that experiences the least decrease in error (0.0 MET for ACAbsArea and 0.1 

MET for FFTCorr) is household activities.  

In summary, the results presented in this section suggest that in general, root mean 

squared error decreases as the window length increases but this decrease in RMSE is 

modest (e.g. between 0.16 and 0.27 MET when length is increased from 1.4s to 91s). 

RMSE error decreases as the window length increases because the feature values and the 

ground truth energy expenditure values are smoothed out as the window length is 

increased, particularly non-steady state intervals. It also increases because the quality or 

resolution of some features (e.g. ACFFTPeaks and ACCorr) also increases as the window 

length increases. As a result, small windows can be utilized to estimate energy 

expenditure without affecting error considerably. This is an intuitive result because the 

most important information to estimate energy expenditure from accelerometer data is 

overall amount of motion, which can be estimated well even when small windows are 

used. The results also indicate than long window lengths increase RMSE in short duration 

activities such as ascending stairs, descending stairs, and physically demanding activities 

(of short duration) such as running at 6mph. This is because their energy expenditure 

data is averaged with the energy expenditure data associated with activities preceding or 

following these short duration activities. As a result, a window length of 5.6s will be used 

to estimate energy expenditure for the remaining of this work. This window length allows 

prediction of energy expenditure over short duration activities, minimizes energy 

expenditure estimation lag (during real-time implementations), and it has shown good 

performance with respect to windows of shorter duration. Finally, this is the same 

window length used to recognize activities in Section 5.4.6. Using the same window 

length to recognize activities and estimate energy expenditure simultaneously reduces 

computational complexity since features do not have to be computed twice over different 

window lengths (assuming some features are used in both algorithms).  

 

5.6.7 Which Features Improve Energy Expenditure Estimation and Maintain 
Computational Cost Low? 

Most prior work in estimating energy expenditure from accelerometer data utilizes raw 

accelerometer values summed over windows of one minute in length as the predictor 

variables (features) in the regression equations. However, recent work [152, 181] 

suggests that more complex features computed over the accelerometer signal such as the 

inter-quartile interval, skew, kurtosis, and frequency domain energy combined with non-

linear regression algorithms can improve energy expenditure estimation. The intuition 

behind this is that more complex features might capture important motion information 
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that would be otherwise lost if simple sums of accelerometer values over one minute 

windows are used. As a result, this section investigates the performance of estimating 

energy expenditure using combinations of a large set of 41 features. The main goal of the 

section is to identify the subset of features that maximizes performance when considering 

the computational requirements of the features. To the best of the author knowledge, no 

prior work has analyzed the impact in performance of such a large set of features in 

estimating energy expenditure.   

This section first evaluates the performance over individual features to identify those 

with higher performance. Later, the performance over combinations of individual features 

with high performance is evaluated to determine the best subset of features to use. All 

experiments performed in this section utilize feature computation per sensor, sliding 

windows of 5.6s in length (window length selected in the previous Section), and 

multivariable linear regression to estimate energy expenditure in a subject independent 

manner. As shown in Section 5.6.3, the performance obtained using multivariable linear 

regression is comparable to the one obtained using more complex non-linear regression 

algorithms, at least over the dataset explored in this work. The experiments are performed 

in a best case scenario where all the seven accelerometers are used for estimating energy 

expenditure. Section 5.6.8 will later analyze what is the best combination of sensors to 

use and where should they be worn.  

A complete list of all the features explored in this section is shown in Appendix A3. 

These features consist on a superset of features used in prior work to recognize activities 

that have shown good performance as well as some new features not explored before. 

Table 5-12 presents a list of the features explored and a brief explanation of the 

information they attempt to capture. Features are computed after preprocessing the 

acceleration signals to better differentiate between motion information and posture 

information. The features intended to capture motion information are computed over the 

accelerometer signals after applying a band-pass filter between the frequencies of 0.1 and 

20Hz. This preprocessing has two goals: (1) eliminate the DC or static component of the 

acceleration signal due to the orientation of the sensors with respect to ground (posture 

information) and (2) filter high frequency noise and motion not generated by the human 

body. The features intended to capture posture information are computed over the 

accelerometer signals after low-pass filtering them at a cut-off frequency of 1Hz. This has 

the purpose of eliminating most of the signal information due to body motion and 

preserving the information due to static acceleration or posture. Features that capture 

motion information start with the prefix ―AC‖ and those that capture posture information 

start with the prefix ―DC‖. 

Table 5-79 presents the performance obtained while individual features are used to 

estimate energy expenditure in a subject independent manner using multivariable linear 

regression. The features shown in Table 5-79 are ordered to present the ones with higher 

correlation coefficients at the top and the ones with lower correlation coefficients at the 

bottom. Table 5-79 shows that the best performing features is ACFFTPeaks with a 

correlation coefficient of 0.72 and a RMSE of 1.28. This is a good result because this 

feature does not strongly depend on the magnitude of the accelerometer signal. 

Invariance to the magnitude of the accelerometer signal is important because it can vary 

with changes in the location and orientation of the sensors (during installation on the 

body) and with hardware differences across accelerometers. The ACFFTPeaks feature  
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Features subsets 

(Number of 

features) 

Correlation 

coefficient for 

All 

Activities 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

 

Househol

d 

ACFFTPeaks (70) 0.72 ± 0.07 1.28 ± 0.30 

(0.93 ± 0.17) 

0.6±0.2  

(0.6±0.2) 

1.2±0.5  

(1.1±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.7) 

0.7±0.2  

(0.6±0.2) 

ACFFTCoeff (889) 0.72 ± 0.06 1.34 ± 0.25 
(0.97 ± 0.17) 

0.6±0.2  
(0.5±0.2) 

1.4±0.6  
(1.2±0.6) 

1.4±0.8  
(1.3±0.8) 

1.2±0.7  
(1.0±0.7) 

0.6±0.2  
(0.5±0.2) 

ACIQR (7) 0.70 ± 0.06 1.32 ± 0.31 

(0.98 ± 0.16) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.2±0.6) 

0.7±0.2  

(0.6±0.2) 

ACQ3 (7) 0.69 ± 0.06 1.33 ± 0.30 
(0.99 ± 0.16) 

0.7±0.2  
(0.7±0.2) 

1.0±0.4  
(0.9±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.6  
(1.2±0.6) 

0.7±0.2  
(0.6±0.2) 

ACTotalAbsArea 

(1) 

0.68 ± 0.06 1.36 ± 0.31 

(1.03 ± 0.17) 

0.8±0.2  

(0.7±0.2) 

1.0±0.4  

(0.9±0.4) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.3±0.6) 

0.7±0.2  

(0.6±0.2) 

ACAbsArea(7) 0.68 ± 0.06 1.36 ± 0.30 

(1.0 ± 0.2) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.6±0.2) 

ACAbsMean (7) 0.68 ± 0.06 1.36 ± 0.30 
(1.02 ± 0.17) 

0.7±0.2  
(0.7±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.4±0.6  
(1.3±0.6) 

0.7±0.2  
(0.6±0.2) 

ACMCR (7) 0.68 ± 0.06 1.37 ± 0.32 

(1.03 ± 0.20) 

0.7±0.4  

(0.6±0.4) 

1.4±0.5  

(1.3±0.5) 

1.4±0.7  

(1.2±0.7) 

1.2±0.5  

(1.1±0.5) 

0.8±0.2  

(0.7±0.2) 

ACModVigEnergy 
(7)  

0.68 ± 0.09 1.37 ± 0.36 
(1.02 ± 0.19) 

0.9±0.2  
(0.8±0.2) 

1.2±0.4  
(1.0±0.4) 

1.4±0.7  
(1.3±0.7) 

1.2±0.6  
(1.1±0.6) 

0.7±0.2  
(0.7±0.2) 

ACSF (5) 0.67 ± 0.05 1.37 ± 0.30 

(1.03 ± 0.17) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.7±0.2) 

ACTotalSF (1) 0.65 ± 0.07 1.41 ± 0.33 
(1.07 ± 0.18) 

0.9±0.2  
(0.9±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.6  
(1.2±0.6) 

0.7±0.2  
(0.7±0.2) 

ACBandEnergy (7) 0.64 ± 0.06 1.46 ± 0.31 

(1.10 ± 0.17) 

0.8±0.3  

(0.7±0.3) 

1.1±0.4  

(0.9±0.4) 

1.6±0.7  

(1.5±0.7) 

1.3±0.6  

(1.3±0.6) 

0.9±0.3  

(0.8±0.3) 

ACRange(7) 0.64 ± 0.07 1.45 ± 0.31 

(1.11 ± 0.18) 

0.8±0.3  

(0.8±0.3) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.8±0.3  

(0.7±0.2) 

ACEntropy (7) 0.63 ± 0.07 1.46 ± 0.34 
(1.11 ± 0.21) 

0.8±0.2  
(0.8±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.5  
(1.2±0.5) 

0.8±0.2  
(0.7±0.2) 

ACVar (7)  0.60 ± 0.06 1.50 ± 0.32 

(1.17 ± 0.18) 

1.1±0.2  

(1.1±0.2) 

1.1±0.5  

(1.0±0.5) 

1.7±0.7  

(1.6±0.7) 

1.5±0.6  

(1.4±0.6) 

0.8±0.2  

(0.7±0.2) 

ACLowEnergy (7) 0.60 ± 0.10 1.52 ± 0.35 

(1.17 ± 0.21) 

1.0±0.2  

(1.0±0.2) 

1.3±0.5  

(1.2±0.5) 

1.6±0.7  

(1.5±0.7) 

1.4±0.6  

(1.3±0.6) 

0.8±0.2  

(0.7±0.2) 

ACDomFreqRatio 

(7) 

0.53 ± 0.11 1.58 ± 0.31 

(1.27 ± 0.19) 

1.0±0.3  

(0.9±0.3) 

1.2±0.5  

(1.1±0.5) 

1.8±0.8  

(1.7±0.8) 

1.6±0.6  

(1.5±0.6) 

1.1±0.4  

(1.0±0.3) 

ACEnergy (7) 0.50 ± 0.08 1.66 ± 0.34 
(1.33 ± 0.20) 

1.4±0.4  
(1.3±0.3) 

1.3±0.5  
(1.2±0.5) 

1.8±0.8  
(1.8±0.8) 

1.6±0.6  
(1.6±0.6) 

0.9±0.3  
(0.9±0.3) 

DCPostureDist 

(21) 

0.42 ± 0.16 1.75 ± 0.30 

(1.35 ± 0.18) 

1.3±0.5  

(1.3±0.5) 

1.6±0.6  

(1.5±0.6) 

1.8±0.9  

(1.7±0.9) 

1.4±0.8  

(1.4±0.8) 

1.1±0.6  

(1.1±0.6) 

ACCorr (21) 0.39 ± 0.16 1.66 ± 0.32 

(1.31 ± 0.19) 

1.4±0.4  

(1.3±0.4) 

1.5±0.7  

(1.4±0.7) 

1.8±0.9  

(1.7±0.9) 

1.6±0.7  

(1.5±0.7) 

1.0±0.3  

(0.9±0.2) 

ACPitch (7) 0.26 ± 0.10 1.78 ± 0.31 
(1.41 ± 0.20) 

2.2±0.5  
(2.0±0.5) 

1.5±0.5  
(1.5±0.5) 

1.9±0.7  
(1.8±0.7) 

1.6±0.6  
(1.5±0.6) 

1.0±0.3  
(0.9±0.3) 

DCMean (7) 0.22 ± 0.18 1.85 ± 0.36 

(1.51 ± 0.22) 

1.8±0.4  

(1.8±0.5) 

1.7±0.6  

(1.7±0.6) 

2.1±0.8  

(2.0±0.8) 

1.6±0.6  

(1.6±0.6) 

1.1±0.4  

(1.1±0.4) 

DCArea (7) 0.22 ± 0.18 1.85 ± 0.36 
(1.51 ± 0.22) 

1.8±0.4  
(1.8±0.5) 

1.7±0.6  
(1.7±0.6) 

2.1±0.8  
(2.0±0.8) 

1.6±0.6  
(1.6±0.6) 

1.1±0.4  
(1.1±0.4) 

DCTotalMean (7) 0.21 ± 0.19 1.82 ± 0.36 

(1.48 ± 0.21) 

1.8±0.3  

(1.8±0.3) 

1.6±0.5  

(1.5±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.1±0.3  

(1.0±0.3) 

ACSkew (7) 0.17 ± 0.08 1.83 ± 0.33 

(1.49 ± 0.20) 

1.6±0.3  

(1.6±0.3) 

1.7±0.5  

(1.6±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.1±0.3  

(1.0±0.3) 

ACKur (7) 0.11 ± 0.04 1.83 ± 0.33 

(1.49 ± 0.21) 

1.8±0.2  

(1.8±0.3) 

1.7±0.5  

(1.6±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.0±0.3  

(1.0±0.3) 

ACAbsCV (7) 0.13 ± 0.06 1.83 ± 0.33 

(1.49 ± 0.22) 

1.8±0.3  

(1.8±0.3) 

1.7±0.5  

(1.6±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.0±0.3  

(1.0±0.3) 

Table 5-79:  Root mean squared error and mean absolute error (shown in parenthesis) when 

estimating energy expenditure in a subject independent manner using linear regression over 

individual features computed per sensor over windows of 5.6s in length. 
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Figure 5-52: Root mean squared error per activity category obtained when estimating energy 

expenditure over individual features computed per sensor over windows of 5.6s in length using 

multivariable linear regression. The grayscale image is scaled to show the lowest RMSE of 0.6MET 

in white and the largest RMSE of 2.2MET in black. In other words, poor areas of performance are 

shown as dark regions in the image.  

 

was not expected to perform too well on the postures activity category because the first 

FFT coefficient representing the DC offset of the signal (posture information) is not used 

in this feature. However, this feature is able to predict energy expenditure for these 

sedentary activities by detecting very low frequency motion associated with these 

activities (0.1-3Hz) as observed from the variables included in the regression models 

learned.  One disadvantage of this feature is its relatively high computational complexity 

of O(nlogn).  

The difference in RMSE values between the best and worst performing features in 

Table 5-79 is 0.55 MET reflects the difficulty of predicting energy expenditure over the 

MIT energy expenditure dataset. This dataset contains data for 51 activities collected at a 

gym and at a residential home. Furthermore, some of these activities include different 

intensity levels due to both changes in the speed of execution of the activities and 

changes in resistance level or work load. The dataset also contains examples of rapid 

changes in energy expenditure such as when someone walks upstairs (rapid increase in 

energy expenditure) for one minute and later rests for another minute (decreases in 

energy expenditure) repeated continuously up to three times in a row.   

Moreover, unlabeled periods of time (unknown activity) when subjects rest after 

exhaustive exercise sessions were not eliminated from the dataset. Finally, periods of 
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time where energy expenditure does not reach steady state were also not eliminated from 

the dataset. From Table 5-79, a more reliable indicator of the performance of individual 

features appears to be the correlation coefficient since the difference in this value for the 

best and worst performing activities is 0.59. The difference between the best and worst 

possible correlation coefficients is one. 

Interestingly, the ACFFTCoeff feature expected to have a poor performance due to its 

large size (889); nonetheless, it is the second best performing feature. This is because the 

linear regression algorithm used performs feature selection using the M5 method and 

therefore was able to successfully find a subset of the 889 features that provided good 

performance. As observed by inspecting the variables included in the regression model 

learned.  Table 5-79 also shows that the inter-quartile range feature (ACIQR) is the third 

best performing feature. This feature achieves a better performance than the 

ACTotalAbsArea and the ACAbsArea features, the two features most used to predict 

energy expenditure in prior work.  The problem with the ACIQR feature is its high 

computational complexity since all acceleration values inside a given window need to be 

ordered in ascending order before this feature can be computed (O(n
2
) if bubble, 

insertion, selection, and shell sorts are utilized and O(n log n) if quick sort is utilized). 

Clearly, the improvement in performance over the ACAbsArea feature of only 0.02MET 

does not justify the extra computation incurred. The performance of the ACAbsArea and 

ACTotalAbsArea features is similar because they both capture similar information on 

overall body motion. It seems that computing body motion per limb (ACAbsArea) does 

not improve over computing overall body motion (ACTotalAbsArea), perhaps because 

the regression coefficients need to be optimized for all activities at once. The ACAbsArea 

feature might provide an advantage if different regression models are used to estimate 

energy expenditure over different sets of activities. When the performance of features 

capturing motion energy is compared (ACEnergy, ACBandEnergy, ACModVigEnergy, 

ACLowEnergy), it is found that the best performing features are ACModVigEnergy and 

ACBandEnergy. This is likely because most activities in the MIT energy expenditure 

dataset include moderate to vigorous motion that may be better captured by the 

ACModVigEnergy feature since it computes energy over the frequency range for these 

motion intensities (0.71 – 10 Hz). Similarly, the ACBandEnergy feature computes energy 

over a frequency range that overlaps with the range of moderate and vigorous motion 

(0.3-3.5Hz).  

Figure 5-52 presents the root mean squared as a gray scale image that highlights the 

difference in performance among activity categories. From this figure, it can be seen that 

the best performing features achieve the lowest RMSE error for the postures and 

household activity categories (white areas located at the top of Figure 5-52). This is 

because these activities have low levels of energy expenditure as compared to the other 

activity categories (ambulation, exercise and resistance exercise activities). It is true that 

some household activities involve some levels of effort (e.g. scrubbing a surface) or 

work load (e.g. carrying groceries) but the energy expenditure associated with these 

activities is low compared to the energy expenditure values found during exercise or 

resistance exercise activities performed at the gym. As a result, the RMSE for household 

activities is lower than the one found in the exercise and resistance exercise categories. 

The high RMSE error associated with exercise and resistance exercise activities can be 

observed in Figure 5-52 as darker regions for these categories, particularly for the  
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Information captured by the features Features 

Measures of body posture DCPostureDist, DCArea, DCMean, and DCTotalMean. 

Measures of motion shape ACTotalAbsArea, ACAbsArea, ACAbsMean, ACQ3, ACQ1, ACQ2, 
ACTotalSVM, ACEntropy, ACSkew, and ACKur. 

Measures of motion variation ACIQR, ACRange, ACVar, and ACAbsCV,  

Measures of motion spectral content ACFFTPeaks, ACFFTCoeff, and FWTCoeff.  

Measures of motion energy ACModVigEnergy, ACBandEnergy, ACLowEnergy, and ACEnergy.  

Measures of motion periodicity ACMCR, ACPitch, and ACDomFreqRatio.  

Measures of motion similarity across body 
segments 

ACCorr 

Measures of force employed per body segment ACSF and ACTotalSF. 

Table 5-80: Ordering of the features according to their individual performance and computational 

requirements (decreasing order of usefulness from left to right) clustered based on the information 

they attempt to capture from the accelerometer signals. 

 

 
Features subsets 

 

Correlation  

 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

All Features:  

MaxAcceleration 

0.74 ± 0.10 1.24 ± 0.30 

(0.91 ± 0.20) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.0±0.5) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.6) 

0.7±0.3  

(0.6±0.3) 

Fast to compute:  
ACAbsArea, 

DCArea, ACVar, 

ACRange, ACMCR 

0.72 ± 0.11 1.27 ± 0.27 
(0.94 ± 0.19) 

0.7±0.4  
(0.7±0.4) 

1.2±0.5  
(1.1±0.5) 

1.2±0.7  
(1.1±0.7) 

1.1±0.6  
(1.0±0.6) 

0.8±0.5  
(0.7±0.5) 

Invariant reduced 
DCPostureDist, 

ACVar, 

ACBandEnergy, 
ACFFTPeaks, 

0.72 ± 0.11 1.28 ± 0.29 
(0.95 ± 0.19) 

0.7±0.3  
(0.6±0.3) 

1.2±0.5  
(1.1±0.5) 

1.3±0.8  
(1.2±0.8) 

1.2±0.6  
(1.1±0.6) 

0.8±0.4  
(0.7±0.4) 

S1: 

ACFFTPeaks. 

ACAbsArea 

0.73 ± 0.07 1.27 ± 0.29 

(0.92 ± 0.17) 

0.6±0.2  

(0.5±0.2) 

1.2±0.5  

(1.1±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

S2: 

ACFFTPeaks. 

ACEntropy 

ACMCR 

ACModVigEnergy 

0.75 ± 0.06 1.23 ± 0.29 

(0.89 ± 0.18) 

0.7±0.3  

(0.6±0.3) 

1.1±0.5  

(1.0±0.5) 

1.3±0.7  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.7±0.2  

(0.6±0.2) 

S3: 

ACFFTPeaks. 
ACMCR 

ACModVigEnergy 

0.74 ± 0.06 1.24 ± 0.28 

(0.89 ± 0.17) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.0±0.5) 

1.3±0.8  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.7±0.2  

(0.6±0.2) 

ACFFTPeaks  0.72 ± 0.07 1.28 ± 0.30 

(0.93 ± 0.17) 

0.6±0.2  

(0.6±0.2) 

1.2±0.5  

(1.1±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.7) 

0.7±0.2  

(0.6±0.2) 

ACAbsArea 0.68 ± 0.06 1.36 ± 0.30 
(1.0 ± 0.2) 

0.7±0.2  
(0.7±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.4±0.6  
(1.3±0.6) 

0.7±0.2  
(0.6±0.2) 

Table 5-81: Root mean squared error and mean absolute error (shown in parenthesis) for the six 

subsets of accelerometer-based features with highest performance found when estimating energy 

expenditure in a subject independent manner using linear regression over the MIT dataset. Features 

are computed per sensor over windows of 5.6s in length. 

 

features located at the bottom of the figure (poor performing features). Figure 5-52 

highlights that the ACPitch feature has a very high RMSE error for the postures category. 

This is expected since this feature captures the periodicity of motion (fundamental 

frequency) and motion is minimal for sedentary activities.  

Once the performance over individual features was found, they were ordered in 

decreasing order of usefulness by taking into account their computational requirements. 

Table 5-80 presents the final ordering of the features according to their individual 

performance (from Table 5-79) and computational requirements clustered based on the 

information they attempt to capture. The ordering of features presented in this table was 
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then used to measure the performance over different combinations of features. These 

features are more invariant to the magnitude of the accelerometer signal than other 

features and showed high discrimination during activity recognition tasks. The fast to 

compute feature set also includes high discriminant features for activity recognition but 

that are fast to compute such as the ACAbsArea, DCArea, ACVar, ACRange, and 

ACMCR. Table 5-81 also presents the performance for a set of features labeled as 

MaxAcceleration set which contains all the accelerometer-based features.  

This set provides a baseline for the best performance that can be obtained when all the 

accelerometer-based features are used to estimate energy expenditure. Performance per 

activity for these feature sets is presented in Appendix B13. 

Table 5-81 presents the feature sets with highest performance found when estimating 

energy expenditure in a subject independent manner over the MIT energy expenditure 

dataset. The feature sets labeled as fast to compute and invariant reduced correspond to 

two of the sets of features found with higher performance during the activity recognition 

experiments in Section 5.4.7. As a reminder to the reader, the invariant reduced feature 

set consists on the DCPostureDist, ACVar, ACBandEnergy, ACFFTPeaks features.  

From Table 5-81, we can observe that the feature set with highest correlation 

coefficient (0.75) and lowest RMSE is the one containing the features ACFFTPeaks, 

ACMCR, and ACModVigEnergy. This set is the best performing because the features 

ACFFTPeaks and ACMCR capture the frequencies at which body segments are being 

moved. Intuitively, it makes sense that higher energy expenditure will be associated with 

rapid or high frequency motion. The ACModVigEnergy feature captures the energy 

associated with the body limb movement over the moderate and vigorous motion levels. 

As explained before, most activities contained in the MIT dataset involve either moderate 

or vigorous motion, so this feature outperforms the other features measuring motion 

energy (ACBandEnergy, ACLowEnergy, and ACEnergy). Overall, the performance using 

all six subsets of features is similar and very close. For example, the difference between 

the best and worse correlation coefficient is just 0.03 and the difference between the best 

and worse RMSE is only 0.05 MET for the feature combinations. One possible 

explanation is that the unavailability of enough training data due to the utilization of a 

large number of features (since they are computed over all seven sensors) prevents the 

differences from being larger.  

To better understand the difference in performance among these feature sets, the 

RMSE per activity was analyzed. Figure 5-53 shows RMSE as a gray scale image scaled 

to highlight the difference in performance per activity. The image shows the lowest 

RMSE of 0.2 MET in white and the largest of 2.2 MET in black. From this gray scale 

image, it can be observed that as expected, the feature set with lowest RMSE per activity 

is the MaxAcceleration set. The second subset with lowest RMSE per activity is the set 

labeled as S3 including the ACFFTPeaks, ACMCR, and ACModVigEnergy features. This 

is because the fast to compute feature shows slightly higher RMSE for walking around 

block, gardening and weeding perhaps because it does not contain the ACFFTPeaks 

feature that captures frequency of motion at the limbs. The invariant reduced and S1 

feature set shows a slightly higher RMSE for running at 6mph than the S3 feature set. 

The fact that the S3 feature set is the highest performing one is good news since it 

includes only features that are relatively invariant to the magnitude of the accelerometer 

signal. Nevertheless, this feature set improves the correlation coefficient only 0.02 units  
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Figure 5-53: Root mean squared error per activity as a gray scale image when multivariable linear 

regression is used to estimate energy expenditure over several subset of accelerometer-based features 

computed per sensor over windows of 5.6s in length. The image is scaled to show the lowest RMSE 

error of 0.2MET in white and the largest of 2.2MET in black. Subset labeled as S1 corresponds to the 

ACFFTPeaks and ACAbsArea features, S2 corresponds to the ACFFTPeaks, ACEntropy, ACMRC, 

and ACModVigEnergy, and the S3 to the ACFFTPeaks, ACMRC, and ACModVigEnergy features.  

 

and overall RMSE only 0.04MET over the performance obtained using the ACFFTPeaks 

feature alone.  

In conclusion, the best single feature with best performance for estimating energy 

expenditure is the ACFFTPeaks feature. This is because this feature captures the 

frequency of motion of the body segments, and intuitively, the more rapid the motion 

(higher frequency), the higher energy expenditure will be. This feature improves the 

correlation coefficient +0.04 units and overall RMSE 0.08 MET over the ACAbsArea 

feature, which is the feature normally used to predict energy expenditure in prior work. 

However, the main advantage of the ACFFTPeaks feature over the ACAbsArea is that is 
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more invariant to the magnitude of the accelerometer signal. Unfortunately, this feature is 

not as computationally efficient as one would hope since it computational complexity is 

O(nlogn). Nevertheless, the utilization of only the five FFT coefficients with larger 

magnitude (peaks) per accelerometer signal effectively reduces the number of features (or 

predictor variables) from 889 to only 70 when all seven sensors and windows of 256 

samples in length are used. Given the small differences found for the highest performing 

feature combinations, it is necessary to explore the performance of these feature sets over 

subsets of accelerometers to better understand their importance. Consequently, the next 

section explores the performance of the five highest performing feature sets over subsets 

of accelerometers.   

 

5.6.8  How Well can Energy Expenditure Be Estimated by Computing the Highest 
Performing Features Over Subsets of Accelerometers?  

The previous section identified the best performing subsets of accelerometer-based 

features when they were computed over all seven accelerometers. However; in practice, 

wearing so many accelerometers would be difficult and intrusive. Consequently, it is 

necessary to explore the performance of these features when the number of 

accelerometers is reduced. This section explores this question by evaluating five of the 

highest performing sets of accelerometer-based features found in the previous section in a 

subject independent manner over eleven subsets of accelerometers. The five feature sets 

explored in this section are (1) ACAbsArea, (2) ACFFTPeaks, (3) ACFFTPeaks + 

ACModVigEnergy + ACMCR, (4) the fast to compute feature set, and (5) the invariant 

reduced feature set. For a detailed description of the features included in the fast to 

compute and invariant reduced feature sets refer to Section 5.4.7. Energy expenditure is 

estimated by utilizing a single multivariable linear regression model trained using 

features computed per sensor over windows of 5.6s in length over the different sensor 

combinations.  

Table 5-82 through Table 5-86 present the results obtained using the five feature sets 

computed over eleven sensor combinations. From these tables, it can be seen that in 

general, feature sets containing multiple features other than the ACAbsArea feature 

improve performance, particularly when single sensors are used to estimate energy 

expenditure. For example, the performance of the ACFFTPeaks + ACModVigEnergy + 

ACMCR feature set over different subsets of accelerometers is higher than the 

performance obtained using single features such as the ACAbsArea and the ACFFTPeaks. 

For instance, the ACFFTPeaks + ACModVigEnergy + ACMCR feature set achieves a 

correlation coefficient of 0.70 and a RMSE of 1.34MET over the hip sensor, while the 

ACFFTPeaks feature alone only achieves a correlation coefficient of 0.49 and a RMSE of 

1.62MET. Similarly, the ACAbsArea feature alone achieves a correlation coefficient of 

0.61 and a RMSE of 1.62MET over the hip sensor. The performance of the ACFFTPeaks 

+ ACModVigEnergy + ACMCR feature set is also higher over the other single 

accelerometers (DWrist, DFoot, DThigh, and DUpperArm) than when the ACFFTPeaks 

or ACAbsArea features are used alone. This indicates that computing features that capture 

additional information other than overall amount of motion usually captured by the 

ACAbsArea feature (often used by the medical community) indeed improves energy  
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Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

All sensors 0.68 ± 0.06 1.36 ± 0.30 

(1.0 ± 0.2) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.6±0.2) 

Hip + DWrist + 

DFoot 

0.67 ± 0.05 1.38 ± 0.29 

(1.04 ± 0.15) 

0.8±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.8±0.3  

(0.7±0.2) 

Hip + DWrist 0.61 ± 0.07 1.49 ± 0.33 
(1.16 ± 0.19) 

1.0±0.2  
(1.0±0.2) 

1.1±0.5  
(1.0±0.5) 

1.7±0.8  
(1.6±0.7) 

1.4±0.6  
(1.4±0.6) 

0.8±0.2  
(0.8±0.2) 

Hip + DFoot 0.64 ± 0.08 1.43 ± 0.33 

(1.08 ± 0.17) 

1.0±0.2  

(0.9±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.2±0.6) 

0.7±0.2  

(0.7±0.2) 

DWrist + DThigh 0.65 ± 0.08 1.42 ± 0.32 
(1.09 ± 0.17) 

0.9±0.3  
(0.9±0.3) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.5±0.7) 

1.4±0.6  
(1.3±0.6) 

0.8±0.2  
(0.7±0.2) 

DWrist + DFoot 0.67 ± 0.05 1.38 ± 0.29 

(1.04 ± 0.15) 

0.8±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.8±0.3  

(0.7±0.2) 

Hip 0.61 ± 0.08 1.51 ± 0.34 
(1.16 ± 0.20) 

1.1±0.2  
(1.1±0.2) 

1.1±0.5  
(1.0±0.5) 

1.6±0.8  
(1.5±0.8) 

1.4±0.6  
(1.3±0.6) 

0.8±0.2  
(0.7±0.2) 

DWrist 0.45 ± 0.15 1.66 ± 0.30 

(1.37 ± 0.20) 

1.2±0.3  

(1.2±0.3) 

1.4±0.5  

(1.3±0.5) 

2.0±0.8  

(1.9±0.8) 

1.8±0.7  

(1.8±0.7) 

1.2±0.3  

(1.1±0.3) 

DFoot 0.63 ± 0.08 1.45 ± 0.33 

(1.10 ± 0.17) 

1.0±0.2  

(1.0±0.2) 

1.2±0.5  

(1.1±0.5) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.2±0.6) 

0.8±0.2  

(0.7±0.2) 

DUpperArm 0.54 ± 0.11 1.56 ± 0.31 
(1.25 ± 0.19) 

1.0±0.3  
(0.9±0.3) 

1.1±0.5  
(1.0±0.5) 

1.8±0.8  
(1.7±0.8) 

1.6±0.6  
(1.5±0.6) 

1.1±0.4  
(1.0±0.3) 

DThigh 0.63 ± 0.09 1.44 ± 0.34 

(1.11 ± 0.19) 

1.1±0.3  

(1.1±0.3) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.7±0.2) 

Table 5-82: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the 

ACAbsArea feature computed per sensor using windows of 5.6s in length over different subsets of 

accelerometers. Energy expenditure is estimated for the 51 activities contained in the MIT energy 

expenditure dataset.  

 

 
Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

All sensors 0.72 ± 0.07 1.28 ± 0.30 

(0.93 ± 0.17) 

0.6±0.2  

(0.6±0.2) 

1.2±0.5  

(1.1±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.7) 

0.7±0.2  

(0.6±0.2) 

Hip + DWrist + 
DFoot 

0.72 ± 0.06 1.28 ± 0.31 
(0.93 ± 0.18) 

0.6±0.2  
(0.5±0.2) 

1.1±0.5  
(1.0±0.5) 

1.4±0.8  
(1.3±0.8) 

1.2±0.6  
(1.1±0.6) 

0.7±0.3  
(0.6±0.2) 

Hip + DWrist 0.51 ± 0.09 1.59 ± 0.31 

(1.28 ± 0.20) 

1.2±0.2  

(1.1±0.3) 

1.3±0.5  

(1.2±0.5) 

1.9±0.8  

(1.8±0.8) 

1.7±0.6  

(1.6±0.6) 

0.9±0.3  

(0.9±0.3) 

Hip + DFoot 0.71 ± 0.06 1.29 ± 0.30 

(0.94 ± 0.18) 

0.6±0.2  

(0.6±0.2) 

1.1±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

DWrist + DThigh 0.66 ± 0.06 1.39 ± 0.29 

(1.02 ± 0.15) 

0.7±0.2  

(0.6±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.8  

(1.4±0.7) 

1.4±0.7  

(1.3±0.7) 

0.8±0.3  

(0.7±0.2) 

DWrist + DFoot 0.71 ± 0.07 1.29 ± 0.31 

(0.93 ± 0.17) 

0.6±0.2  

(0.5±0.2) 

1.1±0.4  

(1.0±0.4) 

1.4±0.8  

(1.3±0.8) 

1.3±0.7  

(1.1±0.7) 

0.7±0.3  

(0.6±0.2) 

Hip 0.49 ± 0.10 1.62 ± 0.32 
(1.31 ± 0.22) 

1.3±0.2  
(1.2±0.2) 

1.3±0.5  
(1.2±0.5) 

1.9±0.8  
(1.9±0.8) 

1.7±0.6  
(1.6±0.6) 

0.9±0.2  
(0.8±0.2) 

DWrist 0.44 ± 0.15 1.66 ± 0.29 

(1.36 ± 0.20) 

1.2±0.3  

(1.2±0.3) 

1.4±0.5  

(1.3±0.5) 

2.0±0.8  

(1.9±0.8) 

1.9±0.7  

(1.8±0.7) 

1.1±0.3  

(1.0±0.3) 

DFoot 0.70 ± 0.07 1.31 ± 0.30 

(0.96 ± 0.17) 

0.7±0.2  

(0.6±0.2) 

1.1±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.3±0.7  

(1.2±0.7) 

0.7±0.3  

(0.6±0.2) 

DUpperArm 0.66 ± 0.08 1.41 ± 0.34 

(1.05 ± 0.20) 

0.8±0.3  

(0.8±0.3) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.2±0.6) 

0.7±0.2  

(0.6±0.2) 

DThigh 0.61 ± 0.09 1.49 ± 0.35 
(1.11 ± 0.18) 

1.0±0.2  
(0.9±0.2) 

1.2±0.5  
(1.1±0.5) 

1.6±0.8  
(1.5±0.8) 

1.3±0.6  
(1.2±0.6) 

0.8±0.2  
(0.7±0.2) 

Table 5-83: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the 

ACFFTPeaks feature computed per sensor using windows of 5.6s in length over different subsets of 

accelerometers. Energy expenditure is estimated for the 51 activities contained in the MIT energy 

expenditure dataset. 
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Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

All sensors 0.74 ± 0.06 1.24 ± 0.28 

(0.89 ± 0.17) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.0±0.5) 

1.3±0.8  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.7±0.2  

(0.6±0.2) 

Hip + DWrist + 

DFoot 

0.73 ± 0.05 1.25 ± 0.29 

(0.91 ± 0.18) 

0.5±0.2  

(0.5±0.2) 

1.1±0.4  

(1.0±0.4) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

Hip + DWrist 0.70 ± 0.06 1.33 ± 0.29 
(1.01 ± 0.20) 

0.6±0.2  
(0.5±0.2) 

1.2±0.5  
(1.1±0.5) 

1.4±0.7  
(1.3±0.7) 

1.3±0.6  
(1.2±0.6) 

0.8±0.3  
(0.7±0.2) 

Hip + DFoot 0.73 ± 0.05 1.25 ± 0.28 

(0.91 ± 0.18) 

0.6±0.2  

(0.5±0.2) 

1.2±0.4  

(1.0±0.4) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

DWrist + DThigh 0.71 ± 0.06 1.32 ± 0.29 
(0.96 ± 0.17) 

0.7±0.4  
(0.7±0.4) 

1.1±0.4  
(1.0±0.4) 

1.4±0.8  
(1.3±0.7) 

1.2±0.7  
(1.1±0.6) 

0.7±0.2  
(0.6±0.2) 

DWrist + DFoot 0.72 ± 0.07 1.28 ± 0.30 

(0.92 ± 0.17) 

0.6±0.2  

(0.5±0.2) 

1.1±0.4  

(1.0±0.4) 

1.4±0.8  

(1.2±0.8) 

1.2±0.7  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

Hip 0.70 ± 0.06 1.34 ± 0.29 
(1.02 ± 0.20) 

0.6±0.2  
(0.6±0.2) 

1.3±0.5  
(1.2±0.5) 

1.4±0.7  
(1.3±0.7) 

1.3±0.6  
(1.1±0.6) 

0.8±0.2  
(0.7±0.2) 

DWrist 0.53 ± 0.10 1.58 ± 0.31 

(1.26 ± 0.20) 

1.0±0.3  

(0.9±0.3) 

1.3±0.4  

(1.2±0.4) 

1.9±0.8  

(1.8±0.8) 

1.7±0.7  

(1.6±0.7) 

1.1±0.3  

(1.0±0.3) 

DFoot 0.71 ± 0.06 1.29 ± 0.29 

(0.94 ± 0.17) 

0.6±0.2  

(0.6±0.2) 

1.1±0.4  

(1.0±0.4) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.7) 

0.7±0.2  

(0.6±0.2) 

DUpperArm 0.68 ± 0.08 1.36 ± 0.34 
(1.02 ± 0.19) 

0.6±0.2  
(0.6±0.3) 

1.1±0.4  
(1.0±0.4) 

1.4±0.7  
(1.3±0.7) 

1.3±0.6  
(1.2±0.6) 

0.8±0.2  
(0.7±0.2) 

DThigh 0.66 ± 0.08 1.40 ± 0.33 

(1.03 ± 0.19) 

0.9±0.4  

(0.9±0.4) 

1.2±0.5  

(1.1±0.5) 

1.4±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

Table 5-84: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the 

ACFFTPeaks + ACModVigEnergy + ACMCR features computed per sensor using windows of 5.6s in 

length over different subsets of accelerometers. Energy expenditure is estimated for the 51 activities 

contained in the MIT energy expenditure dataset. 

 

 
Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

All sensors 0.72 ± 0.11 1.27 ± 0.27 

(0.94 ± 0.19) 

0.7±0.4  

(0.7±0.4) 

1.2±0.5  

(1.1±0.5) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.6) 

0.8±0.5  

(0.7±0.5) 

Hip + DWrist + 
DFoot 

0.69 ± 0.12 1.33 ± 0.33 
(0.99 ± 0.24) 

0.6±0.3  
(0.5±0.3) 

1.2±0.5  
(1.1±0.5) 

1.3±0.7  
(1.2±0.7) 

1.2±0.6  
(1.1±0.6) 

0.9±0.6  
(0.8±0.6) 

Hip + DWrist 0.69 ± 0.06 1.37 ± 0.28 

(1.04 ± 0.18) 

0.6±0.2  

(0.5±0.2) 

1.2±0.5  

(1.1±0.5) 

1.3±0.7  

(1.3±0.6) 

1.2±0.6  

(1.1±0.6) 

0.9±0.3  

(0.8±0.3) 

Hip + DFoot 0.66 ± 0.13 1.38 ± 0.35 

(1.03 ± 0.24) 

0.7±0.3  

(0.7±0.3) 

1.3±0.6  

(1.2±0.6) 

1.3±0.7  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.9±0.6  

(0.8±0.6) 

DWrist + DThigh 0.72 ± 0.06 1.28 ± 0.25 

(0.95 ± 0.15) 

0.9±0.5  

(0.8±0.5) 

1.1±0.4  

(1.0±0.4) 

1.2±0.6  

(1.1±0.6) 

1.1±0.6  

(1.0±0.5) 

0.7±0.3  

(0.6±0.3) 

DWrist + DFoot 0.69 ± 0.10 1.33 ± 0.33 

(0.99 ± 0.23) 

0.7±0.3  

(0.6±0.3) 

1.1±0.5  

(1.0±0.5) 

1.3±0.7  

(1.2±0.7) 

1.2±0.7  

(1.2±0.6) 

0.9±0.6  

(0.8±0.6) 

Hip 0.67 ± 0.07 1.40 ± 0.31 
(1.06 ± 0.19) 

0.7±0.2  
(0.7±0.2) 

1.3±0.5  
(1.2±0.5) 

1.4±0.7  
(1.3±0.6) 

1.2±0.6  
(1.1±0.5) 

0.8±0.2  
(0.7±0.2) 

DWrist 0.49 ± 0.13 1.63 ± 0.31 

(1.32 ± 0.20) 

1.1±0.4  

(1.1±0.4) 

1.3±0.5  

(1.2±0.5) 

2.0±0.8  

(1.9±0.8) 

1.8±0.7  

(1.7±0.7) 

1.2±0.4  

(1.1±0.4) 

DFoot 0.63 ± 0.10 1.42 ± 0.35 

(1.07 ± 0.20) 

0.9±0.3  

(0.9±0.3) 

1.3±0.5  

(1.2±0.5) 

1.4±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.9±0.4  

(0.8±0.4) 

DUpperArm 0.60 ± 0.07 1.48 ± 0.31 

(1.14 ± 0.19) 

0.7±0.3  

(0.7±0.3) 

1.1±0.4  

(1.0±0.4) 

1.6±0.8  

(1.5±0.8) 

1.5±0.7  

(1.4±0.7) 

1.1±0.3  

(1.0±0.3) 

DThigh 0.69 ± 0.09 1.32 ± 0.28 

(0.99 ± 0.15) 

1.0±0.5  

(1.0±0.5) 

1.1±0.4  

(1.0±0.4) 

1.2±0.6  

(1.1±0.6) 

1.1±0.5  

(1.0±0.5) 

0.7±0.3  

(0.6±0.2) 

Table 5-85: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the Fast 

to compute feature set computed per sensor using windows of 5.6s in length over different subsets of 

accelerometers. Energy expenditure is estimated for the 51 activities contained in the MIT energy 

expenditure dataset. 
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Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

All sensors 0.72 ± 0.11 1.28 ± 0.29 

(0.95 ± 0.19) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.1±0.5) 

1.3±0.8  

(1.2±0.8) 

1.2±0.6  

(1.1±0.6) 

0.8±0.4  

(0.7±0.4) 

Hip + DWrist + DFoot 0.70 ± 0.11 1.31 ± 0.34 

(0.97 ± 0.23) 

0.6±0.3  

(0.5±0.3) 

1.2±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.6) 

0.8±0.5  

(0.7±0.5) 

Hip + DWrist 0.58 ± 0.08 1.53 ± 0.28 
(1.20 ± 0.18) 

1.0±0.4  
(1.0±0.4) 

1.3±0.4  
(1.1±0.5) 

1.8±0.8  
(1.7±0.8) 

1.5±0.6  
(1.5±0.6) 

1.0±0.3  
(0.9±0.3) 

Hip + DFoot 0.71 ± 0.11 1.29 ± 0.32 

(0.96 ± 0.22) 

0.6±0.2  

(0.5±0.2) 

1.2±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.8±0.5  

(0.7±0.5) 

DWrist + DThigh 0.68 ± 0.05 1.35 ± 0.29 
(1.00 ± 0.17) 

0.8±0.3  
(0.7±0.3) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.3±0.6  
(1.2±0.6) 

0.7±0.3  
(0.6±0.3) 

DWrist + DFoot 0.69 ± 0.12 1.32 ± 0.36 

(0.97 ± 0.23) 

0.6±0.3  

(0.5±0.3) 

1.1±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.3±0.7  

(1.2±0.7) 

0.8±0.5  

(0.7±0.5) 

Hip 0.55 ± 0.09 1.55 ± 0.28 
(1.24 ± 0.18) 

1.0±0.3  
(1.0±0.3) 

1.3±0.5  
(1.2±0.5) 

1.8±0.8  
(1.7±0.8) 

1.6±0.6  
(1.5±0.6) 

1.0±0.3  
(0.9±0.3) 

DWrist 0.48 ± 0.15 1.62 ± 0.32 

(1.30 ± 0.21) 

1.2±0.3  

(1.2±0.3) 

1.2±0.5  

(1.2±0.5) 

1.9±0.8  

(1.9±0.8) 

1.7±0.7  

(1.7±0.7) 

1.0±0.3  

(1.0±0.3) 

DFoot 0.69 ± 0.11 1.32 ± 0.34 

(0.97 ± 0.21) 

0.7±0.3  

(0.6±0.3) 

1.1±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.3±0.7  

(1.2±0.7) 

0.8±0.4  

(0.7±0.4) 

DUpperArm 0.66 ± 0.08 1.39 ± 0.33 
(1.04 ± 0.19) 

0.7±0.2  
(0.7±0.2) 

1.1±0.5  
(1.0±0.5) 

1.5±0.8  
(1.4±0.7) 

1.3±0.6  
(1.2±0.6) 

0.8±0.2  
(0.7±0.2) 

DThigh 0.64 ± 0.09 1.42 ± 0.33 

(1.07 ± 0.18) 

0.9±0.3  

(0.9±0.3) 

1.2±0.5  

(1.1±0.5) 

1.5±0.7  

(1.4±0.7) 

1.3±0.6  

(1.2±0.6) 

0.8±0.3  

(0.7±0.3) 

Table 5-86: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the 

Invariant reduced feature set computed per sensor using windows of 5.6s in length over different 

subsets of accelerometers. Energy expenditure is estimated for the 51 activities contained in the MIT 

energy expenditure dataset. 

 

expenditure estimation. This effect was perhaps not observed in the previous section 

because of the relatively limited amount of training data available with respect to the 

large number of features being computed (since features were computed over all seven 

accelerometers). This effect produced by computing a large number of features when 

training data is limited can also be observed by comparing Table 5-86 and Table 5-84. 

These tables show that the overall performance of the invariant reduced feature set is 

slightly lower than the performance of the ACFFTPeaks + ACModVigEnergy + ACMCR 

feature set. This is because the invariant reduced feature set contains more features 

(ACFFTPeaks, ACBandEnergy, ACVar, and DCPostureDist) and consequently, the 

training data available to train the regression model (containing more variables) is not 

enough. The result that multiple features achieve higher performance over single sensors 

and combinations of sensors than single features (e.g. ACAbsArea) confirms recent 

findings by Rothney [152, 181]. This work also found that extracting multiple features 

such as the coefficient of variation, inter-quartile range, and power spectral density 

improves the performance in energy expenditure estimation when a single accelerometer 

at the hip is used. The work presented in this section goes a step further by showing, as 

one might expect, that multiple features also improve overall performance and 

performance per activity when multiple sensors are used provided there is enough 

training data to train the regression models. In this paragraph, ‗multiple features‘ refer to 

features other than the ACAbsArea feature that capture motion information other than 

overall amount of motion that helps in estimating energy expenditure better. 

From Table 5-82 through Table 5-86 it can also be observed that overall, the sensor 

combinations with higher performance in decreasing order are All Sensors, Hip + DWrist 
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+ DFoot, and DWrist + DFoot. As explained in previous sections, the Hip + DWrist + 

DFoot sensor combination is able to capture upper body, lower body, and overall body 

motion well enough to achieve a performance similar to the one obtained using all seven 

accelerometers. Interestingly, the sensor combination DWrist + DFoot also achieves a 

performance that is very close to the one obtained using all the seven sensors. For 

example, the difference in the correlation coefficient between all sensors and the DWrist 

+ DFoot sensor combination is between 0.01 and 0.02 for all tables. The difference for 

the RMSE is between 0.01 and 0.04MET. One possible explanation for the good 

performance of this sensor combination is that it effectively detects upper body and lower 

body motion since one sensor at the wrist and another at the foot are used. At the same 

time, overall body motion due to activities such as ambulation is also picked up at these 

two sensors locations. This is an important result because it can be argued that sensors at 

the wrist and at the foot are easier to wear than sensors at the hip, particularly for women 

(e.g. women wearing dresses). The accelerometer at the wrist can also be embedded in 

devices already worn at this location such as wrist watches and the sensor at the foot in 

shoe pods. The sensor combinations Hip + DWrist, Hip + DFoot, and DWrist + DThigh 

also achieve a competitive performance (with respect to the all sensors combination) 

although their ordering with respect to performance depends on the features being 

computed. The result obtained in this section are in agreement with prior work by 

Melanson and Freedson [233] who found that the sensor combination hip + wrist or wrist 

+ ankle (foot in our case) produced a correlation coefficient of r=0.94 during  walking 

and jogging. Obviously, the correlation coefficients obtained in this work are lower (r 

between 0.51 and 0.72) because energy expenditure is estimated for 52 activities some of 

them containing different levels of resistance work and work load.  

Overall, the sensor combinations that present the lowest performance in the tables (Table 

5-82 through Table 5-86) are the single accelerometer at the wrist (DWrist), and the 

single accelerometer at the hip (Hip). For example, when the wrist sensor is used, the 

difference in the correlation coefficient with respect to the all sensors combination is 0.23 

units and the difference in RMSE is 0.3MET for the ACAbsArea feature (Table 5-82). 

When the ACFFTPeaks feature is used, the difference in the correlation coefficient for 

this sensor again, with respect to the all sensors combination, is 0.24units and 0.3MET 

for the RMSE. The differences are reduced slightly when the ACFFTPeaks + 

ACModVigEnergy + ACMCR is used. The poor performance of the DWrist sensor can be 

explained by the fact that the wrist presented the highest motion variability (as observed 

during the data collections) for most activities, particularly during household activities 

since the RMSE is higher over these categories for the wrist sensor. The low performance 

of the DUpperArm sensor can be explained by the fact that it has difficulties detecting 

upper body and non-ambulatory lower body motion. For example, when the performance 

per activity is analyzed for the Hip sensor for the five feature sets, it is found that the 

activities with lowest performance are activities involving lower body motion such as 

cycling at different speeds and resistance levels and rowing at different resistance levels. 

For these activities, the RMSE ranged between 1 and 3.5MET. Upper body activities 

such as bench weight lifting, bicep curls, and wiping a surface also presented the lowest 

performance. Appendix B15 presents the performance per activity for some of the highest 

performing features computed over the accelerometers at the hip, dominant wrist, and 

dominant foot. 



 238 

 
Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ACFFTPeaks + 

ACModVigEnergy + 

ACMCR 

0.73 ± 0.05 1.25 ± 0.29 

(0.91 ± 0.18) 

0.5±0.2  

(0.5±0.2) 

1.1±0.4  

(1.0±0.4) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

ACFFTPeaks 0.72 ± 0.06 1.28 ± 0.31 
(0.93 ± 0.18) 

0.6±0.2  
(0.5±0.2) 

1.1±0.5  
(1.0±0.5) 

1.4±0.8  
(1.3±0.8) 

1.2±0.6  
(1.1±0.6) 

0.7±0.3  
(0.6±0.2) 

Invariant Reduced 0.70 ± 0.11 1.31 ± 0.34 

(0.97 ± 0.23) 

0.6±0.3  

(0.5±0.3) 

1.2±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.6) 

0.8±0.5  

(0.7±0.5) 

Fast to compute 0.69 ± 0.12 1.33 ± 0.33 
(0.99 ± 0.24) 

0.6±0.3  
(0.5±0.3) 

1.2±0.5  
(1.1±0.5) 

1.3±0.7  
(1.2±0.7) 

1.2±0.6  
(1.1±0.6) 

0.9±0.6  
(0.8±0.6) 

ACAbsArea 0.67 ± 0.05 1.38 ± 0.29 

(1.04 ± 0.15) 

0.8±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.8±0.3  

(0.7±0.2) 

Table 5-87: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

estimating energy expenditure in a subject independent manner using linear regression and the five 

highest performing feature sets computed per sensor using windows of 5.6s in length over the 

accelerometers at the hip, dominant wrist, and dominant foot. Energy expenditure is estimated for 

the 51 activities contained in the MIT energy expenditure dataset. 

 

Table 5-87 presents a summary of the results obtained using the five feature sets 

explored over the accelerometers located at the hip, dominant wrist, and dominant foot. 

This sensor combination (Hip+DWrist+DFoot) was the highest performing with respect 

to the performance obtained using all seven accelerometers. From the table, it can be seen 

that the performance of the ACFFTPeaks + ACModVigEnergy + ACMCR is the highest, 

followed by the performance of the ACFFTPeaks. The difference in performance 

between the two highest performing feature sets is r=+0.01 and RMSE = -0.03MET. As a 

result, it can be argued that even when the ACFFTPeaks + ACModVigEnergy + ACMCR, 

the ACFFTPeaks feature achieves a close performance but with lower computational 

requirements. As a result, the final implementation of the energy expenditure algorithm 

will be utilizing the ACFFTPeaks feature to estimate energy expenditure. Performance 

will also be measured using the ACAbsArea feature given its low computational 

requirements. The final implementation of the EE estimation algorithm is discussed later 

in Section 5.6.11. 

 

5.6.9  Does Heart Rate Data Improve Energy Expenditure Estimation? 

In previous sections, the lowest performance while estimating energy expenditure was 

obtained for activities involving different levels of resistance or work load effort. 

Examples of these activities include cycling and rowing at different resistance levels, 

performing bicep curls and bench weight lifting with different weights (at the same speed 

of motion), walking on a treadmill at different inclination grades and walking carrying 

groceries. This is because accelerometers have difficulties detecting the extra effort 

associated with these activities because they can only measure amount of motion 

(acceleration). Heart rate on the other hand, can detect changes in effort and resistance 

load because it has a linear relationship with energy expenditure during moderate and 

vigorous activities [47, 48, 81]. As a result, this section explores if combining 

accelerometer and heart rate data improves estimation of energy expenditure.  

This section first evaluates the performance over individual heart rate features 

(HRMean, HRAboveRest, ScaledHR, HRVar, and HRTrend) to identify the single features  
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Heart Rate 

Features  

 

Algorithm Correlation 

Coefficient 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR (1) LR 0.83 ± 0.09 1.01 ± 0.3 
(0.8± 0.2) 

0.5±0.3  
(0.5±0.3) 

0.9±0.5  
(0.9±0.4) 

1.3±0.7  
(1.3±0.7) 

1.2±0.6  
(1.1±0.6) 

0.5±0.3  
(0.5±0.2) 

HRAboveRest 

(1) 
LR 0.83 ± 0.10 1.1 ± 0.4 

(0.9 ± 0.3) 

0.5±0.3  

(0.5±0.3) 

1.0±0.6  

(1.0±0.6) 

1.5±0.8  

(1.4±0.8) 

1.3±0.7  

(1.2±0.7) 

0.5±0.3  

(0.5±0.2) 
HRMean (1) LR 0.82 ± 0.09 1.3 ± 0.4 

(1.0 ± 0.4) 

0.8±0.4  

(0.8±0.4) 

1.2±0.7  

(1.2±0.7) 

1.6±0.9  

(1.5±0.9) 

1.3±0.8  

(1.3±0.8) 

0.6±0.3  

(0.6±0.3) 
HRVar (1) LR 0.08 ± 0.05 1.8 ± 0.3 

(1.5 ± 0.2) 

1.7±0.2  

(1.7±0.2) 

1.8±0.5  

(1.7±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.0±0.3  

(1.0±0.3) 
HRTrend (1) LR 0.04 ± 0.05 1.8 ± 0.3 

(0.0 ± 0.0) 

1.8±0.2  

(1.7±0.2) 

1.8±0.5  

(1.7±0.5) 

2.1±0.8  

(2.0±0.8) 

1.7±0.6  

(1.6±0.6) 

1.0±0.3  

(1.0±0.3) 
ScaledHR (1) MT 0.84 ± 0.09 1.0 ± 0.3 

(0.8 ± 0.3) 
0.5±0.3  

(0.5±0.3) 
1.0±0.5  

(0.9±0.5) 
1.3±0.8  

(1.2±0.8) 
1.2±0.7  

(1.1±0.6) 
0.5±0.2  

(0.5±0.2) 

Table 5-88: Root mean squared error and mean absolute error (shown in parenthesis) obtained while 

estimating energy expenditure in a subject independent manner over the MIT EE dataset using 

multivariable linear regression and individual heart rate features computed over windows of 5.6s in 

length. LR stands for linear regression and MT for model trees (M5‟). 

 

with highest performance. Appendix A3 provides an explanation of how these features 

are computed and what information they attempt to capture. Once the heart rate feature 

with highest performance is identified, it is incorporated to the best set of accelerometer-

based features found in Section 5.4.7. Energy expenditure is then estimated using 

multivariable linear regression with feature computation per sensor over sliding windows 

of 5.6s in length for both, accelerometer and heart rate data. The heart rate signal is 

preprocessed to reduce noise by applying a 15s running average filter. When the 

accelerometer data is included, the heart rate window length extends from the end of the 

acceleration window backwards in time as shown in Figure 5-24. Finally, heart rate 

windows and their associated acceleration windows are discarded when no sensor values 

are available for heart rate over a given window. All results presented in this section are 

evaluated using subject independent training unless otherwise indicated. 

Table 5-88 presents the root mean squared error and mean absolute error (shown in 

parenthesis) obtained over individual heart rate features. It can be seen that the heart rate 

feature with higher overall performance is ScaledHR. The correlation coefficient obtained 

is 0.83 (out of a max of 1) and the overall RMSE error is 1.0MET when linear regression 

is used. The activity categories with higher RMSE are exercise and resistance exercise 

activities with RMSE values between 1.2 and 1.3MET respectively for the ScaledHR 

feature. This is because most of the activities contained in these categories involve 

resistance or work load effort. Heart rate can detect changes in resistance or work load 

effort during moderate and vigorous activities [47, 48, 81]; however, the main challenge 

in estimating energy expenditure for these activities is inter-individual differences due to 

fitness level and body composition (e.g. weight and fat mass). This is a problem because 

two subjects performing the same activity but with different fitness level will produce 

different heart rate readings. For example, more fit individuals tend to have lower heart 

rates than non-fit individuals [47] when they perform the same activity. This is why the 

lowest performance is obtained for the exercise and resistance exercise categories. Table 

5-88 also shows that the performance of the ScaledHR feature is slightly higher than the 

one obtained for the HRAboveRest feature. This is because the ScaledHR feature 

normalizes heart rate readings to fall between 0 and 1 for resting heart rate and heart rate 

while running on a treadmill at 5mph for each subject.  
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Heart Rate 

Features  

 

Correlation 

Coefficient 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR  

(1) 
0.83 ± 0.09 0.92 ± 0.29 

(0.71 ± 0.22) 
0.5±0.3  

(0.5±0.3) 
0.9±0.4  

(0.8±0.4) 
1.2±0.6  

(1.2±0.6) 
1.1±0.5  

(1.1±0.5) 
0.5±0.2  

(0.4±0.2) 
HRAboveRest 

(1) 
0.83 ± 0.10 0.93 ± 0.30 

(0.71 ± 0.23) 

0.5±0.3  

(0.5±0.3) 

0.9±0.4  

(0.8±0.4) 

1.2±0.6  

(1.2±0.6) 

1.1±0.5  

(1.1±0.5) 

0.5±0.2  

(0.4±0.2) 

Table 5-89: Root mean squared error and mean absolute error (shown in parenthesis) obtained while 

estimating energy expenditure in a subject dependent manner over the MIT dataset using 

multivariable linear regression and individual heart rate features computed over windows of 5.6s in 

length.  

 

This normalization helps in reducing inter-individual variations in heart rate because two 

individuals with different heart rate readings would be performing in the same intensity 

zone with respect to resting and sub-maximal heart rate (running at 5mph). Even when 

the overall difference in performance between the ScaledHR and HRAboveRest features 

is tiny (0.09MET in overall RMSE); performance per activity category is improved 

between 0.1 and 0.2MET for the ambulation, exercise, and resistance exercise categories. 

These are the activity categories that one would expect to benefit the most from the heart 

rate data normalization. One possible explanation of why the difference in performance is 

not larger is that heart rate while running on a treadmill at 5mph was used as a substitute 

for maximum heart rate during the normalization procedure. The measurement of 

maximal heart rate requires individuals to perform physically intense exercise (e.g. 

running on a treadmill) until heart rate reaches a maximum and no longer increases. Thus, 

this test is inconvenient in practice because it requires individuals to perform maximal 

physical effort. Furthermore, some individuals suffering from physical conditions might 

not even be able to perform such a test. Table 5-88 also shows that the features with 

lowest performance are HRTrend and HRVar.  

This is because HRVar measures the variance over the heart rate data and this value is 

similar for most activities: high at the beginning of an activity due to non-steady state 

conditions and low towards the end of activities due to steady-state conditions. Similarly, 

HRTrend tells if heart rate is increasing (slope>0), decreasing (slope<0), or in steady state 

over time (slope~0). Thus, most activities present the same trends in this value: positive 

at the beginning of activities when energy expenditure is increasing and near zero 

towards the end of the activity when energy expenditure reaches steady-state condition. 

The last row of Table 5-88 presents the performance of the ScaledHR feature when a M5‘ 

model tree is used to estimate energy expenditure. The performance of the M5‘ model 

tree was tested over the best performing heart rate feature because this regression 

algorithm is able to capture non-linear relationships in the data and thus, could improve 

energy expenditure estimation. From the table, it can be observed that the performance 

indeed increases as expected, but the increase is so small (+0.01 for both, RMSE and r) 

that it does not justify the additional complexity of running this non-linear regression 

algorithm. One reason for this small improvement could be the unavailability of enough 

training examples at the leaf nodes of the model tree to allow adequate training of the 

linear regression models. For example, the model trees generated during the evaluation of 

the algorithm contained between 43 and 76 leaf nodes. This means that between 43 and 

76 multivariable linear regression models have to be trained over each leaf node in order 

to predict energy expenditure. This partition of the available training data into 43-76  
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Features 

 

Correlation 

(r) 

All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR 0.83  0.09 1.01 ± 0.3 

(0.8 ± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.9±0.5  

(0.9±0.4) 

1.3±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.5±0.3  

(0.5±0.2) 

ScaledHR + 

Weight 

0.83 ± 0.09 1.01 ± .32 

(0.7 ± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.9±0.5  

(0.9±0.5) 

1.3±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.5±0.3  

(0.5±0.2) 

ScaledHR + 
FatPercent 

0.83 ± 0.09 1.01 ± 0.32 
(0.8 ± 0.2) 

0.5±0.3  
(0.5±0.3) 

0.9±0.5  
(0.9±0.5) 

1.3±0.7  
(1.3±0.7) 

1.2±0.6  
(1.1±0.6) 

0.5±0.3  
(0.5±0.3) 

ScaledHR + 

FitnessIndex 

0.83 ± 0.10 1.07 ± 0.36 

(0.8 ± 0.3) 

0.6±0.3  

(0.5±0.3) 

1.0±0.6  

(0.9±0.5) 

1.5±0.8  

(1.4±0.8) 

1.3±0.7  

(1.2±0.7) 

0.5±0.3  

(0.5±0.3) 

ScaledHR + 
FitnessIndex + 

Weight + Height + 

Age + Gender + 
FatPercent 

0.83 ± 0.09 1.06 ± 0.34 
(0.8 ± 0.3) 

0.5±0.3  
(0.5±0.3) 

1.0±0.5  
(0.9±0.5) 

1.4±0.8  
(1.3±0.8) 

1.2±0.7  
(1.2±0.7) 

0.6±0.3  
(0.5±0.3) 

Table 5-90: Root mean squared error and mean absolute error (shown in parenthesis) obtained while 

combining features that attempt to describe the fitness level of an individual with heart rate features 

(ScaledHR) during subject independent evaluation of energy expenditure using linear regression. The 

target activities were the 51 activities contained in the MIT energy expenditure dataset. 

 

nodes limits the amount of data available for training at each leaf node. 

When plots are generated for subject independent estimation of energy expenditure 

using the ScaledHR feature (see Appendix B14 for an example) it is found that heart rate 

overestimates energy expenditure of upper body activities involving resistance exercise 

such as bicep curls and bench weight lifting and for postures such as standing, kneeling, 

and sitting (including sitting fidgeting feet and legs and hands and arms). Heart rate also 

underestimates the energy expenditure for most household activities (e.g. sweeping, 

mopping and vacuuming), for walking and for exercise activities such as running, cycling  

and rowing at different speeds and resistance levels. The worse overestimation of energy 

expenditure was observed for the bicep curls and bench weightlifting activities. One 

explanation for this is that these activities were performed after the cycling hard activity, 

one of the most physically demanding activities for which data was collected, so heart 

rate might have been still altered  (with a high value) when these activities were 

performed even after participants rested for at least 5min before the activities. This 

highlights one of the problems of utilizing heart rate data to estimate energy expenditure: 

Heart rate lags physical activity and remains altered once a physically demanding activity 

has being finished. The time heart rate remains altered is subject dependent (e.g. 

depending on the fitness level of individuals).   

Table 5-89 presents the results for subject dependent estimation of energy expenditure 

using the two highest performing heart rate features: ScaledHR and HRAboveRest. The 

first thing to observe is that the performance does not increase substantially with respect 

to the performance obtained during subject independent evaluation. For example, the 

increase in performance in RMSE with respect to subject independent training for the 

ScaledHR feature is +0.09MET and +0.17MET for the HRAboveRest feature. The 

coefficient of correlation remains practically unchanged. One possible explanation is that 

intra-individual variations in heart rate are as difficult to overcome during the regression 

procedure as inter-individual variations due to fitness level, age and gender. These results 

are in agreement with the results obtained by Haskell et al. [48] where a small difference 

of only 0.09units in the correlation coefficient was found between subject dependent and 

independent estimation of energy expenditure using heart rate data.  
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One possibility to reduce the differences in heart rate readings due to differences in 

fitness levels of individuals would be to include features that directly or indirectly capture 

the fitness level of individuals. Therefore, an experiment was run to determine if the 

addition of these features improves subject independent estimation of energy expenditure 

when the highest performing heart rate feature is used (ScaledHR). The features used in 

this experiment to directly or indirectly capture the fitness level of individuals are Weight, 

Height, Age, Gender, FatPercent, and FitnessIndex. These features are described in detail 

in Appendix A3. Table 5-90 presents the results of this experiment. In short, the table 

shows that adding these features does not improve energy expenditure estimation. In fact, 

performance is slightly degraded when some of these features are incorporated as 

observed for the FitnessIndex feature. The incorporation of the Weight figure was not 

expected to improve energy expenditure estimation because energy expenditure is being 

predicted in METs, a measurement unit that already normalizes energy expenditure with 

respect to body weight [246]. In other words, MET units normalize energy expenditure so 

that it is identical for a slim subject and an obese subject performing the same activity. 

Obviously, one assumption is that the mechanical efficiency of both individuals is the 

same. One possible explanation for why the incorporation of all these features does not 

improve energy expenditure estimation is that the number of subjects (n=16) included in 

the MIT energy expenditure dataset is not large enough so that relationships between 

energy expenditure and subject‘s physical characteristics or fitness level are captured. 

Another explanation is that these features are practically constants for each subject and 

consequently, some of them are eliminated by the M5 feature selection algorithm used by 

the linear regression algorithm employed as confirmed in practice by observing the 

resulting regression models. When the M5 feature selection algorithm is turned off, the 

same results were observed: No significant improvements in performance for most 

features and slight decreases in performance when all these features are incorporated at 

once and when the FitnessIndex feature is incorporated. Again, this might be due to the 

relatively limited number of subjects included in the dataset used. 

Prior work has successfully incorporated subject‘s characteristics such as body mass, 

height and gender in the regression equations to compensate for inter-individual 

variations in energy expenditure [145, 246, 248]. Although body mass and height have 

been shown to improve energy expenditure estimates, gender has been found to not 

impact energy expenditure at least when body mass and speed are held constant during 

walking activities [246, 249, 250]. Appendix B14 presents the results per activity for 

energy expenditure estimation when the ScaledHR feature and the ScaledHR + 

ACFFTPeaks feature are utilized. 

 

5.6.10 How Well can Energy Expenditure be Estimated by Combining Acceleration 
and Heart Rate Data? 

In this section, the highest performing heart rate feature found in the previous section 

(ScaledHR) is incorporated to the highest performing set of acceleration-based features 

found in Section 5.4.7 (invariant reduced feature set). Table 5-91 presents the results of 

combining both feature sets using linear regression during subject independent 

evaluation. Both feature sets are computed over windows of 5.6s in length and the 

accelerometer features are computed per sensor over all the seven accelerometers.  
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Features subsets  Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ScaledHR 0.84 ± 0.09 1.01 ± 0.3 

(0.8 ± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.9±0.5  

(0.9±0.4) 

1.3±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.5±0.3  

(0.5±0.2) 

ACFFTPeaks + 

ACModVigEnergy 

+ACMCR 

0.74 ± 0.06 1.24 ± 0.28 

(0.9 ± 0.17) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.0±0.5) 

1.3±0.8  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.7±0.2  

(0.6±0.2) 

ACFFTPeaks + 

ACModVigEnergy 

+ACMCR +  
ScaledHR 

0.88 ± 0.05 0.88 ± 0.20 

(0.7 ± 0.14) 

0.5±0.3  

(0.5±0.3) 

0.8±0.4  

(0.7±0.4) 

1.0±0.6  

(0.9±0.6) 

0.8±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

ACFFTPeaks 0.72 ± 0.07 1.28 ± 0.30 
(0.9 ± 0.2) 

0.6±0.2  
(0.6±0.2) 

1.2±0.5  
(1.1±0.5) 

1.4±0.8  
(1.3±0.8) 

1.2±0.7  
(1.1±0.7) 

0.7±0.2  
(0.6±0.2) 

ACFFTPeaks + 

ScaledHR 

0.88 ± 0.05 0.89 ± 0.21 

(0.7 ± 0.2) 

0.5±0.2  

(0.4±0.2) 

0.8±0.4  

(0.7±0.4) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

ACAbsArea 0.68 ± 0.06 1.36 ± 0.30 

(1.0 ± 0.2) 

0.7±0.2  

(0.7±0.2) 

1.1±0.4  

(1.0±0.4) 

1.5±0.7  

(1.4±0.7) 

1.4±0.6  

(1.3±0.6) 

0.7±0.2  

(0.6±0.2) 

ACAbsArea + 
ScaledHR 

0.87 ± 0.06 0.90 ± 0.24 
(0.7 ± 0.2) 

0.4±0.2  
(0.4±0.2) 

0.7±0.4  
(0.6±0.3) 

1.1±0.6  
(1.1±0.6) 

1.0±0.6  
(0.9±0.6) 

0.5±0.3  
(0.4±0.2) 

Invariant Reduced  

 

0.72 ± 0.11 1.28 ± 0.29 

(0.9 ± 0.2) 

0.7±0.3  

(0.6±0.3) 

1.2±0.5  

(1.1±0.5) 

1.3±0.8  

(1.2±0.8) 

1.2±0.6  

(1.1±0.6) 

0.8±0.4  

(0.7±0.4) 

Invariant Reduced 

+ ScaledHR 

0.88 ± 0.05 0.90 ± 0.22 

(0.7 ± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.8±0.4  

(0.7±0.4) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

Fast to compute 0.72 ± 0.11 1.27 ± 0.27 
(0.9 ± 0.2) 

0.7±0.4  
(0.7±0.4) 

1.2±0.5  
(1.1±0.5) 

1.2±0.7  
(1.1±0.7) 

1.1±0.6  
(1.0±0.6) 

0.8±0.5  
(0.7±0.5) 

Fast to compute + 

ScaledHR 

0.88 ± 0.05 0.89 ± 0.20 

(0.7 ± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.8±0.4  

(0.7±0.4) 

1.0±0.6  

(0.9±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.3  

(0.5±0.3) 

Table 5-91: Root mean squared error and mean absolute error (shown in parenthesis) obtained while 

estimating energy expenditure using linear regression when the most discriminating accelerometer 

(invariant reduced feature set) and heart rate feature (ScaledHR) are used and computed per sensor 

over all the seven accelerometers. Energy expenditure was predicted over the 51 activities contained 

in the MIT energy expenditure dataset. The definition of the Invariant and fast to compute feature 

sets can be found in Section 5.4.7. Energy expenditure is evaluated in a subject independent manner. 

 

The first result that is highlighted by Table 5-91 is that the performance of estimating 

energy expenditure using the ScaledHR feature alone is higher than the one obtained by 

utilizing any of the highest performing accelerometer-based features alone. For instance, 

the ScaledHR feature alone achieves a correlation coefficient +0.14units higher than the 

ACFFTPeaks feature alone. The ScaledHR feature also achieves a RMSE 0.27MET 

lower than the ACFFTPeaks feature alone. Similarly, the ScaledHR feature improves the 

correlation coefficient +0.16units and the RMSE in +0.35MET over the performance of 

the ACAbsArea feature alone. One explanation for this result is that most of the activities 

in the MIT energy expenditure dataset have different intensity levels due to varying 

resistance work or load effort. Thus, their energy expenditure is better estimated using 

heart rate data. It is important to remember that when the accelerometer-based features 

are used to estimate energy expenditure, a single multivariable linear regression model is 

used to model the energy expenditure associated with all the activities performed. Section 

5.6.11.2 will explore if activity dependent regression models improve energy expenditure 

estimation over the utilization of single regression model for all activities based on 

accelerometer features. 

Even though the performance of the ScaledHR feature is superior to the performance of 

accelerometer-based features, when both feature sets are combined, overall performance 

and performance per activity is improved. For example, it can be seen from Table 5-91 

that when the ScaledHR feature is incorporated, the correlation coefficient improves 
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+0.16 for the ACFFTPeaks feature, +0.19 for the ACAbsArea feature, +0.16 for the 

invariant reduced and fast to compute feature sets. The RMSE improves 0.38MET for the 

ACFFTPeaks feature, 0.46MET for the ACAbsArea feature, and 0.38MET for the 

invariant reduced and fast to compute feature sets. Thus, the single feature that benefits 

the most with the incorporation of the ScaledHR feature is the ACAbsArea feature. 

Interestingly, the improvement over the invariant reduced and fast to compute feature 

sets when the ScaledHR feature is incorporated is almost identical. This is because the 

performance of these feature sets is almost already identical before the incorporation of 

the heart rate feature as can be seen in Table 5-91. In general, although all activity 

categories benefit from the incorporation of the ScaledHR feature, the categories that 

benefit the most are ambulation (+0.4MET in RMSE on average), exercise activities 

(+0.2-0.4MET) and resistance exercise activities (+0.2-0.4MET). This is because they 

incorporate more activities that involve different intensity levels due to changes in 

resistance work or load effort. Finally, from Table 5-91, it can be concluded that the best 

feature combinations to utilize when estimating energy expenditure from seven 

accelerometers (at least in this work) are ACFFTPeaks+ScaledHR and 

ACAbsArea+ScaledHR. This is because their performance is very close to the 

performance obtained using the invariant reduced and fast to compute feature sets but 

their computational requirements are lower (less number of accelerometer-based 

features). 

Table 5-92 presents the performance of combining heart rate and accelerometer-based 

features when two subsets of accelerometers are used: (a) three sensors worn at the hip, 

dominant wrist, and dominant foot and (b) a single sensor worn at the hip.  It can be 

observed that the performance utilizing three sensors at the hip, dominant wrist, and 

dominant foot is very close to the performance obtained when all seven sensors are used. 

This is because three sensors at these locations are able to capture upper body, lower 

body, and overall body motion well enough to produce estimates close to the ones 

obtained using all the accelerometers. This is explained in detail in Section 5.4.7.  

From Table 5-92, it can also be seen that the best two feature combination to utilize 

when estimating energy expenditure are still the ACFFTPeaks + ScaledHR and 

ACAbsArea + ScaledHR. This is because their performance per activity category is either 

almost identical or slightly higher to the one obtained using the same features but 

computed over all seven accelerometers. For example, the correlation coefficients remain 

practically unchanged, and the RMSE increases +0.01MET for the ACFFTPeaks feature 

when only three sensors are used, and the RMSE increases +0.1MET for the exercise 

category when the ACAbsArea feature is computed over three sensors only (hip, 

dominant wrist, and dominant foot). The slight improvement in performance is due to the 

reduction in the number of predictor variables (since features are computed over fewer 

sensors). In general, the incorporation of accelerometer-based features to the ScaledHR 

feature improves performance only slightly. For example, the correlation coefficient 

improves between 0.02 and 0.03units and the RMSE decreases between 0.03 and 

0.1MET when the features computed over the accelerometer at the hip are incorporated to 

the ScaledHR feature. Similarly, the correlation coefficient improves between 0.03 and 

0.04units and the RMSE decreases between 0.11 and 0.13MET when the features 

computed over the accelerometers at the hip, dominant wrist, and dominant foot are 

incorporated to the ScaledHR feature. Finally, the improvement in RMSE per activity  
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Features 

subsets  

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ACFFTPeaks + 

ScaledHR 

Hip  

0.84 ± 0.08 0.98 ± 0.28 

(0.8 ± 0.2) 

0.6±0.3  

(0.5±0.3) 

0.9±0.4  

(0.9±0.4) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.1±0.6) 

0.6±0.2  

(0.5±0.2) 

ACFFTPeaks + 
ScaledHR 

Hip + DWrist + 

DFoot 

0.88 ± 0.05 0.88 ± 0.22 
(0.7 ± 0.2) 

0.5±0.2  
(0.4±0.2) 

0.8±0.3  
(0.7±0.3) 

1.1±0.6  
(1.0±0.6) 

0.9±0.5  
(0.9±0.5) 

0.5±0.2  
(0.4±0.2) 

ACAbsAreas + 

ScaledHR 
Hip  

0.86 ± 0.07 0.95 ± 0.28 

(0.7 ± 0.2) 

0.4±0.2  

(0.4±0.2) 

0.8±0.4  

(0.7±0.4) 

1.2±0.7  

(1.2±0.7) 

1.1±0.6  

(1.0±0.6) 

0.5±0.2  

(0.4±0.2) 

ACAbsAreas + 

ScaledHR 
Hip + DWrist + 

DFoot 

0.87 ± 0.06 0.90 ± 0.25 

(0.7 ± 0.2) 

0.4±0.2  

(0.4±0.2) 

0.7±0.3  

(0.6±0.3) 

1.2±0.6  

(1.1±0.6) 

1.0±0.6  

(1.0±0.6) 

0.5±0.2  

(0.4±0.2) 

Invariant 

Reduced + 

ScaledHR 
Hip 

0.86 ± 0.08 0.94 ± 0.27 

(0.7 ± 0.2) 

0.6±0.3  

(0.5±0.3) 

0.9±0.4  

(0.8±0.4) 

1.2±0.7  

(1.1±0.7) 

1.0±0.6  

(0.9±0.6) 

0.5±0.2  

(0.5±0.2) 

Invariant 

Reduced + 
ScaledHR 

Hip + DWrist + 

DFoot 

0.88 ± 0.05 0.88 ± 0.23 

(0.7 ± 0.2) 

0.5±0.3  

(0.4±0.3) 

0.8±0.4  

(0.7±0.3) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.3  

(0.5±0.2) 

Fast to compute 

+ ScaledHR 
Hip  

0.87 ± 0.06 0.91 ± 0.25 

(0.7 ± 0.2) 

0.4±0.3  

(0.4±0.3) 

0.8±0.4  

(0.7±0.4) 

1.1±0.6  

(1.1±0.6) 

1.0±0.6  

(0.9±0.5) 

0.5±0.2  

(0.4±0.2) 

Fast to compute 

+ ScaledHR 
Hip + DWrist + 

DFoot 

0.88 ± 0.05 0.89 ± 0.22 

(0.7 ± 0.2) 

0.4±0.3  

(0.4±0.3) 

0.8±0.4  

(0.7±0.4) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.9±0.5) 

0.5±0.3  

(0.5±0.3) 

Table 5-92: Root mean squared error and mean absolute error (shown in parenthesis) obtained while 

estimating energy expenditure in a subject independent manner using linear regression when the 

most discriminating accelerometer (invariant reduced feature set) and heart rate (ScaledHR) features 

are used. Features are computed per sensor over two sets of accelerometers: (a) hip, dominant wrist, 

and dominant foot, and (b) hip. Energy expenditure was predicted over the 51 activities contained in 

the MIT energy expenditure dataset. 

 

category ranges between 0 and 0.3MET when accelerometer-based features are 

incorporated to the ScaledHR feature. The activity category that benefits the least from 

the incorporation of accelerometer-based features is the household category.  The 

performance per activity for ScaledHR+ACFFTPeaks features computed over the 

accelerometers at the hip, dominant wrist, and dominant foot can be found in Appendix 

B14.  

 

5.6.11 How Well Can Energy Expenditure be Estimated Using the Selected Window 
Length, Feature Set, and Signal Preprocessing Techniques? 

This section evaluates the performance of the final implementation of the energy 

expenditure estimation algorithm using the set of parameters incrementally selected in the 

previous sections. These parameters consist on the ACFFTPeaks feature set, feature 

computation per sensor over sliding windows of 5.6s in length, and the multivariable 

linear regression algorithm. The algorithm computes features over the accelerometers  
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Evaluation Method Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

ACAbsArea 
Subject independent 

0.67 ± 0.05 1.38 ± 0.29 
(1.04 ± 0.15) 

0.8±0.2  
(0.7±0.2) 

1.1±0.4  
(1.0±0.4) 

1.5±0.7  
(1.4±0.7) 

1.4±0.6  
(1.3±0.6) 

0.8±0.3  
(0.7±0.2) 

ACFFTPeaks 

Subject independent 

0.72 ± 0.06 1.28 ± 0.31 

(0.93 ± 0.18) 

0.6±0.2  

(0.5±0.2) 

1.1±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.6  

(1.1±0.6) 

0.7±0.3  

(0.6±0.2) 

ACFFTPeaks + 

ACModVigEnergy + 
ACMCR 

Subject independent 

0.73 ± 0.05 1.25 ± 0.29 

(0.91 ± 0.18) 

0.5±0.2  

(0.5±0.2) 

1.1±0.4  

(1.0±0.4) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.1±0.6) 

0.7±0.2  

(0.6±0.2) 

Fast to Compute 
Subject Independent 

0.69 ± 0.12 1.33 ± 0.33 
(0.99 ± 0.24) 

0.6±0.3  
(0.5±0.3) 

1.2±0.5  
(1.1±0.5) 

1.3±0.7  
(1.2±0.7) 

1.2±0.6  
(1.1±0.6) 

0.9±0.6  
(0.8±0.6) 

Invariant Reduced 

Subject Independent 

0.70 ± 0.11 1.31 ± 0.34 

(0.97 ± 0.23) 

0.6±0.3  

(0.5±0.3) 

1.2±0.5  

(1.0±0.5) 

1.4±0.8  

(1.3±0.8) 

1.2±0.7  

(1.1±0.6) 

0.8±0.5  

(0.7±0.5) 

ACAbsArea 

Subject dependent 

0.70 ± 0.05 1.24 ± 0.31 

(0.93 ± 0.25) 

0.8±0.4  

(0.8±0.4) 

1.0±0.4  

(0.9±0.4) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.2±0.6) 

0.7±0.3  

(0.6±0.3) 

ACFFTPeaks 
Subject dependent 

0.79 ± 0.04 
 

1.06 ± 0.24 
(0.78 ± 0.19) 

0.7±0.3  
(0.6±0.3) 

1.0±0.3  
(0.8±0.3) 

1.0±0.4  
(0.9±0.4) 

0.9±0.4  
(0.8±0.3) 

0.6±0.3  
(0.5±0.2) 

ACFFTPeaks + 

ACModVigEnergy + 

ACMCR 
Subject dependent 

0.80 ± 0.04 1.02 ± 0.23 

(0.75 ± 0.18) 

0.6±0.3  

(0.5±0.3) 

0.9±0.3  

(0.8±0.2) 

0.9±0.4  

(0.8±0.3) 

0.9±0.3  

(0.8±0.3) 

0.6±0.2  

(0.5±0.2) 

Fast to Compute 

Subject dependent 

0.79 ± 0.05 1.06 ± 0.24 

(0.79 ± 0.19) 

0.7±0.3  

(0.6±0.3) 

0.9±0.3  

(0.8±0.3) 

1.0±0.4  

(0.8±0.4) 

0.9±0.4  

(0.8±0.3) 

0.6±0.3  

(0.5±0.2) 

Invariant Reduced 
Subject dependent 

0.81 ± 0.04 1.01 ± 0.23 
(0.75 ± 0.18) 

0.7±0.3  
(0.6±0.3) 

0.9±0.3  
(0.8±0.2) 

0.9±0.4  
(0.8±0.3) 

0.8±0.3  
(0.7±0.3) 

0.6±0.3  
(0.5±0.2) 

Table 5-93: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure in a subject independent manner using linear regression and different 

feature sets computed per sensor over windows of 5.6s in length over three accelerometers located at 

the hip, dominant wrist, and dominant foot. 

 

located at the hip, dominant wrist, and dominant foot. The section starts by presents a 

summary of how well can energy expenditure be estimated in a subject independent and 

dependent manner using the five feature sets with highest performance as found in 

Section 5.6.7. Later, the section analyzes how well can energy expenditure be estimated 

by utilizing activity dependent regression models using the final set of features in a 

subject dependent and independent manner. During this evaluation, the 51 activities 

contained in the MIT dataset are recognized using the final implementation of the activity 

recognition algorithm (see Section 5.4.9). The section also explores how well can energy 

expenditure be predicted when the number of activities to recognize is reduced to a set of 

11 activities that would be useful to recognize during medical studies in practice. Finally, 

the section briefly explores how well can energy expenditure be predicted when the mean 

energy expenditure value for each activity is predicted after recognizing activities. 

 

5.6.11.1 How Well Can Energy Expenditure be Estimated Using Linear Regression?  

 

Table 5-93 presents a summary of how well can energy expenditure be predicted in a 

subject dependent and independent manner using the five feature sets with higher 

performance from Section 5.6.7. During this analysis, features are computed per sensor 

over windows of 5.6s in length using the accelerometers located at the hip, dominant 

wrist, and dominant foot. Energy expenditure is estimated using multivariable linear 

regression. The table shows that during subject independent evaluation, the feature set 

that achieves the highest performance is the ACFFTPeaks + ACModVigEnergy + 
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ACMCR feature set (r=0.73, RMSE=1.25). The improvement obtained with respect to the 

ACAbsArea feature is +0.06units in the correlation coefficient and 0.13MET for the 

RMSE. The table also shows that the performance of the ACAbsArea feature is lower 

than any of the other feature combinations. This confirms, as found in the previous 

sections, that computing features that capture information other than overall amount of 

motion (captured by ACAbsArea) improves energy expenditure estimation. From Table 

5-93 it can also be seen that the performance of the fast to compute and invariant reduced 

feature sets is lower than for the one obtained for the ACFFTPeaks and the ACFFTPeaks 

+ ACModVigEnergy + ACMCR feature sets. As explained previously, this is because the 

number of predictor variables increases and there is insufficient amount of data to train 

the regression models (now containing a larger set of variables). 

The performance of the ACFFTPeaks feature set is slightly lower than the performance 

of the ACFFTPeaks + ACModVigEnergy + ACMCR feature combination but it requires 

fewer computations since the ACModVigEnergy and the ACMCR features do not have to 

be computed. The decrease in the correlation coefficient is just 0.01units and the increase 

in the RMSE is 0.03MET with respect to the ACFFTPeaks + ACModVigEnergy + 

ACMCR feature set when the ACFFTPeaks feature is utilized. The difference in 

performance between estimating energy expenditure using the ScaledHR feature and the 

ACFFTPeaks feature set during subject independent evaluation is 0.11units for the 

correlation coefficient and 0.27MET for the RMSE.  

During subject dependent evaluation, it can be seen that the feature sets with highest 

performance in decreasing order are: the invariant reduced feature set (r=0.81, 

RMSE=1.01), followed by the ACFFTPeaks + ACModVigEnergy + ACMCR (r=0.80, 

RMSE=1.02), the fast to compute (r=0.79, RMSE=1.06) and the ACFFTPeaks (r=0.79, 

RMSE=1.06) feature set. One possible reason why the invariant reduced feature set 

achieves the highest performance despite its larger vector size (predictor variables) is that 

since there are no inter-individual variations in motion during subject dependent training 

(there is less variability per activity in the training data), the regression model is able to 

capture motion characteristics well for each activity despite the limited amount of 

training data. It can also be observed that all feature sets improve performance over the 

ACAbsArea feature during both, subject dependent and independent training. When the 

performance of the ACFFTPeaks feature is compared to the one obtained using the 

invariant reduced feature set, it is found that the difference in the correlation coefficient 

is 0.02units and 0.05MET for the RMSE. Moreover, the performance achieved by any of 

the feature sets but the ACAbsArea feature is close to the one obtained using the 

ScaledHR feature during subject independent evaluation (r=0.83, RMSE=1.01).  This is a 

good result, since it can be argued that wearing accelerometers longitudinally is more 

comfortable than wearing heart rate monitors placed on the chest. Unfortunately, subject 

dependent energy expenditure data is presently difficult to collect due to the high cost of 

the equipment (e.g. indirect calorimeter) and expertise required to operate it.  

Thus, from the results shown in Table 5-93, it can be argued that the ACFFTPeaks 

feature set presents a good compromise between subject dependent and independent 

performance and computational complexity with respect to the other features shown in 

the table.  
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5.6.11.2 How Well Can Energy Expenditure be Estimated Using One Linear 

Regression Model Per Activity?  

 

This section explores the performance of utilizing activity dependent regression models 

during the estimation of energy expenditure when the activities performed are recognized 

using the activity recognition algorithm implemented in Section 5.4.9. Specifically; in 

this section, activities being performed are recognized using the C4.5 decision tree 

classifier trained over features computed per sensor over windows of 5.6s in length over 

different accelerometer combinations. This activity recognition algorithm is evaluated 

over the two highest performing feature sets found for activity recognition: (1) the fast to 

compute feature set and (2) the invariant reduced feature set. For a detailed description of 

the features included in these feature sets refer to Section 5.4.7. Once activities are 

recognized using this algorithm, activity dependent linear regression models are used to 

estimate energy expenditure. These multivariable linear regression models are trained in a 

subject independent manner over the energy expenditure data collected for each activity. 

No analysis is presented in this section for subject dependent estimation of energy 

expenditure due to the unavailability (for most people) of the necessary equipment to 

collect energy expenditure data during free-living. 

Table 5-94 presents the performance of estimating energy expenditure by (1) 

recognizing the 51 activities contained in the MIT energy expenditure dataset in a subject 

independent manner using the algorithm implemented in Section 5.4.9 and (2) applying a 

multivariable linear regression model per activity trained in a subject independent 

manner. Activities are recognized using the fast to compute feature set and energy 

expenditure is estimated using the ACAbsArea feature. Both feature sets are computed 

per sensor over windows of 5.6s in length over the different sensor combinations. The 

objective of analyzing this feature pair (fast to compute, ACAbsArea) is to determine how 

well energy expenditure can be estimated using features that are not as computationally 

intensive as the other feature sets explored in this work. Table 5-94 shows that the highest 

overall performance (r=0.82, RMSE=1.12) is obtained using all the seven accelerometers. 

The second highest performing sensor combination is Hip+DWrist+DFoot, followed by 

the DWrist+DFoot and by the Hip+DWrist sensor combination. The performance of the 

DWrist+DFoot combination is almost identical to the one obtained using the 

Hip+DWrist+DFoot sensor combination as highlighted in Section 5.6.8. Between these 

two sensor combinations, there is only a 0.01MET difference in RMSE for the postures 

and ambulation categories. The performance obtained for the Hip+DWrist+DFoot sensor 

combination (r=0.80, RMSE=1.17) using activity dependent regression models is higher 

than the performance obtained using a single multivariable linear regression trained over 

the ACAbsArea feature (r=0.67, RMSE=1.38). This indicates that activity dependent 

regression models indeed improve energy expenditure estimation, even when a large set 

of activities is recognized in a subject independent manner. It is interesting to note that 

energy expenditure can be predicted well even when the overall accuracy of recognizing 

51 activities (without the unknown class) in a subject independent manner using the fast 

to compute feature set is only ~45% (see Section 5.4.9). One possible explanation is that 

even when the activity recognition algorithm performs misclassifications, these 

misclassifications correspond to activities that are similar (in motion patterns) to the real  
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Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 0.82 ± 0.07 1.12 ± 0.26 
(0.78 ± 0.21) 

0.5±0.3  
(0.4±0.3) 

1.3±0.4  
(1.1±0.4) 

1.2±0.6  
(1.1±0.6) 

1.1±0.5  
(1.0±0.4) 

0.7±0.4  
(0.6±0.3) 

Hip + DWrist + 

DFoot 

0.80 ± 0.09 1.17 ± 0.35 

(0.79 ± 0.21) 

0.4±0.3  

(0.4±0.3) 

1.2±0.5  

(1.0±0.5) 

1.3±0.7  

(1.1±0.7) 

1.2±0.6  

(1.0±0.6) 

0.7±0.4  

(0.6±0.3) 

Hip + DWrist 0.78 ± 0.05 1.21 ± 0.24 

(0.82 ± 0.18) 

0.5±0.3  

(0.4±0.2) 

1.3±0.6  

(1.1±0.5) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.6) 

0.8±0.5  

(0.6±0.4) 

Hip + DFoot 0.80 ± 0.08 1.20 ± 0.38 

(0.83 ± 0.25) 

0.5±0.3  

(0.4±0.2) 

1.3±0.6  

(1.1±0.5) 

1.2±0.7  

(1.1±0.7) 

1.1±0.6  

(1.0±0.6) 

0.8±0.5  

(0.6±0.4) 

DWrist + DThigh 0.78 ± 0.07 1.21 ± 0.24 

(0.83 ± 0.18) 

0.7±0.5  

(0.5±0.4) 

1.2±0.4  

(1.1±0.4) 

1.3±0.6  

(1.1±0.6) 

1.2±0.5  

(1.1±0.5) 

0.7±0.3  

(0.5±0.2) 

DWrist + DFoot 0.80 ± 0.06 1.18 ± 0.28 
(0.81 ± 0.20) 

0.5±0.3  
(0.4±0.3) 

1.3±0.5  
(1.1±0.4) 

1.3±0.7  
(1.1±0.6) 

1.2±0.6  
(1.1±0.5) 

0.7±0.4  
(0.6±0.3) 

Hip 0.71 ± 0.07 1.40 ± 0.28 

(0.96 ± 0.20) 

0.4±0.3  

(0.4±0.2) 

1.5±0.5  

(1.3±0.5) 

1.5±0.7  

(1.3±0.6) 

1.3±0.6  

(1.1±0.6) 

1.0±0.4  

(0.7±0.3) 

DWrist 0.46 ± 0.14 1.85 ± 0.28 
(1.32 ± 0.24) 

1.1±0.6  
(0.8±0.4) 

1.8±0.6  
(1.6±0.6) 

2.1±0.8  
(1.8±0.8) 

1.9±0.6  
(1.6±0.6) 

1.4±0.5  
(1.1±0.4) 

DFoot 0.75 ± 0.07 1.31 ± 0.29 

(0.94 ± 0.20) 

0.7±0.4  

(0.6±0.3) 

1.5±0.6  

(1.3±0.5) 

1.4±0.7  

(1.2±0.6) 

1.2±0.5  

(1.1±0.5) 

0.9±0.4  

(0.7±0.3) 

DUpperArm 0.54 ± 0.09 1.76 ± 0.35 

(1.23 ± 0.29) 

0.8±0.6  

(0.6±0.4) 

1.6±0.5  

(1.4±0.5) 

2.0±0.8  

(1.7±0.8) 

1.9±0.7  

(1.6±0.7) 

1.3±0.5  

(1.0±0.4) 

DThigh 0.76 ± 0.06 1.29 ± 0.23 

(0.88 ± 0.17) 

0.8±0.4  

(0.6±0.4) 

1.2±0.4  

(1.1±0.4) 

1.4±0.7  

(1.2±0.7) 

1.3±0.6  

(1.1±0.6) 

0.8±0.3  

(0.6±0.2) 

Table 5-94: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure by first recognizing 51 activities in a subject independent manner and 

then applying a multivariable linear regression model per activity trained in a subject independent 

manner.  The fast to compute feature set is used to recognize activities and the ACAbsArea feature to 

estimate energy expenditure. Both feature sets are computed per sensor over windows of 5.6s in 

length. 

 

 
Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 0.77 ± 0.07 1.30 ± 0.28 

(0.85 ± 0.21) 

0.6±0.4  

(0.4±0.3) 

1.4±0.6  

(1.2±0.5) 

1.4±0.6  

(1.1±0.6) 

1.3±0.6  

(1.1±0.5) 

0.8±0.5  

(0.6±0.3) 

Hip + DWrist + 

DFoot 

0.77 ± 0.11 1.31 ± 0.40 

(0.87 ± 0.25) 

0.6±0.4  

(0.5±0.3) 

1.5±0.7  

(1.3±0.6) 

1.4±0.8  

(1.2±0.7) 

1.3±0.6  

(1.0±0.5) 

0.9±0.5  

(0.6±0.3) 

Hip + DWrist 0.75 ± 0.08 1.29 ± 0.33 
(0.87 ± 0.21) 

0.8±1.1  
(0.5±0.6) 

1.3±0.5  
(1.1±0.5) 

1.3±0.6  
(1.1±0.5) 

1.2±0.5  
(1.0±0.4) 

0.9±0.5  
(0.7±0.3) 

Hip + DFoot 0.78 ± 0.12 1.26 ± 0.42 

(0.85 ± 0.27) 

0.7±0.5  

(0.5±0.4) 

1.4±0.6  

(1.2±0.6) 

1.3±0.7  

(1.1±0.7) 

1.2±0.6  

(1.0±0.6) 

0.9±0.6  

(0.6±0.4) 

DWrist + DThigh 0.79 ± 0.07 1.21 ± 0.27 

(0.81 ± 0.17) 

0.6±0.6  

(0.5±0.5) 

1.2±0.4  

(1.0±0.4) 

1.3±0.6  

(1.1±0.6) 

1.2±0.6  

(1.0±0.5) 

0.7±0.3  

(0.6±0.2) 

DWrist + DFoot 0.77 ± 0.11 1.31 ± 0.43 
(0.86 ± 0.25) 

0.6±0.5  
(0.5±0.4) 

1.4±0.6  
(1.2±0.6) 

1.3±0.7  
(1.1±0.6) 

1.3±0.7  
(1.1±0.5) 

0.9±0.7  
(0.7±0.5) 

Hip 0.77 ± 0.07 1.22 ± 0.20 

(0.85 ± 0.17) 

0.5±0.3  

(0.4±0.2) 

1.4±0.5  

(1.1±0.5) 

1.3±0.5  

(1.2±0.5) 

1.2±0.4  

(1.0±0.4) 

0.9±0.4  

(0.6±0.3) 

DWrist 0.60 ± 0.12 1.59 ± 0.29 
(1.08 ± 0.22) 

0.9±0.5  
(0.7±0.4) 

1.5±0.6  
(1.3±0.6) 

1.7±0.8  
(1.5±0.8) 

1.6±0.6  
(1.3±0.6) 

1.2±0.5  
(0.9±0.4) 

DFoot 0.74 ± 0.16 1.45 ± 0.78 

(0.90 ± 0.31) 

0.6±0.5  

(0.5±0.4) 

1.3±0.5  

(1.1±0.4) 

1.4±0.9  

(1.2±0.7) 

1.4±1.0  

(1.2±0.8) 

1.1±1.2  

(0.8±0.7) 

DUpperArm 0.78 ± 0.04 1.25 ± 0.31 

(0.83 ± 0.19) 

0.5±0.4  

(0.4±0.3) 

1.3±0.5  

(1.1±0.5) 

1.3±0.7  

(1.2±0.6) 

1.3±0.6  

(1.1±0.5) 

0.7±0.3  

(0.6±0.2) 

DThigh 0.77 ± 0.05 1.25 ± 0.26 

(0.87 ± 0.18) 

0.7±0.4  

(0.5±0.4) 

1.3±0.4  

(1.1±0.4) 

1.4±0.6  

(1.2±0.6) 

1.3±0.5  

(1.1±0.5) 

0.8±0.3  

(0.6±0.2) 

Table 5-95: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure by first recognizing 51 activities in a subject independent manner and 

then applying a multivariable linear regression model per activity trained in a subject independent 

manner.  The invariant reduced feature set is used to recognize activities and the ACFFTPeaks 

feature to estimate energy expenditure. Both feature sets are computed per sensor over windows of 

5.6s in length. 
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activity being performed and thus, the energy expenditure estimated is close to the one of 

the target activity.  

The performance of the Hip+DWrist+DFoot sensor combination (r=0.80, RMSE=1.17) 

is similar to the performance obtained using a single linear regression model and the fast 

to compute feature set (r=0.80, RMSE=1.18). This is because in Table 5-94, energy 

expenditure is predicted using only the ACAbsArea feature but the improved performance 

obtained is mainly due to the use of activity dependent regression models. This suggests 

that energy expenditure could be further improved by including features other than the 

ACAbsArea feature (e.g. fast to compute feature set) provided there is enough training 

data to train the activity dependent models. 

Table 5-95 presents the performance of estimating energy expenditure also utilizing 

activity dependent linear regression models; however, the 51 activities contained in the 

MIT energy expenditure dataset are now recognized using the invariant reduced feature 

set and energy expenditure is predicted using the ACFFTPeaks feature. Activities and 

energy expenditure are evaluated in a subject independent manner. Both feature sets are 

again computed per sensor over windows of 5.6s in length over the different sensor 

combinations. The objective of evaluating the performance over these feature sets is to 

(1) test how better recognition of activities  (from the invariant reduced feature set) 

improves energy expenditure estimation and (2) how a more complex feature set 

(ACFFTPeaks) improves energy expenditure estimation. However, a quick inspection of 

Table 5-95 reveals that the correlation coefficients and RMSE obtained have a lower 

performance than the one obtained in Table 5-94. The reason for this is that there is less 

training data available to train each of the linear regression models due to the utilization 

of 51 activity dependent regression models. This is mainly due to the relatively large 

feature vector size (70 features per sensor) of the ACFFTPeaks feature with respect to the 

training data available per activity. This is also highlighted by the fact that performance 

increases as the number of sensors is decreased for some sensor combinations in Table 

5-95. For example, the performance of the single sensor at the hip is r=0.77 and 

RMSE=1.22 while the performance over the Hip+DWrist+DFoot is r=0.77 and 

RMSE=1.31. For this reason, feature combinations incorporating more features than the 

ACFFTPeaks feature set are not evaluated during the analysis of energy expenditure 

estimation using activity dependent models. This does not mean that incorporating more 

features would not improve energy expenditure estimation. Estimating energy 

expenditure using the fast to compute and ACFFTPeaks feature sets have already been 

shown to improve performance when a single linear regression model is used to estimate 

energy expenditure (Section 5.6.11.1). This only means that the amount of data contained 

in the MIT energy expenditure dataset is insufficient to evaluate the performance over 

larger number of features when activity dependent regression models are used to estimate 

energy expenditure. Nevertheless, even when training data is insufficient, Table 5-95 still 

shows that overall performance and performance per activity for the sensor combinations 

all sensors, Hip+DWrist+DFoot, DWrist+DFoot, and DWrist+DThigh is similar as 

observed in previous sections. 

Table 5-96 presents the results obtained when energy expenditure is estimated by 

recognizing the 51 activities in a subject dependent manner and when activity dependent 

linear regression models trained in a subject independent manner are used. Activities are 

recognized using the C4.5 decision tree classifier trained using the fast to compute feature  
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Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 0.88 ± 0.05 0.98 ± 0.27 
(0.65 ± 0.16) 

0.3±0.2  
(0.2±0.1) 

1.0±0.4  
(0.8±0.4) 

1.2±0.6  
(1.1±0.6) 

0.9±0.5  
(0.8±0.4) 

0.5±0.2  
(0.4±0.2) 

Hip + DWrist + 

DFoot 

0.89 ± 0.04 0.93 ± 0.28 

(0.61 ± 0.15) 

0.3±0.2  

(0.2±0.1) 

0.9±0.3  

(0.7±0.3) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

Hip + DWrist 0.88 ± 0.04 0.91 ± 0.21 

(0.60 ± 0.13) 

0.3±0.2  

(0.2±0.1) 

0.9±0.3  

(0.7±0.3) 

1.1±0.6  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

Hip + DFoot 0.88 ± 0.06 0.93 ± 0.31 

(0.62 ± 0.16) 

0.3±0.2  

(0.2±0.1) 

0.9±0.3  

(0.7±0.3) 

1.1±0.6  

(1.0±0.6) 

1.0±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

DWrist + DThigh 0.89 ± 0.03 0.88 ± 0.18 

(0.60 ± 0.13) 

0.4±0.3  

(0.3±0.2) 

0.9±0.3  

(0.8±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

DWrist + DFoot 0.89 ± 0.03 0.91 ± 0.22 
(0.61 ± 0.13) 

0.4±0.3  
(0.3±0.2) 

0.9±0.3  
(0.8±0.3) 

1.0±0.6  
(0.9±0.5) 

0.9±0.5  
(0.8±0.4) 

0.5±0.2  
(0.5±0.2) 

Hip 0.87 ± 0.05 0.96 ± 0.24 

(0.64 ± 0.14) 

0.4±0.2  

(0.3±0.2) 

0.9±0.3  

(0.8±0.3) 

1.1±0.5  

(0.9±0.5) 

1.0±0.5  

(0.8±0.4) 

0.7±0.3  

(0.5±0.2) 

DWrist 0.81 ± 0.07 1.12 ± 0.23 
(0.74 ± 0.15) 

0.7±0.4  
(0.4±0.2) 

1.1±0.4  
(0.9±0.3) 

1.2±0.6  
(1.0±0.5) 

1.1±0.5  
(0.9±0.4) 

0.9±0.4  
(0.7±0.3) 

DFoot 0.87 ± 0.04 0.97 ± 0.26 

(0.66 ± 0.16) 

0.4±0.2  

(0.3±0.1) 

1.1±0.4  

(0.9±0.3) 

1.1±0.6  

(0.9±0.5) 

1.0±0.5  

(0.9±0.4) 

0.6±0.2  

(0.5±0.2) 

DUpperArm 0.82 ± 0.04 1.08 ± 0.22 

(0.72 ± 0.15) 

0.5±0.3  

(0.4±0.2) 

1.1±0.4  

(0.9±0.3) 

1.2±0.5  

(1.0±0.5) 

1.2±0.5  

(0.9±0.4) 

0.8±0.3  

(0.6±0.3) 

DThigh 0.88 ± 0.03 0.91 ± 0.21 

(0.62 ± 0.14) 

0.4±0.3  

(0.3±0.2) 

1.0±0.4  

(0.8±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

Table 5-96: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure by first recognizing 51 activities in a subject dependent manner and 

then applying a multivariable linear regression model per activity trained in a subject independent 

manner. The fast to compute feature set is used to recognize activities and the ACAbsArea feature to 

estimate energy expenditure. Both feature sets are computed per sensor over windows of 5.6s in 

length. 

 
Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

All sensors 0.82 ± 0.08 1.21 ± 0.41 

(0.70 ± 0.17) 

0.4±0.2  

(0.3±0.1) 

1.1±0.6  

(0.9±0.4) 

1.4±0.8  

(1.1±0.6) 

1.1±0.5  

(0.9±0.4) 

0.7±0.3  

(0.5±0.2) 

Hip + DWrist + 

DFoot 

0.88 ± 0.03 0.99 ± 0.27 

(0.66 ± 0.18) 

0.4±0.2  

(0.3±0.2) 

1.0±0.4  

(0.8±0.4) 

1.2±0.6  

(1.0±0.5) 

1.0±0.5  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

Hip + DWrist 0.88 ± 0.04 0.93 ± 0.20 
(0.63 ± 0.16) 

0.4±0.3  
(0.3±0.2) 

1.0±0.4  
(0.8±0.3) 

1.1±0.5  
(0.9±0.4) 

0.9±0.4  
(0.8±0.4) 

0.6±0.2  
(0.5±0.2) 

Hip + DFoot 0.88 ± 0.03 0.98 ± 0.28 

(0.65 ± 0.17) 

0.3±0.2  

(0.3±0.2) 

1.0±0.4  

(0.8±0.4) 

1.2±0.6  

(1.0±0.5) 

1.0±0.5  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

DWrist + DThigh 0.88 ± 0.03 0.93 ± 0.19 

(0.61 ± 0.12) 

0.3±0.2  

(0.2±0.2) 

0.9±0.3  

(0.8±0.3) 

1.1±0.6  

(0.9±0.5) 

1.0±0.5  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

DWrist + DFoot 0.86 ± 0.06 1.05 ± 0.44 
(0.65 ± 0.15) 

0.3±0.2  
(0.2±0.1) 

1.0±0.4  
(0.8±0.3) 

1.2±0.7  
(1.0±0.6) 

1.1±0.6  
(0.9±0.5) 

0.6±0.3  
(0.5±0.2) 

Hip 0.88 ± 0.04 0.91 ± 0.21 

(0.62 ± 0.15) 

0.4±0.3  

(0.3±0.2) 

1.0±0.4  

(0.8±0.4) 

1.0±0.5  

(0.9±0.4) 

0.9±0.4  

(0.7±0.3) 

0.7±0.3  

(0.5±0.2) 

DWrist 0.83 ± 0.05 1.07 ± 0.21 
(0.70 ± 0.14) 

0.6±0.4  
(0.4±0.2) 

1.0±0.3  
(0.8±0.3) 

1.2±0.5  
(1.0±0.4) 

1.1±0.4  
(0.9±0.4) 

0.9±0.4  
(0.6±0.3) 

DFoot 0.85 ± 0.09 1.18 ± 0.93 

(0.67 ± 0.17) 

0.3±0.2  

(0.3±0.1) 

1.0±0.4  

(0.8±0.3) 

1.3±1.0  

(1.0±0.7) 

1.2±0.9  

(0.9±0.6) 

0.6±0.3  

(0.5±0.2) 

DUpperArm 0.86 ± 0.09 1.02 ± 0.45 

(0.64 ± 0.18) 

0.4±0.2  

(0.3±0.2) 

1.0±0.3  

(0.8±0.3) 

1.2±0.7  

(1.0±0.7) 

0.9±0.4  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

DThigh 0.87 ± 0.04 0.96 ± 0.25 

(0.65 ± 0.15) 

0.3±0.2  

(0.3±0.2) 

1.0±0.3  

(0.8±0.3) 

1.1±0.5  

(0.9±0.5) 

1.0±0.5  

(0.9±0.4) 

0.7±0.3  

(0.5±0.2) 

Table 5-97: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure by first recognizing 51 activities in a subject dependent manner and 

then applying a multivariable linear regression model per activity trained in a subject independent 

manner.  The invariant reduced feature set is used to recognize activities and the ACFFTPeaks 

feature to estimate energy expenditure. Both feature sets are computed per sensor over windows of 

5.6s in length. 
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set. The linear regression models are trained using the ACAbsArea feature. Both features 

are computed per sensor over non-overlapping sliding windows of 5.6s in length. The 

table shows that overall performance and performance per activity is higher than when 

activities are recognized in a subject independent manner. This is an expected result since 

the overall accuracy obtained when the 51 activities are recognized in a subject 

dependent manner using the fast to compute feature set is ~80% (+35% higher). From 

Table 5-96, it can also be observed that the feature sets with higher performance are 

DWrist+DThigh (r=0.89, RMSE=0.88), DWrist+DFoot (r=0.89, RMSE=0.91), and 

Hip+DWrist (r=0.88, RMSE=0.91). Again, the fact that performance increases as the 

number of sensors decreases (contrary to the behavior observed when a single linear 

regression model is used) indicates that the amount of data available is insufficient to 

evaluate performance when a large number of features are computed (over several 

sensors). It would be expected that given more training data, the performance of the 

Hip+DWrist+DFoot and all sensors combinations would be higher than the one obtained 

for the DWrist+DThigh sensor combination. Still, the results obtained using the 

DWrist+DThigh sensor combination (r=0.89, RMSE=0.88) are outstanding since they are 

higher than the results obtained using heart rate data (ScaledHR feature) using subject 

dependent (r=0.83, RMSE=0.92) and independent evaluation (r=0.83, RMSE=1.01). 

Furthermore, the performance of the DWrist+DThigh sensor combination is higher than 

the best results obtained using a single linear regression model trained over the fast to 

compute feature set during subject independent evaluation (r=0.80, RMSE-1.18). The 

performance of the DWrist+DThigh combination is also close to the performance 

obtained during subject dependent evaluation of a single regression model trained using 

the ACFFTPeaks feature (r=0.87, RMSE=0.86). This confirms that activity dependent 

regression models indeed improve energy expenditure estimation. 

When the performance of the Hip+DWrist+DFoot sensor combination is analyzed per 

activity during the use activity dependent regression models using the invariant reduced 

feature set (r=0.88, RMSE=0.99) and a single regression model (r=0.80, RMSE=1.18), it 

is found that the performance over the ambulation and resistance exercise categories 

increases 0.3MET when activity dependent models are used. One important advantage of 

estimating energy expenditure by utilizing activity dependent regression models is that 51 

activities are simultaneously recognized with an overall accuracy of 45% during subject 

independent training and ~80% during subject dependent training. This could allow for 

the development of health related interventions that trigger based on context and/or 

physical activity level. Obviously, one disadvantage of such approach if subject 

dependent training is utilized is that end-users need to provide examples of the activities 

to recognize. Nonetheless, the amount of training data required can be as low as 2mins as 

discussed in Section 5.6.11. 

Table 5-97 presents the results obtained when activities are recognized using the 

invariant reduced feature set and when energy expenditure is predicted using the 

ACFFTPeaks feature set. The table shows that the performance of the all sensors and the 

Hip+DWrist+DFoot sensor combinations is lower than the one obtained in Table 5-96. 

This is because the number of features increased from one feature per sensor 

(ACAbsArea) to ten features per sensor (ACFFTPeaks). The table also shows that the 

performance of all single sensors is higher than the performance obtained using the all 

sensors combination. This contradicts the results obtained when a single regression model 
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is used and intuition, since it has been already show that the computation of more features 

and the utilization of more sensors improve energy expenditure estimation. This indicates 

again that the available training data is insufficient to learn the large number of regression 

coefficients (features) during the utilization of activity dependent regression models. 

During this situation, the sensor at the hip achieves the highest performance overall 

(r=0.88, RMSE=0.91) and per activity. It is important to note that the performance of this 

sensor is higher than the performance for the same sensor in Table 5-96 (r=0.87, 

RMSE=0.96). This corroborates the fact that the inclusions of features that better capture 

motion signatures improve energy expenditure estimation.  

In summary, this section has shown that the utilization of activity dependent linear 

regression models in estimation of energy expenditure indeed improves performance. In 

fact, energy expenditure can be estimated with higher performance than when heart rate 

data alone is utilized during subject independent evaluation. The performance obtained 

using activity dependent models is also close to the performance obtained using heart rate 

data alone during subject dependent evaluation. The section has also shown that the 

incorporation of features others than the ACAbsArea improve energy expenditure 

estimation. These results hold when there is enough training data to train the activity 

dependent regression models or the single regression models containing large number of 

predictor variables (features). Finally, another finding was that although activity 

dependent linear regression models achieve higher performance (with respect to the use 

of single models); they require more data during training.  

 

5.6.11.3 How well Can Energy Expenditure be Estimated if the Number of Activities 

to Recognize is Reduced?  

 

One of the main problems found in the previous section was that the amount of training 

data available per activity was not sufficient to reliably test the performance of dependent 

regression models when a large number of features are utilized during the recognition of 

51 activities. The number of features can be large either because several features are 

computed or because a large number of sensors is used (e.g. seven). As a result, this 

section explores if reducing the number of activities being recognized (and thus, the 

number of regression models to train) from 51 to 11 improves energy expenditure 

estimation. The activities being recognized in this section are the same as the ones 

recognized in Section 5.4.9.4. These 11 activities are lying down, standing, sitting, 

kneeling, walking at 2mph and 3mph, running at 4, 5, and 6mph, and the moderate and 

vigorous MET intensity categories. Appendix A2 shows a detailed list of the activities 

that were merged into the moderate and vigorous intensity categories according to their 

associated number of METs from the Compendium of Physical Activities [122]. This set 

of activities is explored because most daily energy expenditure is spent in sedentary or 

light activities such as postures and ambulation. Moreover, when medical interventions 

are designed to foster an increase in physical activity levels, it is important to know if the 

target population is exercising at moderate or vigorous intensity levels. If they are, there 

may be no need for an intervention. However, if they are not, it might be important to 

know what activities are being performed (e.g. postures, ambulation type and intensity) to 

plan the intervention according.  
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Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

Fast to compute 

All sensors 
0.79 ± 0.08 1.26 ± 0.22 

(0.91 ± 0.14) 

0.5±0.3  

(0.4±0.2) 

1.4±0.6  

(1.3±0.6) 

1.4±0.7  

(1.3±0.7) 

1.2±0.5  

(1.1±0.5) 

0.9±0.3  

(0.7±0.3) 

Fast to compute 

Hip + DWrist + 
DFoot 

0.77 ± 0.07 1.28 ± 0.25 

(0.92 ± 0.16) 

0.5±0.2  

(0.4±0.2) 

1.3±0.6  

(1.2±0.6) 

1.4±0.7  

(1.2±0.6) 

1.3±0.6  

(1.1±0.5) 

1.0±0.4  

(0.8±0.3) 

Fast to compute 

Hip 
0.71 ± 0.07 1.43 ± 0.23 

(1.06 ± 0.16) 

0.8±0.4  

(0.6±0.4) 

1.4±0.5  

(1.2±0.5) 

1.5±0.6  

(1.3±0.6) 

1.3±0.6  

(1.2±0.5) 

1.1±0.4  

(0.9±0.4) 

Invariant reduced 

All sensors 
0.78 ± 0.12 1.24 ± 0.31 

(0.86 ± 0.21) 

0.6±0.3  

(0.4±0.3) 

1.4±0.6  

(1.2±0.6) 

1.3±0.7  

(1.1±0.6) 

1.2±0.6  

(1.0±0.6) 

0.9±0.5  

(0.7±0.4) 

Invariant reduced 

Hip + DWrist + 
DFoot 

0.79 ± 0.09 1.23 ± 0.34 

(0.86 ± 0.19) 

0.5±0.2  

(0.4±0.2) 

1.4±0.7  

(1.2±0.7) 

1.4±0.7  

(1.2±0.7) 

1.3±0.6  

(1.1±0.5) 

0.9±0.5  

(0.7±0.3) 

Invariant reduced 

Hip 
0.72 ± 0.09 1.33 ± 0.17 

(0.96 ± 0.13) 

0.7±0.4  

(0.5±0.3) 

1.3±0.5  

(1.1±0.5) 

1.4±0.6  

(1.2±0.6) 

1.3±0.5  

(1.1±0.4) 

1.1±0.4  

(0.9±0.3) 

Table 5-98: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

energy expenditure is estimated by first recognizing 11 activities in a subject independent manner 

and activity dependent linear regression models trained in a subject independent manner are 

applied. When activities are recognized using the fast to compute feature set, energy expenditure is 

predicted using the ACAbsArea feature. When the invariant reduced feature set is used to recognize 

activities, energy expenditure is predicted using the ACFFTPeaks feature. 

 
Sensor 

Combination 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

Fast to compute 

All sensors 
0.80 ± 0.07 1.22 ± 0.24 

(0.87 ± 0.15) 

0.3±0.2  

(0.3±0.1) 

1.3±0.5  

(1.2±0.5) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.0±0.6) 

0.9±0.3  

(0.7±0.3) 

Fast to compute 

Hip + DWrist + 
DFoot 

0.81 ± 0.05 1.18 ± 0.24 

(0.84 ± 0.15) 

0.3±0.2  

(0.2±0.2) 

1.2±0.4  

(1.1±0.4) 

1.3±0.6  

(1.2±0.6) 

1.1±0.6  

(1.0±0.6) 

0.9±0.4  

(0.7±0.3) 

Fast to compute 

Hip 
0.79 ± 0.07 1.21 ± 0.25 

(0.87 ± 0.17) 

0.4±0.2  

(0.3±0.2) 

1.2±0.4  

(1.0±0.4) 

1.3±0.6  

(1.2±0.6) 

1.2±0.6  

(1.1±0.5) 

1.0±0.4  

(0.8±0.4) 

Invariant reduced 

All sensors 
0.81 ± 0.08 1.15 ± 0.22 

(0.78 ± 0.16) 

0.4±0.2  

(0.3±0.1) 

1.3±0.5  

(1.1±0.5) 

1.2±0.5  

(1.0±0.5) 

1.1±0.6  

(0.9±0.5) 

0.9±0.5  

(0.7±0.4) 

Invariant reduced 

Hip + DWrist + 
DFoot 

0.84 ± 0.05 1.07 ± 0.20 

(0.77 ± 0.15) 

0.4±0.2  

(0.3±0.1) 

1.2±0.5  

(1.0±0.4) 

1.2±0.5  

(1.0±0.5) 

1.0±0.5  

(0.9±0.4) 

0.8±0.4  

(0.7±0.3) 

Invariant reduced 

Hip 
0.76 ± 0.14 1.24 ± 0.21 

(0.85 ± 0.13) 

0.4±0.3  

(0.3±0.2) 

1.1±0.5  

(0.9±0.4) 

1.3±0.6  

(1.1±0.5) 

1.2±0.5  

(1.0±0.4) 

1.1±0.6  

(0.9±0.5) 

Table 5-99: Root mean squared error and mean absolute error (shown in parenthesis) obtained when 

energy expenditure is estimated by first recognizing 11 activities in a subject dependent manner and 

activity dependent linear regression models trained in a subject independent manner are applied. 

When activities are recognized using the fast to compute feature set, energy expenditure is predicted 

using the ACAbsArea feature. When the invariant reduced feature set is used to recognize activities, 

energy expenditure is predicted using the ACFFTPeaks feature 

 

Table 5-98 presents the results obtained when energy expenditure is predicted by first 

recognizing 11 activities in a subject independent manner and then applying activity 

dependent linear regression models. Activities are recognized using the C4.5 decision 

tree classifier trained over two sets of features: the fast to compute feature set and the 

invariant reduced feature set. Energy expenditure is estimated using the ACAbsArea 

feature when activities are recognized using the fast to compute feature set and using the 

ACFFTPeaks feature set when activities are recognized using the invariant reduced 

feature set. Both feature sets are computed per sensor over windows of 5.6s in length. 

Although the number of activities being recognized is 11, energy expenditure estimation 

performance is tested over the 51 activities contained in the MIT energy expenditure 

dataset.  
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Table 5-98 shows that the performance obtained using the fast to compute feature set is 

lower than the performance obtained in Table 5-94 when the 51 activities were 

recognized. For example, in Table 5-98 the correlation coefficient ranges between 0.71 

and 0.79 and RMSE between 1.26 and 1.43 while for Table 5-94 the correlation 

coefficient ranges between 0.71 and 0.82 and the RMSE between 1.12 and 1.40 for the 

fast to compute feature set. Performance is also slightly lower for the sensor at the hip in 

Table 5-98 for the invariant reduced feature set (r=0.72, RMSE=1.33) than the one 

obtained in Table 5-95 (r=0.77, RMSE=1.22). This indicates that energy expenditure is 

not improved by reducing the number of activities to recognize from 51 to 11. In fact, 

overall performance and performance per activity using the fast to compute and invariant 

reduced feature sets slightly degrades for most activities when the number of activities to 

recognize is reduced suggesting that energy expenditure better estimated as more 

activities are recognized. This is an intuitive result because as the number of activities to 

recognize increases, there are more linear regression models available to perform fine 

tuned energy expenditure predictions per activity. Nevertheless, Table 5-98 also shows 

that the performance obtained using the invariant reduced feature set slightly increases 

for the sensor combinations all sensors and Hip+DWrist+DFoot when the number of 

activities is reduced from 51 to 11. For example, the correlation coefficient in Table 5-98 

ranges between 0.78 and 0.79 and RMSE between 1.23 and 1.24 for these sensor 

combinations while in Table 5-95 the correlation coefficient is 0.77 and the RMSE ranges 

between 1.31 and 1.32. Given the relatively large vector size of the invariant reduced 

feature set (13 features per sensor), the increase in performance is most likely caused due 

to an increase in the amount of training data available to train the reduced number of 

linear regression models for each activity. One would expect that given the availability of 

more training data (e.g. more subjects in the MIT energy expenditure dataset), overall 

performance and performance per activity would degrade as fewer numbers of activities 

are recognized as shown for the fast to compute feature set.  

Table 5-99 presents the performance obtained when energy expenditure is predicted by 

first recognizing 11 activities in a subject dependent manner and then activity dependent 

linear regression models trained in a subject independent manner are applied. The feature 

sets explored in this table are the same as the ones explored in Table 5-98. Table 5-99 

shows that the highest performance (r=0.84, RMSE=1.07) is obtained for the invariant 

reduced feature set computed over the accelerometers at the hip, dominant wrist, and 

dominant foot. The difference in performance of this feature/sensor combination with 

respect to subject independent recognition of activities is +0.05 for the correlation 

coefficient and -0.17MET for the RMSE. The fact that the invariant reduced feature set 

computed over the sensors at the hip, wrist and foot achieved the highest overall 

performance and performance per activity in Table 5-98 and Table 5-99, suggests that 

this is a good feature/sensor combination to use. This feature/sensor combination also 

achieved either the best performance or a performance very close to the highest one in 

Table 5-94 through Table 5-97. The good performance of the fast to compute feature set 

over the accelerometers at the hip, dominant wrist, and dominant foot is also considered a 

strong result since the computational requirements of this feature set are lower than the 

ones required by the invariant reduced feature set. 

One obvious disadvantage of applying activity dependent regression models to 

estimate energy expenditure is that misclassifications generated by the activity 
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recognition algorithm could affect energy expenditure estimation. Some misclassification 

errors might not impact energy expenditure considerably since they would consist on 

activities similar (in the motion pattern) to the real activity being performed. For 

example, running at 4mph could be recognized when someone is running at 5mph. 

Consequently, the regression model for running at 4mph would be applied for running at 

5mph. Although incorrect, energy expenditure estimates would be close since these 

activities are closely related. In other scenarios where the activity being performed is 

completely different from the ones on which the activity recognition algorithm was 

trained, energy expenditure prediction could be off. For example, dancing could be 

confused with running if the activity recognizer is only trained on postures and 

ambulatory activities. In this scenario, the energy expenditure predictions would be most 

likely significantly off from the true values associated with the real activity being 

performed. Obviously, the easiest way to handle this situation is to train the activity 

recognizer over a large set of mutually exclusive activities (the ones most likely to be 

performed by individuals).  Another possibility to handle this scenario is to train the 

activity recognition algorithm over an ‗unknown‘ activity. Then, when the activity being 

performed considerably differs from the ones available during training, the unknown 

activity could be predicted and a single generic linear regression model trained over a 

large variety of activities can be applied. A different technique to address this problem 

could be to mark periods of time where the unknown activity is recognized for extended 

periods of time so that individuals can be latter prompted for the label of the true activity 

performed (thus improving activity labeling and energy expenditure estimates). During 

the activity dependent algorithms presented in this section, the unknown class was not 

incorporated in the regression models because a relatively large set of mutually exclusive 

activities was being recognized (51 and 11 activities). 

 

5.6.11.4 How Well Can Energy Expenditure be Estimated by Predicting Mean 

Values per Activity?  

 

One of the main problems found when energy expenditure was estimated using linear 

regression models per activities in the previous sections was the limited amount of 

training data available to train the regression models in part due to the utilization of a 

large set of features. Therefore, this section explores the performance of estimating 

energy expenditure when no features are used. In other words, this section explores how 

well can energy expenditure be estimated by just predicting the average energy 

expenditure value associated with each activity. This has the main advantage of requiring 

very little training data since the average energy expenditure value per activity can be 

computed over a few set of examples. 

Table 5-100 illustrates the results obtained when energy expenditure is estimated by 

first recognizing the activity being performed (out of a set of 51) in a subject independent 

manner and then predicting the average MET value associated with each activity 

recognized. The feature sets used to recognize activities are the fast to compute and the 

invariant reduced computed per sensor over windows of 5.6s in length. Average MET 

values for each activity are computed in a subject independent manner. As expected, the 

table shows that the best performance is obtained using the all sensors combination,  
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Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

Fast to compute 
All sensors 

0.83 ± 0.05 1.09 ± 0.28 
(0.76 ± 0.20) 

0.5±0.3  
(0.4±0.3) 

1.2±0.5  
(1.1±0.4) 

1.2±0.6  
(1.0±0.6) 

1.1±0.5  
(0.9±0.4) 

0.7±0.4  
(0.6±0.3) 

Fast to compute 

Hip + DWrist + DFoot 

0.81 ± 0.07 1.12 ± 0.30 

(0.78 ± 0.20) 

0.5±0.3  

(0.4±0.3) 

1.3±0.5  

(1.1±0.5) 

1.2±0.7  

(1.1±0.6) 

1.1±0.5  

(1.0±0.5) 

0.7±0.4  

(0.6±0.3) 

Fast to compute 

Hip  

0.71 ± 0.07 1.41 ± 0.29 

(0.98 ± 0.21) 

0.5±0.3  

(0.4±0.2) 

1.5±0.5  

(1.3±0.5) 

1.5±0.7  

(1.3±0.6) 

1.4±0.6  

(1.2±0.6) 

1.0±0.4  

(0.8±0.3) 

Invariant reduced 
All sensors 

0.82 ± 0.04 1.12 ± 0.24 
(0.77 ± 0.17) 

0.5±0.3  
(0.4±0.2) 

1.2±0.4  
(1.0±0.4) 

1.2±0.6  
(1.1±0.6) 

1.1±0.5  
(1.0±0.5) 

0.7±0.3  
(0.5±0.2) 

Invariant reduced 

Hip + DWrist + DFoot 

0.80 ± 0.08 1.15 ± 0.31 

(0.80 ± 0.23) 

0.5±0.3  

(0.4±0.2) 

1.3±0.6  

(1.2±0.5) 

1.2±0.7  

(1.0±0.6) 

1.1±0.5  

(1.0±0.5) 

0.7±0.3  

(0.6±0.3) 

Invariant reduced 
Hip  

0.75 ± 0.06 1.27 ± 0.27 
(0.87 ± 0.19) 

0.5±0.3  
(0.4±0.2) 

1.3±0.5  
(1.1±0.4) 

1.4±0.6  
(1.2±0.6) 

1.2±0.5  
(1.1±0.5) 

0.9±0.4  
(0.6±0.3) 

Table 5-100: Root mean squared error and mean absolute error (shown in parenthesis) obtained 

when energy expenditure is estimated by first recognizing  the activity being performed (out of a set 

of 51) in a subject independent manner and then predicting the average MET value associated with 

the activity recognized. The feature sets used to recognize activities are the fast to compute and the 

invariant reduced computed per sensor over windows of 5.6s in length. Average MET values for each 

activity are computed in a subject independent manner. 

 
Sensor Combination Correlation All Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

Fast to compute 

All sensors 

0.90 ± 0.04 0.83 ± 0.23 

(0.57 ± 0.14) 

0.3±0.2  

(0.2±0.1) 

0.8±0.3  

(0.7±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.5±0.2  

(0.5±0.2) 

Fast to compute 
Hip + DWrist + DFoot 

0.90 ± 0.03 0.84 ± 0.23 
(0.58 ± 0.14) 

0.3±0.2  
(0.2±0.1) 

0.9±0.3  
(0.7±0.3) 

1.0±0.5  
(0.9±0.5) 

0.9±0.4  
(0.8±0.4) 

0.5±0.2  
(0.5±0.2) 

Fast to compute 

Hip  

0.87 ± 0.05 0.93 ± 0.21 

(0.63 ± 0.14) 

0.4±0.2  

(0.3±0.2) 

0.9±0.3  

(0.8±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.7±0.3  

(0.6±0.2) 

Invariant reduced 

All sensors 

0.90 ± 0.03 0.83 ± 0.23 

(0.57 ± 0.14) 

0.3±0.2  

(0.2±0.2) 

0.8±0.3  

(0.7±0.3) 

1.0±0.5  

(0.9±0.5) 

0.8±0.4  

(0.7±0.4) 

0.5±0.2  

(0.5±0.2) 

Invariant reduced 

Hip + DWrist + DFoot 

0.90 ± 0.04 0.84 ± 0.23 

(0.58 ± 0.14) 

0.3±0.2  

(0.2±0.1) 

0.8±0.3  

(0.7±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.6±0.2  

(0.5±0.2) 

Invariant reduced 

Hip  

0.88 ± 0.04 0.90 ± 0.22 

(0.61 ± 0.14) 

0.4±0.2  

(0.3±0.2) 

0.9±0.3  

(0.7±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.7±0.3  

(0.5±0.2) 

Table 5-101: Root mean squared error and mean absolute error (shown in parenthesis) obtained 

when energy expenditure is estimated by first recognizing  the activity being performed (out of a set 

of 51) in a subject dependent manner and then predicting the average MET value associated with the 

activity recognized. The feature sets used to recognize activities are the fast to compute and the 

invariant reduced computed per sensor over windows of 5.6s in length. Average MET values for each 

activity are computed in a subject independent manner. 

  

followed by the Hip+DWrist+DFoot and Hip sensor combinations. This is because the 

activity recognition algorithm recognizes activities better as the number of sensors is 

increased. Table 5-101 also follows the same trend during subject dependent evaluation, 

although the difference in performance when the number of sensors is reduced is lower 

(as found in Section 5.4.7 for subject dependent recognition of activities). In Table 5-100, 

the Hip+DWrist+DFoot sensor combination achieves a performance of r=0.81, 

RMSE=1.12 using the fast to compute feature set and a performance of r=80, 

RMSE=1.15 using the invariant reduced feature set. These results are better than the ones 

obtained when activity dependent linear regression models are used to estimate energy 

expenditure using the fast to compute (r=0.80, RMSE=1.17) and invariant reduced 

(r=0.77, RMSE=1.31) feature sets. The performance using the ACAbsArea feature (vector 

size of 3) is +0.01 units higher in the correlation coefficient and -0.05MET lower in the 

RMSE when energy expenditure is estimated by predicting the average METs values 
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associated with each activity than when activity dependent linear regression models are 

utilized. Although this improvement is small, the fact that performance did not decrease  

indicates that the utilization of activity dependent regression models is more important 

than the complexity of the models used to estimate energy expenditure. In other words, if 

activities can be reliably recognized, energy expenditure can be predicted well by only 

predicting the average number of METs associated with each activity.  

Table 5-101 presents the results obtained when activities are recognized in a subject 

dependent manner. The results obtained for the fast to compute (r=0.9 and RMSE=0.84) 

and invariant reduced (r=0.90, RMSE=0.84) feature sets are higher than the ones 

obtained using subject independent recognition of activities. This is expected since 

activities are better recognized in a subject dependent manner. These results presented in 

Table 5-101 are the highest results obtained for energy expenditure estimation so far. 

These results improve the correlation coefficient in +0.21units and RMSE in 0.48METs 

with respect to the use of a single linear regression model. Performance per activity 

category is also improved between 0.3 and 0.4MET over the utilization of a single linear 

regression model. In fact, these results also improve the correlation coefficient ~+0.1units 

and the RMSE ~0.2MET with respect to subject dependent estimation of energy 

expenditure using a single linear regression model. These results are outstanding since it 

means that energy expenditure can be estimated better by recognizing activities than by 

collecting subject specific energy expenditure data using expensive and intrusive 

laboratory equipment (indirect calorimeter). These results obtained in this section also 

improve the correlation coefficient +0.07units and the RMSE in 0.08MET with respect to 

subject dependent estimation of energy expenditure using the ScaledHR feature. This is 

also outstanding since subject dependent estimation of energy expenditure using heart 

rate data is currently considered one of the most accurate methods available to estimate 

energy expenditure. The main disadvantages of subject dependent estimation of energy 

expenditure using heart rate data has been the need of subject specific calibration of 

regression equations using data collected from an indirect calorimeter in laboratory 

settings and the need to wear an uncomfortable heart rate monitor at the chest. 

One disadvantage of estimating energy expenditure by recognizing activities and 

predicting average MET values per activity in practice is that steady-state energy 

expenditure values are predicted even when activities are performed for a short time. This 

is a problem particularly for physically demanding activities such as ascending stairs or 

sit-ups where energy expenditure increases constantly over time until steady state energy 

expenditure is reached. For example, if someone ascends stairs for a short time (e.g. the 

short stairs located at the entry door of a building), the energy expenditure predicted for 

this short duration activity would be close to the energy expenditure of that activity at 

steady state (as if the activity was performed over a long period of time). Consequently, 

energy expenditure would be overestimated for physically demanding activities 

performed for short durations of time. Chapter 6 discusses how this situation might be 

overcome in future work. 

5.6.11.5 Summary of Results  

 

Table 5-102 presents a brief summary of the results obtained for subject independent 

estimation of energy expenditure using the algorithms implemented in this chapter. In  
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Method Feature 

set 

Correlation All Postures Ambulation Exercise Resistance 

Exercise 

Household 

Single  

LR 

Fast to 

compute 

0.69 ± 0.12 1.33 ± 0.33 

(0.99 ± 0.24) 

0.6±0.3  

(0.5±0.3) 

1.2±0.5  

(1.1±0.5) 

1.3±0.7  

(1.2±0.7) 

1.2±0.6  

(1.1±0.6) 

0.9±0.6  

(0.8±0.6) 

Single  
LR 

Invariant 
reduced 

0.70 ± 0.11 1.31 ± 0.34 
(0.97 ± 0.23) 

0.6±0.3  
(0.5±0.3) 

1.2±0.5  
(1.0±0.5) 

1.4±0.8  
(1.3±0.8) 

1.2±0.7  
(1.1±0.6) 

0.8±0.5  
(0.7±0.5) 

Single 

LR 

ScaledHR 0.83 ± 0.09 1.02 ± 0.3 

(0.8± 0.2) 

0.5±0.3  

(0.5±0.3) 

0.9±0.5  

(0.9±0.4) 

1.3±0.7  

(1.3±0.7) 

1.2±0.6  

(1.1±0.6) 

0.5±0.3  

(0.5±0.2) 

Single 

LR 

Fast to 

compute 

ScaledHR 

0.88 ± 0.05 0.89 ± 0.22 

(0.7 ± 0.2) 

0.4±0.3  

(0.4±0.3) 

0.8±0.4  

(0.7±0.4) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.9±0.5) 

0.5±0.3  

(0.5±0.3) 

Single 

LR 

Invariant 

reduced 

ScaledHR 

0.88 ± 0.05 0.88 ± 0.23 

(0.7 ± 0.2) 

0.5±0.3  

(0.4±0.3) 

0.8±0.4  

(0.7±0.3) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.3  

(0.5±0.2) 

51 activities 
ARSI LR  

Fast to 
compute 

0.80 ± 0.09 1.17 ± 0.35 
(0.79 ± 0.21) 

0.4±0.3  
(0.4±0.3) 

1.2±0.5  
(1.0±0.5) 

1.3±0.7  
(1.1±0.7) 

1.2±0.6  
(1.0±0.6) 

0.7±0.4  
(0.6±0.3) 

51 activities 

ARSI LR 

Invariant 

reduced 

0.77 ± 0.11 1.31 ± 0.40 

(0.87 ± 0.25) 

0.6±0.4  

(0.5±0.3) 

1.5±0.7  

(1.3±0.6) 

1.4±0.8  

(1.2±0.7) 

1.3±0.6  

(1.0±0.5) 

0.9±0.5  

(0.6±0.3) 

51 activities 

ARSD LR  

Fast to 

compute 

0.89 ± 0.04 0.93 ± 0.28 

(0.61 ± 0.15) 

0.3±0.2  

(0.2±0.1) 

0.9±0.3  

(0.7±0.3) 

1.1±0.6  

(1.0±0.6) 

0.9±0.5  

(0.8±0.5) 

0.5±0.2  

(0.4±0.2) 

51 activities 
ARSD LR 

Invariant 
reduced 

0.88 ± 0.03 0.99 ± 0.27 
(0.66 ± 0.18) 

0.4±0.2  
(0.3±0.2) 

1.0±0.4  
(0.8±0.4) 

1.2±0.6  
(1.0±0.5) 

1.0±0.5  
(0.8±0.4) 

0.6±0.2  
(0.5±0.2) 

11 activities 

ARSI LR 

Fast to 

compute 

0.77 ± 0.07 1.28 ± 0.25 

(0.92 ± 0.16) 

0.5±0.2  

(0.4±0.2) 

1.3±0.6  

(1.2±0.6) 

1.4±0.7  

(1.2±0.6) 

1.3±0.6  

(1.1±0.5) 

1.0±0.4  

(0.8±0.3) 

11 activities 

ARSI LR 

Invariant 

reduced 

0.79 ± 0.09 1.23 ± 0.34 

(0.86 ± 0.19) 

0.5±0.2  

(0.4±0.2) 

1.4±0.7  

(1.2±0.7) 

1.4±0.7  

(1.2±0.7) 

1.3±0.6  

(1.1±0.5) 

0.9±0.5  

(0.7±0.3) 

11 activities 
ARSD LR 

Fast to 
compute 

0.81 ± 0.05 1.18 ± 0.24 
(0.84 ± 0.15) 

0.3±0.2  
(0.2±0.2) 

1.2±0.4  
(1.1±0.4) 

1.3±0.6  
(1.2±0.6) 

1.1±0.6  
(1.0±0.6) 

0.9±0.4  
(0.7±0.3) 

11 activities 

ARSD LR 

Invariant 

reduced 

0.84 ± 0.05 1.07 ± 0.20 

(0.77 ± 0.15) 

0.4±0.2  

(0.3±0.1) 

1.2±0.5  

(1.0±0.4) 

1.2±0.5  

(1.0±0.5) 

1.0±0.5  

(0.9±0.4) 

0.8±0.4  

(0.7±0.3) 

51 activities 

ARSI mean 

Fast to 

compute 

0.81 ± 0.07 1.12 ± 0.30 

(0.78 ± 0.20) 

0.5±0.3  

(0.4±0.3) 

1.3±0.5  

(1.1±0.5) 

1.2±0.7  

(1.1±0.6) 

1.1±0.5  

(1.0±0.5) 

0.7±0.4  

(0.6±0.3) 

51 activities 
ARSI Mean 

Invariant 
reduced 

0.80 ± 0.08 1.15 ± 0.31 
(0.80 ± 0.23) 

0.5±0.3  
(0.4±0.2) 

1.3±0.6  
(1.2±0.5) 

1.2±0.7  
(1.0±0.6) 

1.1±0.5  
(1.0±0.5) 

0.7±0.3  
(0.6±0.3) 

51 activities 

ARSD Mean 

Fast to 

compute 

0.90 ± 0.03 0.84 ± 0.23 

(0.58 ± 0.14) 

0.3±0.2  

(0.2±0.1) 

0.9±0.3  

(0.7±0.3) 

1.0±0.5  

(0.9±0.5) 

0.9±0.4  

(0.8±0.4) 

0.5±0.2  

(0.5±0.2) 

51 activities 
ARSD Mean 

Invariant 
reduced 

0.90 ± 0.04 0.84 ± 0.23 
(0.58 ± 0.14) 

0.3±0.2  
(0.2±0.1) 

0.8±0.3  
(0.7±0.3) 

1.0±0.5  
(0.9±0.5) 

0.9±0.4  
(0.8±0.4) 

0.6±0.2  
(0.5±0.2) 

Table 5-102: Root mean squared error and mean absolute error (shown in parenthesis) obtained  

when estimating energy expenditure using different methods and two sets of features (fast to compute 

and invariant reduced) computed over the accelerometers located at the hip, dominant wrist, and 

dominant ankle. ARSI stands for subject independent recognition of activities, ARSD for subject 

dependent recognition of activities, and LR for linear regression. Energy expenditure is always 

predicted in a subject independent manner. 

 

Table 5-102 ‗LR‘ stands for multivariable linear regression, ‗ARSI‘ for subject 

independent recognition of activities, ‗ARSD‘ for subject dependent recognition of 

activities, and ‗Mean‘ for estimation of energy expenditure by predicting average MET 

values per activity. From the table, it can be seen that energy expenditure can be best 

predicted by first recognizing activities in a subject dependent manner and then 

predicting the average energy expenditure associated with each activity in METs (51 

activities ARSD Mean). This technique improves the correlation coefficient +0.01units 

and RMSE 0.12MET over the utilization of linear regression models per activity (51 

activities ARSD LR) using either the fast to compute or invariant reduced feature sets. 

This is an important result since highlights the fact that activity recognition is more 

important than the complexity of the model used to estimate energy expenditure. This is 

also supported by the fact that performance does not improve when the number of 

activities to recognize is reduced from 51 to 11 during subject dependent and independent 
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recognition of activities (11 activities ARSD and ARSI LR). This, suggests that energy 

expenditure is better predicted when more activity dependent regression models are used. 

The table also shows that subject dependent recognition of 51 activities (and the use of 

activity dependent regression models) outperforms energy expenditure estimation using 

heart rate data (ScaledHR) using a single linear regression model. This is also an 

important result since chest strap heart rate monitors, the most commonly available type 

of heart rate monitor, are uncomfortable to wear and can cause skin irritation when used 

longitudinally. Finally, estimation of energy expenditure by recognition of activities has 

the advantage of providing contextual information that might be valuable for real-time 

interventions designed to foster increases in physical activity levels. 

This section also found that given enough training data, energy expenditure estimation 

improves as the number of wearable sensors used is increased. This is an intuitive result 

since more sensors are able to better capture the motion characteristics of individuals. 

Nevertheless, it was also found that a performance close to the one obtained using all the 

seven accelerometers (explored in this work) can be obtained using just three sensors 

located at the hip, dominant wrist, and dominant foot or just two sensors worn at the 

dominant wrist and dominant foot. These sets of sensors are able to capture upper body, 

lower body and overall body motion well to produce good estimates of energy 

expenditure for most of the activities explored in this work (51). In general, when single 

sensors are used to estimate energy expenditure, the highest performance is obtained 

from sensor located at the foot, hip, and thigh, and the worse performance is obtained 

from the sensor located at the dominant wrist. The sensor at the dominant wrist obtains 

the worse performance perhaps due to the high motion variability experienced at the 

wrists during most activities. This section also found that given sufficient amount of 

training data, the computation of features that capture additional information than overall 

amount of motion (ACAbsArea feature) such as the ACFFTPeaks, ACModVigEnergy, and 

the ACMCR improve energy expenditure estimates, particularly when single sensors are 

used to estimate energy expenditure. Finally, the section found that when activity 

dependent models are not used, energy expenditure is best estimated using heart rate data 

alone and that the combination of accelerometer and heart rate data improves energy 

expenditure estimation (although only slightly over the dataset utilized in this analysis). 

 

5.6.12 How Well Can Time Spent in Physical Activity Level be Recognized? 

This section explores how well the energy expenditure estimation algorithms explored in 

this section can recognize time spent in sedentary, light, moderate, vigorous, and very 

vigorous physical activity. This is achieved by thresholding the energy expenditure 

estimates provided by the algorithms using the thresholds shown in Table 5-103. These 

MET thresholds were obtained from the study performed by Cradock et al. [251]. These 

threshold values are commonly utilized by the medical community during research 

studies. To test the recognition accuracy, predicted MET intensity levels (computed by 

thresholding the estimated energy expenditure) were compared against the ground truth 

physical activity levels obtained by thresholding the energy expenditure readings 

collected using the Cosmed K4b2 [125] indirect calorimeter.  
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Physical Activity Level MET Range 

Sedentary ≤ 1.5 

Light > 1.5 and < 3.0 

Moderate ≥ 3.0 and ≤ 6 

Vigorous > 6 and ≤ 9 

Very Vigorous > 9 

Table 5-103: Classification of physical activity level into sedentary, light, moderate, vigorous, and 

very vigorous by thresholding the MET intensity value. 

 
Method Feature 

set 

Sedentary 

(%) 

Light 

(%) 

Moderate 

(%) 

Vigorous 

(%) 

Very 

Vigorous 

(%) 

Total 

(%) 

Single  

LR 

Fast to 

compute 

31.9 59.7 82.8 30.4 0.0 57.9 

Single  

LR 

Invariant 

reduced 

43.3 60.3 80.5 32.5 0.0 60.5 

Single 

LR 

ScaledHR 53.7 71.1 76.2 29.9 38.7 65.6 

Single 
LR 

Fast to 
compute 

ScaledHR 

58.0 65.5 85.9 49.7 0.0 70.0 

Single 
LR 

Invariant 
reduced 

ScaledHR 

60.4 71.3 80.2 50.8 29.3 70.1 

51 activities 

ARSI LR  

Fast to 

compute 

78.4 65.1 64.8 41.3 0.0 65.9 

51 activities 
ARSI LR 

Invariant 
reduced 

77.4 65.9 60.3 44.8 2.7 64.7 

51 activities 
ARSD LR  

Fast to 
compute 

81.2 73.6 75.1 46.2 0.0 73.3 

51 activities 

ARSD LR 

Invariant 

reduced 

81.6 71.9 71.2 50.0 13.7 71.9 

11 activities 

ARSI LR 

Fast to 

compute 

73.0 54.5 76.6 30.4 0.0 64.2 

11 activities 

ARSI LR 

Invariant 

reduced 

72.3 58.6 72.5 39.0 8.0 64.8 

11 activities 

ARSD LR 

Fast to 

compute 

69.6 61.3 81.4 38.4 0.0 67.9 

11 activities 
ARSD LR 

Invariant 
reduced 

68.1 64.5 80.0 44.4 6.7 68.7 

51 activities 

ARSI mean 

Fast to 

compute 

75.5 62.0 68.9 39.5 0.0 65.4 

51 activities 

ARSI Mean 

Invariant 

reduced 

74.5 65.0 69.0 36.0 0.0 65.9 

51 activities 
ARSD Mean 

Fast to 
compute 

77.6 72.2 79.6 44.7 0.0 73.3 

51 activities 

ARSD Mean 

Invariant 

reduced 

77.5 73.2 79.6 44.1 0.0 73.6 

Table 5-104: Accuracy in recognizing time spent sedentary, light, moderate, vigorous, and very 

vigorous physical activity using the different energy expenditure estimation algorithms explored in 

this section when accelerometers at the hip, dominant wrist, and dominant foot are utilized. 

 

Table 5-104 presents the accuracy of recognizing the different physical activity levels 

using the algorithms explored in this section. It can be seen that the highest overall 

performance is obtained by recognizing 51 activities in a subject dependent manner using 

the invariant reduced feature set and predicting the average MET value associated with 

each activity (51 Activities ARSD Mean). This algorithm achieves an overall recognition 

accuracy of 73.6%. It is outstanding that this algorithm achieves a higher overall 

performance than when the ScaledHR feature is utilized (65.6%) and that when the 

ScaledHR feature is combined with the fast to compute (70%) and invariant reduced  
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 (70.1%) feature sets using a single linear regression model. 

This algorithm (51 Activities ARSD Mean) also achieves a relatively good 

performance over most physical activity levels (ranging from 44.1% to 79.6%) except for 

the very vigorous intensity level (accuracy of zero). This intensity level is only 

recognized relatively well using a single linear regression model trained over the 

ScaledHR feature (38.7% accuracy). In fact, the recognition accuracy for this intensity 

level is only different from zero when the ScaledHR feature or the invariant reduced 

feature sets are utilized in combination with linear regression models to estimate energy 

expenditure. This is because when this intensity level is reached, it is confused with the 

vigorous and moderate intensity levels. The reason is that energy expenditure reached the 

very vigorous intensity level mostly during the cycling hard at 80rpm activity, which 

involves resistance work or load effort. Thus, energy expenditure for this activity is under 

predicted when most accelerometer-based features were utilized. The only accelerometer-

based feature that is able to recognize the very vigorous intensity level is the invariant 

reduced feature set because it combines the ACFFTPeaks and ACBandEnergy features 

that detect some of the extra physical effort involved during the cycling hard at 80rmp 

activity. Heart rate data on the other hand (ScaledHR feature), is able to better estimate 

energy expenditure for the cycling hard at 80rmp activity and thus, able to better 

recognize the very vigorous intensity level. The very vigorous intensity level was only 

reached during 0.4% of the time (75 windows out of 17746) during the data collections. 

The second highest performance in Table 5-104 is obtained when 51 activities are 

recognized in a subject dependent manner and activity dependent linear regression 

models (trained in a subject independent manner) are utilized to estimate energy 

expenditure. In This scenario, the fast to compute feature set achieves a higher accuracy 

than the invariant reduced feature set (+1.4%) but the invariant reduced feature set is 

able to recognize the very vigorous intensity level to some extent (13.7%). An important 

advantage of the fast to compute feature set over the invariant reduced feature set is that 

its computational complexity is significantly lower since the ACFFTPeaks feature is not 

computed (the fast Fourier transformation does not need to be computed). The difference 

in performance between these algorithms (51 Activities ARSD) and the one obtained 

using a single linear regression model trained over the same accelerometer-based features 

(fast to compute and invariant reduced) ranges between +11.4% and +15.4%. The 

difference in performance decreases to lie between +4.2% and +8% (with respect to a 

single linear regression model) when activities are recognized in a subject independent 

manner (51 Activities ARSI). Utilizing a linear regression model per activity improves 

recognition of some physical activity levels over prediction of mean values per activity. 

For example, the sedentary and vigorous intensity levels are estimated with an accuracy 

+4% higher than when mean MET values are predicted for each activity recognized. This 

is because a linear regression is able to better model the energy expenditure associated 

with these intensity levels. 

Finally from Table 5-104, it can be seen that the lowest recognition accuracy is 

obtained using a single linear regression model trained over the fast to compute and 

invariant reduced feature sets (57.9 - 60.5%). Therefore, the main result that can be 

drawn from Table 5-104 is that activity dependent regression models also improve 

recognition of time spent in different physical activity levels, particularly when activities 

are recognized in a subject dependent manner.  
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6 Conclusions 

This chapter presents a summary of the major findings and results presented in this work, 

including a summary of the primary contributions and a discussion on how well the 

design goals stated in Section 5.1 were met. In addition, some areas for future research 

are identified.  

6.1 Summary of Results 

Presently, the most accurate technologies to measure energy expenditure are only suitable 

for laboratory settings (e.g. room or portable indirect calorimeters) due to their cost, 

intrusiveness, and complexity. Other technologies more amenable for free-living such as 

paper and electronic diaries are burdensome and time consuming. Accelerometers offer a 

promising strategy to recognize physical activity and estimate energy expenditure in free-

living people. However, existing accelerometer-based devices provide little or no 

contextual information (activity information) or have difficulties detecting upper or non-

ambulatory lower body activity or do not make the data available in real-time. As a 

result, the goal of the work presented in this thesis was to develop algorithms based on 

wireless accelerometers to (1) recognize activity type, intensity, and duration and (2) 

estimate energy expenditure while achieving a reasonable real-time performance from 

sensors worn at convenient locations. This work explored the trade-offs that needed to be 

made in order to achieve these goals.  

 

6.1.1 Activity Recognition  

There exists a large body of prior work in recognizing activities from accelerometer data. 

However, most of this work relies on researchers as subjects or evaluates the algorithms 

implemented over few subjects (often less than five). Furthermore, researchers often 

explore a fixed set of activities (often less than 15) and select the algorithm parameters 

(e.g. classifier, feature set, window length, etc) as well as the type, number and placement 

of the sensors using common sense depending on the activities being explored. Finally, 

most prior work has been evaluated off-line and few real-time implementations of the 

algorithms presented exist (see section 3 for a full discussion of prior work and a 

discussion of some of the exceptions to the statements made in this paragraph).  

The main contributions of this work to the area of activity recognition with respect to 

prior work are: (1) to explore the recognition of 52 activities collected from 20 non-

researchers (120hrs of data) at a gymnasium and a residential home, (2) recognize the 

activity type and intensity, (3) perform a set of systematic experiments to determine the 

algorithm parameters, value of accelerometers vs. heart rate, location and number of 

sensors, and (4) to perform a proof of viability of a real-time system to recognize 

arbitrary activities. 

The final activity recognition algorithm implemented in this work uses three 

accelerometers located at the hip, dominant wrist, and dominant foot and consists on the 
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following steps: (1) segmentation of the accelerometer data into 5.6s overlapping 

windows. (2) Interpolation of the signals over each window using cubic splines 

interpolation to compensate for values lost during wireless transmission. (3) Digital 

filtering of each acceleration axis using a band-pass filter (0.1-20Hz) and low-pass filter 

(1Hz) to separate motion from posture information. (4) The computation of features over 

each band-pass filtered acceleration axis such as the variance to capture the signal 

variability, the top five peaks of the FFT coefficients to capture the frequency or 

periodicity of motion, the energy between 0.3-3.5Hz to capture the intensity of activity, 

and the distances between each low-pass filtered axis (e.g. xz, xy, yz) to capture posture 

information. (5) The training of a C4.5 decision tree classifier using the features 

computed to create a set of rules to discriminate among the activities of interest. This 

algorithm was found by performing a set of systematic experiments evaluated in a subject 

dependent and independent manner and targeted to identify the set of parameters that 

allowed reasonable real-time performance, ease-of-use, and comfort of usage. The final 

feature set selected maximized performance and reduced dependency of the algorithm on 

small variations in the placement of the sensors on the body. 

The final activity recognition algorithm presented achieved a subject independent 

accuracy of 50.6% and a subject dependent accuracy of 87.9% over a set of 51 activities. 

The large percent change of 73% from subject independent to subject dependent 

evaluation indicates that activities are easier to recognize if subjects provide examples of 

the activities. In general, it was found that the activities with higher performance were 

postures and exercises and the activities with poorer performance were household and 

resistance activities. Postures were relatively easy to recognize because they do not 

involve too much variability. Some exercises were relatively easy to recognize because 

they involved the use of a particular limb or a particular speed of execution. Household 

activities were more difficult to recognize due to their high variability (e.g. making the 

bed or wiping/dusting) and because they often involve sequences of postures and 

ambulation. Resistance activities presented a poorer performance because accelerometers 

have difficulties detecting resistance or work load effort. The activities confused most 

often were household activities, activities involving different intensity levels, and 

activities involving similar upper body motion. Activities with different intensity levels 

were confused because some intensity levels involved changes in resistance or work load 

that was poorly detectable from accelerometers.  Activities with similar upper body 

motion were confused due to the high variability of motion found at the wrists during 

everyday life. 

Due to the significantly higher performance (73% percent difference) of subject 

dependent training vs. subject independent training over 51 activities, experiments were 

performed to determine the amount of data required to achieve reasonable performance 

during subject dependent training. After partitioning each activity example into 75% 

training data and 25% testing data, and training the C4.5 classifier with varying amounts 

of training data, it was found that 60% of the training data achieved an overall accuracy 

of 76% over 51 activities. At this percentage of training data, most activities were 2 

minutes in length except for physically demanding activities which were less than a 

minute in length. This indicated that a reasonable performance could be obtained by just 

providing 2 minutes of data per activity even when the number of activities to recognize 

was large (51). 
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The performance of the final activity recognition algorithm was also tested over 

subsets of activities that might be important to recognize during medical research studies 

or ubiquitous computing applications (e.g. 31, 11, 8 and 4 activities). It was found that if 

recognition of the intensity of activities is not important (e.g. if the intensity levels are 

merged into a single class), total overall accuracies of 72% and 91.4% can be obtained 

during subject independent and dependent evaluation respectively. This is an interesting 

result because it indicates that a total of 31 activities can be recognized with a subject 

independent accuracy of 72% in practice. The analysis also indicated that postures, 

ambulation (including intensity levels), and two MET intensity levels (moderate and 

vigorous) could be recognized with accuracies of 96.5% and 81.3% during subject 

dependent and independent evaluation respectively. The results also indicate that postures 

and ambulation can be recognized with accuracies of 98.4% and 92.9% during subject 

dependent and independent evaluation respectively. Finally, four postures can be 

recognized with accuracies over 98% during both subject dependent and independent 

evaluation. 

When the performance of 11 subsets of sensors out of a total of seven sensors was 

explored, it was found that the best performing subset during both, subject dependent and 

independent training was the combination hip + dominant wrist + dominant foot. This 

sensor combination was able to capture upper, lower, and overall body motion that was 

important to recognize the 51 activities of interest. In general, when the number of 

activities to recognize was decreased, the number of sensors could also be decreased with 

relatively small decreases in performance. During subject dependent evaluation, it was 

found that a sensor located at the hip and another sensor located either at the dominant 

wrist (Hip+DWrist) or the dominant foot (Hip+DFoot) achieved reasonable performance 

(with respect to the use of all seven accelerometers). This is because upper body and 

lower body activity induced changes in the acceleration at the hip that allowed some 

degree of discrimination among upper body and lower body activities during subject 

dependent training. The highest performing single sensors during subject dependent 

training were the sensor at the hip, and the sensors at the lower body (foot and thigh). 

During subject independent evaluation, the best performing sensor combinations were 

those using a sensor located at the dominant wrist to detect upper body motion and  

another sensor located either at the dominant thigh or the dominant foot to detect lower 

body motion (DWrist+DThigh or DWrist+DFoot). The best performing single sensors 

during subject independent evaluation were DUpperArm, DWrist, and Hip. The good 

performance of the DUpperArm sensor might be explained by the fact that most activities 

contained in the MIT dataset included a high degree of upper body motion and 

ambulatory activities in the case of household activities. 

It was also found that the length of the sliding window to utilize strongly depends on 

the activities to recognize. For example, postures are better recognized using short 

duration windows (<5.6s) and household activities with longer windows (e.g. >22s). This 

is because the variability of motion in postures is low and the variability in motion in 

household activities is high. The main disadvantage found for the use of long windows 

was low performance over short duration activities (e.g. physically demanding activities) 

and long real-time classification delays. Even though the window length depends on the 

activity to recognize, it is computationally expensive to have different window length for 

each activity since features have to be recomputed for each window of different length. 
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Consequently, a single sliding window of 5.6s in length was selected in this work to 

maximize performance over most activities, reduce classification delay, and to improve 

performance over short duration activities.  

Heart rate data was not used in the final implementation of the activity recognition 

algorithm because the performance obtained with the highest performing heart rate 

feature alone (ScaledHR) was 38.4% and 13.8% during subject dependent and 

independent evaluation respectively. This performance was considerably lower than the 

one obtained using the highest performing accelerometer-based features. When the 

highest performing heart rate feature (ScaledHR) was added to the highest performing 

accelerometer-based feature set (invariant reduced), it is found that overall accuracy 

increased only between 2-4% during both subject dependent and independent evaluation. 

As expected, the activities for which recognition improved most substantially with the 

incorporation of heart rate data were those involving resistance or work load effort (e.g. 

cycling, rowing, bicep curls, etc). Several reasons explain the poor performance of heart 

rate data. First, heart rate lags physical activity and remains altered once an activity has 

ended. This produces errors at the beginning and at the end of each activity. Moreover, 

activities for which heart rate data constantly increases as the activity is performed (e.g. 

physically demanding activities such as ascending stairs) do not present a single heart 

rate value characteristic of that activity. Finally, heart rate presents inter-individual 

variations due to fitness level (e.g. more physically fit individuals tend to have lower 

heart rate readings) and intra-individual variations due to emotional state, nicotine 

consumption, and even environmental temperature. 

Finally, the activity recognition algorithm was implemented on a laptop computer and 

tested in real-time during a short pilot study. Five participants were asked to (1) wear 

three accelerometers at the hip, dominant wrist, and dominant foot, (2) to type in 10 

physical activities, exercises, postures, or activities  of their choice that they wanted the 

system to recognize, (3) to provide 2min of data for each activity, and (4) to test the 

performance of the recognition algorithm in real-time. The participants provided a variety 

of complex activities such as Taekwondo forms, scratching head, bowling, tennis serve, 

hammering a nail, applying cream, knitting, filing nails and drawing on a piece of paper. 

The cross-validation accuracy obtained during the study for each participant ranged from 

79% to 92%. During the study, participants expressed the desire to provide the training 

data during free-living (and consequently not over a single tedious session of repeating an 

activity for 2min) and the desire to ‗fix‘ the algorithms in real time when they did not 

perform as expected by providing more training examples of the problematic activities. 

 

6.1.2  Energy Expenditure Estimation 

The two most popular approaches to estimate energy expenditure employed by the 

medical community are the use of linear regression equations based on accelerometer 

data and the use of the Compendium of Physical Activities [122]. The use of linear 

regression equations based on accelerometer data consists on the following steps: (1) 

Collect accelerometer and ground truth energy expenditure data from a subject wearing 

an indirect calorimeter and a single accelerometer at the hip, (2) segment the 

accelerometer and ground truth data into one minute windows, (3) sum the accelerometer 

values (or counts) over the one minute intervals and compute the mean value over the 
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energy expenditure windows, and (4) create a single linear regression model to map the 

acceleration sums into the mean ground truth energy expenditure values. The 

Compendium of Physical Activities can be used to estimate energy expenditure by 

collecting information about the activity type being performed and its duration (e.g. using 

diaries). Once this information is collected, it can be converted to energy expenditure by 

using the mean energy expenditure values listed for a variety of activities in the 

Compendium of Physical Activities. 

Presently, the state-of-the-art algorithm to estimate energy expenditure from an 

accelerometer at the hip is the work by Crouter et al [34]. This algorithm first classifies 

activities into sedentary, ambulatory and lifestyle activities and then applies different 

regression models depending on the type of activity detected. For example, if sedentary 

activities are detected, a MET value of one is predicted; if ambulatory activities are 

detected a linear regression model is applied; and if lifestyle activities are detected, an 

exponential regression model is applied. This algorithm achieves a correlation coefficient 

of 0.96, a maximum absolute error deviation of 0.75MET, and a RMSE of 0.73MET 

when evaluated over a set of 17 activities collected from 20 participants (3 hours per 

participant). However, the authors excluded the cycling activity from analysis because it 

did not generate any sensor readings at the accelerometer at the hip.  

The work presented in this thesis extends the work by Crouter et al. by exploring the 

use of 51 activity-dependent regression models, the use of seven accelerometers and 

subsets of them, the exploration of 41 features computed over the raw accelerometer data, 

the use of shorter window lengths (less than a minute long), and the use of non-linear 

regression models in the estimation of energy expenditure. Finally, the algorithms 

implemented are evaluated over data collected from 16 individuals between 18 and 40 

years old performing 52 activities at two locations: A gymnasium and a residential home. 

After running the Crouter et al. algorithm over the dataset collected for this work, it 

was found that its performance (r=0.4, RMSE=2.7) on 52 activities was considerably 

lower than the one reported by the authors (r=0.92, RMSE=0.73) for 17 activities. One of 

the reasons for the poor performance obtained was the inability of the single 

accelerometer at the hip to capture upper body (e.g. bicep curls) and non-ambulatory 

lower body activity (e.g. cycling), because the sensor readings at the hip for these 

activities were mostly zero. When information about activity type and duration from the 

labels collected was converted to energy expenditure using the Compendium of Physical 

Activities, it was found that the performance obtained (r=0.9, RMSE=1.27) represented 

an improvement of ~100% for the correlation coefficient and ~50% for the RMSE with 

respect to the Crouter et al. algorithm. These results indicated that knowledge of the 

activities being performed was very important since this technique only predicted the 

average energy expenditure values listed in the Compendium of Physical Activities for 

each activity. In order to obtain a baseline on performance, a single linear regression 

model was created to estimate energy expenditure from the accelerometer sums 

computed over one minute windows for each of the seven accelerometers. The results 

obtained (r=0.73, RMSE=1.4) were also considerably higher than those obtained by 

Crouter et al. For example, the improvement over the correlation coefficient was 82% 

and over the RMSE was 48%. The improvements obtained were mainly due to the use of 

seven accelerometers located at different body segments that captured upper, lower, and 

overall body motion more fully than a single accelerometer at the hip. When activity-
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dependent linear regression models were applied to estimate energy expenditure 

assuming the activity being performed was known, it was found that the performance 

obtained (r=0.87, RMSE=1) was also considerably higher than the performance obtained 

for the Crouter et al algorithm. For example, the improvement was 117% for the 

correlation coefficient and 63% for the RMSE. The improvement achieved over the use 

of a single linear regression model was 19% for the correlation coefficient and 28.5% for 

the RMSE. Activity-dependent regression models helped by allowing regression 

coefficients to be tuned for each activity instead of being globally optimized for all 

activities at once. Finally, activity dependent non-linear regression models (M5‘ model 

trees) were applied to estimate energy expenditure over the dataset assuming the 

activities performed were also known. The results obtained (r=0.91, RMSE=0.88) 

represented an improvement of 127% for the correlation coefficient and 67% for the 

RMSE with respect to the one obtained by Crouter et al. The improvement obtained over 

activity-dependent linear regression models was 5% for the correlation coefficient and 

12% for the RMSE. The improvement over the use of a single linear regression model 

was 25% for the correlation coefficient and 37% for the RMSE. 

In general, the lowest performance in energy expenditure estimation was obtained for 

activities involving resistance work or load effort. This is because accelerometers have 

difficulties detecting resistance work or load effort. The activities with highest 

performance were postures and household activities. This is because energy expenditure 

changed little for these activities with respect to the changes observed for physically 

intense activities such as gymnasium activities. The use of a single linear regression 

model trained over seven accelerometers overestimated energy expenditure for sedentary 

activities. This is because the regression coefficient representing the DC offset of the 

energy expenditure signal was increased during training to compensate for the high 

energy expenditure observed for physically intense activities involving resistance work 

(e.g. cycling). This single linear regression model also estimated energy expenditure well 

for upper body and lower body activity due to the use of additional (six) accelerometers 

at different body locations. The Compendium of Physical Activities was found to 

overestimate energy expenditure for household activities and short duration activities. 

This is because the energy expenditure value listed in the Compendium of Physical 

Activities is the one measured during steady-state conditions. Thus, energy expenditure is 

overestimated for household and short duration physically demanding activities because 

steady-state energy expenditure was not reached. The Compendium of Physical Activities 

was found to estimate energy expenditure better for activities that reached steady-state 

during the data collections such as walking, running, cycling, and rowing. 

In summary, the first set of experiments on energy expenditure estimation indicated 

that accelerometers at the upper and lower body as well as activity-dependent regression 

models improved energy expenditure performance. A new set of systematic experiments 

was performed to explore if the number of accelerometers could be reduced, if heart rate 

data improved performance (over accelerometer data), and if the use of the activity 

recognition algorithm previously implemented could produced reasonable performance 

(with respect to the assumption of known activity). This new set of experiments as will be 

later explained in detail indicated that reasonable performance could be achieved by the 

use of only three accelerometers located at the hip, dominant wrist, and dominant foot. It 

was also found that the top five peaks of the FFT coefficients used as features and 
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computed over sliding windows of 5.6s in length achieved a good compromise between 

performance and computational complexity. 

When eleven subsets of the seven accelerometers were analyzed to find the most 

comfortable combination with highest performance, it was found that the combination of 

hip, dominant wrist, and dominant foot achieved the highest performance. The decrease 

in performance with respect to the use of all seven accelerometers was less than 3% for 

both the correlation coefficient and the RMSE during subject independent evaluation. 

The second best performing sensor subset was the combination of a sensor at the 

dominant wrist and another sensor at the dominant foot. Using this subset, the decrease in 

performance for both the correlation coefficient and the RMSE with respect to all seven 

accelerometers was approximately 3%. This is an important result since it can be argued 

that sensors at the wrist and at the foot are easier to wear since they can be embedded in 

convenient devices such as wristwatches and shoe pods. When the performance of single 

sensors was analyzed, it was found that the best single sensors to use depend on the 

activities with highest energy expenditure levels in the dataset. For example, in this work, 

the activity with highest energy expenditure was cycling hard. As a result, the highest 

performing single sensors were the sensors worn at the lower body: The sensor at the 

dominant foot and the sensor at the dominant thigh.  

When the activity recognition algorithm was used to estimate energy expenditure using 

activity dependent regression models, it was found that the performance for subject 

independent recognition of activities was r=0.77, RMSE=1.31. Performance for subject 

dependent recognition of activities was r=0.88, RMSE=0.99. The performance obtained 

using subject dependent recognition of activities was close to the performance obtained 

when the activities were assumed to be known (<2%). This was an interesting result since 

the accuracy of recognizing activities in a subject dependent manner was only ~80%. The 

reason why performance was high despite this non-perfect accuracy was that the 

classification errors performed by the recognition algorithm involved activities similar in 

their motion patterns and thus, with similar energy expenditure values. As a result, even 

when errors were made, activity-dependent regression models similar to the ones of the 

‗true‘ activity being performed were applied thus achieving estimates close to the true 

values expected. 

Experiments using heart rate data to estimate energy expenditure showed that the best 

single feature to use was the ScaledHR feature. This feature consisted of the number of 

heart beats per minute normalized to lie between zero and one for resting and running on 

a treadmill at 5mph. This feature achieved a performance of r=0.84, RMSE=1.01 over the 

dataset explored. This performance was better than any of the results obtained using 

accelerometer-based features. However, the performance obtained using subject 

dependent recognition of activities and activity-dependent linear regression models was 

as good (r=0.88, RMSE=0.99) as the one obtained using the ScaledHR feature alone. This 

indicates that activity dependent regression models improve energy expenditure 

estimation considerably and can compensate for the use of uncomfortable sensors such as 

chest strap heart rate monitors. 

The work presented here also suggests that features that capture information other than 

overall amount of motion (ACAbsArea feature) improve performance, particularly when 

single sensors are used to estimate energy expenditure. For example, estimating energy 

expenditure using the top five FFT peaks, the band energy, and the mean crossing rate 
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improved r by 13% and RMSE by 21% over the use of the overall amount of motion 

feature computed from a single accelerometer at the hip. This work also found that the 

addition of heart rate data to the best accelerometer-based feature (top five FFT peaks) 

improved the correlation coefficient 22% and the RMSE 31%. 

Finally, this work explored the performance of estimating energy expenditure by first 

recognizing the activities being performed using the implemented algorithm and then 

predicting the average energy expenditure value per activity as computed from the data 

collected. The performance of this technique during subject dependent recognition of 

activities was the highest obtained in this work (r=0.90, RMSE=0.84). This technique 

achieved an improvement in the correlation coefficient between 2-4% and an 

improvement on the RMSE between 12-15% with respect to the use of activity-dependent 

linear regression models. The improvement is modest, but the fact that performance did 

not degrade when such a relatively simple technique is used to estimate energy 

expenditure is notable. Estimating energy expenditure by recognizing activities and then 

predicting mean energy expenditure values per activity has some limitations. For 

example, this technique is likely to overestimate energy expenditure for short duration 

activities, particularly physically demanding ones. Steady-state energy expenditure might 

not be reached in this case. Another potential problem is that misclassifications could 

affect the energy expenditure estimates. For example, if the activity recognition algorithm 

is not trained to recognize dancing but it is trained to recognize running, dancing might 

be confused with running and, consequently, the mean energy expenditure for running 

would be predicted for dancing. These energy expenditure estimates could be 

significantly off, thus affecting the overall performance of energy expenditure estimation. 

Other classification errors might not affect energy expenditure considerably. Confusing 

running at 6mph with running at 5mph, for example, would produce energy expenditure 

estimates that although incorrect would still be close to the true energy expenditure value. 

One possible improvement might be to train the activity recognition algorithm on a larger 

set of mutually exclusive activities, the ones that end-users of the system are most likely 

to perform over the course of a day. Another possibility is to train the activity recognition 

algorithm to recognize an unknown activity. Then, when this unknown activity is 

recognized, a generic regression model can be applied to estimate energy expenditure. 

Another option is to ask the user at the end of the day for the real label of the activity 

performed when the unknown activity was recognized to better estimate energy 

expenditure and improve activity labeling. Finally, another potential problem is that 

activity recognition algorithms tend to generate spurious classifications while people 

transition between activities. Thus, it is necessary to filter these spurious classifications, 

perhaps utilizing information about how people transition between activities to reduce the 

errors introduced in the energy expenditure estimates. 

 

6.2 Primary Contributions 

In summary, the main contributions of this work to the field of activity recognition from 

wearable sensors are: 
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1. The recognition of 52 activities and subsets of these activities on data collected 

from 20 non-researchers. A dataset larger and more complex than the ones used in 

prior work to the best of the Author‘s knowledge. 

2. The recognition of not only the type of activity but also the intensity of some 

activities.  

3. The exploration of subject dependent recognition of activities using 2min of data 

as a promising strategy to recognize activities in practice.  

4. The presentation of results that indicate that three sensors at hip, dominant wrist, 

and dominant foot offer a good compromise to recognize the 52 activities 

explored in this work, as well as arbitrary activities provided by users. 

5. The presentation of results that indicate that acceptable activity recognition 

performance can be obtained without using heart rate data. 

6. The proof of viability of a real-time system than can be trained to recognize 

arbitrary activities. 

7. The presentation of an activity recognition algorithm that is amenable for real-

time performance in low-processing power devices such as mobile phones. 

8. The exploration of the impact of different parameters of the activity recognition 

algorithm such as the type of classifier (four types of classifiers explored), feature 

set (41 feature types explored), feature computation technique (e.g. per sensor vs. 

per axis), sliding window length (varied from 1s to 91s), signal processing 

techniques (e.g. digital filtering applied, interpolation technique), and sensor 

subsets required (eleven subsets of seven sensors explored). 

 

 

The main contributions to the field of energy expenditure estimation from wearable 

sensors are: 

 

1. The estimation of energy expenditure for 52 activities and some subsets of these 

activities on data collected from 20 non-researchers. A dataset larger and more 

complex than the ones used in prior work to the best of the Author‘s knowledge. 

2. The presentation of results that indicate that activity-dependent models improve 

energy expenditure estimation performance over the use of single linear 

regression models trained over accelerometer or heart rate data alone. 

Furthermore, activity-dependent regression models achieved a performance 

similar to the one obtained by combining the highest performing accelerometer 

and heart rate features explored in this work when single regression models are 

used (e.g. differences in r of 0.04 and in RMSE of 0.02 were found). 

3. The presentation of experiments that demonstrate that when activity-dependent 

models are used, prediction of mean energy expenditure values per activity 

outperforms the use of linear regression models per activity in the dataset 

explored in this work. 

4. The presentation of results that strongly suggest that heart rate data outperforms 

the use of accelerometer data during the estimation of energy expenditure, at least 

in the dataset explored in this work. 

5. The presentation of results that indicate that features that capture information 

additional to overall amount of motion (e.g. FFT peaks, frequency domain energy, 
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mean crossing rate) improve energy expenditure performance, particularly when 

single sensors are used to estimate energy expenditure. 

6. The presentation of results that indicate that sensors at the dominant wrist and 

dominant foot are important to measure upper body and non-ambulatory lower 

body activity and corresponding energy expenditure. Reasonable performance can 

be obtained by using only these two sensors and no sensor at the hip. 

7. The exploration of the impact of different parameters of the energy expenditure 

algorithm such as the type of regressor (four types of regressors explored), feature 

set (41 feature types explored), feature computation technique (e.g. per sensor vs. 

per axis), sliding window length (varied from 1s to 91s), signal processing 

techniques (e.g. digital filtering applied, interpolation technique), and sensor 

subsets required (eleven sensor subsets explored). 

 

6.3 Revisiting the Design Goals 

This section briefly revisits the design goals stated at the beginning of this work and/or 

the evaluation measures neglected in most prior work to identify which ones were met 

and which ones were not met. 

 

 Complexity of the activities to recognize:  

o Number of activities to recognize: This work explored the recognition and 

energy expenditure estimation of a set of 52 diverse activities, a number 

that to the best of the author‘s knowledge is larger than any number of 

activities explored in prior work. 

o Complexity of the types of activities to recognize: The 52 activities 

explored in this work contained 26 activities with different intensity levels 

due to different speeds of execution and resistance work, 18 household 

activities containing examples of unconstrained motion in a residential 

home, and activities involving upper, lower, and overall body motion. This 

work also evaluated the recognition performance over subsets of the 52 

activities to identify how reducing the number of activities to recognize 

impacts performance. 

o Complexity of the training data collected for the activities: The training 

data for this work was collected from 20 participants executing a total of 

52 activities at two locations: A gymnasium and a residential home. The 

activities at the gymnasium were relatively constrained due to the use of 

gymnasium equipment such as a treadmill and stationary machines (e.g. 

cycling and rowing machines). However, the data collection at the 

residential home was less constrained since participants were allowed to 

perform the activities as they pleased.  

 Training data requirements of an algorithm 

o Subject independent recognition of activities: This work showed that a 

subject independent accuracy of 51% can be achieved over 52 activities. 

In contrast, the accuracy obtained using subject dependent training was 
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80%. However, if the intensity of physical activities does not need to be 

recognized, a subject independent accuracy of 72% can be achieved. 

o Amount of training data required for subject dependent recognition of 

activities: Given that the performance of subject dependent training 

consistently outperformed the performance of subject independent 

training, experiments were performed to determine the minimum amount 

of training data required to achieve a reasonable performance. It was 

found that 2 minutes of data per activity achieved a total accuracy of 72% 

over 52 activities. Experiments using this amount of training data per 

activity were also performed in real-time where five individuals provided 

a list of 10 arbitrary activities that they wanted the system to recognize. 

The 10-fold cross-validation accuracies obtained during the short study 

ranged from 79% to 90%.  

 Sensor data requirements for the algorithm  

o Number of sensors required to recognize activities: This work explored 

the performance of eleven subsets of seven accelerometers to identify the 

best performing subset with most convenient locations. It was found that 

three sensors at the hip, dominant wrist, and dominant foot provided the 

highest performance during both activity recognition and estimation of 

energy expenditure (with respect to the use of all seven accelerometers). 

o Intrusiveness of the sensors required to recognize activities: This work 

compared the performance of accelerometer data and heart rate data 

during the recognition of activities and estimation of energy expenditure. 

It was found that heart rate data performs poorly during activity 

recognition (e.g. accuracies of 14% during subject independent 

evaluation). During energy expenditure estimation, heart rate data 

performs well (e.g. r=0.84, RMSE=1.01) and better than accelerometer-

based features. However, a performance of r=0.88, RMSE=0.99 can be 

obtained using activity dependent regression models based on 

accelerometer data alone. As a result, good performance can be obtained 

during both, activity recognition and estimation of energy expenditure 

without using heart rate data. This was an important result since heart rate 

monitors are presently uncomfortable to wear and intrusive. 

o Location of the sensors required to recognize activities: Only three 

accelerometers at the hip, dominant wrist, and dominant foot were found 

to achieve reasonable performance during activity recognition and 

estimation of energy expenditure. For example, decreases in performance 

of less than 3% were observed during energy expenditure estimation and 

between 2-8% during recognition of activities using these three sensors 

with respect to the use of all seven accelerometers. Sensors at these 

locations could be conveniently embedded in objects such as 

wristwatches, shoe pods, belt clips or simply put inside the pocket in the 

case of the sensor at the hip. 

 Usability factors imposed by the algorithm 

o Real-time recognition of activities: The algorithm presented in this work to 

recognize activities achieved real-time performance on a 1GHz laptop 
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computer. The energy expenditure algorithm presented is also amenable 

for real-time performance due to its lightweight computational 

requirements. Presently the House_n research group at MIT is working on 

implementing both algorithms for existing mobile phones.     

o Real-time recognition delay: The algorithms presented to recognize 

activities and estimate energy expenditure have an overall real-time delay 

of 5.6 seconds. This delay is short enough to allow just-in-time 

interventions and real-time behavioral feedback. 

 

In summary, it has been shown that the algorithms presented in this work offer a 

reasonable compromise between overall performance as evaluated using standard 

evaluation measures and evaluation measures often neglected in prior work such as 

complexity of the activities to recognize, training data requirements of the algorithms, 

sensor data requirements of the algorithms, and usability factors imposed by the 

algorithm. 

 

6.4 Unresolved Issues for Long-Term Deployment 

This section briefly discusses some of the unresolved issues for long-term deployment of 

activity recognition and energy expenditure estimation algorithms based on mobile 

phones during free-living. 

 

6.4.1  Hardware Limitations for Mobile Interventions 

There exist some hardware limitations that need to be overcome in order to exploit 

mobile phone based interventions using activity recognition and energy expenditure 

estimation algorithms in practice. For example, sensors need to be built in small form 

factors so that they can be worn comfortably and unobtrusively over the course of a day. 

Existing semiconductor manufacturing technologies already allow the production of 

wireless sensor nodes that are as small as 6.6mm
3 

[252]. However, two remaining 

challenges are (1) how to power the sensors continuously since batteries are presently 

inefficient and have relatively large form factors (with respect to the size of the sensor 

nodes that can be presently achieved), and (2) how to transmit the wireless signals 

efficiently using antennas that are as tiny as the sensor nodes themselves. Thus, it seems 

that a practical strategy would be to create sensors nodes that are relatively small (e.g. the 

size of an American quarter coin) with rechargeable batteries that last for at least a day. 

In this way, sensors could be embedded in objects such as wrist watches and shoe pods 

that people could recharge every day after use.  

 

6.4.2 Usability Issues and Impact on Algorithms 

There also exist some usability challenges that need to be overcome in order to make 

mobile phone based interventions using activity recognition and energy expenditure 

estimation algorithms a reality in practice. For example, if subject dependent training is 
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used to recognize activities, intuitive and easy-to-use user interfaces would be required to 

allow individuals to interactively train and test the performance of the algorithms in real-

time. It would also be necessary to come up with strategies to allow individuals to 

provide the necessary training data when they are actually engaged in the activities of 

interest during free living instead of providing simulated examples of the activities of 

interest over a single long session. Furthermore, it is expected that the activity 

recognition algorithms would inevitably make mistakes during the recognition of 

activities in free-living. Some possible reasons for these mistakes are insufficient training 

data for a given activity, motion similarities with other activities being recognized, or 

changes in the patterns of activity execution over time. Thus, there would be a need for 

strategies to allow individuals to ‗fix‘ the recognition algorithm when it does not perform 

as expected. One possible strategy would be to allow individuals to provide more training 

examples for the problematic activities. Another strategy, although more challenging, 

would be to allow individuals to directly modify the activity models used by the 

algorithms to recognize activities. The challenge here would be to create activity 

recognition algorithms that utilize models that are easy to interpret by end-users with no 

technical background.  

 

6.5 Future Research Directions 

This section discusses some research directions for future work based on some of the 

findings of this work and some of the limitations of the algorithms presented. 

 

6.5.1  Activity Recognition 

Some future research directions in activity recognition are: 

 

 Create intuitive and easy-to-use user interfaces to allow individuals train and test 

the performance of activity recognition algorithms in real-time. 

 Create strategies and user interfaces to allow individuals to ‗fix‘ the recognition 

algorithms when they do not perform as expected. This could be achieved by 

allowing individuals to provide more training examples for the problematic 

activities or by allowing individuals to directly modify the activity models utilized 

by the recognition algorithm. 

 Use hierarchical models to recognize highly complex and variable activities such 

as household activities. For example, since household activities include sequences 

of postures and ambulation in their execution, it might be beneficial to first have a 

classifier to recognize postures and ambulation and later use the output of this 

classifier to better identify household activities. In this scenario, wiping/dusting 

might be better recognized by detecting sequences of postures, ambulation, and 

wiping dusting patterns executed during the activity duration. 

 Use activity-dependent window lengths to improve the performance over 

activities of interest. For example, longer window lengths could be used to better 

capture the variability found in complex household activities. This technique is 



276 

 

obviously more computationally expensive but might bring benefits for activities 

that are challenging to recognize such as household activities. 

 Repeat some or all of the experiments performed in this work over data collected 

from a given set of individuals over different days. This would allow testing the 

performance of the recognition algorithms when the position and orientation of 

the sensors changes slightly from day to day. 

 Include hand gesture recognition as a high level feature in activity recognition. 

This strategy might be helpful because the wrists presented high motion 

variability during the data collections. For example, the household activity 

wiping/dusting might be easier to recognize if a hand gesture recognition 

algorithm first recognizes high energy circular motion and then the recognition 

algorithm uses this recognized gesture as a high level feature to recognize 

wiping/dusting. 

 

6.5.2  Energy Expenditure Estimation 

Some future research directions in the area of energy expenditure estimation are: 

 

 Incorporate information about the duration of activities when estimating energy 

expenditure. This technique might be useful for better estimating the energy 

expenditure associated with activities whose energy expenditure increases 

constantly over time. For example, the energy expenditure for ascending stairs 

might be better estimated if information about when the activity started is 

incorporated. In this way, the algorithm could predict that energy expenditure is 

expected to increase linearly if ascending stairs has been executed for less than 10 

minutes but would reach steady state (a constant value) after being executed for 

longer than 10 minutes. 

 Filter the energy expenditure estimates using information about how energy 

expenditure transitions from activity to activity. As discussed previously, activity 

recognition algorithms might generate spurious classifications while transitioning 

from one activity to another. These spurious transitions might be filtered by 

incorporating information on how people transition from activity to activity.  

 Repeat some or all of the experiments presented in this work over data collected 

from more individuals, ideally more than one hundred and when energy 

expenditure is recorded continuously over 24 hours. 
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Appendix A1: Performance Measures for Activity Recognition 
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Performance 

Measure 

Description Computed by 

Confusion 
Matrix 

Also known as contingency table. It is a square matrix that 
shows the correctly and incorrectly classified instances 

(―confusions‖) The columns of the matrix correspond to the 

predictions or classifications done by the model and the rows 
correspond to the actual classification or ―ground truth‖ 

labels. Most performance measures presented in this table 

can be computed from the confusion matrix. 

Increase the count at each corresponding 
matrix cell by one whenever a new 

classification is made available using the 

pair of values (predicted, actual). The 
matrix is given in the format: 

 

confusionMatrix[predicted][actual] 
confusionMatrix[columns][rows] 

 

An element of a matrix is represented as 

jirowcolumn xx ,
 

 

Total 
Accuracy 

(Success 

rate) 

It is the fraction of correct classifications and is computed as 
the sum over the diagonal elements of the confusion matrix 

divided by total number of instances or examples in the 

matrix. All other instances outside the diagonal are incorrect 
classifications. Accuracy puts equal weight on relevant and 

irrelevant classes, and it is often the case that there are more 
irrelevant classes than relevant ones. 
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True Positive 

rate 
(Recall or 

sensitivity) 

The proportion of examples which were classified as class x, 

among all examples which truly have class x, i.e. how much 
part of the class was captured. It is equivalent to Recall. In 

the confusion matrix, this is the diagonal element divided by 

the sum over the relevant row. 
 

Measure widely used in information retrieval that represents 

the fraction of relevant documents that are retrieved. 
Pr[retrieved|relevant]. You can get a perfect recall (but low 

precision) by retrieving all docs for all queries! 
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False 

Positive Rate 

 

Is the proportion of examples which were classified as class 

x, but belong to a different class, among all examples which 

are not of class x. In the matrix, this is the column sum of 
class x minus the diagonal element, divided by the rows sums 

of all other classes. 
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F-Measure It is a combined measure of precision and recall computed as 
the harmonic average over precision and recall. 

ii

ii

recallpresion

recallpresion



2
 

Table A1-1: Performance measures utilized to evaluate activity recognition algorithms in this work. 

All performance measures are multiplied by 100 to be expressed as percentages. 

 

 

 



279 

 

Appendix A2: Clustering of Activities for Presentation of 
Results 
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Activity 

(Number of METs from the Compendium of physical 

activities) 

Static 

Postures 

 

Ambulation 

 

Exercise Activity Resistance 

Activity 

 

House-hold 

 

Bench weight lifting – hard (6.0)      

Bench weight lifting – light (3.0)      

Bench weight lifting – moderate (>3.0)      

Bicep curls – hard (6.0)      

Bicep curls – light (3.0)      

Bicep curls – moderate (>3.0)      

Calisthenics – Crunches (8.0)      

Calisthenics - Sit ups (8.0)      

Cycling - Cycle hard - Cycle 80rpm (>8.0)      

Cycling - Cycle light - Cycle 100rpm (7.0)      

Cycling - Cycle light - Cycle 60rpm (3.0)      

Cycling - Cycle light - Cycle 80rpm (5.5)      

Cycling - Cycle moderate - Cycle 80rpm (8.0)      

Lying down (1.0)      

Rowing - Rowing hard - Rowing 30spm (8.5)      

Rowing - Rowing light - Rowing 30spm (3.5)      

Rowing - Rowing moderate - Rowing 30spm (7.0)      

Running - Treadmill 4mph - Treadmill 0 (5.0)      

Running - Treadmill 5mph - Treadmill 0 (8.0)      

Running - Treadmill 6mph - Treadmill 0 (10.0)      

Sitting (1.0)      

Sitting - Fidget feet legs (1.0)      

Sitting - Fidget hands arms (1.0)      

Stairs - Ascend stairs  (8.0)      

Stairs - Descend stairs (3.0)      

Standing (1.2)      

Walking - Treadmill 2mph - Treadmill 0 (2.5)      

Walking - Treadmill 3mph - Treadmill 0 (3.3)      

Walking - Treadmill 3mph - Treadmill 3  - light (>3.3)      

Walking - Treadmill 3mph - Treadmill 6  - moderate (>3.3)      

Walking - Treadmill 3mph - Treadmill 9  - hard (>3.3)      

Kneeling (1.0)      

Unknown (N/A)      

Carrying groceries (3.0)      

Doing dishes (2.3)      

Gardening (4.0)      

Ironing (2.3)      

Making the bed (2.0)      

Mopping (3.5)      

Playing videogames (1.5)      

Scrubbing a surface (3.8)      

Stacking groceries (2.5)      

Sweeping (3.3)      

Typing (1.8)      

Vacuuming (3.5)      

Walking around block (3.5)      

Washing windows (3.0)      

Watching TV (1.0)      

Weeding (4.5)      

Wiping/Dusting (2.5)      

Writing (1.8)      

Taking out trash (2.5)      

Table A2-1: The 51 activities contained in the MIT dataset and their categorization according to 

increasing order of classification complexity:  (1) postures, (2) postures and ambulation, (3) exercise 

activities, and (4) household activities. Activities that are included in the garbage class are 

represented with G and activities eliminated from the dataset with E. Activities including in the 

training process are marked with a check mark. 
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Activity 

(Number of METs from the Compendium of 

physical activities) 

Upper 

Body 

 

Lower 

Body 

 

Postures and 

Ambulation 

Postures and 

Ambulation 

with METs 

Intensity 

All Activities with No 

Intensity 

Bench weight lifting – hard (6.0)    Moderate  (Bench) 

Bench weight lifting – light (3.0)    Moderate (Bench) 

Bench weight lifting – moderate (>3.0)    Moderate (Bench) 

Bicep curls – hard (6.0)    Moderate (Biceps) 

Bicep curls – light (3.0)    Moderate (Biceps) 

Bicep curls – moderate (>3.0)    Moderate (Biceps) 

Calisthenics – Crunches (8.0)    Vigorous  

Calisthenics - Sit ups (8.0)    Vigorous  

Cycling - Cycle hard - Cycle 80rpm (>8.0)    Vigorous (Cycling) 

Cycling - Cycle light - Cycle 100rpm (7.0)    Vigorous (Cycling) 

Cycling - Cycle light - Cycle 60rpm (3.0)    Moderate (Cycling) 

Cycling - Cycle light - Cycle 80rpm (5.5)    Moderate (Cycling) 

Cycling - Cycle moderate - Cycle 80rpm (8.0)    Vigorous (Cycling) 

Lying down (1.0)      

Rowing - Rowing hard - Rowing 30spm (8.5)    Vigorous (Rowing) 

Rowing - Rowing light - Rowing 30spm (3.5)    Moderate (Rowing) 

Rowing - Rowing moderate - Rowing 30spm (7.0)    Vigorous (Rowing) 

Running - Treadmill 4mph - Treadmill 0 (5.0)    (Running)   (Running) 

Running - Treadmill 5mph - Treadmill 0 (8.0)    (Running)   (Running) 

Running - Treadmill 6mph - Treadmill 0 (10.0)    (Running)   (Running) 

Sitting (1.0)    (Sitting)  (Sitting)  (Sitting) 

Sitting - Fidget feet legs (1.0)    (Sitting)  (Sitting)  (Sitting) 

Sitting - Fidget hands arms (1.0)    (Sitting)  (Sitting)  (Sitting) 

Stairs - Ascend stairs  (8.0)    Vigorous  

Stairs - Descend stairs (3.0)    Moderate  

Standing (1.2)      

Walking - Treadmill 2mph - Treadmill 0 (2.5)    (walking )   (walking ) 

Walking - Treadmill 3mph - Treadmill 0 (3.3)    (walking )  (walking 3)  (walking ) 

Walking - Treadmill 3mph - Treadmill 3  - light 

(>3.3) 

  (walking ) (walking 3) (walking ) 

Walking - Treadmill 3mph - Treadmill 6  - moderate 

(>3.3) 

  (walking ) (walking 3) (walking ) 

Walking - Treadmill 3mph - Treadmill 9  - hard 

(>3.3) 

  (walking ) (walking 3) (walking ) 

Kneeling (1.0)      

Unknown (N/A)      

Carrying groceries (3.0)     (walking ) 

Doing dishes (2.3)      

Gardening (4.0)    Moderate  

Ironing (2.3)      

Making the bed (2.0)      

Mopping (3.5)    Moderate  

Playing videogames (1.5)      

Scrubbing a surface (3.8)    Moderate  

Stacking groceries (2.5)      

Sweeping (3.3)    Moderate  

Typing (1.8)      

Vacuuming (3.5)    Moderate  

Walking around block (3.5)     (walking ) 

Washing windows (3.0)      

Watching TV (1.0)      

Weeding (4.5)    Moderate  

Wiping/Dusting (2.5)      

Writing (1.8)      

Taking out trash (2.5)      

Table A2-2: The 51 activities contained in the MIT dataset and their categorization according to 

increasing order of classification complexity:  (1) postures, (2) postures and ambulation, (3) exercise 

activities, and (4) household activities. Activities that are included in the garbage class are 

represented with G and activities eliminated from the dataset with E. Activities including in the 

training process are marked with a check mark. 
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Appendix A3: The 41 Features Explored in This Work  
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Features Abbreviation Description 

Measures of body posture   

 Mean  DCMean Mean or average over the signal window after low-pass filtering the 
acceleration signal at 1Hz. This is a measure of the DC value or the static 

component of acceleration that changes with body posture. 

 Mean over all 
acceleration axis 

DCTotalMean Same as DCMean but computed over the summation of all the acceleration 

signals over all axis and accelerometers available (sensors). This feature 
captures the overall posture information contained in the DC component of 

the acceleration signals. 

 Area under signal DCArea The area under the signal simply computed by summing the acceleration 
samples contained in a given window.   





windowpersamplestotal

i

ionacceleratiDCArea
___

1

 

 Mean distances 

between axis 

DCPostureDist The differences between the mean values of the X-Y, X-Z, and Y-Z 

acceleration axis per sensor. These three values capture the orientation of 

the sensor with respect to ground or body posture information. The feature 
is computed after low-pass filtering the acceleration signals at 1Hz. 

Measures of motion shape   

 Mean of absolute signal 

value 

ACAbsMean Mean or average over the absolute value of the band-pass filtered (0.1- 

20Hz) accelerometer signals. Acceleration can have positive and negative 
values, so computing the absolute value guarantees the mean will not be 

zero for perfect oscillatory motion with equal positive and negative 

acceleration magnitudes. 

 Cumulative sum over 
absolute signal value 

ACAbsArea The area under the absolute value of the signal computed by simply 
summing the accelerometer samples inside a given window. The sum is 

computed after band-pass filtering (0.1-20Hz) the accelerometer signals. 

Acceleration can have positive and negative values, so computing the 
absolute value guarantees the area will not be zero for perfect oscillatory 

motion with equal positive and negative acceleration magnitudes. 

iii ZY

thwindowLeng

i

XPerSensor aaaACAbsArea  
1

 





thwindowLeng

i

AxisPerAxis i
aACAbsArea

1

 

 Total  Cumulative sum 
over absolute signals 

value 

ACTotalAbsArea Same as ACAbsArea but computed over the summation of all the signals 

over all axis and accelerometers available (sensors). This feature captures 
the overall motion experienced by the human body as experienced by all the 

accelerometers worn. 





orsnumberSens

i
iPerSensorACAbsAreaAreaACTotalAbs

1

 





numberAxis

i

PerAxisi
ACAbsAreaAreaACTotalAbs

1

 

 

 Total signal vector 

magnitude 

ACTotalSVM The average value of the signal vector magnitude of all the accelerometer 

samples for a given window. This feature is computed after band-pass 
filtering (0.1-20Hz) the accelerometer signals. The Signal vector magnitude 

for all samples at a given time is computed  using the following formula: 





axesofnumbertotal

i

iaSVM
___

1

2
 

 Entropy ACEntropy Measures the degree of ―disorder‖ in the band-pass filtered (0.1-20Hz) 

accelerometer signals. It can be computed from  





lengthwindow

i

vvH
_

1

2 )(log  

Where v corresponds to the normalized values of the FFT magnitude.  
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lengthwindow

i

imag

imag
v

_

1

)(

)(
 

 
The final value of the entropy is normalized to fall in the range [0, 1] by 

dividing each entropy value by the entropy of the uniform distribution. 

 Skewness (signal 
moment) 

ACSkew It is a measure of the ―peakedness‖ of the accelerometer signal over a given 
window. Larger values indicate that more of the variance is due to 

infrequent extreme deviations, as opposed to frequent modestly-sized 

deviations. It is computed over the band-pass filtered acceleration using the 
following formula: 
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 Kurtosis  (signal 
moment) 

ACKur It is a measure of the ―peakedness‖ of the accelerometer signal over a given 

window or a measure of its relative flatness as compared to the normal 
distribution.  It is computed over the band-pass filtered (0.1-20Hz) 

accelerometer signals using the following formula:  
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 Quartiles (first, second, 
and third) 

ACQ1 
ACQ2 

ACQ3 

Quartiles are computed by partitioning the accelerometer signal over a 
given window into four quarters each containing 25% of the data (Q1=25, 

Q2=50, and Q3=75%). This is achieved by sorting the signal values 

according to increasing magnitude and finding the values at 25%, 50% and 

75% of the window length. The values measure the distribution of the 

accelerometer magnitude across the window.  The quartiles are computed 

over the band-pass filtered (0.1-20Hz) accelerometer signals. 

Measures of motion variation   

 Variance ACVar The variance of the accelerometer signal computed over a given window. It 

is computed after band-pass filtering (0.1-20Hz) the accelerometer signals. 

 Coefficient of variation 
over the absolute value 

of the signal 

ACAbsCV Computed as the ratio of the standard deviation and the mean over each 
signal window multiplied by 100. This measures the dispersion of the 

acceleration signal. Acceleration is band-pass filtered (0.1-20Hz) before 

computing this feature. 

 Inter quartile range ACIQR Computed as the difference between quartiles three and one (Q3-Q1). This 
value describes the dispersion of the acceleration signal. This feature is 

computed after band-pass filtering (0.1-20Hz) the accelerometer signals. 

 Range or maximum 
signal amplitude 

ACRange Difference between the maximum and minimum values of the 
accelerometer signal over a given window. This is a measure of peak 

acceleration or maximum motion inside the window. Accelerometer signals 

are band-pass filtered (0.1-20Hz) before computing this feature. 

Measures of motion spectral 
content 

  

 Fast Fourier transform 
(FFT) coefficients  

ACFFTCoeff The coefficients of the fast Fourier transform computed over the 

accelerometer signal for a given window. The signal is first band-pass 
filtered (0.1-20Hz) and the first coefficient (DC component) is not utilized. 

There number of coefficients is the length of the window divided by 2 

minus one. It is a measure of the magnitudes of the frequencies contained 
within the accelerometer signal. 

 Fast Fourier transform 

(FFT) peaks 

ACFFTPeaks The X number of frequencies with maximum magnitudes computed over 

the FFT coefficients. These consist on X number of frequency, magnitude 

pairs (freq, mag). In this work, X=5. It is a measure of the X number of 
largest frequencies present in the signal and their magnitudes. This feature 

does not include the DC component of the signal or magnitude at frequency 
zero. Before computing this feature, signals are band-pass filtered (0.1-
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20Hz). 

 Fast wavelet transform 
(FWT) 

coefficients 

ACFWTCoeff The coefficients of the Haar wavelet transform computed over the 

accelerometer signal for a given window. There are as many coefficients as 
signal samples in the window. The coefficients are a measure of the 

frequencies contained in the accelerometer signals at different time scale 

resolutions. Accelerometer signals are band-pass filtered (0.1-20Hz) before 
computing this feature. The coefficient corresponding to the DC component 

of the signals is not included. 

Measures of motion energy   

 Total energy ACEnergy It is computed as follows from the FFT coefficient magnitudes: 





2/_

1

2
lengthwindow

i

magnitudeenergy  

Note that the index i  starts from 1 and not from zero to avoid computing 

the energy of the DC component. The index also goes to only half of the 

window since the FFT components after half of the window are redundant. 
This is the total energy contained in all the frequencies. The FFT 

coefficients are computed over the band-pass filtered (0.1-20Hz) 

accelerometer signals. 

 Activity band energy 
(0.3-3.5Hz) 

ACBandEnergy 
 

Computed as the sum of the energy contained between frequencies of 0.3 – 
3.5Hz. This has been found to be the major energy band for human 

activities in previous work. This feature does not include the DC component 

of the signal. The energy is computed from the FFT coefficients computed 
over the band-pass filtered (0.1-20Hz) accelerometer signals. 

 Energy of low intensity 

physical activity            
(0 – 0.7Hz) 

ACLowEnergy 

 

Computed as the sum of the energy contained between frequencies of 0 – 

0.7Hz. This has been found to be Associated with sedentary activities in 
previous work. This energy does include the DC component of the signal. 

 Energy of moderate to 
vigorous physical 

activity (0.71 – 10 Hz) 

ACModVigEnergy 

 

Computed as the sum of the energy contained between frequencies of 0.71 

– 10Hz. This has been found to be associated with locomotion and high 
intensity activities in previous work. 

 Heart rate mean HRMean This feature is the average value of the heart rate data in beats-per-minute 

over the heart rate data window length. 

 Heart rate above resting 

heart rate 

HRAboveRest Computed by subtracting the resting heart rate (RHR) from the mean heart 

rate value (in bmp) over each window. It measures the intensity associated 

with an activity. The value will be near zero for sedentary activities and will 
increase with the activity intensity. 

 Heart rate normalized 

to lie between the range 
resting heart rate 

(RHR) and the mean 

heart rate measured 
while running at 5mph 

on a treadmill.  

ScaledHR Computed by scaling the mean heart rate value (in bmp) over each window 

to lie between the range 0 – 1 using the resting heart rate and the mean heart 

rate value obtained while subjects run at 5mph on a treadmill. It measures 
the intensity associated with an activity.  

 The variance of the 
heart rate data. 

HRVar This feature is simply the variance computed over the heart rate data 
window. 

Measures of tendency in 

physical activity intensity 

  

 Heart rate trend line HRTrend Slope of the regression line computed over the heart rate signal window. 
This feature captures if hear rate is increasing, decreasing or in steady-state 

over time. 

Measures of motion 
periodicity 

  

 Pitch  ACPitch Computed as the magnitude of the second peak of the autocorrelation 

function after Rx (0). It measures the magnitude of the fundamental 

frequency contained in the acceleration signal. Accelerometer signals are 

band-pass filtered (0.1-20Hz) before computing this feature. 

 Ratio of energy in 
dominant 

frequency 

ACDomFreqRatio Computed by dividing the magnitude of the FFT coefficient with largest 

magnitude by the sum of the coefficients in all other frequencies. It 
measures how much of the signal is dominated by a particular frequency. 

The FFT is computed over the band-pass filtered (0.1-20Hz) accelerometer 

signals. 

 Mean crossing rate ACMCR Number of times the acceleration signal crosses its mean value over the 
window. It measures how fast the acceleration signal changes over time. 

The acceleration signal is band-pass filtered (0.1-20Hz) before computing 
this feature. 

Measures of motion 

similarity across body 
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segments 

 Pearson‘s Correlation  
Coefficients 

ACCorr The correlation coefficients among each pair of acceleration signals over a 

given window. The correlation coefficients are computed according to the 
following formula: 

),cov(),cov(

),cov(
),(

jjii

ji
jiR


  

Cov stands for the covariance function. The correlation coefficients 

measure the linear dependence between two acceleration signals. The 

coefficient lies between [-1, +1] were the sign indicates the correlation 
direction or the orientation of the line. Two acceleration signals that are 

identical would give a correlation coefficient of one. In simple terms, the 

coefficients characterize how similar is the simultaneous motion of limbs.  

Measure of force per body 

segment 

  

 Segmental Force ACSF Computed by multiplying the ACAbsArea feature for the accelerometer at 

the hip, wrists, and feet by the segment mass per limb obtained from the 
Depmster‘s body segment model [236]. This feature consists of five 

coefficients given by the following formulas: 

LegMassACAbsAreaACSF

LegMassACAbsAreaACSF

ArmMassACAbsAreaACSF

ArmMassACAbsAreaACSF

assBodyTrunkMACAbsAreaACSF

NDFootNDFoot

DFootDFoot

NDWristNDWrist

DWristDWrist

HipTrunk











 

 
Were the prefix ―D‖ stands for dominant and ―ND‖ stands for non 

dominant. 

 

 Total Segmental Force ACTotalSF ACTotalSF is the sum of the five coefficients of the segmental force.  

NDFootDFoot

NDArmDArmTrunk

ACSFACSF

ACSFACSFACSFACTotalSF




 

Measures of subject 
characteristics 

  

 Gender Gender A number specifying the gender of the subject: 0- Male, 1-Female 

 Age Age A number specifying the age of the subject. 

 Height Height A number specifying the height of the subject in meters 

 Weight Weight A number specifying the body weight of the subject in Kg 

Measures of subject fitness   

 BMI BMI Computed by dividing body weight of a subject (in Kg) by the squared of 

its height (in meters) 

 Fat percentage FatPercent A number representing the percentage of fat or non-muscle tissue in the 
subject. 

 Fitness Index FitnessIndex This feature is computed by dividing the number of steps per minute by the 

average heart rate value (in beats-per-minute) per minute of a subject 

running on a treadmill at 5mph. This is an approximation of the 
FitnessIndex utilized in [230]. 

Table A3-1: List of features explored in this work to (1) recognize activities and (2) estimate energy 

expenditure from wearable accelerometers and a heart rate monitor. The list is a superset of most 

features found in previous work. Features starting with the prefix “AC” were computed over the 

accelerometer signals after applying a band-pass filter between the frequencies of 0.1 and 20Hz. 

Features starting with the prefix “DC” were computed over the accelerometer signals after applying 

a low-pass filter with a cutoff frequency of 1Hz. 
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Appendix A4: Amount of Data in the MIT Dataset 
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Activity Amount of 

training time 

(in minutes) 

Average amount of 

training data per 

subject 

(in minutes) 

Number of 

Training Examples 

when using a 

window of 5.6s 

Bench weight lifting – Light  30.4 1.52 326 

Bench weight lifting – Moderate  21.8 1.09 234 

Bench weight lifting – Hard  11.5 0.575 124 

Bicep curls – Light 31.7 1.585 340 

Bicep curls – Moderate  21.8 1.09 234 

Bicep curls – Hard 21.3 1.065 229 

Calisthenics   Crunches 19.6 0.98 211 

Calisthenics   Sit ups 25.0 1.25 268 

Cycling Cycle 100rpm (15mph,  120.4W) – Light 45.0 2.25 483 

Cycling Cycle 60rpm (8.9mph, 66.9W) – Light 54.0 2.7 579 

Cycling Cycle 80rpm (11.2mph,  100.4W) – Light 52.9 2.645 567 

Cycling Cycle 80rpm – Moderate 46.2 2.31 496 

Cycling Cycle 80rpm – Hard 34.8 1.74 373 

Lying down 149.1 7.455 1,598 

Rowing 30spm – Light 50.4 2.52 540 

Rowing 30spm – Moderate 42.7 2.135 458 

Rowing 30spm – Hard 35.0 1.75 376 

Running   Treadmill 4mph   Treadmill 0  47.7 2.385 512 

Running   Treadmill 5mph   Treadmill 0  44.6 2.23 478 

Running   Treadmill 6mph   Treadmill 0  31.1 1.555 334 

Sitting 28.4 1.42 305 

Sitting   Fidget feet legs 27.8 1.39 298 

Sitting   Fidget hands arms 27.8 1.39 298 

Stairs   Ascend stairs 46.4 2.32 498 

Stairs   Descend stairs 42.7 2.135 458 

Standing 29.9 1.495 321 

Walking   Treadmill 2mph   Treadmill 0  57.1 2.855 612 

Walking   Treadmill 3mph   Treadmill 0  56.5 2.825 606 

Walking   Treadmill 3mph   Treadmill 3 – Light  56.2 2.81 603 

Walking   Treadmill 3mph   Treadmill 6 – Moderate  57.4 2.87 616 

Walking   Treadmill 3mph   Treadmill 9 – Hard  56.5 2.825 606 

Kneeling 29.4 1.47 315 

Carrying groceries 50.4 2.52 541 

Doing dishes 54.9 2.745 589 

Gardening 32.2 1.61 345 

Ironing 57.8 2.89 620 

Making the bed 53.7 2.685 576 

Mopping 43.1 2.155 462 

Playing videogames 58.9 2.945 632 

Scrubbing a surface 39.2 1.96 421 

Stacking groceries 38.4 1.92 412 

Sweeping 42.9 2.145 460 

Typing 60.9 3.045 653 

Vacuuming 44.4 2.22 476 

Walking around block 53.1 2.655 569 

Washing windows 48.90 2.445 524 

Watching TV 59.9 2.995 642 

Weeding 30.1 1.505 323 

Wiping/Dusting 52.1 2.605 559 

Writing 61.5 3.075 659 

Taking out trash 42.3 2.115 454 

Unknown 938.1 46.905 10,052 

Table A4-1: Amount of training data available (or duration of each activity) for the 52 activities 

contained in the MIT dataset and explored in this work. 
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Appendix A5: Sliding Window Length for Activity Recognition 
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Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 58.20±7.32 62.55±7.58 65.51±6.33 66.83±6.24 67.09±5.81 60.06±6.58 23.31±10.11 

Postures 51.37±9.98  

(0.78±0.24) 

54.57±11.99  

(0.73±0.27) 

53.10±14.09  

(0.67±0.33) 

52.52±16.48  

(0.68±0.39) 

45.42±22.41  

(0.82±0.49) 

18.97±11.75  

(1.13±0.69) 

12.39±3.58  

(2.45±1.29) 

Ambulation 60.80±10.92  

(0.81±0.26) 

68.76±11.39  

(0.66±0.26) 

73.36±11.30  

(0.57±0.28) 

76.86±14.88  

(0.52±0.28) 

75.85±17.95  

(0.57±0.36) 

68.09±24.47  

(0.88±0.59) 

6.45±15.05  

(2.79±1.61) 

Exercise 66.35±13.33  

(0.55±0.21) 

70.28±12.85  

(0.48±0.21) 

73.31±14.06  

(0.44±0.23) 

74.58±16.44  

(0.43±0.26) 

69.74±23.43  

(0.51±0.38) 

58.01±31.93  

(0.84±0.59) 

5.18±10.99  

(2.94±1.53) 

Resistance 

Exercise 

52.11±14.46  

(0.85±0.29) 

57.92±14.91  

(0.74±0.30) 

62.68±15.71  

(0.65±0.32) 

66.18±18.16  

(0.62±0.33) 

64.39±23.95  

(0.69±0.47) 

52.38±31.56  

(0.96±0.63) 

4.49±10.90  

(3.02±1.68) 

Household 39.49±11.86  

(1.15±0.44) 

44.18±13.78  

(1.07±0.45) 

48.79±14.98  

(0.99±0.46) 

52.05±17.93  

(0.97±0.52) 

56.00±21.76  

(0.98±0.61) 

50.71±29.45  

(1.17±0.84) 

6.63±14.03  

(3.24±2.10) 

Table A5-1: Performance of the C4.5 decision tree classifier using the ACAbsArea feature over 

window lengths varying from 1.4 to 45.5 seconds during subject dependent evaluation. 

 

 

 
Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 33.62 ± 4.04 35.00 ± 4.27 36.82 ± 5.51 38.32 ± 5.19 39.40 ± 5.34 43.46 ± 6.17 42.31 ± 7.26 

Postures 18.63±11.54  

(0.94±0.39) 

19.62±13.19  

(0.88±0.42) 

21.19±15.12  

(0.87±0.51) 

23.97±18.12  

(0.84±0.65) 

26.54±20.04  

(0.94±0.65) 

35.70±29.14  

(0.93±0.78) 

51.06±42.66  

(1.64±1.38) 

Ambulation 23.33±18.34  

(1.14±0.72) 

23.85±22.03  

(1.07±0.84) 

26.48±22.65  

(1.09±0.95) 

28.33±26.35  

(1.05±1.02) 

34.58±31.13  

(1.23±1.16) 

39.51±34.98  

(1.51±1.39) 

39.40±35.13  

(1.82±1.64) 

Exercise 20.00±19.44  

(0.61±0.50) 

20.18±21.34  

(0.61±0.57) 

22.80±24.12  

(0.64±0.69) 

25.96±28.60  

(0.73±0.74) 

28.01±26.29  

(0.96±0.94) 

35.96±31.07  

(1.25±1.13) 

41.42±35.31  

(2.18±1.51) 

Resistance 

Exercise 

13.04±13.39  

(0.85±0.56) 

13.50±15.85  

(0.79±0.61) 

14.96±17.99  

(0.79±0.70) 

16.32±22.00  

(0.82±0.76) 

18.86±22.58  

(1.08±0.96) 

27.19±26.95  

(1.29±1.09) 

33.29±37.79  

(2.42±1.65) 

Household 12.53±10.02  

(1.13±0.49) 

14.68±12.36  

(1.12±0.58) 

16.62±14.49  

(1.11±0.65) 

18.92±18.33  

(1.08±0.74) 

22.05±22.58  

(1.15±0.80) 

29.17±28.09  

(1.25±1.00) 

35.00±37.20  

(1.87±1.48) 

Table A5-2: Performance of the C4.5 decision tree classifier using the ACAbsArea feature over 

window lengths varying from 1.4 to 45.5 seconds during subject independent evaluation 

 

 

 
Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 56.82 ± 7.51 62.58 ± 6.89 66.36 ± 6.34 66.33 ± 7.44 64.81 ± 6.29 55.20 ± 7.38 21.34 ± 9.04 

Postures 44.39±9.97  
(1.01±0.29) 

51.52±10.68  
(0.85±0.32) 

55.00±14.08  
(0.75±0.32) 

49.54±16.28  
(0.79±0.41) 

45.21±21.83  
(0.93±0.59) 

26.58±22.71  
(1.41±0.97) 

13.25±3.10  
(2.24±1.24) 

Ambulation 65.38±9.81  

(0.71±0.24) 

71.24±10.13  

(0.58±0.22) 

75.79±10.99  

(0.48±0.23) 

80.02±13.98  

(0.44±0.27) 

76.72±20.43  

(0.50±0.38) 

65.97±30.36  

(0.87±0.71) 

4.50±11.39  

(2.46±1.49) 

Exercise 65.60±11.51  

(0.54±0.19) 

71.40±12.27  

(0.45±0.19) 

75.82±11.41  

(0.39±0.17) 

74.42±16.69  

(0.43±0.26) 

67.82±20.62  

(0.54±0.39) 

51.26±32.96  

(0.89±0.66) 

4.56±10.00  

(2.95±1.54) 

Resistance 

Exercise 

53.64±12.74  

(0.80±0.25) 

60.97±13.99  

(0.68±0.25) 

67.62±13.12  

(0.56±0.23) 

67.31±17.08  

(0.58±0.31) 

63.19±20.99  

(0.64±0.44) 

48.92±30.27  

(1.01±0.72) 

4.55±10.74  

(2.96±1.67) 

Household 38.73±12.04  

(1.21±0.47) 

45.74±12.89  

(1.07±0.43) 

49.98±15.48  

(0.99±0.46) 

52.13±18.16  

(1.00±0.55) 

52.80±22.81  

(1.04±0.65) 

43.44±30.38  

(1.41±0.99) 

7.11±14.73  

(3.23±1.84) 

Table A5-3: Performance of the C4.5 decision tree classifier using the ACFFTPeaks + ACCorr 

features over window lengths varying from 1.4 to 45.5 seconds. Subject dependent evaluation 
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Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 34.74 ± 3.79 38.16 ± 3.76 41.23 ± 5.04 43.38 ± 4.71 45.32 ± 6.23 46.40 ± 6.46 45.38 ± 8.50 

Postures 18.56±11.48  

(0.98±0.34) 

22.63±13.62  

(0.90±0.37) 

25.60±17.39  

(0.84±0.46) 

28.97±20.94  

(0.80±0.48) 

30.65±22.44  

(0.90±0.61) 

42.39±29.68  

(0.94±0.84) 

55.05±44.27  

(1.56±1.34) 

Ambulation 22.77±18.39  

(1.04±0.67) 

25.17±21.08  

(0.98±0.69) 

28.56±23.79  

(1.02±0.84) 

31.08±28.16  

(1.00±0.94) 

35.50±33.85  

(1.07±1.10) 

38.11±33.75  

(1.49±1.43) 

46.01±32.08  

(1.85±1.63) 

Exercise 21.03±19.45  

(0.59±0.46) 

23.48±22.09  

(0.54±0.53) 

27.54±25.82  

(0.60±0.58) 

31.91±27.31  

(0.75±0.79) 

38.24±33.74  

(0.95±0.98) 

47.40±35.60  

(1.02±0.98) 

48.75±39.75  

(2.09±1.58) 

Resistance 

Exercise 

15.28±14.76  

(0.79±0.53) 

16.49±15.82  

(0.75±0.56) 

20.01±20.92  

(0.79±0.63) 

22.46±22.00  

(0.92±0.88) 

29.45±28.91  

(1.07±0.95) 

39.02±33.13  

(1.23±1.05) 

35.82±40.85  

(2.20±1.51) 

Household 15.33±11.30  

(1.17±0.45) 

17.78±13.56  

(1.13±0.51) 

20.26±16.85  

(1.10±0.63) 

22.52±20.31  

(1.06±0.70) 

25.61±23.10  

(1.03±0.70) 

30.93±28.60  

(1.23±0.96) 

43.28±38.52  

(1.76±1.41) 

Table A5-4: Performance of the C4.5 decision tree classifier using the ACFFTPeaks + ACCorr 

features over window lengths varying from 1.4 to 45.5 seconds. Subject independent evaluation 

 

 

 
Activity 

Category 

1.4s 5.6s 11.3s 45.5s 

All 58.22 ± 3.43 67.44 ± 2.04 67.85 ± 2.96 52.42 ± 4.28 

Postures 47.1±9.2  

(0.9±0.2) 

59.7±12.1  

(0.6±0.2) 

53.4±15.0  

(0.7±0.3) 

23.6±18.6  

(1.1±0.7) 

Ambulation 70.7±9.0  

(0.5±0.1) 

78.8±10.8  

(0.3±0.2) 

81.2±12.4  

(0.3±0.2) 

64.3±27.8  

(0.7±0.5) 

Exercise 69.3±11.2  

(0.4±0.1) 

78.4±11.4  

(0.3±0.1) 

78.0±14.3  

(0.3±0.2) 

49.9±31.6  

(0.8±0.5) 

Resistance 

Exercise 

59.2±12.9  

(0.6±0.2) 

72.1±12.6  

(0.4±0.2) 

72.5±16.3  

(0.4±0.2) 

46.6±31.0  

(0.9±0.6) 

Household 45.6±10.8  

(0.9±0.3) 

55.5±13.1  

(0.7±0.3) 

57.3±16.6  

(0.7±0.3) 

45.6±26.1  

(1.1±0.8) 

Table A5-5: Performance of the C4.5 decision tree classifier using the ACFFTPeaks + ACCorr 

features over window lengths varying from 1.4 to 45.5 seconds. Subject dependent evaluation feature 

computation per axis 

 

 

 

 
Activity 

Category 

1.4s 5.6s 11.3s 45.5s 

All 38.01 ± 2.94 44.36 ± 3.98 47.47 ± 4.74 51.84 ± 5.23 

Postures 29.4±11.0  

(1.0±0.3) 

37.9±16.0  

(0.8±0.4) 

40.4±20.0  

(0.8±0.4) 

51.9±33.7  

(0.9±0.8) 

Ambulation 32.3±17.0  
(0.9±0.5) 

38.3±24.9  
(0.8±0.6) 

43.0±28.1  
(0.8±0.7) 

53.8±34.1  
(1.0±1.0) 

Exercise 34.6±17.7  

(0.6±0.4) 

38.0±24.9  

(0.6±0.5) 

42.8±27.9  

(0.6±0.5) 

55.4±32.9  

(0.8±0.8) 

Resistance 
Exercise 

25.6±14.3  
(0.8±0.4) 

29.1±21.6  
(0.8±0.5) 

32.9±26.9  
(0.8±0.6) 

43.1±34.0  
(1.0±0.8) 

Household 28.0±11.1  

(1.1±0.3) 

35.3±16.4  

(1.0±0.4) 

38.6±19.2  

(0.9±0.5) 

47.4±29.1  

(1.0±0.8) 

Table A5-6: Performance of the C4.5 decision tree classifier using the ACFFTPeaks + ACCorr 

features over window lengths varying from 1.4 to 45.5 seconds. Subject independent evaluation 

feature computation per axis 
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 True Positive Rate 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 23.02 ± 12.84 33.82 ± 13.76 44.76 ± 11.77 46.64 ± 15.05 17.50 ± 15.41 0.00 ± 0.00 0.00 ± 0.00 

Bench weight lifting - light 45.47 ± 13.49 58.23 ± 18.42 61.40 ± 11.16 58.81 ± 25.34 48.05 ± 15.60 54.55 ± 37.34 0.00 ± 0.00 

Bench weight lifting - moderate 33.33 ± 9.45 35.42 ± 16.06 45.17 ± 12.02 35.64 ± 22.76 27.80 ± 15.39 15.62 ± 24.57 0.00 ± 0.00 

Bicep curls - hard 51.09 ± 9.67 66.89 ± 12.80 73.60 ± 11.74 74.58 ± 12.11 65.13 ± 15.64 45.83 ± 42.49 16.67 ± 25.82 

Bicep curls - light 61.45 ± 18.03 70.45 ± 16.73 75.95 ± 12.55 76.74 ± 17.48 81.07 ± 17.01 59.17 ± 32.97 8.33 ± 20.41 

Bicep curls - moderate 53.30 ± 14.01 62.28 ± 12.54 68.43 ± 9.00 65.20 ± 22.12 60.83 ± 27.88 41.67 ± 42.72 0.00 ± 0.00 

Calisthenics - Crunches 81.81 ± 11.20 84.25 ± 8.37 89.95 ± 8.47 83.57 ± 9.03 76.29 ± 23.73 33.33 ± 42.16 0.00 ± 0.00 

Calisthenics - Sit ups 88.42 ± 4.47 92.58 ± 2.91 91.54 ± 5.36 91.79 ± 8.37 85.60 ± 16.73 69.05 ± 41.31 0.00 ± 0.00 

Cycling - Cycle hard - Cycle 80rpm 67.52 ± 19.58 71.68 ± 19.30 76.86 ± 19.49 70.25 ± 26.34 62.95 ± 25.45 36.54 ± 30.53 4.55 ± 15.08 

Cycling - Cycle light - Cycle 100rpm 90.51 ± 9.95 94.13 ± 7.82 94.50 ± 6.00 92.45 ± 15.79 84.12 ± 25.90 72.22 ± 31.29 7.69 ± 18.78 

Cycling - Cycle light - Cycle 60rpm 85.24 ± 9.12 85.82 ± 10.58 86.58 ± 8.39 82.52 ± 13.29 78.96 ± 17.36 63.89 ± 30.65 12.50 ± 22.36 

Cycling - Cycle light - Cycle 80rpm 80.26 ± 10.21 84.41 ± 8.91 85.00 ± 10.30 80.97 ± 14.58 75.35 ± 18.37 56.02 ± 25.21 11.54 ± 21.93 

Cycling - Cycle moderate - Cycle 80rpm 67.70 ± 11.08 70.99 ± 9.41 72.47 ± 17.26 68.59 ± 14.40 65.65 ± 25.89 44.67 ± 41.48 0.00 ± 0.00 

Lying down 56.09 ± 11.60 69.99 ± 12.01 78.19 ± 7.99 76.51 ± 13.29 75.48 ± 15.92 83.62 ± 16.49 79.50 ± 18.62 

Rowing - Rowing hard - Rowing 30spm 53.36 ± 12.69 63.38 ± 14.88 70.82 ± 15.50 73.97 ± 16.07 70.66 ± 27.95 64.39 ± 31.64 4.55 ± 15.08 

Rowing - Rowing light - Rowing 30spm 60.11 ± 14.95 65.62 ± 19.65 79.74 ± 11.45 78.76 ± 13.96 81.34 ± 14.59 62.75 ± 31.61 13.64 ± 32.33 

Rowing - Rowing moderate - Rowing 

30spm 

51.09 ± 14.29 56.35 ± 15.74 64.68 ± 15.67 66.14 ± 20.51 57.67 ± 26.06 44.64 ± 35.75 0.00 ± 0.00 

Running - Treadmill 4mph - Treadmill 0  86.66 ± 5.69 89.73 ± 6.31 88.02 ± 9.16 92.78 ± 10.01 85.85 ± 15.57 68.85 ± 27.64 7.14 ± 18.16 

Running - Treadmill 5mph - Treadmill 0  85.05 ± 6.55 87.34 ± 6.03 86.69 ± 9.12 88.75 ± 10.25 88.39 ± 10.71 66.67 ± 40.37 0.00 ± 0.00 

Running - Treadmill 6mph - Treadmill 0  81.02 ± 11.40 83.14 ± 12.88 84.33 ± 12.39 85.74 ± 29.60 75.34 ± 36.46 74.07 ± 36.43 0.00 ± 0.00 

Sitting 16.61 ± 9.43 28.95 ± 9.94 35.94 ± 12.81 24.26 ± 17.77 18.13 ± 22.43 7.69 ± 18.78 0.00 ± 0.00 

Sitting - Fidget feet legs 85.14 ± 12.10 81.55 ± 13.41 83.54 ± 12.62 80.38 ± 15.29 70.24 ± 18.97 27.78 ± 24.96 0.00 ± 0.00 

Sitting - Fidget hands arms 73.30 ± 13.66 76.60 ± 12.35 71.50 ± 20.82 69.48 ± 19.28 61.43 ± 25.38 31.25 ± 45.81 0.00 ± 0.00 

Stairs - Ascend stairs 66.48 ± 6.68 70.60 ± 9.76 80.80 ± 7.18 84.46 ± 12.18 76.54 ± 19.74 80.00 ± 21.08 0.00 ± 0.00 

Stairs - Descend stairs 57.20 ± 9.59 67.71 ± 8.39 74.46 ± 13.39 81.77 ± 10.58 58.33 ± 27.32 51.11 ± 35.34 0.00 ± 0.00 

Standing 17.34 ± 7.93 24.47 ± 8.13 30.31 ± 10.62 21.69 ± 13.80 18.22 ± 15.42 4.17 ± 14.43 0.00 ± 0.00 

Walking - Treadmill 2mph - Treadmill 0  80.57 ± 7.02 83.05 ± 7.43 86.03 ± 7.53 85.26 ± 12.22 90.48 ± 9.09 80.98 ± 25.08 4.55 ± 15.08 

Walking - Treadmill 3mph - Treadmill 0  56.91 ± 9.80 65.24 ± 9.04 66.34 ± 9.43 75.22 ± 14.23 79.57 ± 20.81 68.82 ± 32.95 16.67 ± 30.86 

Walking - Treadmill 3mph - Treadmill 3  

- light 

45.08 ± 11.57 55.63 ± 11.98 64.65 ± 11.78 69.63 ± 12.19 73.47 ± 23.09 61.88 ± 23.17 3.33 ± 12.91 

Walking - Treadmill 3mph - Treadmill 6  

- moderate 

45.88 ± 10.49 51.71 ± 11.66 63.51 ± 13.31 65.82 ± 15.00 72.86 ± 16.53 50.20 ± 32.19 3.85 ± 13.87 

Walking - Treadmill 3mph - Treadmill 9  

- hard 

61.01 ± 12.73 67.26 ± 11.23 73.09 ± 9.73 74.04 ± 15.34 77.38 ± 24.11 54.02 ± 27.82 3.85 ± 13.87 

kneeling 17.86 ± 5.12 27.55 ± 8.26 30.51 ± 19.63 24.91 ± 18.24 27.78 ± 32.85 5.00 ± 15.81 0.00 ± 0.00 

unknown 61.60 ± 11.79 65.53 ± 11.37 66.87 ± 11.96 66.16 ± 12.26 65.08 ± 10.59 61.56 ± 17.00 50.74 ± 25.93 

Carrying groceries 62.73 ± 13.83 71.13 ± 15.05 71.47 ± 16.97 80.31 ± 13.31 70.66 ± 20.54 69.33 ± 34.04 11.54 ± 21.93 

Doing dishes 35.16 ± 9.70 42.74 ± 14.08 49.39 ± 17.85 53.19 ± 13.78 54.05 ± 25.81 50.00 ± 35.92 20.83 ± 33.43 

Gardening 39.03 ± 14.88 47.83 ± 15.37 49.61 ± 25.36 54.00 ± 27.24 50.22 ± 27.20 48.50 ± 35.20 7.14 ± 18.90 

Ironing 38.05 ± 11.31 47.39 ± 10.98 51.36 ± 17.58 50.73 ± 14.10 55.11 ± 21.71 53.96 ± 38.80 10.00 ± 28.03 

Making the bed 26.72 ± 7.47 33.14 ± 11.86 38.80 ± 11.30 43.20 ± 15.81 48.45 ± 18.14 55.78 ± 33.82 24.24 ± 36.03 

Mopping 35.06 ± 12.82 38.49 ± 14.67 48.30 ± 18.09 46.86 ± 19.69 49.11 ± 28.15 35.14 ± 23.99 18.18 ± 33.71 

Playing videogames 47.47 ± 18.31 57.92 ± 19.37 57.26 ± 18.84 57.35 ± 21.35 45.67 ± 26.95 32.56 ± 27.17 6.94 ± 16.60 

Scrubbing a surface 38.43 ± 12.70 42.81 ± 13.73 44.95 ± 11.72 49.13 ± 16.32 57.15 ± 26.85 44.03 ± 14.80 7.14 ± 18.90 

Stacking groceries 26.56 ± 12.49 35.90 ± 15.09 44.07 ± 18.35 48.73 ± 22.44 52.45 ± 19.09 42.42 ± 33.63 0.00 ± 0.00 

Sweeping 30.98 ± 15.94 38.98 ± 17.74 41.68 ± 15.35 49.56 ± 19.89 49.94 ± 23.95 20.00 ± 20.37 0.00 ± 0.00 

Typing 68.82 ± 14.65 75.33 ± 13.09 73.71 ± 13.78 73.99 ± 15.70 69.98 ± 26.60 47.55 ± 26.76 3.85 ± 13.87 

Vacuuming 33.44 ± 11.06 37.27 ± 8.86 42.25 ± 9.14 48.95 ± 14.58 65.38 ± 20.83 29.10 ± 29.12 11.11 ± 33.33 

Walking around block 55.96 ± 12.37 62.37 ± 11.79 70.14 ± 11.88 76.43 ± 12.81 71.80 ± 21.21 65.67 ± 28.20 3.03 ± 10.05 

Washing windows 36.61 ± 13.75 41.55 ± 13.88 44.79 ± 19.20 41.00 ± 18.70 52.58 ± 28.50 39.36 ± 30.29 0.00 ± 0.00 

Watching TV 21.55 ± 6.60 25.75 ± 7.70 35.39 ± 13.21 28.23 ± 16.43 19.81 ± 12.63 15.31 ± 21.15 0.00 ± 0.00 

Weeding 28.75 ± 13.56 38.77 ± 8.37 41.19 ± 13.53 41.31 ± 23.56 41.45 ± 19.89 50.37 ± 29.22 11.11 ± 19.25 

Wiping/Dusting 24.66 ± 10.61 31.91 ± 14.03 36.40 ± 17.16 38.81 ± 21.55 41.68 ± 20.73 39.17 ± 30.27 0.00 ± 0.00 

Writing 66.93 ± 12.36 73.08 ± 12.32 73.36 ± 12.55 69.12 ± 19.71 65.22 ± 25.63 43.43 ± 34.61 0.00 ± 0.00 

taking out trash 18.72 ± 5.06 23.78 ± 7.85 30.53 ± 8.48 36.57 ± 16.29 46.80 ± 22.96 44.23 ± 34.33 0.00 ± 0.00 

Table A5-7: True positive rate when training classifiers using the FFTCorr feature and subject 

dependent evaluation 
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 False Positive Rate 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 0.92 ± 0.15 0.80 ± 0.18 0.60 ± 0.09 0.62 ± 0.30 0.88 ± 0.34 0.91 ± 0.47 3.82 ± 1.62 

Bench weight lifting - light 0.85 ± 0.34 0.74 ± 0.35 0.71 ± 0.27 0.73 ± 0.54 1.06 ± 0.57 1.13 ± 0.77 3.61 ± 2.41 

Bench weight lifting - moderate 0.96 ± 0.26 0.81 ± 0.31 0.67 ± 0.28 0.86 ± 0.42 1.06 ± 0.63 1.56 ± 0.78 3.68 ± 2.11 

Bicep curls - hard 0.76 ± 0.27 0.57 ± 0.26 0.36 ± 0.13 0.42 ± 0.29 0.31 ± 0.19 1.00 ± 0.73 3.10 ± 1.63 

Bicep curls - light 0.72 ± 0.31 0.55 ± 0.31 0.47 ± 0.30 0.51 ± 0.27 0.60 ± 0.37 0.93 ± 1.15 3.38 ± 1.62 

Bicep curls - moderate 0.80 ± 0.27 0.66 ± 0.29 0.66 ± 0.30 0.54 ± 0.35 0.58 ± 0.26 0.81 ± 0.37 2.24 ± 1.15 

Calisthenics - Crunches 0.29 ± 0.16 0.17 ± 0.08 0.20 ± 0.08 0.25 ± 0.16 0.23 ± 0.32 0.79 ± 0.76 1.79 ± 0.72 

Calisthenics - Sit ups 0.19 ± 0.11 0.16 ± 0.05 0.10 ± 0.11 0.15 ± 0.14 0.28 ± 0.37 0.38 ± 0.39 3.33 ± 1.91 

Cycling - Cycle hard - Cycle 80rpm 0.37 ± 0.12 0.37 ± 0.14 0.34 ± 0.15 0.37 ± 0.27 0.60 ± 0.65 1.34 ± 0.73 3.91 ± 1.67 

Cycling - Cycle light - Cycle 100rpm 0.11 ± 0.05 0.11 ± 0.07 0.12 ± 0.08 0.13 ± 0.12 0.16 ± 0.24 0.28 ± 0.38 3.33 ± 1.66 

Cycling - Cycle light - Cycle 60rpm 0.26 ± 0.14 0.25 ± 0.13 0.32 ± 0.19 0.41 ± 0.30 0.57 ± 0.50 0.91 ± 0.86 3.30 ± 1.51 

Cycling - Cycle light - Cycle 80rpm 0.34 ± 0.17 0.33 ± 0.14 0.34 ± 0.20 0.42 ± 0.26 0.45 ± 0.45 0.76 ± 0.85 2.56 ± 1.44 

Cycling - Cycle moderate - Cycle 80rpm 0.58 ± 0.14 0.46 ± 0.16 0.38 ± 0.16 0.55 ± 0.27 0.65 ± 0.51 1.00 ± 0.61 1.77 ± 0.40 

Lying down 2.16 ± 0.76 1.75 ± 0.78 1.32 ± 0.56 1.31 ± 0.64 1.57 ± 0.92 1.97 ± 1.86 2.04 ± 1.69 

Rowing - Rowing hard - Rowing 30spm 0.78 ± 0.22 0.66 ± 0.24 0.46 ± 0.13 0.51 ± 0.26 0.68 ± 0.42 0.61 ± 0.60 2.90 ± 1.75 

Rowing - Rowing light - Rowing 30spm 0.69 ± 0.21 0.51 ± 0.27 0.42 ± 0.19 0.44 ± 0.23 0.62 ± 0.47 0.98 ± 0.58 2.95 ± 2.10 

Rowing - Rowing moderate - Rowing 30spm 0.84 ± 0.16 0.69 ± 0.20 0.57 ± 0.21 0.65 ± 0.28 0.57 ± 0.29 1.17 ± 0.62 2.96 ± 1.64 

Running - Treadmill 4mph - Treadmill 0  0.29 ± 0.17 0.23 ± 0.13 0.25 ± 0.16 0.21 ± 0.14 0.30 ± 0.23 0.82 ± 0.68 3.09 ± 2.25 

Running - Treadmill 5mph - Treadmill 0  0.29 ± 0.14 0.23 ± 0.13 0.22 ± 0.10 0.27 ± 0.19 0.40 ± 0.30 0.78 ± 0.71 2.97 ± 1.52 

Running - Treadmill 6mph - Treadmill 0  0.21 ± 0.13 0.22 ± 0.12 0.20 ± 0.12 0.18 ± 0.14 0.27 ± 0.23 0.75 ± 0.56 1.30 ± 0.13 

Sitting 1.22 ± 0.22 0.96 ± 0.30 1.03 ± 0.37 1.07 ± 0.44 1.19 ± 0.72 1.35 ± 0.54 3.76 ± 2.19 

Sitting - Fidget feet legs 0.22 ± 0.19 0.24 ± 0.23 0.25 ± 0.20 0.21 ± 0.17 0.39 ± 0.39 1.38 ± 1.14 2.18 ± 1.38 

Sitting - Fidget hands arms 0.37 ± 0.23 0.33 ± 0.19 0.39 ± 0.32 0.41 ± 0.28 0.46 ± 0.38 1.17 ± 0.65 1.95 ± 1.02 

Stairs - Ascend stairs 0.66 ± 0.16 0.51 ± 0.18 0.29 ± 0.11 0.28 ± 0.20 0.31 ± 0.26 0.53 ± 0.54 0.00 ± 0.00 

Stairs - Descend stairs 0.74 ± 0.23 0.56 ± 0.26 0.45 ± 0.28 0.34 ± 0.20 0.55 ± 0.34 0.63 ± 0.65 0.00 ± 0.00 

Standing 1.13 ± 0.17 0.96 ± 0.23 0.82 ± 0.25 1.01 ± 0.48 1.02 ± 0.37 1.53 ± 1.13 1.66 ± 0.51 

Walking - Treadmill 2mph - Treadmill 0  0.45 ± 0.18 0.38 ± 0.12 0.38 ± 0.19 0.35 ± 0.30 0.52 ± 0.44 0.73 ± 0.54 2.04 ± 0.87 

Walking - Treadmill 3mph - Treadmill 0  1.01 ± 0.23 0.78 ± 0.25 0.68 ± 0.21 0.50 ± 0.24 0.57 ± 0.45 1.02 ± 0.78 3.74 ± 2.77 

Walking - Treadmill 3mph - Treadmill 3  - 

light 

1.23 ± 0.34 1.08 ± 0.30 0.85 ± 0.31 0.78 ± 0.29 0.60 ± 0.46 1.28 ± 0.69 3.84 ± 3.40 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

1.18 ± 0.33 1.02 ± 0.32 0.80 ± 0.27 0.74 ± 0.21 0.77 ± 0.54 1.65 ± 0.89 4.47 ± 2.67 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 

0.82 ± 0.29 0.68 ± 0.29 0.56 ± 0.30 0.51 ± 0.31 0.46 ± 0.38 0.92 ± 0.87 2.68 ± 1.38 

kneeling 0.95 ± 0.18 0.87 ± 0.22 0.69 ± 0.24 0.76 ± 0.44 0.97 ± 0.77 1.05 ± 0.52 1.86 ± 0.65 

unknown 16.64 ± 4.12 14.86 ± 4.51 13.68 ± 3.73 12.67 ± 4.58 11.49 ± 4.80 8.77 ± 3.32 10.08 ± 6.54 

Carrying groceries 0.71 ± 0.29 0.54 ± 0.24 0.50 ± 0.28 0.51 ± 0.45 0.50 ± 0.37 0.58 ± 0.83 2.97 ± 1.42 

Doing dishes 1.46 ± 0.50 1.27 ± 0.50 1.24 ± 0.79 1.14 ± 0.51 0.94 ± 0.69 1.58 ± 1.23 3.43 ± 2.39 

Gardening 1.29 ± 0.57 1.10 ± 0.39 0.99 ± 0.53 0.96 ± 0.64 0.78 ± 0.66 1.24 ± 0.75 2.80 ± 2.18 

Ironing 1.48 ± 0.47 1.18 ± 0.31 1.12 ± 0.39 1.00 ± 0.46 1.01 ± 0.53 1.25 ± 0.78 4.19 ± 3.21 

Making the bed 1.63 ± 0.47 1.41 ± 0.45 1.19 ± 0.31 1.26 ± 0.52 1.26 ± 0.90 1.77 ± 1.44 2.49 ± 1.42 

Mopping 1.22 ± 0.36 1.19 ± 0.44 1.06 ± 0.41 1.20 ± 0.62 1.09 ± 0.75 1.28 ± 0.55 4.04 ± 2.74 

Playing videogames 1.25 ± 0.51 1.01 ± 0.46 0.96 ± 0.43 1.13 ± 0.70 1.37 ± 0.91 1.57 ± 1.21 3.12 ± 1.54 

Scrubbing a surface 1.10 ± 0.37 0.98 ± 0.41 1.07 ± 0.51 1.06 ± 0.55 0.78 ± 0.53 1.02 ± 0.85 2.40 ± 1.24 

Stacking groceries 1.29 ± 0.45 1.20 ± 0.54 0.87 ± 0.45 1.07 ± 0.76 0.83 ± 0.54 0.86 ± 0.74 0.00 ± 0.00 

Sweeping 1.30 ± 0.54 1.22 ± 0.50 1.13 ± 0.65 1.07 ± 0.68 1.13 ± 0.70 1.72 ± 0.93 2.58 ± 1.64 

Typing 0.61 ± 0.32 0.56 ± 0.32 0.53 ± 0.27 0.86 ± 0.54 0.85 ± 0.51 1.45 ± 0.92 3.44 ± 1.48 

Vacuuming 1.29 ± 0.56 1.22 ± 0.52 1.09 ± 0.44 1.09 ± 0.50 0.90 ± 0.54 1.92 ± 1.17 3.53 ± 1.53 

Walking around block 0.88 ± 0.40 0.72 ± 0.32 0.63 ± 0.39 0.58 ± 0.53 0.74 ± 0.50 0.77 ± 0.75 2.40 ± 1.53 

Washing windows 1.19 ± 0.42 1.18 ± 0.40 1.03 ± 0.46 0.99 ± 0.39 0.89 ± 0.68 1.01 ± 0.95 2.36 ± 1.58 

Watching TV 1.78 ± 0.56 1.49 ± 0.41 1.40 ± 0.57 1.44 ± 0.64 1.82 ± 0.73 2.10 ± 1.18 6.17 ± 3.33 

Weeding 1.03 ± 0.57 1.00 ± 0.51 1.15 ± 0.67 1.13 ± 0.78 1.37 ± 0.74 1.53 ± 0.92 3.36 ± 1.33 

Wiping/Dusting 1.35 ± 0.46 1.22 ± 0.52 1.14 ± 0.44 0.99 ± 0.52 1.07 ± 0.62 1.71 ± 1.05 3.62 ± 1.84 

Writing 0.71 ± 0.40 0.60 ± 0.37 0.57 ± 0.36 0.54 ± 0.33 0.81 ± 0.62 1.65 ± 1.44 3.78 ± 1.53 

taking out trash 1.30 ± 0.52 1.18 ± 0.45 1.14 ± 0.45 0.96 ± 0.38 1.38 ± 0.73 1.32 ± 1.06 3.94 ± 2.46 

Table A5-8: False positive rate when training the C4.5 classifier using the FFTCorr feature and 

subject dependent evaluation 
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 F-Measure 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 22.04 ± 12.49 32.13 ± 13.54 43.83 ± 10.66 44.96 ± 13.51 18.52 ± 16.73 0.00 ± 0.00 0.91 ± 0.47 

Bench weight lifting - light 45.13 ± 13.54 56.92 ± 16.46 58.83 ± 11.25 56.53 ± 24.45 45.99 ± 15.42 46.55 ± 28.62 1.13 ± 0.77 

Bench weight lifting - moderate 32.25 ± 9.22 35.87 ± 15.46 45.86 ± 11.33 34.88 ± 21.95 28.30 ± 15.78 14.13 ± 19.98 1.56 ± 0.78 

Bicep curls - hard 51.42 ± 10.61 66.17 ± 12.31 74.65 ± 10.51 74.81 ± 10.87 70.13 ± 10.34 44.46 ± 41.46 1.00 ± 0.73 

Bicep curls - light 61.41 ± 16.88 70.60 ± 15.96 76.12 ± 11.80 75.11 ± 14.58 76.64 ± 16.79 57.55 ± 32.70 0.93 ± 1.15 

Bicep curls - moderate 52.44 ± 13.85 61.36 ± 12.00 65.65 ± 9.75 65.11 ± 22.11 60.29 ± 25.38 38.93 ± 37.27 0.81 ± 0.37 

Calisthenics - Crunches 80.00 ± 11.54 85.57 ± 6.24 87.76 ± 6.68 82.44 ± 8.87 77.77 ± 20.16 36.67 ± 44.57 0.79 ± 0.76 

Calisthenics - Sit ups 88.01 ± 5.11 90.91 ± 2.71 92.45 ± 6.19 91.25 ± 6.46 84.90 ± 14.76 67.35 ± 36.39 0.38 ± 0.39 

Cycling - Cycle hard - Cycle 80rpm 67.39 ± 19.51 70.32 ± 19.57 73.08 ± 22.06 69.27 ± 24.99 63.89 ± 28.33 32.65 ± 27.82 1.34 ± 0.73 

Cycling - Cycle light - Cycle 100rpm 90.86 ± 9.14 93.17 ± 7.50 92.96 ± 5.87 90.70 ± 15.44 84.08 ± 24.58 74.76 ± 29.35 0.28 ± 0.38 

Cycling - Cycle light - Cycle 60rpm 85.01 ± 9.09 85.65 ± 9.71 84.88 ± 8.39 80.75 ± 12.43 76.56 ± 17.08 60.40 ± 27.92 0.91 ± 0.86 

Cycling - Cycle light - Cycle 80rpm 80.61 ± 10.38 83.20 ± 8.67 83.45 ± 10.05 79.10 ± 12.56 75.24 ± 16.93 57.88 ± 24.34 0.76 ± 0.85 

Cycling - Cycle moderate - Cycle 80rpm 66.68 ± 10.48 71.41 ± 9.44 73.37 ± 14.09 67.94 ± 12.28 64.14 ± 23.38 41.37 ± 36.79 1.00 ± 0.61 

Lying down 55.62 ± 11.02 68.08 ± 11.02 76.25 ± 7.15 75.14 ± 12.32 73.06 ± 13.22 77.54 ± 15.96 1.97 ± 1.86 

Rowing - Rowing hard - Rowing 30spm 53.00 ± 12.96 61.93 ± 14.61 70.04 ± 13.46 71.10 ± 15.70 65.81 ± 27.46 62.45 ± 28.44 0.61 ± 0.60 

Rowing - Rowing light - Rowing 30spm 58.74 ± 15.50 65.79 ± 20.39 78.20 ± 10.92 77.53 ± 12.33 76.31 ± 15.39 57.17 ± 27.00 0.98 ± 0.58 

Rowing - Rowing moderate - Rowing 30spm 50.84 ± 13.71 56.95 ± 15.18 65.06 ± 14.12 64.11 ± 17.47 59.26 ± 22.65 39.78 ± 29.54 1.17 ± 0.62 

Running - Treadmill 4mph - Treadmill 0  85.95 ± 6.40 88.93 ± 5.69 87.62 ± 7.78 90.72 ± 7.74 85.38 ± 12.69 64.12 ± 26.74 0.82 ± 0.68 

Running - Treadmill 5mph - Treadmill 0  84.53 ± 6.48 87.13 ± 5.88 86.96 ± 6.36 87.37 ± 7.53 84.42 ± 9.80 60.77 ± 36.15 0.78 ± 0.71 

Running - Treadmill 6mph - Treadmill 0  80.38 ± 10.81 81.38 ± 12.67 83.87 ± 11.91 83.49 ± 27.50 73.78 ± 34.78 66.09 ± 32.41 0.75 ± 0.56 

Sitting 15.83 ± 9.20 28.64 ± 10.01 33.67 ± 12.73 23.43 ± 17.64 17.64 ± 21.45 5.64 ± 13.84 1.35 ± 0.54 

Sitting - Fidget feet legs 84.11 ± 12.73 81.67 ± 14.28 82.25 ± 12.04 81.19 ± 14.55 71.62 ± 20.41 22.57 ± 21.32 1.38 ± 1.14 

Sitting - Fidget hands arms 72.81 ± 14.48 75.70 ± 12.48 71.04 ± 19.63 68.77 ± 17.52 61.58 ± 24.05 27.50 ± 41.32 1.17 ± 0.65 

Stairs - Ascend stairs 64.81 ± 6.90 70.41 ± 8.81 81.26 ± 7.35 83.12 ± 10.43 76.65 ± 13.58 76.32 ± 18.61 0.53 ± 0.54 

Stairs - Descend stairs 56.57 ± 9.74 67.07 ± 9.27 73.25 ± 13.71 80.24 ± 9.40 56.84 ± 23.33 52.86 ± 35.75 0.63 ± 0.65 

Standing 16.49 ± 7.05 24.37 ± 7.88 31.13 ± 10.99 20.85 ± 12.95 17.55 ± 13.47 2.38 ± 8.25 1.53 ± 1.13 

Walking - Treadmill 2mph - Treadmill 0  79.88 ± 6.34 82.65 ± 5.70 84.32 ± 7.43 84.27 ± 11.88 85.25 ± 9.03 74.72 ± 21.79 0.73 ± 0.54 

Walking - Treadmill 3mph - Treadmill 0  55.36 ± 9.27 64.34 ± 8.77 66.75 ± 8.27 75.09 ± 12.47 76.93 ± 19.64 63.44 ± 28.95 1.02 ± 0.78 

Walking - Treadmill 3mph - Treadmill 3  - 

light 

44.14 ± 10.83 53.56 ± 10.82 62.98 ± 12.06 66.97 ± 11.06 72.84 ± 21.00 57.13 ± 20.27 1.28 ± 0.69 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

45.62 ± 10.73 51.81 ± 11.61 62.89 ± 11.94 65.18 ± 12.53 70.65 ± 16.67 45.30 ± 28.06 1.65 ± 0.89 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 

61.17 ± 12.71 67.63 ± 10.91 73.60 ± 9.76 74.45 ± 14.31 77.07 ± 21.50 55.31 ± 28.62 0.92 ± 0.87 

kneeling 18.26 ± 4.87 27.91 ± 8.79 32.07 ± 19.31 26.04 ± 16.96 25.87 ± 28.24 4.00 ± 12.65 1.05 ± 0.52 

unknown 61.11 ± 11.71 65.03 ± 11.42 66.55 ± 11.85 66.60 ± 12.41 66.27 ± 10.91 64.00 ± 15.57 8.77 ± 3.32 

Carrying groceries 63.18 ± 13.94 71.46 ± 14.42 72.27 ± 14.45 79.04 ± 11.71 71.77 ± 18.16 70.29 ± 31.85 0.58 ± 0.83 

Doing dishes 34.77 ± 9.56 42.11 ± 13.33 48.35 ± 17.76 52.31 ± 12.13 55.08 ± 23.04 46.09 ± 31.83 1.58 ± 1.23 

Gardening 38.62 ± 14.49 47.07 ± 13.92 49.55 ± 24.36 53.75 ± 25.79 52.54 ± 24.56 43.59 ± 31.17 1.24 ± 0.75 

Ironing 37.37 ± 10.69 47.34 ± 10.81 50.85 ± 16.92 51.99 ± 13.23 55.33 ± 21.05 49.64 ± 35.09 1.25 ± 0.78 

Making the bed 26.81 ± 7.35 33.83 ± 11.86 40.08 ± 10.42 43.23 ± 14.10 48.34 ± 15.35 50.46 ± 31.31 1.77 ± 1.44 

Mopping 35.57 ± 12.44 38.88 ± 14.59 47.28 ± 14.88 45.67 ± 18.91 47.52 ± 26.08 35.39 ± 23.64 1.28 ± 0.55 

Playing videogames 47.93 ± 17.53 58.15 ± 18.49 58.07 ± 17.35 56.91 ± 20.26 45.32 ± 25.72 33.08 ± 24.86 1.57 ± 1.21 

Scrubbing a surface 39.39 ± 13.06 44.25 ± 14.04 45.38 ± 11.74 48.88 ± 16.21 57.33 ± 22.66 46.95 ± 18.95 1.02 ± 0.85 

Stacking groceries 27.12 ± 12.93 35.96 ± 15.66 45.89 ± 18.37 48.20 ± 23.36 52.74 ± 17.19 42.77 ± 31.12 0.86 ± 0.74 

Sweeping 31.77 ± 15.75 38.72 ± 16.64 42.82 ± 15.98 50.25 ± 19.56 49.52 ± 24.15 20.94 ± 19.59 1.72 ± 0.93 

Typing 70.18 ± 13.93 75.28 ± 11.97 74.71 ± 10.99 70.23 ± 14.75 66.44 ± 23.84 44.69 ± 22.03 1.45 ± 0.92 

Vacuuming 34.49 ± 11.31 38.51 ± 9.56 43.69 ± 9.55 48.59 ± 12.71 63.06 ± 19.20 28.05 ± 26.21 1.92 ± 1.17 

Walking around block 57.24 ± 11.86 63.95 ± 11.35 70.90 ± 11.74 76.25 ± 13.14 69.79 ± 16.97 66.31 ± 26.57 0.77 ± 0.75 

Washing windows 38.17 ± 13.45 42.20 ± 12.54 46.39 ± 18.15 43.46 ± 18.80 52.63 ± 26.29 42.66 ± 29.87 1.01 ± 0.95 

Watching TV 22.06 ± 6.22 27.34 ± 7.64 36.71 ± 13.04 29.82 ± 15.31 20.42 ± 12.77 13.82 ± 18.18 2.10 ± 1.18 

Weeding 31.11 ± 14.15 42.04 ± 7.89 42.92 ± 13.66 41.57 ± 20.50 40.34 ± 18.72 44.67 ± 26.59 1.53 ± 0.92 

Wiping/Dusting 26.43 ± 11.40 33.69 ± 13.60 38.21 ± 16.96 41.40 ± 20.44 44.33 ± 21.22 36.38 ± 28.72 1.71 ± 1.05 

Writing 68.15 ± 11.62 73.65 ± 11.87 74.04 ± 12.55 70.98 ± 17.07 65.05 ± 22.36 41.54 ± 32.10 1.65 ± 1.44 

taking out trash 20.58 ± 5.14 26.14 ± 9.06 32.68 ± 8.28 39.27 ± 17.10 43.33 ± 19.05 40.78 ± 26.82 1.32 ± 1.06 

Table A5-9: F-Measure when training the C4.5 classifier using the FFTCorr feature and subject 

dependent evaluation 
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 True Positive Rate 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 4.76 ± 8.96 2.27 ± 3.39 3.06 ± 5.22 3.33 ± 7.67 9.09 ± 30.15 8.33 ± 20.41 0.00 ± 0.00 

Bench weight lifting - light 13.33 ± 13.19 15.47 ± 16.26 14.82 ± 21.56 19.38 ± 26.61 13.24 ± 16.93 23.72 ± 32.25 25.00 ± 46.29 

Bench weight lifting - moderate 8.46 ± 9.39 7.31 ± 9.24 7.35 ± 11.40 14.32 ± 17.90 8.35 ± 18.05 18.75 ± 32.20 30.00 ± 44.72 

Bicep curls - hard 11.09 ± 14.57 15.21 ± 19.95 8.92 ± 13.49 36.17 ± 28.00 40.67 ± 39.34 53.57 ± 50.89 33.33 ± 51.64 

Bicep curls - light 17.94 ± 19.31 19.76 ± 18.93 24.05 ± 19.87 32.17 ± 22.70 56.25 ± 37.10 55.56 ± 47.14 60.00 ± 54.77 

Bicep curls - moderate 9.91 ± 13.51 15.47 ± 20.52 23.42 ± 24.31 17.42 ± 19.61 53.65 ± 42.83 83.33 ± 27.89 60.00 ± 54.77 

Calisthenics - Crunches 10.02 ± 21.58 9.80 ± 22.69 11.97 ± 24.76 25.41 ± 39.89 24.53 ± 38.18 8.33 ± 18.00 0.00 ± 0.00 

Calisthenics - Sit ups 38.08 ± 40.32 38.99 ± 44.24 56.88 ± 42.13 55.05 ± 42.00 67.90 ± 36.95 72.22 ± 37.27 60.00 ± 54.77 

Cycling - Cycle hard - Cycle 80rpm 11.97 ± 17.72 9.70 ± 12.03 14.99 ± 23.31 9.88 ± 17.62 16.87 ± 22.44 19.64 ± 30.42 12.50 ± 25.00 

Cycling - Cycle light - Cycle 100rpm 54.94 ± 32.78 62.65 ± 36.84 62.95 ± 36.29 76.13 ± 33.34 74.00 ± 39.06 90.62 ± 27.20 100.00 ± 0.00 

Cycling - Cycle light - Cycle 60rpm 41.28 ± 23.31 54.69 ± 33.90 55.76 ± 34.56 56.34 ± 34.97 68.51 ± 34.54 76.04 ± 33.18 90.62 ± 27.20 

Cycling - Cycle light - Cycle 80rpm 28.59 ± 25.29 35.86 ± 26.29 39.78 ± 37.10 33.50 ± 27.93 70.34 ± 32.29 76.28 ± 31.52 50.00 ± 47.14 

Cycling - Cycle moderate - Cycle 

80rpm 

11.46 ± 11.02 9.65 ± 9.92 23.52 ± 24.73 25.38 ± 28.38 19.34 ± 29.14 40.52 ± 34.54 40.91 ± 49.08 

Lying down 50.32 ± 12.94 66.09 ± 13.63 71.70 ± 22.54 74.29 ± 18.31 74.77 ± 21.69 78.13 ± 23.39 85.83 ± 18.95 

Rowing - Rowing hard - Rowing 

30spm 

14.20 ± 14.71 15.48 ± 18.90 21.60 ± 28.91 7.45 ± 11.09 15.75 ± 29.33 47.92 ± 39.28 50.00 ± 57.74 

Rowing - Rowing light - Rowing 

30spm 

19.74 ± 15.36 19.88 ± 19.30 24.69 ± 28.96 44.71 ± 28.11 35.13 ± 37.71 55.60 ± 41.32 44.44 ± 52.70 

Rowing - Rowing moderate - Rowing 

30spm 

17.82 ± 14.75 16.54 ± 16.79 18.44 ± 21.65 20.34 ± 24.00 20.00 ± 26.66 22.50 ± 38.10 50.00 ± 53.45 

Running - Treadmill 4mph - 

Treadmill 0  

23.61 ± 22.22 25.14 ± 28.59 26.24 ± 25.02 34.38 ± 36.23 47.05 ± 41.91 39.26 ± 46.97 59.38 ± 49.05 

Running - Treadmill 5mph - 

Treadmill 0  

35.23 ± 27.58 41.13 ± 31.06 36.32 ± 32.86 37.71 ± 31.66 40.84 ± 42.17 57.58 ± 42.40 80.00 ± 42.16 

Running - Treadmill 6mph - 

Treadmill 0  

27.17 ± 24.05 31.17 ± 30.90 48.54 ± 34.51 57.28 ± 41.23 45.04 ± 46.28 50.91 ± 45.44 80.00 ± 44.72 

Sitting 5.63 ± 5.02 3.71 ± 3.96 5.39 ± 6.43 6.36 ± 9.06 12.78 ± 16.89 14.91 ± 22.84 50.00 ± 52.70 

Sitting - Fidget feet legs 30.01 ± 26.41 34.74 ± 31.53 32.64 ± 30.28 38.23 ± 34.32 51.18 ± 38.06 70.51 ± 37.98 66.67 ± 50.00 

Sitting - Fidget hands arms 12.08 ± 15.13 14.95 ± 17.17 17.11 ± 17.52 24.32 ± 32.51 10.00 ± 18.47 52.94 ± 37.38 71.43 ± 48.80 

Stairs - Ascend stairs 38.06 ± 26.24 40.30 ± 27.87 51.20 ± 33.87 50.11 ± 38.40 59.99 ± 36.03 80.95 ± 28.39 0.00 ± 0.00 

Stairs - Descend stairs 27.04 ± 19.53 31.46 ± 24.64 43.87 ± 31.20 35.37 ± 34.17 47.69 ± 43.33 52.38 ± 38.60 0.00 ± 0.00 

Standing 5.99 ± 4.49 7.70 ± 6.69 10.99 ± 10.76 17.13 ± 14.83 17.67 ± 19.01 20.00 ± 31.62 20.00 ± 44.72 

Walking - Treadmill 2mph - 

Treadmill 0  

35.99 ± 24.64 40.26 ± 25.69 41.44 ± 31.78 47.56 ± 33.72 47.94 ± 33.92 58.53 ± 40.96 92.31 ± 18.78 

Walking - Treadmill 3mph - 

Treadmill 0  

14.50 ± 10.57 16.00 ± 15.32 17.37 ± 15.06 17.87 ± 16.41 25.30 ± 33.88 13.44 ± 21.35 33.33 ± 32.57 

Walking - Treadmill 3mph - 

Treadmill 3  - light 

9.62 ± 8.03 10.97 ± 7.31 14.76 ± 12.87 15.03 ± 16.90 22.58 ± 21.79 16.57 ± 21.33 35.00 ± 41.16 

Walking - Treadmill 3mph - 

Treadmill 6  - moderate 

9.20 ± 8.67 8.64 ± 9.16 11.09 ± 12.23 9.07 ± 14.42 13.64 ± 23.83 20.83 ± 31.98 33.33 ± 35.36 

Walking - Treadmill 3mph - 

Treadmill 9  - hard 

14.07 ± 15.59 12.54 ± 13.52 7.89 ± 10.05 15.51 ± 17.40 21.01 ± 25.65 19.89 ± 29.76 16.67 ± 32.57 

kneeling 7.31 ± 4.89 8.59 ± 8.77 15.76 ± 16.83 13.52 ± 16.60 17.50 ± 20.49 17.86 ± 24.86 36.36 ± 50.45 

unknown 53.22 ± 3.07 55.76 ± 3.25 58.70 ± 3.78 61.93 ± 3.28 64.78 ± 6.01 64.43 ± 9.70 64.22 ± 16.37 

Carrying groceries 22.19 ± 19.46 27.95 ± 23.54 28.58 ± 27.65 28.99 ± 31.32 31.49 ± 31.18 23.44 ± 25.11 57.14 ± 47.46 

Doing dishes 15.93 ± 9.71 20.22 ± 15.50 23.43 ± 17.88 28.29 ± 23.93 35.16 ± 27.79 41.93 ± 32.05 67.86 ± 37.25 

Gardening 10.22 ± 12.14 11.38 ± 13.47 14.90 ± 17.12 18.00 ± 22.72 28.80 ± 34.42 32.50 ± 42.51 22.73 ± 34.38 

Ironing 16.90 ± 10.93 22.42 ± 13.51 28.44 ± 18.43 27.78 ± 24.98 28.89 ± 25.60 30.75 ± 30.19 50.00 ± 39.22 

Making the bed 15.40 ± 10.44 18.30 ± 13.25 27.20 ± 21.74 33.72 ± 23.63 46.77 ± 29.91 60.94 ± 32.68 55.95 ± 39.01 

Mopping 14.57 ± 13.10 17.57 ± 15.61 18.76 ± 18.05 20.28 ± 19.94 21.65 ± 22.57 35.00 ± 25.74 50.00 ± 42.26 

Playing videogames 14.83 ± 10.22 15.89 ± 11.79 14.14 ± 11.79 15.12 ± 17.33 12.19 ± 12.88 23.43 ± 30.82 39.29 ± 40.09 

Scrubbing a surface 8.60 ± 8.40 10.29 ± 10.28 13.69 ± 15.93 15.09 ± 17.47 18.22 ± 23.98 25.83 ± 28.04 35.00 ± 41.16 

Stacking groceries 8.08 ± 7.98 11.30 ± 11.57 13.90 ± 14.41 17.90 ± 19.83 21.32 ± 20.75 35.56 ± 36.66 0.00 ± 0.00 

Sweeping 7.92 ± 7.46 10.70 ± 9.83 12.48 ± 13.13 17.86 ± 16.66 19.60 ± 18.20 29.90 ± 28.71 33.33 ± 44.38 

Typing 38.47 ± 20.02 41.90 ± 22.07 40.92 ± 24.32 41.22 ± 27.83 29.31 ± 28.33 29.44 ± 22.69 26.92 ± 38.81 

Vacuuming 12.39 ± 10.80 13.12 ± 12.19 13.20 ± 12.67 15.53 ± 15.25 21.91 ± 20.50 22.13 ± 27.78 29.17 ± 39.65 

Walking around block 16.55 ± 14.14 16.46 ± 15.31 15.47 ± 18.44 24.06 ± 26.03 23.45 ± 26.25 23.53 ± 32.73 65.00 ± 41.16 

Washing windows 12.59 ± 9.86 13.86 ± 11.85 22.02 ± 19.33 21.50 ± 17.89 22.70 ± 20.00 35.00 ± 33.83 46.43 ± 41.44 

Watching TV 7.89 ± 4.76 9.79 ± 6.79 13.67 ± 8.36 14.56 ± 9.20 10.61 ± 11.15 10.58 ± 12.80 32.29 ± 34.68 

Weeding 3.01 ± 3.38 2.74 ± 3.54 3.49 ± 5.61 3.97 ± 6.48 4.82 ± 7.77 8.33 ± 16.14 42.86 ± 44.99 

Wiping/Dusting 10.42 ± 7.56 11.54 ± 8.14 16.93 ± 14.74 20.27 ± 16.27 32.26 ± 26.37 43.75 ± 26.19 68.18 ± 46.22 

Writing 44.06 ± 27.30 49.17 ± 30.43 51.57 ± 33.21 48.19 ± 34.87 57.30 ± 35.38 52.13 ± 35.87 46.88 ± 38.60 

taking out trash 4.58 ± 4.11 5.69 ± 5.72 5.55 ± 6.45 8.18 ± 11.50 12.80 ± 16.79 18.44 ± 22.31 45.00 ± 43.78 

Table A5-10: True positive rate when training classifiers using the FFTCorr feature and subject 

independent evaluation 
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 False Positive Rate 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 0.38 ± 0.22 0.23 ± 0.14 0.25 ± 0.18 0.26 ± 0.17 0.60 ± 0.50 0.89 ± 0.35 1.97 ± 0.57 

Bench weight lifting - light 0.73 ± 0.29 0.70 ± 0.41 0.57 ± 0.42 0.64 ± 0.58 0.77 ± 0.62 0.80 ± 0.40 1.66 ± 1.11 

Bench weight lifting - moderate 0.54 ± 0.22 0.47 ± 0.25 0.54 ± 0.38 0.44 ± 0.29 0.67 ± 0.62 0.81 ± 0.49 2.43 ± 1.11 

Bicep curls - hard 0.54 ± 0.51 0.64 ± 0.63 0.53 ± 0.53 0.99 ± 0.84 0.85 ± 0.83 1.27 ± 0.77 2.41 ± 0.96 

Bicep curls - light 0.54 ± 0.55 0.52 ± 0.46 0.53 ± 0.43 1.54 ± 1.77 1.04 ± 1.18 0.77 ± 1.07 2.95 ± 1.76 

Bicep curls - moderate 0.46 ± 0.49 0.46 ± 0.54 0.99 ± 0.77 0.88 ± 0.55 1.94 ± 1.62 0.68 ± 0.65 2.96 ± 3.52 

Calisthenics - Crunches 0.25 ± 0.11 0.27 ± 0.32 0.23 ± 0.13 0.48 ± 0.90 0.37 ± 0.49 0.98 ± 0.73 1.86 ± 1.11 

Calisthenics - Sit ups 0.16 ± 0.08 0.13 ± 0.16 0.16 ± 0.21 0.16 ± 0.18 0.33 ± 0.74 0.34 ± 0.56 1.05 ± 1.01 

Cycling - Cycle hard - Cycle 80rpm 0.63 ± 0.52 0.72 ± 0.79 0.84 ± 0.73 0.67 ± 0.51 1.13 ± 0.94 1.27 ± 1.02 1.68 ± 0.26 

Cycling - Cycle light - Cycle 100rpm 0.48 ± 0.51 0.31 ± 0.40 0.52 ± 1.06 0.58 ± 1.37 0.40 ± 0.85 0.22 ± 0.46 0.46 ± 1.26 

Cycling - Cycle light - Cycle 60rpm 0.61 ± 0.56 0.52 ± 0.69 0.32 ± 0.20 0.30 ± 0.24 0.99 ± 2.16 0.80 ± 1.40 2.02 ± 3.03 

Cycling - Cycle light - Cycle 80rpm 0.89 ± 0.91 0.93 ± 1.00 0.56 ± 0.53 1.00 ± 1.21 1.46 ± 1.41 1.16 ± 1.03 2.68 ± 2.41 

Cycling - Cycle moderate - Cycle 80rpm 0.68 ± 0.33 0.63 ± 0.35 0.91 ± 0.72 1.39 ± 1.33 0.78 ± 0.60 0.84 ± 0.72 2.50 ± 2.14 

Lying down 2.33 ± 0.86 1.86 ± 0.79 1.62 ± 0.93 1.46 ± 0.85 1.86 ± 1.07 1.15 ± 1.25 0.98 ± 1.12 

Rowing - Rowing hard - Rowing 30spm 0.72 ± 0.53 0.67 ± 0.70 0.76 ± 0.96 0.71 ± 0.88 1.15 ± 0.97 1.66 ± 1.26 2.61 ± 2.03 

Rowing - Rowing light - Rowing 30spm 0.82 ± 0.58 0.72 ± 0.81 0.82 ± 0.85 0.92 ± 0.85 1.51 ± 1.16 1.21 ± 1.75 2.19 ± 1.23 

Rowing - Rowing moderate - Rowing 30spm 0.87 ± 0.65 0.69 ± 0.65 0.71 ± 0.67 0.84 ± 0.65 1.02 ± 0.98 1.72 ± 1.22 2.42 ± 0.98 

Running - Treadmill 4mph - Treadmill 0  0.64 ± 0.62 0.41 ± 0.45 0.75 ± 0.74 0.87 ± 0.99 1.06 ± 1.20 1.63 ± 2.53 3.34 ± 3.55 

Running - Treadmill 5mph - Treadmill 0  0.76 ± 0.63 0.78 ± 0.73 0.58 ± 0.43 0.85 ± 0.90 0.70 ± 0.74 1.11 ± 0.87 1.37 ± 1.37 

Running - Treadmill 6mph - Treadmill 0  0.47 ± 0.51 0.52 ± 0.59 0.82 ± 1.03 0.71 ± 0.75 1.20 ± 1.00 1.31 ± 1.28 1.18 ± 0.70 

Sitting 0.94 ± 0.32 0.87 ± 0.25 0.81 ± 0.37 0.87 ± 0.55 0.89 ± 0.61 0.90 ± 0.62 1.72 ± 1.67 

Sitting - Fidget feet legs 0.30 ± 0.20 0.33 ± 0.19 0.45 ± 0.39 0.34 ± 0.31 0.36 ± 0.40 0.45 ± 0.62 0.75 ± 1.40 

Sitting - Fidget hands arms 0.52 ± 0.18 0.54 ± 0.35 0.55 ± 0.45 0.60 ± 0.42 0.57 ± 0.50 0.79 ± 1.18 1.16 ± 1.22 

Stairs - Ascend stairs 1.05 ± 0.56 0.85 ± 0.34 0.55 ± 0.34 0.53 ± 0.59 0.37 ± 0.46 0.51 ± 0.78 0.00 ± 0.00 

Stairs - Descend stairs 1.40 ± 0.86 1.04 ± 0.77 0.76 ± 0.58 0.59 ± 0.54 0.83 ± 1.24 0.67 ± 0.83 0.00 ± 0.00 

Standing 0.91 ± 0.26 0.90 ± 0.29 0.82 ± 0.28 0.82 ± 0.40 0.89 ± 0.54 1.11 ± 0.67 2.58 ± 1.32 

Walking - Treadmill 2mph - Treadmill 0  0.87 ± 0.73 0.74 ± 0.89 0.92 ± 1.55 0.61 ± 0.42 0.72 ± 0.97 1.66 ± 1.80 1.62 ± 1.93 

Walking - Treadmill 3mph - Treadmill 0  1.21 ± 0.61 1.43 ± 0.79 1.28 ± 0.84 1.31 ± 1.06 1.55 ± 1.56 1.91 ± 1.17 3.04 ± 1.99 

Walking - Treadmill 3mph - Treadmill 3  - light 1.00 ± 0.58 1.20 ± 0.50 1.23 ± 0.70 1.34 ± 1.17 1.68 ± 1.26 1.71 ± 1.65 2.86 ± 2.48 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.02 ± 0.49 1.05 ± 0.62 1.08 ± 0.62 1.03 ± 0.65 1.32 ± 1.45 1.82 ± 1.77 3.05 ± 2.29 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.12 ± 1.03 0.73 ± 0.39 1.06 ± 0.76 0.94 ± 0.96 0.90 ± 0.78 1.91 ± 1.32 1.95 ± 1.78 

kneeling 0.87 ± 0.24 0.88 ± 0.36 0.81 ± 0.34 0.70 ± 0.35 0.84 ± 0.53 1.23 ± 0.72 2.17 ± 1.32 

unknown 27.80 ± 4.75 27.03 ± 4.00 24.11 ± 5.33 22.04 ± 6.30 18.79 ± 5.48 14.61 ± 6.51 10.17 ± 4.50 

Carrying groceries 1.26 ± 0.62 1.19 ± 0.97 1.43 ± 1.20 1.50 ± 2.15 0.87 ± 1.14 1.98 ± 1.88 2.29 ± 1.63 

Doing dishes 1.53 ± 0.40 1.48 ± 0.45 1.17 ± 0.52 1.17 ± 0.68 1.06 ± 0.72 0.98 ± 0.91 1.29 ± 1.40 

Gardening 0.86 ± 0.38 0.78 ± 0.40 0.72 ± 0.44 0.63 ± 0.43 0.92 ± 0.60 1.12 ± 1.38 2.55 ± 1.56 

Ironing 1.40 ± 0.48 1.34 ± 0.50 1.33 ± 0.62 1.15 ± 0.70 1.24 ± 0.64 1.42 ± 1.32 1.88 ± 0.96 

Making the bed 1.60 ± 0.66 1.49 ± 0.60 1.27 ± 0.77 1.04 ± 0.79 0.87 ± 0.73 0.41 ± 0.36 1.41 ± 1.44 

Mopping 1.13 ± 0.46 1.19 ± 0.70 1.57 ± 1.47 0.86 ± 0.48 0.96 ± 0.44 0.70 ± 0.68 1.31 ± 0.94 

Playing videogames 1.37 ± 0.56 1.32 ± 0.58 1.38 ± 0.67 1.51 ± 0.67 1.64 ± 0.83 2.05 ± 1.07 2.51 ± 2.33 

Scrubbing a surface 0.94 ± 0.47 0.94 ± 0.44 0.95 ± 0.58 0.85 ± 0.52 1.21 ± 1.03 1.43 ± 0.79 2.39 ± 2.41 

Stacking groceries 1.12 ± 0.42 0.96 ± 0.37 0.90 ± 0.34 0.94 ± 0.63 0.59 ± 0.45 1.18 ± 0.85 2.37 ± 0.51 

Sweeping 1.05 ± 0.37 1.04 ± 0.40 0.94 ± 0.38 0.88 ± 0.50 0.96 ± 0.61 0.89 ± 0.66 1.67 ± 1.68 

Typing 0.95 ± 0.43 0.86 ± 0.40 0.87 ± 0.61 0.90 ± 0.67 1.34 ± 0.92 1.12 ± 0.98 2.65 ± 2.49 

Vacuuming 0.95 ± 0.31 0.89 ± 0.29 0.86 ± 0.31 0.77 ± 0.38 0.79 ± 0.48 1.54 ± 1.07 1.22 ± 1.10 

Walking around block 1.72 ± 0.77 1.87 ± 1.29 1.74 ± 1.32 1.71 ± 1.11 1.63 ± 1.42 1.60 ± 1.23 1.48 ± 1.81 

Washing windows 0.96 ± 0.40 1.02 ± 0.45 0.92 ± 0.47 1.01 ± 0.75 1.12 ± 0.66 1.13 ± 0.77 1.06 ± 0.91 

Watching TV 1.55 ± 0.37 1.46 ± 0.35 1.41 ± 0.53 1.59 ± 0.54 1.68 ± 0.74 1.56 ± 1.09 2.82 ± 1.61 

Weeding 0.67 ± 0.22 0.63 ± 0.22 0.63 ± 0.29 0.69 ± 0.37 0.78 ± 0.56 0.95 ± 0.50 1.72 ± 1.26 

Wiping/Dusting 1.16 ± 0.50 1.14 ± 0.49 1.04 ± 0.53 1.10 ± 0.73 0.72 ± 0.66 1.24 ± 0.95 1.77 ± 1.43 

Writing 0.78 ± 0.38 0.70 ± 0.46 0.62 ± 0.41 0.79 ± 0.55 0.74 ± 0.52 1.00 ± 0.75 1.05 ± 1.23 

taking out trash 0.96 ± 0.42 0.96 ± 0.32 0.96 ± 0.41 0.88 ± 0.49 0.66 ± 0.41 1.23 ± 0.75 0.72 ± 1.16 

Table A5-11: False positive rate when training the C4.5 classifier using the FFTCorr feature and 

subject independent evaluation 
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 F-Measure 

Class 1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 5.26 ± 9.21 3.24 ± 4.89 3.78 ± 5.85 4.48 ± 10.49 4.78 ± 15.87 8.33 ± 20.41 0.00 ± 0.00 

Bench weight lifting - light 14.84 ± 13.74 16.47 ± 16.85 15.19 ± 18.11 17.50 ± 20.92 13.86 ± 17.78 21.58 ± 25.79 25.00 ± 46.29 

Bench weight lifting - moderate 9.48 ± 10.07 8.40 ± 10.20 7.82 ± 10.41 14.94 ± 16.67 8.95 ± 20.21 15.83 ± 24.58 20.00 ± 27.39 

Bicep curls - hard 11.65 ± 15.04 14.83 ± 18.13 10.30 ± 15.29 34.56 ± 24.33 37.19 ± 33.83 43.10 ± 42.17 17.78 ± 28.80 

Bicep curls - light 19.14 ± 20.86 21.96 ± 20.14 27.31 ± 20.99 32.49 ± 21.18 50.85 ± 33.34 56.30 ± 46.80 36.00 ± 40.99 

Bicep curls - moderate 10.45 ± 13.54 15.70 ± 19.13 20.81 ± 20.30 17.09 ± 17.02 38.57 ± 28.61 71.39 ± 19.68 32.38 ± 33.40 

Calisthenics - Crunches 11.67 ± 23.95 10.55 ± 23.91 14.11 ± 27.55 26.61 ± 40.31 26.27 ± 36.76 11.67 ± 24.91 0.00 ± 0.00 

Calisthenics - Sit ups 40.68 ± 42.28 39.74 ± 44.63 58.82 ± 41.34 57.68 ± 40.96 67.80 ± 35.72 72.78 ± 35.20 53.33 ± 50.55 

Cycling - Cycle hard - Cycle 80rpm 12.45 ± 14.01 9.00 ± 9.42 13.70 ± 18.82 9.70 ± 16.82 15.87 ± 19.24 19.68 ± 26.58 12.50 ± 25.00 

Cycling - Cycle light - Cycle 100rpm 56.02 ± 30.53 62.70 ± 34.30 63.65 ± 35.07 74.60 ± 33.44 73.26 ± 39.19 87.80 ± 26.14 93.33 ± 17.73 

Cycling - Cycle light - Cycle 60rpm 44.21 ± 22.25 55.05 ± 32.71 58.53 ± 31.95 59.50 ± 32.72 62.72 ± 30.57 71.81 ± 31.23 70.21 ± 29.45 

Cycling - Cycle light - Cycle 80rpm 27.93 ± 18.54 35.06 ± 23.50 38.91 ± 30.65 32.36 ± 20.64 55.16 ± 24.31 63.06 ± 24.04 39.67 ± 41.35 

Cycling - Cycle moderate - Cycle 

80rpm 

13.51 ± 12.41 11.74 ± 11.40 22.07 ± 19.81 20.34 ± 19.04 17.75 ± 21.76 38.60 ± 31.09 30.30 ± 37.13 

Lying down 49.28 ± 12.27 63.57 ± 10.21 67.33 ± 18.95 71.65 ± 13.25 68.98 ± 16.62 77.14 ± 16.59 85.08 ± 11.97 

Rowing - Rowing hard - Rowing 30spm 14.89 ± 13.28 15.52 ± 16.24 21.38 ± 24.54 8.31 ± 10.49 13.54 ± 21.82 38.33 ± 26.31 37.50 ± 47.87 

Rowing - Rowing light - Rowing 30spm 21.08 ± 13.74 21.46 ± 18.60 22.95 ± 20.93 42.58 ± 21.45 26.95 ± 25.37 48.51 ± 33.67 29.26 ± 35.50 

Rowing - Rowing moderate - Rowing 

30spm 

18.22 ± 13.47 17.07 ± 16.44 18.19 ± 16.19 20.76 ± 22.43 17.57 ± 25.25 14.72 ± 26.77 29.17 ± 31.81 

Running - Treadmill 4mph - Treadmill 

0  

26.30 ± 23.28 28.56 ± 29.77 28.85 ± 26.52 32.09 ± 31.30 41.69 ± 38.01 30.07 ± 37.14 43.50 ± 43.81 

Running - Treadmill 5mph - Treadmill 

0  

35.27 ± 26.26 38.79 ± 26.44 35.43 ± 28.82 36.64 ± 26.62 38.37 ± 36.24 47.97 ± 34.18 64.00 ± 39.40 

Running - Treadmill 6mph - Treadmill 

0  

25.51 ± 21.02 27.23 ± 25.98 39.38 ± 27.49 44.56 ± 34.19 30.25 ± 29.91 42.53 ± 37.20 60.00 ± 36.51 

Sitting 6.35 ± 5.86 4.15 ± 4.50 6.38 ± 7.54 6.98 ± 10.02 14.25 ± 19.43 16.24 ± 26.18 41.67 ± 46.65 

Sitting - Fidget feet legs 34.75 ± 29.29 37.59 ± 31.36 35.60 ± 30.93 40.85 ± 35.50 53.32 ± 36.59 67.69 ± 35.55 66.67 ± 50.00 

Sitting - Fidget hands arms 14.09 ± 15.73 16.83 ± 17.77 19.86 ± 18.69 23.08 ± 26.86 10.86 ± 18.78 48.57 ± 35.61 57.14 ± 44.99 

Stairs - Ascend stairs 36.55 ± 23.17 38.96 ± 25.34 50.05 ± 31.73 50.03 ± 35.55 60.24 ± 34.55 75.77 ± 21.33 0.00 ± 0.00 

Stairs - Descend stairs 24.96 ± 18.25 31.08 ± 24.03 42.66 ± 29.01 35.63 ± 32.42 44.21 ± 40.89 53.03 ± 33.60 0.00 ± 0.00 

Standing 6.75 ± 5.06 8.52 ± 7.62 12.01 ± 11.24 18.55 ± 15.56 17.09 ± 17.51 17.00 ± 29.26 13.33 ± 29.81 

Walking - Treadmill 2mph - Treadmill 

0  

37.46 ± 23.50 42.21 ± 23.93 42.06 ± 31.50 48.48 ± 32.21 49.18 ± 31.87 48.87 ± 34.18 76.96 ± 17.77 

Walking - Treadmill 3mph - Treadmill 

0  

15.67 ± 10.78 15.16 ± 11.38 17.84 ± 13.07 18.08 ± 15.62 20.02 ± 21.80 11.23 ± 17.50 26.55 ± 25.25 

Walking - Treadmill 3mph - Treadmill 

3  - light 

10.65 ± 8.07 12.12 ± 7.04 14.97 ± 11.45 14.05 ± 14.23 19.73 ± 15.95 16.62 ± 19.89 26.19 ± 34.36 

Walking - Treadmill 3mph - Treadmill 

6  - moderate 

10.44 ± 8.72 9.52 ± 8.96 11.41 ± 11.27 8.43 ± 11.71 10.95 ± 16.82 15.54 ± 24.26 25.93 ± 26.50 

Walking - Treadmill 3mph - Treadmill 

9  - hard 

14.27 ± 12.78 14.94 ± 14.39 9.30 ± 10.95 16.10 ± 14.75 20.82 ± 23.42 18.96 ± 28.98 17.78 ± 32.33 

kneeling 8.06 ± 5.36 8.93 ± 8.70 15.59 ± 15.96 13.96 ± 16.48 15.57 ± 18.00 12.78 ± 18.67 25.76 ± 37.54 

unknown 48.31 ± 7.29 50.37 ± 7.72 53.66 ± 7.62 56.70 ± 8.43 59.62 ± 8.81 60.08 ± 11.10 59.22 ± 16.11 

Carrying groceries 22.07 ± 18.11 26.78 ± 21.89 24.92 ± 20.69 29.16 ± 27.64 35.48 ± 32.00 23.31 ± 25.34 42.41 ± 35.47 

Doing dishes 16.18 ± 9.78 19.66 ± 14.09 23.80 ± 16.75 29.36 ± 21.96 36.33 ± 27.18 43.46 ± 31.97 60.48 ± 35.56 

Gardening 11.76 ± 13.94 13.06 ± 15.33 17.60 ± 20.37 20.45 ± 25.44 27.82 ± 32.44 27.89 ± 38.22 20.91 ± 33.00 

Ironing 17.95 ± 11.12 23.46 ± 13.49 28.46 ± 16.78 28.87 ± 22.93 29.31 ± 22.34 31.28 ± 28.48 44.76 ± 33.04 

Making the bed 15.05 ± 9.71 17.35 ± 11.50 25.28 ± 18.05 33.12 ± 22.52 45.81 ± 25.87 64.39 ± 28.38 53.81 ± 33.61 

Mopping 15.23 ± 13.38 16.87 ± 13.90 17.00 ± 15.82 21.98 ± 21.09 23.32 ± 22.56 38.14 ± 25.03 44.44 ± 36.00 

Playing videogames 16.55 ± 11.11 17.86 ± 12.70 15.73 ± 12.30 15.79 ± 16.52 13.00 ± 13.31 18.47 ± 22.26 32.38 ± 31.34 

Scrubbing a surface 10.02 ± 9.48 11.55 ± 10.93 14.39 ± 15.05 16.72 ± 17.86 18.75 ± 22.80 24.04 ± 26.30 35.67 ± 41.93 

Stacking groceries 9.10 ± 9.00 12.22 ± 11.82 15.26 ± 15.84 17.73 ± 19.19 24.90 ± 24.60 32.86 ± 33.23 0.00 ± 0.00 

Sweeping 9.01 ± 8.61 11.50 ± 10.69 14.47 ± 14.95 19.69 ± 17.77 20.80 ± 19.02 30.25 ± 25.98 34.72 ± 45.20 

Typing 39.82 ± 19.47 43.68 ± 22.16 42.25 ± 22.76 41.80 ± 25.67 28.31 ± 23.48 33.84 ± 23.70 29.49 ± 40.91 

Vacuuming 14.27 ± 12.27 15.19 ± 13.27 16.03 ± 15.12 18.52 ± 17.82 25.93 ± 23.01 20.95 ± 24.44 30.56 ± 41.34 

Walking around block 15.89 ± 12.33 15.22 ± 12.67 15.80 ± 17.86 22.49 ± 20.77 23.37 ± 23.98 22.76 ± 28.40 63.33 ± 38.26 

Washing windows 14.70 ± 11.49 15.41 ± 12.91 23.60 ± 19.90 23.95 ± 19.08 25.35 ± 20.46 33.95 ± 30.83 46.43 ± 39.86 

Watching TV 9.09 ± 5.71 10.97 ± 7.39 15.43 ± 9.96 15.99 ± 10.41 11.68 ± 12.63 12.87 ± 15.37 29.17 ± 28.97 

Weeding 3.75 ± 4.41 3.72 ± 4.72 4.72 ± 7.62 5.01 ± 8.06 6.67 ± 10.76 8.35 ± 15.70 37.62 ± 36.25 

Wiping/Dusting 11.64 ± 8.40 12.64 ± 8.72 18.17 ± 15.22 22.24 ± 16.89 35.98 ± 28.59 44.31 ± 26.72 51.86 ± 37.37 

Writing 45.29 ± 25.82 49.81 ± 29.15 52.07 ± 30.12 46.78 ± 32.37 56.42 ± 32.71 48.89 ± 30.76 47.71 ± 37.86 

taking out trash 5.52 ± 4.85 6.96 ± 6.53 6.27 ± 7.11 9.35 ± 11.55 14.58 ± 19.15 20.94 ± 26.24 50.00 ± 45.13 

Table A5-12: F-Measure when training the C4.5 classifier using the FFTCorr feature and subject 

independent evaluation
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Appendix A6: Feature Selection for Activity Recognition  
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Features subsets 

(Number of features) 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

 

Household 

ACFFT Peaks (70) 41.59 ± 4.31 27.19±19.59  

(0.82±0.47) 

28.19±22.73  

(0.97±0.69) 

28.16±24.28  

(0.60±0.56) 

20.11±18.42  

(0.82±0.64) 

19.77±16.57  

(1.05±0.59) 

ACAbsMean 38.14 ± 4.95 23.3±15.0  

(0.8±0.4) 

26.4±24.5  

(1.1±1.0) 

21.4±23.7  

(0.7±0.7) 

14.2±17.8  

(0.8±0.7) 

16.8±15.0  

(1.0±0.6) 

ACIQR (7) 37.92 ± 4.46 21.86±13.79  
(0.88±0.49) 

25.52±20.29  
(1.13±0.86) 

26.16±25.03  
(0.69±0.66) 

16.19±17.98  
(0.89±0.75) 

15.36±13.75  
(1.05±0.61) 

ACQ3 (7) 37.01 ± 4.47 20.13±12.54  

(0.85±0.46) 

24.08±19.07  

(1.10±0.78) 

22.59±22.73  

(0.63±0.56) 

13.84±16.16  

(0.86±0.64) 

14.24±12.58  

(1.09±0.59) 

ACAbsArea(7) 36.82 ± 5.51 21.19±15.12  
(0.87±0.51) 

26.48±22.65  
(1.09±0.95) 

22.80±24.12  
(0.64±0.69) 

14.96±17.99  
(0.79±0.70) 

16.62±14.49  
(1.11±0.65) 

ACFFTCoeff (889) 36.76 ± 3.78 23.15±14.79  

(0.93±0.41) 

24.25±18.60  

(1.09±0.67) 

25.45±21.07  

(0.67±0.49) 

17.88±16.13  

(0.89±0.60) 

14.24±11.90  

(1.18±0.52) 

ACVar (7)  34.81 ± 4.49 18.64±3.40  

(2.20±0.78) 

25.84±23.77  

(1.07±1.02) 

20.80±24.37  

(0.62±0.60) 

15.61±19.44  

(0.78±0.76) 

9.97±10.01  

(0.72±0.52) 

ACPitch (7) 34.79 ± 6.91 7.00±9.76  

(0.30±0.20) 

18.42±16.88  

(1.19±0.84) 

21.65±16.70  

(0.71±0.62) 

13.45±11.48  

(0.84±0.56) 

2.64±3.16  

(0.37±0.22) 

ACBandEnergy (7) 34.19 ± 4.55 18.47±5.62  

(1.00±0.46) 

20.60±17.14  

(1.22±0.72) 

16.93±16.53  

(0.71±0.54) 

9.00±10.20  

(0.87±0.52) 

7.84±7.66  

(0.88±0.45) 

ACSF (5) 34.14 ± 4.61 20.50±14.35  
(0.86±0.53) 

24.90±22.44  
(1.10±0.93) 

18.98±20.63  
(0.78±0.77) 

12.90±15.44  
(0.89±0.73) 

13.22±12.16  
(1.10±0.61) 

ACRange(7) 32.94 ± 3.43 20.55±12.28  

(0.92±0.51) 

18.67±17.41  

(1.19±0.90) 

18.28±18.85  

(0.70±0.54) 

12.57±13.88  

(0.92±0.63) 

13.51±11.77  

(1.06±0.53) 

ACTotalAbsArea (1) 32.48 ± 6.73 14.24±5.03  
(0.73±0.39) 

22.33±13.86  
(1.25±0.63) 

11.07±6.51  
(0.52±0.31) 

2.87±2.97  
(0.69±0.28) 

2.79±2.95  
(0.41±0.24) 

ACTotalSF (1) 32.46 ± 7.82 13.50±4.63  

(1.05±0.54) 

20.63±16.16  

(1.24±0.73) 

10.19±7.43  

(0.41±0.24) 

3.46±3.36  

(0.60±0.30) 

1.00±1.16  

(0.25±0.17) 

ACMCR (7) 31.75 ± 3.32 22.75±11.23  

(1.24±0.45) 

11.61±11.32  

(1.32±0.78) 

14.89±14.55  

(0.79±0.54) 

9.64±10.66  

(0.96±0.49) 

10.90±10.48  

(0.96±0.47) 

ACLowEnergy (7) 31.0 ± 5.6 12.80±8.43  

(1.63±0.70) 

15.7±12.5  

(1.3±0.7) 

14.4±11.4  

(0.7±0.5) 

9.1±8.7  

(0.7±0.4) 

1.6±2.2  

(0.4±0.2) 

ACModVigEnergy (7)  30.80 ± 4.88 9.69±8.16  

(1.25±0.52) 

20.88±17.01  

(1.22±0.73) 

20.81±15.18  

(0.74±0.50) 

12.12±10.63  

(0.90±0.52) 

3.13±3.50  

(0.79±0.32) 

DCTotalMean 29.25 ± 7.54 4.7±5.4  

(0.8±1.0) 

2.4±4.2  

(0.5±0.5) 

1.6±2.5  

(0.5±0.3) 

0.9±1.7  

(0.4±0.2) 

0.0±0.0  

(0.2±0.2) 

ACDomFreqRatio (7) 28.87 ± 4.65 13.67±4.97  

(1.06±0.46) 

11.49±11.29  

(1.33±0.69) 

10.16±9.02  

(0.84±0.45) 

6.20±6.08  

(0.91±0.38) 

5.13±5.43  

(0.87±0.38) 

DCPostureDist 28.38 ± 5.48 33.0±22.0  
(0.4±0.5) 

18.7±25.0  
(1.0±1.1) 

18.8±27.2  
(0.8±1.1) 

14.8±23.6  
(0.9±1.2) 

15.0±19.3  
(1.2±1.3) 

ACEnergy (7) 27.99 ± 4.93 7.75±8.02  

(1.25±0.51) 

19.95±18.78  

(1.21±0.96) 

14.54±13.89  

(0.84±0.53) 

9.11±10.62  

(0.97±0.57) 

3.59±4.19  

(0.82±0.44) 

ACEntropy (7) 27.89 ± 6.98 11.44±4.42  

(1.41±0.68) 

14.52±13.71  

(1.28±0.77) 

6.61±6.72  

(0.63±0.36) 

3.80±4.66  

(0.75±0.39) 

1.78±2.25  

(0.51±0.29) 

ACAbsCV (7) 27.56 ± 2.96 13.83±7.57  

(1.07±0.44) 

14.03±13.76  

(1.24±0.74) 

14.28±16.91  

(0.86±0.59) 

10.22±11.93  

(1.01±0.64) 

9.64±8.27  

(1.16±0.47) 

ACFWTCoeff () 26.61 ± 3.47 17.10±10.08  

(1.08±0.44) 

14.86±11.00  

(1.31±0.50) 

16.68±14.38  

(0.87±0.42) 

11.59±10.36  

(1.07±0.46) 

6.94±5.87  

(1.35±0.42) 

DCMean (7) 24.69 ± 6.81 14.41±15.85  
(0.66±1.14) 

8.60±15.94  
(0.94±1.22) 

12.80±21.77  
(0.79±1.01) 

7.40±14.17  
(0.94±1.28) 

7.04±11.37  
(1.26±1.52) 

DCArea (7) 24.53 ± 6.63 12.23±16.16  

(0.57±0.78) 

8.87±17.00  

(0.99±1.42) 

12.52±21.85  

(0.86±1.11) 

7.75±14.77  

(0.90±1.10) 

7.72±13.16  

(1.22±1.38) 

ACCorr (21) 24.11 ± 4.29 9.19±4.11  

(1.35±0.56) 

14.02±17.11  

(0.94±0.83) 

11.90±16.34  

(0.75±0.74) 

10.47±13.85  

(0.82±0.75) 

6.98±7.09  

(1.36±0.60) 

ACKur (7) 21.81 ± 3.36 9.74±4.54  

(1.31±0.46) 

7.92±8.37  

(1.29±0.57) 

7.25±10.05  

(1.03±0.51) 

5.82±7.91  

(1.09±0.52) 

5.57±5.08  

(1.12±0.39) 

ACSkew (7) 17.15 ± 2.47 6.50±3.91  

(1.42±0.40) 

9.18±10.83  

(1.26±0.67) 

4.86±6.65  

(1.09±0.40) 

3.97±5.28  

(1.15±0.42) 

2.79±3.28  

(1.14±0.37) 

Table A6-1: True positive rate per activity category while evaluating different subsets of features 

using the C4.5 decision tree classifier using a sliding window of 5.6s and evaluating the results in a 

subject independent manner. False positive rate is shown in parenthesis. 
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Features subsets 

(Number of features) 

All 

Activities 

Postures Ambulation Exercise Resistance 

Exercise 

Household 

ACEnergy, ACEntropy  26.01 ± 3.95 10.43±8.60  
(1.33±0.67) 

19.26±20.19  
(1.23±0.98) 

14.13±14.28  
(0.85±0.54) 

9.78±11.78  
(0.98±0.59) 

5.03±5.29  
(1.10±0.52) 

ACIQR, ACQ1, ACQ2,ACQ3 36.51 ± 4.41 22.13±13.16  

(0.93±0.48) 

25.23±21.83  

(1.09±0.83) 

23.64±23.07  

(0.66±0.56) 

15.56±16.49  

(0.88±0.67) 

15.62±13.66  

(1.18±0.65) 

ACAbsArea, ACArea, ACVar 39.87 ± 6.44 40.46±31.35  

(0.48±0.62) 

20.81±22.99  

(1.13±1.21) 

22.16±26.84  

(0.70±0.82) 

15.95±21.81  

(0.95±1.08) 

19.20±21.03  

(0.97±0.91) 

ACAbsArea, ACArea 40.14 ± 5.95 39.78±31.23  
(0.49±0.60) 

22.48±24.87  
(1.02±1.14) 

24.56±29.00  
(0.70±0.83) 

16.39±23.79  
(0.91±1.04) 

18.70±20.97  
(0.92±0.84) 

ACAbsArea, ACVar, 

ACLowEnergy, AC Range, 
ACMCR 

40.40 ± 4.57 23.40±17.36  

(0.82±0.43) 

28.80±24.20  

(0.98±0.88) 

25.70±25.13  

(0.67±0.66) 

18.36±19.97  

(0.85±0.74) 

19.90±17.28  

(1.04±0.57) 

ACAbsArea, ACArea, ACVar, 

ACRange, ACMCR, ACIQR 

41.00 ± 6.01 40.26±33.45  

(0.53±0.74) 

24.53±25.78  

(0.91±0.85) 

24.72±27.86  

(0.66±0.77) 

17.93±23.98  

(0.81±0.84) 

20.73±22.07  

(0.92±0.73) 

ACFFTPeaks, ACCorr 41.23 ± 5.04 25.60±17.39  

(0.84±0.46) 

28.56±23.79  

(1.02±0.84) 

27.54±25.82  

(0.60±0.58) 

20.01±20.92  

(0.79±0.63) 

20.26±16.85  

(1.10±0.63) 

ACAbsArea, ACArea, ACVar, 

ACRange, ACMCR 

41.69 ± 6.58 41.55±33.26  

(0.45±0.60) 

24.44±24.35  

(0.97±0.99) 

23.66±28.15  

(0.70±0.76) 

16.89±22.20  

(0.89±0.90) 

21.78±23.35  

(0.94±0.80) 

ACVar, ACEnergy, 

ACEntropy, ACFFTPeaks, 
ACCorr 

41.70 ± 4.74 26.65±19.30  

(0.82±0.43) 

30.71±23.68  

(0.98±0.95) 

26.29±25.13  

(0.59±0.61) 

18.96±20.44  

(0.73±0.63) 

20.63±16.92  

(1.05±0.57) 

ACVar, ACEnergy, 

ACEntropy, ACFFTPeaks 

41.73 ± 4.19 27.52±19.16  

(0.79±0.42) 

30.48±22.91  

(0.97±0.68) 

28.50±23.22  

(0.62±0.55) 

20.44±19.05  

(0.82±0.61) 

20.38±16.31  

(1.06±0.56) 

ACVar, ACFFTPeaks 41.82 ± 4.22 27.19±19.46  

(0.79±0.43) 

29.04±23.39  

(1.00±0.75) 

27.94±24.71  

(0.60±0.56) 

19.44±19.00  

(0.81±0.66) 

19.96±16.20  

(1.06±0.59) 

ACVar,AC FFTPeaks, 

ACBandEnergy 

41.83 ± 4.35 27.52±20.01  

(0.78±0.41) 

29.86±23.93  

(1.01±0.74) 

27.85±24.39  

(0.63±0.59) 

19.72±18.40  

(0.84±0.67) 

20.08±16.16  

(1.04±0.57) 

ACVar, ACBandEnergy, 

ACEntropy, ACFFTPeaks, 
ACCorr 

41.82 ± 5.28 27.06±17.97  

(0.83±0.42) 

30.40±24.72  

(0.96±0.83) 

28.61±26.69  

(0.63±0.64) 

20.13±21.35  

(0.77±0.69) 

20.96±17.09  

(1.07±0.61) 

ACVar, ACEntropy, 

ACBandEnergy, ACFFTPeaks 

42.14 ± 4.16 28.19±19.51  

(0.77±0.42) 

30.70±23.61  

(0.98±0.68) 

28.05±23.92  

(0.61±0.55) 

20.29±19.75  

(0.82±0.63) 

20.96±17.10  

(1.05±0.58) 

ACFFTPeaks, ACVar, ACIQR 42.21 ± 4.74 27.66±19.14  
(0.76±0.42) 

27.65±23.94  
(1.02±0.78) 

27.53±25.45  
(0.65±0.61) 

20.53±19.99  
(0.86±0.65) 

21.08±17.80  
(1.01±0.51) 

ACVar, ACFFTPeaks, 

ACBandEnergy, ACIQR 

42.30 ± 4.18 27.38±18.33  

(0.80±0.41) 

28.96±23.36  

(1.02±0.79) 

26.85±24.63  

(0.63±0.61) 

19.79±19.26  

(0.84±0.65) 

21.00±17.39  

(1.01±0.52) 

ACAbsArea, ACArea, ACVar, 

ACRange, ACPitch,  

42.85 ± 6.56 39.20±31.82  

(0.46±0.58) 

24.25±24.83  

(0.99±1.04) 

26.57±29.94  

(0.69±0.76) 

19.38±24.79  

(0.86±0.90) 

20.58±22.33  

(0.93±0.79) 

ACAbsArea ,ACArea, ACVar, 

ACEnergy, ACEntropy, 

ACFFT Peaks,ACCorr,  
ACRange, ACMCR, ACPitch 

42.94 ± 5.61 38.92±31.03  

(0.48±0.64) 

25.23±24.47  

(0.92±0.88) 

26.91±28.63  

(0.63±0.71) 

19.26±22.89  

(0.84±0.83) 

21.43±22.06  

(0.94±0.75) 

All features but heart rate based 

and subject characteristics 

43.12 ± 6.70 44.56±34.74  

(0.45±0.50) 

27.98±25.55  

(0.96±1.04) 

26.71±28.78  

(0.62±0.73) 

18.72±23.77  

(0.85±0.93) 

21.36±21.81  

(1.00±0.92) 

ACAbsArea, ACArea, 

ACBandEnergy, ACFFTPeaks, 
ACVar 

44.24 ± 6.88 44.54±34.18  

(0.48±0.60) 

26.44±26.37  

(1.02±1.08) 

28.79±30.93  

(0.69±0.76) 

21.39±25.62  

(0.90±0.99) 

23.38±22.85  

(0.93±0.82) 

ACAbsArea, ACArea, ACVar, 

ACRange, ACEnergy, 

ACEntropy, ACFFTPeaks, 
ACCorr 

44.39 ± 6.58 44.66±35.12  

(0.52±0.59) 

28.58±26.63  

(0.93±0.94) 

27.85±28.62  

(0.61±0.67) 

19.84±22.67  

(0.78±0.77) 

22.79±22.78  

(0.94±0.80) 

ACAbsArea, ACArea, 

ACFFTPeaks  

44.49 ± 6.56 44.08±34.00  

(0.51±0.65) 

27.36±27.06  

(0.98±0.91) 

27.79±29.10  

(0.64±0.71) 

21.18±24.90  

(0.85±0.89) 

22.95±22.67  

(0.92±0.79) 

ACAbsArea, ACArea, ACVar, 
ACEntropy, ACFFTPeaks, 

ACBandEnergy,  

44.65 ± 6.84 45.82±34.22  
(0.47±0.58) 

28.17±25.93  
(0.96±1.02) 

28.23±29.25  
(0.66±0.73) 

21.22±24.32  
(0.86±0.89) 

23.07±22.18  
(0.90±0.75) 

ACAbsArea, ACArea, ACVar,  

ACFFTPeaks, ACCorr, 
ACRange, ACMCR, ACPitch,  

44.72 ± 6.82 44.85±32.86  

(0.47±0.60) 

29.89±26.52  

(0.96±0.80) 

30.60±28.91  

(0.63±0.70) 

20.38±23.76  

(0.86±0.86) 

22.33±22.47  

(0.99±0.84) 

All Features but heart rate 

based 

44.82 ± 6.16 42.96±35.25  

(0.44±0.59) 

29.07±25.78  

(0.95±1.03) 

27.40±30.12  

(0.59±0.70) 

20.08±25.04  

(0.82±0.88) 

23.83±22.75  

(0.92±0.73) 

Table A6-2: True positive rate per activity category while evaluating different subsets of features 

using the C4.5 decision tree classifier, a sliding window of 5.6s and subject independent training. 

False positive rate is shown in parenthesis. 
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 True Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

 ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 87.4 ± 8.5 89.5 ± 7.6 91.1 ± 5.6 85.4 ± 11.4 88.7 ± 10.1 
Bench weight lifting - light 91.1 ± 8.8 90.7 ± 11.8 92.0 ± 10.1 91.5 ± 11.3 93.2 ± 10.4 
Bench weight lifting - moderate 87.9 ± 17.4 91.1 ± 9.9 88.4 ± 12.5 89.5 ± 12.9 88.2 ± 17.1 
Bicep curls - hard 92.4 ± 7.1 91.4 ± 8.5 91.5 ± 7.4 90.4 ± 6.8 92.2 ± 6.8 
Bicep curls - light 94.5 ± 6.5 94.6 ± 3.6 94.0 ± 2.9 94.4 ± 5.3 95.1 ± 4.4 
Bicep curls - moderate 85.0 ± 11.1 91.5 ± 4.9 92.1 ± 5.5 86.9 ± 9.9 90.5 ± 6.0 
Calisthenics - Crunches 95.0 ± 2.4 92.0 ± 5.8 90.9 ± 8.1 94.0 ± 6.4 96.5 ± 3.2 
Calisthenics - Sit ups 91.4 ± 2.9 93.1 ± 4.3 92.8 ± 4.2 90.0 ± 4.9 91.2 ± 5.3 
Cycling - Cycle hard - Cycle 80rpm 80.8 ± 22.5 76.9 ± 21.7 79.6 ± 22.4 83.1 ± 15.7 79.6 ± 22.0 
Cycling - Cycle light - Cycle 100rpm 94.1 ± 8.1 93.7 ± 7.6 92.7 ± 11.8 91.9 ± 16.1 93.3 ± 12.0 
Cycling - Cycle light - Cycle 60rpm 89.9 ± 6.8 90.4 ± 6.8 91.9 ± 6.8 89.6 ± 6.8 91.6 ± 7.8 
Cycling - Cycle light - Cycle 80rpm 90.4 ± 7.3 91.0 ± 9.3 91.5 ± 5.4 91.2 ± 9.4 88.3 ± 12.4 
Cycling - Cycle moderate - Cycle 80rpm 81.6 ± 10.0 79.6 ± 10.0 81.0 ± 10.2 81.4 ± 8.5 80.6 ± 11.9 
Lying down 98.8 ± 1.4 98.8 ± 1.5 98.7 ± 1.6 98.7 ± 1.1 99.0 ± 0.9 
Rowing - Rowing hard - Rowing 30spm 77.2 ± 18.4 79.6 ± 16.1 79.5 ± 16.0 76.5 ± 18.7 79.6 ± 13.1 
Rowing - Rowing light - Rowing 30spm 83.3 ± 11.2 80.6 ± 11.6 82.5 ± 11.1 83.1 ± 9.5 83.1 ± 9.1 
Rowing - Rowing moderate - Rowing 30spm 74.6 ± 16.6 74.1 ± 14.2 76.6 ± 14.6 77.4 ± 13.5 77.1 ± 16.1 
Running - Treadmill 4mph - Treadmill 0  91.4 ± 6.0 88.4 ± 8.7 89.4 ± 8.2 91.2 ± 6.3 89.6 ± 7.8 
Running - Treadmill 5mph - Treadmill 0  86.8 ± 9.6 87.5 ± 7.6 88.9 ± 6.4 87.6 ± 8.3 86.5 ± 7.9 
Running - Treadmill 6mph - Treadmill 0  83.1 ± 11.2 87.4 ± 9.3 86.6 ± 10.2 83.2 ± 9.0 85.6 ± 7.2 
Sitting 87.0 ± 7.9 90.9 ± 7.3 91.6 ± 6.1 88.7 ± 7.5 92.5 ± 5.8 
Sitting - Fidget feet legs 87.8 ± 7.6 90.0 ± 9.5 90.0 ± 8.6 90.6 ± 10.2 88.2 ± 12.4 
Sitting - Fidget hands arms 84.7 ± 11.2 89.2 ± 7.4 89.8 ± 4.2 83.7 ± 13.2 85.8 ± 10.4 
Stairs - Ascend stairs 84.2 ± 6.5 80.3 ± 10.1 82.9 ± 7.4 86.9 ± 7.6 84.5 ± 8.4 
Stairs - Descend stairs 80.6 ± 8.2 78.2 ± 11.0 77.4 ± 8.2 78.8 ± 9.2 76.4 ± 13.8 
Standing 85.1 ± 8.0 87.2 ± 10.9 87.3 ± 10.1 82.5 ± 10.2 82.0 ± 11.2 
Walking - Treadmill 2mph - Treadmill 0  88.1 ± 5.2 88.6 ± 4.8 89.7 ± 4.6 90.5 ± 4.4 89.7 ± 4.1 
Walking - Treadmill 3mph - Treadmill 0  78.0 ± 7.8 77.0 ± 8.8 73.3 ± 11.0 75.4 ± 10.4 74.4 ± 10.0 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
70.8 ± 12.4 67.4 ± 13.2 65.5 ± 11.6 68.6 ± 13.8 65.4 ± 13.5 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
69.8 ± 14.1 70.8 ± 15.8 71.2 ± 11.0 69.3 ± 15.3 70.1 ± 11.4 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
80.2 ± 11.0 81.2 ± 10.4 78.9 ± 10.8 77.6 ± 11.4 80.4 ± 9.9 

kneeling 93.0 ± 7.6 94.7 ± 4.7 94.4 ± 4.8 92.1 ± 6.9 95.2 ± 5.8 
unknown 76.8 ± 8.2 77.9 ± 8.2 79.1 ± 8.5 77.0 ± 8.5 76.1 ± 9.2 
Carrying groceries 83.8 ± 9.7 84.0 ± 9.4 84.9 ± 9.3 83.4 ± 9.8 82.8 ± 11.9 
Doing dishes 77.5 ± 12.2 81.8 ± 10.0 82.3 ± 9.3 76.2 ± 15.2 77.2 ± 15.9 
Gardening 74.8 ± 14.5 75.6 ± 19.5 78.6 ± 17.2 73.4 ± 20.6 73.1 ± 21.5 
Ironing 77.4 ± 10.2 79.6 ± 9.8 82.2 ± 11.3 77.4 ± 11.8 80.8 ± 8.5 
Making the bed 53.3 ± 11.6 57.6 ± 11.7 59.6 ± 11.5 49.8 ± 13.3 54.3 ± 12.3 
Mopping 62.3 ± 12.5 65.9 ± 14.1 66.7 ± 14.6 63.0 ± 13.1 59.8 ± 14.5 
Playing videogames 93.2 ± 5.7 94.3 ± 4.0 93.1 ± 5.0 93.4 ± 6.2 93.2 ± 5.1 
Scrubbing a surface 77.0 ± 17.5 77.8 ± 13.5 79.5 ± 15.4 75.2 ± 14.1 78.2 ± 14.5 
Stacking groceries 57.8 ± 13.6 61.3 ± 16.7 63.0 ± 12.8 59.0 ± 10.3 64.8 ± 12.9 
Sweeping 54.7 ± 13.2 56.2 ± 11.6 60.5 ± 11.3 53.8 ± 16.7 60.4 ± 13.6 
Typing 94.8 ± 3.5 94.1 ± 5.7 95.0 ± 4.3 95.2 ± 3.9 95.0 ± 4.0 
Vacuuming 65.2 ± 13.8 67.6 ± 7.4 62.2 ± 10.7 63.1 ± 11.2 63.9 ± 13.9 
Walking around block 82.2 ± 7.2 82.0 ± 8.2 82.9 ± 8.2 85.6 ± 7.3 83.5 ± 7.4 
Washing windows 60.4 ± 10.4 63.3 ± 13.1 64.9 ± 9.7 59.6 ± 11.5 59.6 ± 8.6 
Watching TV 93.0 ± 6.8 92.8 ± 6.5 94.6 ± 4.6 93.1 ± 6.3 93.2 ± 5.6 
Weeding 76.6 ± 13.2 75.8 ± 9.6 75.3 ± 7.5 71.5 ± 14.8 71.8 ± 11.5 
Wiping/Dusting 54.5 ± 14.9 57.1 ± 15.0 56.5 ± 15.8 56.2 ± 14.4 59.4 ± 15.5 
Writing 93.9 ± 4.1 96.5 ± 2.4 96.4 ± 3.3 94.0 ± 5.8 95.7 ± 3.4 
taking out trash 44.8 ± 11.3 48.2 ± 13.8 52.3 ± 10.9 44.1 ± 12.0 47.9 ± 11.4 

Table A6-3: True positive rate when evaluating the four highest performing feature subsets 

computed per sensor using the C4.5 classifier in a subject dependent manner.  
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 False Positive Rate 

Activity AllButHR AbsCumSum,  

CumSum, Var, 

 Range, MCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.2 
Bench weight lifting - light 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 
Bench weight lifting - moderate 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 
Bicep curls - hard 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Bicep curls - light 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 
Bicep curls - moderate 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 
Calisthenics - Crunches 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 
Calisthenics - Sit ups 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.0 
Cycling - Cycle hard - Cycle 80rpm 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Cycling - Cycle light - Cycle 100rpm 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Cycling - Cycle light - Cycle 60rpm 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 
Cycling - Cycle light - Cycle 80rpm 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 
Cycling - Cycle moderate - Cycle 80rpm 0.2 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.2 
Lying down 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Rowing - Rowing hard - Rowing 30spm 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 
Rowing - Rowing light - Rowing 30spm 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 
Rowing - Rowing moderate - Rowing 30spm 0.4 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 
Running - Treadmill 4mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 
Running - Treadmill 5mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Running - Treadmill 6mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Sitting 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Sitting - Fidget feet legs 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 
Sitting - Fidget hands arms 0.3 ± 0.3 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Stairs - Ascend stairs 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.2 
Stairs - Descend stairs 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.5 ± 0.2 
Standing 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Walking - Treadmill 2mph - Treadmill 0  0.3 ± 0.2 0.3 ± 0.2 0.2 ± 0.2 0.3 ± 0.2 0.2 ± 0.1 
Walking - Treadmill 3mph - Treadmill 0  0.5 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.3 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
0.7 ± 0.2 0.8 ± 0.3 0.9 ± 0.4 0.7 ± 0.3 0.8 ± 0.3 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
0.6 ± 0.2 0.7 ± 0.3 0.6 ± 0.4 0.7 ± 0.3 0.7 ± 0.3 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
0.4 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 

kneeling 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 
unknown 9.0 ± 2.0 8.0 ± 1.8 8.0 ± 1.9 8.6 ± 2.2 8.4 ± 2.1 
Carrying groceries 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 
Doing dishes 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.3 0.5 ± 0.4 0.5 ± 0.3 
Gardening 0.5 ± 0.4 0.4 ± 0.4 0.4 ± 0.3 0.6 ± 0.3 0.4 ± 0.3 
Ironing 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 
Making the bed 1.1 ± 0.5 1.0 ± 0.4 0.9 ± 0.4 1.0 ± 0.4 1.0 ± 0.4 
Mopping 0.8 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.9 ± 0.3 0.8 ± 0.5 
Playing videogames 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 
Scrubbing a surface 0.4 ± 0.2 0.4 ± 0.3 0.4 ± 0.3 0.4 ± 0.3 0.5 ± 0.3 
Stacking groceries 0.7 ± 0.5 0.8 ± 0.7 0.5 ± 0.3 0.6 ± 0.4 0.7 ± 0.6 
Sweeping 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.7 ± 0.3 
Typing 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 
Vacuuming 0.6 ± 0.3 0.6 ± 0.4 0.7 ± 0.4 0.6 ± 0.3 0.7 ± 0.4 
Walking around block 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.3 0.4 ± 0.2 
Washing windows 0.9 ± 0.4 0.7 ± 0.4 0.7 ± 0.3 0.9 ± 0.4 0.7 ± 0.4 
Watching TV 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 
Weeding 0.6 ± 0.5 0.5 ± 0.3 0.4 ± 0.2 0.5 ± 0.3 0.6 ± 0.4 
Wiping/Dusting 0.8 ± 0.4 0.8 ± 0.2 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 
Writing 0.1 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.1 
taking out trash 0.9 ± 0.2 0.8 ± 0.2 0.8 ± 0.3 1.0 ± 0.4 0.9 ± 0.3 

 Table A6-4: False positive rate when evaluating the four of the highest performing feature subsets 

computed per sensor using the C4.5 classifier in a subject dependent manner.  

 
 

 

 

 

 



303 

 

 

 

 

 

 

 F-Measure 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

 ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 90.5 ± 7.1 91.0 ± 7.9 90.8 ± 5.6 87.2 ± 10.8 F-Measure 
Bench weight lifting - light 90.8 ± 9.1 90.6 ± 10.3 91.7 ± 7.4 90.8 ± 11.2 88.3 ± 9.4 
Bench weight lifting - moderate 88.0 ± 13.1 90.1 ± 9.2 86.9 ± 13.0 89.3 ± 11.8 91.9 ± 9.8 
Bicep curls - hard 89.2 ± 8.9 90.8 ± 7.5 90.9 ± 5.8 90.1 ± 6.0 85.8 ± 15.4 
Bicep curls - light 93.3 ± 5.8 94.4 ± 2.9 93.8 ± 3.1 93.6 ± 4.5 90.8 ± 6.3 
Bicep curls - moderate 88.2 ± 8.5 91.3 ± 4.1 91.2 ± 3.7 87.6 ± 7.3 95.1 ± 4.1 
Calisthenics - Crunches 93.1 ± 3.4 92.7 ± 4.9 93.3 ± 6.3 94.0 ± 3.8 88.7 ± 6.0 
Calisthenics - Sit ups 91.9 ± 3.6 94.0 ± 2.9 94.1 ± 2.5 90.0 ± 5.6 94.2 ± 4.4 
Cycling - Cycle hard - Cycle 80rpm 79.9 ± 20.8 76.1 ± 22.7 78.7 ± 21.1 82.1 ± 15.7 91.9 ± 3.9 
Cycling - Cycle light - Cycle 100rpm 93.6 ± 6.0 93.6 ± 6.1 92.0 ± 11.2 91.8 ± 11.7 79.0 ± 20.9 
Cycling - Cycle light - Cycle 60rpm 89.7 ± 5.9 89.6 ± 5.2 90.5 ± 5.2 88.7 ± 5.9 92.7 ± 9.1 
Cycling - Cycle light - Cycle 80rpm 89.1 ± 6.2 88.5 ± 10.0 89.4 ± 6.3 88.4 ± 8.5 89.7 ± 6.9 
Cycling - Cycle moderate - Cycle 80rpm 82.6 ± 8.4 79.4 ± 9.9 81.3 ± 9.6 80.8 ± 8.8 86.3 ± 10.0 
Lying down 98.3 ± 1.1 98.1 ± 1.6 98.2 ± 1.2 98.1 ± 1.2 80.0 ± 10.2 
Rowing - Rowing hard - Rowing 30spm 77.0 ± 18.9 78.2 ± 15.7 79.7 ± 14.0 76.2 ± 19.3 98.3 ± 1.1 
Rowing - Rowing light - Rowing 30spm 82.0 ± 10.5 80.9 ± 10.5 82.7 ± 9.6 83.0 ± 8.3 78.3 ± 13.8 
Rowing - Rowing moderate - Rowing 30spm 74.0 ± 16.0 73.1 ± 14.0 75.4 ± 13.6 76.2 ± 12.8 83.6 ± 8.0 
Running - Treadmill 4mph - Treadmill 0  90.0 ± 4.9 88.4 ± 7.0 88.8 ± 6.6 89.4 ± 5.6 76.0 ± 14.8 
Running - Treadmill 5mph - Treadmill 0  86.8 ± 7.3 88.0 ± 5.8 88.6 ± 4.7 87.0 ± 6.8 88.7 ± 6.8 
Running - Treadmill 6mph - Treadmill 0  83.6 ± 10.4 85.9 ± 9.0 84.3 ± 11.8 84.3 ± 9.8 86.3 ± 6.3 
Sitting 86.8 ± 7.4 90.2 ± 7.8 91.3 ± 5.2 86.8 ± 7.8 86.1 ± 7.4 
Sitting - Fidget feet legs 86.8 ± 8.1 90.3 ± 8.3 89.6 ± 7.5 90.9 ± 8.9 88.9 ± 5.4 
Sitting - Fidget hands arms 83.0 ± 12.4 88.0 ± 6.4 89.4 ± 6.1 84.0 ± 10.4 88.1 ± 10.4 
Stairs - Ascend stairs 82.5 ± 6.8 79.1 ± 9.2 81.5 ± 7.5 84.4 ± 7.3 86.3 ± 9.5 
Stairs - Descend stairs 80.1 ± 8.0 78.2 ± 8.3 78.8 ± 7.3 78.8 ± 8.5 82.8 ± 7.8 
Standing 85.5 ± 6.1 86.4 ± 9.8 86.6 ± 9.7 83.1 ± 9.5 74.4 ± 10.8 
Walking - Treadmill 2mph - Treadmill 0  86.7 ± 4.9 88.1 ± 4.4 89.2 ± 4.5 87.7 ± 5.0 83.4 ± 9.4 
Walking - Treadmill 3mph - Treadmill 0  77.4 ± 8.1 74.9 ± 7.7 73.5 ± 10.8 75.4 ± 9.3 89.1 ± 3.1 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
69.2 ± 11.1 66.2 ± 11.0 63.5 ± 10.9 67.0 ± 12.0 72.7 ± 9.4 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
69.4 ± 10.7 69.4 ± 13.3 71.0 ± 10.5 68.6 ± 14.9 64.1 ± 11.2 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
79.8 ± 10.3 80.7 ± 8.1 79.3 ± 9.4 77.8 ± 10.8 68.5 ± 11.9 

kneeling 91.8 ± 6.1 93.0 ± 5.1 93.1 ± 4.9 89.8 ± 7.5 79.7 ± 8.6 
unknown 77.0 ± 8.3 78.6 ± 8.0 79.4 ± 8.2 77.4 ± 8.8 91.7 ± 5.6 
Carrying groceries 83.4 ± 9.4 83.8 ± 9.0 84.9 ± 9.1 83.2 ± 9.5 77.1 ± 9.3 
Doing dishes 77.9 ± 11.2 81.1 ± 9.2 82.0 ± 7.1 76.2 ± 14.4 83.3 ± 11.4 
Gardening 74.5 ± 14.4 76.2 ± 18.6 78.1 ± 14.8 71.9 ± 20.3 76.8 ± 14.1 
Ironing 77.6 ± 9.4 79.2 ± 9.1 82.9 ± 10.4 77.4 ± 10.0 73.9 ± 21.0 
Making the bed 53.4 ± 11.6 56.9 ± 10.8 59.4 ± 10.3 51.1 ± 12.5 80.1 ± 8.0 
Mopping 61.5 ± 11.9 65.1 ± 14.3 65.9 ± 14.5 61.0 ± 12.8 55.0 ± 11.4 
Playing videogames 92.1 ± 5.0 93.1 ± 3.5 93.2 ± 4.1 92.1 ± 6.3 60.3 ± 15.5 
Scrubbing a surface 76.9 ± 15.6 78.4 ± 12.8 79.5 ± 13.8 76.0 ± 13.9 92.3 ± 4.3 
Stacking groceries 59.5 ± 13.3 60.7 ± 16.2 65.1 ± 10.9 61.6 ± 10.8 77.4 ± 13.2 
Sweeping 55.3 ± 13.4 57.9 ± 11.1 61.3 ± 10.4 56.2 ± 15.4 64.8 ± 14.0 
Typing 94.9 ± 2.3 94.0 ± 4.4 95.0 ± 3.2 95.0 ± 2.9 61.7 ± 12.6 
Vacuuming 67.6 ± 12.6 68.6 ± 8.2 63.8 ± 11.2 65.4 ± 10.4 94.4 ± 3.0 
Walking around block 83.2 ± 5.6 81.9 ± 6.6 82.2 ± 6.6 84.8 ± 6.4 65.2 ± 12.8 
Washing windows 60.5 ± 10.3 64.5 ± 12.8 65.1 ± 10.8 60.2 ± 11.2 82.8 ± 6.0 
Watching TV 91.6 ± 5.9 92.4 ± 5.1 93.2 ± 4.6 92.2 ± 5.2 62.0 ± 9.3 
Weeding 75.7 ± 11.8 76.6 ± 8.3 77.6 ± 5.4 73.4 ± 13.0 93.0 ± 4.0 
Wiping/Dusting 56.8 ± 14.9 59.0 ± 13.4 57.9 ± 14.7 57.5 ± 13.5 72.8 ± 9.5 
Writing 94.2 ± 3.1 95.3 ± 2.8 95.2 ± 3.6 93.2 ± 5.3 60.4 ± 14.3 
taking out trash 47.3 ± 10.9 50.3 ± 12.4 53.9 ± 9.9 45.3 ± 12.5 94.5 ± 3.0 

Table A6-5: F-Measure rate when evaluating the four of the highest performing feature subsets 

computed per sensor using the C4.5 classifier in a subject dependent manner.  
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 True Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

AC Range, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 16.7 ± 29.2 9.5 ± 22.0 10.9 ± 24.0 7.2 ± 13.5 13.4 ± 29.5 
Bench weight lifting - light 15.6 ± 28.2 35.6 ± 39.4 29.7 ± 40.6 18.0 ± 29.6 25.2 ± 33.7 
Bench weight lifting - moderate 11.6 ± 18.5 3.7 ± 6.3 1.4 ± 4.6 3.9 ± 13.1 1.3 ± 2.9 
Bicep curls - hard 19.9 ± 37.1 24.8 ± 33.0 24.4 ± 32.2 21.5 ± 34.1 12.8 ± 28.7 
Bicep curls - light 18.8 ± 27.3 17.3 ± 28.2 14.8 ± 24.8 23.3 ± 31.8 26.6 ± 35.7 
Bicep curls - moderate 12.2 ± 26.7 12.9 ± 27.4 23.6 ± 36.0 21.4 ± 32.4 17.8 ± 26.8 
Calisthenics - Crunches 16.0 ± 31.9 15.0 ± 31.7 16.4 ± 30.6 15.8 ± 29.6 24.7 ± 37.0 
Calisthenics - Sit ups 44.8 ± 42.9 34.2 ± 39.7 26.5 ± 39.5 47.4 ± 45.3 42.8 ± 44.7 
Cycling - Cycle hard - Cycle 80rpm 18.0 ± 29.9 10.7 ± 22.1 6.4 ± 11.3 10.2 ± 22.2 6.1 ± 10.1 
Cycling - Cycle light - Cycle 100rpm 70.6 ± 37.7 63.6 ± 37.9 74.2 ± 31.4 70.3 ± 36.6 69.7 ± 40.8 
Cycling - Cycle light - Cycle 60rpm 39.6 ± 36.2 33.1 ± 32.3 34.1 ± 36.5 46.3 ± 37.9 50.6 ± 38.9 
Cycling - Cycle light - Cycle 80rpm 43.0 ± 39.9 20.1 ± 29.4 13.9 ± 22.2 44.8 ± 38.2 42.5 ± 39.8 
Cycling - Cycle moderate - Cycle 80rpm 16.1 ± 19.4 10.2 ± 12.2 17.6 ± 29.4 12.7 ± 19.1 24.2 ± 35.2 
Lying down 76.9 ± 34.3 75.6 ± 36.1 79.1 ± 29.1 73.2 ± 36.1 70.0 ± 37.8 
Rowing - Rowing hard - Rowing 30spm 19.5 ± 25.5 17.6 ± 20.0 24.0 ± 33.1 16.0 ± 22.0 24.2 ± 29.9 
Rowing - Rowing light - Rowing 30spm 24.3 ± 23.7 15.7 ± 17.5 16.9 ± 19.3 30.0 ± 29.5 23.2 ± 29.1 
Rowing - Rowing moderate - Rowing 30spm 18.7 ± 21.5 17.1 ± 30.6 16.4 ± 29.8 22.7 ± 28.6 15.9 ± 18.0 
Running - Treadmill 4mph - Treadmill 0  28.2 ± 30.7 26.6 ± 35.6 28.7 ± 36.6 29.0 ± 31.0 28.5 ± 39.9 
Running - Treadmill 5mph - Treadmill 0  49.0 ± 34.9 47.3 ± 31.5 35.8 ± 34.7 43.4 ± 36.8 44.6 ± 29.3 
Running - Treadmill 6mph - Treadmill 0  38.3 ± 31.0 34.5 ± 38.2 51.2 ± 34.6 42.8 ± 36.4 48.7 ± 34.8 
Sitting 15.3 ± 26.4 27.8 ± 38.9 22.7 ± 34.0 24.6 ± 35.9 15.1 ± 33.7 
Sitting - Fidget feet legs 28.8 ± 36.8 24.1 ± 27.3 19.8 ± 26.2 22.1 ± 24.0 29.1 ± 31.9 
Sitting - Fidget hands arms 28.5 ± 32.2 16.3 ± 25.3 14.1 ± 25.1 23.7 ± 28.7 24.1 ± 28.2 
Stairs - Ascend stairs 49.4 ± 33.6 37.7 ± 29.6 23.4 ± 31.4 51.0 ± 34.7 51.3 ± 36.4 
Stairs - Descend stairs 39.7 ± 30.7 24.4 ± 24.0 16.1 ± 19.3 42.4 ± 29.8 28.2 ± 25.2 
Standing 41.3 ± 38.6 37.0 ± 33.1 36.5 ± 34.4 41.3 ± 34.8 40.3 ± 36.4 
Walking - Treadmill 2mph - Treadmill 0  45.6 ± 34.2 42.0 ± 34.5 41.5 ± 37.4 42.9 ± 34.4 48.3 ± 31.5 
Walking - Treadmill 3mph - Treadmill 0  24.3 ± 25.4 9.0 ± 13.8 8.6 ± 17.8 14.2 ± 19.2 13.1 ± 18.0 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
10.1 ± 12.6 12.8 ± 14.5 5.6 ± 9.2 20.2 ± 23.7 14.2 ± 16.4 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
10.5 ± 14.9 12.2 ± 18.0 18.2 ± 25.9 11.7 ± 13.0 11.3 ± 18.6 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
15.1 ± 23.2 9.1 ± 11.1 9.8 ± 13.7 8.0 ± 15.6 12.3 ± 18.9 

kneeling 66.9 ± 43.1 68.6 ± 38.8 66.5 ± 38.6 57.6 ± 42.0 53.8 ± 45.8 
unknown 64.0 ± 5.2 65.1 ± 6.0 65.1 ± 6.4 63.6 ± 4.9 62.4 ± 4.8 
Carrying groceries 19.8 ± 20.3 16.6 ± 17.8 18.3 ± 22.8 18.4 ± 17.6 21.6 ± 25.8 
Doing dishes 29.3 ± 28.4 31.6 ± 31.2 27.7 ± 25.3 32.0 ± 31.4 35.7 ± 29.6 
Gardening 14.4 ± 20.8 14.7 ± 20.9 7.6 ± 13.0 17.3 ± 21.7 12.1 ± 19.3 
Ironing 37.1 ± 31.5 34.0 ± 31.6 27.7 ± 28.9 39.6 ± 29.8 33.1 ± 33.6 
Making the bed 26.0 ± 17.8 25.8 ± 18.8 24.6 ± 20.0 27.0 ± 19.2 28.5 ± 20.2 
Mopping 24.2 ± 21.5 21.4 ± 21.0 22.7 ± 21.8 22.6 ± 22.7 24.2 ± 24.9 
Playing videogames 29.2 ± 34.7 16.9 ± 26.8 17.3 ± 30.5 24.1 ± 30.8 18.8 ± 28.9 
Scrubbing a surface 13.9 ± 17.8 11.8 ± 14.9 11.6 ± 14.5 13.6 ± 21.8 10.3 ± 13.4 
Stacking groceries 11.5 ± 12.0 13.9 ± 14.9 9.0 ± 12.0 14.5 ± 14.0 14.4 ± 14.9 
Sweeping 16.5 ± 17.9 12.8 ± 17.9 12.6 ± 17.3 14.5 ± 14.7 13.1 ± 15.8 
Typing 49.2 ± 37.5 37.4 ± 33.9 36.1 ± 35.2 45.0 ± 36.2 50.0 ± 37.3 
Vacuuming 23.0 ± 21.7 25.1 ± 23.4 15.0 ± 16.6 26.5 ± 26.8 22.0 ± 20.8 
Walking around block 18.9 ± 18.0 21.0 ± 23.6 12.6 ± 15.2 17.6 ± 16.5 17.1 ± 17.2 
Washing windows 22.4 ± 19.2 20.3 ± 20.6 20.0 ± 18.3 22.9 ± 20.9 26.4 ± 24.3 
Watching TV 20.1 ± 30.1 17.4 ± 25.2 15.8 ± 29.1 14.9 ± 26.3 18.7 ± 29.8 
Weeding 4.5 ± 7.8 9.8 ± 23.5 3.8 ± 7.3 5.4 ± 5.8 6.8 ± 13.6 
Wiping/Dusting 21.6 ± 20.1 21.7 ± 21.8 17.9 ± 18.3 22.5 ± 20.2 22.7 ± 21.6 
Writing 51.1 ± 40.0 42.3 ± 37.2 39.4 ± 37.4 43.2 ± 37.0 49.8 ± 38.6 
taking out trash 10.1 ± 10.4 9.1 ± 10.2 8.6 ± 8.3 10.5 ± 12.6 8.6 ± 8.8 

Table A6-6: True positive rate when evaluating the four of the highest performing feature subsets 

computed per sensor using the C4.5 classifier in a subject independent manner.  
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 False Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 0.6 ± 0.6 0.4 ± 0.4 0.2 ± 0.2 0.4 ± 0.4 0.5 ± 0.6 
Bench weight lifting - light 0.6 ± 0.7 0.8 ± 0.9 0.7 ± 0.9 0.6 ± 0.7 0.6 ± 0.8 
Bench weight lifting - moderate 0.6 ± 0.6 0.3 ± 0.4 0.2 ± 0.3 0.4 ± 0.4 0.4 ± 0.4 
Bicep curls - hard 0.8 ± 1.1 0.7 ± 0.7 1.0 ± 0.8 0.7 ± 0.7 0.4 ± 0.4 
Bicep curls - light 0.9 ± 1.2 1.2 ± 1.1 0.8 ± 0.9 0.8 ± 1.1 1.0 ± 1.1 
Bicep curls - moderate 0.5 ± 0.6 1.1 ± 0.9 1.2 ± 1.1 1.5 ± 0.9 1.0 ± 0.9 
Calisthenics - Crunches 0.2 ± 0.4 0.3 ± 0.6 0.2 ± 0.4 0.4 ± 0.6 0.5 ± 0.8 
Calisthenics - Sit ups 0.1 ± 0.1 0.2 ± 0.4 0.4 ± 0.4 0.2 ± 0.2 0.3 ± 0.5 
Cycling - Cycle hard - Cycle 80rpm 1.0 ± 1.1 0.7 ± 0.7 1.0 ± 1.1 0.8 ± 0.8 0.7 ± 0.6 
Cycling - Cycle light - Cycle 100rpm 0.1 ± 0.2 0.6 ± 1.2 0.7 ± 1.4 0.1 ± 0.2 0.1 ± 0.1 
Cycling - Cycle light - Cycle 60rpm 0.2 ± 0.2 0.5 ± 0.4 0.4 ± 0.4 0.3 ± 0.3 0.3 ± 0.2 
Cycling - Cycle light - Cycle 80rpm 1.1 ± 1.3 1.2 ± 1.2 1.2 ± 1.3 1.3 ± 1.2 1.7 ± 1.6 
Cycling - Cycle moderate - Cycle 80rpm 0.8 ± 0.9 1.1 ± 0.8 0.9 ± 1.3 0.8 ± 0.8 1.1 ± 1.2 
Lying down 0.7 ± 1.1 0.8 ± 1.5 1.0 ± 1.7 0.8 ± 1.2 0.8 ± 1.3 
Rowing - Rowing hard - Rowing 30spm 0.7 ± 0.8 0.9 ± 1.0 0.9 ± 1.2 0.7 ± 0.8 1.3 ± 1.3 
Rowing - Rowing light - Rowing 30spm 0.7 ± 0.7 0.8 ± 1.1 0.7 ± 0.9 1.0 ± 0.9 0.5 ± 0.7 
Rowing - Rowing moderate - Rowing 30spm 0.8 ± 0.8 0.9 ± 1.1 0.8 ± 1.2 0.8 ± 0.7 0.9 ± 0.8 
Running - Treadmill 4mph - Treadmill 0  0.7 ± 0.9 0.4 ± 0.6 0.4 ± 0.5 0.4 ± 0.3 0.5 ± 0.4 
Running - Treadmill 5mph - Treadmill 0  0.7 ± 0.6 0.8 ± 0.7 0.8 ± 0.6 1.0 ± 0.8 0.8 ± 0.6 
Running - Treadmill 6mph - Treadmill 0  0.3 ± 0.5 0.4 ± 0.5 0.8 ± 0.8 0.7 ± 1.0 1.0 ± 1.4 
Sitting 0.7 ± 0.9 0.6 ± 0.7 0.8 ± 0.7 0.6 ± 0.7 1.1 ± 2.4 
Sitting - Fidget feet legs 0.3 ± 0.3 0.4 ± 0.4 0.2 ± 0.3 0.4 ± 0.5 0.3 ± 0.4 
Sitting - Fidget hands arms 0.5 ± 0.8 0.4 ± 0.4 0.4 ± 0.3 0.3 ± 0.3 0.4 ± 0.3 
Stairs - Ascend stairs 0.6 ± 0.5 0.7 ± 0.5 1.1 ± 1.3 0.5 ± 0.2 0.7 ± 0.8 
Stairs - Descend stairs 0.9 ± 0.9 1.1 ± 1.1 1.2 ± 1.2 0.9 ± 0.8 1.0 ± 0.5 
Standing 0.4 ± 0.3 0.4 ± 0.5 0.4 ± 0.4 0.4 ± 0.3 0.4 ± 0.3 
Walking - Treadmill 2mph - Treadmill 0  0.8 ± 1.4 1.0 ± 1.4 0.7 ± 0.8 0.6 ± 0.8 0.8 ± 0.7 
Walking - Treadmill 3mph - Treadmill 0  1.4 ± 1.4 1.0 ± 1.1 1.1 ± 1.5 1.5 ± 1.2 1.1 ± 0.8 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
1.0 ± 0.9 1.2 ± 1.1 0.8 ± 0.8 1.9 ± 1.3 1.2 ± 1.1 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
0.8 ± 0.8 1.1 ± 1.0 1.7 ± 2.1 1.0 ± 0.9 1.2 ± 1.5 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
0.9 ± 1.2 0.6 ± 0.5 0.8 ± 1.0 0.7 ± 1.0 0.8 ± 0.8 

kneeling 0.1 ± 0.1 0.1 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 
unknown 30.0 ± 

8.0 

32.8 ± 7.5 34.9 ± 8.7 27.2 ± 5.9 27.8 ± 6.6 

Carrying groceries 1.3 ± 1.4 1.3 ± 1.4 0.9 ± 0.7 1.0 ± 0.8 1.2 ± 1.4 
Doing dishes 0.7 ± 0.5 0.7 ± 0.6 0.7 ± 0.5 1.0 ± 0.7 1.0 ± 0.8 
Gardening 0.6 ± 0.5 0.6 ± 0.5 0.8 ± 0.6 0.7 ± 0.5 0.7 ± 0.7 
Ironing 0.8 ± 0.5 0.7 ± 0.6 0.7 ± 0.5 0.8 ± 0.6 0.8 ± 0.8 
Making the bed 1.2 ± 0.7 1.1 ± 0.5 1.1 ± 0.5 1.2 ± 0.7 1.2 ± 0.7 
Mopping 0.9 ± 0.5 0.8 ± 0.6 0.7 ± 0.5 1.0 ± 1.0 1.0 ± 1.1 
Playing videogames 1.2 ± 1.3 1.0 ± 0.8 0.9 ± 1.0 1.2 ± 1.4 1.2 ± 1.5 
Scrubbing a surface 0.8 ± 0.8 1.0 ± 1.1 0.8 ± 1.0 0.8 ± 0.8 0.9 ± 0.9 
Stacking groceries 0.9 ± 0.5 0.8 ± 0.6 1.1 ± 0.9 0.8 ± 0.4 0.7 ± 0.5 
Sweeping 0.8 ± 0.6 0.8 ± 0.5 0.7 ± 0.5 0.9 ± 0.4 0.8 ± 0.4 
Typing 0.6 ± 0.6 1.0 ± 1.3 1.0 ± 1.2 0.7 ± 0.7 0.6 ± 0.6 
Vacuuming 0.7 ± 0.5 0.7 ± 0.4 0.8 ± 0.5 0.7 ± 0.3 0.7 ± 0.3 
Walking around block 1.8 ± 1.6 2.2 ± 2.0 1.9 ± 2.4 1.8 ± 2.2 1.9 ± 1.4 
Washing windows 0.9 ± 0.5 1.2 ± 1.5 1.4 ± 1.5 1.1 ± 1.2 1.0 ± 0.8 
Watching TV 1.0 ± 1.0 1.2 ± 1.3 1.2 ± 1.3 1.5 ± 1.2 1.3 ± 1.4 
Weeding 0.7 ± 0.5 0.4 ± 0.3 0.5 ± 0.4 0.6 ± 0.5 0.7 ± 0.6 
Wiping/Dusting 0.9 ± 0.5 1.0 ± 0.8 1.0 ± 1.0 0.8 ± 0.6 1.0 ± 0.5 
Writing 0.6 ± 0.8 0.4 ± 0.4 0.4 ± 0.5 1.1 ± 1.3 0.9 ± 1.0 
taking out trash 1.0 ± 0.5 0.9 ± 0.4 0.8 ± 0.6 1.0 ± 0.5 0.9 ± 0.3 

Table A6-7: False positive rate when evaluating the four of the highest performing feature subsets 

computed per sensor using the C4.5 classifier in a subject independent manner.  
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 F-Measure 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 13.0 ± 18.8 10.1 ± 21.8 11.2 ± 22.3 7.9 ± 13.5 9.8 ± 20.7 
Bench weight lifting - light 14.6 ± 21.4 30.3 ± 30.2 23.6 ± 28.3 16.6 ± 23.7 25.0 ± 29.5 
Bench weight lifting - moderate 11.3 ± 16.2 6.0 ± 10.2 2.2 ± 7.3 3.4 ± 11.0 2.1 ± 5.1 
Bicep curls - hard 12.8 ± 20.1 19.6 ± 23.3 18.5 ± 21.1 16.1 ± 24.7 10.5 ± 21.8 
Bicep curls - light 17.8 ± 19.2 13.0 ± 18.2 15.6 ± 26.8 21.4 ± 24.0 22.4 ± 23.5 
Bicep curls - moderate 10.1 ± 19.2 9.7 ± 16.6 16.0 ± 21.8 16.0 ± 19.3 14.2 ± 20.1 
Calisthenics - Crunches 18.2 ± 35.5 16.6 ± 32.0 19.9 ± 33.8 17.2 ± 31.7 24.5 ± 37.6 
Calisthenics - Sit ups 48.8 ± 44.2 36.9 ± 41.7 27.2 ± 37.3 49.0 ± 45.0 44.0 ± 44.4 
Cycling - Cycle hard - Cycle 80rpm 10.2 ± 12.6 8.1 ± 15.3 7.6 ± 13.4 7.8 ± 14.4 5.6 ± 7.1 
Cycling - Cycle light - Cycle 100rpm 73.4 ± 36.4 61.2 ± 33.4 70.4 ± 27.5 73.5 ± 33.5 71.1 ± 39.1 
Cycling - Cycle light - Cycle 60rpm 44.3 ± 37.1 36.4 ± 32.6 36.2 ± 34.9 49.4 ± 37.2 53.0 ± 37.5 
Cycling - Cycle light - Cycle 80rpm 35.6 ± 31.1 16.3 ± 22.2 13.4 ± 20.2 35.7 ± 24.9 30.2 ± 25.8 
Cycling - Cycle moderate - Cycle 80rpm 16.0 ± 15.7 10.7 ± 11.6 14.3 ± 18.2 12.2 ± 14.4 17.9 ± 22.0 
Lying down 75.3 ± 31.2 73.6 ± 31.4 76.7 ± 23.9 71.2 ± 31.9 68.3 ± 33.4 
Rowing - Rowing hard - Rowing 30spm 19.5 ± 22.7 16.4 ± 14.7 19.3 ± 20.7 15.1 ± 17.4 19.4 ± 20.0 
Rowing - Rowing light - Rowing 30spm 24.8 ± 21.4 16.2 ± 15.8 17.0 ± 17.8 27.6 ± 25.8 23.5 ± 23.7 
Rowing - Rowing moderate - Rowing 30spm 18.6 ± 19.1 12.9 ± 18.3 11.7 ± 16.4 21.5 ± 23.3 15.0 ± 14.9 
Running - Treadmill 4mph - Treadmill 0  30.7 ± 29.8 27.0 ± 33.9 30.2 ± 35.0 32.4 ± 32.0 26.8 ± 34.5 
Running - Treadmill 5mph - Treadmill 0  46.2 ± 26.5 44.8 ± 26.8 33.0 ± 28.0 36.8 ± 26.8 44.1 ± 25.9 
Running - Treadmill 6mph - Treadmill 0  38.9 ± 28.8 31.4 ± 28.3 44.6 ± 28.0 36.0 ± 26.8 37.3 ± 20.2 
Sitting 12.3 ± 19.4 24.7 ± 34.4 18.2 ± 26.8 21.6 ± 29.4 12.1 ± 26.4 
Sitting - Fidget feet legs 30.7 ± 38.1 27.4 ± 28.1 25.0 ± 31.2 27.2 ± 27.7 33.1 ± 33.2 
Sitting - Fidget hands arms 30.3 ± 31.3 18.8 ± 27.2 14.6 ± 25.0 26.8 ± 28.4 27.7 ± 29.4 
Stairs - Ascend stairs 49.6 ± 32.1 38.6 ± 27.3 20.2 ± 25.8 50.5 ± 31.2 49.3 ± 33.0 
Stairs - Descend stairs 38.5 ± 29.0 22.5 ± 18.7 14.3 ± 15.9 40.4 ± 27.7 27.3 ± 22.1 
Standing 39.9 ± 34.3 39.3 ± 32.6 38.6 ± 34.1 42.6 ± 34.7 39.8 ± 34.5 
Walking - Treadmill 2mph - Treadmill 0  45.4 ± 32.6 39.8 ± 32.6 40.6 ± 34.9 44.6 ± 32.2 49.0 ± 27.7 
Walking - Treadmill 3mph - Treadmill 0  21.0 ± 20.0 8.7 ± 11.6 6.9 ± 12.8 13.0 ± 15.1 12.2 ± 14.0 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
10.0 ± 10.1 12.5 ± 11.6 5.6 ± 8.3 14.9 ± 13.8 13.5 ± 13.2 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
11.1 ± 12.6 11.1 ± 12.1 13.7 ± 15.6 12.2 ± 11.0 10.8 ± 12.0 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
12.6 ± 16.2 11.1 ± 11.8 10.5 ± 15.3 8.0 ± 10.5 12.7 ± 15.2 

kneeling 65.7 ± 42.2 69.0 ± 37.0 66.5 ± 36.6 58.6 ± 41.3 53.9 ± 45.2 
unknown 54.0 ± 8.9 53.2 ± 8.4 52.0 ± 8.2 55.2 ± 9.0 54.0 ± 8.9 
Carrying groceries 21.3 ± 20.7 18.1 ± 19.1 20.4 ± 24.8 21.1 ± 19.5 21.5 ± 24.4 
Doing dishes 28.8 ± 25.6 31.9 ± 26.7 29.3 ± 24.2 30.4 ± 25.9 33.3 ± 24.5 
Gardening 16.3 ± 22.9 16.3 ± 22.3 9.0 ± 15.1 18.5 ± 22.7 13.0 ± 21.2 
Ironing 37.9 ± 29.7 35.4 ± 30.8 29.4 ± 27.5 40.6 ± 28.4 33.1 ± 30.4 
Making the bed 25.6 ± 17.6 25.6 ± 17.2 24.7 ± 17.5 26.7 ± 17.9 28.0 ± 18.2 
Mopping 24.7 ± 21.3 23.0 ± 21.1 25.0 ± 23.4 21.3 ± 20.6 23.2 ± 23.1 
Playing videogames 27.7 ± 31.0 17.5 ± 25.8 16.1 ± 27.1 22.5 ± 27.4 17.6 ± 25.6 
Scrubbing a surface 14.9 ± 18.6 13.3 ± 15.6 13.4 ± 15.1 14.9 ± 21.1 12.1 ± 15.6 
Stacking groceries 13.5 ± 14.0 16.0 ± 16.9 10.1 ± 12.6 16.6 ± 16.0 16.8 ± 16.8 
Sweeping 17.9 ± 19.0 14.0 ± 16.8 14.3 ± 18.3 16.3 ± 16.6 15.3 ± 17.6 
Typing 50.1 ± 35.5 38.0 ± 33.4 35.4 ± 32.2 45.4 ± 35.6 50.6 ± 35.4 
Vacuuming 25.9 ± 23.9 27.8 ± 25.2 17.2 ± 17.6 28.2 ± 26.7 25.5 ± 22.5 
Walking around block 18.9 ± 16.3 20.1 ± 23.2 13.0 ± 14.0 19.1 ± 17.8 17.8 ± 18.4 
Washing windows 24.7 ± 21.1 19.9 ± 17.3 19.1 ± 16.8 23.5 ± 21.1 28.3 ± 24.3 
Watching TV 19.1 ± 24.9 18.2 ± 23.6 15.4 ± 26.4 15.1 ± 26.0 19.3 ± 29.6 
Weeding 6.0 ± 10.1 7.0 ± 11.8 5.6 ± 10.7 7.2 ± 7.7 6.6 ± 11.0 
Wiping/Dusting 23.7 ± 21.1 21.9 ± 19.9 19.3 ± 17.6 24.7 ± 22.0 23.9 ± 22.6 
Writing 51.6 ± 38.4 44.6 ± 35.2 41.7 ± 35.9 38.9 ± 31.3 47.6 ± 35.6 
taking out trash 11.5 ± 11.7 10.4 ± 11.3 10.6 ± 9.9 11.7 ± 13.6 10.2 ± 9.9 

Table A6-8: F-Measure when evaluating the four of the highest performing feature subsets computed 

per sensor using the C4.5 classifier in a subject independent manner.  
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 True Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 89.6 ± 10.3 87.3 ± 8.5 89.2 ± 7.2 90.3 ± 7.5 90.8 ± 10.5 
Bench weight lifting - light 93.6 ± 6.4 90.3 ± 15.3 92.9 ± 8.1 91.2 ± 9.4 93.8 ± 7.6 
Bench weight lifting - moderate 84.9 ± 16.4 85.8 ± 12.7 87.0 ± 11.0 86.4 ± 13.7 89.1 ± 11.5 
Bicep curls - hard 90.9 ± 12.0 91.3 ± 11.9 91.4 ± 10.2 91.6 ± 8.1 88.4 ± 14.5 
Bicep curls - light 89.7 ± 8.8 88.6 ± 10.6 89.3 ± 8.7 89.1 ± 9.7 88.8 ± 9.6 
Bicep curls - moderate 91.5 ± 8.5 90.8 ± 8.3 91.0 ± 8.6 89.5 ± 9.9 89.8 ± 8.7 
Calisthenics - Crunches 91.9 ± 5.2 95.4 ± 3.8 95.5 ± 3.7 93.0 ± 5.4 95.2 ± 5.5 
Calisthenics - Sit ups 92.3 ± 4.8 95.0 ± 4.3 94.3 ± 5.3 93.2 ± 5.0 95.2 ± 4.7 
Cycling - Cycle hard - Cycle 80rpm 83.5 ± 18.9 84.0 ± 13.2 85.8 ± 13.6 85.4 ± 12.8 86.8 ± 13.4 
Cycling - Cycle light - Cycle 100rpm 95.8 ± 5.4 94.2 ± 5.4 93.4 ± 7.2 94.9 ± 5.8 94.6 ± 5.1 
Cycling - Cycle light - Cycle 60rpm 88.6 ± 7.3 91.2 ± 5.6 92.3 ± 5.4 91.1 ± 4.8 92.4 ± 4.9 
Cycling - Cycle light - Cycle 80rpm 92.6 ± 5.5 91.8 ± 5.6 93.1 ± 5.6 92.9 ± 5.7 91.7 ± 8.7 
Cycling - Cycle moderate - Cycle 80rpm 86.2 ± 8.2 83.8 ± 8.9 85.6 ± 8.9 85.0 ± 8.4 85.7 ± 7.1 
Lying down 99.5 ± 0.8 99.2 ± 1.4 99.2 ± 1.2 99.6 ± 0.6 99.2 ± 1.0 
Rowing - Rowing hard - Rowing 30spm 81.6 ± 15.2 80.8 ± 16.0 83.2 ± 13.4 82.8 ± 13.0 85.3 ± 12.2 
Rowing - Rowing light - Rowing 30spm 86.5 ± 9.3 84.5 ± 12.5 86.9 ± 9.0 82.8 ± 10.3 83.6 ± 11.8 
Rowing - Rowing moderate - Rowing 30spm 81.6 ± 15.8 78.2 ± 14.6 79.6 ± 13.4 80.1 ± 14.9 81.4 ± 11.5 
Running - Treadmill 4mph - Treadmill 0  88.8 ± 8.7 92.0 ± 7.6 88.9 ± 8.6 89.8 ± 10.2 90.0 ± 8.5 
Running - Treadmill 5mph - Treadmill 0  87.7 ± 6.1 87.3 ± 8.6 88.5 ± 6.9 86.9 ± 5.7 86.6 ± 8.6 
Running - Treadmill 6mph - Treadmill 0  87.2 ± 15.9 86.8 ± 13.2 90.4 ± 8.0 79.8 ± 19.3 78.9 ± 19.2 
Sitting 92.4 ± 6.6 91.4 ± 5.8 92.0 ± 6.7 89.6 ± 7.9 93.9 ± 4.9 
Sitting - Fidget feet legs 91.2 ± 7.3 91.9 ± 7.0 94.6 ± 6.1 90.1 ± 9.9 91.0 ± 9.1 
Sitting - Fidget hands arms 88.9 ± 8.9 91.7 ± 6.4 92.4 ± 6.5 83.2 ± 12.4 91.6 ± 7.5 
Stairs - Ascend stairs 85.4 ± 5.8 86.1 ± 9.5 87.2 ± 7.0 86.1 ± 9.1 82.7 ± 8.2 
Stairs - Descend stairs 85.1 ± 7.3 85.5 ± 8.0 85.8 ± 5.6 84.6 ± 8.1 83.8 ± 7.7 
Standing 88.4 ± 5.8 89.9 ± 6.8 90.7 ± 6.1 85.2 ± 13.9 87.4 ± 9.9 
Walking - Treadmill 2mph - Treadmill 0  89.1 ± 4.5 91.2 ± 5.0 92.0 ± 6.3 90.9 ± 4.9 92.1 ± 5.0 
Walking - Treadmill 3mph - Treadmill 0  82.6 ± 6.9 84.2 ± 7.6 83.0 ± 8.5 79.1 ± 7.2 80.2 ± 8.9 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
76.4 ± 11.4 75.5 ± 11.9 79.1 ± 10.2 74.4 ± 10.0 70.0 ± 15.0 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
76.8 ± 13.6 74.8 ± 11.9 78.5 ± 11.1 75.2 ± 12.0 72.4 ± 11.7 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
83.0 ± 12.4 86.3 ± 10.3 85.3 ± 9.2 82.9 ± 11.0 81.4 ± 12.4 

kneeling 93.0 ± 5.9 96.2 ± 4.0 95.3 ± 4.0 94.4 ± 5.0 95.2 ± 3.9 
unknown 74.8 ± 5.5 75.6 ± 5.2 76.4 ± 5.9 73.5 ± 7.0 73.6 ± 6.4 
Carrying groceries 86.6 ± 7.4 87.2 ± 8.7 88.8 ± 6.8 84.9 ± 10.6 87.0 ± 10.8 
Doing dishes 81.5 ± 10.9 83.1 ± 9.7 83.8 ± 7.5 75.3 ± 10.8 80.4 ± 11.0 
Gardening 80.8 ± 10.4 80.9 ± 14.8 81.0 ± 10.7 74.5 ± 13.4 74.1 ± 12.4 
Ironing 79.4 ± 10.2 81.9 ± 9.6 84.1 ± 8.6 77.0 ± 12.8 77.6 ± 13.1 
Making the bed 54.5 ± 13.4 58.5 ± 13.8 59.4 ± 11.3 54.8 ± 9.0 53.0 ± 10.2 
Mopping 62.0 ± 12.1 65.6 ± 13.0 67.7 ± 10.9 60.2 ± 12.8 60.2 ± 13.9 
Playing videogames 96.1 ± 3.8 95.4 ± 3.6 95.5 ± 4.0 94.6 ± 6.2 95.1 ± 5.0 
Scrubbing a surface 79.3 ± 12.9 79.5 ± 15.8 80.0 ± 14.5 77.1 ± 14.6 79.0 ± 14.4 
Stacking groceries 58.2 ± 13.2 61.3 ± 15.5 64.6 ± 14.6 59.6 ± 13.0 58.4 ± 14.6 
Sweeping 66.0 ± 13.7 66.8 ± 13.1 65.0 ± 14.4 62.4 ± 14.0 64.7 ± 14.8 
Typing 96.8 ± 4.4 96.6 ± 3.4 96.3 ± 3.8 96.1 ± 3.9 96.7 ± 4.1 
Vacuuming 71.6 ± 9.2 71.4 ± 10.4 70.0 ± 10.6 64.6 ± 10.4 67.9 ± 11.5 
Walking around block 84.2 ± 9.9 85.3 ± 9.9 85.2 ± 8.2 80.6 ± 9.1 83.8 ± 9.0 
Washing windows 66.9 ± 8.4 68.6 ± 10.4 67.0 ± 10.1 62.9 ± 11.4 63.8 ± 8.8 
Watching TV 91.0 ± 6.9 94.0 ± 4.7 92.2 ± 6.6 92.9 ± 4.3 94.5 ± 5.8 
Weeding 72.1 ± 16.5 78.9 ± 10.3 76.5 ± 12.4 68.0 ± 14.6 69.7 ± 14.2 
Wiping/Dusting 63.7 ± 13.2 65.5 ± 13.0 66.8 ± 13.5 57.3 ± 13.2 60.0 ± 13.6 
Writing 95.6 ± 3.9 96.5 ± 3.6 96.1 ± 3.8 96.7 ± 3.7 96.9 ± 2.6 
taking out trash 45.8 ± 11.7 56.1 ± 13.2 59.2 ± 9.8 48.4 ± 11.4 53.9 ± 12.8 

Table A6-9: True positive rate when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject dependent manner.  
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 False Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Bench weight lifting - light 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Bench weight lifting - moderate 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Bicep curls - hard 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Bicep curls - light 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.2 
Bicep curls - moderate 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 
Calisthenics - Crunches 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 
Calisthenics - Sit ups 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Cycling - Cycle hard - Cycle 80rpm 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Cycling - Cycle light - Cycle 100rpm 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 
Cycling - Cycle light - Cycle 60rpm 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Cycling - Cycle light - Cycle 80rpm 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 
Cycling - Cycle moderate - Cycle 80rpm 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Lying down 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Rowing - Rowing hard - Rowing 30spm 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 
Rowing - Rowing light - Rowing 30spm 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Rowing - Rowing moderate - Rowing 30spm 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 
Running - Treadmill 4mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Running - Treadmill 5mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Running - Treadmill 6mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Sitting 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Sitting - Fidget feet legs 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 
Sitting - Fidget hands arms 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 
Stairs - Ascend stairs 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 
Stairs - Descend stairs 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Standing 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.2 ± 0.1 0.1 ± 0.1 
Walking - Treadmill 2mph - Treadmill 0  0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 
Walking - Treadmill 3mph - Treadmill 0  0.3 ± 0.2 0.4 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 0.5 ± 0.1 0.6 ± 0.2 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.3 ± 0.2 

kneeling 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.0 ± 0.1 0.1 ± 0.0 
unknown 7.6 ± 1.4 7.3 ± 1.4 7.2 ± 1.3 8.2 ± 1.4 7.6 ± 1.5 
Carrying groceries 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 
Doing dishes 0.3 ± 0.2 0.4 ± 0.2 0.2 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 
Gardening 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 
Ironing 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 
Making the bed 0.8 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 0.8 ± 0.3 0.8 ± 0.2 
Mopping 0.7 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.3 
Playing videogames 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Scrubbing a surface 0.3 ± 0.2 0.2 ± 0.1 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 
Stacking groceries 0.6 ± 0.3 0.5 ± 0.3 0.6 ± 0.3 0.6 ± 0.2 0.6 ± 0.3 
Sweeping 0.6 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.7 ± 0.3 0.6 ± 0.3 
Typing 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Vacuuming 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.5 ± 0.3 
Walking around block 0.3 ± 0.2 0.2 ± 0.2 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 
Washing windows 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 
Watching TV 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.0 
Weeding 0.4 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 
Wiping/Dusting 0.6 ± 0.3 0.5 ± 0.2 0.6 ± 0.2 0.7 ± 0.4 0.8 ± 0.4 
Writing 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
taking out trash 0.7 ± 0.2 0.7 ± 0.3 0.6 ± 0.2 0.7 ± 0.3 0.7 ± 0.2 

Table A6-10: False positive rate when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject dependent manner.  
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 F-Measure 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 89.8 ± 10.6 88.7 ± 7.6 89.7 ± 6.3 89.1 ± 8.0 91.1 ± 9.9 
Bench weight lifting - light 90.7 ± 7.8 88.2 ± 13.6 91.0 ± 8.4 89.6 ± 9.3 91.1 ± 9.2 
Bench weight lifting - moderate 84.7 ± 13.3 86.4 ± 11.2 87.7 ± 9.5 84.9 ± 12.4 88.6 ± 10.3 
Bicep curls - hard 88.9 ± 12.2 90.5 ± 10.8 91.2 ± 8.2 90.3 ± 8.5 87.6 ± 15.2 
Bicep curls - light 90.2 ± 7.3 88.8 ± 10.1 89.0 ± 8.4 88.8 ± 8.9 87.7 ± 9.1 
Bicep curls - moderate 90.6 ± 8.8 89.6 ± 7.6 90.1 ± 8.1 88.6 ± 9.4 88.1 ± 8.6 
Calisthenics - Crunches 92.5 ± 4.4 95.4 ± 2.9 94.7 ± 2.9 92.5 ± 4.3 94.9 ± 3.1 
Calisthenics - Sit ups 92.0 ± 4.2 92.8 ± 5.1 92.6 ± 5.5 92.3 ± 4.2 93.2 ± 5.0 
Cycling - Cycle hard - Cycle 80rpm 81.9 ± 18.6 82.6 ± 12.5 83.0 ± 12.9 84.0 ± 13.7 84.9 ± 13.4 
Cycling - Cycle light - Cycle 100rpm 94.3 ± 5.3 93.3 ± 5.6 93.5 ± 6.5 94.2 ± 6.0 93.6 ± 6.4 
Cycling - Cycle light - Cycle 60rpm 89.7 ± 5.0 90.9 ± 4.8 91.9 ± 4.4 90.2 ± 3.3 90.8 ± 4.6 
Cycling - Cycle light - Cycle 80rpm 91.6 ± 5.3 91.4 ± 5.1 92.2 ± 4.6 91.6 ± 4.3 91.6 ± 6.5 
Cycling - Cycle moderate - Cycle 80rpm 86.3 ± 7.2 84.3 ± 6.8 85.6 ± 7.1 85.2 ± 7.0 84.8 ± 6.8 
Lying down 99.0 ± 0.8 98.6 ± 1.4 98.7 ± 1.0 98.9 ± 0.8 98.8 ± 1.0 
Rowing - Rowing hard - Rowing 30spm 81.4 ± 14.3 79.6 ± 16.0 83.0 ± 13.0 82.2 ± 12.4 84.2 ± 11.3 
Rowing - Rowing light - Rowing 30spm 85.8 ± 8.0 84.7 ± 11.5 86.5 ± 7.9 84.2 ± 8.7 83.7 ± 10.0 
Rowing - Rowing moderate - Rowing 30spm 80.1 ± 15.2 78.0 ± 14.2 79.3 ± 13.2 78.3 ± 14.4 79.8 ± 11.5 
Running - Treadmill 4mph - Treadmill 0  88.5 ± 6.4 89.9 ± 6.7 88.5 ± 6.2 89.2 ± 7.7 88.7 ± 7.0 
Running - Treadmill 5mph - Treadmill 0  87.2 ± 5.1 87.6 ± 6.6 88.8 ± 5.2 86.1 ± 5.7 87.3 ± 6.1 
Running - Treadmill 6mph - Treadmill 0  86.1 ± 13.3 84.6 ± 12.4 89.0 ± 7.4 80.4 ± 17.3 79.8 ± 17.3 
Sitting 89.6 ± 6.4 89.3 ± 6.4 90.9 ± 5.5 88.5 ± 7.6 90.5 ± 4.6 
Sitting - Fidget feet legs 90.4 ± 6.0 92.3 ± 5.6 94.0 ± 4.9 88.4 ± 9.7 89.2 ± 6.8 
Sitting - Fidget hands arms 85.8 ± 8.4 91.3 ± 5.6 90.9 ± 4.3 82.4 ± 11.6 89.2 ± 7.3 
Stairs - Ascend stairs 85.4 ± 5.8 84.3 ± 8.2 86.2 ± 7.0 84.9 ± 8.1 81.6 ± 7.2 
Stairs - Descend stairs 83.1 ± 7.4 85.2 ± 6.5 85.7 ± 5.7 84.2 ± 7.5 82.9 ± 7.2 
Standing 87.4 ± 6.2 90.0 ± 5.2 91.0 ± 4.2 83.6 ± 13.3 87.1 ± 8.8 
Walking - Treadmill 2mph - Treadmill 0  88.4 ± 3.9 89.8 ± 4.2 90.6 ± 5.6 89.9 ± 3.9 90.5 ± 4.1 
Walking - Treadmill 3mph - Treadmill 0  82.5 ± 6.1 81.8 ± 7.1 82.3 ± 8.1 79.9 ± 6.3 79.6 ± 8.5 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
75.5 ± 9.6 74.4 ± 11.2 77.1 ± 9.1 73.0 ± 7.8 68.7 ± 13.5 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
76.9 ± 12.4 74.5 ± 11.1 77.7 ± 10.0 74.6 ± 11.1 71.6 ± 11.0 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
83.3 ± 10.7 85.5 ± 9.2 85.2 ± 8.4 83.5 ± 10.3 81.4 ± 11.5 

kneeling 92.5 ± 4.6 95.1 ± 3.1 93.9 ± 3.7 94.6 ± 5.0 93.7 ± 3.7 
unknown 75.3 ± 5.4 76.2 ± 5.2 76.8 ± 5.2 73.7 ± 6.9 74.5 ± 6.0 
Carrying groceries 86.4 ± 7.4 86.9 ± 7.2 88.7 ± 5.8 85.2 ± 9.4 87.4 ± 9.9 
Doing dishes 81.4 ± 10.0 82.2 ± 9.0 84.9 ± 6.2 76.4 ± 9.3 78.8 ± 9.6 
Gardening 80.3 ± 10.2 80.3 ± 15.3 79.9 ± 10.0 73.7 ± 12.9 75.5 ± 12.8 
Ironing 79.4 ± 9.3 82.1 ± 8.7 83.1 ± 8.3 75.9 ± 11.4 78.0 ± 11.6 
Making the bed 54.8 ± 13.2 59.0 ± 13.4 59.7 ± 10.8 55.0 ± 8.8 54.3 ± 8.8 
Mopping 62.2 ± 12.4 66.0 ± 11.6 67.8 ± 10.6 61.2 ± 11.9 60.0 ± 14.0 
Playing videogames 95.2 ± 3.3 95.2 ± 2.7 94.8 ± 3.2 94.1 ± 4.5 94.3 ± 4.1 
Scrubbing a surface 80.4 ± 11.1 82.2 ± 12.6 81.3 ± 13.1 78.4 ± 14.5 80.9 ± 13.7 
Stacking groceries 59.5 ± 12.9 62.9 ± 16.0 64.2 ± 13.5 60.2 ± 12.9 59.5 ± 14.9 
Sweeping 65.7 ± 12.5 66.7 ± 13.0 67.0 ± 14.0 62.7 ± 13.2 65.4 ± 13.2 
Typing 96.5 ± 3.0 95.9 ± 2.9 95.9 ± 3.2 94.7 ± 2.8 95.4 ± 3.2 
Vacuuming 70.8 ± 9.6 72.7 ± 10.1 71.3 ± 10.5 65.9 ± 9.2 69.4 ± 11.2 
Walking around block 83.9 ± 9.7 85.9 ± 8.7 86.5 ± 6.9 81.3 ± 8.2 84.4 ± 6.7 
Washing windows 69.1 ± 7.3 70.6 ± 9.4 69.7 ± 9.0 64.9 ± 9.7 65.7 ± 7.4 
Watching TV 91.0 ± 6.4 92.1 ± 4.9 91.8 ± 5.5 92.3 ± 4.2 93.5 ± 4.2 
Weeding 73.8 ± 14.8 77.6 ± 10.6 78.1 ± 10.5 70.7 ± 13.7 71.5 ± 13.4 
Wiping/Dusting 63.8 ± 12.8 67.0 ± 12.1 67.0 ± 11.6 58.7 ± 14.3 60.0 ± 14.2 
Writing 94.8 ± 3.8 95.2 ± 2.6 95.5 ± 2.6 95.5 ± 3.8 95.6 ± 2.3 
taking out trash 48.9 ± 11.3 56.9 ± 12.1 60.6 ± 8.9 50.1 ± 11.3 54.5 ± 10.9 

Table A6-11: F-Measure rate when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject dependent manner.  
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 True Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 12.8 ± 31.2 21.2 ± 35.5 27.5 ± 36.0 4.8 ± 9.5 14.1 ± 27.0 
Bench weight lifting - light 39.5 ± 39.0 38.2 ± 38.6 59.6 ± 39.3 28.3 ± 29.6 28.5 ± 32.4 
Bench weight lifting - moderate 26.3 ± 34.3 29.2 ± 35.9 27.3 ± 33.1 25.6 ± 31.3 31.9 ± 40.8 
Bicep curls - hard 44.8 ± 34.7 32.4 ± 39.4 28.1 ± 38.5 30.8 ± 32.0 31.3 ± 37.4 
Bicep curls - light 31.8 ± 39.1 25.6 ± 35.2 30.2 ± 38.0 25.1 ± 28.8 19.0 ± 29.2 
Bicep curls - moderate 22.0 ± 31.7 20.2 ± 30.9 36.6 ± 34.7 28.3 ± 34.6 28.4 ± 33.8 
Calisthenics - Crunches 55.1 ± 40.0 58.4 ± 40.7 60.0 ± 38.1 57.2 ± 37.9 48.2 ± 38.1 
Calisthenics - Sit ups 74.6 ± 34.9 70.6 ± 36.7 53.9 ± 42.5 87.5 ± 22.8 66.9 ± 36.2 
Cycling - Cycle hard - Cycle 80rpm 25.7 ± 27.0 18.7 ± 32.2 7.4 ± 9.6 19.1 ± 26.5 30.8 ± 32.4 
Cycling - Cycle light - Cycle 100rpm 67.1 ± 35.1 89.7 ± 19.7 85.4 ± 22.4 65.6 ± 34.2 85.3 ± 25.2 
Cycling - Cycle light - Cycle 60rpm 63.4 ± 34.6 64.0 ± 38.8 58.8 ± 36.7 72.2 ± 27.3 70.3 ± 33.7 
Cycling - Cycle light - Cycle 80rpm 28.8 ± 27.6 34.4 ± 39.7 44.6 ± 43.6 22.6 ± 30.6 34.9 ± 36.3 
Cycling - Cycle moderate - Cycle 80rpm 26.7 ± 26.2 22.4 ± 27.3 21.9 ± 23.3 28.8 ± 25.7 21.4 ± 15.2 
Lying down 88.4 ± 25.6 90.9 ± 18.6 85.2 ± 26.8 83.0 ± 28.1 82.9 ± 23.7 
Rowing - Rowing hard - Rowing 30spm 29.0 ± 29.3 39.2 ± 36.7 32.0 ± 41.4 30.2 ± 33.9 21.6 ± 30.2 
Rowing - Rowing light - Rowing 30spm 41.9 ± 40.0 53.6 ± 33.6 42.3 ± 38.4 26.0 ± 29.8 32.2 ± 29.4 
Rowing - Rowing moderate - Rowing 30spm 22.9 ± 35.7 8.1 ± 15.3 19.6 ± 37.2 28.7 ± 30.7 22.1 ± 23.4 
Running - Treadmill 4mph - Treadmill 0  44.8 ± 28.8 53.5 ± 41.6 41.6 ± 41.3 44.8 ± 40.4 50.4 ± 38.7 
Running - Treadmill 5mph - Treadmill 0  48.7 ± 34.7 46.6 ± 39.6 55.2 ± 35.0 36.1 ± 32.6 42.7 ± 32.4 
Running - Treadmill 6mph - Treadmill 0  51.0 ± 35.5 51.4 ± 35.1 63.8 ± 38.1 42.0 ± 37.2 49.5 ± 34.1 
Sitting 64.2 ± 39.9 61.8 ± 41.2 47.3 ± 41.2 37.8 ± 44.2 30.7 ± 40.7 
Sitting - Fidget feet legs 45.2 ± 32.8 46.3 ± 39.3 40.0 ± 38.8 44.4 ± 35.2 51.6 ± 36.9 
Sitting - Fidget hands arms 48.5 ± 36.2 45.3 ± 32.6 40.3 ± 35.0 51.1 ± 30.5 42.8 ± 28.6 
Stairs - Ascend stairs 66.3 ± 21.0 44.1 ± 21.8 37.4 ± 22.6 59.9 ± 27.6 66.5 ± 22.5 
Stairs - Descend stairs 69.9 ± 27.3 50.5 ± 26.2 47.8 ± 29.8 63.5 ± 25.6 50.7 ± 28.0 
Standing 65.4 ± 32.1 49.8 ± 37.2 59.0 ± 36.5 64.6 ± 27.5 44.6 ± 36.8 
Walking - Treadmill 2mph - Treadmill 0  50.9 ± 31.2 43.6 ± 30.5 48.9 ± 32.4 54.2 ± 29.8 54.4 ± 27.5 
Walking - Treadmill 3mph - Treadmill 0  23.4 ± 24.6 8.3 ± 11.4 16.7 ± 19.0 21.5 ± 22.4 17.1 ± 16.3 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
18.8 ± 20.4 11.1 ± 17.8 9.8 ± 12.2 16.0 ± 17.8 18.1 ± 28.0 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
16.1 ± 23.8 15.6 ± 22.4 15.0 ± 23.2 19.3 ± 21.8 14.3 ± 16.4 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
22.0 ± 24.6 22.5 ± 24.3 28.2 ± 25.7 28.9 ± 25.7 21.1 ± 24.1 

kneeling 89.5 ± 21.5 93.8 ± 7.3 88.0 ± 16.6 74.1 ± 40.7 74.5 ± 37.4 
unknown 65.4 ± 6.6 64.0 ± 6.4 62.6 ± 7.5 63.8 ± 5.3 61.7 ± 4.6 
Carrying groceries 55.5 ± 26.5 33.8 ± 23.9 34.5 ± 29.5 49.1 ± 26.1 52.2 ± 29.0 
Doing dishes 45.2 ± 30.0 53.6 ± 26.1 54.1 ± 22.9 48.0 ± 24.2 44.1 ± 23.1 
Gardening 14.0 ± 21.4 19.1 ± 22.4 14.1 ± 17.9 15.2 ± 19.0 11.8 ± 14.8 
Ironing 51.3 ± 28.5 51.9 ± 27.5 56.7 ± 26.4 43.8 ± 30.6 45.5 ± 27.6 
Making the bed 37.8 ± 15.7 44.4 ± 17.9 40.5 ± 20.6 32.1 ± 12.5 36.8 ± 15.7 
Mopping 31.5 ± 20.0 31.3 ± 16.5 26.5 ± 17.7 30.9 ± 11.9 31.1 ± 9.4 
Playing videogames 49.7 ± 39.6 46.5 ± 43.9 45.3 ± 44.1 36.2 ± 39.8 47.1 ± 43.2 
Scrubbing a surface 36.7 ± 26.3 38.5 ± 19.7 40.1 ± 25.7 34.3 ± 28.2 31.1 ± 27.4 
Stacking groceries 34.4 ± 15.4 32.3 ± 15.3 28.7 ± 17.2 25.8 ± 14.9 29.2 ± 16.4 
Sweeping 33.8 ± 21.0 31.6 ± 18.1 30.2 ± 18.4 29.8 ± 15.5 27.9 ± 13.8 
Typing 60.0 ± 37.6 70.8 ± 27.6 59.6 ± 37.4 58.8 ± 36.2 64.0 ± 33.9 
Vacuuming 41.8 ± 21.2 44.5 ± 19.1 38.4 ± 19.9 40.5 ± 21.0 43.2 ± 24.6 
Walking around block 29.4 ± 13.7 25.4 ± 18.7 23.8 ± 19.1 26.0 ± 17.0 23.6 ± 16.3 
Washing windows 36.7 ± 21.6 35.4 ± 17.8 36.7 ± 18.2 38.2 ± 20.9 40.7 ± 20.8 
Watching TV 35.6 ± 39.5 35.5 ± 38.7 20.7 ± 32.9 39.8 ± 41.0 41.7 ± 40.4 
Weeding 10.6 ± 14.0 20.6 ± 25.8 15.7 ± 18.0 14.3 ± 23.1 14.5 ± 25.7 
Wiping/Dusting 39.9 ± 19.5 38.9 ± 17.4 39.2 ± 17.7 33.8 ± 18.6 36.4 ± 19.6 
Writing 56.8 ± 42.9 71.5 ± 34.3 67.0 ± 40.8 65.8 ± 35.9 63.1 ± 37.3 
taking out trash 18.5 ± 11.3 20.1 ± 10.9 18.4 ± 12.2 18.2 ± 12.1 16.0 ± 10.0 

Table A6-12: True positive rate when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject independent manner.  
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 False Positive Rate 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 0.3 ± 0.4 0.4 ± 0.5 0.2 ± 0.3 0.4 ± 0.5 0.3 ± 0.5 
Bench weight lifting - light 0.5 ± 0.7 0.7 ± 0.8 0.6 ± 0.6 0.5 ± 0.5 0.6 ± 0.7 
Bench weight lifting - moderate 0.4 ± 0.5 0.6 ± 0.5 0.4 ± 0.4 0.6 ± 0.5 0.8 ± 0.8 
Bicep curls - hard 1.4 ± 0.8 1.0 ± 1.2 0.8 ± 0.9 0.9 ± 0.9 1.1 ± 1.0 
Bicep curls - light 0.9 ± 1.0 0.8 ± 0.9 0.5 ± 0.6 0.5 ± 0.6 0.6 ± 0.6 
Bicep curls - moderate 0.5 ± 0.5 1.0 ± 1.0 1.1 ± 1.0 0.8 ± 0.8 0.9 ± 0.8 
Calisthenics - Crunches 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.2 0.4 ± 0.8 0.3 ± 0.5 
Calisthenics - Sit ups 0.2 ± 0.3 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 
Cycling - Cycle hard - Cycle 80rpm 0.9 ± 0.7 0.8 ± 0.9 0.4 ± 0.3 0.9 ± 0.9 1.1 ± 1.1 
Cycling - Cycle light - Cycle 100rpm 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.5 
Cycling - Cycle light - Cycle 60rpm 0.1 ± 0.1 0.3 ± 0.2 0.3 ± 0.4 0.2 ± 0.3 0.2 ± 0.2 
Cycling - Cycle light - Cycle 80rpm 0.9 ± 1.0 1.2 ± 1.2 1.2 ± 1.1 0.6 ± 0.8 0.9 ± 1.0 
Cycling - Cycle moderate - Cycle 80rpm 0.9 ± 0.7 0.6 ± 0.7 0.7 ± 1.0 1.0 ± 0.8 0.7 ± 0.6 
Lying down 0.1 ± 0.1 0.2 ± 0.3 0.2 ± 0.3 0.4 ± 0.6 0.3 ± 0.4 
Rowing - Rowing hard - Rowing 30spm 0.6 ± 0.6 0.8 ± 0.9 0.8 ± 0.8 1.0 ± 1.1 0.6 ± 0.8 
Rowing - Rowing light - Rowing 30spm 1.2 ± 1.1 1.6 ± 1.0 1.4 ± 1.4 0.8 ± 0.8 0.9 ± 0.8 
Rowing - Rowing moderate - Rowing 30spm 0.9 ± 1.0 0.4 ± 0.5 0.6 ± 1.0 1.1 ± 0.9 1.0 ± 1.0 
Running - Treadmill 4mph - Treadmill 0  0.6 ± 0.6 0.9 ± 1.5 0.3 ± 0.4 0.4 ± 0.3 0.7 ± 0.6 
Running - Treadmill 5mph - Treadmill 0  0.5 ± 0.6 0.6 ± 0.5 0.6 ± 0.6 0.7 ± 0.6 0.6 ± 0.4 
Running - Treadmill 6mph - Treadmill 0  0.3 ± 0.4 0.5 ± 0.6 0.6 ± 0.8 0.4 ± 0.4 0.5 ± 0.6 
Sitting 0.5 ± 0.8 0.6 ± 0.9 0.9 ± 1.0 0.6 ± 0.8 0.6 ± 1.0 
Sitting - Fidget feet legs 0.4 ± 0.6 0.3 ± 0.4 0.4 ± 0.5 0.3 ± 0.3 0.3 ± 0.2 
Sitting - Fidget hands arms 0.2 ± 0.2 0.4 ± 0.5 0.3 ± 0.3 0.4 ± 0.2 0.5 ± 0.5 
Stairs - Ascend stairs 0.3 ± 0.1 1.0 ± 0.9 0.7 ± 0.5 0.4 ± 0.3 0.5 ± 0.4 
Stairs - Descend stairs 0.3 ± 0.2 0.5 ± 0.4 0.6 ± 0.4 0.9 ± 1.4 0.5 ± 0.3 
Standing 0.4 ± 0.4 0.2 ± 0.2 0.3 ± 0.2 0.3 ± 0.3 0.3 ± 0.3 
Walking - Treadmill 2mph - Treadmill 0  0.4 ± 0.5 0.3 ± 0.2 0.3 ± 0.2 0.5 ± 0.5 0.5 ± 0.2 
Walking - Treadmill 3mph - Treadmill 0  1.0 ± 1.0 0.6 ± 0.4 1.0 ± 0.8 0.8 ± 0.5 1.0 ± 0.6 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
0.9 ± 0.6 0.7 ± 0.7 0.7 ± 0.6 0.6 ± 0.4 1.3 ± 1.2 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
1.2 ± 1.2 1.4 ± 1.3 1.2 ± 1.0 1.2 ± 1.0 0.9 ± 0.8 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
0.8 ± 0.6 1.1 ± 0.8 1.0 ± 1.2 1.1 ± 1.0 1.2 ± 1.2 

kneeling 0.1 ± 0.1 0.2 ± 0.3 0.1 ± 0.1 0.2 ± 0.6 0.2 ± 0.5 
unknown 24.0 ± 

7.2 

23.5 ± 6.7 25.1 ± 5.8 24.8 ± 6.6 24.2 ± 5.4 

Carrying groceries 1.3 ± 1.7 1.2 ± 1.3 1.1 ± 0.8 0.9 ± 1.1 0.8 ± 0.8 
Doing dishes 0.7 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 0.9 ± 0.5 0.8 ± 0.3 
Gardening 0.6 ± 0.5 0.7 ± 0.7 0.6 ± 0.5 0.8 ± 0.4 0.8 ± 0.4 
Ironing 0.8 ± 0.6 0.8 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.8 ± 0.4 
Making the bed 1.2 ± 0.5 1.2 ± 0.8 1.3 ± 0.8 1.3 ± 0.8 1.3 ± 0.7 
Mopping 1.1 ± 0.4 1.1 ± 0.4 1.1 ± 0.5 1.2 ± 0.4 1.1 ± 0.5 
Playing videogames 0.5 ± 0.7 0.8 ± 0.8 1.0 ± 1.0 0.7 ± 0.9 0.7 ± 0.9 
Scrubbing a surface 0.9 ± 0.7 1.3 ± 1.0 1.2 ± 1.1 1.0 ± 0.6 1.0 ± 0.7 
Stacking groceries 0.9 ± 0.4 0.9 ± 0.3 0.9 ± 0.5 0.8 ± 0.4 0.8 ± 0.3 
Sweeping 1.0 ± 0.4 1.0 ± 0.6 1.2 ± 0.8 0.9 ± 0.3 1.1 ± 0.4 
Typing 0.3 ± 0.5 0.3 ± 0.4 0.4 ± 0.5 0.5 ± 0.6 0.5 ± 0.7 
Vacuuming 0.6 ± 0.2 0.6 ± 0.3 0.9 ± 0.4 0.7 ± 0.3 0.8 ± 0.3 
Walking around block 2.2 ± 2.4 2.0 ± 1.5 2.4 ± 2.2 1.9 ± 1.7 2.0 ± 2.3 
Washing windows 1.0 ± 0.4 0.9 ± 0.5 0.9 ± 0.3 0.9 ± 0.3 0.8 ± 0.5 
Watching TV 1.2 ± 2.3 1.1 ± 1.2 1.0 ± 1.2 0.9 ± 1.0 0.6 ± 0.5 
Weeding 0.6 ± 0.5 0.5 ± 0.3 0.6 ± 0.4 0.8 ± 0.5 0.7 ± 0.5 
Wiping/Dusting 0.8 ± 0.4 0.9 ± 0.5 0.9 ± 0.4 0.9 ± 0.5 0.9 ± 0.4 
Writing 0.4 ± 0.6 0.4 ± 0.4 0.6 ± 1.1 0.3 ± 0.3 0.3 ± 0.4 
taking out trash 1.1 ± 0.5 1.0 ± 0.4 1.1 ± 0.5 1.0 ± 0.3 1.0 ± 0.4 

Table A6-13: False positive rate when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject independent manner.  
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 F-Measure 

Activity AllButHR ACAbsArea,  

DCArea, 

ACVar, 

ACRange, 

ACMCR 

ACAbsArea 

DCArea 

Total Invariant Invariant 

Reduced 

Bench weight lifting - hard 8.0 ± 16.9 18.2 ± 31.2 29.5 ± 35.8 5.4 ± 11.4 12.2 ± 17.2 
Bench weight lifting - light 34.8 ± 31.0 30.0 ± 27.0 49.3 ± 29.5 26.8 ± 22.4 26.8 ± 27.4 
Bench weight lifting - moderate 19.8 ± 22.8 21.3 ± 21.5 24.8 ± 25.8 19.2 ± 18.7 20.0 ± 20.3 
Bicep curls - hard 32.3 ± 20.1 19.2 ± 21.6 19.5 ± 23.4 24.4 ± 21.0 23.5 ± 27.7 
Bicep curls - light 22.3 ± 21.9 20.6 ± 22.7 28.3 ± 32.2 24.1 ± 20.9 17.3 ± 23.2 
Bicep curls - moderate 21.2 ± 23.8 13.4 ± 16.6 27.1 ± 20.3 21.2 ± 20.0 21.2 ± 20.1 
Calisthenics - Crunches 57.7 ± 37.7 61.1 ± 39.0 64.2 ± 37.8 54.2 ± 35.7 49.3 ± 35.2 
Calisthenics - Sit ups 74.4 ± 31.3 70.1 ± 32.2 56.5 ± 41.2 87.8 ± 22.5 70.0 ± 34.9 
Cycling - Cycle hard - Cycle 80rpm 20.0 ± 18.9 14.7 ± 21.2 9.2 ± 11.1 14.6 ± 16.6 21.1 ± 18.5 
Cycling - Cycle light - Cycle 100rpm 72.1 ± 31.9 90.0 ± 14.2 87.1 ± 17.4 71.7 ± 29.3 82.6 ± 20.6 
Cycling - Cycle light - Cycle 60rpm 68.0 ± 32.6 64.5 ± 34.5 61.3 ± 33.2 74.3 ± 23.6 72.0 ± 32.5 
Cycling - Cycle light - Cycle 80rpm 27.6 ± 22.2 24.4 ± 22.6 29.5 ± 27.4 22.2 ± 21.0 29.4 ± 27.3 
Cycling - Cycle moderate - Cycle 80rpm 23.5 ± 17.9 21.8 ± 22.4 20.2 ± 16.7 24.2 ± 17.8 22.9 ± 13.9 
Lying down 90.3 ± 22.2 92.7 ± 12.0 87.5 ± 23.8 84.1 ± 24.4 86.1 ± 16.9 
Rowing - Rowing hard - Rowing 30spm 27.3 ± 23.0 32.1 ± 28.4 26.1 ± 33.1 23.4 ± 18.6 18.6 ± 18.4 
Rowing - Rowing light - Rowing 30spm 27.8 ± 23.5 37.6 ± 17.2 28.3 ± 15.8 22.3 ± 19.7 28.3 ± 17.9 
Rowing - Rowing moderate - Rowing 30spm 15.8 ± 21.8 8.1 ± 13.6 12.4 ± 21.9 22.4 ± 20.6 19.1 ± 16.0 
Running - Treadmill 4mph - Treadmill 0  46.1 ± 28.2 46.9 ± 37.1 41.4 ± 36.4 45.0 ± 37.9 47.9 ± 35.8 
Running - Treadmill 5mph - Treadmill 0  46.8 ± 30.5 42.6 ± 30.6 53.0 ± 31.4 34.6 ± 25.1 40.8 ± 25.4 
Running - Treadmill 6mph - Treadmill 0  52.2 ± 35.9 45.3 ± 32.6 52.7 ± 30.2 37.0 ± 28.3 44.5 ± 25.4 
Sitting 55.8 ± 35.0 53.2 ± 36.9 38.4 ± 36.0 34.5 ± 40.6 27.3 ± 36.7 
Sitting - Fidget feet legs 49.0 ± 32.9 47.8 ± 36.2 39.6 ± 34.5 47.1 ± 33.4 50.9 ± 32.0 
Sitting - Fidget hands arms 50.2 ± 31.6 46.5 ± 31.1 41.6 ± 32.6 50.5 ± 24.4 41.8 ± 24.6 
Stairs - Ascend stairs 68.7 ± 17.4 41.2 ± 17.8 39.3 ± 20.4 59.8 ± 24.8 65.7 ± 18.1 
Stairs - Descend stairs 69.0 ± 23.6 51.3 ± 24.1 45.8 ± 24.8 58.7 ± 25.4 51.4 ± 24.5 
Standing 60.5 ± 29.5 50.1 ± 35.2 57.4 ± 33.5 62.4 ± 26.2 43.7 ± 34.4 
Walking - Treadmill 2mph - Treadmill 0  54.5 ± 26.4 48.6 ± 29.1 53.8 ± 28.2 55.7 ± 27.8 56.9 ± 24.0 
Walking - Treadmill 3mph - Treadmill 0  20.7 ± 17.3 10.3 ± 13.3 16.7 ± 18.4 21.6 ± 20.4 17.3 ± 15.4 
Walking - Treadmill 3mph - Treadmill 3  - 

light 
17.8 ± 15.6 11.0 ± 11.6 10.9 ± 12.2 17.2 ± 16.8 13.7 ± 16.3 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 
12.2 ± 14.2 11.8 ± 14.6 11.9 ± 16.0 15.8 ± 14.3 14.5 ± 15.8 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 
21.9 ± 20.0 22.7 ± 20.4 27.0 ± 24.5 27.4 ± 21.3 19.2 ± 18.6 

kneeling 88.1 ± 18.2 89.6 ± 9.9 88.9 ± 11.4 71.1 ± 39.6 71.2 ± 35.6 
unknown 54.7 ± 7.1 54.2 ± 7.2 52.0 ± 7.4 53.2 ± 6.9 52.2 ± 6.2 
Carrying groceries 50.0 ± 22.2 32.6 ± 22.8 32.7 ± 23.8 48.3 ± 21.8 52.0 ± 25.9 
Doing dishes 44.7 ± 26.1 53.9 ± 20.7 57.1 ± 18.5 46.4 ± 20.4 43.6 ± 19.3 
Gardening 14.8 ± 21.7 21.3 ± 22.8 16.7 ± 20.5 16.5 ± 19.5 14.1 ± 17.1 
Ironing 50.3 ± 24.9 51.3 ± 23.0 55.9 ± 21.8 43.7 ± 27.1 45.1 ± 23.9 
Making the bed 35.8 ± 13.1 41.8 ± 13.6 37.2 ± 14.8 31.3 ± 10.5 34.8 ± 11.7 
Mopping 30.7 ± 15.6 31.3 ± 14.6 26.3 ± 15.5 31.0 ± 10.4 31.8 ± 8.3 
Playing videogames 48.4 ± 34.5 43.2 ± 38.1 39.3 ± 37.2 34.6 ± 35.4 43.9 ± 37.4 
Scrubbing a surface 36.3 ± 23.4 36.2 ± 17.6 36.4 ± 21.4 33.2 ± 24.6 30.1 ± 23.6 
Stacking groceries 35.4 ± 14.4 32.7 ± 15.6 28.6 ± 15.8 27.1 ± 14.5 31.1 ± 16.0 
Sweeping 34.3 ± 17.7 33.0 ± 15.5 31.3 ± 17.4 32.0 ± 14.2 29.8 ± 13.1 
Typing 62.4 ± 36.4 73.9 ± 23.5 60.8 ± 34.8 58.9 ± 31.8 63.4 ± 29.1 
Vacuuming 44.7 ± 18.0 47.3 ± 16.4 39.9 ± 19.3 42.2 ± 19.5 43.7 ± 21.9 
Walking around block 27.2 ± 11.6 20.9 ± 13.7 21.3 ± 14.6 23.2 ± 15.5 23.7 ± 16.3 
Washing windows 37.6 ± 22.1 37.6 ± 18.9 38.5 ± 19.0 39.6 ± 21.0 42.9 ± 21.4 
Watching TV 31.7 ± 33.6 32.8 ± 33.6 19.9 ± 29.0 36.8 ± 36.4 41.2 ± 37.8 
Weeding 12.5 ± 15.1 20.0 ± 20.3 18.7 ± 20.2 14.8 ± 19.9 14.7 ± 22.9 
Wiping/Dusting 40.7 ± 18.8 39.8 ± 16.1 39.6 ± 16.0 34.6 ± 17.2 37.1 ± 16.4 
Writing 56.0 ± 41.0 70.5 ± 28.6 62.8 ± 38.4 66.5 ± 34.1 64.0 ± 34.3 
taking out trash 19.1 ± 10.6 21.6 ± 11.5 19.7 ± 12.9 20.0 ± 13.0 17.3 ± 10.3 

Table A6-14: F-Measure when evaluating the four of the highest performing feature subsets 

computed per axis using the C4.5 classifier in a subject independent manner.  
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Figure A6-1: Confusion Matrix for C4.5 Classifier using the ACAbsArea, DCArea, ACVar, ACRange, 

and ACMCR feature set computed per sensor and evaluated in a subject independent manner. 
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Figure A6-2: Confusion Matrix for C4.5 Classifier using the ACFFTPeaks feature computed per 

sensor and evaluated in a subject independent manner. 
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Figure A6-3: Confusion Matrix for C4.5 Classifier using the ACAbsArea and DCArea features 

computed per sensor and evaluated in a subject independent manner. 
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Figure A6-4: Confusion Matrix for C4.5 Classifier using the MaxAcceleration feature set computed 

per sensor and evaluated in a subject independent manner. 
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Figure A6-5: Confusion Matrix for C4.5 Classifier using the ACAbsArea, DCArea, and ACFFTPeaks 

computed per sensor and evaluated in a subject independent manner. 
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Figure A6-6: Confusion Matrix for C4.5 Classifier using the ACAbsArea, DCArea, ACRange, ACVar, 

ACFFTPeaks, ACCorr, ACMCR, and ACPitch computed per sensor evaluated in a subject 

independent manner. 
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Figure A6-7: Confusion Matrix for C4.5 Classifier using the ACAbsArea, DCArea, ACVar, ACRange, 

and ACMCR feature set computed per sensor and evaluated in a subject independent manner. 
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Figure A6-8: Confusion Matrix for C4.5 Classifier using the ACFFTPeaks feature computed per 

sensor and evaluated in a subject independent manner. 
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Figure A6-9: Confusion Matrix for C4.5 Classifier using the ACAbsArea and DCArea features 

computed per sensor and evaluated in a subject independent manner. 
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Figure A6-10: Confusion Matrix for C4.5 Classifier using the MaxAcceleration feature set computed 

per sensor and evaluated in a subject independent manner. 
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Figure A6-11: Confusion Matrix for C4.5 Classifier using the ACAbsArea, DCArea, and ACFFTPeaks 

computed per sensor and evaluated in a subject independent manner. 
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Figure A6-12: Confusion Matrix for C4.5 Classifier using the ACAbsAreas, ACRange, ACVar, 

ACFFTPeaks, ACCorr, ACMCR, and ACPitch computed per sensor and evaluated in a subject 

independent manner. 
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Appendix A7: Activity Recognition Using Heart Rate Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A7-1: Confusion Matrix for C4.5 Classifier using the ScaledHR feature and evaluated in a 

subject dependent manner without the garbage class (unknown) when the feature is computed over 

windows of 5.6s. 
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Figure A7-2: Confusion Matrix for C4.5 Classifier using the ScaledHR feature and evaluated in a 

subject independent manner without the garbage class (unknown) when the feature is computed over 

windows of 5.6s. 
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Figure A7-3: Confusion Matrix for C4.5 Classifier using the Invariant reduced and ScaledHR 

features evaluated in a subject dependent manner without the garbage class (unknown) when the all 

the features are computed over windows of 5.6s. 
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Figure A7-4: Confusion Matrix for C4.5 Classifier using the Invariant reduced and ScaledHR features 

evaluated in a subject independent manner without the garbage class (unknown) when the all the 

features are computed over windows of 5.6s. 
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 Subject Dependent Subject Independent 

Activity TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 8.74 ± 9.83 1.00 ± 0.50 8.85 ± 9.93 0.00 ± 0.00 0.57 ± 0.28 0.00 ± 0.00 

Bench weight lifting - light 29.60 ± 23.90 1.86 ± 1.06 25.84 ± 18.34 2.15 ± 3.45 1.77 ± 0.59 2.27 ± 3.55 

Bench weight lifting - moderate 12.32 ± 12.36 1.10 ± 0.66 13.80 ± 12.81 0.82 ± 2.21 1.13 ± 0.59 1.01 ± 2.55 

Bicep curls - hard 38.33 ± 28.41 1.59 ± 0.86 35.79 ± 27.13 2.59 ± 4.31 0.94 ± 0.43 3.35 ± 5.29 

Bicep curls - light 28.19 ± 17.48 2.42 ± 1.59 24.88 ± 14.40 1.13 ± 2.17 1.70 ± 0.65 1.44 ± 2.79 

Bicep curls - moderate 16.58 ± 10.40 1.55 ± 0.53 17.36 ± 10.34 1.00 ± 2.40 0.89 ± 0.35 1.43 ± 3.33 

Calisthenics - Crunches 27.19 ± 30.80 1.11 ± 0.57 24.94 ± 26.87 1.02 ± 2.12 0.82 ± 0.41 1.37 ± 2.99 

Calisthenics - Sit ups 28.04 ± 27.09 1.27 ± 0.85 26.36 ± 19.83 1.88 ± 3.23 1.12 ± 0.97 2.74 ± 4.55 

Cycling - Cycle hard - Cycle 80rpm 65.06 ± 33.80 0.70 ± 0.87 65.11 ± 30.76 1.07 ± 3.09 0.78 ± 0.30 1.51 ± 4.14 

Cycling - Cycle light - Cycle 100rpm 38.50 ± 26.39 1.06 ± 0.65 39.47 ± 24.51 9.90 ± 7.38 2.15 ± 1.22 9.92 ± 7.72 

Cycling - Cycle light - Cycle 60rpm 66.59 ± 25.15 2.00 ± 0.87 54.94 ± 20.76 8.67 ± 7.81 3.05 ± 1.00 7.74 ± 7.12 

Cycling - Cycle light - Cycle 80rpm 44.42 ± 20.08 1.72 ± 0.88 41.67 ± 16.17 6.96 ± 5.41 2.79 ± 1.56 6.18 ± 4.83 

Cycling - Cycle moderate - Cycle 

80rpm 

46.06 ± 27.38 1.70 ± 1.17 40.53 ± 23.80 4.34 ± 5.40 1.47 ± 0.84 5.04 ± 6.61 

Lying down 87.53 ± 9.39 3.12 ± 3.84 78.36 ± 15.96 88.44 ± 19.64 4.16 ± 4.18 73.02 ± 19.34 

Rowing - Rowing hard - Rowing 

30spm 

44.50 ± 34.83 0.92 ± 0.74 44.43 ± 33.97 0.98 ± 2.29 1.34 ± 1.05 1.33 ± 3.14 

Rowing - Rowing light - Rowing 

30spm 

36.24 ± 25.92 1.46 ± 0.74 34.81 ± 20.36 6.84 ± 12.09 1.81 ± 1.38 6.68 ± 10.34 

Rowing - Rowing moderate - Rowing 

30spm 

47.04 ± 17.90 1.69 ± 1.06 43.86 ± 15.72 10.25 ± 19.92 1.78 ± 1.48 8.24 ± 11.61 

Running - Treadmill 4mph - 

Treadmill 0  

29.05 ± 19.31 1.25 ± 0.74 32.02 ± 17.16 6.25 ± 5.93 1.64 ± 0.79 7.00 ± 6.49 

Running - Treadmill 5mph - 

Treadmill 0  

56.20 ± 26.75 1.23 ± 0.75 52.95 ± 22.92 53.61 ± 20.51 2.80 ± 2.61 44.32 ± 20.07 

Running - Treadmill 6mph - 

Treadmill 0  

64.14 ± 37.51 0.64 ± 0.67 62.05 ± 35.34 52.88 ± 32.31 1.98 ± 2.91 44.39 ± 27.77 

Sitting 22.22 ± 22.02 0.89 ± 0.50 23.05 ± 21.58 2.08 ± 4.39 1.06 ± 0.65 2.79 ± 5.94 

Sitting - Fidget feet legs 31.44 ± 20.30 1.10 ± 0.42 30.83 ± 18.09 3.28 ± 4.08 1.38 ± 0.86 4.17 ± 5.48 

Sitting - Fidget hands arms 33.48 ± 30.64 1.66 ± 0.78 27.06 ± 22.24 1.40 ± 3.57 1.30 ± 0.67 1.89 ± 4.91 

Stairs - Ascend stairs 2.89 ± 3.92 0.96 ± 0.40 3.78 ± 4.95 2.65 ± 3.61 1.58 ± 0.57 3.12 ± 4.30 

Stairs - Descend stairs 11.35 ± 8.14 1.12 ± 0.67 13.84 ± 9.98 2.12 ± 2.91 1.79 ± 0.68 2.14 ± 2.97 

Standing 24.87 ± 25.85 1.13 ± 0.43 23.62 ± 22.84 0.73 ± 1.77 1.30 ± 0.49 0.90 ± 2.21 

Walking - Treadmill 2mph - 

Treadmill 0  

41.60 ± 33.11 2.24 ± 0.88 36.44 ± 28.34 10.75 ± 11.59 3.24 ± 1.77 9.02 ± 8.62 

Walking - Treadmill 3mph - 

Treadmill 0  

55.93 ± 20.29 2.37 ± 0.65 46.54 ± 17.53 7.78 ± 6.45 3.17 ± 1.42 7.14 ± 5.39 

Walking - Treadmill 3mph - 

Treadmill 3  - light 

54.20 ± 29.34 2.38 ± 1.02 44.60 ± 22.21 7.23 ± 5.85 2.83 ± 1.08 7.66 ± 7.01 

Walking - Treadmill 3mph - 

Treadmill 6  - moderate 

51.67 ± 21.17 2.25 ± 1.07 45.30 ± 17.21 11.68 ± 9.66 2.50 ± 1.35 12.00 ± 9.51 

Walking - Treadmill 3mph - 

Treadmill 9  - hard 

47.08 ± 25.48 2.18 ± 1.42 42.06 ± 19.64 9.71 ± 6.19 2.51 ± 1.26 10.15 ± 6.34 

kneeling 26.51 ± 25.41 0.99 ± 0.40 26.63 ± 21.69 1.43 ± 2.25 1.05 ± 0.48 1.93 ± 3.06 

Carrying groceries 27.43 ± 19.63 2.08 ± 0.96 27.99 ± 20.18 2.55 ± 3.57 1.96 ± 0.70 2.88 ± 4.13 

Doing dishes 24.80 ± 15.94 2.86 ± 1.48 22.35 ± 12.92 4.28 ± 4.48 2.94 ± 1.43 3.94 ± 4.18 

Gardening 19.26 ± 14.88 2.11 ± 1.54 19.37 ± 13.44 1.75 ± 3.08 1.04 ± 0.55 2.59 ± 4.52 

Ironing 36.28 ± 24.77 2.79 ± 0.69 31.43 ± 20.39 11.46 ± 12.58 3.00 ± 1.88 9.83 ± 10.56 

Making the bed 12.76 ± 8.64 2.28 ± 0.90 13.59 ± 8.69 2.56 ± 3.02 1.94 ± 0.76 3.11 ± 3.78 

Mopping 21.19 ± 11.49 2.11 ± 0.81 20.70 ± 9.09 2.36 ± 4.83 1.55 ± 0.75 2.89 ± 5.59 

Playing videogames 34.88 ± 24.73 2.12 ± 1.66 33.02 ± 21.44 11.26 ± 10.44 2.07 ± 1.24 12.64 ± 11.92 

Scrubbing a surface 11.54 ± 8.40 2.14 ± 0.88 11.36 ± 6.76 2.21 ± 2.88 1.19 ± 0.62 2.83 ± 3.68 

Stacking groceries 14.96 ± 10.26 1.71 ± 0.70 15.48 ± 9.19 1.71 ± 2.40 1.27 ± 0.63 2.01 ± 2.74 

Sweeping 18.52 ± 15.97 2.08 ± 0.83 17.95 ± 14.13 3.59 ± 3.81 1.46 ± 0.79 4.04 ± 4.30 

Typing 30.93 ± 24.48 1.60 ± 0.93 31.80 ± 21.01 6.97 ± 6.18 2.02 ± 1.21 8.12 ± 7.04 

Vacuuming 20.80 ± 16.28 2.17 ± 1.25 20.42 ± 15.47 2.30 ± 3.12 1.66 ± 1.24 2.75 ± 3.62 

Walking around block 27.40 ± 21.53 2.04 ± 0.85 27.26 ± 20.99 2.76 ± 3.33 1.52 ± 0.68 3.18 ± 3.69 

Washing windows 14.70 ± 8.78 1.78 ± 0.82 16.72 ± 9.25 1.80 ± 2.58 1.38 ± 0.52 2.36 ± 3.39 

Watching TV 27.34 ± 30.35 1.70 ± 1.60 26.21 ± 28.00 5.25 ± 5.99 1.31 ± 0.83 7.10 ± 8.35 

Weeding 14.25 ± 16.77 1.48 ± 1.02 14.34 ± 13.67 0.39 ± 0.92 0.65 ± 0.30 0.61 ± 1.46 

Wiping/Dusting 22.09 ± 16.10 2.36 ± 1.69 20.85 ± 11.81 4.29 ± 4.08 1.99 ± 1.15 4.51 ± 3.91 

Writing 48.00 ± 31.74 2.18 ± 1.18 40.73 ± 23.94 12.52 ± 12.30 2.55 ± 1.17 12.80 ± 12.75 

taking out trash 16.75 ± 11.93 1.79 ± 1.20 17.89 ± 10.75 0.28 ± 0.85 0.82 ± 0.45 0.41 ± 1.28 

Table A7-1: Subject dependent and subject independent performance results using the C4.5 and the 

ScaledHR feature without considering the garbage class (unknown activity) when the feature is 

computed over windows of 5.6s. 
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 Subject Dependent Subject Independent 

Activity TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 8.1 ± 9.2 1.0 ± 0.5 8.4 ± 9.4 0.5 ± 1.6 0.7 ± 0.4 0.6 ± 2.0 

Bench weight lifting - light 28.9 ± 22.2 1.8 ± 1.0 25.6 ± 17.1 3.5 ± 5.0 1.9 ± 0.9 3.2 ± 4.5 

Bench weight lifting - moderate 12.0 ± 12.2 1.0 ± 0.6 12.8 ± 12.0 0.7 ± 1.6 1.0 ± 0.4 0.8 ± 2.1 

Bicep curls - hard 34.3 ± 29.2 1.7 ± 0.9 32.4 ± 28.6 5.7 ± 20.0 1.0 ± 0.5 5.1 ± 16.0 

Bicep curls - light 30.4 ± 18.4 2.6 ± 1.5 25.8 ± 15.3 5.2 ± 7.4 1.9 ± 0.8 5.7 ± 8.4 

Bicep curls - moderate 16.7 ± 10.8 1.5 ± 0.5 17.8 ± 10.6 2.8 ± 5.6 1.1 ± 0.5 3.3 ± 6.2 

Calisthenics - Crunches 23.8 ± 22.7 1.3 ± 1.1 22.6 ± 21.7 0.6 ± 1.6 0.9 ± 0.6 0.7 ± 1.8 

Calisthenics - Sit ups 28.4 ± 27.9 1.3 ± 0.8 26.6 ± 20.2 2.9 ± 3.3 1.2 ± 0.5 3.3 ± 3.6 

Cycling - Cycle hard - Cycle 80rpm 65.1 ± 33.8 0.7 ± 0.9 64.7 ± 30.8 1.3 ± 3.5 1.1 ± 0.5 1.6 ± 4.3 

Cycling - Cycle light - Cycle 100rpm 38.9 ± 26.2 1.1 ± 0.7 39.6 ± 24.3 8.4 ± 7.0 2.4 ± 1.6 8.0 ± 7.2 

Cycling - Cycle light - Cycle 60rpm 64.0 ± 26.1 2.1 ± 0.9 52.5 ± 20.7 6.0 ± 6.4 3.2 ± 1.2 5.2 ± 6.3 

Cycling - Cycle light - Cycle 80rpm 45.3 ± 19.0 1.8 ± 0.9 42.1 ± 15.6 5.3 ± 5.7 2.8 ± 1.3 5.0 ± 5.4 

Cycling - Cycle moderate - Cycle 80rpm 46.0 ± 27.1 1.7 ± 1.2 40.9 ± 23.7 3.7 ± 4.4 1.7 ± 0.8 4.2 ± 5.1 

Lying down 87.0 ± 9.6 3.1 ± 3.6 78.2 ± 16.7 90.6 ± 21.3 4.3 ± 4.4 73.4 ± 21.7 

Rowing - Rowing hard - Rowing 30spm 44.5 ± 34.8 0.9 ± 0.7 44.6 ± 33.9 5.7 ± 8.3 1.7 ± 1.1 6.2 ± 8.4 

Rowing - Rowing light - Rowing 30spm 35.8 ± 26.0 1.4 ± 0.8 34.7 ± 20.6 6.9 ± 6.0 2.8 ± 1.0 6.3 ± 5.0 

Rowing - Rowing moderate - Rowing 

30spm 

46.6 ± 18.2 1.7 ± 1.1 43.5 ± 15.9 6.4 ± 4.8 2.1 ± 1.0 6.6 ± 5.4 

Running - Treadmill 4mph - Treadmill 0  28.0 ± 20.2 1.3 ± 0.7 30.6 ± 18.3 3.6 ± 4.1 1.7 ± 0.8 4.3 ± 5.1 

Running - Treadmill 5mph - Treadmill 0  56.2 ± 26.5 1.2 ± 0.8 53.0 ± 22.8 7.7 ± 10.0 1.8 ± 1.2 7.2 ± 9.1 

Running - Treadmill 6mph - Treadmill 0  63.9 ± 37.5 0.6 ± 0.6 62.0 ± 35.2 14.2 ± 29.8 1.2 ± 0.9 6.9 ± 10.2 

Sitting 20.9 ± 22.4 0.9 ± 0.5 22.6 ± 22.5 2.2 ± 3.0 0.9 ± 0.5 2.9 ± 4.0 

Sitting - Fidget feet legs 33.1 ± 21.8 1.2 ± 0.4 30.6 ± 19.6 3.6 ± 4.7 1.3 ± 0.7 4.3 ± 5.5 

Sitting - Fidget hands arms 36.0 ± 27.7 1.6 ± 0.8 30.2 ± 19.5 4.7 ± 6.6 1.5 ± 1.0 5.8 ± 8.8 

Stairs - Ascend stairs 1.5 ± 2.8 1.0 ± 0.5 2.1 ± 4.0 2.6 ± 3.2 1.6 ± 0.6 3.1 ± 3.8 

Stairs - Descend stairs 11.6 ± 8.5 1.3 ± 0.8 13.7 ± 10.2 3.5 ± 3.4 2.0 ± 0.6 3.8 ± 3.8 

Standing 22.1 ± 24.9 1.1 ± 0.4 21.4 ± 22.0 1.9 ± 3.2 1.2 ± 0.5 2.0 ± 3.5 

Walking - Treadmill 2mph - Treadmill 0  45.1 ± 30.2 2.3 ± 0.8 38.7 ± 26.3 6.8 ± 6.0 3.3 ± 1.8 7.0 ± 6.9 

Walking - Treadmill 3mph - Treadmill 0  48.5 ± 26.0 2.4 ± 0.7 41.0 ± 22.6 7.6 ± 9.1 3.1 ± 1.1 7.1 ± 7.5 

Walking - Treadmill 3mph - Treadmill 3  - 

light 

57.4 ± 28.1 2.3 ± 1.0 47.8 ± 21.6 4.9 ± 5.5 2.9 ± 1.2 5.1 ± 6.9 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

51.6 ± 21.4 2.2 ± 1.0 45.3 ± 17.5 3.2 ± 3.2 2.5 ± 1.1 3.3 ± 3.5 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 

46.9 ± 25.4 2.2 ± 1.4 42.0 ± 19.6 7.0 ± 6.6 2.5 ± 1.3 6.8 ± 6.3 

kneeling 26.4 ± 23.6 0.9 ± 0.3 27.3 ± 20.0 2.4 ± 3.0 0.9 ± 0.5 3.2 ± 4.0 

Carrying groceries 33.0 ± 17.4 2.1 ± 0.8 31.9 ± 16.5 1.8 ± 2.6 2.0 ± 0.5 2.2 ± 3.2 

Doing dishes 25.0 ± 18.3 2.8 ± 1.4 22.1 ± 14.6 3.4 ± 3.7 2.2 ± 1.0 3.4 ± 3.4 

Gardening 18.0 ± 14.8 2.1 ± 1.5 18.4 ± 13.6 0.6 ± 1.2 0.8 ± 0.4 0.9 ± 1.9 

Ironing 37.0 ± 24.9 2.7 ± 0.9 32.5 ± 19.9 10.0 ± 11.0 3.0 ± 1.6 9.2 ± 11.0 

Making the bed 10.3 ± 6.2 2.4 ± 1.0 11.0 ± 6.4 0.5 ± 1.0 1.8 ± 0.9 0.5 ± 1.0 

Mopping 19.1 ± 12.3 2.1 ± 0.9 19.0 ± 10.8 2.2 ± 3.5 1.4 ± 0.6 2.7 ± 4.2 

Playing videogames 33.6 ± 21.8 2.3 ± 1.6 31.8 ± 19.9 9.7 ± 11.1 1.8 ± 0.9 11.5 ± 13.0 

Scrubbing a surface 11.8 ± 9.6 2.2 ± 1.0 11.3 ± 7.4 0.3 ± 1.1 1.0 ± 0.5 0.5 ± 1.6 

Stacking groceries 14.3 ± 9.8 1.7 ± 0.8 15.0 ± 9.5 1.8 ± 3.0 1.0 ± 0.4 2.6 ± 4.4 

Sweeping 18.1 ± 13.1 2.0 ± 0.8 18.2 ± 13.2 3.9 ± 5.1 1.5 ± 0.8 4.6 ± 5.7 

Typing 33.0 ± 25.9 1.7 ± 1.1 33.0 ± 22.6 10.6 ± 11.3 2.5 ± 1.1 10.7 ± 11.3 

Vacuuming 19.1 ± 16.4 2.0 ± 1.2 19.1 ± 15.4 2.2 ± 2.8 1.3 ± 0.7 2.9 ± 3.7 

Walking around block 30.6 ± 21.1 2.2 ± 0.8 29.3 ± 20.0 4.8 ± 5.2 2.0 ± 0.8 5.7 ± 6.5 

Washing windows 11.3 ± 8.3 1.6 ± 0.8 13.5 ± 9.2 1.5 ± 2.6 1.2 ± 0.7 1.8 ± 2.9 

Watching TV 26.9 ± 29.2 1.7 ± 1.6 27.1 ± 27.7 8.1 ± 10.4 1.2 ± 0.6 10.4 ± 13.2 

Weeding 13.7 ± 16.4 1.7 ± 1.0 13.0 ± 12.4 0.4 ± 1.3 0.6 ± 0.4 0.6 ± 1.9 

Wiping/Dusting 20.6 ± 14.7 2.4 ± 1.6 19.9 ± 11.6 4.6 ± 4.3 1.9 ± 1.2 5.5 ± 5.2 

Writing 46.6 ± 31.8 2.0 ± 1.2 40.6 ± 24.3 10.7 ± 8.1 3.1 ± 1.6 10.3 ± 8.7 

taking out trash 14.3 ± 9.5 2.0 ± 1.1 15.4 ± 9.9 0.7 ± 1.3 1.1 ± 0.7 1.1 ± 2.0 

Table A7-2: Subject dependent and subject independent performance results using the C4.5 and the 

HRAboveRest feature without considering the garbage class (unknown activity) when the feature is 

computed over windows of 5.6s. 
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Activity ScaledHR ScaledHR + 

Weight 

ScaledHR + 

FitnessIndex 

ScaledHR + 

FatPercent 

Bench weight lifting - hard 0.00 ± 0.00 0.0 ± 0.0 1.8 ± 4.1 1.8 ± 2.7 

Bench weight lifting - light 2.15 ± 3.45 2.2 ± 7.9 2.9 ± 8.1 2.9 ± 5.4 

Bench weight lifting - moderate 0.82 ± 2.21 0.5 ± 1.5 3.4 ± 8.0 2.1 ± 4.2 

Bicep curls - hard 2.59 ± 4.31 6.0 ± 10.6 5.7 ± 16.1 1.3 ± 3.0 

Bicep curls - light 1.13 ± 2.17 2.3 ± 3.7 1.0 ± 2.2 0.3 ± 1.0 

Bicep curls - moderate 1.00 ± 2.40 1.2 ± 2.4 1.2 ± 2.4 0.0 ± 0.0 

Calisthenics - Crunches 1.02 ± 2.12 6.4 ± 13.4 5.1 ± 13.2 1.0 ± 3.1 

Calisthenics - Sit ups 1.88 ± 3.23 4.7 ± 9.6 10.4 ± 16.6 3.6 ± 8.6 

Cycling - Cycle hard - Cycle 80rpm 1.07 ± 3.09 0.4 ± 1.1 15.4 ± 37.6 0.5 ± 1.8 

Cycling - Cycle light - Cycle 100rpm 9.90 ± 7.38 12.3 ± 21.5 14.6 ± 22.0 7.8 ± 12.8 

Cycling - Cycle light - Cycle 60rpm 8.67 ± 7.81 5.9 ± 15.1 1.7 ± 4.7 8.1 ± 17.0 

Cycling - Cycle light - Cycle 80rpm 6.96 ± 5.41 10.7 ± 17.3 6.8 ± 16.4 9.7 ± 18.2 

Cycling - Cycle moderate - Cycle 80rpm 4.34 ± 5.40 2.7 ± 7.1 3.6 ± 6.2 4.4 ± 11.4 

Lying down 88.44 ± 19.64 85.1 ± 21.0 84.2 ± 21.8 85.8 ± 22.7 

Rowing - Rowing hard - Rowing 30spm 0.98 ± 2.29 19.4 ± 35.0 11.0 ± 26.0 1.4 ± 3.1 

Rowing - Rowing light - Rowing 30spm 6.84 ± 12.09 2.4 ± 3.9 5.4 ± 16.8 9.3 ± 21.1 

Rowing - Rowing moderate - Rowing 30spm 10.25 ± 19.92 15.2 ± 20.2 13.7 ± 23.2 7.8 ± 19.2 

Running - Treadmill 4mph - Treadmill 0  6.25 ± 5.93 3.0 ± 5.2 5.6 ± 12.4 3.1 ± 6.9 

Running - Treadmill 5mph - Treadmill 0  53.61 ± 20.51 41.3 ± 27.8 40.6 ± 28.0 45.0 ± 29.0 

Running - Treadmill 6mph - Treadmill 0  52.88 ± 32.31 42.8 ± 40.3 47.9 ± 47.8 32.7 ± 27.6 

Sitting 2.08 ± 4.39 9.0 ± 15.1 9.7 ± 18.1 9.6 ± 18.1 

Sitting - Fidget feet legs 3.28 ± 4.08 7.0 ± 16.1 12.4 ± 21.1 10.7 ± 26.5 

Sitting - Fidget hands arms 1.40 ± 3.57 9.9 ± 21.9 8.9 ± 20.8 6.5 ± 14.4 

Stairs - Ascend stairs 2.65 ± 3.61 1.3 ± 2.3 3.0 ± 4.0 2.9 ± 5.0 

Stairs - Descend stairs 2.12 ± 2.91 6.4 ± 9.4 4.2 ± 4.8 1.8 ± 2.5 

Standing 0.73 ± 1.77 1.8 ± 3.0 2.4 ± 3.4 0.3 ± 1.2 

Walking - Treadmill 2mph - Treadmill 0  10.75 ± 11.59 13.2 ± 20.1 11.2 ± 18.4 14.0 ± 24.0 

Walking - Treadmill 3mph - Treadmill 0  7.78 ± 6.45 17.6 ± 26.3 9.2 ± 16.9 5.1 ± 8.2 

Walking - Treadmill 3mph - Treadmill 3  - light 7.23 ± 5.85 14.0 ± 26.2 20.6 ± 26.9 10.1 ± 14.2 

Walking - Treadmill 3mph - Treadmill 6  - moderate 11.68 ± 9.66 11.1 ± 16.6 10.3 ± 21.2 6.3 ± 14.1 

Walking - Treadmill 3mph - Treadmill 9  - hard 9.71 ± 6.19 6.4 ± 8.6 7.9 ± 18.2 4.8 ± 13.0 

kneeling 1.43 ± 2.25 1.5 ± 3.8 5.5 ± 8.1 2.9 ± 9.1 

Carrying groceries 2.55 ± 3.57 6.2 ± 12.3 4.9 ± 9.7 7.0 ± 12.9 

Doing dishes 4.28 ± 4.48 3.6 ± 9.0 4.5 ± 8.6 4.7 ± 10.5 

Gardening 1.75 ± 3.08 2.2 ± 5.1 4.0 ± 10.0 0.8 ± 1.7 

Ironing 11.46 ± 12.58 8.3 ± 15.8 8.8 ± 12.8 4.2 ± 8.6 

Making the bed 2.56 ± 3.02 3.5 ± 4.2 5.6 ± 8.6 3.3 ± 5.1 

Mopping 2.36 ± 4.83 2.0 ± 3.4 4.6 ± 9.8 2.7 ± 5.4 

Playing videogames 11.26 ± 10.44 14.7 ± 20.2 22.1 ± 24.6 12.4 ± 18.5 

Scrubbing a surface 2.21 ± 2.88 2.2 ± 2.5 2.1 ± 2.8 6.0 ± 12.8 

Stacking groceries 1.71 ± 2.40 2.7 ± 4.4 1.1 ± 1.9 1.4 ± 2.1 

Sweeping 3.59 ± 3.81 2.6 ± 5.6 5.2 ± 6.4 2.2 ± 3.6 

Typing 6.97 ± 6.18 6.8 ± 10.5 11.2 ± 16.4 10.6 ± 17.3 

Vacuuming 2.30 ± 3.12 4.8 ± 7.2 6.7 ± 8.6 2.6 ± 3.8 

Walking around block 2.76 ± 3.33 9.8 ± 22.6 4.5 ± 6.7 1.5 ± 2.8 

Washing windows 1.80 ± 2.58 1.3 ± 2.4 2.2 ± 3.6 2.1 ± 3.0 

Watching TV 5.25 ± 5.99 5.0 ± 7.6 13.7 ± 22.9 4.0 ± 5.8 

Weeding 0.39 ± 0.92 2.1 ± 6.5 2.2 ± 4.9 0.4 ± 1.3 

Wiping/Dusting 4.29 ± 4.08 5.2 ± 7.4 10.9 ± 17.5 2.3 ± 6.4 

Writing 12.52 ± 12.30 13.0 ± 21.3 4.3 ± 6.7 10.6 ± 18.0 

taking out trash 0.28 ± 0.85 0.7 ± 1.8 0.2 ± 0.8 1.4 ± 5.0 

Table A7-3: Performance obtained when adding the Weight, FatPercent, and FitnessIndex to the 

ScaledHR feature during subject independent evaluation using the C4.5 classifier. Features are 

computed over windows of 5.6s in length and the activities to recognize are the 51 activities included 

in the MIT dataset, without including the unknown class.  
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Class TP Rate FP Rate F-Measure 

Bicep curls - hard 46.8 ± 35.0 36.7 ± 27.5 38.6 ± 25.5 

Bicep curls - light 46.7 ± 39.5 34.1 ± 32.9 39.0 ± 27.8 

Bicep curls - moderate 26.9 ± 37.1 35.5 ± 32.0 20.8 ± 25.8 

Table A7-4: Performance while recognizing only among the intensity levels of bicep curls in a subject 

independent manner using the C4.5 Decision tree classifier and the ScaledHR feature computed over 

windows of 5.6s. 
 

 

 

 

Class TP Rate FP Rate F-Measure 

Bench weight lifting - hard 28.3 ± 21.1 14.1 ± 17.5 36.2 ± 26.3 

Bench weight lifting - light 78.9 ± 35.4 63.8 ± 39.4 59.9 ± 26.7 

Bench weight lifting - moderate 48.7 ± 17.5 60.1 ± 26.8 34.6 ± 8.2 

Table A7-5: Performance while recognizing only among the intensity levels of bench weight lifting in a 

subject independent manner using the C4.5 Decision tree classifier and the ScaledHR feature computed 

over windows of 5.6s. 
 

 

 

Class TP Rate FP Rate F-Measure 

Rowing - Rowing hard - Rowing 30spm 17.4 ± 26.7 31.8 ± 22.3 15.2 ± 17.9 

Rowing - Rowing light - Rowing 30spm 44.7 ± 29.4 40.8 ± 30.0 38.6 ± 19.9 

Rowing - Rowing moderate - Rowing 30spm 21.3 ± 21.9 34.2 ± 23.7 20.9 ± 15.0 

Table A7-6: Performance while recognizing only among the intensity levels of rowing in a subject 

independent manner using the C4.5 Decision tree classifier and the ScaledHR feature computed over 

windows of 5.6s. 
 

 

 

Class TP Rate FP Rate F-Measure 

Walking - Treadmill 3mph - Treadmill 0  56.0 ± 42.3 10.7 ± 9.2 50.4 ± 33.9 

Walking - Treadmill 3mph - Treadmill 3  - light 44.1 ± 29.3 27.9 ± 11.7 36.9 ± 21.4 

Walking - Treadmill 3mph - Treadmill 6  - moderate 28.6 ± 22.5 20.0 ± 12.7 28.6 ± 20.9 

Walking - Treadmill 3mph - Treadmill 9  - hard 56.5 ± 43.1 21.9 ± 18.2 41.0 ± 27.2 

Table A7-7: Performance while recognizing only among the intensity levels of walking at 3mph in a subject 

independent manner using the C4.5 Decision tree classifier and the ScaledHR feature computed over 

windows of 5.6s. 
 

 

 
Activity Category 5.6 11.3 22.7 44.5 

All 38.4 ± 7.8 35.5 ± 8.0 32.0 ± 6.7 25.0 ± 5.6 

Postures 37.7±22.3  
(1.5±1.0) 

32.1±20.5  
(1.6±1.1) 

28.2±22.8  
(1.7±1.2) 

19.8±15.5  
(2.1±1.4) 

Ambulation 39.0±22.2  

(1.7±0.8) 

37.8±22.9  

(1.9±0.9) 

33.7±22.7  

(1.9±1.1) 

27.0±28.0  

(2.4±1.2) 

Exercise 38.3±23.9  
(1.4±0.8) 

35.6±24.6  
(1.5±0.9) 

31.0±26.1  
(1.7±1.0) 

22.6±26.1  
(2.0±1.2) 

Resistance 

Exercise 

34.2±20.6  

(1.6±0.9) 

31.0±22.1  

(1.7±0.9) 

27.3±22.8  

(1.8±1.1) 

21.2±24.5  

(2.4±1.3) 

Household 24.0±18.0  
(2.0±1.1) 

21.3±19.3  
(2.2±1.2) 

19.2±20.2  
(2.4±1.6) 

13.7±19.5  
(2.8±1.8) 

Table A7-8: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the ScaledHR feature is computed over varying window lengths as evaluated with subject 

dependent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 
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Activity Category 5.6 11.3 22.7 44.5 

All 7.7±1.9 7.6 ± 1.9 7.6 ± 3.2 7.2 ± 2.9 

Postures 9.7±9.4  
(3.8±1.2) 

5.2±6.5  
(3.1±1.3) 

5.1±5.2  
(3.0±1.5) 

5.8±4.4  
(3.0±1.6) 

Ambulation 5.0±7.1  

(1.7±0.9) 

5.5±7.9  

(2.4±1.3) 

4.9±9.6  

(2.7±1.6) 

6.9±10.6  

(3.1±1.9) 

Exercise 8.6±11.1  
(1.9±0.9) 

9.7±12.7  
(2.7±1.2) 

7.3±13.9  
(2.7±1.4) 

7.1±14.7  
(2.9±1.8) 

Resistance 

Exercise 

8.6±10.4  

(1.9±0.9) 

9.6±11.6  

(2.6±1.3) 

8.1±14.0  

(2.7±1.5) 

9.1±15.0  

(3.2±1.9) 

Household 4.0±6.0  
(1.5±0.8) 

4.5±7.4  
(2.3±1.5) 

4.8±9.4  
(2.5±1.8) 

2.9±8.2  
(3.1±2.0) 

Table A7-9: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the HRVar feature is computed over varying window lengths as evaluated with subject 

dependent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 

 

 

 
Activity Category 5.6 11.3 22.7 44.5 

All 8.2 ± 1.8 7.62 ± 1.65 6.28 ± 2.81 5.87 ± 2.96 

Postures 10.3±8.4  

(3.8±1.0) 

6.1±8.5  

(3.0±1.4) 

4.7±5.2  

(3.3±1.7) 

5.5±7.3  

(3.7±2.0) 

Ambulation 4.9±7.0  
(1.7±0.8) 

7.0±7.9  
(2.6±1.3) 

6.1±11.1  
(2.5±1.4) 

6.8±9.9  
(2.9±2.2) 

Exercise 8.8±11.0  

(1.9±0.9) 

9.7±13.2  

(2.6±1.2) 

5.9±10.6  

(2.9±1.4) 

5.2±10.3  

(2.9±1.9) 

Resistance 
Exercise 

9.2±11.3  
(1.9±0.9) 

11.3±13.3  
(2.6±1.3) 

7.6±11.7  
(2.7±1.4) 

8.0±11.9  
(3.1±2.0) 

Household 4.0±6.0  

(1.5±0.8) 

4.4±6.6  

(2.3±1.5) 

3.3±7.3  

(2.4±1.7) 

2.9±6.0  

(3.1±2.1) 

Table A7-10: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the HRTrend feature is computed over varying window lengths as evaluated with subject 

dependent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 

 

 

 

 
Activity Category 5.6 11.3 22.7 44.5 

All 13.8 ± 3.2 13.5 ± 3.4 15.7 ± 3.7 15.95 ± 3.39 

Postures 16.2±5.9  

(1.7±1.2) 

16.7±7.7  

(1.7±1.4) 

17.7±9.4  

(1.7±1.5) 

17.9±9.1  

(1.9±1.6) 

Ambulation 14.2±9.3  

(2.3±1.3) 

13.7±10.7  

(2.3±1.4) 

16.0±13.1  

(2.3±1.5) 

17.9±18.8  

(2.4±1.7) 

Exercise 9.0±7.5  
(1.6±1.0) 

8.6±8.0  
(1.6±1.1) 

10.8±10.3  
(1.6±1.1) 

10.6±12.2  
(2.0±1.4) 

Resistance 

Exercise 

4.1±5.2  

(1.7±0.8) 

4.1±6.1  

(1.7±0.9) 

5.2±7.9  

(1.7±1.0) 

6.5±10.1  

(2.0±1.2) 

Household 4.3±4.9  
(1.7±0.9) 

4.3±5.4  
(1.7±1.0) 

5.6±8.9  
(1.8±1.1) 

5.9±10.6  
(2.1±1.3) 

Table A7-11: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the ScaledHR feature is computed over varying window lengths as evaluated with subject 

independent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 
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Activity Category 5.6 11.3 22.7 44.5 

All 6.4 ± 1.3 5.2 ± 1.6 4.5 ± 1.9 4.8 ± 2.4 

Postures 11.9±4.2  
(7.7±1.8) 

9.8±5.1  
(6.5±1.9) 

7.8±5.9  
(4.3±1.5) 

6.0±6.9  
(3.4±1.6) 

Ambulation 2.2±2.4  

(1.2±0.6) 

1.8±3.0  

(1.6±0.8) 

2.0±4.7  

(2.0±1.0) 

4.5±8.5  

(2.3±1.3) 

Exercise 2.7±4.1  
(1.2±0.6) 

1.1±2.5  
(1.4±0.6) 

1.2±3.1  
(1.7±0.8) 

1.2±3.9  
(2.0±1.1) 

Resistance 

Exercise 

3.1±4.3  

(1.4±0.6) 

1.6±3.0  

(1.4±0.6) 

1.9±4.7  

(1.8±0.9) 

3.1±6.0  

(2.2±1.2) 

Household 1.2±1.8  
(1.0±0.4) 

1.1±2.3  
(1.1±0.6) 

0.9±2.3  
(1.5±0.8) 

1.8±5.0  
(2.0±1.1) 

Table A7-12: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the HRVar feature is computed over varying window lengths as evaluated with subject 

independent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 

 

 

 
Activity Category 5.6 11.3 22.7 44.5 

All 7.6 ± 1.2 5.20 ± 1.12 4.65 ± 1.15 5.78 ± 2.36 

Postures 13.0±4.5  

(7.0±2.2) 

7.7±3.5  

(5.1±1.0) 

6.6±4.0  

(4.5±0.9) 

6.8±2.8  

(4.9±1.5) 

Ambulation 5.2±4.2  
(1.4±0.6) 

3.7±4.0  
(1.8±0.7) 

3.8±5.4  
(1.9±1.0) 

5.8±9.1  
(2.1±1.3) 

Exercise 2.7±3.2  

(1.2±0.6) 

1.1±2.0  

(1.5±0.6) 

1.2±2.8  

(1.8±0.9) 

1.2±4.1  

(1.9±1.1) 

Resistance 
Exercise 

4.4±3.9  
(1.5±0.7) 

2.5±3.0  
(1.7±0.7) 

3.0±4.5  
(1.9±1.0) 

4.1±6.5  
(2.0±1.2) 

Household 1.8±2.2  

(1.1±0.4) 

1.8±2.8  

(1.3±0.5) 

1.3±2.7  

(1.5±0.8) 

1.7±4.6  

(1.8±1.1) 

Table A7-13: True positive rate and false positive rate (shown in parenthesis) obtained utilizing the C4.5 

classifier when the HRTrend feature is computed over varying window lengths as evaluated with subject 

independent training. The target activities are the 51 activities contained in the MIT dataset without 

including the unknown class. 
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Activity True Positive Rate 

Subject Dependent Subject Independent 

Invariant 

Reduced  

Invariant Reduced 

+ ScaledHR 

Invariant 

Reduced  

Invariant Reduced 

+ ScaledHR 

Bench weight lifting - hard 93.3 ± 8.3 93.3 ± 8.3 14.5 ± 22.4 13.1 ± 25.2 

Bench weight lifting - light 93.6 ± 9.6 93.6 ± 9.6 38.8 ± 37.0 34.0 ± 35.4 

Bench weight lifting - moderate 91.3 ± 10.9 91.3 ± 10.9 28.4 ± 36.4 24.8 ± 33.7 

Bicep curls - hard 94.1 ± 10.0 94.1 ± 10.0 43.0 ± 40.5 39.9 ± 39.4 

Bicep curls - light 91.9 ± 8.1 91.9 ± 8.1 20.5 ± 31.7 27.0 ± 36.4 

Bicep curls - moderate 91.6 ± 9.9 91.8 ± 9.8 21.8 ± 30.8 17.7 ± 26.6 

Calisthenics - Crunches 96.2 ± 4.4 96.2 ± 4.4 66.6 ± 38.4 66.6 ± 38.4 

Calisthenics - Sit ups 96.6 ± 3.1 96.6 ± 3.1 80.5 ± 35.0 81.4 ± 34.1 

Cycling - Cycle hard - Cycle 80rpm 88.4 ± 8.7 92.9 ± 7.7 33.4 ± 31.9 35.8 ± 31.2 

Cycling - Cycle light - Cycle 100rpm 98.1 ± 2.3 98.1 ± 2.3 97.0 ± 5.8 97.6 ± 6.1 

Cycling - Cycle light - Cycle 60rpm 99.5 ± 1.2 99.5 ± 1.2 87.6 ± 25.2 87.7 ± 25.3 

Cycling - Cycle light - Cycle 80rpm 97.5 ± 3.2 97.5 ± 3.2 41.6 ± 39.1 44.2 ± 41.5 

Cycling - Cycle moderate - Cycle 80rpm 92.6 ± 5.2 94.2 ± 5.3 32.6 ± 32.0 31.5 ± 29.6 

Lying down 99.9 ± 0.3 99.9 ± 0.3 95.9 ± 12.3 96.0 ± 12.3 

Rowing - Rowing hard - Rowing 30spm 85.2 ± 14.2 88.1 ± 14.6 34.2 ± 33.5 27.2 ± 30.8 

Rowing - Rowing light - Rowing 30spm 88.9 ± 10.3 90.0 ± 9.6 41.9 ± 32.3 41.3 ± 35.0 

Rowing - Rowing moderate - Rowing 30spm 81.4 ± 13.7 83.8 ± 11.9 24.0 ± 23.6 31.7 ± 29.4 

Running - Treadmill 4mph - Treadmill 0  97.7 ± 2.9 97.7 ± 2.9 57.4 ± 39.6 55.4 ± 39.2 

Running - Treadmill 5mph - Treadmill 0  93.7 ± 4.8 93.7 ± 5.2 56.8 ± 29.1 68.0 ± 25.4 

Running - Treadmill 6mph - Treadmill 0  88.4 ± 15.1 88.6 ± 15.2 64.0 ± 36.0 56.1 ± 36.2 

Sitting 97.4 ± 4.1 97.4 ± 4.1 58.1 ± 43.0 57.9 ± 43.3 

Sitting - Fidget feet legs 95.3 ± 5.3 95.3 ± 5.3 66.7 ± 30.2 67.7 ± 31.1 

Sitting - Fidget hands arms 93.4 ± 8.0 93.7 ± 8.1 57.8 ± 32.6 51.9 ± 34.9 

Stairs - Ascend stairs 91.1 ± 6.7 90.3 ± 7.2 71.8 ± 28.6 72.7 ± 29.5 

Stairs - Descend stairs 90.7 ± 6.6 90.7 ± 6.6 59.6 ± 26.4 57.9 ± 29.3 

Standing 97.9 ± 3.2 97.9 ± 3.2 86.3 ± 21.1 86.3 ± 21.1 

Walking - Treadmill 2mph - Treadmill 0  96.8 ± 4.7 96.8 ± 4.7 70.9 ± 25.5 70.5 ± 23.8 

Walking - Treadmill 3mph - Treadmill 0  84.5 ± 10.2 91.5 ± 7.2 20.1 ± 23.7 27.5 ± 20.4 

Walking - Treadmill 3mph - Treadmill 3  - light 76.2 ± 14.6 88.3 ± 10.9 24.4 ± 25.8 23.8 ± 26.7 

Walking - Treadmill 3mph - Treadmill 6  - moderate 77.0 ± 10.3 89.5 ± 8.2 14.8 ± 18.8 35.5 ± 27.4 

Walking - Treadmill 3mph - Treadmill 9  - hard 88.4 ± 9.5 92.1 ± 5.0 27.7 ± 24.8 56.4 ± 35.9 

kneeling 97.3 ± 3.7 97.3 ± 3.7 97.3 ± 5.0 97.3 ± 5.0 

Carrying groceries 91.1 ± 7.6 91.6 ± 7.5 56.7 ± 27.9 58.3 ± 29.7 

Doing dishes 85.1 ± 7.3 85.7 ± 6.7 55.9 ± 25.4 57.2 ± 24.0 

Gardening 79.6 ± 11.8 79.9 ± 11.4 20.7 ± 25.9 20.3 ± 25.0 

Ironing 85.4 ± 6.3 86.4 ± 5.1 53.3 ± 28.4 53.2 ± 28.7 

Making the bed 62.2 ± 10.8 68.1 ± 10.1 40.5 ± 18.3 39.4 ± 17.8 

Mopping 72.4 ± 11.8 73.0 ± 12.1 33.3 ± 18.4 32.3 ± 14.6 

Playing videogames 99.0 ± 2.3 99.0 ± 2.3 64.4 ± 42.2 63.8 ± 42.0 

Scrubbing a surface 85.0 ± 12.9 85.5 ± 11.7 40.0 ± 35.4 40.3 ± 35.2 

Stacking groceries 71.0 ± 16.0 74.0 ± 13.4 33.8 ± 20.9 33.8 ± 21.3 

Sweeping 68.3 ± 15.2 70.6 ± 14.5 34.4 ± 20.6 32.4 ± 20.6 

Typing 98.3 ± 2.4 98.3 ± 2.4 75.0 ± 29.4 71.5 ± 33.5 

Vacuuming 74.5 ± 10.1 76.0 ± 8.6 53.4 ± 23.9 54.2 ± 22.8 

Walking around block 90.4 ± 7.7 90.0 ± 7.4 34.9 ± 18.6 40.0 ± 21.7 

Washing windows 71.2 ± 9.4 72.9 ± 8.9 44.2 ± 21.5 43.9 ± 21.0 

Watching TV 98.2 ± 2.5 98.2 ± 2.5 48.2 ± 43.6 45.8 ± 44.0 

Weeding 75.2 ± 11.0 75.2 ± 10.4 15.5 ± 19.1 14.8 ± 20.4 

Wiping/Dusting 69.4 ± 13.9 74.0 ± 12.1 39.4 ± 21.6 38.6 ± 21.0 

Writing 97.3 ± 3.0 97.3 ± 3.0 61.7 ± 40.6 61.7 ± 40.6 

taking out trash 62.2 ± 13.6 65.4 ± 14.9 23.0 ± 14.1 25.3 ± 15.2 

Table A7-14: True positive rate obtained when adding the ScaledHR feature to the invariant reduced 

feature set using the C4.5 classifier. The sliding window length for accelerometer data and heart rate is 

5.6s. The activities to recognize are the 51 contained in the MIT dataset without including the unknown 

class. 
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Activity False Positive Rate 

Subject Dependent Subject Independent 

Invariant Reduced  Invariant 

Reduced + 

ScaledHR 

Invariant 

Reduced  

Invariant 

Reduced + 

ScaledHR 

Bench weight lifting - hard 0.1 ± 0.1 0.1 ± 0.1 0.7 ± 0.8 0.7 ± 0.8 

Bench weight lifting - light 0.1 ± 0.1 0.1 ± 0.1 0.8 ± 0.8 0.8 ± 0.8 

Bench weight lifting - moderate 0.1 ± 0.2 0.1 ± 0.2 1.1 ± 1.3 1.1 ± 1.3 

Bicep curls - hard 0.1 ± 0.2 0.1 ± 0.2 1.6 ± 1.2 1.6 ± 1.3 

Bicep curls - light 0.1 ± 0.1 0.1 ± 0.1 0.6 ± 0.9 0.8 ± 1.1 

Bicep curls - moderate 0.2 ± 0.2 0.2 ± 0.2 1.1 ± 1.1 0.9 ± 1.0 

Calisthenics - Crunches 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.2 0.6 ± 1.2 

Calisthenics - Sit ups 0.1 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 

Cycling - Cycle hard - Cycle 80rpm 0.1 ± 0.1 0.1 ± 0.1 1.1 ± 1.4 1.1 ± 1.2 

Cycling - Cycle light - Cycle 100rpm 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.4 0.1 ± 0.4 

Cycling - Cycle light - Cycle 60rpm 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.2 

Cycling - Cycle light - Cycle 80rpm 0.1 ± 0.1 0.1 ± 0.1 1.3 ± 1.4 1.2 ± 1.2 

Cycling - Cycle moderate - Cycle 80rpm 0.2 ± 0.1 0.1 ± 0.1 1.2 ± 1.0 1.2 ± 0.9 

Lying down 0.0 ± 0.1 0.0 ± 0.1 0.3 ± 0.6 0.3 ± 0.7 

Rowing - Rowing hard - Rowing 30spm 0.2 ± 0.2 0.2 ± 0.2 1.1 ± 0.8 0.7 ± 0.6 

Rowing - Rowing light - Rowing 30spm 0.2 ± 0.2 0.2 ± 0.2 1.8 ± 1.2 1.7 ± 1.3 

Rowing - Rowing moderate - Rowing 30spm 0.4 ± 0.3 0.3 ± 0.3 1.0 ± 0.9 1.2 ± 1.1 

Running - Treadmill 4mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.1 0.8 ± 1.0 0.7 ± 1.0 

Running - Treadmill 5mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.1 0.9 ± 0.7 1.0 ± 1.0 

Running - Treadmill 6mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.1 0.7 ± 0.8 0.3 ± 0.4 

Sitting 0.1 ± 0.1 0.0 ± 0.1 1.3 ± 1.2 1.3 ± 1.2 

Sitting - Fidget feet legs 0.0 ± 0.1 0.0 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 

Sitting - Fidget hands arms 0.1 ± 0.1 0.1 ± 0.1 0.9 ± 0.9 0.9 ± 0.9 

Stairs - Ascend stairs 0.2 ± 0.2 0.2 ± 0.2 0.5 ± 0.5 0.7 ± 1.0 

Stairs - Descend stairs 0.2 ± 0.2 0.1 ± 0.1 0.7 ± 0.8 0.8 ± 0.8 

Standing 0.1 ± 0.1 0.1 ± 0.1 0.5 ± 0.9 0.5 ± 0.9 

Walking - Treadmill 2mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.1 0.6 ± 0.9 0.7 ± 1.4 

Walking - Treadmill 3mph - Treadmill 0  0.4 ± 0.2 0.2 ± 0.2 1.2 ± 1.0 1.2 ± 1.0 

Walking - Treadmill 3mph - Treadmill 3  - light 0.6 ± 0.3 0.3 ± 0.2 1.6 ± 0.9 1.0 ± 0.8 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.5 ± 0.3 0.3 ± 0.2 1.5 ± 1.0 1.4 ± 1.1 

Walking - Treadmill 3mph - Treadmill 9  - hard 0.3 ± 0.2 0.1 ± 0.1 1.5 ± 1.5 1.5 ± 1.6 

kneeling 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 

Carrying groceries 0.2 ± 0.2 0.2 ± 0.2 0.9 ± 0.6 1.0 ± 0.9 

Doing dishes 0.4 ± 0.1 0.4 ± 0.2 1.2 ± 0.9 1.2 ± 1.0 

Gardening 0.4 ± 0.3 0.4 ± 0.2 1.0 ± 0.8 1.1 ± 0.8 

Ironing 0.4 ± 0.3 0.4 ± 0.2 1.3 ± 0.8 1.3 ± 0.8 

Making the bed 0.8 ± 0.4 0.7 ± 0.3 2.0 ± 0.9 2.0 ± 0.9 

Mopping 0.9 ± 0.3 0.8 ± 0.3 1.8 ± 0.9 1.8 ± 0.9 

Playing videogames 0.0 ± 0.0 0.0 ± 0.0 1.2 ± 1.2 1.2 ± 1.1 

Scrubbing a surface 0.3 ± 0.3 0.3 ± 0.2 1.5 ± 0.8 1.5 ± 0.9 

Stacking groceries 0.6 ± 0.3 0.5 ± 0.3 1.2 ± 0.8 1.2 ± 0.9 

Sweeping 0.7 ± 0.3 0.7 ± 0.3 1.5 ± 0.4 1.5 ± 0.5 

Typing 0.1 ± 0.1 0.1 ± 0.1 0.8 ± 1.0 0.8 ± 1.0 

Vacuuming 0.5 ± 0.3 0.5 ± 0.2 1.1 ± 0.6 1.1 ± 0.6 

Walking around block 0.2 ± 0.1 0.2 ± 0.1 3.1 ± 2.5 1.7 ± 1.1 

Washing windows 0.6 ± 0.2 0.5 ± 0.2 1.2 ± 0.7 1.2 ± 0.7 

Watching TV 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 1.6 1.5 ± 1.6 

Weeding 0.6 ± 0.3 0.5 ± 0.2 1.1 ± 0.7 1.0 ± 0.6 

Wiping/Dusting 0.8 ± 0.3 0.6 ± 0.3 1.5 ± 0.6 1.5 ± 0.6 

Writing 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.4 0.3 ± 0.4 

taking out trash 0.7 ± 0.3 0.6 ± 0.3 1.2 ± 0.4 1.2 ± 0.4 

Table A7-15: False positive rate obtained when adding the ScaledHR feature to the invariant reduced 

feature set using the C4.5 classifier. The sliding window length for accelerometer data and heart rate is 

5.6s. The activities to recognize are the 51 contained in the MIT dataset without including the unknown 

class. 
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Activity F-Measure 

Subject Dependent Subject Independent 

Invariant Reduced  Invariant Reduced 

+ ScaledHR 

Invariant Reduced  Invariant Reduced 

+ ScaledHR 

Bench weight lifting - hard 93.5 ± 8.2 93.5 ± 8.2 12.8 ± 18.5 9.3 ± 15.4 

Bench weight lifting - light 94.1 ± 8.4 94.1 ± 8.4 33.5 ± 26.2 29.7 ± 23.1 

Bench weight lifting - moderate 91.1 ± 11.4 91.1 ± 11.4 18.7 ± 22.1 16.5 ± 17.4 

Bicep curls - hard 92.4 ± 12.7 92.4 ± 12.7 28.3 ± 26.9 26.8 ± 26.3 

Bicep curls - light 92.8 ± 6.6 92.9 ± 6.5 18.5 ± 20.0 22.3 ± 22.3 

Bicep curls - moderate 91.2 ± 9.3 91.3 ± 9.3 17.5 ± 20.2 15.1 ± 18.8 

Calisthenics - Crunches 96.8 ± 3.2 97.0 ± 3.0 63.8 ± 38.2 64.2 ± 38.0 

Calisthenics - Sit ups 94.8 ± 5.3 95.4 ± 3.8 77.6 ± 32.8 79.6 ± 32.3 

Cycling - Cycle hard - Cycle 80rpm 89.5 ± 7.8 93.1 ± 7.4 27.6 ± 22.8 31.5 ± 26.0 

Cycling - Cycle light - Cycle 100rpm 98.2 ± 1.9 98.2 ± 1.9 95.6 ± 9.5 95.2 ± 8.7 

Cycling - Cycle light - Cycle 60rpm 98.8 ± 1.4 98.8 ± 1.4 89.2 ± 21.8 89.3 ± 21.9 

Cycling - Cycle light - Cycle 80rpm 97.4 ± 2.5 97.4 ± 2.5 33.8 ± 26.7 36.4 ± 31.0 

Cycling - Cycle moderate - Cycle 80rpm 92.2 ± 5.2 94.6 ± 4.0 27.7 ± 24.3 26.7 ± 20.0 

Lying down 99.7 ± 0.7 99.7 ± 0.7 95.8 ± 8.6 95.8 ± 8.7 

Rowing - Rowing hard - Rowing 30spm 85.0 ± 13.6 87.4 ± 14.1 30.7 ± 24.5 26.5 ± 22.9 

Rowing - Rowing light - Rowing 30spm 89.1 ± 10.4 89.9 ± 9.8 31.0 ± 17.2 31.0 ± 20.5 

Rowing - Rowing moderate - Rowing 30spm 80.8 ± 13.9 84.0 ± 12.2 23.2 ± 17.7 27.0 ± 22.0 

Running - Treadmill 4mph - Treadmill 0  96.5 ± 2.6 96.5 ± 2.6 53.1 ± 36.5 54.1 ± 38.2 

Running - Treadmill 5mph - Treadmill 0  93.7 ± 3.9 93.8 ± 4.1 54.5 ± 21.0 62.3 ± 24.2 

Running - Treadmill 6mph - Treadmill 0  90.0 ± 12.0 90.2 ± 12.2 54.8 ± 26.0 57.5 ± 34.1 

Sitting 96.6 ± 3.3 96.8 ± 3.0 45.9 ± 34.6 45.3 ± 34.8 

Sitting - Fidget feet legs 95.8 ± 4.4 95.8 ± 4.4 70.3 ± 25.0 70.7 ± 25.0 

Sitting - Fidget hands arms 91.9 ± 6.2 92.0 ± 6.2 50.1 ± 28.1 45.8 ± 29.4 

Stairs - Ascend stairs 91.4 ± 5.7 90.8 ± 5.9 68.9 ± 25.1 67.2 ± 25.6 

Stairs - Descend stairs 90.8 ± 7.0 91.1 ± 6.4 58.5 ± 22.0 55.4 ± 24.5 

Standing 97.0 ± 3.2 96.9 ± 3.4 81.6 ± 20.9 81.3 ± 20.9 

Walking - Treadmill 2mph - Treadmill 0  95.9 ± 4.0 95.9 ± 4.0 70.1 ± 21.1 70.6 ± 20.2 

Walking - Treadmill 3mph - Treadmill 0  83.8 ± 8.4 91.2 ± 7.0 19.0 ± 19.1 28.1 ± 18.6 

Walking - Treadmill 3mph - Treadmill 3  - light 75.4 ± 13.8 87.6 ± 10.4 20.6 ± 17.2 24.7 ± 24.4 

Walking - Treadmill 3mph - Treadmill 6  - moderate 78.0 ± 9.8 88.5 ± 7.0 13.5 ± 13.7 33.6 ± 23.1 

Walking - Treadmill 3mph - Treadmill 9  - hard 88.4 ± 7.8 93.7 ± 3.7 24.8 ± 15.4 47.8 ± 29.7 

kneeling 96.6 ± 3.2 96.5 ± 3.7 96.7 ± 3.5 96.5 ± 3.8 

Carrying groceries 90.5 ± 8.3 90.8 ± 8.1 56.1 ± 23.8 57.3 ± 27.3 

Doing dishes 85.2 ± 5.6 85.1 ± 5.5 52.4 ± 20.6 53.9 ± 19.4 

Gardening 79.9 ± 11.7 80.5 ± 10.9 23.1 ± 25.1 22.8 ± 24.2 

Ironing 84.4 ± 6.6 85.6 ± 5.6 50.5 ± 23.9 50.5 ± 24.1 

Making the bed 64.2 ± 9.9 69.2 ± 10.4 36.0 ± 14.9 35.6 ± 15.2 

Mopping 69.6 ± 10.1 71.1 ± 10.0 31.0 ± 14.1 30.6 ± 12.0 

Playing videogames 98.9 ± 1.5 98.9 ± 1.5 58.9 ± 37.8 57.0 ± 36.7 

Scrubbing a surface 85.9 ± 12.1 86.4 ± 11.2 35.9 ± 27.7 35.9 ± 27.7 

Stacking groceries 71.1 ± 14.6 73.9 ± 12.5 34.0 ± 19.0 33.5 ± 18.4 

Sweeping 68.8 ± 12.4 70.1 ± 11.6 32.8 ± 17.5 31.2 ± 17.9 

Typing 97.2 ± 2.6 97.4 ± 2.0 70.8 ± 27.3 67.9 ± 30.5 

Vacuuming 75.9 ± 9.7 77.8 ± 7.9 51.8 ± 18.8 53.0 ± 17.6 

Walking around block 91.6 ± 5.6 91.6 ± 5.1 29.4 ± 16.0 37.8 ± 16.8 

Washing windows 72.9 ± 9.0 74.6 ± 7.9 44.8 ± 20.7 45.3 ± 20.8 

Watching TV 98.6 ± 1.6 98.6 ± 1.6 42.4 ± 37.6 39.1 ± 36.6 

Weeding 74.8 ± 8.6 75.9 ± 8.8 17.1 ± 17.6 16.4 ± 18.3 

Wiping/Dusting 68.7 ± 12.6 73.8 ± 11.4 37.6 ± 18.5 37.0 ± 18.0 

Writing 96.3 ± 3.1 96.3 ± 3.1 63.8 ± 38.9 63.9 ± 38.9 

taking out trash 93.5 ± 8.2 67.3 ± 13.5 25.7 ± 15.3 26.9 ± 15.8 

Table A7-16: F-Measure obtained when adding the ScaledHR feature to the invariant reduced feature set 

using the C4.5 classifier. The sliding window length for accelerometer data and heart rate is 5.6s. The 

activities to recognize are the 51 contained in the MIT dataset without including the unknown class.
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Appendix A8: Activity Recognition – Final Performance 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 93.3 ± 8.3 0.1 ± 0.1 93.5 ± 8.2 14.5 ± 22.4 0.7 ± 0.8 12.8 ± 18.5 

Bench weight lifting - light 93.6 ± 9.6 0.1 ± 0.1 94.1 ± 8.4 38.8 ± 37.0 0.8 ± 0.8 33.5 ± 26.2 

Bench weight lifting - moderate 91.3 ± 10.9 0.1 ± 0.2 91.1 ± 11.4 28.4 ± 36.4 1.1 ± 1.3 18.7 ± 22.1 

Bicep curls - hard 94.1 ± 10.0 0.1 ± 0.2 92.4 ± 12.7 43.0 ± 40.5 1.6 ± 1.2 28.3 ± 26.9 

Bicep curls - light 91.9 ± 8.1 0.1 ± 0.1 92.8 ± 6.6 20.5 ± 31.7 0.6 ± 0.9 18.5 ± 20.0 

Bicep curls - moderate 91.6 ± 9.9 0.2 ± 0.2 91.2 ± 9.3 21.8 ± 30.8 1.1 ± 1.1 17.5 ± 20.2 

Calisthenics - Crunches 96.2 ± 4.4 0.0 ± 0.0 96.8 ± 3.2 66.6 ± 38.4 0.6 ± 1.2 63.8 ± 38.2 

Calisthenics - Sit ups 96.6 ± 3.1 0.1 ± 0.2 94.8 ± 5.3 80.5 ± 35.0 0.2 ± 0.2 77.6 ± 32.8 

Cycling - Cycle hard - Cycle 80rpm 88.4 ± 8.7 0.1 ± 0.1 89.5 ± 7.8 33.4 ± 31.9 1.1 ± 1.4 27.6 ± 22.8 

Cycling - Cycle light - Cycle 100rpm 98.1 ± 2.3 0.0 ± 0.0 98.2 ± 1.9 97.0 ± 5.8 0.1 ± 0.4 95.6 ± 9.5 

Cycling - Cycle light - Cycle 60rpm 99.5 ± 1.2 0.0 ± 0.0 98.8 ± 1.4 87.6 ± 25.2 0.1 ± 0.2 89.2 ± 21.8 

Cycling - Cycle light - Cycle 80rpm 97.5 ± 3.2 0.1 ± 0.1 97.4 ± 2.5 41.6 ± 39.1 1.3 ± 1.4 33.8 ± 26.7 

Cycling - Cycle moderate - Cycle 80rpm 92.6 ± 5.2 0.2 ± 0.1 92.2 ± 5.2 32.6 ± 32.0 1.2 ± 1.0 27.7 ± 24.3 

Lying down 99.9 ± 0.3 0.0 ± 0.1 99.7 ± 0.7 95.9 ± 12.3 0.3 ± 0.6 95.8 ± 8.6 

Rowing - Rowing hard - Rowing 30spm 85.2 ± 14.2 0.2 ± 0.2 85.0 ± 13.6 34.2 ± 33.5 1.1 ± 0.8 30.7 ± 24.5 

Rowing - Rowing light - Rowing 30spm 88.9 ± 10.3 0.2 ± 0.2 89.1 ± 10.4 41.9 ± 32.3 1.8 ± 1.2 31.0 ± 17.2 

Rowing - Rowing moderate - Rowing 30spm 81.4 ± 13.7 0.4 ± 0.3 80.8 ± 13.9 24.0 ± 23.6 1.0 ± 0.9 23.2 ± 17.7 

Running - Treadmill 4mph - Treadmill 0  97.7 ± 2.9 0.1 ± 0.1 96.5 ± 2.6 57.4 ± 39.6 0.8 ± 1.0 53.1 ± 36.5 

Running - Treadmill 5mph - Treadmill 0  93.7 ± 4.8 0.1 ± 0.1 93.7 ± 3.9 56.8 ± 29.1 0.9 ± 0.7 54.5 ± 21.0 

Running - Treadmill 6mph - Treadmill 0  88.4 ± 15.1 0.1 ± 0.1 90.0 ± 12.0 64.0 ± 36.0 0.7 ± 0.8 54.8 ± 26.0 

Sitting 97.4 ± 4.1 0.1 ± 0.1 96.6 ± 3.3 58.1 ± 43.0 1.3 ± 1.2 45.9 ± 34.6 

Sitting - Fidget feet legs 95.3 ± 5.3 0.0 ± 0.1 95.8 ± 4.4 66.7 ± 30.2 0.2 ± 0.2 70.3 ± 25.0 

Sitting - Fidget hands arms 93.4 ± 8.0 0.1 ± 0.1 91.9 ± 6.2 57.8 ± 32.6 0.9 ± 0.9 50.1 ± 28.1 

Stairs - Ascend stairs 91.1 ± 6.7 0.2 ± 0.2 91.4 ± 5.7 71.8 ± 28.6 0.5 ± 0.5 68.9 ± 25.1 

Stairs - Descend stairs 90.7 ± 6.6 0.2 ± 0.2 90.8 ± 7.0 59.6 ± 26.4 0.7 ± 0.8 58.5 ± 22.0 

Standing 97.9 ± 3.2 0.1 ± 0.1 97.0 ± 3.2 86.3 ± 21.1 0.5 ± 0.9 81.6 ± 20.9 

Walking - Treadmill 2mph - Treadmill 0  96.8 ± 4.7 0.1 ± 0.1 95.9 ± 4.0 70.9 ± 25.5 0.6 ± 0.9 70.1 ± 21.1 

Walking - Treadmill 3mph - Treadmill 0  84.5 ± 10.2 0.4 ± 0.2 83.8 ± 8.4 20.1 ± 23.7 1.2 ± 1.0 19.0 ± 19.1 

Walking - Treadmill 3mph - Treadmill 3  - light 76.2 ± 14.6 0.6 ± 0.3 75.4 ± 13.8 24.4 ± 25.8 1.6 ± 0.9 20.6 ± 17.2 

Walking - Treadmill 3mph - Treadmill 6  - moderate 77.0 ± 10.3 0.5 ± 0.3 78.0 ± 9.8 14.8 ± 18.8 1.5 ± 1.0 13.5 ± 13.7 

Walking - Treadmill 3mph - Treadmill 9  - hard 88.4 ± 9.5 0.3 ± 0.2 88.4 ± 7.8 27.7 ± 24.8 1.5 ± 1.5 24.8 ± 15.4 

kneeling 97.3 ± 3.7 0.0 ± 0.1 96.6 ± 3.2 97.3 ± 5.0 0.0 ± 0.1 96.7 ± 3.5 

Carrying groceries 91.1 ± 7.6 0.2 ± 0.2 90.5 ± 8.3 56.7 ± 27.9 0.9 ± 0.6 56.1 ± 23.8 

Doing dishes 85.1 ± 7.3 0.4 ± 0.1 85.2 ± 5.6 55.9 ± 25.4 1.2 ± 0.9 52.4 ± 20.6 

Gardening 79.6 ± 11.8 0.4 ± 0.3 79.9 ± 11.7 20.7 ± 25.9 1.0 ± 0.8 23.1 ± 25.1 

Ironing 85.4 ± 6.3 0.4 ± 0.3 84.4 ± 6.6 53.3 ± 28.4 1.3 ± 0.8 50.5 ± 23.9 

Making the bed 62.2 ± 10.8 0.8 ± 0.4 64.2 ± 9.9 40.5 ± 18.3 2.0 ± 0.9 36.0 ± 14.9 

Mopping 72.4 ± 11.8 0.9 ± 0.3 69.6 ± 10.1 33.3 ± 18.4 1.8 ± 0.9 31.0 ± 14.1 

Playing videogames 99.0 ± 2.3 0.0 ± 0.0 98.9 ± 1.5 64.4 ± 42.2 1.2 ± 1.2 58.9 ± 37.8 

Scrubbing a surface 85.0 ± 12.9 0.3 ± 0.3 85.9 ± 12.1 40.0 ± 35.4 1.5 ± 0.8 35.9 ± 27.7 

Stacking groceries 71.0 ± 16.0 0.6 ± 0.3 71.1 ± 14.6 33.8 ± 20.9 1.2 ± 0.8 34.0 ± 19.0 

Sweeping 68.3 ± 15.2 0.7 ± 0.3 68.8 ± 12.4 34.4 ± 20.6 1.5 ± 0.4 32.8 ± 17.5 

Typing 98.3 ± 2.4 0.1 ± 0.1 97.2 ± 2.6 75.0 ± 29.4 0.8 ± 1.0 70.8 ± 27.3 

Vacuuming 74.5 ± 10.1 0.5 ± 0.3 75.9 ± 9.7 53.4 ± 23.9 1.1 ± 0.6 51.8 ± 18.8 

Walking around block 90.4 ± 7.7 0.2 ± 0.1 91.6 ± 5.6 34.9 ± 18.6 3.1 ± 2.5 29.4 ± 16.0 

Washing windows 71.2 ± 9.4 0.6 ± 0.2 72.9 ± 9.0 44.2 ± 21.5 1.2 ± 0.7 44.8 ± 20.7 

Watching TV 98.2 ± 2.5 0.0 ± 0.0 98.6 ± 1.6 48.2 ± 43.6 1.5 ± 1.6 42.4 ± 37.6 

Weeding 75.2 ± 11.0 0.6 ± 0.3 74.8 ± 8.6 15.5 ± 19.1 1.1 ± 0.7 17.1 ± 17.6 

Wiping/Dusting 69.4 ± 13.9 0.8 ± 0.3 68.7 ± 12.6 39.4 ± 21.6 1.5 ± 0.6 37.6 ± 18.5 

Writing 97.3 ± 3.0 0.1 ± 0.1 96.3 ± 3.1 61.7 ± 40.6 0.3 ± 0.4 63.8 ± 38.9 

taking out trash 62.2 ± 13.6 0.7 ± 0.3 64.4 ± 12.4 23.0 ± 14.1 1.2 ± 0.4 25.7 ± 15.3 

Table A8-1: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using all the accelerometers (7) and the invariant reduced feature set 

over windows of 5.6s in length during subject dependent and independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 90.8 ± 9.3 0.1 ± 0.1 90.5 ± 7.2 16.9 ± 33.0 0.8 ± 0.9 10.6 ± 15.3 

Bench weight lifting - light 93.5 ± 7.7 0.1 ± 0.2 92.2 ± 7.9 41.3 ± 41.9 1.1 ± 1.3 31.2 ± 28.3 

Bench weight lifting - moderate 83.4 ± 18.3 0.1 ± 0.1 85.4 ± 12.8 22.0 ± 33.1 0.7 ± 0.7 15.4 ± 20.8 

Bicep curls - hard 90.0 ± 8.9 0.2 ± 0.2 88.6 ± 10.1 39.2 ± 32.4 1.7 ± 1.3 27.0 ± 18.0 

Bicep curls - light 91.1 ± 8.8 0.2 ± 0.2 91.5 ± 8.8 32.4 ± 37.4 1.4 ± 1.4 25.3 ± 20.5 

Bicep curls - moderate 88.7 ± 9.3 0.2 ± 0.2 88.7 ± 8.9 16.2 ± 19.1 0.7 ± 0.6 17.4 ± 17.6 

Calisthenics - Crunches 96.1 ± 5.1 0.0 ± 0.0 96.9 ± 3.4 51.1 ± 38.0 0.6 ± 0.8 53.4 ± 36.9 

Calisthenics - Sit ups 92.7 ± 5.7 0.1 ± 0.1 93.3 ± 5.9 34.1 ± 33.7 0.6 ± 0.8 36.2 ± 33.2 

Cycling - Cycle hard - Cycle 80rpm 88.1 ± 8.3 0.2 ± 0.2 87.3 ± 9.4 19.6 ± 28.4 1.3 ± 1.3 16.8 ± 21.2 

Cycling - Cycle light - Cycle 100rpm 98.1 ± 2.3 0.0 ± 0.1 97.3 ± 3.6 90.1 ± 19.5 0.2 ± 0.2 88.1 ± 18.5 

Cycling - Cycle light - Cycle 60rpm 98.1 ± 3.4 0.0 ± 0.1 97.8 ± 2.6 81.5 ± 23.6 0.4 ± 0.4 80.0 ± 16.0 

Cycling - Cycle light - Cycle 80rpm 95.9 ± 4.9 0.1 ± 0.1 96.0 ± 4.7 43.9 ± 33.3 1.2 ± 1.2 39.3 ± 25.1 

Cycling - Cycle moderate - Cycle 80rpm 91.2 ± 6.2 0.2 ± 0.1 91.0 ± 5.9 35.7 ± 27.7 1.2 ± 1.0 30.6 ± 18.5 

Lying down 99.9 ± 0.4 0.0 ± 0.0 99.8 ± 0.4 89.0 ± 20.9 0.3 ± 0.8 90.8 ± 15.3 

Rowing - Rowing hard - Rowing 30spm 81.9 ± 12.4 0.4 ± 0.2 80.5 ± 11.8 13.6 ± 23.8 1.1 ± 0.8 11.5 ± 17.4 

Rowing - Rowing light - Rowing 30spm 82.7 ± 10.7 0.3 ± 0.2 84.4 ± 10.0 35.8 ± 32.9 1.4 ± 1.2 28.1 ± 25.3 

Rowing - Rowing moderate - Rowing 30spm 75.5 ± 12.9 0.6 ± 0.3 74.3 ± 12.2 28.2 ± 22.8 1.1 ± 1.0 27.1 ± 18.3 

Running - Treadmill 4mph - Treadmill 0  96.4 ± 4.4 0.1 ± 0.0 96.7 ± 2.8 41.8 ± 42.8 1.3 ± 1.3 36.8 ± 35.8 

Running - Treadmill 5mph - Treadmill 0  95.2 ± 4.2 0.1 ± 0.1 94.5 ± 3.2 55.0 ± 32.1 1.4 ± 0.9 46.3 ± 21.3 

Running - Treadmill 6mph - Treadmill 0  89.9 ± 17.2 0.1 ± 0.1 90.3 ± 13.8 47.3 ± 35.2 0.6 ± 0.6 42.5 ± 27.6 

Sitting 97.0 ± 4.8 0.1 ± 0.1 95.6 ± 5.4 60.9 ± 39.8 1.2 ± 1.5 51.5 ± 35.9 

Sitting - Fidget feet legs 93.8 ± 7.2 0.1 ± 0.1 93.6 ± 6.2 58.4 ± 27.9 0.5 ± 0.6 57.2 ± 22.4 

Sitting - Fidget hands arms 95.6 ± 5.1 0.1 ± 0.1 94.7 ± 4.4 38.2 ± 32.7 0.6 ± 0.7 36.8 ± 28.5 

Stairs - Ascend stairs 90.2 ± 7.0 0.1 ± 0.1 91.1 ± 5.9 55.3 ± 26.5 1.0 ± 0.7 51.7 ± 21.2 

Stairs - Descend stairs 88.4 ± 6.2 0.2 ± 0.1 89.4 ± 5.6 50.7 ± 24.5 0.9 ± 0.7 50.2 ± 22.5 

Standing 95.8 ± 4.8 0.0 ± 0.1 96.2 ± 3.6 73.1 ± 36.9 0.7 ± 1.3 67.6 ± 34.6 

Walking - Treadmill 2mph - Treadmill 0  97.4 ± 4.2 0.1 ± 0.1 96.4 ± 2.6 69.8 ± 31.1 0.8 ± 1.3 67.7 ± 27.5 

Walking - Treadmill 3mph - Treadmill 0  81.8 ± 10.6 0.4 ± 0.3 82.3 ± 9.0 19.4 ± 22.7 1.3 ± 0.8 18.3 ± 18.9 

Walking - Treadmill 3mph - Treadmill 3  - light 73.4 ± 12.2 0.7 ± 0.3 72.3 ± 11.2 22.1 ± 24.2 1.6 ± 1.5 18.0 ± 15.3 

Walking - Treadmill 3mph - Treadmill 6  - moderate 74.6 ± 13.7 0.6 ± 0.3 73.5 ± 12.0 15.4 ± 19.4 1.3 ± 1.1 14.6 ± 16.7 

Walking - Treadmill 3mph - Treadmill 9  - hard 83.4 ± 9.0 0.3 ± 0.2 84.7 ± 8.1 16.1 ± 23.2 1.0 ± 0.9 15.6 ± 20.3 

kneeling 97.4 ± 2.9 0.0 ± 0.0 96.9 ± 2.2 81.6 ± 35.4 0.6 ± 1.2 77.3 ± 33.9 

Carrying groceries 93.4 ± 7.0 0.3 ± 0.2 90.9 ± 8.1 57.8 ± 31.3 1.3 ± 1.5 53.6 ± 26.5 

Doing dishes 81.0 ± 9.0 0.5 ± 0.2 80.2 ± 7.5 47.1 ± 23.0 1.3 ± 0.6 44.1 ± 18.2 

Gardening 80.1 ± 12.2 0.5 ± 0.3 78.4 ± 11.4 19.4 ± 22.0 1.0 ± 0.9 20.5 ± 20.3 

Ironing 82.9 ± 8.5 0.5 ± 0.3 82.5 ± 8.2 42.0 ± 25.0 1.4 ± 0.9 39.9 ± 18.9 

Making the bed 61.0 ± 10.0 1.0 ± 0.4 61.3 ± 9.4 38.1 ± 19.4 2.4 ± 2.3 34.0 ± 17.7 

Mopping 68.8 ± 13.7 0.9 ± 0.4 66.5 ± 12.8 29.5 ± 12.0 2.0 ± 1.3 28.1 ± 9.8 

Playing videogames 98.8 ± 1.9 0.1 ± 0.1 98.2 ± 2.9 64.6 ± 38.9 1.3 ± 1.6 58.0 ± 32.7 

Scrubbing a surface 84.0 ± 14.3 0.3 ± 0.3 85.0 ± 14.0 41.6 ± 28.9 1.7 ± 1.3 37.9 ± 25.2 

Stacking groceries 64.0 ± 17.0 0.7 ± 0.4 64.1 ± 16.6 35.6 ± 15.5 1.4 ± 0.5 34.2 ± 13.7 

Sweeping 66.2 ± 16.7 0.8 ± 0.4 66.9 ± 15.5 32.5 ± 16.9 1.3 ± 0.5 33.2 ± 15.2 

Typing 98.5 ± 2.5 0.0 ± 0.1 98.1 ± 2.2 75.2 ± 31.6 0.5 ± 0.8 75.2 ± 29.9 

Vacuuming 73.5 ± 11.4 0.6 ± 0.3 74.7 ± 10.8 52.3 ± 22.3 1.1 ± 0.6 51.6 ± 19.2 

Walking around block 90.0 ± 7.0 0.2 ± 0.2 90.4 ± 6.0 24.6 ± 15.2 2.8 ± 2.3 21.4 ± 12.6 

Washing windows 69.1 ± 11.6 0.6 ± 0.2 71.7 ± 10.1 45.0 ± 24.1 1.3 ± 0.7 44.2 ± 24.0 

Watching TV 97.5 ± 3.1 0.0 ± 0.0 98.3 ± 1.7 52.7 ± 43.1 0.6 ± 0.5 49.5 ± 38.2 

Weeding 73.5 ± 15.5 0.6 ± 0.2 74.0 ± 13.7 14.8 ± 23.6 1.2 ± 1.0 11.2 ± 13.7 

Wiping/Dusting 66.6 ± 9.6 0.7 ± 0.4 68.6 ± 11.6 38.2 ± 22.5 1.3 ± 0.8 37.3 ± 20.0 

Writing 97.7 ± 2.8 0.1 ± 0.1 96.7 ± 2.4 77.0 ± 29.1 0.8 ± 1.4 73.5 ± 27.9 

taking out trash 59.9 ± 14.7 0.8 ± 0.4 61.3 ± 14.0 25.9 ± 16.8 1.2 ± 0.5 27.7 ± 17.2 

Table A8-2: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers hip, dominant wrist, and dominant foot and the 

invariant reduced feature set over windows of 5.6s in length during subject dependent and 

independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 80.8 ± 26.8 0.1 ± 0.1 82.5 ± 25.5 5.8 ± 8.6 0.4 ± 0.4 6.9 ± 11.0 

Bench weight lifting - light 90.5 ± 11.6 0.2 ± 0.2 89.1 ± 12.4 47.3 ± 30.3 0.9 ± 0.8 42.0 ± 23.6 

Bench weight lifting - moderate 80.6 ± 24.5 0.2 ± 0.2 81.0 ± 23.5 23.3 ± 29.2 0.7 ± 0.6 18.7 ± 19.3 

Bicep curls - hard 82.1 ± 18.6 0.3 ± 0.2 82.1 ± 17.1 39.6 ± 21.9 1.3 ± 1.1 36.1 ± 19.7 

Bicep curls - light 86.4 ± 12.0 0.3 ± 0.3 86.2 ± 11.9 32.5 ± 30.9 0.9 ± 0.9 29.2 ± 24.6 

Bicep curls - moderate 80.1 ± 16.1 0.4 ± 0.4 79.9 ± 16.4 25.8 ± 29.0 1.1 ± 0.9 23.0 ± 18.0 

Calisthenics - Crunches 96.6 ± 4.2 0.1 ± 0.1 96.0 ± 3.3 51.0 ± 40.8 0.8 ± 0.9 48.9 ± 37.1 

Calisthenics - Sit ups 91.7 ± 5.7 0.1 ± 0.1 91.6 ± 5.2 33.5 ± 31.9 0.7 ± 1.2 35.6 ± 31.6 

Cycling - Cycle hard - Cycle 80rpm 83.3 ± 16.5 0.3 ± 0.2 81.9 ± 17.9 7.7 ± 9.6 0.9 ± 1.2 9.7 ± 11.0 

Cycling - Cycle light - Cycle 100rpm 91.9 ± 18.3 0.1 ± 0.1 92.2 ± 17.7 57.9 ± 29.6 1.2 ± 2.0 53.6 ± 28.8 

Cycling - Cycle light - Cycle 60rpm 96.2 ± 4.2 0.1 ± 0.2 95.0 ± 4.1 64.2 ± 32.3 0.8 ± 0.7 59.3 ± 25.3 

Cycling - Cycle light - Cycle 80rpm 93.0 ± 8.2 0.1 ± 0.2 93.3 ± 8.3 32.7 ± 29.7 1.9 ± 1.3 24.7 ± 19.1 

Cycling - Cycle moderate - Cycle 80rpm 83.2 ± 11.6 0.2 ± 0.2 84.8 ± 9.5 23.1 ± 20.6 1.2 ± 0.8 21.6 ± 18.8 

Lying down 99.9 ± 0.4 0.0 ± 0.0 99.7 ± 0.5 86.4 ± 21.8 0.6 ± 1.0 87.7 ± 14.0 

Rowing - Rowing hard - Rowing 30spm 79.3 ± 10.6 0.4 ± 0.3 78.9 ± 11.3 16.8 ± 19.1 0.9 ± 0.7 17.6 ± 19.4 

Rowing - Rowing light - Rowing 30spm 81.2 ± 9.7 0.4 ± 0.3 81.2 ± 9.5 38.2 ± 26.1 1.7 ± 1.0 31.1 ± 17.1 

Rowing - Rowing moderate - Rowing 30spm 72.3 ± 12.4 0.6 ± 0.2 71.9 ± 10.8 28.8 ± 22.0 1.4 ± 0.9 25.4 ± 15.4 

Running - Treadmill 4mph - Treadmill 0  95.6 ± 3.7 0.1 ± 0.1 95.3 ± 3.2 31.8 ± 32.5 1.2 ± 1.5 29.5 ± 30.6 

Running - Treadmill 5mph - Treadmill 0  91.8 ± 5.6 0.2 ± 0.2 91.2 ± 5.5 55.5 ± 35.9 1.1 ± 0.8 47.7 ± 27.2 

Running - Treadmill 6mph - Treadmill 0  83.3 ± 25.0 0.1 ± 0.1 83.1 ± 24.2 57.6 ± 34.6 1.1 ± 1.2 46.3 ± 27.2 

Sitting 97.3 ± 3.6 0.1 ± 0.1 96.3 ± 3.4 42.5 ± 42.8 1.1 ± 1.5 34.2 ± 33.9 

Sitting - Fidget feet legs 94.3 ± 4.5 0.1 ± 0.1 93.1 ± 3.9 40.1 ± 35.6 1.3 ± 1.5 35.4 ± 32.8 

Sitting - Fidget hands arms 91.9 ± 8.1 0.1 ± 0.1 91.6 ± 7.2 35.0 ± 29.9 0.8 ± 0.7 35.1 ± 28.1 

Stairs - Ascend stairs 88.2 ± 7.4 0.2 ± 0.1 87.5 ± 6.0 50.8 ± 33.6 1.4 ± 1.8 47.6 ± 31.0 

Stairs - Descend stairs 87.2 ± 7.0 0.2 ± 0.2 87.5 ± 6.8 51.3 ± 27.6 1.4 ± 1.6 44.8 ± 22.6 

Standing 95.6 ± 4.4 0.1 ± 0.1 95.5 ± 4.1 40.6 ± 42.6 0.8 ± 0.7 34.9 ± 37.0 

Walking - Treadmill 2mph - Treadmill 0  96.2 ± 3.0 0.1 ± 0.1 95.6 ± 2.7 56.4 ± 30.7 1.1 ± 1.0 51.5 ± 26.8 

Walking - Treadmill 3mph - Treadmill 0  82.6 ± 9.2 0.4 ± 0.3 82.5 ± 9.3 13.0 ± 16.4 1.3 ± 1.2 13.1 ± 15.4 

Walking - Treadmill 3mph - Treadmill 3  - light 72.1 ± 12.8 0.6 ± 0.3 71.8 ± 11.6 12.1 ± 14.5 1.1 ± 0.7 12.7 ± 13.6 

Walking - Treadmill 3mph - Treadmill 6  - moderate 75.2 ± 12.2 0.6 ± 0.3 74.2 ± 11.1 19.1 ± 22.6 1.2 ± 1.3 17.3 ± 17.0 

Walking - Treadmill 3mph - Treadmill 9  - hard 85.2 ± 9.1 0.3 ± 0.2 86.2 ± 8.0 23.7 ± 25.9 1.6 ± 1.3 20.4 ± 19.0 

kneeling 95.4 ± 5.0 0.1 ± 0.1 94.6 ± 4.4 31.8 ± 33.4 1.2 ± 1.1 26.3 ± 26.7 

Carrying groceries 90.2 ± 9.1 0.3 ± 0.2 88.7 ± 8.6 52.6 ± 32.0 1.3 ± 1.1 49.5 ± 25.7 

Doing dishes 77.8 ± 11.3 0.6 ± 0.3 77.3 ± 11.7 42.8 ± 24.3 1.6 ± 1.0 38.4 ± 18.2 

Gardening 74.4 ± 17.6 0.6 ± 0.3 73.5 ± 16.3 22.7 ± 25.2 1.0 ± 0.6 23.4 ± 23.2 

Ironing 78.1 ± 11.0 0.6 ± 0.5 77.1 ± 11.5 44.3 ± 22.0 1.4 ± 0.7 42.8 ± 18.6 

Making the bed 55.3 ± 10.0 1.0 ± 0.3 56.3 ± 8.7 35.6 ± 15.8 2.0 ± 1.1 32.1 ± 12.5 

Mopping 60.5 ± 12.6 1.0 ± 0.4 59.6 ± 11.6 31.8 ± 14.4 2.1 ± 1.0 29.4 ± 12.5 

Playing videogames 98.6 ± 2.9 0.0 ± 0.1 98.4 ± 2.5 57.7 ± 38.1 0.9 ± 1.4 56.2 ± 36.2 

Scrubbing a surface 73.8 ± 11.3 0.6 ± 0.3 74.4 ± 11.8 37.4 ± 19.6 1.3 ± 0.7 36.6 ± 16.2 

Stacking groceries 56.7 ± 18.0 0.8 ± 0.4 57.9 ± 18.1 30.2 ± 17.0 1.6 ± 0.9 27.2 ± 12.9 

Sweeping 63.9 ± 16.9 0.9 ± 0.5 62.7 ± 14.8 33.8 ± 15.9 1.4 ± 0.6 35.0 ± 15.1 

Typing 98.0 ± 2.3 0.1 ± 0.1 97.6 ± 2.4 84.8 ± 25.6 0.4 ± 0.7 84.5 ± 23.0 

Vacuuming 72.9 ± 13.0 0.6 ± 0.3 73.0 ± 12.1 51.2 ± 18.5 1.0 ± 0.5 51.6 ± 14.0 

Walking around block 90.1 ± 6.0 0.2 ± 0.2 90.2 ± 5.6 30.8 ± 21.2 2.7 ± 2.4 27.1 ± 17.5 

Washing windows 65.2 ± 8.6 0.7 ± 0.3 67.8 ± 8.7 43.0 ± 20.4 1.2 ± 0.6 43.2 ± 19.8 

Watching TV 96.2 ± 4.3 0.0 ± 0.1 97.0 ± 3.1 61.6 ± 42.2 1.3 ± 1.6 52.8 ± 36.4 

Weeding 69.3 ± 13.3 0.7 ± 0.3 69.2 ± 12.6 15.4 ± 23.3 1.0 ± 0.4 12.6 ± 13.6 

Wiping/Dusting 60.6 ± 16.0 0.7 ± 0.3 63.0 ± 14.0 35.2 ± 17.0 1.4 ± 0.6 35.3 ± 15.9 

Writing 97.9 ± 3.2 0.1 ± 0.1 97.0 ± 2.9 74.2 ± 37.5 0.5 ± 0.7 70.9 ± 35.0 

taking out trash 52.1 ± 11.6 1.0 ± 0.3 53.3 ± 11.0 24.4 ± 13.0 1.4 ± 0.5 25.5 ± 13.2 

Table A8-3: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the hip and wrist, and the invariant reduced 

feature set over windows of 5.6s in length during subject dependent and independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 91.3 ± 8.8 0.1 ± 0.1 91.6 ± 7.9 17.7 ± 30.5 0.8 ± 0.6 11.5 ± 19.7 

Bench weight lifting - light 92.5 ± 10.8 0.1 ± 0.2 91.2 ± 11.3 21.1 ± 31.1 1.1 ± 1.1 18.8 ± 23.7 

Bench weight lifting - moderate 87.1 ± 15.3 0.2 ± 0.1 87.3 ± 12.7 11.5 ± 28.7 0.5 ± 0.4 8.0 ± 17.4 

Bicep curls - hard 91.5 ± 7.3 0.2 ± 0.2 90.0 ± 8.8 22.1 ± 33.8 1.2 ± 1.4 14.8 ± 19.7 

Bicep curls - light 90.0 ± 10.0 0.2 ± 0.2 90.9 ± 9.0 33.5 ± 32.1 1.1 ± 1.5 32.1 ± 24.1 

Bicep curls - moderate 89.0 ± 8.6 0.2 ± 0.2 88.7 ± 8.8 42.1 ± 41.0 1.3 ± 1.3 30.4 ± 25.6 

Calisthenics - Crunches 97.4 ± 3.6 0.0 ± 0.0 97.5 ± 2.8 53.2 ± 40.0 0.4 ± 0.7 56.4 ± 39.0 

Calisthenics - Sit ups 92.1 ± 6.6 0.1 ± 0.1 92.4 ± 5.7 42.6 ± 32.4 0.6 ± 0.4 44.7 ± 31.6 

Cycling - Cycle hard - Cycle 80rpm 86.9 ± 9.3 0.2 ± 0.2 86.6 ± 7.8 15.9 ± 25.1 1.1 ± 1.0 14.0 ± 18.7 

Cycling - Cycle light - Cycle 100rpm 97.8 ± 3.2 0.0 ± 0.0 97.0 ± 3.7 90.4 ± 20.0 0.2 ± 0.3 89.4 ± 15.5 

Cycling - Cycle light - Cycle 60rpm 98.3 ± 3.3 0.0 ± 0.1 97.9 ± 2.9 80.9 ± 22.8 0.3 ± 0.4 81.1 ± 16.4 

Cycling - Cycle light - Cycle 80rpm 95.6 ± 4.6 0.1 ± 0.1 95.8 ± 4.4 48.5 ± 38.1 1.3 ± 1.2 41.0 ± 27.4 

Cycling - Cycle moderate - Cycle 80rpm 89.2 ± 6.9 0.2 ± 0.1 89.7 ± 6.1 36.9 ± 32.0 1.4 ± 1.1 31.1 ± 24.6 

Lying down 100.0 ± 0.2 0.0 ± 0.0 99.9 ± 0.3 89.5 ± 20.4 0.6 ± 1.0 89.7 ± 13.2 

Rowing - Rowing hard - Rowing 30spm 79.0 ± 17.5 0.4 ± 0.3 77.0 ± 16.6 21.7 ± 23.5 1.0 ± 0.9 18.1 ± 17.1 

Rowing - Rowing light - Rowing 30spm 81.9 ± 9.4 0.3 ± 0.2 83.6 ± 9.6 33.4 ± 31.9 1.2 ± 1.1 29.6 ± 23.7 

Rowing - Rowing moderate - Rowing 30spm 72.3 ± 17.5 0.5 ± 0.3 72.1 ± 15.2 30.1 ± 32.2 1.4 ± 1.2 23.7 ± 17.7 

Running - Treadmill 4mph - Treadmill 0  97.1 ± 4.0 0.0 ± 0.1 97.2 ± 3.0 40.2 ± 42.2 1.8 ± 2.1 33.9 ± 34.1 

Running - Treadmill 5mph - Treadmill 0  95.5 ± 3.8 0.1 ± 0.1 95.2 ± 3.0 52.6 ± 30.6 1.2 ± 0.9 46.5 ± 21.4 

Running - Treadmill 6mph - Treadmill 0  93.2 ± 7.1 0.1 ± 0.1 93.4 ± 4.9 48.8 ± 33.8 0.6 ± 0.5 46.8 ± 27.3 

Sitting 97.5 ± 3.9 0.1 ± 0.1 95.9 ± 5.7 25.8 ± 37.0 1.2 ± 1.5 22.8 ± 33.8 

Sitting - Fidget feet legs 94.3 ± 5.5 0.1 ± 0.1 94.2 ± 5.7 60.9 ± 30.7 0.4 ± 0.5 61.1 ± 24.3 

Sitting - Fidget hands arms 96.1 ± 4.7 0.1 ± 0.1 94.6 ± 4.2 50.0 ± 32.0 0.9 ± 0.8 45.0 ± 27.8 

Stairs - Ascend stairs 90.5 ± 7.4 0.2 ± 0.1 90.4 ± 6.2 43.5 ± 25.9 1.3 ± 1.1 39.4 ± 22.6 

Stairs - Descend stairs 88.5 ± 7.4 0.2 ± 0.2 88.9 ± 7.0 44.2 ± 22.3 1.0 ± 0.9 43.2 ± 20.2 

Standing 95.3 ± 5.6 0.1 ± 0.1 95.5 ± 4.1 46.9 ± 41.6 0.9 ± 0.8 38.8 ± 29.4 

Walking - Treadmill 2mph - Treadmill 0  97.1 ± 3.7 0.1 ± 0.1 95.6 ± 3.3 53.8 ± 35.6 0.7 ± 1.1 56.1 ± 32.0 

Walking - Treadmill 3mph - Treadmill 0  79.9 ± 10.3 0.4 ± 0.3 80.6 ± 10.1 24.5 ± 25.1 1.7 ± 1.6 20.1 ± 17.2 

Walking - Treadmill 3mph - Treadmill 3  - light 70.7 ± 14.9 0.7 ± 0.3 70.6 ± 14.2 20.1 ± 28.6 1.4 ± 1.3 15.4 ± 18.6 

Walking - Treadmill 3mph - Treadmill 6  - moderate 75.1 ± 13.2 0.7 ± 0.3 72.9 ± 12.7 13.3 ± 21.4 1.1 ± 1.2 12.7 ± 14.8 

Walking - Treadmill 3mph - Treadmill 9  - hard 81.9 ± 11.0 0.3 ± 0.2 83.4 ± 10.0 21.9 ± 26.1 1.5 ± 1.3 19.7 ± 19.5 

kneeling 96.7 ± 3.1 0.0 ± 0.0 96.4 ± 3.0 72.0 ± 39.8 1.0 ± 1.6 65.3 ± 38.7 

Carrying groceries 89.1 ± 10.4 0.3 ± 0.2 88.6 ± 9.5 44.4 ± 27.2 1.8 ± 1.4 40.2 ± 24.4 

Doing dishes 80.9 ± 12.0 0.6 ± 0.3 79.4 ± 11.1 38.5 ± 24.5 1.2 ± 0.7 37.5 ± 22.6 

Gardening 77.0 ± 10.3 0.6 ± 0.3 76.1 ± 11.3 14.7 ± 20.4 1.4 ± 1.2 15.8 ± 20.7 

Ironing 82.1 ± 8.8 0.5 ± 0.4 81.3 ± 9.4 42.0 ± 28.4 1.6 ± 0.9 37.1 ± 23.1 

Making the bed 58.8 ± 9.6 1.1 ± 0.4 58.5 ± 8.8 36.7 ± 15.8 2.2 ± 1.7 33.6 ± 15.0 

Mopping 63.8 ± 13.8 1.0 ± 0.4 62.9 ± 13.9 20.4 ± 11.2 1.7 ± 0.6 20.1 ± 10.4 

Playing videogames 97.2 ± 4.7 0.1 ± 0.1 97.5 ± 3.6 35.9 ± 36.1 1.9 ± 2.1 30.6 ± 30.5 

Scrubbing a surface 82.0 ± 16.2 0.4 ± 0.3 83.1 ± 15.3 38.5 ± 28.6 1.4 ± 1.8 37.0 ± 27.2 

Stacking groceries 61.9 ± 18.0 0.8 ± 0.4 61.8 ± 16.6 22.3 ± 15.3 1.5 ± 0.6 21.4 ± 12.7 

Sweeping 57.3 ± 18.0 0.9 ± 0.4 58.8 ± 16.6 28.9 ± 14.6 2.1 ± 1.4 27.8 ± 13.2 

Typing 96.5 ± 4.6 0.1 ± 0.1 95.8 ± 4.4 54.3 ± 32.8 1.2 ± 0.8 49.8 ± 27.9 

Vacuuming 67.7 ± 14.9 0.8 ± 0.5 67.2 ± 14.8 40.5 ± 20.1 1.6 ± 0.8 38.8 ± 17.1 

Walking around block 87.0 ± 7.9 0.3 ± 0.2 87.5 ± 7.8 20.1 ± 20.4 2.0 ± 1.2 17.9 ± 15.6 

Washing windows 65.2 ± 13.2 0.7 ± 0.3 67.5 ± 12.6 34.4 ± 16.9 1.4 ± 0.7 34.7 ± 16.3 

Watching TV 96.8 ± 4.5 0.1 ± 0.1 97.1 ± 4.2 37.3 ± 34.2 1.2 ± 1.4 33.9 ± 27.5 

Weeding 72.2 ± 16.5 0.6 ± 0.4 72.3 ± 15.2 16.7 ± 23.8 1.4 ± 1.2 13.6 ± 15.0 

Wiping/Dusting 60.3 ± 12.9 0.8 ± 0.4 62.7 ± 13.7 26.0 ± 13.3 1.5 ± 0.7 27.3 ± 13.7 

Writing 96.9 ± 4.2 0.1 ± 0.1 96.4 ± 3.6 54.8 ± 40.8 0.8 ± 1.0 51.9 ± 37.5 

taking out trash 57.9 ± 14.9 0.9 ± 0.4 58.9 ± 14.0    

Table A8-4: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the hip and foot, and the invariant reduced 

feature set over windows of 5.6s in length during subject dependent and independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 75.8 ± 27.2 0.2 ± 0.2 77.3 ± 27.3 6.5 ± 14.9 0.9 ± 1.1 5.4 ± 10.7 

Bench weight lifting - light 87.8 ± 13.3 0.1 ± 0.2 88.0 ± 13.6 29.0 ± 38.1 0.8 ± 0.7 25.1 ± 28.9 

Bench weight lifting - moderate 83.7 ± 18.8 0.2 ± 0.3 82.2 ± 20.4 18.8 ± 26.1 0.5 ± 0.4 19.2 ± 22.8 

Bicep curls - hard 82.1 ± 19.0 0.3 ± 0.2 81.0 ± 16.6 34.3 ± 34.2 1.3 ± 1.3 25.7 ± 23.2 

Bicep curls - light 85.4 ± 12.9 0.3 ± 0.3 85.6 ± 11.4 35.4 ± 35.0 1.3 ± 1.1 27.8 ± 21.5 

Bicep curls - moderate 80.9 ± 13.9 0.4 ± 0.4 80.7 ± 14.2 9.9 ± 14.8 0.6 ± 0.4 11.7 ± 13.3 

Calisthenics - Crunches 96.8 ± 6.0 0.1 ± 0.1 96.4 ± 4.9 53.8 ± 40.1 0.6 ± 1.0 53.8 ± 36.8 

Calisthenics - Sit ups 88.0 ± 10.6 0.2 ± 0.2 87.2 ± 10.9 18.3 ± 24.2 0.7 ± 0.3 20.3 ± 25.2 

Cycling - Cycle hard - Cycle 80rpm 78.4 ± 20.5 0.3 ± 0.2 78.1 ± 19.6 9.5 ± 16.1 1.0 ± 1.1 9.5 ± 16.0 

Cycling - Cycle light - Cycle 100rpm 92.3 ± 18.4 0.1 ± 0.1 92.7 ± 17.3 60.1 ± 36.0 1.2 ± 2.3 56.1 ± 35.6 

Cycling - Cycle light - Cycle 60rpm 96.5 ± 4.0 0.1 ± 0.1 95.4 ± 4.6 64.4 ± 28.6 0.9 ± 0.7 59.6 ± 21.5 

Cycling - Cycle light - Cycle 80rpm 93.3 ± 7.2 0.1 ± 0.1 93.8 ± 6.7 40.5 ± 33.4 1.8 ± 1.7 31.8 ± 25.7 

Cycling - Cycle moderate - Cycle 80rpm 84.3 ± 8.5 0.3 ± 0.2 84.6 ± 7.3 24.4 ± 28.1 1.2 ± 1.1 21.3 ± 22.1 

Lying down 99.7 ± 0.6 0.0 ± 0.0 99.6 ± 0.6 88.9 ± 20.5 0.6 ± 1.5 89.6 ± 16.5 

Rowing - Rowing hard - Rowing 30spm 74.6 ± 15.9 0.5 ± 0.3 73.8 ± 15.4 31.9 ± 27.9 1.1 ± 0.8 26.9 ± 20.2 

Rowing - Rowing light - Rowing 30spm 78.9 ± 12.5 0.4 ± 0.2 79.5 ± 11.5 42.2 ± 30.5 1.5 ± 1.8 36.0 ± 19.5 

Rowing - Rowing moderate - Rowing 30spm 68.8 ± 16.0 0.6 ± 0.3 68.5 ± 14.4 25.5 ± 22.1 1.0 ± 0.8 24.4 ± 17.0 

Running - Treadmill 4mph - Treadmill 0  96.7 ± 3.3 0.1 ± 0.1 96.5 ± 2.2 39.6 ± 37.7 1.1 ± 0.9 36.0 ± 29.2 

Running - Treadmill 5mph - Treadmill 0  93.6 ± 4.2 0.1 ± 0.1 93.3 ± 4.2 65.7 ± 31.1 1.0 ± 1.1 58.6 ± 20.8 

Running - Treadmill 6mph - Treadmill 0  89.4 ± 12.8 0.1 ± 0.1 88.9 ± 12.2 60.8 ± 33.2 0.6 ± 0.7 51.6 ± 28.1 

Sitting 95.9 ± 3.8 0.1 ± 0.1 94.5 ± 3.6 29.9 ± 35.9 1.0 ± 0.8 26.2 ± 29.3 

Sitting - Fidget feet legs 94.5 ± 3.9 0.1 ± 0.1 93.2 ± 4.6 31.4 ± 29.1 1.2 ± 0.9 26.0 ± 22.7 

Sitting - Fidget hands arms 92.9 ± 7.5 0.1 ± 0.1 91.5 ± 6.2 48.8 ± 32.7 0.6 ± 0.4 47.9 ± 29.1 

Stairs - Ascend stairs 89.2 ± 8.1 0.2 ± 0.1 88.2 ± 8.1 53.0 ± 27.5 0.9 ± 0.4 49.6 ± 23.4 

Stairs - Descend stairs 86.3 ± 8.2 0.2 ± 0.2 86.5 ± 7.4 44.3 ± 22.2 1.8 ± 1.5 37.9 ± 20.1 

Standing 92.2 ± 10.2 0.1 ± 0.2 91.9 ± 9.3 19.4 ± 23.8 1.5 ± 0.9 14.7 ± 14.0 

Walking - Treadmill 2mph - Treadmill 0  95.7 ± 4.0 0.1 ± 0.2 94.9 ± 4.6 50.6 ± 33.2 0.8 ± 0.7 50.3 ± 30.0 

Walking - Treadmill 3mph - Treadmill 0  83.4 ± 8.7 0.4 ± 0.2 82.8 ± 8.9 14.2 ± 19.1 1.7 ± 1.5 11.7 ± 14.1 

Walking - Treadmill 3mph - Treadmill 3  - light 71.2 ± 13.5 0.6 ± 0.3 72.0 ± 12.7 15.2 ± 15.1 1.5 ± 1.2 14.8 ± 13.5 

Walking - Treadmill 3mph - Treadmill 6  - moderate 75.6 ± 12.1 0.7 ± 0.4 73.7 ± 12.2 20.6 ± 24.5 1.4 ± 1.2 17.5 ± 16.8 

Walking - Treadmill 3mph - Treadmill 9  - hard 83.8 ± 11.2 0.3 ± 0.2 84.6 ± 10.2 20.5 ± 25.0 1.5 ± 1.2 18.2 ± 19.5 

kneeling 93.7 ± 6.6 0.1 ± 0.1 93.5 ± 6.1 22.4 ± 24.3 1.3 ± 1.2 19.4 ± 19.9 

Carrying groceries 85.2 ± 12.0 0.4 ± 0.3 84.9 ± 12.2 38.0 ± 22.5 1.6 ± 1.2 35.5 ± 18.0 

Doing dishes 72.7 ± 12.1 0.7 ± 0.3 71.8 ± 10.9 32.2 ± 20.0 1.6 ± 0.8 30.3 ± 17.9 

Gardening 65.0 ± 16.8 0.8 ± 0.2 64.4 ± 14.7 15.8 ± 18.7 1.3 ± 0.7 15.9 ± 17.0 

Ironing 70.9 ± 11.5 0.8 ± 0.4 70.6 ± 11.2 32.1 ± 16.3 1.7 ± 1.1 30.9 ± 13.8 

Making the bed 55.2 ± 9.4 1.1 ± 0.3 55.0 ± 8.5 34.1 ± 12.2 2.2 ± 1.4 30.7 ± 11.5 

Mopping 53.5 ± 14.8 1.2 ± 0.4 53.1 ± 13.8 22.6 ± 11.3 2.0 ± 0.7 21.6 ± 9.1 

Playing videogames 96.6 ± 5.2 0.1 ± 0.1 96.4 ± 4.4 27.4 ± 35.6 1.7 ± 1.3 23.7 ± 31.2 

Scrubbing a surface 65.8 ± 19.6 0.8 ± 0.4 65.9 ± 18.9 29.2 ± 16.6 1.8 ± 1.0 27.0 ± 14.4 

Stacking groceries 49.5 ± 15.1 1.0 ± 0.3 49.2 ± 14.2 19.5 ± 12.2 2.0 ± 0.8 17.0 ± 10.0 

Sweeping 52.8 ± 17.4 1.0 ± 0.4 53.2 ± 15.8 27.3 ± 14.8 1.9 ± 0.5 26.3 ± 14.5 

Typing 94.7 ± 6.3 0.2 ± 0.2 93.6 ± 5.7 44.0 ± 35.4 0.8 ± 0.4 44.9 ± 31.8 

Vacuuming 59.3 ± 17.9 1.0 ± 0.5 58.9 ± 17.5 31.8 ± 19.7 1.8 ± 0.7 29.4 ± 15.8 

Walking around block 87.4 ± 7.7 0.3 ± 0.2 86.9 ± 7.1 26.9 ± 24.9 2.5 ± 1.9 21.4 ± 18.0 

Washing windows 46.1 ± 13.9 1.1 ± 0.4 48.2 ± 13.5 21.2 ± 13.2 1.7 ± 0.7 22.0 ± 13.5 

Watching TV 94.8 ± 5.2 0.1 ± 0.1 96.0 ± 3.8 46.8 ± 40.8 1.3 ± 1.2 40.5 ± 34.4 

Weeding 60.1 ± 11.9 0.8 ± 0.2 62.1 ± 9.9 8.5 ± 9.8 1.0 ± 0.7 10.3 ± 11.6 

Wiping/Dusting 53.9 ± 17.7 1.0 ± 0.5 54.7 ± 17.5 21.6 ± 13.4 1.5 ± 0.5 22.1 ± 12.0 

Writing 94.3 ± 6.9 0.1 ± 0.2 94.4 ± 5.8 37.7 ± 30.8 1.8 ± 1.8 32.8 ± 24.6 

taking out trash 44.0 ± 10.9 1.0 ± 0.4 46.0 ± 10.2 19.5 ± 11.6 1.5 ± 0.4 20.7 ± 11.6 

Table A8-5: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the hip, and the invariant reduced feature set 

over windows of 5.6s in length during subject dependent and independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 83.9 ± 14.5 0.2 ± 0.3 82.0 ± 16.6 19.3 ± 26.9 0.5 ± 0.6 16.4 ± 19.2 

Bench weight lifting - light 89.6 ± 13.0 0.2 ± 0.2 85.9 ± 13.6 36.5 ± 25.1 0.7 ± 0.6 37.0 ± 22.7 

Bench weight lifting - moderate 81.1 ± 16.4 0.2 ± 0.1 81.3 ± 15.1 14.1 ± 16.6 1.0 ± 0.8 11.1 ± 12.8 

Bicep curls - hard 85.8 ± 13.8 0.2 ± 0.2 86.2 ± 12.4 27.4 ± 27.1 1.0 ± 1.0 24.3 ± 20.3 

Bicep curls - light 86.1 ± 10.8 0.3 ± 0.2 86.5 ± 10.3 30.1 ± 31.1 1.2 ± 1.4 26.2 ± 18.4 

Bicep curls - moderate 84.8 ± 11.7 0.3 ± 0.2 84.0 ± 10.6 27.2 ± 26.9 1.1 ± 0.9 24.0 ± 19.5 

Calisthenics - Crunches 95.6 ± 5.1 0.1 ± 0.1 94.8 ± 4.9 20.9 ± 21.3 0.7 ± 0.7 23.0 ± 21.9 

Calisthenics - Sit ups 95.2 ± 4.0 0.1 ± 0.1 93.2 ± 4.6 36.8 ± 33.7 0.7 ± 0.6 37.6 ± 33.0 

Cycling - Cycle hard - Cycle 80rpm 82.0 ± 14.9 0.3 ± 0.2 82.2 ± 12.9 30.0 ± 32.2 1.3 ± 1.0 23.2 ± 19.4 

Cycling - Cycle light - Cycle 100rpm 98.5 ± 2.7 0.0 ± 0.1 97.6 ± 2.6 84.8 ± 27.8 0.5 ± 1.0 79.2 ± 30.4 

Cycling - Cycle light - Cycle 60rpm 96.5 ± 4.4 0.1 ± 0.1 96.7 ± 3.2 80.4 ± 25.5 0.4 ± 0.4 79.8 ± 20.0 

Cycling - Cycle light - Cycle 80rpm 91.3 ± 8.2 0.2 ± 0.2 91.2 ± 8.2 38.9 ± 26.4 1.0 ± 1.0 38.9 ± 17.3 

Cycling - Cycle moderate - Cycle 80rpm 84.0 ± 12.8 0.3 ± 0.2 84.0 ± 12.0 33.0 ± 24.7 1.0 ± 0.8 31.5 ± 17.5 

Lying down 99.9 ± 0.3 0.0 ± 0.0 99.7 ± 0.4 91.6 ± 18.4 0.5 ± 1.0 91.2 ± 13.9 

Rowing - Rowing hard - Rowing 30spm 74.3 ± 18.9 0.5 ± 0.4 72.6 ± 19.0 26.0 ± 28.5 1.2 ± 1.1 22.2 ± 18.2 

Rowing - Rowing light - Rowing 30spm 77.8 ± 15.6 0.4 ± 0.3 77.9 ± 15.2 40.3 ± 30.9 1.4 ± 1.1 33.4 ± 20.4 

Rowing - Rowing moderate - Rowing 30spm 66.5 ± 16.1 0.6 ± 0.3 67.0 ± 15.8 22.4 ± 29.4 1.1 ± 1.1 19.2 ± 18.6 

Running - Treadmill 4mph - Treadmill 0  93.0 ± 5.8 0.1 ± 0.1 93.2 ± 4.4 27.9 ± 31.2 1.3 ± 1.4 29.8 ± 31.3 

Running - Treadmill 5mph - Treadmill 0  92.1 ± 6.7 0.1 ± 0.1 92.6 ± 4.4 45.4 ± 32.7 1.3 ± 0.9 39.7 ± 24.0 

Running - Treadmill 6mph - Treadmill 0  93.8 ± 5.0 0.1 ± 0.1 93.3 ± 5.8 52.6 ± 36.1 0.9 ± 0.9 40.3 ± 26.4 

Sitting 96.5 ± 3.5 0.1 ± 0.1 96.0 ± 4.1 27.1 ± 38.8 1.2 ± 1.2 24.9 ± 35.2 

Sitting - Fidget feet legs 91.6 ± 7.2 0.1 ± 0.1 92.0 ± 5.2 48.8 ± 32.0 0.6 ± 0.6 48.6 ± 25.0 

Sitting - Fidget hands arms 93.4 ± 6.1 0.1 ± 0.1 92.0 ± 5.4 44.2 ± 32.6 0.6 ± 0.3 43.2 ± 27.7 

Stairs - Ascend stairs 77.8 ± 11.8 0.4 ± 0.2 77.7 ± 11.2 56.1 ± 22.3 1.0 ± 0.4 52.4 ± 18.9 

Stairs - Descend stairs 76.4 ± 11.8 0.5 ± 0.2 75.3 ± 10.6 43.9 ± 21.0 1.2 ± 0.8 40.6 ± 17.8 

Standing 95.8 ± 5.1 0.1 ± 0.1 95.1 ± 3.9 77.9 ± 32.1 0.5 ± 0.9 71.8 ± 29.9 

Walking - Treadmill 2mph - Treadmill 0  96.2 ± 3.4 0.1 ± 0.1 95.2 ± 3.1 66.0 ± 35.2 0.9 ± 1.8 64.3 ± 31.4 

Walking - Treadmill 3mph - Treadmill 0  67.3 ± 12.6 0.7 ± 0.3 67.7 ± 11.2 20.6 ± 24.0 1.4 ± 1.2 17.9 ± 16.9 

Walking - Treadmill 3mph - Treadmill 3  - light 59.6 ± 15.4 1.0 ± 0.5 58.0 ± 15.4 15.7 ± 15.7 1.3 ± 0.9 16.0 ± 14.0 

Walking - Treadmill 3mph - Treadmill 6  - moderate 56.4 ± 12.0 1.0 ± 0.3 56.9 ± 11.2 15.5 ± 17.3 1.3 ± 1.1 14.6 ± 14.0 

Walking - Treadmill 3mph - Treadmill 9  - hard 70.8 ± 11.8 0.6 ± 0.3 71.8 ± 11.4 14.1 ± 14.3 1.4 ± 1.1 13.7 ± 12.8 

kneeling 97.9 ± 2.4 0.0 ± 0.0 98.2 ± 1.9 87.4 ± 23.2 0.5 ± 1.0 83.7 ± 24.8 

Carrying groceries 90.8 ± 6.7 0.3 ± 0.2 89.7 ± 7.3 60.3 ± 29.7 1.2 ± 0.8 57.2 ± 26.1 

Doing dishes 73.3 ± 11.6 0.6 ± 0.3 73.0 ± 10.5 42.5 ± 22.4 1.5 ± 0.7 38.2 ± 17.1 

Gardening 73.6 ± 11.9 0.7 ± 0.3 72.5 ± 11.0 22.9 ± 21.9 1.2 ± 1.1 24.4 ± 22.8 

Ironing 80.8 ± 9.3 0.6 ± 0.3 79.2 ± 9.5 47.4 ± 27.9 1.6 ± 0.9 42.9 ± 21.2 

Making the bed 47.2 ± 8.7 1.3 ± 0.4 47.9 ± 9.3 33.0 ± 19.0 2.0 ± 1.2 28.8 ± 16.3 

Mopping 57.9 ± 18.3 1.1 ± 0.4 57.2 ± 17.4 26.3 ± 12.1 2.0 ± 1.2 24.9 ± 11.6 

Playing videogames 97.0 ± 4.2 0.1 ± 0.1 97.2 ± 3.5 55.4 ± 41.3 1.3 ± 1.4 48.3 ± 35.2 

Scrubbing a surface 78.6 ± 19.5 0.5 ± 0.4 78.7 ± 18.5 41.8 ± 29.4 1.7 ± 1.8 36.8 ± 22.9 

Stacking groceries 65.0 ± 17.7 0.6 ± 0.3 66.2 ± 16.9 31.1 ± 16.7 1.9 ± 1.2 28.7 ± 15.6 

Sweeping 62.3 ± 12.7 1.0 ± 0.4 62.5 ± 13.0 33.7 ± 16.3 1.5 ± 0.7 32.7 ± 13.5 

Typing 97.7 ± 2.7 0.1 ± 0.1 97.6 ± 2.4 77.4 ± 27.3 0.6 ± 1.0 76.2 ± 25.0 

Vacuuming 69.4 ± 10.5 0.7 ± 0.3 70.2 ± 10.0 45.4 ± 27.4 1.1 ± 0.6 44.0 ± 23.4 

Walking around block 83.8 ± 11.8 0.4 ± 0.3 84.0 ± 10.4 37.2 ± 20.6 2.8 ± 1.6 29.6 ± 14.8 

Washing windows 64.7 ± 12.1 0.7 ± 0.3 66.5 ± 10.7 40.6 ± 24.0 1.2 ± 0.7 42.1 ± 24.6 

Watching TV 96.8 ± 2.6 0.1 ± 0.1 96.6 ± 3.0 30.9 ± 30.5 1.5 ± 1.1 31.4 ± 28.5 

Weeding 59.3 ± 22.6 0.8 ± 0.4 61.0 ± 20.5 10.1 ± 16.2 1.5 ± 1.7 10.0 ± 13.3 

Wiping/Dusting 56.9 ± 13.7 0.9 ± 0.4 58.8 ± 13.3 38.2 ± 17.4 1.3 ± 0.6 38.6 ± 16.8 

Writing 96.8 ± 3.4 0.1 ± 0.1 95.6 ± 2.9 67.9 ± 35.4 0.9 ± 1.6 66.3 ± 35.0 

taking out trash 52.4 ± 11.5 1.0 ± 0.4 53.9 ± 12.3 21.6 ± 14.2 1.3 ± 0.6 23.5 ± 14.4 

Table A8-6: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant wrist and dominant foot, and 

the invariant reduced feature set over windows of 5.6s in length during subject dependent and 

independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 87.5 ± 12.9 0.2 ± 0.2 84.7 ± 12.5 8.0 ± 23.4 0.4 ± 0.6 5.6 ± 11.5 

Bench weight lifting - light 93.5 ± 8.2 0.1 ± 0.2 93.3 ± 8.3 41.5 ± 38.4 0.8 ± 0.7 37.2 ± 31.6 

Bench weight lifting - moderate 84.8 ± 13.6 0.1 ± 0.1 85.5 ± 12.5 29.0 ± 26.5 0.9 ± 1.0 23.6 ± 16.6 

Bicep curls - hard 85.7 ± 11.6 0.2 ± 0.2 86.4 ± 10.7 30.7 ± 34.6 1.1 ± 1.1 25.6 ± 26.2 

Bicep curls - light 86.2 ± 9.4 0.3 ± 0.3 86.4 ± 9.8 36.4 ± 35.9 1.1 ± 1.1 30.5 ± 24.5 

Bicep curls - moderate 81.0 ± 14.7 0.4 ± 0.3 80.7 ± 13.7 22.6 ± 29.7 1.2 ± 1.0 18.1 ± 18.7 

Calisthenics - Crunches 98.2 ± 3.7 0.0 ± 0.0 98.0 ± 2.0 65.2 ± 37.1 0.5 ± 0.9 62.4 ± 35.4 

Calisthenics - Sit ups 94.6 ± 4.0 0.1 ± 0.1 93.4 ± 3.2 61.9 ± 32.0 0.3 ± 0.3 63.4 ± 29.3 

Cycling - Cycle hard - Cycle 80rpm 81.9 ± 10.8 0.3 ± 0.2 81.4 ± 11.2 27.0 ± 29.0 0.7 ± 0.7 25.5 ± 26.3 

Cycling - Cycle light - Cycle 100rpm 98.3 ± 3.9 0.0 ± 0.0 97.7 ± 3.7 90.4 ± 17.8 0.1 ± 0.4 92.0 ± 12.3 

Cycling - Cycle light - Cycle 60rpm 99.2 ± 1.5 0.0 ± 0.0 98.6 ± 1.4 91.8 ± 11.8 0.2 ± 0.3 91.4 ± 9.1 

Cycling - Cycle light - Cycle 80rpm 94.1 ± 6.4 0.1 ± 0.1 93.9 ± 6.0 50.4 ± 34.8 1.3 ± 1.0 41.9 ± 25.1 

Cycling - Cycle moderate - Cycle 80rpm 83.4 ± 10.0 0.3 ± 0.2 84.4 ± 8.6 34.0 ± 27.5 1.3 ± 0.7 29.0 ± 16.3 

Lying down 99.9 ± 0.4 0.0 ± 0.0 99.6 ± 0.4 83.0 ± 27.6 1.1 ± 1.5 80.6 ± 23.8 

Rowing - Rowing hard - Rowing 30spm 76.8 ± 14.9 0.4 ± 0.3 76.6 ± 14.3 35.1 ± 25.5 1.2 ± 0.9 32.2 ± 19.5 

Rowing - Rowing light - Rowing 30spm 83.0 ± 12.5 0.4 ± 0.3 82.9 ± 12.4 42.6 ± 31.8 1.6 ± 1.3 33.8 ± 19.3 

Rowing - Rowing moderate - Rowing 30spm 71.4 ± 15.2 0.6 ± 0.3 71.6 ± 15.2 27.5 ± 28.2 1.1 ± 1.1 24.5 ± 19.0 

Running - Treadmill 4mph - Treadmill 0  91.8 ± 6.7 0.2 ± 0.1 91.4 ± 5.3 53.2 ± 38.9 0.7 ± 1.0 53.4 ± 37.2 

Running - Treadmill 5mph - Treadmill 0  89.2 ± 7.9 0.2 ± 0.1 89.4 ± 6.7 68.0 ± 26.3 1.0 ± 0.9 61.3 ± 21.7 

Running - Treadmill 6mph - Treadmill 0  81.6 ± 19.7 0.1 ± 0.1 83.4 ± 17.5 52.0 ± 31.3 0.6 ± 0.6 49.2 ± 28.3 

Sitting 96.5 ± 4.7 0.1 ± 0.1 95.9 ± 4.1 43.8 ± 44.5 1.2 ± 1.2 33.6 ± 34.6 

Sitting - Fidget feet legs 93.1 ± 9.9 0.1 ± 0.1 93.4 ± 7.5 50.4 ± 34.2 0.4 ± 0.5 52.7 ± 29.9 

Sitting - Fidget hands arms 93.4 ± 8.0 0.1 ± 0.2 92.0 ± 7.4 37.2 ± 28.2 0.7 ± 0.7 36.8 ± 23.8 

Stairs - Ascend stairs 85.1 ± 7.5 0.4 ± 0.2 83.3 ± 7.8 62.7 ± 23.1 1.0 ± 0.7 56.6 ± 18.7 

Stairs - Descend stairs 79.8 ± 7.8 0.3 ± 0.2 80.3 ± 8.2 48.3 ± 24.4 0.7 ± 0.4 48.6 ± 20.1 

Standing 95.0 ± 7.4 0.1 ± 0.1 94.3 ± 7.6 68.8 ± 34.8 0.6 ± 0.8 62.7 ± 31.0 

Walking - Treadmill 2mph - Treadmill 0  94.6 ± 4.3 0.2 ± 0.1 94.2 ± 3.6 75.5 ± 22.8 0.5 ± 0.7 75.3 ± 18.0 

Walking - Treadmill 3mph - Treadmill 0  77.3 ± 13.7 0.6 ± 0.2 76.2 ± 12.0 29.3 ± 24.2 2.0 ± 1.4 24.3 ± 16.0 

Walking - Treadmill 3mph - Treadmill 3  - light 60.6 ± 14.4 0.8 ± 0.3 61.3 ± 14.2 11.2 ± 12.2 1.0 ± 0.6 12.4 ± 11.8 

Walking - Treadmill 3mph - Treadmill 6  - moderate 67.9 ± 13.6 0.8 ± 0.4 66.5 ± 13.2 17.1 ± 13.4 1.7 ± 1.0 16.4 ± 10.8 

Walking - Treadmill 3mph - Treadmill 9  - hard 78.8 ± 11.3 0.5 ± 0.3 79.1 ± 10.6 23.2 ± 25.7 1.2 ± 0.9 21.7 ± 21.4 

kneeling 95.4 ± 4.1 0.1 ± 0.1 94.5 ± 3.6 49.4 ± 36.0 0.5 ± 0.5 49.4 ± 30.8 

Carrying groceries 87.6 ± 9.8 0.3 ± 0.2 87.8 ± 8.0 53.4 ± 30.1 1.0 ± 0.5 52.9 ± 26.6 

Doing dishes 74.1 ± 16.1 0.6 ± 0.4 73.8 ± 14.0 51.1 ± 23.2 1.5 ± 1.1 46.3 ± 19.0 

Gardening 75.9 ± 14.7 0.6 ± 0.4 75.4 ± 15.5 19.9 ± 19.5 0.8 ± 0.4 22.8 ± 21.0 

Ironing 74.3 ± 15.4 0.7 ± 0.4 72.9 ± 14.3 53.3 ± 24.3 1.4 ± 0.7 49.3 ± 16.5 

Making the bed 51.1 ± 12.2 1.2 ± 0.4 51.0 ± 11.8 34.0 ± 13.1 2.1 ± 0.9 30.6 ± 11.2 

Mopping 53.0 ± 13.3 1.2 ± 0.3 51.8 ± 11.8 31.4 ± 13.9 1.9 ± 0.6 29.2 ± 11.2 

Playing videogames 99.1 ± 1.6 0.0 ± 0.0 99.2 ± 1.2 42.0 ± 36.8 1.1 ± 1.2 41.1 ± 33.7 

Scrubbing a surface 68.1 ± 16.5 0.8 ± 0.3 67.6 ± 14.7 29.0 ± 16.5 1.8 ± 0.9 27.4 ± 14.6 

Stacking groceries 56.1 ± 15.0 0.8 ± 0.3 57.0 ± 15.2 36.9 ± 18.6 1.4 ± 0.8 34.6 ± 15.0 

Sweeping 56.9 ± 11.0 0.9 ± 0.5 58.9 ± 11.8 31.4 ± 12.9 1.5 ± 0.6 32.1 ± 11.9 

Typing 99.2 ± 1.2 0.0 ± 0.0 98.9 ± 0.8 77.8 ± 30.4 0.4 ± 0.7 77.5 ± 27.6 

Vacuuming 71.2 ± 12.6 0.6 ± 0.2 72.6 ± 10.6 48.4 ± 17.6 1.1 ± 0.5 49.1 ± 13.2 

Walking around block 83.8 ± 10.1 0.4 ± 0.2 84.4 ± 8.7 35.7 ± 17.1 2.6 ± 2.2 32.3 ± 16.3 

Washing windows 60.8 ± 10.9 0.8 ± 0.4 63.1 ± 11.2 41.3 ± 20.9 1.5 ± 1.3 40.8 ± 22.4 

Watching TV 98.5 ± 1.9 0.0 ± 0.0 98.8 ± 1.3 27.5 ± 30.1 2.4 ± 2.5 23.8 ± 25.4 

Weeding 62.4 ± 15.2 0.8 ± 0.5 63.9 ± 15.1 8.6 ± 9.2 1.2 ± 0.8 10.3 ± 10.3 

Wiping/Dusting 55.6 ± 14.1 1.1 ± 0.4 55.0 ± 14.3 35.5 ± 18.6 1.3 ± 0.6 35.4 ± 16.8 

Writing 98.1 ± 2.8 0.1 ± 0.1 97.5 ± 2.2 58.8 ± 38.6 0.6 ± 0.6 58.3 ± 34.4 

taking out trash 49.1 ± 13.2 1.0 ± 0.3 50.5 ± 12.8 28.1 ± 16.6 1.4 ± 0.4 28.0 ± 14.3 

Table A8-7: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant wrist and dominant thigh, and 

the invariant reduced feature set over windows of 5.6s in length during subject dependent and 

independent evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 50.0 ± 17.9 0.4 ± 0.2 52.2 ± 17.8 15.5 ± 15.4 0.7 ± 0.7 14.0 ± 14.0 

Bench weight lifting - light 71.6 ± 15.0 0.5 ± 0.3 71.0 ± 15.1 40.1 ± 24.2 0.8 ± 0.6 41.0 ± 20.7 

Bench weight lifting - moderate 59.3 ± 21.0 0.6 ± 0.3 57.4 ± 19.2 22.4 ± 20.1 0.7 ± 0.4 20.1 ± 16.4 

Bicep curls - hard 71.2 ± 14.5 0.6 ± 0.3 69.9 ± 14.8 37.4 ± 28.0 1.4 ± 0.8 30.1 ± 19.6 

Bicep curls - light 68.5 ± 14.1 0.6 ± 0.3 69.3 ± 13.8 33.7 ± 21.1 1.2 ± 0.6 32.4 ± 16.7 

Bicep curls - moderate 62.4 ± 14.4 0.7 ± 0.3 62.7 ± 13.0 22.4 ± 15.0 0.9 ± 0.7 24.6 ± 12.6 

Calisthenics - Crunches 87.0 ± 9.9 0.2 ± 0.2 87.0 ± 9.4 35.6 ± 33.8 0.8 ± 0.9 35.8 ± 32.0 

Calisthenics - Sit ups 90.7 ± 5.9 0.2 ± 0.2 88.2 ± 6.9 40.0 ± 31.2 0.8 ± 1.2 38.5 ± 30.2 

Cycling - Cycle hard - Cycle 80rpm 67.2 ± 24.5 0.6 ± 0.4 65.5 ± 24.6 15.8 ± 21.7 1.3 ± 0.8 13.7 ± 16.3 

Cycling - Cycle light - Cycle 100rpm 80.2 ± 10.8 0.4 ± 0.2 79.4 ± 10.8 47.9 ± 27.2 1.1 ± 1.1 45.1 ± 24.0 

Cycling - Cycle light - Cycle 60rpm 84.4 ± 12.6 0.4 ± 0.3 82.5 ± 12.4 57.2 ± 25.6 1.2 ± 0.8 51.0 ± 21.3 

Cycling - Cycle light - Cycle 80rpm 77.1 ± 19.9 0.5 ± 0.5 76.6 ± 20.2 25.4 ± 20.6 1.7 ± 1.2 24.1 ± 19.2 

Cycling - Cycle moderate - Cycle 80rpm 65.7 ± 16.3 0.7 ± 0.4 65.1 ± 16.5 16.4 ± 15.0 1.7 ± 0.7 15.0 ± 12.8 

Lying down 99.4 ± 0.9 0.0 ± 0.1 99.3 ± 0.8 57.8 ± 37.8 1.2 ± 1.4 59.6 ± 37.1 

Rowing - Rowing hard - Rowing 30spm 66.5 ± 16.5 0.6 ± 0.3 65.7 ± 15.8 31.6 ± 26.0 1.1 ± 0.7 27.1 ± 16.3 

Rowing - Rowing light - Rowing 30spm 71.1 ± 13.2 0.7 ± 0.4 69.4 ± 13.5 35.1 ± 17.7 1.2 ± 0.8 34.6 ± 11.8 

Rowing - Rowing moderate - Rowing 30spm 56.3 ± 13.3 0.8 ± 0.2 56.9 ± 12.7 25.5 ± 17.3 1.1 ± 1.0 25.6 ± 11.2 

Running - Treadmill 4mph - Treadmill 0  87.7 ± 7.5 0.4 ± 0.3 85.3 ± 9.5 29.1 ± 27.3 1.5 ± 1.5 28.4 ± 26.4 

Running - Treadmill 5mph - Treadmill 0  88.6 ± 6.7 0.3 ± 0.2 87.1 ± 7.5 40.5 ± 33.1 0.9 ± 0.6 37.3 ± 25.2 

Running - Treadmill 6mph - Treadmill 0  84.3 ± 13.4 0.2 ± 0.1 84.1 ± 11.2 30.8 ± 28.1 0.6 ± 0.8 32.2 ± 26.7 

Sitting 92.5 ± 6.9 0.1 ± 0.1 91.9 ± 6.7 29.2 ± 36.8 1.6 ± 1.6 23.5 ± 27.8 

Sitting - Fidget feet legs 88.7 ± 10.9 0.2 ± 0.2 88.3 ± 11.8 27.6 ± 31.8 0.8 ± 0.8 27.2 ± 28.9 

Sitting - Fidget hands arms 81.5 ± 17.1 0.2 ± 0.1 80.7 ± 13.8 28.0 ± 23.4 0.8 ± 0.7 28.9 ± 20.3 

Stairs - Ascend stairs 70.5 ± 14.8 0.7 ± 0.3 67.7 ± 13.6 42.6 ± 29.6 1.1 ± 0.5 38.8 ± 24.4 

Stairs - Descend stairs 62.5 ± 12.4 0.6 ± 0.2 62.6 ± 11.2 41.4 ± 24.9 1.5 ± 1.0 34.7 ± 18.1 

Standing 92.3 ± 7.9 0.1 ± 0.1 91.6 ± 7.7 26.8 ± 31.7 0.8 ± 0.7 24.1 ± 26.5 

Walking - Treadmill 2mph - Treadmill 0  90.4 ± 6.4 0.3 ± 0.2 89.0 ± 6.9 51.3 ± 29.7 1.1 ± 1.3 49.3 ± 23.8 

Walking - Treadmill 3mph - Treadmill 0  64.8 ± 12.9 0.8 ± 0.3 64.2 ± 11.6 21.1 ± 21.5 1.6 ± 1.0 19.1 ± 16.4 

Walking - Treadmill 3mph - Treadmill 3  - light 51.8 ± 15.8 1.2 ± 0.4 50.7 ± 14.5 9.9 ± 19.3 1.1 ± 1.5 8.4 ± 10.4 

Walking - Treadmill 3mph - Treadmill 6  - moderate 52.6 ± 13.8 1.1 ± 0.3 52.4 ± 12.6 12.0 ± 18.1 1.3 ± 0.9 11.3 ± 12.1 

Walking - Treadmill 3mph - Treadmill 9  - hard 66.0 ± 12.7 0.7 ± 0.3 66.6 ± 12.8 26.5 ± 27.1 1.5 ± 1.2 22.4 ± 18.2 

kneeling 91.2 ± 8.1 0.1 ± 0.1 91.9 ± 7.6 42.4 ± 37.0 1.0 ± 1.0 32.6 ± 25.2 

Carrying groceries 85.2 ± 11.4 0.4 ± 0.3 84.0 ± 9.4 56.8 ± 35.7 1.0 ± 0.8 54.4 ± 32.6 

Doing dishes 48.6 ± 14.6 1.3 ± 0.4 47.7 ± 14.7 37.8 ± 16.1 1.8 ± 0.8 34.4 ± 12.8 

Gardening 52.6 ± 19.4 0.9 ± 0.4 53.4 ± 18.4 27.6 ± 25.5 1.0 ± 0.4 28.9 ± 25.5 

Ironing 57.8 ± 15.8 1.2 ± 0.5 56.9 ± 15.7 27.3 ± 13.2 2.2 ± 2.0 26.0 ± 11.0 

Making the bed 35.3 ± 9.4 1.7 ± 0.5 34.9 ± 8.8 23.6 ± 13.5 1.9 ± 0.8 22.1 ± 12.2 

Mopping 41.5 ± 16.8 1.4 ± 0.5 41.1 ± 15.5 22.9 ± 10.6 2.2 ± 1.3 21.1 ± 8.5 

Playing videogames 95.9 ± 4.7 0.1 ± 0.2 95.6 ± 4.8 59.7 ± 37.8 1.1 ± 1.3 54.8 ± 31.9 

Scrubbing a surface 47.2 ± 13.0 1.1 ± 0.4 48.7 ± 13.5 26.0 ± 18.4 1.7 ± 1.0 25.2 ± 16.5 

Stacking groceries 45.2 ± 18.1 1.0 ± 0.5 46.0 ± 19.1 33.4 ± 18.0 1.7 ± 1.0 31.3 ± 15.8 

Sweeping 52.4 ± 14.1 1.1 ± 0.5 52.9 ± 12.8 29.6 ± 13.5 1.6 ± 0.6 29.8 ± 13.4 

Typing 96.1 ± 3.3 0.1 ± 0.1 96.2 ± 2.8 72.4 ± 31.9 0.4 ± 0.6 74.6 ± 31.0 

Vacuuming 55.6 ± 14.2 0.8 ± 0.3 57.9 ± 12.3 49.0 ± 16.4 1.2 ± 0.4 48.5 ± 12.1 

Walking around block 78.1 ± 13.5 0.5 ± 0.3 79.1 ± 12.3 28.9 ± 20.6 2.5 ± 1.9 25.1 ± 16.1 

Washing windows 56.8 ± 13.8 0.8 ± 0.3 59.6 ± 12.8 39.8 ± 21.0 1.3 ± 1.0 41.1 ± 21.5 

Watching TV 92.4 ± 7.5 0.1 ± 0.2 93.7 ± 6.4 26.5 ± 21.9 2.8 ± 2.2 21.9 ± 17.9 

Weeding 41.3 ± 16.1 1.3 ± 0.4 41.6 ± 14.9 5.0 ± 6.8 1.0 ± 0.5 6.4 ± 8.6 

Wiping/Dusting 43.6 ± 16.9 1.2 ± 0.4 45.4 ± 16.2 25.3 ± 13.8 1.5 ± 0.5 26.1 ± 13.1 

Writing 93.4 ± 4.6 0.2 ± 0.1 92.6 ± 4.4 70.3 ± 34.5 1.1 ± 2.2 66.6 ± 32.9 

taking out trash 34.6 ± 14.4 1.2 ± 0.3 35.8 ± 13.6 15.0 ± 11.3 1.4 ± 0.4 15.8 ± 11.0 

Table A8-8: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant wrist, and the invariant 

reduced feature set over windows of 5.6s in length during subject dependent and independent 

evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 82.4 ± 19.5 0.2 ± 0.2 82.5 ± 17.9 9.3 ± 14.5 0.5 ± 0.4 8.6 ± 12.9 

Bench weight lifting - light 84.2 ± 15.3 0.2 ± 0.2 83.5 ± 14.8 20.1 ± 19.3 1.0 ± 0.5 19.3 ± 17.2 

Bench weight lifting - moderate 80.2 ± 17.8 0.2 ± 0.2 80.9 ± 16.8 15.7 ± 15.6 0.9 ± 0.6 14.6 ± 14.2 

Bicep curls - hard 86.4 ± 12.2 0.3 ± 0.2 85.8 ± 11.5 23.3 ± 29.3 1.4 ± 1.0 16.6 ± 18.2 

Bicep curls - light 81.0 ± 15.6 0.3 ± 0.3 82.1 ± 15.6 24.2 ± 25.6 1.3 ± 1.1 20.9 ± 16.9 

Bicep curls - moderate 82.4 ± 15.1 0.4 ± 0.3 81.2 ± 13.8 17.9 ± 21.0 1.0 ± 1.0 16.6 ± 16.1 

Calisthenics - Crunches 91.8 ± 9.1 0.2 ± 0.2 90.8 ± 8.4 6.1 ± 9.7 1.4 ± 0.9 5.4 ± 7.2 

Calisthenics - Sit ups 93.9 ± 7.0 0.2 ± 0.2 91.3 ± 8.0 26.2 ± 25.4 1.2 ± 1.8 24.2 ± 20.9 

Cycling - Cycle hard - Cycle 80rpm 79.9 ± 14.7 0.3 ± 0.3 80.0 ± 12.5 18.7 ± 23.3 0.9 ± 0.8 17.6 ± 18.7 

Cycling - Cycle light - Cycle 100rpm 98.7 ± 2.5 0.0 ± 0.0 97.8 ± 2.1 93.3 ± 17.3 0.2 ± 0.2 90.5 ± 13.4 

Cycling - Cycle light - Cycle 60rpm 97.4 ± 3.5 0.0 ± 0.1 97.7 ± 2.4 87.4 ± 20.5 0.2 ± 0.3 87.4 ± 15.1 

Cycling - Cycle light - Cycle 80rpm 86.4 ± 10.5 0.3 ± 0.2 86.2 ± 9.6 39.2 ± 29.4 1.2 ± 1.0 37.3 ± 23.4 

Cycling - Cycle moderate - Cycle 80rpm 76.1 ± 13.8 0.4 ± 0.3 76.4 ± 13.1 45.2 ± 23.9 1.7 ± 1.0 37.0 ± 11.7 

Lying down 99.2 ± 1.7 0.1 ± 0.1 99.0 ± 1.7 85.4 ± 22.5 0.9 ± 1.3 84.9 ± 15.9 

Rowing - Rowing hard - Rowing 30spm 64.2 ± 25.3 0.6 ± 0.4 64.4 ± 24.6 21.6 ± 28.7 1.0 ± 1.3 18.8 ± 19.5 

Rowing - Rowing light - Rowing 30spm 74.3 ± 15.6 0.6 ± 0.4 73.2 ± 15.7 34.8 ± 32.0 1.5 ± 1.0 29.8 ± 23.1 

Rowing - Rowing moderate - Rowing 30spm 63.7 ± 19.0 0.8 ± 0.5 63.3 ± 18.6 24.0 ± 23.8 1.0 ± 0.8 23.8 ± 21.9 

Running - Treadmill 4mph - Treadmill 0  94.7 ± 4.1 0.1 ± 0.1 94.1 ± 3.1 29.2 ± 23.6 1.6 ± 1.7 28.2 ± 22.5 

Running - Treadmill 5mph - Treadmill 0  90.0 ± 6.1 0.2 ± 0.1 89.8 ± 4.6 42.2 ± 23.0 1.0 ± 0.8 42.6 ± 22.9 

Running - Treadmill 6mph - Treadmill 0  90.6 ± 6.8 0.1 ± 0.1 91.4 ± 5.3 62.0 ± 29.8 0.8 ± 0.8 51.7 ± 26.7 

Sitting 94.3 ± 7.7 0.1 ± 0.1 93.8 ± 7.8 22.4 ± 36.0 1.4 ± 1.7 18.0 ± 25.1 

Sitting - Fidget feet legs 89.1 ± 9.4 0.2 ± 0.2 88.3 ± 9.5 50.3 ± 31.5 0.5 ± 0.6 51.7 ± 27.6 

Sitting - Fidget hands arms 90.7 ± 8.9 0.2 ± 0.1 89.8 ± 8.6 36.6 ± 25.0 1.1 ± 0.7 31.3 ± 20.2 

Stairs - Ascend stairs 71.6 ± 12.1 0.5 ± 0.2 72.9 ± 10.8 41.9 ± 24.6 1.3 ± 0.8 36.8 ± 18.5 

Stairs - Descend stairs 73.7 ± 9.0 0.6 ± 0.2 71.5 ± 9.0 37.1 ± 15.7 1.4 ± 0.8 33.9 ± 15.2 

Standing 92.7 ± 9.6 0.1 ± 0.1 92.3 ± 8.4 26.6 ± 40.4 1.3 ± 1.1 21.1 ± 30.1 

Walking - Treadmill 2mph - Treadmill 0  96.0 ± 3.2 0.2 ± 0.1 94.9 ± 3.2 47.2 ± 29.9 1.2 ± 2.4 50.4 ± 25.3 

Walking - Treadmill 3mph - Treadmill 0  58.7 ± 15.1 1.0 ± 0.4 58.1 ± 14.5 20.4 ± 16.5 1.7 ± 1.2 18.9 ± 13.3 

Walking - Treadmill 3mph - Treadmill 3  - light 49.2 ± 15.3 1.3 ± 0.4 47.9 ± 15.2 17.7 ± 16.2 1.4 ± 0.9 17.3 ± 12.0 

Walking - Treadmill 3mph - Treadmill 6  - moderate 50.5 ± 14.6 1.1 ± 0.4 51.0 ± 14.6 11.9 ± 10.1 1.3 ± 0.8 12.2 ± 9.4 

Walking - Treadmill 3mph - Treadmill 9  - hard 57.9 ± 20.3 0.9 ± 0.4 58.6 ± 19.2 13.6 ± 13.4 1.3 ± 0.6 13.8 ± 12.8 

kneeling 93.9 ± 9.0 0.0 ± 0.1 95.0 ± 8.1 60.4 ± 36.9 1.7 ± 2.8 52.4 ± 36.5 

Carrying groceries 79.1 ± 10.8 0.5 ± 0.3 79.1 ± 11.0 41.4 ± 27.3 1.5 ± 0.8 39.6 ± 23.4 

Doing dishes 73.0 ± 13.6 0.7 ± 0.4 72.0 ± 13.0 31.1 ± 17.4 1.7 ± 1.0 28.8 ± 14.8 

Gardening 68.3 ± 15.0 0.7 ± 0.4 68.2 ± 14.7 11.8 ± 12.2 1.7 ± 1.6 12.0 ± 13.3 

Ironing 77.2 ± 12.9 0.7 ± 0.4 75.9 ± 13.0 28.3 ± 20.4 1.8 ± 0.8 26.8 ± 16.6 

Making the bed 45.5 ± 14.1 1.5 ± 0.5 44.5 ± 13.4 23.9 ± 14.5 1.9 ± 0.8 22.5 ± 12.0 

Mopping 45.3 ± 20.7 1.4 ± 0.6 45.2 ± 21.1 18.7 ± 11.7 2.0 ± 0.8 17.6 ± 10.8 

Playing videogames 87.8 ± 12.1 0.3 ± 0.3 87.7 ± 11.8 12.2 ± 17.1 1.3 ± 0.9 13.2 ± 17.5 

Scrubbing a surface 74.6 ± 24.6 0.6 ± 0.6 74.3 ± 24.7 33.8 ± 29.5 2.1 ± 1.8 28.2 ± 23.6 

Stacking groceries 46.3 ± 19.1 1.1 ± 0.5 46.0 ± 18.8 11.2 ± 7.9 1.7 ± 0.8 10.8 ± 7.4 

Sweeping 39.4 ± 16.3 1.5 ± 0.5 39.3 ± 15.0 15.6 ± 8.0 2.0 ± 0.5 15.8 ± 8.1 

Typing 90.3 ± 9.0 0.3 ± 0.3 89.9 ± 8.6 41.0 ± 29.7 1.4 ± 1.0 38.0 ± 21.8 

Vacuuming 43.5 ± 20.2 1.3 ± 0.5 44.2 ± 19.6 18.4 ± 13.6 1.7 ± 0.7 18.2 ± 10.7 

Walking around block 71.7 ± 15.0 0.6 ± 0.4 72.8 ± 14.5 26.8 ± 12.2 2.4 ± 1.3 23.9 ± 9.8 

Washing windows 53.1 ± 14.8 1.1 ± 0.4 53.8 ± 13.8 23.5 ± 16.0 2.0 ± 1.7 23.8 ± 16.2 

Watching TV 87.1 ± 15.0 0.4 ± 0.3 86.5 ± 13.5 24.5 ± 28.4 1.9 ± 1.2 21.4 ± 23.5 

Weeding 51.5 ± 22.7 0.9 ± 0.6 54.6 ± 23.1 9.4 ± 22.6 1.2 ± 0.9 5.4 ± 7.4 

Wiping/Dusting 44.0 ± 12.2 1.1 ± 0.4 46.4 ± 12.6 16.0 ± 9.4 1.7 ± 0.8 16.2 ± 8.7 

Writing 92.2 ± 7.7 0.2 ± 0.2 91.8 ± 7.6 43.2 ± 27.1 1.5 ± 1.6 41.9 ± 24.5 

taking out trash 45.2 ± 15.9 1.1 ± 0.4 45.9 ± 14.7 9.4 ± 7.2 1.2 ± 0.5 11.0 ± 7.8 

Table A8-9: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant foot, and the invariant reduced 

feature set over windows of 5.6s in length during subject dependent and independent evaluation. 

 

 

 

 

 

 

 



349 

 

 

 

 
Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 74.9 ± 21.7 0.3 ± 0.3 74.4 ± 22.0 0.3 ± 1.2 0.7 ± 1.0 0.2 ± 0.8 

Bench weight lifting - light 91.0 ± 11.4 0.1 ± 0.1 91.3 ± 9.7 11.8 ± 19.2 1.5 ± 1.3 10.1 ± 18.0 

Bench weight lifting - moderate 80.5 ± 17.3 0.2 ± 0.2 82.9 ± 16.0 4.8 ± 11.7 1.8 ± 3.0 2.3 ± 4.3 

Bicep curls - hard 80.0 ± 19.7 0.3 ± 0.2 80.7 ± 19.0 10.0 ± 23.1 0.9 ± 1.4 7.9 ± 15.2 

Bicep curls - light 86.2 ± 12.8 0.3 ± 0.3 85.7 ± 12.5 16.2 ± 26.3 1.4 ± 1.2 14.6 ± 21.2 

Bicep curls - moderate 81.1 ± 14.2 0.4 ± 0.4 80.4 ± 14.8 20.0 ± 31.2 1.5 ± 1.4 14.4 ± 19.8 

Calisthenics - Crunches 98.0 ± 2.6 0.0 ± 0.0 97.6 ± 2.2 63.0 ± 41.2 0.9 ± 2.2 65.0 ± 41.4 

Calisthenics - Sit ups 94.0 ± 7.5 0.1 ± 0.1 93.1 ± 6.4 80.0 ± 27.8 0.2 ± 0.3 80.0 ± 26.7 

Cycling - Cycle hard - Cycle 80rpm 73.2 ± 14.3 0.4 ± 0.3 73.2 ± 14.8 21.4 ± 33.6 1.0 ± 1.0 15.8 ± 20.6 

Cycling - Cycle light - Cycle 100rpm 98.4 ± 3.9 0.0 ± 0.0 97.4 ± 3.7 90.4 ± 17.4 0.3 ± 0.8 88.6 ± 17.0 

Cycling - Cycle light - Cycle 60rpm 99.2 ± 1.5 0.1 ± 0.0 98.2 ± 1.5 91.9 ± 22.0 0.1 ± 0.2 91.9 ± 20.8 

Cycling - Cycle light - Cycle 80rpm 92.8 ± 6.8 0.2 ± 0.2 92.3 ± 7.8 50.2 ± 42.3 1.4 ± 1.4 37.5 ± 29.2 

Cycling - Cycle moderate - Cycle 80rpm 76.5 ± 14.5 0.4 ± 0.3 76.9 ± 14.0 42.9 ± 35.6 1.4 ± 1.0 32.3 ± 21.1 

Lying down 99.3 ± 1.2 0.1 ± 0.1 99.1 ± 1.4 33.4 ± 27.4 2.2 ± 2.2 36.7 ± 28.5 

Rowing - Rowing hard - Rowing 30spm 72.0 ± 18.7 0.5 ± 0.3 71.6 ± 17.8 31.9 ± 31.3 1.0 ± 0.9 27.4 ± 22.4 

Rowing - Rowing light - Rowing 30spm 80.7 ± 13.2 0.5 ± 0.3 79.4 ± 13.8 36.3 ± 30.2 1.1 ± 1.0 33.0 ± 23.1 

Rowing - Rowing moderate - Rowing 30spm 64.5 ± 19.2 0.7 ± 0.4 65.1 ± 19.1 24.6 ± 30.7 1.1 ± 1.3 21.4 ± 22.8 

Running - Treadmill 4mph - Treadmill 0  93.4 ± 5.6 0.2 ± 0.1 92.8 ± 4.4 50.4 ± 35.4 0.7 ± 0.7 50.5 ± 33.2 

Running - Treadmill 5mph - Treadmill 0  88.3 ± 9.5 0.2 ± 0.2 89.2 ± 8.6 61.2 ± 26.7 0.8 ± 0.4 58.2 ± 19.5 

Running - Treadmill 6mph - Treadmill 0  85.7 ± 11.9 0.2 ± 0.2 85.3 ± 11.6 59.6 ± 37.1 0.6 ± 0.7 52.2 ± 33.0 

Sitting 94.3 ± 7.4 0.1 ± 0.2 93.1 ± 7.9 3.5 ± 5.4 1.8 ± 1.4 3.2 ± 5.6 

Sitting - Fidget feet legs 92.2 ± 5.8 0.1 ± 0.1 93.5 ± 4.8 41.8 ± 32.9 0.7 ± 0.6 41.4 ± 32.3 

Sitting - Fidget hands arms 90.8 ± 11.6 0.1 ± 0.2 90.2 ± 11.0 4.8 ± 11.0 1.9 ± 1.9 2.7 ± 5.4 

Stairs - Ascend stairs 81.9 ± 8.7 0.4 ± 0.2 81.1 ± 8.1 54.4 ± 28.2 0.9 ± 0.6 52.8 ± 22.8 

Stairs - Descend stairs 77.4 ± 8.2 0.4 ± 0.2 77.9 ± 8.5 40.0 ± 18.7 1.2 ± 0.6 38.1 ± 16.7 

Standing 89.5 ± 8.4 0.2 ± 0.2 88.1 ± 8.6 19.7 ± 22.8 1.0 ± 0.6 18.3 ± 18.0 

Walking - Treadmill 2mph - Treadmill 0  94.9 ± 4.8 0.2 ± 0.1 93.0 ± 4.3 65.8 ± 28.2 0.6 ± 0.4 65.8 ± 22.9 

Walking - Treadmill 3mph - Treadmill 0  71.0 ± 15.5 0.8 ± 0.4 69.2 ± 15.7 20.2 ± 19.3 1.4 ± 1.0 18.8 ± 13.4 

Walking - Treadmill 3mph - Treadmill 3  - light 56.2 ± 17.2 1.0 ± 0.4 55.9 ± 17.5 18.9 ± 13.5 1.2 ± 0.9 19.8 ± 11.8 

Walking - Treadmill 3mph - Treadmill 6  - moderate 58.3 ± 15.6 0.9 ± 0.4 58.5 ± 14.9 17.0 ± 16.0 1.4 ± 1.0 16.2 ± 12.0 

Walking - Treadmill 3mph - Treadmill 9  - hard 74.2 ± 16.2 0.6 ± 0.4 74.0 ± 15.6 18.3 ± 16.0 1.4 ± 1.0 18.3 ± 13.6 

kneeling 92.2 ± 8.2 0.2 ± 0.2 90.1 ± 9.1 12.9 ± 23.0 1.0 ± 0.8 13.2 ± 23.3 

Carrying groceries 64.8 ± 17.3 0.7 ± 0.4 66.4 ± 17.7 29.8 ± 27.0 2.3 ± 1.2 24.0 ± 18.1 

Doing dishes 67.6 ± 16.1 0.9 ± 0.6 65.8 ± 16.3 22.5 ± 13.4 3.0 ± 1.8 17.6 ± 9.2 

Gardening 60.0 ± 18.5 1.0 ± 0.5 58.6 ± 19.0 6.7 ± 7.3 2.0 ± 1.3 7.0 ± 8.2 

Ironing 63.0 ± 14.9 1.0 ± 0.4 62.7 ± 14.9 29.3 ± 18.9 2.6 ± 1.6 24.4 ± 13.8 

Making the bed 43.6 ± 13.1 1.6 ± 0.5 42.4 ± 12.7 23.8 ± 11.1 2.0 ± 0.6 22.7 ± 8.9 

Mopping 44.4 ± 11.5 1.6 ± 0.4 42.4 ± 11.5 23.4 ± 15.3 1.8 ± 0.7 22.3 ± 11.1 

Playing videogames 97.8 ± 4.6 0.1 ± 0.1 96.8 ± 4.7 19.1 ± 31.5 2.2 ± 2.1 15.4 ± 20.9 

Scrubbing a surface 60.7 ± 20.8 0.8 ± 0.4 61.6 ± 19.3 18.6 ± 11.8 2.7 ± 1.9 15.3 ± 9.1 

Stacking groceries 39.1 ± 18.3 1.2 ± 0.5 39.9 ± 18.9 14.8 ± 8.8 1.7 ± 0.6 14.5 ± 9.0 

Sweeping 29.8 ± 14.0 1.5 ± 0.5 31.1 ± 13.8 13.8 ± 9.8 2.3 ± 0.9 12.8 ± 7.5 

Typing 93.2 ± 11.7 0.2 ± 0.4 92.5 ± 11.7 20.0 ± 35.6 1.4 ± 1.6 17.5 ± 28.0 

Vacuuming 38.5 ± 10.6 1.4 ± 0.4 39.4 ± 11.0 21.9 ± 10.2 1.6 ± 0.5 22.3 ± 9.5 

Walking around block 67.6 ± 16.7 0.7 ± 0.4 68.1 ± 14.8 24.9 ± 19.4 3.0 ± 2.4 20.3 ± 12.8 

Washing windows 40.6 ± 12.3 1.3 ± 0.4 41.9 ± 12.3 18.4 ± 11.8 1.8 ± 0.7 18.9 ± 12.8 

Watching TV 96.7 ± 5.5 0.1 ± 0.1 96.3 ± 5.0 5.4 ± 13.9 1.4 ± 1.4 5.4 ± 10.1 

Weeding 49.2 ± 15.0 0.9 ± 0.4 52.9 ± 13.5 6.7 ± 7.8 1.6 ± 1.4 8.3 ± 10.4 

Wiping/Dusting 35.8 ± 15.3 1.3 ± 0.3 37.2 ± 14.7 12.2 ± 8.2 1.6 ± 0.8 13.3 ± 8.6 

Writing 94.2 ± 9.9 0.2 ± 0.3 93.8 ± 9.6 1.1 ± 2.6 2.6 ± 2.8 1.4 ± 3.2 

taking out trash 43.8 ± 14.0 1.1 ± 0.3 44.7 ± 13.3 17.9 ± 12.1 1.7 ± 0.8 18.2 ± 11.8 

Table A8-10: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant thigh, and the invariant 

reduced feature set over windows of 5.6s in length during subject dependent and independent 

evaluation. 
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Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting - hard 46.2 ± 20.2 0.5 ± 0.2 45.2 ± 18.9 7.4 ± 11.5 0.4 ± 0.3 8.5 ± 13.6 

Bench weight lifting - light 70.4 ± 18.6 0.5 ± 0.3 68.1 ± 16.9 44.4 ± 22.1 1.4 ± 1.4 38.7 ± 21.1 

Bench weight lifting - moderate 50.0 ± 18.6 0.6 ± 0.3 50.7 ± 19.0 13.0 ± 12.8 1.1 ± 1.1 13.2 ± 13.4 

Bicep curls - hard 71.8 ± 18.9 0.5 ± 0.4 71.0 ± 18.0 14.4 ± 19.0 1.0 ± 0.9 13.3 ± 17.0 

Bicep curls - light 69.5 ± 14.6 0.6 ± 0.3 69.5 ± 14.2 16.6 ± 19.6 1.8 ± 1.9 14.7 ± 15.9 

Bicep curls - moderate 64.9 ± 17.2 0.7 ± 0.4 64.9 ± 17.5 14.0 ± 18.3 1.3 ± 1.0 12.1 ± 13.0 

Calisthenics - Crunches 92.0 ± 8.1 0.1 ± 0.1 92.8 ± 7.0 54.9 ± 42.6 0.5 ± 0.6 52.0 ± 38.6 

Calisthenics - Sit ups 94.5 ± 5.0 0.1 ± 0.1 93.7 ± 4.5 87.0 ± 24.1 0.2 ± 0.4 85.2 ± 22.8 

Cycling - Cycle hard - Cycle 80rpm 78.2 ± 17.4 0.2 ± 0.1 79.2 ± 14.7 37.9 ± 36.3 1.2 ± 1.1 27.3 ± 24.6 

Cycling - Cycle light - Cycle 100rpm 97.8 ± 4.1 0.0 ± 0.0 97.8 ± 2.8 98.1 ± 4.4 0.1 ± 0.3 96.5 ± 6.2 

Cycling - Cycle light - Cycle 60rpm 98.4 ± 2.4 0.0 ± 0.1 98.0 ± 1.9 95.2 ± 7.3 0.1 ± 0.2 95.0 ± 5.6 

Cycling - Cycle light - Cycle 80rpm 93.4 ± 6.9 0.2 ± 0.2 93.1 ± 7.2 33.6 ± 35.2 1.1 ± 1.2 30.0 ± 26.3 

Cycling - Cycle moderate - Cycle 80rpm 85.9 ± 11.5 0.3 ± 0.3 84.5 ± 11.9 40.1 ± 34.5 1.2 ± 1.0 33.3 ± 21.8 

Lying down 99.9 ± 0.4 0.1 ± 0.1 99.5 ± 0.8 72.4 ± 24.8 0.7 ± 1.3 77.6 ± 15.1 

Rowing - Rowing hard - Rowing 30spm 67.8 ± 17.1 0.6 ± 0.3 67.0 ± 16.3 29.3 ± 19.6 1.1 ± 0.8 28.1 ± 14.5 

Rowing - Rowing light - Rowing 30spm 72.0 ± 16.2 0.6 ± 0.3 70.7 ± 14.6 50.2 ± 20.3 1.6 ± 0.7 42.8 ± 13.7 

Rowing - Rowing moderate - Rowing 30spm 65.1 ± 14.9 0.7 ± 0.3 64.5 ± 13.5 15.0 ± 11.2 0.8 ± 0.6 17.9 ± 10.7 

Running - Treadmill 4mph - Treadmill 0  96.2 ± 4.6 0.1 ± 0.1 95.5 ± 4.5 52.5 ± 33.0 1.2 ± 1.3 46.9 ± 27.6 

Running - Treadmill 5mph - Treadmill 0  95.0 ± 5.6 0.1 ± 0.1 94.7 ± 4.5 55.2 ± 32.6 0.9 ± 0.7 51.7 ± 25.2 

Running - Treadmill 6mph - Treadmill 0  94.0 ± 6.4 0.1 ± 0.1 94.3 ± 4.9 65.7 ± 31.5 0.6 ± 0.9 56.9 ± 29.6 

Sitting 88.4 ± 14.2 0.2 ± 0.2 87.3 ± 13.2 16.1 ± 18.1 1.1 ± 0.6 14.7 ± 15.4 

Sitting - Fidget feet legs 90.4 ± 7.7 0.2 ± 0.1 87.7 ± 7.4 68.1 ± 34.6 0.4 ± 0.3 64.4 ± 28.7 

Sitting - Fidget hands arms 79.4 ± 12.9 0.3 ± 0.2 79.7 ± 13.0 24.7 ± 22.4 1.5 ± 1.5 22.0 ± 20.0 

Stairs - Ascend stairs 86.6 ± 10.5 0.3 ± 0.2 84.8 ± 9.8 76.9 ± 23.7 0.6 ± 0.4 73.4 ± 21.3 

Stairs - Descend stairs 80.2 ± 12.6 0.3 ± 0.2 80.2 ± 12.1 62.0 ± 27.4 1.0 ± 1.0 56.9 ± 23.8 

Standing 84.7 ± 13.4 0.2 ± 0.2 83.6 ± 12.8 28.8 ± 26.0 0.9 ± 0.8 26.9 ± 19.8 

Walking - Treadmill 2mph - Treadmill 0  92.0 ± 5.4 0.2 ± 0.2 91.9 ± 5.0 67.0 ± 25.1 0.8 ± 1.2 66.5 ± 22.8 

Walking - Treadmill 3mph - Treadmill 0  75.7 ± 14.0 0.6 ± 0.4 74.9 ± 14.1 17.6 ± 17.9 1.3 ± 1.0 17.5 ± 17.4 

Walking - Treadmill 3mph - Treadmill 3  - light 67.0 ± 15.6 0.8 ± 0.4 65.5 ± 14.5 13.2 ± 16.1 1.3 ± 0.9 12.4 ± 12.2 

Walking - Treadmill 3mph - Treadmill 6  - moderate 64.3 ± 19.1 0.8 ± 0.3 64.2 ± 17.6 20.6 ± 16.4 1.6 ± 1.0 19.9 ± 13.6 

Walking - Treadmill 3mph - Treadmill 9  - hard 78.9 ± 11.2 0.4 ± 0.3 80.1 ± 11.5 30.0 ± 22.3 1.1 ± 0.8 31.1 ± 18.9 

kneeling 85.3 ± 10.0 0.3 ± 0.2 83.4 ± 11.6 25.4 ± 20.0 1.3 ± 0.9 23.7 ± 19.0 

Carrying groceries 76.4 ± 9.1 0.6 ± 0.3 75.9 ± 9.7 25.7 ± 19.7 2.0 ± 1.1 24.2 ± 17.3 

Doing dishes 58.7 ± 15.0 1.0 ± 0.3 57.8 ± 13.0 28.2 ± 12.2 2.2 ± 1.1 25.6 ± 11.0 

Gardening 54.0 ± 17.1 1.2 ± 0.5 52.7 ± 18.4 15.8 ± 15.0 1.3 ± 0.7 16.9 ± 15.8 

Ironing 64.4 ± 12.3 1.0 ± 0.4 62.9 ± 11.7 37.2 ± 14.6 1.5 ± 0.6 37.5 ± 11.5 

Making the bed 38.3 ± 10.2 1.5 ± 0.4 38.8 ± 10.0 29.3 ± 11.8 2.0 ± 0.8 27.2 ± 9.0 

Mopping 47.6 ± 13.7 1.4 ± 0.4 46.1 ± 13.8 26.0 ± 11.5 1.9 ± 0.5 25.0 ± 10.3 

Playing videogames 94.1 ± 6.8 0.2 ± 0.2 93.4 ± 6.6 23.4 ± 33.1 1.9 ± 1.4 19.9 ± 23.9 

Scrubbing a surface 53.2 ± 16.8 1.0 ± 0.4 53.7 ± 16.2 21.2 ± 13.9 2.1 ± 1.2 20.1 ± 12.2 

Stacking groceries 45.4 ± 14.6 1.0 ± 0.4 46.2 ± 13.9 19.6 ± 9.7 1.5 ± 0.7 19.8 ± 9.5 

Sweeping 41.6 ± 16.5 1.4 ± 0.4 41.6 ± 15.9 17.6 ± 5.3 1.9 ± 0.4 17.7 ± 5.3 

Typing 89.6 ± 13.3 0.3 ± 0.4 89.6 ± 12.1 14.9 ± 26.9 2.0 ± 1.3 11.7 ± 17.9 

Vacuuming 53.0 ± 13.3 0.9 ± 0.4 55.6 ± 13.4 35.8 ± 12.2 1.6 ± 0.9 35.6 ± 11.4 

Walking around block 74.0 ± 11.1 0.6 ± 0.2 74.6 ± 9.9 21.0 ± 10.7 3.0 ± 1.8 17.2 ± 8.4 

Washing windows 48.1 ± 10.6 1.1 ± 0.4 50.2 ± 11.5 24.8 ± 18.4 1.8 ± 1.0 23.2 ± 14.6 

Watching TV 93.8 ± 5.5 0.2 ± 0.2 93.2 ± 6.1 8.0 ± 12.7 1.7 ± 1.2 9.2 ± 15.0 

Weeding 46.7 ± 15.1 0.9 ± 0.2 49.8 ± 15.5 16.6 ± 23.2 0.9 ± 0.3 14.6 ± 14.6 

Wiping/Dusting 43.9 ± 13.6 1.2 ± 0.4 45.1 ± 13.0 22.1 ± 9.3 1.5 ± 0.7 23.3 ± 9.4 

Writing 90.3 ± 13.4 0.2 ± 0.2 90.8 ± 11.8 47.7 ± 37.2 1.7 ± 1.6 40.0 ± 29.3 

taking out trash 42.5 ± 16.0 1.1 ± 0.4 43.9 ± 15.4 21.7 ± 13.6 1.4 ± 0.5 22.6 ± 12.7 

Table A8-11: Performance of the C4.5 classifier in recognizing the 51 activities in the MIT dataset 

(without the unknown class) using the accelerometers at the dominant upper arm, and the invariant 

reduced feature set over windows of 5.6s in length during subject dependent and independent 

evaluation. 
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Figure A8-1: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are the 51 activities contained in the MIT dataset without including the unknown class. 
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Figure A8-2: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject independent manner when features are computed per axis over windows of 5.6s. The 

activities to recognize are the 51 activities contained in the MIT dataset without including the 

unknown class. 



353 

 

All Activities without Discriminating Intensity Levels 

 

 

 

 

 
Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Bench weight lifting 96.2 ± 7.4 0.1 ± 0.1 96.7 ± 4.7 79.4 ± 27.4 0.6 ± 0.9 78.4 ± 24.3 

Bicep curls 99.3 ± 0.9 0.1 ± 0.0 99.1 ± 0.6 81.1 ± 32.3 0.4 ± 0.6 81.8 ± 30.2 

Calisthenics - Crunches 95.5 ± 5.5 0.0 ± 0.1 96.1 ± 3.8 65.6 ± 34.8 0.8 ± 1.2 62.5 ± 31.4 

Calisthenics - Sit ups 95.3 ± 4.5 0.1 ± 0.1 94.4 ± 4.2 76.2 ± 32.2 0.3 ± 0.4 74.4 ± 29.9 

Cycling 99.8 ± 0.4 0.0 ± 0.0 99.7 ± 0.3 98.3 ± 2.8 0.4 ± 1.1 97.4 ± 4.2 

Lying down 100.0 ± 0.2 0.0 ± 0.0 99.8 ± 0.4 95.9 ± 12.6 0.3 ± 0.6 95.8 ± 8.8 

Rowing 99.7 ± 0.5 0.0 ± 0.0 99.6 ± 0.6 89.8 ± 21.0 0.0 ± 0.1 92.5 ± 17.2 

Running 99.2 ± 1.3 0.1 ± 0.1 99.0 ± 1.0 83.2 ± 24.6 0.5 ± 0.8 84.3 ± 23.1 

Sitting 97.7 ± 2.2 0.1 ± 0.1 97.6 ± 1.8 51.0 ± 26.3 1.8 ± 1.8 50.1 ± 19.0 

Stairs - Ascend stairs 91.6 ± 6.0 0.2 ± 0.2 90.4 ± 5.7 79.2 ± 23.6 0.4 ± 0.4 76.3 ± 20.6 

Stairs - Descend stairs 89.3 ± 9.7 0.2 ± 0.2 88.7 ± 8.2 60.8 ± 25.5 0.6 ± 0.6 60.4 ± 22.7 

Standing 94.2 ± 5.5 0.0 ± 0.1 95.2 ± 3.9 93.4 ± 8.8 0.2 ± 0.3 89.6 ± 9.1 

Walking 97.4 ± 2.1 0.5 ± 0.4 97.4 ± 2.0 90.2 ± 7.6 1.6 ± 1.2 90.7 ± 5.6 

kneeling 97.1 ± 3.6 0.0 ± 0.1 96.8 ± 3.3 95.4 ± 6.1 0.1 ± 0.3 93.7 ± 8.5 

Doing dishes 87.3 ± 5.5 0.4 ± 0.2 86.5 ± 4.3 59.0 ± 28.5 1.2 ± 0.7 52.2 ± 20.9 

Gardening 81.8 ± 7.4 0.4 ± 0.2 82.2 ± 8.8 14.1 ± 20.8 1.1 ± 1.0 14.8 ± 18.4 

Ironing 85.1 ± 7.8 0.4 ± 0.2 85.6 ± 7.2 48.6 ± 28.6 1.0 ± 0.4 48.0 ± 24.3 

Making the bed 61.0 ± 11.3 0.9 ± 0.3 62.2 ± 9.0 38.4 ± 16.3 1.6 ± 0.8 37.1 ± 14.6 

Mopping 67.4 ± 13.9 0.8 ± 0.4 66.6 ± 13.6 36.8 ± 14.0 1.9 ± 1.0 33.8 ± 9.2 

Playing videogames 99.3 ± 2.3 0.0 ± 0.0 98.9 ± 1.3 60.3 ± 45.0 1.3 ± 1.5 54.2 ± 40.6 

Scrubbing a surface 84.2 ± 11.7 0.4 ± 0.3 83.6 ± 12.1 39.7 ± 33.1 1.5 ± 1.7 35.4 ± 26.7 

Stacking groceries 67.1 ± 17.3 0.6 ± 0.2 67.0 ± 15.3 33.5 ± 21.6 0.9 ± 0.4 34.6 ± 19.5 

Sweeping 66.0 ± 16.7 0.7 ± 0.3 66.7 ± 13.5 34.9 ± 19.4 1.5 ± 0.6 34.4 ± 17.6 

Typing 97.8 ± 2.2 0.0 ± 0.1 98.2 ± 2.2 66.3 ± 37.4 0.6 ± 0.6 64.9 ± 34.8 

Vacuuming 77.3 ± 10.9 0.6 ± 0.2 77.0 ± 8.8 58.1 ± 23.2 1.0 ± 0.5 56.2 ± 19.7 

Washing windows 70.9 ± 9.6 0.6 ± 0.3 72.0 ± 9.2 47.4 ± 22.2 1.3 ± 0.9 46.2 ± 21.3 

Watching TV 99.0 ± 2.2 0.1 ± 0.1 98.5 ± 1.9 43.6 ± 43.2 1.1 ± 1.0 40.0 ± 39.4 

Weeding 74.4 ± 11.2 0.6 ± 0.3 74.8 ± 9.9 17.6 ± 24.5 1.1 ± 0.6 14.3 ± 15.4 

Wiping/Dusting 70.0 ± 11.3 0.7 ± 0.3 70.0 ± 9.9 39.6 ± 21.2 1.5 ± 0.9 37.4 ± 17.8 

Writing 98.0 ± 2.7 0.1 ± 0.1 97.1 ± 2.5 76.4 ± 25.4 1.2 ± 1.9 71.3 ± 28.5 

taking out trash 64.9 ± 10.7 0.8 ± 0.4 65.4 ± 10.4 26.1 ± 15.0 1.2 ± 0.5 28.3 ± 15.2 

Table A8-12: Subject dependent and independent performance of the C4.5 classifier in recognizing 

the activities contained in the MIT dataset without discriminating among the intensity level of 

activities (31 activities in total) and without including the unknown class. The feature set utilized is 

the invariant reduced feature set computed per axis over windows of 5.6s in length using all the 

accelerometers (7) available.  
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Figure A8-3: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are the activities contained in the MIT dataset without discriminating among intensity 

levels of an activity (31 activities in total) and without including the unknown class. 
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Figure A8-4: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject independent manner when features are computed per axis over windows of 5.6s. The 

activities to recognize are the activities contained in the MIT dataset without discriminating among 

intensity levels of an activity (31 activities in total) and without including the unknown class. 
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Postures and Ambulatory Motions with MET Intensity Levels 
 

 

 

 

 

 

 

 

 
 

Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Lying down 99.9 ± 0.3 0.0 ± 0.0 99.7 ± 0.3 99.3 ± 1.3 0.1 ± 0.4 99.1 ± 1.9 

Moderate 96.4 ± 1.7 2.4 ± 1.2 96.4 ± 1.4 86.8 ± 5.4 13.0 ± 5.4 83.8 ± 3.6 

Running - Treadmill 4mph - Treadmill 0  97.7 ± 2.3 0.1 ± 0.1 97.0 ± 2.6 53.0 ± 36.1 1.9 ± 2.3 47.9 ± 30.6 

Running - Treadmill 5mph - Treadmill 0  94.7 ± 3.3 0.1 ± 0.1 94.9 ± 2.8 52.8 ± 34.1 1.4 ± 1.1 47.5 ± 26.2 

Running - Treadmill 6mph - Treadmill 0  91.0 ± 13.2 0.1 ± 0.1 91.9 ± 10.2 51.3 ± 40.0 0.8 ± 0.9 45.0 ± 33.4 

Sitting 96.1 ± 3.9 0.2 ± 0.2 96.2 ± 3.2 73.7 ± 19.3 1.6 ± 1.8 73.3 ± 16.8 

Standing 93.3 ± 7.0 0.1 ± 0.1 94.5 ± 6.0 94.2 ± 12.1 0.2 ± 0.7 92.8 ± 13.6 

Vigorous 93.3 ± 3.5 1.3 ± 0.6 93.8 ± 2.9 66.0 ± 15.4 5.3 ± 2.9 69.2 ± 10.7 

Walking - Treadmill 2mph - Treadmill 0  97.8 ± 2.4 0.2 ± 0.1 96.4 ± 2.8 75.8 ± 34.2 0.3 ± 0.4 77.7 ± 29.5 

Walking - Treadmill 3mph 99.0 ± 1.2 0.2 ± 0.1 98.9 ± 0.8 89.0 ± 23.3 0.7 ± 1.0 89.6 ± 20.5 

kneeling 96.6 ± 3.9 0.0 ± 0.1 97.3 ± 3.2 97.9 ± 4.4 0.1 ± 0.2 97.4 ± 5.1 

Table A8-13: Subject dependent and independent performance of the C4.5 classifier in recognizing 

postures and ambulation including METs intensity levels (11 activities in total) and without including 

the unknown class. The feature set utilized is the invariant reduced feature set computed per axis over 

windows of 5.6s in length using all the accelerometers (7) available.  
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   A    B    C    D    E    F    G    H    I    J    K    

2130    0    0    0    0    0    2    0    0    0    0   A 

   3 8552    3    3    0   23    7  228   17   18    8   B 

   0    0  599    7    0    0    0    2    0    5    0   C 

   0    0   10  542   19    0    0    0    0    1    0   D 
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A -> Lying_down 

B -> Moderate 

C -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

D -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

E -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

F -> Sitting 

G -> Standing 

H -> Vigurous 

I -> Walking_-_Treadmill_2mph_-

_Treadmill_0_ 

J -> Walking_-_Treadmill_3mph 

K -> kneeling 

 

Figure A8-5: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are postures and ambulation including METs intensity levels (11 activities in total) and 

without including the unknown class. 
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   0    6   59  118  217    0    0    4    0    1    0   E 

  17  235    0    0    0  940   41   33    0    0    7   F 

   0   12    0    0    0    9  405    4    0    0    0   G 

   0 1330   38    1    0   21    0 2876   16    8    0   H 

   0  104    0    0    0    0    0   55  543   20    0   I 

   0   63  155    1    0    0    0   75   32 2536    0   J 

   1    6    0    0    0    1    1    0    0    0  410   K 

A -> Lying_down 

B -> Moderate 

C -> Running_-_Treadmill_4mph_-_Treadmill_0_ 

D -> Running_-_Treadmill_5mph_-_Treadmill_0_ 

E -> Running_-_Treadmill_6mph_-_Treadmill_0_ 

F -> Sitting 

G -> Standing 

H -> Vigurous 

I -> Walking_-_Treadmill_2mph_-

_Treadmill_0_ 

J -> Walking_-_Treadmill_3mph 

K -> kneeling 

 

Figure A8-6: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are postures and ambulation including METs intensity levels (11 activities in total) and 

without including the unknown class. 
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Postures and Ambulatory Motions 

 

 

 

 

 

 

 
Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Lying down 99.9 ± 0.3 0.1 ± 0.1 99.8 ± 0.3 100.0 ± 0.0 0.2 ± 0.9 99.6 ± 1.9 

Running 99.2 ± 1.4 0.2 ± 0.2 98.8 ± 1.2 85.6 ± 23.7 1.6 ± 2.8 85.6 ± 22.5 

Sitting 99.0 ± 1.3 0.1 ± 0.1 99.2 ± 0.8 90.9 ± 21.7 0.3 ± 0.5 92.3 ± 19.3 

Stairs - Ascend stairs 93.1 ± 5.1 0.3 ± 0.2 93.4 ± 3.9 94.4 ± 6.4 0.7 ± 0.9 91.5 ± 6.6 

Stairs - Descend stairs 90.6 ± 8.4 0.4 ± 0.3 91.4 ± 6.8 68.0 ± 25.6 1.3 ± 1.5 68.5 ± 24.4 

Standing 97.5 ± 3.9 0.2 ± 0.2 96.5 ± 3.7 96.3 ± 9.6 0.7 ± 2.3 92.7 ± 15.5 

Walking 98.9 ± 0.9 0.7 ± 0.7 99.0 ± 0.8 93.2 ± 6.5 4.9 ± 3.5 93.3 ± 4.4 

kneeling 99.0 ± 2.0 0.0 ± 0.1 99.1 ± 1.6 98.4 ± 4.3 0.0 ± 0.1 98.6 ± 2.5 

Table A8-14: Performance of the C4.5 classifier when recognizing postures and ambulation using the 

invariant reduced feature set computed per axis over windows of 5.6s in length during subject 

dependent and independent training. All sensors (7) were utilized and the unknown class was not 

included in this experiment. 
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   A    B    C    D    E    F    G    H    

2129    0    1    0    0    2    0    0   A 

   0 1578    0    0    1    0   11    0   B 

   1    0 1261    0    5    5    0    1   C 

   1    0    1  552   19    7   12    0   D 

   0    4    1   15  493    3   26    2   E 

   0    0    5    2    2  419    2    0   F 

   2   19    1   17   13    3 5019    1   G 

   2    0    0    2    0    0    0  415   H 

A -> Lying_down 

B -> Running 

C -> Sitting 

D -> Stairs_-_Ascend_stairs 

E -> Stairs_-_Descend_stairs 

F -> Standing 

G -> Walking 

H -> kneeling 

 

Figure A8-7: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are postures and ambulation (9 activities in total) and without including the unknown 

class. 
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   A    B    C    D    E    F    G    H    

2132    0    0    0    0    0    0    0   A 

   0 1425    0    1    1    0  163    0   B 

  19    0 1160    1    0   83    7    3   C 

   0    2    0  545   17    0   28    0   D 

   0    0    0   24  378    0  142    0   E 

   0    0   15    0    0  414    1    0   F 

   0  168    4   47  129    0 4725    2   G 

   0    0    6    0    0    0    1  412   H 

A -> Lying_down 

B -> Running 

C -> Sitting 

D -> Stairs_-_Ascend_stairs 

E -> Stairs_-_Descend_stairs 

F -> Standing 

G -> Walking 

H -> kneeling 

 

Figure A8-8: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject independent manner when features are computed per axis over windows of 5.6s. The 

activities to recognize are postures and ambulation (9 activities in total) and without including the 

unknown class. 



360 

 

Postures  
 

 

 

 

 

 
Activity Subject Dependent Subject Independent 

TP Rate FP Rate F-Measure TP Rate FP Rate F-Measure 

Lying down 99.96 ± 0.20 0.48 ± 0.76 99.83 ± 0.23 100.00 ± 0.00 1.35 ± 6.03 99.59 ± 1.82 

Sitting 98.56 ± 2.74 0.30 ± 0.45 98.23 ± 2.50 95.93 ± 17.73 0.94 ± 3.00 95.01 ± 16.96 

Standing 97.65 ± 3.22 0.17 ± 0.30 98.22 ± 2.16 98.10 ± 8.52  0.80 ± 2.94 96.83 ± 8.58 

kneeling 98.55 ± 2.75 0.10 ± 0.24 98.91 ± 2.00 100.00 ± 0.00 0.00 ± 0.00  100.00 ± 0.00 

Table A8-15: Performance per class while recognizing postures using the C4.5 classifier using the 

invariant reduced feature set computed per axis over windows of 5.6s in length. The unknown class is 

not considered. 
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            A    B    C    D    

         2131    0    1    0   A 

            1  425    4    1   B 

            3    5  420    2   C 

            2    4    0  413   D 

   A -> Lying_down 

B -> Sitting 

C -> Standing 

D -> kneeling 
 

Figure A8-9: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject dependent manner when features are computed per axis over windows of 5.6s. The activities 

to recognize are postures (4 activities in total) and without including the unknown class. 
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           A    B    C    D    

        2132    0    0    0   A 

          17  395   19    0   B 

           0    8  422    0   C 

           0   19    5  395   D 

   A -> Lying_down 

B -> Sitting 

C -> Standing 

D -> kneeling 
 

Figure A8-10: Confusion Matrix for C4.5 Classifier using the invariant reduced feature evaluated in a 

subject independent manner when features are computed per axis over windows of 5.6s. The 

activities to recognize are postures (4 activities in total) and without including the unknown class. 
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Appendix A9: Real-Time Interactive Training Study 
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Recognizing 10 activities of your choice in real-time using three wireless 

accelerometers 
 

 

During this short study, you are provided with a software application that will allow you 

to train a computer program to recognize 10 physical activities, exercises, postures, or 

activities done in a particular poster of your choice. The computer program will recognize 

the activities you provide by sensing the motion at your hip, dominant wrist, and 

dominant foot by means of three small wireless sensors that you will be provided with 

during this study. 

 

The procedure you need to follow to train the computer program to recognize your 

activities is simple:  

 

1. Wear the tiny sensor at the following locations: Hip, dominant wrist, and 

dominant foot. 

2. Type in 10 physical activities, exercises, postures, or activities done in a particular 

poster you want the computer program to recognize that can be executed 

continuously for 2 minutes. 

3. Provide examples of the activities you specified by performing them for two 

minutes each as indicated by the application. The application will show on the 

screen the activities you need to perform one at a time, and a counter that 

indicates your progress. The counter will reach zero once you have finished the 

training process for a particular activity.  

 

Once you finish the training process, you will hear a message informing you of the 

successful termination of this phase. The computer program will then start recognizing 

the activities you provided on the fly. Please feel free to evaluate the performance of the 

algorithm by executing the activities as many times as you wish. Feel free to experiment 

and suggest ideas on how the training or recognition of activities can be improved in 

future versions. 

 

Please be aware that the computer program cannot collect activity examples if the motion 

signals coming from the sensors are lost due to body blocking or environmental noise. As 

a result, you might feel at times that the counter on the screen does not decrease as fast as 

expected. This because signals are not being received, so please be patient.  
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Subject One 
 

Correctly Classified Instances         518               89.6194 % 

Incorrectly Classified Instances        60               10.3806 % 

Kappa statistic                          0.8847 

Mean absolute error                      0.0263 

Root mean squared error                  0.1394 

Relative absolute error                 14.5864 % 

Root relative squared error             46.4629 % 

Maximum absolute error deviation              0       

Total Number of Instances              578      

 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.893     0.017      0.847     0.893     0.87       0.946    bouncing_on_a_ball 

  0.948     0.008      0.932     0.948     0.94       0.976    waving_my_hand_to_say_hello 

  0.914     0.006      0.946     0.914     0.93       0.969    shaking_my_leg 

  0.776     0.025      0.776     0.776     0.776      0.893    Taekwondo_Form_#1 

  0.845     0.019      0.831     0.845     0.838      0.935    side_stretch 

  0.948     0.01       0.917     0.948     0.932      0.976    jumping_jacks 

  0.897     0.008      0.929     0.897     0.912      0.955    punching_as_I_walk_forward 

  0.897     0.006      0.945     0.897     0.92       0.961    lifting_dumbells 

  0.931     0.01       0.915     0.931     0.923      0.964    riding_a_bike 

  0.914     0.008      0.93      0.914     0.922      0.966    playing_the_drums 

 

 
=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j   <-- classified as 

 50  1  0  3  2  0  0  0  0  0 |  a = bouncing_on_a_ball 

  3 55  0  0  0  0  0  0  0  0 |  b = waving_my_hand_to_say_hello 

  2  2 53  1  0  0  0  0  0  0 |  c = shaking_my_leg 

  0  1  2 45  4  3  2  1  0  0 |  d = Taekwondo_Form_#1 

  4  0  1  4 49  0  0  0  0  0 |  e = side_stretch 

  0  0  0  0  2 55  1  0  0  0 |  f = jumping_jacks 

  0  0  0  4  0  2 52  0  0  0 |  g = punching_as_I_walk_forward 

  0  0  0  1  2  0  1 52  0  2 |  h = lifting_dumbells 

  0  0  0  0  0  0  0  2 54  2 |  i = riding_a_bike 

  0  0  0  0  0  0  0  0  5 53 |  j = playing_the_drums 

 

 

Subject Two 
 
Correctly Classified Instances         477               91.7308 % 

Incorrectly Classified Instances        43                8.2692 % 

Kappa statistic                          0.907  

Mean absolute error                      0.0222 

Root mean squared error                  0.1285 

Relative absolute error                 11.2626 % 

Root relative squared error             40.8777 % 

Maximum absolute error deviation              0       

Total Number of Instances              520      

 

 

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.982     0.006      0.948     0.982     0.965      0.998    walking 

  0.948     0.009      0.932     0.948     0.94       0.987    sitting_still 

  0.931     0.017      0.871     0.931     0.9        0.975    scratching_hfead 

  0.897     0.009      0.929     0.897     0.912      0.961    carrying_box 

  0.897     0.004      0.963     0.897     0.929      0.954    washing_dishes 

  0.914     0.019      0.855     0.914     0.883      0.951    shaking_hands 

  0.931     0.011      0.915     0.931     0.923      0.966    tossing_ball_in_air 

  0.845     0.013      0.891     0.845     0.867      0.928    typing 

  0.914     0.004      0.964     0.914     0.938      0.985    talkin_gon_phone 

 

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i   <-- classified as 

 55  1  0  0  0  0  0  0  0 |  a = walking 

  3 55  0  0  0  0  0  0  0 |  b = sitting_still 

  0  3 54  0  0  1  0  0  0 |  c = scratching_hfead 

  0  0  3 52  0  1  1  1  0 |  d = carrying_box 

  0  0  2  1 52  2  1  0  0 |  e = washing_dishes 

  0  0  1  1  0 53  1  2  0 |  f = shaking_hands 

  0  0  1  1  0  2 54  0  0 |  g = tossing_ball_in_air 

  0  0  0  1  2  2  2 49  2 |  h = typing 

  0  0  1  0  0  1  0  3 53 |  i = talkin_gon_phone 
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Subject 3 
 
Correctly Classified Instances         456               78.8927 % 

Incorrectly Classified Instances       122               21.1073 % 

Kappa statistic                          0.7655 

Mean absolute error                      0.046  

Root mean squared error                  0.1953 

Relative absolute error                 25.5448 % 

Root relative squared error             65.111  % 

Maximum absolute error deviation              0       

Total Number of Instances              578      

 

 

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.768     0.013      0.86      0.768     0.811      0.89     throwing 

  0.776     0.038      0.692     0.776     0.732      0.887    bowling 

  0.931     0.013      0.885     0.931     0.908      0.962    bouncing 

  0.828     0.025      0.787     0.828     0.807      0.915    typing 

  0.81      0.021      0.81      0.81      0.81       0.934    stepping 

  0.81      0.025      0.783     0.81      0.797      0.906    streching_arm 

  0.845     0.013      0.875     0.845     0.86       0.927    walking 

  0.707     0.037      0.683     0.707     0.695      0.873    Tennis_serve 

  0.638     0.033      0.685     0.638     0.661      0.818    streching_legs 

  0.776     0.015      0.849     0.776     0.811      0.901    bending 

 

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j   <-- classified as 

 43  4  0  1  1  0  0  5  2  0 |  a = throwing 

  2 45  0  2  1  0  0  5  3  0 |  b = bowling 

  1  0 54  0  0  1  1  0  1  0 |  c = bouncing 

  0  2  0 48  5  1  1  1  0  0 |  d = typing 

  0  2  2  3 47  2  0  1  1  0 |  e = stepping 

  0  1  3  2  1 47  1  0  2  1 |  f = streching_arm 

  0  1  0  1  3  1 49  3  0  0 |  g = walking 

  1  6  0  2  0  3  4 41  1  0 |  h = Tennis_serve 

  1  2  2  2  0  3  0  4 37  7 |  i = streching_legs 

  2  2  0  0  0  2  0  0  7 45 |  j = bending 

 

 
 

Subject 4 
 

Correctly Classified Instances         516               89.2734 % 

Incorrectly Classified Instances        62               10.7266 % 

Kappa statistic                          0.8808 

Mean absolute error                      0.0242 

Root mean squared error                  0.1358 

Relative absolute error                 13.4529 % 

Root relative squared error             45.2635 % 

Maximum absolute error deviation              0       

Total Number of Instances              578      

 

 

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.929     0.008      0.929     0.929     0.929      0.981    walk 

  0.931     0.01       0.915     0.931     0.923      0.987    type_in_computer 

  0.741     0.021      0.796     0.741     0.768      0.883    washing_window 

  0.948     0.013      0.887     0.948     0.917      0.973    drawing_in_paper 

  0.931     0.01       0.915     0.931     0.923      0.977    wiping_surface 

  0.914     0.012      0.898     0.914     0.906      0.969    talking_on_the_phone 

  0.897     0.013      0.881     0.897     0.889      0.962     sweeping 

  0.897     0.01       0.912     0.897     0.904      0.961    combing_my_hair 

  0.862     0.017      0.847     0.862     0.855      0.953    hammering_a_nail 

  0.879     0.006      0.944     0.879     0.911      0.961    eating 

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j   <-- classified as 

 52  2  0  0  0  0  0  1  0  1 |  a = walk 

  2 54  2  0  0  0  0  0  0  0 |  b = type_in_computer 

  2  2 43  0  0  3  3  1  2  2 |  c = washing_window 

  0  0  0 55  1  0  1  0  1  0 |  d = drawing_in_paper 

  0  0  0  3 54  0  0  0  1  0 |  e = wiping_surface 

  0  0  0  0  3 53  0  0  2  0 |  f = talking_on_the_phone 

  0  0  3  1  0  2 52  0  0  0 |  g =  sweeping 

  0  0  2  1  0  0  1 52  2  0 |  h = combing_my_hair 

  0  0  2  2  0  1  1  2 50  0 |  i = hammering_a_nail 

  0  1  2  0  1  0  1  1  1 51 |  j = eating 
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Subject 5 
 

 

Correctly Classified Instances         493               85.2941 % 

Incorrectly Classified Instances        85               14.7059 % 

Kappa statistic                          0.8366 

Mean absolute error                      0.0348 

Root mean squared error                  0.1625 

Relative absolute error                 19.3456 % 

Root relative squared error             54.1615 % 

Maximum absolute error deviation              0       

Total Number of Instances              578      

 

 

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.946     0.011      0.898     0.946     0.922      0.98     walk 

  0.879     0.027      0.785     0.879     0.829      0.952    bicep_curls 

  0.776     0.027      0.763     0.776     0.769      0.875    stretching 

  0.862     0.023      0.806     0.862     0.833      0.936    applying_cream 

  0.793     0.023      0.793     0.793     0.793      0.913    brushing_theet 

  0.776     0.015      0.849     0.776     0.811      0.898    wash_dish 

  0.879     0.01       0.911     0.879     0.895      0.938    knitting 

  0.862     0.01       0.909     0.862     0.885      0.93     wash_hands 

  0.81      0.012      0.887     0.81      0.847      0.919    filing_nails 

  0.948     0.006      0.948     0.948     0.948      0.98     play_piano 

 

 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j   <-- classified as 

 53  0  2  0  0  0  0  0  1  0 |  a = walk 

  3 51  2  1  1  0  0  0  0  0 |  b = bicep_curls 

  0  7 45  3  0  2  0  0  1  0 |  c = stretching 

  0  1  2 50  1  1  3  0  0  0 |  d = applying_cream 

  1  2  3  3 46  1  0  1  1  0 |  e = brushing_theet 

  1  1  1  1  7 45  0  2  0  0 |  f = wash_dish 

  1  0  1  1  1  3 51  0  0  0 |  g = knitting 

  0  1  1  2  0  1  2 50  1  0 |  h = wash_hands 

  0  2  2  0  2  0  0  2 47  3 |  i = filing_nails 

  0  0  0  1  0  0  0  0  2 55 |  j = play_piano 

 

 

Table A9-1. Performance obtained by recognizing participant‟s activities using a C4.5 classifier with 

the invariant reduced feature set computed per axis over window lengths of 5.6s in length. 

Performance was measured using 10 Fold Cross-validation. 
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Appendix A10: Boston Medical Center Data Collection 
Protocol 
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In this protocol, two participants performed the script of activities shown in the table 

below. Each activity was performed one at a time for three to four minutes while 

participants wore the same set of sensors utilized in the MIT protocol. The indirect 

calorimeter utilized in this study was the Parvo Medics TrueOne 2400 metabolic 

measurement system [126]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table A10-1: Boston Medical Center data collection protocol. The activities listed in the table were 

performed in the order indicated starting from the one at the top of the table and ending with the one 

at the bottom of the table.  

 

Activity Performed 

Lying quietly on back, arms at side 

Sitting in chair 

Standing hands at sides, feet shoulder-width apart 

Walking on TM, 3 mph, 0% grade 

Walking on TM, 3 mph, 4% grade 

Walking on TM, 3 mph, 8% grade 

Jog on treadmill, 5 mph, 0%  

(optional activity depending on subject‘s capacity) 

Cycle ergometer (legs), 60 RPM, ―light‖ resistance 

Cycle ergometer (legs), 100 RPM, ―light‖ resistance 

Cycle ergometer (legs), 60 RPM, ―hard‖ resistance 

Carry box with both hands in front of subject (elbows bent at 90 

degrees) and walk at 2 mph on treadmill 

Jumping Jacks 

Perform sit-ups with knees bent and hands behind head—15 in 

one minute or as many as comfortable 

Perform push-ups from the knees—15 in one minute or as many 

as comfortable 

Perform biceps curl with both arms (3 or 5 pound weight)—15 

curls in one minute or as many as comfortable 
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Appendix A11: Stanford and Boston University Data Collection 
Protocols 
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Script for Laboratory/Gymnasium Activities 
 
Session #1 

 

 Each activity was performed for a period of two minutes unless otherwise specifically noted. 

 The subject‘s exertion perception on the RPE scale was annotated for each activity involving 

different activity levels. 

 

Bout A 
Activity Annotation Guide 

Lying quietly on back, arms at side Lying Down 

n/a 

n/a 

Sitting in chair very quietly—hands on knees, feet flat on 

floor 

Sitting 

n/a 

n/a 

Standing very quietly, hands at sides, feet shoulder-width 

apart 

Standing 

n/a 

n/a 

Getting ready and annotation  

Walking on Treadmill (TM), 2 miles per hour (mph), 0% 

grade 

Walking 

Treadmill 2 mph 

Treadmill 0% 

Walking on TM, 3 mph, 0% grade Walking 

Treadmill 3 mph 

Treadmill 0% 

Walking on TM, 4 mph, 0% grade Walking 

Treadmill 4 mph 

Treadmill 0% 

Getting ready and annotation  

Walking on TM, 3 mph, 4% grade Walking 

Treadmill 3 mph 

Treadmill 3% 

Walking on TM, 3 mph, 8% grade Walking 

Treadmill 3 mph 

Treadmill 6% 

Walking on TM, 3 mph, 12% grade Walking 

Treadmill 3 mph 

Treadmill 9% 

Getting ready and annotation  

Jog on treadmill, 5 mph, 0% 

(optional activity depending on subject‘s capacity) 

Running 

Treadmill 5 mph 

Treadmill 0% 

 

Break—end of Bout A 

 

 Subjects rested for approximately five minutes and prepared for the cycling bout (Bout B) 

 Before the beginning of Bout B, the light, moderate and hard resistance levels were determined 

for each subject using 80 rpm on the cycle ergometer (legs).   

 Note: a rowing machine may be used interchangeably with the arm cycle ergometer and will be 

indicated by the annotation 
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Bout B 
Activity Annotation Guide 

Cycle ergometer (legs), 60 RPM, ―light‖ resistance       Cycling 

      Cycle light 

      Cycle 60 rpm 

Cycle ergometer (legs), 80 RPM, ―light‖ resistance Cycling 

Cycle moderate 

Cycle 80 rpm 

Cycle ergometer (legs), 100 RPM, ―light‖ resistance Cycling 

Cycle light 

Cycle 100 rpm 

Sit in chair and fidget with feet and legs Sitting 

Fidget feet legs 

n/a 

Cycle ergometer (legs), 80 RPM, ―light‖ resistance Cycling 

Cycle light 

Cycle 80 rpm 

Cycle ergometer (legs), 80 RPM, ―moderate‖ resistance Cycling 

Cycle moderate 

Cycle 80 rpm 

Cycle ergometer (legs), 80 RPM, ―hard‖ resistance Cycling 

Cycle hard 

Cycle 80 rpm 

Sit in chair and fidget with hands and arms Sitting 

Fidget hands arms 

n/a 

Cycle ergometer (arms), 60 RPM, 25 watts 

OR 

Rowing machine, 30 strokes per minute (SPM), ―light‖ 

resistance 

Rowing 

Rowing light 

Cycle 60 rpm (*Rowing 30 spm) 

Cycle ergometer (arms), 75 RPM, 25 watts 

OR 

Rowing machine, 30 SPM, ―moderate‖ resistance 

Rowing 

Rowing moderate 

Cycle 75 rpm (*Rowing 30 spm) 

Cycle ergometer (arms), 90 RPM, 25 watts 

OR 

Rowing machine, 30 SPM, ―heavy‖ resistance 

Rowing 

Rowing hard 

Cycle 90 rpm (*Rowing 30 spm) 

*Use annotations in parentheses () for the rowing machine where appropriate 

 

End of Session #1 

 

             

 

 

Session #2 

 

 Research assistant carried the laptop for data recording within 10 feet of the subject. 

 For activities involving the use of a box, a box or similar object (i.e.—plate weight) weighing 

approximately five pounds was utilized for activities in Bout A. 
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Bout A 
Activity Annotation Guide 

Move box from floor to table—subject picks up box from 

floor, turns 90 degrees, takes 2-3 steps to place box on table, 

wait 1 second, then return box to the original position 

(Note: the table should be about waist high on the subject) 

Move weight 

Move wt low 

n/a 

Move box from floor to high shelf—subject picks up box 

from floor, turns 90 degrees, takes 2-3 steps to place box on 

shelf, wait 1 second, then return box to the original position 

(Note: the shelf should be at least should high on the subject) 

Move weight 

Move wt high 

n/a 

Stand at table and move box from one side of person to the 

other side of the person while standing in one place 

(Note: sit box down for 2 seconds between moves) 

Move weight 

Move wt side 

n/a 

Carry box with both hands in front of subject (elbows bent at 

90 degrees) and walk at 2 mph on treadmill 

Move weight 

Carry wt 2mph 

n/a 

 

Bout B 
Activity Annotation Guide 

Stair climbing—go up and down three flights of stairs for a 

period of two minutes, annotate ―ascending‖ and 

―descending‖ appropriately 

(Please note the number of stairs in the ―flight‖ used) 

Stairs 

Ascend stairs OR descend stairs 

n/a 

Rest  

Stair climbing—go up and down three flights of stairs for a 

period of two minutes, annotate ―ascending‖ and 

―descending‖ appropriately 

(Please note the number of stairs in the ―flight‖ used) 

Stairs 

Ascend stairs OR descend stairs 

n/a 

Rest and move to area for calisthenics  

Perform sit-ups with knees bent and hands behind head—15 

in one minute or as many as comfortable 

Calisthenics 

Sit ups 

n/a 

Rest  

Perform push-ups from the knees—15 in one minute or as 

many as comfortable 

Calisthenics 

Push ups 

n/a 

Rest  

Jumping jacks—20 in one minute or as many as comfortable Calisthenics 

n/a 

Jumping jacks 

n/a 

Rest  

Perform biceps curl with both arms (3 or 5 pound weight)—

15 curls in one minute or as many as comfortable 

Calisthenics 

Bicep curl 

n/a 

 

End of Session #2 
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Once data collection was complete, subjects removed the heart rate strap/monitor and accelerometers 

and performed and end of study interview. 

 

Script for Home Cleaning Activities 
 

During this data collection, participants performed the activities listed in the order shown in the table 

below, one at a time.  Participants were also allowed to complete activities at their own pace and for 

however long they wished.  The research assistant; however, keep track of the length of the activities 

and suggest moving on to another activity for those taking longer than 15 minutes. This was only a 

general rule and was left up to the discretion of the research assistant. 

 

List of Activities 

 

 stacking groceries—to be simulated by un-stacking several shelves into a bag, then re-

stacking them 

 doing dishes/putting away dishes 

 folding and stacking laundry 

 making beds 

 emptying trashcans 

 scrubbing toilet and/or bathtub or shower 

 dusting 

 vacuuming 

 washing windows 

 sweeping 

 scrubbing the floor 

 mopping 

 

 
Activity Description of Activity 

U activity Unknown activity: performing an activity not otherwise specified below. 

Dishes Cleaning dishes by hand 

Bed Actions involved in making a bed, including removing sheets/blankets from a bed, putting 

sheets/blankets onto a bed, stuffing pillowcases, and carrying sheets/blankets to/from a 

bed. 

Scrub Making quick and rapid movements with the arm.  This involves more intensity than 

wiping/dusting. 

Stack Includes stacking supplies or linens on a shelf. 

Sweep Using a broom to sweep a floor. 

Trashcans Emptying trashcans or carrying a trashcan or trash bag. 

Vacuum Includes vacuuming and also moving a vacuum cleaner to a different location. 

Wipe/dust Similar to scrub, but with shorter and slower arm movements.  Less intense than cleaning 

a toilet. 

Mop Using a mop to clean a floor.  Does not include carrying a mop. 

Laundry Folding laundry 

Shifting objects ONLY includes extended periods of moving objects around (greater than 5 seconds) 
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Appendix A12: MIT Data Collection Protocol 
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The following data collection protocol was used during each of the two data collection 

sessions that took take place at (1) the MIT Zesiger Sports and Fitness Center and (2) at 

the PlaceLab instrumented residential home.  

 

 

Data collection protocol 

 

1. The participant‘s demographic, medical, and physical activity information was 

recorded.  

2. Seven wireless accelerometers (Onbody MITes) were placed on the participant at 

the feet (on shoe laces), wrists, hip (non-dominant side), dominant upper arm 

(near bicep muscle), and dominant thigh. 

3. The participant was asked to wear the polar chest strap heart rate monitor and to 

place the heart rate MITes transceiver in his/her pocket.  

4. The participant was asked to wear the bodybugg armband on his/her dominant 

upper arm.   

5. Two Actigraph activity monitors were then firmly attached to the participant at 

the belt around the dominant side of the hip (on the outer edge of the hip bone) 

and another at the dominant wrist. 

6. The K4b2 portable indirect calorimeter was installed on the participant. The 

participant was instructed not to talk and to breathe mainly through the nose 

during the experiment to increase the accuracy of the VO2 and VCO2 

measurements. 

7. The participant‘s resting metabolic rate (RMR) and resting heart rate were 

measured by having the participant lie down for a period of 5 minutes. 

8. The participant was asked to perform a script of activities depending o the 

location of the data collection. The two scripts utilized during the MIT Zesiger 

Sports and Fitness Center and PlaceLab instrumented residential home are 

presented below.  
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Activity Script for the MIT Zesiger Sports and Fitness Center Data 

Collection 

 
Activity Description of Activity 

Lying down (5min) Lying quietly on back, arms at side 

Sitting* Sitting in chair very quietly—hands on knees, feet flat on floor 

Sitting fidgeting* hands and 
arms 

Sit in chair and fidget with hands and arms 

Standing still* Standing very quietly, hands at sides, feet shoulder-width apart 

Kneeling* Supporting the body on your knees, both knees on the floor. 

Walking Walking on a treadmill at the specified speed and inclination 

Walking upstairs Walk upstairs three flights of stairs for a period of two minutes, annotate ―ascending‖ and 
―descending‖ appropriately 

Walking downstairs Walk downstairs three flights of stairs for a period of two minutes, annotate ―ascending‖ and 

―descending‖ appropriately. (Please note the number of stairs in the ―flight‖ used) 

Running Running on a treadmill at the specified speed and inclination 

Cycle ergometer Cycling on a leg ergometer at the specified speed. 

Rowing  

Sit-ups Perform sit-ups with knees bent and hands behind head. 15 in one minute or as many as 

comfortable. 

Crunches Perform crunches. 15 in one minute or as many as comfortable 

Biceps curls Perform biceps curl with both arms using the specified weight. 15 curls in one minute or as many 

as comfortable. 

Weight lifting Perform bench weight lifting with both arms using the specified weight. 15 repetitions in one 
minute or as many as comfortable. 

Table A12-1: Description of the activities performed at MIT Zesiger Sports and Fitness center. 

(*Data collected for 2mins only) 

 

This session was divided into several activity periods of 20-30 minutes, separated by 5 

minute rest periods. Even though this data collection lasted for about three hours, each 

activity was only performed for three to four minutes and there were pauses between 

activities to allow the participant‘s to have some rest. The participants were asked to 

perform the activities in the order listed, one at a time for three to four minutes or for as 

long as was comfortable, if the activity was physically demanding. The participants were 

also asked to remove the sensors and put them on at least two times during the data 

collections. In this way, slight variations in orientation due to sensor installation were 

captured in each dataset. If the participant found any of the activities too physically 

demanding the activity was no longer performed. The participant‘s heart rate was also 

monitored during the data collection to assure it did not exceed the participant‘s 

maximum estimated peak exercise heart rate. A member of the study team quietly 

annotated the activities and let the participant know when it was time to pause or start the 

next activity. 

 

Bout A 
Activity Annotation guide 

Category  Intensity Difficulty  

Lying down (5 minutes) Lying down n/a n/a 

Sitting (2min) Sitting n/a n/a 

Sit in chair and fidget with feet and legs (2min) Sitting 

 

Fidget feet legs n/a 

Sitting fidgeting hands and arms (2min) Sitting 
 

Fidget hands arms n/a 

Standing still (2min) Standing still n/a n/a 

Kneeling (2min) Kneeling n/a n/a 

 

Break—end of Bout A 
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 Allow subject to rest for approximately five minutes and get ready for Bout B 

 

 

Bout B 
Walking on TM, 2 mph, 0% grade  Walking 

 

Treadmill 2 mph Treadmill 0% 

Walking on TM, 3 mph, 0% grade  Walking Treadmill 3 mph Treadmill 0% 

Walking on TM, 3 mph, 3% grade “light” Walking Treadmill 3 mph Treadmill 3% 

Walking on TM, 3 mph, 6% grade “moderate” Walking Treadmill 3 mph Treadmill 6% 

Walking on TM, 3 mph, 9% grade “hard” Walking Treadmill 3 mph Treadmill 9% 

Walking upstairs Stairs Ascend stairs n/a 

Walking downstairs Stairs Descend stairs n/a 

Running on TM, 4 mph, 0% grade  Running  Treadmill 4 mph Treadmill 0% 

Running on TM, 5 mph, 0% grade  
(optional depending on subject) 

Running  Treadmill 5 mph 
 

Treadmill 0% 

Running on TM, 6 mph, 0%  grade 

(optional depending on subject)  

Running Treadmill 6 mph 

 

Treadmill 0% 

 

 

Break—end of Bout B 

 

 Allow subject to rest for approximately five minutes and get ready for Bout C 

 Before beginning Bout C, determine light, moderate, and hard resistance for 

subject using 80 rpm on the cycle ergometer (legs).  Document resistances 

used in ―Notes‖ section of electronic data when data is merged/cleaned. 

 Note: a rowing machine may be used interchangeably with the arm cycle 

ergometer and will be indicated by the annotation 

 

Bout C 
Activity Annotation guide 

Category Intensity  Difficulty  

Cycle ergometer (legs), 60 RPM, “light” resistance Cycling 

 

Cycle light   (2 R) Cycle 60 rpm 

Cycle ergometer (legs), 80 RPM, “light” resistance Cycling 
 

Cycle light   (2 R) Cycle 80 rpm 

Cycle ergometer (legs), 100 RPM, “light” resistance Cycling 

 

Cycle light   (2 R) 

 

Cycle 100 rpm 

Cycle ergometer (legs), 80 RPM, “moderate” 
resistance 

Cycling 
 

Cycle moderate      (7 

R) 
 

Cycle 80 rpm 

Cycle ergometer (legs), 80 RPM, “hard” resistance Cycling 

 

Cycle hard (13 R) Cycle 80 rpm 

*Use annotations in parentheses () for the rowing machine where appropriate 

 

 

Break—end of Bout C 

 

 Allow subject to rest for approximately five minutes and get ready for Bout D 

 Before beginning Bout D, determine light, moderate, and hard resistance for 

subject using 80 rpm on the cycle ergometer (arms).  Document resistances 

used in ―Notes‖ section of electronic data when data is merged/cleaned. 

 Note: a rowing machine may be used interchangeably with the arm cycle 

ergometer and will be indicated by the annotation 
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Bout D 
Cycle ergometer (arms), 60 RPM, 25 watts 

OR 
Rowing machine, 30 strokes per minute (SPM), 

“light” resistance 

Rowing 

 

Rowing light 

(2 R) 

Cycle 60 rpm 

(*Rowing 30 spm) 

Cycle ergometer (arms), 75 RPM, 25 watts 

OR 
Rowing machine, 30 SPM, “moderate” resistance 

Rowing 

 

Rowing moderate 

(5 R) 

Cycle 75 rpm 

(*Rowing 30 spm) 

Cycle ergometer (arms), 90 RPM, 25 watts 

OR 
Rowing machine, 30 SPM, “hard” resistance 

Rowing 

 

Rowing hard 

(8 R) 

Cycle 90 rpm 

(*Rowing 30 spm) 

 

Break—end of Bout D 

 

 Allow subject to rest for approximately five minutes and get ready for Bout D 

 Before beginning Bout E, determine light, moderate, and hard weights for 

subject for ―Bicep curls‖ and ―Bench weight lifting‖.  Document weights used 

in ―Notes‖ section of electronic data when data is merged/cleaned. 

 

Bout E 
Activity Annotation guide 

Category  Intensity  Difficulty  

Sit-ups Calisthenics Sit ups n/a 

Crunches Calisthenics Push ups n/a 

Bicep curls  “light” Resistance Bicep curl light (2 

Lb) 

n/a 

Bicep curls “moderate” Resistance Bicep curl moderate      

(5 Lb) 

n/a 

Bicep curls  “hard” Resistance Bicep curl hard  (8 

Lb) 

n/a 

Bench weight lifting  “light” Resistance Bench light  (2 Lb) n/a 

Bench weight lifting  “moderate” Resistance Bench moderate      

(7 Lb) 

n/a 

Bench weight lifting  “hard” Resistance Bench hard (17 Lb) n/a 

 

 

The walking and running activities were collected on a Precor C956 treadmill, the cycling 

activities on a Precor C846 recumbent stationary bicycle, and the rowing activities on a 

Concept2 PM2 Rowing machine. 
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Stationary Machine Utilized Image 

Precor C846 recumbent stationary bicycle  

 
 

Precor C956 treadmill  

 
 

Concept2 PM2 Rowing machine  

 
 

Table A12-2: Stationary exercise equipment utilized during the MIT gymnasium data collections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bluequartz.ca/shop/?shop=1&cat=4&cart=927&itemid=19
http://www.rowgear.com/rowing-machines-and-monitors.php
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Activity Script for the PlaceLab Residential Home Data Collection 
 

 
Activity Description of Activity 

Lying down Lying down on a bed with hands on sides 

Watching TV Watching TV while sitting on a couch 

Playing 

videogames 

Playing video games while sitting on a couch 

Typing Typing on a computer while sitting. 

Writing Handwriting on a piece of paper while sitting. 

Making the bed Actions involved in making a bed, including removing sheets/blankets from a 

bed, putting sheets/blankets onto a bed, stuffing pillowcases, and carrying 

sheets/blankets to/from a bed. 

Taking out trash Emptying trashcans or carrying a trashcan or trash bag. 

Walking around 

block 

Walking at normal speed around the PlaceLab block 

Carrying groceries Carrying grocery bags either with one or two hands. The weight of the bags 

should be greater than 2kg.  

Stacking groceries Includes stacking supplies or linens on a shelf. 

Ironing Ironing clothes by hand using a hand ironing machine while standing up or 

sitting. 

Doing dishes Washing dishes by hand. 

Wiping/dusting Similar to scrub, but with shorter and slower arm movements.  Less intense than 

cleaning a toilet. 

Sweeping Using a broom to sweep a floor. Does not include carrying a broom. 

Mopping Using a mop to clean a floor.  Does not include carrying a mop. 

Vacuuming Includes vacuuming floor and also moving a vacuum cleaner to a different 

location. 

Washing windows Washing a window by scrubbing while standing up. 

Scrubbing a 

surface 

Making quick and rapid movements with the arm.  This involves more intensity 

than wiping/dusting such as cleaning the bath tub. 

Weeding Weeding grass at PlaceLab patio 

Gardening Gardening at PlaceLab patio 

Table A12-3: Description of the activities performed at the PlaceLab. 

 

During this data collection, the participant was asked to perform the activities in the order 

listed, one at a time for three to four minutes. A member of the study team quietly 

annotated the activities using a laptop computer. The participant was also asked to 

remove the sensors and put them on at least two times during the data collection. In this 

way, slight variations in orientation due to sensor installation will be captured in each 

dataset. 
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Appendix A13: Activity Recognition Using Different Classifiers 
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Activity True Positive Rate 

NN NB LogitBoost C4.5 

Bench weight lifting - hard 7.49 ± 13.72 6.35 ± 15.14 5.15 ± 10.60 16.66 ± 29.15 

Bench weight lifting - light 20.07 ± 20.51 27.56 ± 29.41 37.68 ± 37.08 15.56 ± 28.17 

Bench weight lifting - moderate 8.71 ± 11.20 14.25 ± 22.02 12.61 ± 21.93 11.64 ± 18.54 

Bicep curls - hard 24.50 ± 24.14 31.10 ± 40.89 14.89 ± 25.14 19.88 ± 37.06 

Bicep curls - light 24.49 ± 16.65 10.22 ± 14.82 49.48 ± 33.58 18.75 ± 27.29 

Bicep curls - moderate 19.43 ± 21.12 8.69 ± 12.85 28.11 ± 31.30 12.19 ± 26.74 

Calisthenics - Crunches 42.41 ± 44.87 19.20 ± 34.53 48.65 ± 42.82 15.96 ± 31.90 

Calisthenics - Sit ups 69.76 ± 37.44 63.16 ± 46.40 68.77 ± 39.12 44.79 ± 42.87 

Cycling - Cycle hard - Cycle 80rpm 11.62 ± 12.17 38.14 ± 37.45 16.74 ± 27.66 17.97 ± 29.91 

Cycling - Cycle light - Cycle 100rpm 65.05 ± 39.10 78.87 ± 34.77 79.70 ± 35.49 70.55 ± 37.69 

Cycling - Cycle light - Cycle 60rpm 62.35 ± 29.28 74.81 ± 35.76 74.04 ± 29.94 39.57 ± 36.19 

Cycling - Cycle light - Cycle 80rpm 33.84 ± 25.04 35.22 ± 35.21 49.42 ± 37.08 42.97 ± 39.93 

Cycling - Cycle moderate - Cycle 80rpm 27.46 ± 17.83 6.72 ± 9.04 28.94 ± 25.49 16.14 ± 19.43 

Lying down 65.50 ± 14.32 95.63 ± 8.71 87.46 ± 24.64 76.90 ± 34.28 

Rowing - Rowing hard - Rowing 30spm 27.40 ± 24.62 52.11 ± 40.42 32.49 ± 40.79 19.49 ± 25.54 

Rowing - Rowing light - Rowing 30spm 29.76 ± 23.59 36.82 ± 35.18 36.90 ± 34.98 24.27 ± 23.73 

Rowing - Rowing moderate - Rowing 30spm 20.00 ± 14.68 16.32 ± 29.88 21.96 ± 33.29 18.72 ± 21.51 

Running - Treadmill 4mph - Treadmill 0  33.10 ± 29.07 39.80 ± 46.32 53.67 ± 40.94 28.20 ± 30.71 

Running - Treadmill 5mph - Treadmill 0  60.31 ± 33.35 63.54 ± 41.47 61.53 ± 37.93 48.97 ± 34.91 

Running - Treadmill 6mph - Treadmill 0  46.11 ± 42.27 62.90 ± 47.34 57.85 ± 37.82 38.31 ± 30.97 

Sitting 4.68 ± 6.65 20.97 ± 17.24 26.27 ± 35.41 15.29 ± 26.44 

Sitting - Fidget feet legs 33.05 ± 33.93 55.90 ± 41.30 42.83 ± 39.44 28.83 ± 36.85 

Sitting - Fidget hands arms 26.00 ± 25.91 48.64 ± 43.71 42.17 ± 35.81 28.51 ± 32.18 

Stairs - Ascend stairs 48.07 ± 38.29 63.44 ± 38.83 53.41 ± 37.71 49.43 ± 33.57 

Stairs - Descend stairs 53.34 ± 35.25 55.70 ± 34.50 48.98 ± 35.71 39.71 ± 30.67 

Standing 22.05 ± 14.14 4.84 ± 9.25 48.37 ± 35.76 41.26 ± 38.65 

Walking - Treadmill 2mph - Treadmill 0  49.94 ± 35.46 71.81 ± 37.44 64.46 ± 33.33 45.61 ± 34.16 

Walking - Treadmill 3mph - Treadmill 0  13.71 ± 13.78 43.30 ± 38.47 29.00 ± 23.39 24.28 ± 25.45 

Walking - Treadmill 3mph - Treadmill 3  - light 8.14 ± 8.56 18.61 ± 25.83 13.24 ± 22.25 10.06 ± 12.60 

Walking - Treadmill 3mph - Treadmill 6  - moderate 16.89 ± 19.18 31.50 ± 34.97 12.05 ± 12.89 10.52 ± 14.89 

Walking - Treadmill 3mph - Treadmill 9  - hard 27.46 ± 26.66 21.07 ± 30.95 26.17 ± 31.53 15.11 ± 23.20 

kneeling 14.01 ± 12.05 13.68 ± 9.79 70.32 ± 36.57 66.94 ± 43.12 

unknown 52.78 ± 5.16 5.89 ± 2.42 76.89 ± 4.84 63.97 ± 5.18 

Carrying groceries 27.08 ± 24.99 37.92 ± 29.05 27.48 ± 30.35 19.75 ± 20.28 

Doing dishes 31.75 ± 19.94 39.19 ± 29.22 45.58 ± 25.90 29.34 ± 28.43 

Gardening 16.33 ± 18.81 28.14 ± 32.12 25.89 ± 30.41 14.44 ± 20.82 

Ironing 44.71 ± 25.93 57.39 ± 35.17 37.69 ± 32.58 37.07 ± 31.48 

Making the bed 40.23 ± 29.15 28.24 ± 21.62 31.61 ± 22.27 25.95 ± 17.78 

Mopping 28.25 ± 25.94 22.88 ± 24.33 25.02 ± 24.17 24.21 ± 21.46 

Playing videogames 12.01 ± 10.77 11.14 ± 19.14 28.20 ± 30.41 29.18 ± 34.66 

Scrubbing a surface 14.72 ± 16.70 18.16 ± 21.13 20.10 ± 27.82 13.91 ± 17.77 

Stacking groceries 18.28 ± 21.20 23.04 ± 25.00 13.93 ± 13.66 11.49 ± 12.03 

Sweeping 20.03 ± 20.50 30.99 ± 30.60 18.83 ± 16.22 16.52 ± 17.90 

Typing 39.10 ± 20.13 34.84 ± 31.44 53.33 ± 35.33 49.25 ± 37.47 

Vacuuming 28.43 ± 25.22 40.81 ± 37.09 30.54 ± 25.49 23.05 ± 21.70 

Walking around block 22.61 ± 20.55 26.91 ± 26.45 19.04 ± 22.89 18.94 ± 17.99 

Washing windows 25.45 ± 21.92 17.07 ± 17.67 27.49 ± 26.54 22.42 ± 19.23 

Watching TV 7.25 ± 5.85 5.32 ± 4.81 21.67 ± 27.42 20.12 ± 30.06 

Weeding 5.72 ± 9.12 12.18 ± 18.22 9.55 ± 24.66 4.51 ± 7.78 

Wiping/Dusting 31.64 ± 23.52 20.89 ± 17.93 30.43 ± 26.30 21.58 ± 20.09 

Writing 25.75 ± 14.98 56.85 ± 36.69 45.84 ± 34.44 51.11 ± 39.97 

taking out trash 15.81 ± 16.03 13.51 ± 15.59 2.69 ± 3.67 10.09 ± 10.42 

Table A13-1: True positive rate when training classifiers using the MaxAccelerationSet1 feature set 

computed per sensor evaluated in a subject independent manner. 
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Activity False Positive Rate 

NN NB LogitBoost C4.5 

Bench weight lifting - hard 0.38 ± 0.26 0.23 ± 0.20 0.26 ± 0.19 0.64 ± 0.64 

Bench weight lifting - light 0.85 ± 0.76 0.92 ± 1.01 0.66 ± 0.67 0.56 ± 0.68 

Bench weight lifting - moderate 0.51 ± 0.39 1.25 ± 0.76 0.49 ± 0.91 0.57 ± 0.58 

Bicep curls - hard 0.77 ± 0.55 1.37 ± 1.49 0.84 ± 1.00 0.83 ± 1.07 

Bicep curls - light 0.57 ± 0.51 0.38 ± 0.50 2.00 ± 1.26 0.90 ± 1.20 

Bicep curls - moderate 0.75 ± 0.57 0.56 ± 0.55 0.83 ± 0.76 0.51 ± 0.63 

Calisthenics - Crunches 0.03 ± 0.03 1.16 ± 0.72 0.12 ± 0.22 0.22 ± 0.38 

Calisthenics - Sit ups 0.02 ± 0.06 0.20 ± 0.39 0.05 ± 0.08 0.12 ± 0.13 

Cycling - Cycle hard - Cycle 80rpm 0.50 ± 0.40 1.91 ± 1.28 0.92 ± 1.08 0.98 ± 1.14 

Cycling - Cycle light - Cycle 100rpm 0.76 ± 1.41 0.56 ± 1.22 0.14 ± 0.21 0.12 ± 0.18 

Cycling - Cycle light - Cycle 60rpm 0.88 ± 0.64 0.51 ± 0.51 0.24 ± 0.19 0.17 ± 0.18 

Cycling - Cycle light - Cycle 80rpm 1.24 ± 1.09 0.61 ± 0.62 1.10 ± 1.18 1.08 ± 1.31 

Cycling - Cycle moderate - Cycle 80rpm 1.26 ± 0.75 0.37 ± 0.40 0.80 ± 0.83 0.76 ± 0.87 

Lying down 1.44 ± 1.00 4.84 ± 1.91 0.91 ± 1.54 0.68 ± 1.10 

Rowing - Rowing hard - Rowing 30spm 1.09 ± 0.77 1.96 ± 1.45 1.08 ± 1.16 0.67 ± 0.81 

Rowing - Rowing light - Rowing 30spm 0.79 ± 0.69 0.91 ± 1.09 1.07 ± 1.10 0.70 ± 0.67 

Rowing - Rowing moderate - Rowing 30spm 0.74 ± 0.65 0.54 ± 0.99 0.88 ± 0.95 0.77 ± 0.82 

Running - Treadmill 4mph - Treadmill 0 0.46 ± 0.49 0.75 ± 1.18 0.57 ± 0.67 0.71 ± 0.90 

Running - Treadmill 5mph - Treadmill 0 1.02 ± 0.79 1.14 ± 0.97 0.83 ± 0.89 0.66 ± 0.65 

Running - Treadmill 6mph - Treadmill 0 0.33 ± 0.36 0.84 ± 1.02 0.37 ± 0.56 0.33 ± 0.47 

Sitting 0.30 ± 0.17 2.47 ± 1.03 0.54 ± 0.79 0.69 ± 0.88 

Sitting - Fidget feet legs 0.24 ± 0.22 1.34 ± 0.93 0.10 ± 0.09 0.26 ± 0.28 

Sitting - Fidget hands arms 0.32 ± 0.14 1.58 ± 0.93 0.26 ± 0.33 0.51 ± 0.84 

Stairs - Ascend stairs 0.32 ± 0.24 1.27 ± 0.76 0.33 ± 0.39 0.63 ± 0.54 

Stairs - Descend stairs 0.30 ± 0.24 1.32 ± 0.87 0.38 ± 0.33 0.91 ± 0.90 

Standing 0.61 ± 0.44 0.30 ± 0.27 0.29 ± 0.33 0.37 ± 0.34 

Walking - Treadmill 2mph - Treadmill 0 0.79 ± 1.34 1.05 ± 1.46 0.96 ± 1.93 0.85 ± 1.45 

Walking - Treadmill 3mph - Treadmill 0 0.86 ± 0.62 2.41 ± 1.68 1.30 ± 1.21 1.40 ± 1.40 

Walking - Treadmill 3mph - Treadmill 3  - light 1.08 ± 0.81 1.24 ± 1.20 1.12 ± 1.29 1.05 ± 0.94 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.39 ± 1.02 2.02 ± 1.82 0.90 ± 0.73 0.85 ± 0.78 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.07 ± 0.92 0.73 ± 1.02 1.45 ± 1.72 0.94 ± 1.22 

kneeling 0.53 ± 0.24 0.76 ± 0.40 0.13 ± 0.21 0.14 ± 0.12 

unknown 18.18 ± 5.33 2.02 ± 2.01 23.84 ± 9.87 30.04 ± 7.98 

Carrying groceries 1.42 ± 1.21 0.72 ± 0.73 1.60 ± 2.55 1.31 ± 1.45 

Doing dishes 1.66 ± 0.57 2.08 ± 1.30 0.50 ± 0.39 0.74 ± 0.50 

Gardening 0.55 ± 0.35 2.06 ± 1.22 0.42 ± 0.48 0.59 ± 0.46 

Ironing 2.65 ± 1.35 2.08 ± 1.47 0.58 ± 0.50 0.78 ± 0.52 

Making the bed 1.37 ± 0.85 0.81 ± 0.55 0.83 ± 0.67 1.23 ± 0.70 

Mopping 0.74 ± 0.46 0.78 ± 0.61 0.61 ± 0.78 0.86 ± 0.49 

Playing videogames 1.54 ± 0.63 0.97 ± 0.80 0.61 ± 0.87 1.20 ± 1.33 

Scrubbing a surface 0.84 ± 0.72 2.19 ± 1.80 0.55 ± 0.50 0.84 ± 0.83 

Stacking groceries 0.67 ± 0.54 1.33 ± 0.69 0.46 ± 0.36 0.92 ± 0.46 

Sweeping 1.17 ± 0.59 1.81 ± 1.11 0.25 ± 0.20 0.85 ± 0.64 

Typing 2.67 ± 1.03 0.74 ± 0.54 0.58 ± 0.67 0.61 ± 0.62 

Vacuuming 1.00 ± 0.48 3.44 ± 1.56 0.37 ± 0.64 0.70 ± 0.52 

Walking around block 1.94 ± 2.34 1.02 ± 0.70 1.08 ± 1.01 1.75 ± 1.65 

Washing windows 0.87 ± 0.48 1.46 ± 0.74 0.59 ± 0.44 0.92 ± 0.48 

Watching TV 1.19 ± 0.37 1.00 ± 0.73 0.99 ± 1.26 1.00 ± 1.01 

Weeding 0.50 ± 0.31 2.32 ± 1.44 0.66 ± 1.21 0.70 ± 0.49 

Wiping/Dusting 1.79 ± 0.81 0.89 ± 0.58 0.59 ± 0.59 0.88 ± 0.50 

Writing 1.82 ± 0.73 1.58 ± 1.25 0.58 ± 0.58 0.64 ± 0.84 

taking out trash 1.02 ± 0.49 2.04 ± 0.64 0.15 ± 0.08 0.96 ± 0.53 

Table A13-2: False positive rate obtained when training different classifiers using the 

MaxAcceleration feature set computed per sensor in a subject independent manner. 
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Activity F-Measure 

NN NB LogitBoost C4.5 

Bench weight lifting - hard 8.59 ± 13.12 7.05 ± 15.01 5.75 ± 10.77 13.02 ± 18.84 

Bench weight lifting - light 19.42 ± 19.83 24.61 ± 22.60 35.03 ± 31.22 14.60 ± 21.42 

Bench weight lifting - moderate 9.77 ± 11.74 9.71 ± 12.91 11.38 ± 17.39 11.28 ± 16.20 

Bicep curls - hard 23.76 ± 21.60 18.29 ± 22.43 13.08 ± 17.56 12.82 ± 20.10 

Bicep curls - light 27.98 ± 19.13 11.90 ± 14.64 32.97 ± 17.10 17.80 ± 19.20 

Bicep curls - moderate 18.91 ± 19.46 9.46 ± 11.93 23.00 ± 23.07 10.07 ± 19.18 

Calisthenics - Crunches 46.28 ± 46.19 13.66 ± 23.76 52.63 ± 41.74 18.15 ± 35.46 

Calisthenics - Sit ups 74.77 ± 37.20 62.23 ± 45.99 72.66 ± 37.37 48.81 ± 44.17 

Cycling - Cycle hard - Cycle 80rpm 13.40 ± 12.77 23.49 ± 21.93 13.58 ± 17.73 10.15 ± 12.56 

Cycling - Cycle light - Cycle 100rpm 62.84 ± 37.66 74.23 ± 35.78 80.20 ± 35.06 73.43 ± 36.38 

Cycling - Cycle light - Cycle 60rpm 56.21 ± 24.38 68.71 ± 31.13 75.40 ± 27.41 44.29 ± 37.10 

Cycling - Cycle light - Cycle 80rpm 31.00 ± 21.79 32.89 ± 28.43 41.59 ± 28.05 35.55 ± 31.09 

Cycling - Cycle moderate - Cycle 80rpm 24.97 ± 11.69 9.39 ± 12.15 27.55 ± 19.33 15.97 ± 15.68 

Lying down 66.48 ± 9.69 65.01 ± 7.79 82.61 ± 22.18 75.30 ± 31.19 

Rowing - Rowing hard - Rowing 30spm 24.36 ± 17.48 31.21 ± 22.46 21.67 ± 25.47 19.46 ± 22.66 

Rowing - Rowing light - Rowing 30spm 30.31 ± 22.11 32.82 ± 24.43 31.42 ± 25.99 24.81 ± 21.45 

Rowing - Rowing moderate - Rowing 30spm 23.46 ± 15.34 14.89 ± 22.10 16.53 ± 21.53 18.61 ± 19.06 

Running - Treadmill 4mph - Treadmill 0  36.99 ± 29.94 33.88 ± 37.66 50.64 ± 35.89 30.71 ± 29.80 

Running - Treadmill 5mph - Treadmill 0  51.38 ± 26.01 51.23 ± 31.51 55.74 ± 32.00 46.21 ± 26.53 

Running - Treadmill 6mph - Treadmill 0  41.36 ± 32.92 45.10 ± 35.42 50.75 ± 30.04 38.91 ± 28.79 

Sitting 6.74 ± 9.40 13.46 ± 11.07 23.58 ± 29.90 12.27 ± 19.43 

Sitting - Fidget feet legs 36.40 ± 33.74 41.35 ± 30.90 47.34 ± 39.98 30.68 ± 38.11 

Sitting - Fidget hands arms 30.16 ± 26.00 33.46 ± 30.84 46.15 ± 35.80 30.29 ± 31.26 

Stairs - Ascend stairs 48.35 ± 34.79 49.65 ± 28.54 54.29 ± 36.42 49.64 ± 32.06 

Stairs - Descend stairs 55.29 ± 34.47 43.68 ± 27.22 50.19 ± 33.78 38.48 ± 29.02 

Standing 24.23 ± 15.46 6.68 ± 12.78 49.64 ± 33.30 39.90 ± 34.33 

Walking - Treadmill 2mph - Treadmill 0  48.18 ± 31.74 61.77 ± 31.54 60.80 ± 28.68 45.42 ± 32.64 

Walking - Treadmill 3mph - Treadmill 0  15.59 ± 13.25 30.15 ± 26.38 26.14 ± 17.12 20.95 ± 20.02 

Walking - Treadmill 3mph - Treadmill 3  - light 8.75 ± 8.02 14.60 ± 16.07 10.79 ± 14.36 10.01 ± 10.12 

Walking - Treadmill 3mph - Treadmill 6  - moderate 14.68 ± 12.66 19.89 ± 19.69 13.01 ± 12.33 11.08 ± 12.60 

Walking - Treadmill 3mph - Treadmill 9  - hard 25.52 ± 22.72 18.79 ± 22.57 19.63 ± 17.78 12.58 ± 16.20 

kneeling 15.96 ± 13.32 15.30 ± 11.44 73.36 ± 35.83 65.70 ± 42.25 

unknown 53.10 ± 6.33 10.48 ± 3.85 65.60 ± 10.02 53.97 ± 8.88 

Carrying groceries 27.40 ± 26.54 39.80 ± 28.13 28.01 ± 28.14 21.34 ± 20.68 

Doing dishes 28.38 ± 17.79 29.18 ± 21.95 50.50 ± 23.69 28.82 ± 25.60 

Gardening 19.05 ± 22.00 19.53 ± 22.36 27.67 ± 30.44 16.27 ± 22.88 

Ironing 32.52 ± 19.51 42.52 ± 24.06 40.06 ± 31.37 37.94 ± 29.72 

Making the bed 34.31 ± 24.03 30.08 ± 19.99 32.94 ± 21.00 25.64 ± 17.56 

Mopping 28.57 ± 24.48 22.86 ± 23.06 27.02 ± 24.96 24.69 ± 21.27 

Playing videogames 12.57 ± 10.52 10.85 ± 15.89 31.55 ± 28.34 27.73 ± 30.98 

Scrubbing a surface 16.90 ± 18.41 14.06 ± 15.91 20.88 ± 26.06 14.89 ± 18.59 

Stacking groceries 20.35 ± 22.41 19.88 ± 20.07 17.52 ± 16.40 13.52 ± 14.04 

Sweeping 19.15 ± 19.40 22.90 ± 22.75 25.39 ± 19.23 17.86 ± 19.00 

Typing 30.27 ± 16.07 36.56 ± 30.16 53.72 ± 34.37 50.10 ± 35.50 

Vacuuming 29.33 ± 25.21 24.77 ± 23.41 38.12 ± 27.47 25.90 ± 23.87 

Walking around block 22.41 ± 19.53 27.07 ± 22.82 18.76 ± 18.25 18.92 ± 16.26 

Washing windows 26.70 ± 20.89 15.69 ± 14.76 30.23 ± 26.31 24.71 ± 21.09 

Watching TV 9.03 ± 7.11 7.30 ± 6.82 23.12 ± 26.29 19.12 ± 24.91 

Weeding 7.69 ± 11.34 9.18 ± 14.05 5.92 ± 8.06 5.95 ± 10.07 

Wiping/Dusting 26.12 ± 19.21 23.20 ± 19.28 33.86 ± 27.83 23.66 ± 21.09 

Writing 24.01 ± 13.37 44.62 ± 27.94 47.73 ± 33.54 51.55 ± 38.41 

taking out trash 16.71 ± 15.99 11.06 ± 12.11 4.66 ± 6.29 11.52 ± 11.70 

Table A13-3: F-Measure obtained when training different classifiers using the MaxAcceleration 

feature set computed per sensor in a subject independent manner. 
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Appendix A14: Description of the 52 Activities Contained in 
the MIT Dataset  
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Activity Intensity 

Level 

Collection 

Place 

Description 

Bench weight lifting – Light   Gym Sitting leaning back lifting 0.9Kg (2Lb) weight with both hands 

Bench weight lifting – Moderate   Gym Sitting leaning back lifting 3.1Kg (7Lb) weight with both hands 

Bench weight lifting – Hard   Gym Sitting leaning back lifting  7.7Kg (17Lb) weight with both hands 

Bicep curls – Light  Gym  Sitting leaning forward with 0.9Kg (2Lb) weight on each hand 

Bicep curls – Moderate   Gym Sitting leaning forward with 2.2Kg (5Lb) weight on each hand 

Bicep curls – Hard  Gym Sitting leaning forward with 3.6Kg (8Lb) weight on each hand 

Calisthenics   Crunches - Gym  

Calisthenics   Sit ups - Gym Sit-ups using body as weight 

Cycling Cycle 100rpm (15mph,  120.4W) – Light  Gym Speed 100rmp, resistance of 2 

Cycling Cycle 60rpm (8.9mph, 66.9W) – Light  Gym Speed 60rmp, resistance of 2 

Cycling Cycle 80rpm (11.2mph,  100.4W) – Light  Gym Speed 80rpm, resistance of 2 

Cycling Cycle 80rpm – Moderate  Gym Speed 80rmp, resistance of 7 

Cycling Cycle 80rpm – Hard  Gym Speed 80rmp, resistance of 13 

Lying down - Gym Lying down still 

Rowing 30spm – Light  Gym Speed 30spm, resistance of 2 

Rowing 30spm – Moderate  Gym Speed 30spm, resistance of 5 

Rowing 30spm – Hard  Gym Speed 30spm, resistance of 8 

Running   Treadmill 4mph   Treadmill 0   Gym Speed 4mph, 0% incline 

Running   Treadmill 5mph   Treadmill 0   Gym Speed 5mph, 0% incline 

Running   Treadmill 6mph   Treadmill 0   Gym Speed 5mph, 0% incline 

Sitting  Gym Sitting still, hands on thighs 

Sitting   Fidget feet legs  Gym  

Sitting   Fidget hands arms  Gym Upstairs 4 floors continuously 

Stairs   Ascend stairs - Gym downstairs 4 floors continuously 

Stairs   Descend stairs - Gym  

Standing - Gym Standing still 

Walking   Treadmill 2mph   Treadmill 0   Gym Speed 2mph, 0% incline 

Walking   Treadmill 3mph   Treadmill 0   Gym Speed 3mph, 0% incline 

Walking   Treadmill 3mph   Treadmill 3 – Light   Gym Speed 3mph, 3% incline 

Walking   Treadmill 3mph   Treadmill 6 – 

Moderate  
 Gym Speed 3mph, 6% incline 

Walking   Treadmill 3mph   Treadmill 9 – Hard   Gym Speed 3mph, 9% incline 

Kneeling - PlaceLab Kneeling still 

Carrying groceries  PlaceLab Walking normal speed with one 3Kg bag on each hand 

Doing dishes - PlaceLab  Doing dishes while standing  

Gardening - PlaceLab Planting seeds with small shovel on the floor 

Ironing - PlaceLab Ironing while standing using a handheld iron 

Making the bed - PlaceLab  

Mopping - PlaceLab Mopping using a wet mop 

Playing videogames - PlaceLab Handheld Nintendo DS 

Scrubbing a surface - PlaceLab Scrubbing bathtub  

Stacking groceries - PlaceLab From bag on floor to shelf 

Sweeping - PlaceLab  

Typing - PlaceLab Typing on a computer while sitting 

Vacuuming - PlaceLab  

Walking around block - PlaceLab Normal walking speed 

Washing windows - PlaceLab Standing washing glass door 

Watching TV - PlaceLab Watching and changing channel 

Weeding - PlaceLab Using bare hands 

Wiping/Dusting - PlaceLab Using Clorox wipes 

Writing - PlaceLab  

Taking out trash - PlaceLab 1Kg trash bag 

Unknown - Both Any unlabeled time period during the data collections  

Table A14-1: Description of the 52 activities contained in the MIT dataset.  
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Appendix A15: Feature Computation per Sensor vs. Feature 
Computation per Axis 
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True positive rate Using Subject Dependent Evaluation 

Activity NB 

Per Sensor 

NB 

Per Axis 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Bench weight lifting - hard 71.7 ± 19.8 79.2 ± 20.8 93.1 ± 9.1 93.6 ± 8.2 

Bench weight lifting - light 87.7 ± 11.8 91.9 ± 6.1 93.3 ± 10.1 97.0 ± 4.3 

Bench weight lifting - moderate 76.9 ± 24.2 77.9 ± 23.7 92.1 ± 10.3 93.9 ± 10.2 

Bicep curls - hard 93.4 ± 6.5 91.7 ± 9.3 92.8 ± 5.3 93.2 ± 11.7 

Bicep curls - light 86.6 ± 16.4 90.4 ± 7.3 96.4 ± 4.9 92.9 ± 8.8 

Bicep curls - moderate 83.9 ± 6.0 87.9 ± 8.3 91.5 ± 6.4 92.8 ± 10.9 

Calisthenics - Crunches 97.9 ± 3.0 96.4 ± 3.8 94.2 ± 2.7 95.8 ± 3.3 

Calisthenics - Sit ups 97.0 ± 2.3 97.2 ± 2.5 92.4 ± 6.1 95.4 ± 5.2 

Cycling - Cycle hard - Cycle 80rpm 81.7 ± 17.6 86.2 ± 17.7 91.6 ± 8.8 89.6 ± 8.6 

Cycling - Cycle light - Cycle 100rpm 99.8 ± 0.8 99.9 ± 0.6 97.7 ± 4.2 98.6 ± 2.0 

Cycling - Cycle light - Cycle 60rpm 97.5 ± 2.6 98.7 ± 1.9 97.8 ± 2.5 99.0 ± 1.5 

Cycling - Cycle light - Cycle 80rpm 97.2 ± 5.0 97.6 ± 3.6 94.2 ± 6.3 95.8 ± 5.4 

Cycling - Cycle moderate - Cycle 80rpm 90.7 ± 6.9 95.8 ± 4.7 88.8 ± 9.7 92.8 ± 6.4 

Lying down 98.9 ± 1.8 98.0 ± 1.9 100.0 ± 0.0 99.9 ± 0.3 

Rowing - Rowing hard - Rowing 30spm 84.2 ± 12.2 84.8 ± 16.8 84.0 ± 13.7 83.4 ± 13.4 

Rowing - Rowing light - Rowing 30spm 90.4 ± 8.9 93.4 ± 6.3 86.7 ± 10.9 91.8 ± 7.2 

Rowing - Rowing moderate - Rowing 30spm 85.5 ± 11.7 86.4 ± 10.7 77.0 ± 14.5 82.1 ± 14.3 

Running - Treadmill 4mph - Treadmill 0  99.6 ± 1.1 99.2 ± 1.4 98.4 ± 2.4 97.0 ± 3.6 

Running - Treadmill 5mph - Treadmill 0  98.4 ± 2.9 99.0 ± 2.7 95.1 ± 3.6 94.2 ± 4.0 

Running - Treadmill 6mph - Treadmill 0  89.2 ± 15.3 92.6 ± 20.6 88.7 ± 13.3 91.3 ± 14.4 

Sitting 92.6 ± 4.3 84.3 ± 8.8 96.8 ± 2.9 95.6 ± 4.4 

Sitting - Fidget feet legs 96.2 ± 4.4 97.0 ± 3.2 95.6 ± 7.6 94.4 ± 6.8 

Sitting - Fidget hands arms 96.6 ± 4.3 95.2 ± 4.8 94.8 ± 4.2 93.5 ± 5.1 

Stairs - Ascend stairs 95.9 ± 3.4 97.6 ± 2.0 89.2 ± 7.0 93.3 ± 4.4 

Stairs - Descend stairs 94.6 ± 5.3 96.7 ± 3.2 88.7 ± 9.1 92.0 ± 6.1 

Standing 91.2 ± 7.1 86.3 ± 10.2 95.0 ± 6.0 96.1 ± 5.9 

Walking - Treadmill 2mph - Treadmill 0  97.9 ± 2.3 97.5 ± 3.2 94.9 ± 4.4 97.6 ± 2.8 

Walking - Treadmill 3mph - Treadmill 0  89.2 ± 6.0 91.2 ± 5.4 81.7 ± 9.5 87.4 ± 8.0 

Walking - Treadmill 3mph - Treadmill 3  - light 83.9 ± 7.7 90.0 ± 6.8 72.8 ± 16.0 84.5 ± 11.1 

Walking - Treadmill 3mph - Treadmill 6  - moderate 81.8 ± 9.9 86.6 ± 10.8 74.0 ± 9.4 82.5 ± 11.0 

Walking - Treadmill 3mph - Treadmill 9  - hard 85.9 ± 9.5 93.1 ± 6.8 84.1 ± 9.4 90.3 ± 6.7 

kneeling 92.6 ± 4.3 84.6 ± 7.7 96.9 ± 2.8 96.1 ± 3.7 

Carrying groceries 91.7 ± 6.0 97.1 ± 4.4 90.1 ± 8.1 91.8 ± 5.8 

Doing dishes 85.6 ± 6.4 91.4 ± 5.0 85.4 ± 7.4 87.8 ± 8.6 

Gardening 84.0 ± 15.2 88.0 ± 9.8 84.9 ± 10.8 84.9 ± 9.8 

Ironing 81.9 ± 9.4 87.2 ± 6.6 85.1 ± 7.7 88.1 ± 7.4 

Making the bed 69.9 ± 18.4 78.7 ± 12.4 64.9 ± 11.1 67.7 ± 12.2 

Mopping 73.4 ± 12.5 81.2 ± 10.2 64.8 ± 14.6 72.8 ± 13.0 

Playing videogames 94.3 ± 5.3 93.2 ± 3.9 98.9 ± 2.1 98.2 ± 2.2 

Scrubbing a surface 81.2 ± 13.0 88.6 ± 7.4 80.5 ± 12.9 88.6 ± 8.6 

Stacking groceries 74.7 ± 10.4 82.1 ± 9.6 69.4 ± 16.1 74.0 ± 11.6 

Sweeping 70.4 ± 15.1 74.6 ± 12.1 64.9 ± 19.9 73.4 ± 14.0 

Typing 95.2 ± 3.7 95.5 ± 2.8 97.0 ± 3.9 98.4 ± 2.3 

Vacuuming 76.9 ± 8.8 80.7 ± 7.6 78.9 ± 10.8 77.9 ± 8.2 

Walking around block 93.4 ± 6.2 96.1 ± 2.7 90.8 ± 6.6 89.1 ± 7.4 

Washing windows 77.2 ± 13.6 87.3 ± 8.0 64.4 ± 7.8 75.8 ± 9.3 

Watching TV 91.5 ± 4.4 89.6 ± 6.7 97.2 ± 4.4 97.7 ± 2.6 

Weeding 80.4 ± 13.1 82.0 ± 8.7 81.7 ± 13.6 80.5 ± 8.4 

Wiping/Dusting 62.4 ± 13.1 75.2 ± 11.6 62.2 ± 14.9 68.4 ± 14.8 

Writing 95.2 ± 4.4 94.7 ± 3.6 98.5 ± 1.8 97.2 ± 2.3 

taking out trash 70.6 ± 10.9 76.7 ± 8.9 60.3 ± 15.7 68.8 ± 11.7 

Table A15-1: True positive rate obtained using the naïve Bayes (NB) and C4.5 classifiers using the 

MaxAccelerationSet1 feature set computed per sensor and per axis during subject dependent 

evaluation without the unknown class. 
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False positive rate Using Subject dependent Evaluation 

Activity NB 

Per Sensor 

NB 

Per Axis 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Bench weight lifting - hard 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.0 ± 0.1 

Bench weight lifting - light 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Bench weight lifting - moderate 0.5 ± 0.5 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 

Bicep curls - hard 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 

Bicep curls - light 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 

Bicep curls - moderate 0.4 ± 0.6 0.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.2 

Calisthenics - Crunches 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.1 

Calisthenics - Sit ups 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 

Cycling - Cycle hard - Cycle 80rpm 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 

Cycling - Cycle light - Cycle 100rpm 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 

Cycling - Cycle light - Cycle 60rpm 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.1 

Cycling - Cycle light - Cycle 80rpm 0.1 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.1 ± 0.1 

Cycling - Cycle moderate - Cycle 80rpm 0.3 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 

Lying down 0.0 ± 0.1 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 

Rowing - Rowing hard - Rowing 30spm 0.3 ± 0.2 0.2 ± 0.2 0.4 ± 0.3 0.3 ± 0.2 

Rowing - Rowing light - Rowing 30spm 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.2 0.2 ± 0.2 

Rowing - Rowing moderate - Rowing 30spm 0.4 ± 0.2 0.3 ± 0.3 0.5 ± 0.3 0.3 ± 0.2 

Running - Treadmill 4mph - Treadmill 0  0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 

Running - Treadmill 5mph - Treadmill 0  0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Running - Treadmill 6mph - Treadmill 0  0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 

Sitting 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Sitting - Fidget feet legs 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Sitting - Fidget hands arms 0.1 ± 0.2 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Stairs - Ascend stairs 0.0 ± 0.1 0.0 ± 0.0 0.2 ± 0.2 0.1 ± 0.1 

Stairs - Descend stairs 0.2 ± 0.2 0.0 ± 0.1 0.3 ± 0.2 0.1 ± 0.1 

Standing 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Walking - Treadmill 2mph - Treadmill 0  0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.1 ± 0.1 

Walking - Treadmill 3mph - Treadmill 0  0.3 ± 0.1 0.1 ± 0.1 0.5 ± 0.4 0.2 ± 0.2 

Walking - Treadmill 3mph - Treadmill 3  - light 0.5 ± 0.3 0.3 ± 0.2 0.8 ± 0.4 0.4 ± 0.2 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.7 ± 0.5 0.2 ± 0.2 0.8 ± 0.4 0.4 ± 0.2 

Walking - Treadmill 3mph - Treadmill 9  - hard 0.3 ± 0.2 0.2 ± 0.1 0.5 ± 0.4 0.2 ± 0.2 

kneeling 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 

Carrying groceries 0.2 ± 0.2 0.1 ± 0.1 0.3 ± 0.2 0.2 ± 0.2 

Doing dishes 0.5 ± 0.4 0.2 ± 0.2 0.6 ± 0.5 0.3 ± 0.2 

Gardening 0.9 ± 0.9 0.5 ± 0.6 0.5 ± 0.6 0.3 ± 0.2 

Ironing 0.3 ± 0.2 0.2 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Making the bed 1.1 ± 0.4 0.8 ± 0.3 1.2 ± 0.7 0.8 ± 0.4 

Mopping 0.6 ± 0.5 0.5 ± 0.4 1.2 ± 0.7 0.7 ± 0.3 

Playing videogames 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 

Scrubbing a surface 0.9 ± 0.7 0.5 ± 0.5 0.5 ± 0.4 0.3 ± 0.3 

Stacking groceries 0.6 ± 0.7 0.2 ± 0.2 0.8 ± 0.7 0.5 ± 0.3 

Sweeping 0.9 ± 0.8 0.6 ± 0.4 0.9 ± 0.6 0.7 ± 0.3 

Typing 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

Vacuuming 0.3 ± 0.2 0.1 ± 0.1 0.6 ± 0.4 0.5 ± 0.2 

Walking around block 0.3 ± 0.2 0.1 ± 0.1 0.3 ± 0.3 0.2 ± 0.1 

Washing windows 1.9 ± 1.0 1.1 ± 0.6 1.0 ± 0.3 0.6 ± 0.3 

Watching TV 0.2 ± 0.3 0.2 ± 0.1 0.0 ± 0.1 0.1 ± 0.0 

Weeding 0.9 ± 0.6 0.6 ± 0.4 0.5 ± 0.4 0.4 ± 0.3 

Wiping/Dusting 0.8 ± 0.4 0.4 ± 0.4 1.0 ± 0.4 0.7 ± 0.4 

Writing 0.1 ± 0.2 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

taking out trash 1.4 ± 0.7 0.8 ± 0.4 1.2 ± 0.4 0.7 ± 0.4 

Table A15-2: False positive rate obtained using the naïve Bayes (NB) and C4.5 classifiers using the 

MaxAccelerationSet1 feature set computed per sensor and per axis during subject dependent 

evaluation without the unknown class. 
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True positive rate Using Subject Independent Evaluation 

Activity NB 

Per Sensor 

NB 

Per Axis 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Bench weight lifting - hard 9.2 ± 17.7 11.3 ± 18.4 4.2 ± 9.4 13.1 ± 25.8 

Bench weight lifting - light 35.4 ± 28.4 24.4 ± 19.2 33.6 ± 32.4 41.5 ± 35.1 

Bench weight lifting - moderate 15.8 ± 22.7 59.1 ± 32.2 11.6 ± 20.5 30.2 ± 35.7 

Bicep curls - hard 56.0 ± 40.1 15.4 ± 18.6 32.1 ± 40.2 35.1 ± 36.9 

Bicep curls - light 13.6 ± 15.3 15.8 ± 17.6 36.3 ± 39.0 50.7 ± 43.4 

Bicep curls - moderate 11.6 ± 13.8 73.7 ± 25.4 8.5 ± 21.9 30.5 ± 36.2 

Calisthenics - Crunches 22.9 ± 37.1 72.0 ± 37.9 20.1 ± 35.2 72.7 ± 40.9 

Calisthenics - Sit ups 68.0 ± 44.8 86.8 ± 30.2 44.7 ± 41.0 74.3 ± 32.7 

Cycling - Cycle hard - Cycle 80rpm 41.5 ± 36.6 34.8 ± 29.3 8.5 ± 7.9 35.0 ± 36.7 

Cycling - Cycle light - Cycle 100rpm 88.7 ± 22.9 97.0 ± 10.5 95.7 ± 8.0 98.8 ± 4.5 

Cycling - Cycle light - Cycle 60rpm 79.3 ± 31.6 93.8 ± 20.1 85.7 ± 27.0 93.4 ± 15.5 

Cycling - Cycle light - Cycle 80rpm 38.2 ± 34.1 64.4 ± 39.2 58.5 ± 37.6 38.9 ± 37.0 

Cycling - Cycle moderate - Cycle 80rpm 9.2 ± 9.4 29.0 ± 24.0 30.3 ± 30.6 32.4 ± 26.4 

Lying down 95.9 ± 8.0 94.8 ± 10.7 84.5 ± 27.0 92.0 ± 18.5 

Rowing - Rowing hard - Rowing 30spm 66.6 ± 33.2 55.6 ± 40.3 27.0 ± 27.9 27.8 ± 32.2 

Rowing - Rowing light - Rowing 30spm 41.7 ± 34.6 49.2 ± 33.8 41.1 ± 36.3 43.8 ± 35.4 

Rowing - Rowing moderate - Rowing 30spm 19.1 ± 32.7 16.0 ± 20.4 24.3 ± 22.6 29.0 ± 34.0 

Running - Treadmill 4mph - Treadmill 0  44.2 ± 46.8 72.6 ± 39.5 42.7 ± 40.6 61.0 ± 35.5 

Running - Treadmill 5mph - Treadmill 0  67.5 ± 39.4 66.2 ± 39.7 77.7 ± 25.9 62.4 ± 38.0 

Running - Treadmill 6mph - Treadmill 0  72.6 ± 43.0 87.2 ± 17.1 61.2 ± 37.3 72.4 ± 34.1 

Sitting 21.2 ± 17.3 30.9 ± 9.4 43.0 ± 40.6 73.6 ± 38.1 

Sitting - Fidget feet legs 60.2 ± 42.6 88.2 ± 19.9 39.1 ± 45.4 65.9 ± 29.0 

Sitting - Fidget hands arms 51.1 ± 43.1 79.4 ± 27.5 37.9 ± 39.1 60.3 ± 40.5 

Stairs - Ascend stairs 63.9 ± 38.6 83.3 ± 23.8 57.2 ± 35.4 67.0 ± 27.6 

Stairs - Descend stairs 57.0 ± 34.0 78.9 ± 25.4 44.4 ± 26.7 69.1 ± 24.7 

Standing 11.3 ± 12.2 84.9 ± 12.1 82.4 ± 34.0 90.1 ± 22.9 

Walking - Treadmill 2mph - Treadmill 0  79.9 ± 30.2 91.9 ± 12.3 60.2 ± 39.6 61.7 ± 33.7 

Walking - Treadmill 3mph - Treadmill 0  43.7 ± 38.3 45.9 ± 37.9 16.8 ± 20.3 18.4 ± 21.9 

Walking - Treadmill 3mph - Treadmill 3  - light 19.7 ± 26.1 20.6 ± 26.4 10.7 ± 12.1 23.2 ± 23.6 

Walking - Treadmill 3mph - Treadmill 6  - moderate 31.6 ± 35.2 38.4 ± 25.4 13.9 ± 15.5 31.2 ± 29.7 

Walking - Treadmill 3mph - Treadmill 9  - hard 23.3 ± 31.8 64.6 ± 31.8 19.7 ± 25.0 22.2 ± 28.5 

kneeling 16.4 ± 9.0 56.1 ± 22.7 65.2 ± 44.3 95.3 ± 7.4 

Carrying groceries 41.9 ± 27.3 73.3 ± 27.6 23.2 ± 19.6 56.5 ± 28.8 

Doing dishes 46.4 ± 25.9 66.6 ± 24.0 42.7 ± 34.4 56.1 ± 30.5 

Gardening 33.8 ± 33.3 41.6 ± 34.4 16.9 ± 22.0 20.0 ± 24.2 

Ironing 67.6 ± 27.4 72.4 ± 16.9 54.9 ± 31.8 60.2 ± 25.2 

Making the bed 31.6 ± 20.7 39.2 ± 19.9 37.8 ± 22.5 46.6 ± 21.4 

Mopping 35.6 ± 21.4 48.4 ± 22.4 28.3 ± 25.7 36.7 ± 18.8 

Playing videogames 12.3 ± 19.4 30.0 ± 25.2 33.4 ± 36.1 77.8 ± 30.9 

Scrubbing a surface 19.5 ± 21.6 54.5 ± 30.2 20.1 ± 22.7 41.5 ± 30.7 

Stacking groceries 27.3 ± 25.0 56.1 ± 27.1 25.4 ± 25.1 39.5 ± 18.8 

Sweeping 41.5 ± 28.6 57.7 ± 14.9 21.1 ± 22.6 41.2 ± 17.4 

Typing 36.7 ± 31.2 47.0 ± 30.0 58.2 ± 36.4 84.8 ± 29.4 

Vacuuming 48.5 ± 36.0 67.6 ± 21.4 37.4 ± 31.1 56.8 ± 20.5 

Walking around block 28.3 ± 26.7 53.3 ± 26.3 26.2 ± 21.9 43.1 ± 23.2 

Washing windows 17.5 ± 18.1 50.1 ± 26.8 25.8 ± 21.8 39.6 ± 21.5 

Watching TV 5.2 ± 4.8 14.3 ± 6.8 23.6 ± 29.5 66.1 ± 37.9 

Weeding 12.9 ± 20.2 23.3 ± 27.5 17.8 ± 27.0 23.0 ± 27.8 

Wiping/Dusting 27.3 ± 15.0 38.9 ± 20.4 34.9 ± 18.7 45.4 ± 19.6 

Writing 56.9 ± 36.8 81.7 ± 25.4 53.6 ± 39.5 85.5 ± 29.2 

taking out trash 13.9 ± 15.9 32.5 ± 20.0 19.9 ± 16.4 27.9 ± 15.4 

Table A15-3: True positive rate obtained using the naïve Bayes (NB) and C4.5 classifiers using the 

MaxAccelerationSet1 feature set computed per sensor and per axis during subject independent 

evaluation without the unknown class. 
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False positive rate Using Subject independent Evaluation 

Activity NB 

Per Sensor 

NB 

Per Axis 

C4.5 

Per Sensor 

C4.5 

Per Axis 

Bench weight lifting - hard 0.3 ± 0.3 0.3 ± 0.3 0.8 ± 0.7 0.6 ± 0.7 

Bench weight lifting - light 1.1 ± 1.2 0.4 ± 0.4 1.4 ± 1.5 1.2 ± 1.3 

Bench weight lifting - moderate 0.8 ± 0.8 1.2 ± 0.7 0.8 ± 0.7 1.1 ± 1.2 

Bicep curls - hard 3.0 ± 1.8 0.3 ± 0.4 1.8 ± 1.6 1.4 ± 1.3 

Bicep curls - light 0.6 ± 0.8 0.4 ± 0.4 1.5 ± 1.8 1.6 ± 1.4 

Bicep curls - moderate 0.8 ± 0.7 2.5 ± 0.9 0.8 ± 0.9 1.2 ± 1.0 

Calisthenics - Crunches 0.5 ± 0.5 0.2 ± 0.2 0.3 ± 0.3 0.4 ± 1.0 

Calisthenics - Sit ups 0.3 ± 0.8 0.1 ± 0.3 0.2 ± 0.4 0.2 ± 0.4 

Cycling - Cycle hard - Cycle 80rpm 2.7 ± 1.7 1.0 ± 1.2 1.0 ± 0.8 1.4 ± 1.3 

Cycling - Cycle light - Cycle 100rpm 0.6 ± 1.4 0.2 ± 0.6 0.0 ± 0.1 0.0 ± 0.1 

Cycling - Cycle light - Cycle 60rpm 0.2 ± 0.4 0.0 ± 0.2 0.3 ± 0.3 0.1 ± 0.2 

Cycling - Cycle light - Cycle 80rpm 0.7 ± 0.8 1.1 ± 1.0 2.1 ± 2.0 1.4 ± 1.4 

Cycling - Cycle moderate - Cycle 80rpm 0.7 ± 0.9 1.1 ± 1.1 1.8 ± 1.7 1.1 ± 0.8 

Lying down 5.9 ± 2.6 4.1 ± 1.6 1.9 ± 2.5 0.0 ± 0.0 

Rowing - Rowing hard - Rowing 30spm 3.2 ± 1.5 1.8 ± 1.2 3.1 ± 7.0 1.1 ± 1.3 

Rowing - Rowing light - Rowing 30spm 1.2 ± 1.5 1.4 ± 1.3 1.9 ± 1.4 1.8 ± 1.2 

Rowing - Rowing moderate - Rowing 30spm 0.8 ± 1.3 0.5 ± 0.7 1.2 ± 1.1 1.2 ± 1.1 

Running - Treadmill 4mph - Treadmill 0  0.8 ± 1.5 0.8 ± 1.1 1.6 ± 3.8 0.6 ± 0.8 

Running - Treadmill 5mph - Treadmill 0  1.3 ± 1.3 0.7 ± 0.8 1.3 ± 1.0 0.8 ± 0.9 

Running - Treadmill 6mph - Treadmill 0  1.1 ± 1.4 0.6 ± 1.0 0.5 ± 0.8 0.5 ± 0.6 

Sitting 1.2 ± 0.9 0.6 ± 0.3 1.1 ± 1.8 0.9 ± 1.2 

Sitting - Fidget feet legs 0.3 ± 0.3 0.3 ± 0.3 0.3 ± 0.2 0.2 ± 0.3 

Sitting - Fidget hands arms 0.8 ± 0.8 0.7 ± 0.7 0.6 ± 0.6 0.4 ± 0.5 

Stairs - Ascend stairs 0.6 ± 0.6 0.3 ± 0.4 0.8 ± 0.5 0.4 ± 0.5 

Stairs - Descend stairs 1.0 ± 0.9 0.6 ± 0.5 1.2 ± 0.8 0.6 ± 0.4 

Standing 0.0 ± 0.0 0.0 ± 0.1 0.2 ± 0.6 0.3 ± 0.5 

Walking - Treadmill 2mph - Treadmill 0  0.8 ± 2.0 0.4 ± 1.3 1.0 ± 1.5 0.9 ± 1.7 

Walking - Treadmill 3mph - Treadmill 0  3.0 ± 2.3 1.5 ± 1.4 1.4 ± 1.4 1.5 ± 1.4 

Walking - Treadmill 3mph - Treadmill 3  - light 1.6 ± 1.6 1.0 ± 0.9 1.3 ± 1.5 1.5 ± 1.0 

Walking - Treadmill 3mph - Treadmill 6  - moderate 2.6 ± 2.4 1.6 ± 1.3 1.7 ± 1.3 2.4 ± 1.8 

Walking - Treadmill 3mph - Treadmill 9  - hard 0.9 ± 1.3 1.3 ± 2.1 1.1 ± 1.0 1.2 ± 1.4 

kneeling 0.2 ± 0.2 0.1 ± 0.2 0.3 ± 0.4 0.1 ± 0.2 

Carrying groceries 1.0 ± 1.0 0.4 ± 0.4 2.8 ± 3.7 1.2 ± 1.0 

Doing dishes 2.0 ± 1.5 0.8 ± 0.6 1.2 ± 1.2 0.7 ± 0.6 

Gardening 2.2 ± 1.6 1.4 ± 0.6 1.0 ± 0.8 1.2 ± 1.0 

Ironing 1.8 ± 1.6 0.8 ± 0.6 1.4 ± 1.4 1.1 ± 1.0 

Making the bed 0.9 ± 0.8 0.8 ± 0.9 1.7 ± 0.9 1.3 ± 0.6 

Mopping 0.9 ± 0.7 1.0 ± 0.7 1.5 ± 1.0 1.6 ± 0.8 

Playing videogames 0.9 ± 1.2 0.8 ± 0.9 2.1 ± 3.0 1.1 ± 1.2 

Scrubbing a surface 1.8 ± 2.2 1.7 ± 2.7 2.1 ± 2.2 1.4 ± 0.8 

Stacking groceries 0.9 ± 0.8 0.8 ± 0.4 1.5 ± 1.0 1.2 ± 0.5 

Sweeping 2.1 ± 1.2 1.4 ± 0.5 1.0 ± 0.7 1.5 ± 0.4 

Typing 0.6 ± 0.6 0.1 ± 0.1 1.0 ± 1.3 0.6 ± 1.0 

Vacuuming 1.4 ± 1.3 0.9 ± 0.6 0.8 ± 0.8 0.8 ± 0.4 

Walking around block 0.8 ± 0.8 1.1 ± 1.2 2.6 ± 1.9 2.2 ± 2.1 

Washing windows 0.9 ± 0.8 0.9 ± 0.6 2.2 ± 2.5 1.3 ± 0.9 

Watching TV 0.8 ± 0.8 0.6 ± 0.4 1.9 ± 2.3 1.2 ± 1.9 

Weeding 1.0 ± 1.0 1.0 ± 0.7 1.0 ± 0.6 0.9 ± 0.6 

Wiping/Dusting 0.9 ± 0.6 0.7 ± 0.4 1.4 ± 0.7 1.4 ± 0.7 

Writing 1.8 ± 1.7 1.0 ± 0.7 1.4 ± 1.4 0.5 ± 0.8 

taking out trash 1.2 ± 0.9 1.3 ± 0.7 1.6 ± 1.2 1.7 ± 0.6 

Table A15-4: True positive rate obtained using the naïve Bayes (NB) and C4.5 classifiers using the 

MaxAccelerationSet1 feature set computed per sensor and per axis during subject independent 

evaluation without the unknown class. 
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Appendix A16: Summary of Recent Work in Activity 
Recognition from Accelerometer Data 
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Ref Approach Activities 

Explored 

 Sensors Utilized Results Data collection 

[38] C4.5 decision tree 
classifier with the 

following features: 

Mean, energy, 
entropy, and 

correlation. 

 

Total: 20 
Postures, 

ambulation, 

exercise and 
household 

activities such 

as vacuuming 
eating, 

scrubbing and 

brushing teeth 

Five biaxial 
accelerometers at 

dominant wrist, ankle, hip 

and non-dominant upper 
arm, and thigh.  

Subject dependent: 
10-fold cross-

validation 

71.5% accuracy 
 

Subject independent: 

84.3% accuracy 
 

Accelerometers at 

thigh and wrist 
achieve ~80% 

accuracy 

Twenty 
subjects under 

laboratory and 

semi-
naturalistic 

conditions. 

[37] Combine 
discriminative and 

generative algorithms 

(Adaboost + HMMs) 
to improve 

discrimination and 

smoothness 
 

Features: linear and 

Mel-scale FFT 
coefficients, cepstral 

coefficients, entropy, 

band-pass filter 
coefficients, integrals, 

means and variances. 

Total: 10 
Sitting 

Standing 

Walking 
Jogging 

Walking 

upstairs 
Walking 

downstairs 

Riding bike 
Riding car 

elevator up 

elevator down 

Eight sensors: 
One triaxial accelerometer,   

Microphone, IR light 

and visible light sensors,  
temperature, barometric 

pressure, humidity and 

Compass. All sensors were 
mounted  at the shoulder 

strap of a backpack. 

Trained in 80% of 
data, tested on 20%. 

 

Accuracy: 95% 
Precision: 98%  

Recall: 84% 

 

Two subjects 
under 

naturalistic  

conditions 

[116] Naïve Bayes classifier 
combined with the 

means and variance as 

features. 

Total: 8 
Sitting 

Standing 

Walking 
Ascending 

stairs 

Descending 

stairs 

Writing, typing 

Shaking hands 
 

Twelve sensors in total: 
Ankles, knees, hip (both 

sides), wrists, elbows, and 

shoulders. 

Subject dependent 
using all sensors:  

70-95% accuracy 

 
Lower body activity 

using sensors at hip 

and ankle 

~80—92% accuracy 

Upper body activity 

using sensors at 
shoulder and wrist: 

~40-95% accuracy 

Number of 
subjects 

unknown, 

probably one. 
Data collection 

conditions also 

not reported. 

18.7 minutes of 

data. 

[98] Handcrafted dynamic 

Bayesian networks 
combined with Rao-

Blackwellized particle 

filters 

Total: 8 

walking, 
running, 

upstairs, 

downstairs, 
or driving a 

vehicle 

 
 

Eight sensors: 

One triaxial accelerometer,   
Microphone, IR light 

and visible light sensors,  

temperature, barometric 
pressure, humidity and 

Compass. All sensors were 

mounted at the shoulder 
strap of a backpack. 

Performance of DBN 

and particle filter 
very similar to results 

obtained using 

simple HMMs. 
 

64% accuracy for 

DBN + particle filter 
with GPS data. 

 
72% accuracy for 

HMMs without GPS 

Number of 

subjects not 
specified. Data 

collected in 

naturalistic 
conditions. 

2 hours of data 

[99] Handcrafted dynamic 

Bayesian networks in 
a hierarchy combined 

with Rao-

Blackwellized particle 
filters 

Total: 8 

stationary, 
walking, 

running, 

driving vehicle, 
up-stairs, down 

stairs, situation 

assessment 
from 

cover, 

incapacitated 
 

 

 

Eight sensors: 

One triaxial accelerometer,   
Microphone, IR light 

and visible light sensors,  

temperature, barometric 
pressure, humidity and 

Compass. All sensors were 

mounted at the shoulder 
strap of a backpack. 

Evaluation approach 

not described in 
detail. 

 

Total Accuracy 
77% Adaboost 

 

86% DBN + particle 
filter 

Eight subjects 

collecting data 
under 

naturalistic 

conditions. 
Approximately 

30min of data 

per subject. 
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[253] Adaboost with 

decision stumps in 
combination with the 

following features: 

mean, variance, and 
energy in different 

frequency bands. 

Total: 14 

Running 
Crawling 

Lying down 

Weapon up 
Kneeling 

Driving 

Walking 
Sitting 

Ascending 

stairs 
Descending 

stairs 

Situation 
assessment 

Shaking hands 

Opening door 
Standing still 

Six triaxial accelerometers 

at the wrists, thigh, hip, 
chest, and at the soldier‘s 

machine gun. 

 

Subject independent 

evaluation 
 

78.8% accuracy with 

null 
misclassifications 

 

90.3% accuracy over 
periods of activity 

3.3 hours of 

data from 
soldiers under 

naturalistic  

[101] Handcrafted HMMs 

using Gaussian 

distributions as 
observation nodes 

Total: 9 

Saw, drill, 

screw, hammer, 
sand, file, 

drawer, vice, 

and clap. 
 

Three triaxial 

accelerometers and two 

Microphones 
 

Accelerometers were 

mounted at wrists and 
forearm, microphones at 

dominant wrist and neck, 
near the chest.  

 

Subject dependent 

leave-one-out cross-

validation 
 

93.3% total accuracy 

 
 

One subject 

under 

laboratory 
conditions 

 

 
 

[103] Handcrafted HMMs 

with mixture of 
Gaussians as 

observation nodes 

using the following 
features: 

Mean, variance, 

number of peaks, and 
mean amplitude of the 

peaks. 

Total: 9 

hammer, saw, 
file, drill,  

sand, grind, 

screwed, vise, 
drawer, null 

3 triaxial axis 

accelerometer 
2 microphones 

Wrists+upper arm(acc) 

Wrist+chest (microphone) 

Subject independent 

44.5% total accuracy, 
46.2% of false 

positives 

 

One subject 

under 
laboratory 

conditions 

 

[254] Self-organizing maps 

(SOM) 

 

 
 

 

Total: 10 

Lying 

Kneeling 

Sitting 
Standing 

Walking 

Running 
Climbing stairs 

Descending 

stairs 
Bicycling 

jumping 

20 biaxial  accelerometers 

90 Ball switch 

Both legs 

93% 

(SOM) self 

organizing maps 

Number of 

subjects not 

specified. Data 

collected at a 
laboratory. 

[40] Decision tables, 

decision trees, support 
vector machines 

(SVMs), nearest-
neighbor, and naïve 

Bayes classifiers 

individually and in 

different meta-

classifier 

configurations such as 
boosting, bagging, 

stacking, and plurality 

voting. Combined 
with the following 

features: mean, 

standard deviation, 
energy, and 

correlation 

 
 

Total: 8 

standing 
walking  

running 
upstairs 

downstairs 

sit-ups 

vacuuming 

brushing teeth 

One triaxial accelerometer 

at the hip (pelvic region). 
 

 

Subject independent 

evaluation using 
leave-one-subject-out 

 
Boosted SVMs: 73% 

accuracy 

Naïve Bayes: 64% 

accuracy 

 

Subject dependent 
evaluation using 

crossvalidation 

 
Plurality voting: 

99.6% accuracy 

Naive Bayes: 98.9% 
accuracy 

2 subjects under 

data collection 
conditions not 

specified. 
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[119] Analysis of the 

performance of 
different features and 

window lengths  using 

K-means clustering  
 

 

Total: 6 

walking 
standing 

jogging  

skipping 
hopping 

riding a bus 

One triaxial accelerometer 

mounted on a the shoulder 
strap of a backpack  

Priority was not 

recognition accuracy. 
 

Main result: there is 

no single feature or 
window length 

optimal for all 

activities. The choice 
of features and 

window length 

depends on the 
activities to recognize 

Two subjects 

under 
naturalistic 

conditions 

(200 minutes of 
data) 

[39] HMMs with Gaussian 

observation vectors 

using the following 
features: means and 

variances. 

Total: 8 

Sit-down, 

Run, 
Squat, 

Walk, 

Stand, 
Crawl, 

Lay down, 

Hand 
movements 

Three triaxial 

accelerometers placed at 

the hip, dominant wrist, 
and chest. 

Subject dependent 9-

fold crossvalidation 

 
62% accuracy using 

single accelerometer 

at chest. 
 

92% accuracy using 

sensor combination 
wrist+chest+hip  

Three subjects 

under data 

collection 
conditions not 

specified. 90s 

of data per 
activity. 

Table A16-1: Summary of recent work in the area of recognizing physical activities from 

accelerometer data. L stands for data collected in laboratory settings and N for data collected under 

naturalistic conditions. Ref stands for bibliographical reference to the work.  
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Appendix B1: Estimating Energy Expenditure Using the 2-
Regression Crouter Algorithm  
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Activity RMSE MAE MAED 

 Bench weight lifting - hard 2.06 ± 0.22 2.05 ± 0.21 2.21 ± 0.28 

 Bench weight lifting - light 1.87 ± 0.54 1.86 ± 0.53 2.05 ± 0.69 

 Bench weight lifting - moderate 2.09 ± 0.63 2.08 ± 0.63 2.32 ± 0.68 

 Bicep curls - hard 1.47 ± 0.51 1.47 ± 0.51 1.55 ± 0.57 

 Bicep curls - light 1.81 ± 0.32 1.80 ± 0.31 1.99 ± 0.48 

 Bicep curls - moderate 1.53 ± 0.38 1.51 ± 0.36 1.68 ± 0.50 

 Calisthenics - Crunches 1.72 ± 1.29 1.62 ± 1.31 2.15 ± 1.45 

 Calisthenics - Sit ups 3.91 ± 0.82 3.84 ± 0.88 4.57 ± 0.55 

 Cycling - Cycle hard - Cycle 80rpm 6.40 ± 0.69 6.40 ± 0.69 6.61 ± 0.72 

 Cycling - Cycle light - Cycle 100rpm 1.28 ± 0.56 1.23 ± 0.58 1.58 ± 0.61 

 Cycling - Cycle light - Cycle 60rpm 0.51 ± 0.34 0.49 ± 0.35 0.60 ± 0.35 

 Cycling - Cycle light - Cycle 80rpm 1.10 ± 0.54 1.08 ± 0.55 1.28 ± 0.57 

 Cycling - Cycle moderate - Cycle 80rpm 5.48 ± 0.79 5.48 ± 0.79 5.64 ± 0.85 

 Lying down 0.17 ± 0.08 0.15 ± 0.08 0.29 ± 0.12 

 Rowing - Rowing hard - Rowing 30spm 6.15 ± 1.97 6.12 ± 1.94 6.57 ± 2.19 

 Rowing - Rowing light - Rowing 30spm 5.14 ± 1.54 5.11 ± 1.51 5.56 ± 1.78 

 Rowing - Rowing moderate - Rowing 30spm 5.96 ± 1.85 5.93 ± 1.84 6.38 ± 2.01 

 Running - Treadmill 4mph - Treadmill 0  0.88 ± 0.45 0.81 ± 0.44 1.16 ± 0.58 

 Running - Treadmill 5mph - Treadmill 0  1.19 ± 0.69 1.14 ± 0.72 1.47 ± 0.76 

 Running - Treadmill 6mph - Treadmill 0  2.40 ± 0.99 2.38 ± 0.99 2.66 ± 1.02 

 Sitting 0.21 ± 0.14 0.19 ± 0.14 0.26 ± 0.18 

 Sitting - Fidget feet legs 1.28 ± 0.27 1.27 ± 0.27 1.36 ± 0.27 

 Sitting - Fidget hands arms 1.16 ± 0.22 1.16 ± 0.22 1.21 ± 0.24 

 Stairs - Ascend stairs 4.14 ± 0.30 4.13 ± 0.30 4.37 ± 0.24 

 Stairs - Descend stairs 0.92 ± 0.30 0.88 ± 0.34 1.07 ± 0.32 

 Standing 0.24 ± 0.17 0.23 ± 0.17 0.28 ± 0.18 

 Walking - Treadmill 2mph - Treadmill 0  0.29 ± 0.30 0.27 ± 0.31 0.37 ± 0.33 

 Walking - Treadmill 3mph - Treadmill 0  0.30 ± 0.26 0.28 ± 0.26 0.39 ± 0.29 

 Walking - Treadmill 3mph - Treadmill 3  - light 4.08 ± 0.38 4.08 ± 0.38 4.23 ± 0.36 

 Walking - Treadmill 3mph - Treadmill 6  - moderate 4.84 ± 0.43 4.84 ± 0.43 5.03 ± 0.43 

 Walking - Treadmill 3mph - Treadmill 9  - hard 5.69 ± 0.57 5.69 ± 0.57 5.86 ± 0.60 

 Kneeling 0.29 ± 0.13 0.26 ± 0.11 0.38 ± 0.18 

 Unknown 2.72 ± 0.55 2.44 ± 0.53 5.41 ± 1.17 

 Carrying groceries 3.34 ± 0.75 3.32 ± 0.75 3.60 ± 0.85 

 Doing dishes 0.66 ± 0.25 0.66 ± 0.25 0.75 ± 0.25 

 Gardening 1.79 ± 0.41 1.78 ± 0.40 1.99 ± 0.41 

 Ironing 0.80 ± 0.25 0.77 ± 0.27 0.97 ± 0.22 

 Making the bed 1.35 ± 0.58 1.23 ± 0.55 1.75 ± 0.69 

 Mopping 0.84 ± 0.38 0.80 ± 0.40 1.05 ± 0.41 

 Playing videogames 0.99 ± 0.14 0.99 ± 0.13 1.08 ± 0.21 

 Scrubbing a surface 1.23 ± 0.47 1.21 ± 0.47 1.47 ± 0.55 

 Stacking groceries 0.42 ± 0.38 0.41 ± 0.38 0.47 ± 0.37 

 Sweeping 0.82 ± 0.27 0.77 ± 0.28 1.06 ± 0.32 

 Typing 0.75 ± 0.14 0.74 ± 0.15 0.84 ± 0.15 

 Vacuuming 1.07 ± 0.43 1.05 ± 0.46 1.27 ± 0.41 

 Walking around block 0.84 ± 0.36 0.80 ± 0.35 1.08 ± 0.46 

 Washing windows 0.79 ± 0.35 0.77 ± 0.37 0.96 ± 0.40 

 Watching TV 0.14 ± 0.07 0.12 ± 0.07 0.20 ± 0.10 

 Weeding 2.17 ± 0.43 2.13 ± 0.47 2.50 ± 0.43 

 Wiping/Dusting 0.50 ± 0.21 0.46 ± 0.22 0.66 ± 0.23 

 Writing 0.79 ± 0.18 0.79 ± 0.18 0.86 ± 0.17 

 Taking out trash 0.42 ± 0.23 0.37 ± 0.18 0.59 ± 0.34 

Table B1-1: Error statistics per activity while estimating energy expenditure using the 2-regression 

Crouter Actigraph-based algorithm with respect to the measurements obtained using the Cosmed 

K4b2 indirect calorimeter for the MIT energy expenditure dataset. Energy expenditure was 

computed over one minute sliding windows. RMSE stands for root mean squared error, MAE for 

mean absolute error, and MAED for maximum absolute error deviation. 
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Figure B1-1. Plot of energy expenditure (in METS) computed from the Actigraph using the 2-

regression Crouter Method and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-001 over 

one minute windows. 
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Figure B1-2. Plot of energy expenditure (in METS) computed from the Actigraph using the 2-

regression Crouter Method and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-003 over 

one minute windows. 
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Figure B1-3: Plot of energy expenditure (in METS) computed from the Actigraph using the 2-

regression Crouter Method and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-004 over 

one minute windows. 
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Figure B1-4: Plot of energy expenditure (in METS) computed from the Actigraph using the 2-

regression Crouter Method and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-018 over 

one minute windows. 
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Figure B1-5: Comparison of Parvo indirect calorimeter data and energy expenditure estimated using 

the 2-regression Crouter algorithm from an Actigraph worn at the hip for subject BU-001.Energ 

expenditure was computed over one minute sliding windows. 

 

 

0123456789

1
0

 L
yi

ng_
do

w
n

 L
yi

ng_
do

w
n

 L
yi

ng_
do

w
n

 L
yi

ng_
do

w
n

 L
yi

ng_
do

w
n

 u
nk

no
w

n  S
itt

in
g  S

itt
in

g  u
nk

no
w

n  S
ta

nd
in

g  S
ta

nd
in

g  u
nk

no
w

n

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_0

_

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_0

_

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_6

_

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_6

_
 u

nk
no

w
n

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_9

_

 W
al

ki
ng_

-_
Tre

ad
m

ill_
3m

ph_
_9

_

 R
un

ni
ng

_-
_T

re
adm

ill_
5m

ph
__

0_

 R
un

ni
ng

_-
_T

re
adm

ill_
5m

ph
__

0_  u
nk

no
w

n
 u

nk
no

w
n  u

nk
no

w
n

 C
yc

lin
g_

-_
60

_r
pm

__
1.

0_
kg

 C
yc

lin
g_

-_
60

_r
pm

__
1.

0_
kg  u

nk
no

w
n

 C
yc

lin
g_

-_
10

0_
rp

m
__1

.0
_k

g

 C
yc

lin
g_

-_
10

0_
rp

m
__1

.0
_k

g  u
nk

no
w

n

 C
yc

lin
g_

-_
80

rp
m

__
1.5

_k
g

 C
yc

lin
g_

-_
80

rp
m

__
1.5

_k
g  u

nk
no

w
n

T
im

e

METs
A

c
ti
g

ra
p

h

P
a
rv

o



   

403 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B1-6: Comparison of Parvo indirect calorimeter data and energy expenditure estimated using 

the 2-regression Crouter algorithm from an Actigraph worn at the hip for subject BU-003. 
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Appendix B2: Estimating Energy Expenditure Using Simple 
Regression Algorithms 
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Activity                                                                                                         Root Mean Squared Error 

(a) (b) (c) (d) (e) 

 Bench weight lifting - light                                                                                                                            1.06 ± 0.46 0.54 ± 0.22 0.54 ± 0.21 0.54 ± 0.24 0.52 ± 0.25 

 Bench weight lifting - moderate                                                                                                                         1.15 ± 0.52 0.57 ± 0.22 0.56 ± 0.25 0.57 ± 0.22 0.54 ± 0.25 

 Bench weight lifting - hard                                                                                                                            1.21 ± 0.30 0.38 ± 0.23 0.39 ± 0.25 0.36 ± 0.21 0.36 ± 0.24 

 Bicep curls - light                                                                                                                                    0.51 ± 0.26 1.02 ± 0.29 1.09 ± 0.37 0.58 ± 0.24 1.31 ± 0.44 

 Bicep curls - moderate                                                                                                                                  0.50 ± 0.16 1.23 ± 0.29 1.32 ± 0.32 0.75 ± 0.27 1.56 ± 0.35 

 Bicep curls - hard                                                                                                                                     0.70 ± 0.15 1.29 ± 0.52 1.38 ± 0.57 0.86 ± 0.36 1.60 ± 0.64 

 Calisthenics - Crunches                                                                                                                                  1.13 ± 0.45 1.38 ± 0.63 1.40 ± 0.68 1.26 ± 0.64 1.34 ± 0.57 

 Calisthenics - Sit ups                                                                                                                                    1.88 ± 0.91 1.46 ± 0.65 1.48 ± 0.67 1.68 ± 0.76 1.79 ± 0.91 

 Cycling - Cycle light - Cycle 100rpm                                                                                                                    1.85 ± 0.93 1.73 ± 0.85 1.54 ± 0.83 1.73 ± 0.84 1.54 ± 0.84 

 Cycling - Cycle light - Cycle 60rpm                                                                                                                   2.12 ± 0.58 1.03 ± 0.48 1.04 ± 0.46 0.92 ± 0.43 1.05 ± 0.49 

 Cycling - Cycle light - Cycle 80rpm                                                                                                                     2.06 ± 0.92 1.41 ± 0.72 1.39 ± 0.63 1.34 ± 0.66 1.31 ± 0.70 

 Cycling - Cycle moderate - Cycle 80rpm                                                                                                             3.12 ± 0.93 2.46 ± 0.79 2.26 ± 0.93 2.43 ± 0.76 2.37 ± 0.85 

 Cycling - Cycle hard - Cycle 80rpm                                                                                                                   3.56 ± 1.25 3.01 ± 0.91 2.83 ± 1.06 2.99 ± 0.81 2.95 ± 0.94 

 Lying down                                                                                                                                             0.84 ± 0.16 0.73 ± 0.16 0.62 ± 0.15 0.96 ± 0.16 0.64 ± 0.15 

 Rowing - Rowing light - Rowing 30spm                                                                                                                    2.72 ± 1.16 2.09 ± 1.28 2.12 ± 1.31 2.39 ± 1.40 2.05 ± 1.31 

 Rowing - Rowing moderate - Rowing 30spm                                                                                                              3.45 ± 1.43 2.83 ± 1.58 2.85 ± 1.60 3.18 ± 1.73 2.77 ± 1.62 

 Rowing - Rowing hard - Rowing 30spm                                                                                                                    3.68 ± 1.60 3.05 ± 1.72 3.07 ± 1.75 3.39 ± 1.83 2.99 ± 1.75 

 Running - Treadmill 4mph - Treadmill 0                                                                                                                  2.01 ± 0.99 1.26 ± 0.51 1.22 ± 0.50 1.34 ± 0.68 1.17 ± 0.39 

 Running - Treadmill 5mph - Treadmill 0                                                                                                                  2.85 ± 0.92 1.05 ± 0.53 0.98 ± 0.53 1.13 ± 0.56 0.96 ± 0.42 

 Running - Treadmill 6mph - Treadmill 0                                                                                                              3.50 ± 1.01 1.14 ± 0.72 1.05 ± 0.66 1.25 ± 0.83 1.01 ± 0.54 

 Sitting                                                                                                                                                 0.94 ± 0.27 0.65 ± 0.17 0.56 ± 0.15 0.84 ± 0.21 0.58 ± 0.15 

 Sitting - Fidget feet legs                                                                                                                              0.43 ± 0.25 0.97 ± 0.24 1.05 ± 0.33 1.07 ± 0.22 1.04 ± 0.29 

 Sitting - Fidget hands arms                                                                                                                             0.47 ± 0.23 0.98 ± 0.26 1.00 ± 0.35 0.91 ± 0.20 0.99 ± 0.30 

 Stairs - Ascend stairs                                                                                                                                    0.92 ± 0.18 0.84 ± 0.21 0.87 ± 0.23 0.84 ± 0.20 0.87 ± 0.21 

 Stairs - Descend stairs                                                                                                                                   1.43 ± 0.39 1.38 ± 0.28 1.35 ± 0.30 1.42 ± 0.27 1.37 ± 0.29 

 Standing                                                                                                                                                0.93 ± 0.26 0.67 ± 0.16 0.58 ± 0.13 0.86 ± 0.20 0.58 ± 0.14 

 Walking - Treadmill 2mph - Treadmill 0                                                                                                                 0.50 ± 0.29 0.76 ± 0.26 0.84 ± 0.35 0.87 ± 0.29 0.89 ± 0.38 

 Walking - Treadmill 3mph - Treadmill 0                                                                                                                  0.87 ± 0.45 0.84 ± 0.35 0.97 ± 0.42 0.97 ± 0.39 1.06 ± 0.41 

 Walking - Treadmill 3mph - Treadmill 3  - light                                                                                                        0.48 ± 0.24 0.43 ± 0.17 0.57 ± 0.28 0.47 ± 0.21 0.60 ± 0.30 

 Walking - Treadmill 3mph - Treadmill 6  - moderate                                                                                                      0.78 ± 0.38 0.75 ± 0.37 0.73 ± 0.42 0.66 ± 0.31 0.63 ± 0.40 

 Walking - Treadmill 3mph - Treadmill 9  - hard                                                                                                          1.49 ± 0.70 1.50 ± 0.63 1.45 ± 0.72 1.36 ± 0.62 1.31 ± 0.71 

 kneeling                                                                                                                                                1.00 ± 0.21 0.57 ± 0.20 0.48 ± 0.19 0.77 ± 0.21 0.49 ± 0.19 

 unknown                                                                                                                                                   1.99 ± 0.50 1.52 ± 0.37 1.53 ± 0.35 1.53 ± 0.38 1.54 ± 0.35 

 Carrying groceries                                                                                                                                     0.98 ± 0.32 0.97 ± 0.24 1.14 ± 0.29 0.97 ± 0.27 1.20 ± 0.33 

 Doing dishes                                                                                                                                            0.69 ± 0.14 0.61 ± 0.16 0.60 ± 0.16 0.50 ± 0.22 0.63 ± 0.15 

 Gardening                                                                                                                                               1.05 ± 0.36 0.52 ± 0.28 0.56 ± 0.34 0.48 ± 0.18 0.54 ± 0.28 

 Ironing                                                                                                                                                 0.83 ± 0.29 0.66 ± 0.18 0.62 ± 0.17 0.67 ± 0.22 0.62 ± 0.18 

 Making the bed                                                                                                                                            1.09 ± 0.30 0.88 ± 0.29 0.93 ± 0.30 0.90 ± 0.31 0.94 ± 0.32 

 Mopping                                                                                                                                                 0.90 ± 0.33 0.54 ± 0.21 0.58 ± 0.22 0.52 ± 0.29 0.55 ± 0.24 

 Playing videogames                                                                                                                                   0.76 ± 0.18 0.79 ± 0.17 0.68 ± 0.17 1.00 ± 0.17 0.71 ± 0.16 

 Scrubbing a surface                                                                                                                                    1.01 ± 0.25 0.54 ± 0.16 0.61 ± 0.18 0.52 ± 0.19 0.61 ± 0.19 

 Stacking groceries                                                                                                                                       0.58 ± 0.22 0.85 ± 0.26 0.78 ± 0.28 0.73 ± 0.27 0.72 ± 0.25 

 Sweeping                                                                                                                                                0.81 ± 0.20 0.52 ± 0.23 0.56 ± 0.30 0.47 ± 0.15 0.55 ± 0.28 

 Typing                                                                                                                                                  0.82 ± 0.13 0.72 ± 0.13 0.63 ± 0.12 0.89 ± 0.14 0.66 ± 0.12 

 Vacuuming                                                                                                                                               1.00 ± 0.37 0.49 ± 0.22 0.54 ± 0.26 0.48 ± 0.21 0.52 ± 0.24 

 Walking around block                                                                                                                                    1.43 ± 0.25 1.43 ± 0.25 1.63 ± 0.29 1.41 ± 0.28 1.67 ± 0.30 

 Washing windows                                                                                                                                         0.90 ± 0.27 0.55 ± 0.13 0.62 ± 0.20 0.51 ± 0.21 0.62 ± 0.23 

 Watching TV                                                                                                                                             0.79 ± 0.13 0.78 ± 0.14 0.67 ± 0.14 0.99 ± 0.15 0.69 ± 0.13 

 Weeding                                                                                                                                                             1.13 ± 0.34 0.56 ± 0.23 0.57 ± 0.31 0.57 ± 0.19 0.57 ± 0.29 

 Wiping/Dusting                                                                                                                                          0.71 ± 0.19 0.65 ± 0.22 0.70 ± 0.29 0.54 ± 0.17 0.68 ± 0.21 

 Writing                                                                                                                                               0.78 ± 0.18 0.75 ± 0.19 0.65 ± 0.19 0.95 ± 0.19 0.67 ± 0.18 

 taking out trash                                                                                                                                       0.76 ± 0.13 0.73 ± 0.19 0.78 ± 0.20 0.72 ± 0.17 0.81 ± 0.21 

Table B2-1: Root mean squared error per activity when estimating energy expenditure using the 

simple linear regression equations (a), (b), (c), (d), and (e). 
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Error Measures Results 

Total Correlation Coefficient     0.73 ± 0.06 

Total root Mean Square Error      1.28 ± 0.29 

Total mean Absolute Error         0.95 ± 0.16 

Total relative Absolute Error     63.63 ± 5.04 

Total root Relative Squared Error 69.73 ± 5.27 

Maximum absolute Deviation        4.12 ± 1.21 

Table B2-2: Performance of estimating energy expenditure using multivariable linear regression and 

the ACAbsArea feature set computed per sensor over one minute windows with respect to energy 

expenditure measured using the Cosmed K4b2 indirect calorimeter for the MIT  dataset. 

 

 

Energy expenditure (METs) =  -0.0043 * absarea 1T +   

                                                    0.0013 * absarea 4T + 

                                                    0.0024 * absarea 7T +  

                                                    0.0025 * absarea 8T + 

                                                    0.0024 * absarea 11T +                              

                                                    0.0026 * absarea 14T +   

                                                    0.0019 * absarea 17T +             

                                                    1.3746 
Table B2-3: Prediction equation learned using multivariable linear regression and the ACAbsArea 

feature set computed per sensor over one minute windows from the MIT energy expenditure dataset. 
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Activity RMSE MAE MAED 

 Bench weight lifting - hard 0.27 ± 0.18 0.24 ± 0.16 0.34 ± 0.25 

 Bench weight lifting - light 0.58 ± 0.19 0.54 ± 0.20 0.70 ± 0.23 

 Bench weight lifting - moderate 0.53 ± 0.28 0.49 ± 0.27 0.63 ± 0.35 

 Bicep curls - hard 1.41 ± 0.63 1.40 ± 0.64 1.53 ± 0.64 

 Bicep curls - light 1.10 ± 0.41 1.09 ± 0.44 1.25 ± 0.32 

 Bicep curls - moderate 1.40 ± 0.37 1.38 ± 0.40 1.55 ± 0.26 

 Calisthenics - Crunches 1.31 ± 0.85 1.17 ± 0.80 1.62 ± 1.00 

 Calisthenics - Sit ups 1.40 ± 0.79 1.17 ± 0.65 1.88 ± 1.06 

 Cycling - Cycle hard - Cycle 80rpm 2.92 ± 1.19 2.90 ± 1.20 3.19 ± 1.22 

 Cycling - Cycle light - Cycle 100rpm 1.50 ± 0.78 1.43 ± 0.82 1.82 ± 0.79 

 Cycling - Cycle light - Cycle 60rpm 1.05 ± 0.51 1.03 ± 0.53 1.19 ± 0.50 

 Cycling - Cycle light - Cycle 80rpm 1.36 ± 0.62 1.32 ± 0.64 1.59 ± 0.65 

 Cycling - Cycle moderate - Cycle 80rpm 2.04 ± 1.06 2.01 ± 1.04 2.24 ± 1.19 

 Lying down 0.49 ± 0.15 0.48 ± 0.16 0.61 ± 0.14 

 Rowing - Rowing hard - Rowing 30spm 2.94 ± 1.70 2.84 ± 1.64 3.38 ± 1.99 

 Rowing - Rowing light - Rowing 30spm 1.95 ± 1.29 1.82 ± 1.19 2.37 ± 1.56 

 Rowing - Rowing moderate - Rowing 30spm 2.73 ± 1.55 2.62 ± 1.54 3.21 ± 1.77 

 Running - Treadmill 4mph - Treadmill 0  1.19 ± 0.56 1.06 ± 0.60 1.63 ± 0.68 

 Running - Treadmill 5mph - Treadmill 0  1.00 ± 0.63 0.93 ± 0.63 1.28 ± 0.79 

 Running - Treadmill 6mph - Treadmill 0  0.92 ± 0.76 0.91 ± 0.76 1.07 ± 0.83 

 Sitting 0.43 ± 0.17 0.42 ± 0.17 0.50 ± 0.16 

 Sitting - Fidget feet legs 1.01 ± 0.36 1.00 ± 0.35 1.09 ± 0.41 

 Sitting - Fidget hands arms 0.96 ± 0.38 0.95 ± 0.39 1.05 ± 0.39 

 Stairs - Ascend stairs 0.60 ± 0.34 0.54 ± 0.34 0.83 ± 0.39 

 Stairs - Descend stairs 1.11 ± 0.36 1.08 ± 0.33 1.25 ± 0.43 

 Standing 0.45 ± 0.14 0.43 ± 0.13 0.55 ± 0.18 

 Walking - Treadmill 2mph - Treadmill 0  0.88 ± 0.41 0.85 ± 0.42 1.11 ± 0.39 

 Walking - Treadmill 3mph - Treadmill 0  1.08 ± 0.49 1.05 ± 0.50 1.32 ± 0.56 

 Walking - Treadmill 3mph - Treadmill 3  - light 0.66 ± 0.37 0.63 ± 0.38 0.88 ± 0.45 

 Walking - Treadmill 3mph - Treadmill 6  - moderate 0.67 ± 0.42 0.63 ± 0.43 0.85 ± 0.44 

 Walking - Treadmill 3mph - Treadmill 9  - hard 1.28 ± 0.79 1.25 ± 0.78 1.49 ± 0.90 

 Kneeling 0.33 ± 0.18 0.31 ± 0.19 0.39 ± 0.19 

 Unknown 1.31 ± 0.33 1.02 ± 0.24 3.26 ± 0.87 

 Carrying groceries 1.26 ± 0.37 1.17 ± 0.40 1.70 ± 0.45 

 Doing dishes 0.56 ± 0.18 0.55 ± 0.18 0.65 ± 0.20 

 Gardening 0.51 ± 0.41 0.47 ± 0.41 0.65 ± 0.44 

 Ironing 0.55 ± 0.18 0.51 ± 0.18 0.72 ± 0.27 

 Making the bed 0.84 ± 0.36 0.70 ± 0.30 1.28 ± 0.59 

 Mopping 0.50 ± 0.24 0.46 ± 0.23 0.70 ± 0.35 

 Playing videogames 0.55 ± 0.17 0.54 ± 0.18 0.63 ± 0.17 

 Scrubbing a surface 0.48 ± 0.23 0.42 ± 0.22 0.73 ± 0.31 

 Stacking groceries 0.66 ± 0.30 0.63 ± 0.32 0.79 ± 0.30 

 Sweeping 0.47 ± 0.28 0.41 ± 0.24 0.72 ± 0.44 

 Typing 0.52 ± 0.12 0.50 ± 0.12 0.62 ± 0.14 

 Vacuuming 0.47 ± 0.32 0.44 ± 0.30 0.63 ± 0.42 

 Walking around block 1.78 ± 0.27 1.71 ± 0.30 2.24 ± 0.33 

 Washing windows 0.58 ± 0.28 0.51 ± 0.27 0.80 ± 0.42 

 Watching TV 0.53 ± 0.14 0.52 ± 0.14 0.63 ± 0.17 

 Weeding 0.46 ± 0.30 0.39 ± 0.26 0.64 ± 0.44 

 Wiping/Dusting 0.69 ± 0.37 0.64 ± 0.33 0.91 ± 0.53 

 Writing 0.54 ± 0.19 0.53 ± 0.19 0.61 ± 0.18 

 Taking out trash 0.65 ± 0.23 0.60 ± 0.23 0.90 ± 0.29 

Table B2-4: Performance per class while predicting energy expenditure using multivariable linear 

regression and the ACAbsArea feature set computed per sensor over one minute windows for the 

MIT energy expenditure dataset. 
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Appendix B3: Activities Utilized to Predict Energy 
Expenditure using Equation (e)   
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Activity Accelerometer 

  Recognizable 

Posture 

and 

Ambulation 

Bench weight lifting – Light    

Bench weight lifting – Moderate    

Bench weight lifting – Hard    

Bicep curls – Light   

Bicep curls – Moderate    

Bicep curls – Hard   

Calisthenics   Crunches   

Calisthenics   Sit ups   

Cycling Cycle 100rpm (15mph,  120.4W) – Light   

Cycling Cycle 60rpm (8.9mph, 66.9W) – Light   

Cycling Cycle 80rpm (11.2mph,  100.4W) – Light   

Cycling Cycle 80rpm – Moderate   

Cycling Cycle 80rpm – Hard   

Lying down   

Rowing 30spm – Light   

Rowing 30spm – Moderate   

Rowing 30spm – Hard   

Running   Treadmill 4mph   Treadmill 0    

Running   Treadmill 5mph   Treadmill 0    

Running   Treadmill 6mph   Treadmill 0    

Sitting   

Sitting   Fidget feet legs   

Sitting   Fidget hands arms   

Stairs   Ascend stairs   

Stairs   Descend stairs   

Standing   

Walking   Treadmill 2mph   Treadmill 0    

Walking   Treadmill 3mph   Treadmill 0    

Walking   Treadmill 3mph   Treadmill 3 – Light    

Walking   Treadmill 3mph   Treadmill 6 – Moderate    

Walking   Treadmill 3mph   Treadmill 9 – Hard    

Kneeling   

Carrying groceries   

Doing dishes   

Gardening   

Ironing   

Making the bed   

Mopping   

Playing videogames   

Scrubbing a surface   

Stacking groceries   

Sweeping   

Typing   

Vacuuming   

Walking around block   

Washing windows   

Watching TV   

Weeding   

Wiping/Dusting   

Writing   

Taking out trash   

Unknown   

Table B3-1: Activities utilized to learn the coefficients of equation (e). The column „Accelerometer 

Recognizable‟ includes only activities that can be recognized from accelerometer data and 

consequently, those activities that do not contain resistance work or load effort. The column „Posture 

and Ambulation‟ includes only activities involving posture or ambulation. 
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Appendix B4: Comparison of Activities Contained in the MIT 
Energy Expenditure Dataset and the Ones Found in the 
Compendium of Physical Activities  
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Gymnasium Dataset Activity Closest Compendium Activity  METs Comparable 

Activity 

Lying down Lying in bed awake, listening to music (not 

talking or reading 

1.0  

Sitting Sitting quietly and watching television 1.0  

Sitting - Fidget feet legs Sitting quietly and watching television 1.0  

Sitting - Fidget hands arms Sitting - knitting, sewing, lt. wrapping (presents) 1.5  

Standing Standing quietly (standing in a line) 1.2  

Kneeling Kneeling in church/at home (praying) 1.0  

Walking - Treadmill 2mph - Treadmill 0% Walking, 2.0 mph, level, slow pace, firm surface 2.5  

Walking - Treadmill 3mph - Treadmill 0% Walking, 3.0 mph, level, moderate pace, firm 

surface 

3.3  

Walking - Treadmill 3mph - Treadmill 3% - light Walking, 3.5 mph, uphill 6.0  

Walking - Treadmill 3mph - Treadmill 6% - 

moderate 

Walking, 3.5 mph, uphill 6.0  

Walking - Treadmill 3mph - Treadmill 9% - hard Walking, 3.5 mph, uphill 6.0  

Stairs - Ascend stairs Upstairs, using or climbing up ladder 8.0  

Stairs - Descend stairs Downstairs 3.0  

Running - Treadmill 4mph - Treadmill 0% Walking, 4.0 mph, level, firm surface, very brisk 

pace 

5.0  

Running - Treadmill 5mph - Treadmill 0% Running, 5 mph (12 min/mile) 8.0  

Running - Treadmill 6mph - Treadmill 0% Running, 6 mph (10 min/mile) 10.0  

Cycling - Cycle light - Cycle 60rpm (8.9mph or 
66.9W) 

Bicycling, stationary, 50watt, very light effort 3.0  

Cycling - Cycle hard - Cycle 80rpm (11.2mph or 
100W) 

Bicycling, stationary, 100watts, light effort 5.5  

Cycling - Cycle light - Cycle 100rpm (15mph or 

140W) 

Bicycling, stationary, 150watts, moderate effort 7.0  

Cycling - Cycle moderate - Cycle 80rpm Bicycling, stationary, 100watts, light effort 5.5  

Cycling - Cycle hard - Cycle 80rpm Bicycling, stationary, 100watts, light effort 5.5  

Rowing - Rowing light - Rowing 30spm Rowing, stationary, 50 watts, light effort 3.5  

Rowing - Rowing moderate - Rowing 30spm Rowing, stationary, 100 watts, moderate effort 7.0  

Rowing - Rowing hard - Rowing 30spm Rowing, stationary, 150 watts, vigorous effort 8.5  

Bench weight lifting - hard Weight lifting (free weight, nautilus or universal-
type), power lifting or body building, vigorous 

effort 

6.0  

Bench weight lifting - moderate Weight lifting (free, nautilus or universal-type), 

light or moderate effort, light workout, general 

3.0  

Bench weight lifting - light Weight lifting (free, nautilus or universal-type), 

light or moderate effort, light workout, general 

3.0  

Bicep curls - hard Weight lifting (free, nautilus or universal-type), 

light or moderate effort, light workout, general 

3.0  

Bicep curls - moderate Weight lifting (free, nautilus or universal-type), 

light or moderate effort, light workout, general 

3.0  

Bicep curls - light Weight lifting (free, nautilus or universal-type), 

light or moderate effort, light workout, general 

3.0  

Calisthenics - Crunches Calisthenics (e.g. pushups, sit-ups, pull-ups, 

jumping jacks), heavy, vigorous effort 

8.0  

Calisthenics - Sit ups Calisthenics (e.g. pushups, sit-ups, pull-ups, 

jumping jacks), heavy, vigorous effort 

8.0  

Table B4-1: Mapping between gymnasium dataset activities for which data was collected and the 

activities listed in the Compendium of Physical Activities. The METs column indicates energy 

expenditure in METs from the Compendium and the column “Comparable Activity” indicates if the 

Compendium activity was used for comparison in the energy expenditure experiments. 
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Home Dataset Activity Closest Compendium Activity Description METs Comparable 

Activity 

Lying down Lying in bed awake, listening to music (not 
talking or reading 

1.0  

Writing Sitting - writing, desk work, typing 1.8  

Typing Sitting - writing, desk work, typing 1.8  

Watching TV Lying quietly, watching television 1.0  

Playing videogames Sitting - card playing, playing board games 1.5  

Making the bed Making bed 2.0  

 

Taking out trash Cleaning, light (dusting, straightening up, 

changing linen, carrying out trash 

2.5  

Ironing Ironing 2.3  

Doing dishes Wash dishes - standing or in general (not 

broken into stand/walk components 

2.3  

Wiping/Dusting Cleaning, light (dusting, straightening up, 
changing linen, carrying out trash) 

2.5  

Walking around block Walking for pleasure 3.5  

Carrying groceries  

(one 3kg bag on each hand) 

Walking 2.5mph slowly and carrying light 

objects less than 25Lb 

3.0  

Stacking groceries Putting away groceries (e.g. carrying 
groceries, shopping without a grocery cart), 

carrying packages. 

2.5  

Sweeping Carpet sweeping, sweeping floors 3.3  

Mopping Mopping 3.5  

Vacuuming Vacuuming 3.5  

Washing windows Cleaning, heavy or major (e.g. wash car, 

wash windows, clean garage), vigorous effort 

3.0  

Weeding Weeding, cultivating garden 4.5  

Gardening Gardening, general 4.0  

Scrubbing a surface Scrubbing floors, on hands and knees, 

scrubbing bathroom, bathtub 

3.8  

Table B4-2: Mapping between household dataset activities for which data was collected and the 

activities listed in the Compendium of Physical Activities. The METs column indicates energy 

expenditure in METs from the Compendium and the column “Comparable Activity” indicates if the 

Compendium activity was used for comparison in the energy expenditure experiments.
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Appendix B5: Estimating Energy Expenditure Using the 
Compendium of Physical Activities  
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Activity RMSE MAE MAED 

 Calisthenics - Sit ups  3.91 ± 0.82  3.84 ± 0.88  4.57 ± 0.55 

 Lying down  0.17 ± 0.08  0.15 ± 0.08  0.29 ± 0.12 

 Running - Treadmill 4mph - Treadmill 0   0.88 ± 0.45  0.81 ± 0.44  1.16 ± 0.58 

 Running - Treadmill 5mph - Treadmill 0   1.19 ± 0.69  1.14 ± 0.72  1.47 ± 0.76 

 Running - Treadmill 6mph - Treadmill 0   2.40 ± 0.99  2.38 ± 0.99  2.66 ± 1.02 

 Sitting  0.21 ± 0.14  0.19 ± 0.14  0.26 ± 0.18 

 Stairs - Ascend stairs  4.14 ± 0.30  4.13 ± 0.30  4.37 ± 0.24 

 Stairs - Descend stairs  0.92 ± 0.30  0.88 ± 0.34  1.07 ± 0.32 

 Standing  0.24 ± 0.17  0.23 ± 0.17  0.28 ± 0.18 

 Walking - Treadmill 2mph - Treadmill 0   0.29 ± 0.30  0.27 ± 0.31  0.37 ± 0.33 

 Walking - Treadmill 3mph - Treadmill 0   0.30 ± 0.26  0.28 ± 0.26  0.39 ± 0.29 

 kneeling  0.29 ± 0.13  0.26 ± 0.11  0.38 ± 0.18 

 Doing dishes  0.66 ± 0.25  0.66 ± 0.25  0.75 ± 0.25 

 Gardening  1.79 ± 0.41  1.78 ± 0.40  1.99 ± 0.41 

 Ironing  0.80 ± 0.25  0.77 ± 0.27  0.97 ± 0.22 

 Making the bed  1.35 ± 0.58  1.23 ± 0.55  1.75 ± 0.69 

 Mopping  0.84 ± 0.38  0.80 ± 0.40  1.05 ± 0.41 

 Scrubbing a surface  1.23 ± 0.47  1.21 ± 0.47  1.47 ± 0.55 

 Stacking groceries  0.42 ± 0.38  0.41 ± 0.38  0.47 ± 0.37 

 Sweeping  0.82 ± 0.27  0.77 ± 0.28  1.06 ± 0.32 

 Typing  0.75 ± 0.14  0.74 ± 0.15  0.84 ± 0.15 

 Vacuuming  1.07 ± 0.43  1.05 ± 0.46  1.27 ± 0.41 

 Walking around block  0.84 ± 0.36  0.80 ± 0.35  1.08 ± 0.46 

 Washing windows  0.79 ± 0.35  0.77 ± 0.37  0.96 ± 0.40 

 Watching TV  0.14 ± 0.07  0.12 ± 0.07  0.20 ± 0.10 

 Weeding  2.17 ± 0.43  2.13 ± 0.47  2.50 ± 0.43 

 Wiping/Dusting  0.50 ± 0.21  0.46 ± 0.22  0.66 ± 0.23 

 Writing  0.79 ± 0.18  0.79 ± 0.18  0.86 ± 0.17 

 taking out trash  0.42 ± 0.23  0.37 ± 0.18  0.59 ± 0.34 

Table B5-1: Results of estimating energy expenditure using only the comparable Compendium 

activities over the MIT energy expenditure dataset assuming activity is known. MAE stands for mean 

absolute error, RMSE for root mean squared error, MAED for maximum absolute error deviation 

over a one minute window. 
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Activity RMSE MAE MAED 

 Bench weight lifting - hard 4.08 ± 0.14 4.08 ± 0.14 4.16 ± 0.22 

 Bench weight lifting - light 1.30 ± 0.50 1.27 ± 0.52 1.43 ± 0.44 

 Bench weight lifting - moderate 1.17 ± 0.40 1.12 ± 0.46 1.31 ± 0.37 

 Bicep curls - hard 4.55 ± 0.49 4.55 ± 0.49 4.65 ± 0.44 

 Bicep curls - light 1.20 ± 0.26 1.19 ± 0.27 1.36 ± 0.26 

 Bicep curls - moderate 1.42 ± 0.36 1.40 ± 0.38 1.56 ± 0.21 

 Calisthenics - Crunches 6.22 ± 1.37 6.18 ± 1.41 6.68 ± 1.22 

 Calisthenics - Sit ups 4.39 ± 0.75 4.26 ± 0.85 5.44 ± 0.56 

 Cycling - Cycle hard - Cycle 80rpm 1.74 ± 0.68 1.71 ± 0.69 2.10 ± 0.70 

 Cycling - Cycle light - Cycle 100rpm 1.45 ± 0.59 1.39 ± 0.60 1.89 ± 0.67 

 Cycling - Cycle light - Cycle 60rpm 0.50 ± 0.31 0.48 ± 0.32 0.61 ± 0.31 

 Cycling - Cycle light - Cycle 80rpm 1.22 ± 0.53 1.19 ± 0.55 1.53 ± 0.57 

 Cycling - Cycle moderate - Cycle 80rpm 2.74 ± 0.82 2.70 ± 0.86 3.05 ± 0.76 

 Lying down 0.17 ± 0.08 0.15 ± 0.08 0.29 ± 0.15 

 Rowing - Rowing hard - Rowing 30spm 2.92 ± 1.35 2.81 ± 1.47 3.45 ± 1.31 

 Rowing - Rowing light - Rowing 30spm 1.62 ± 1.39 1.46 ± 1.29 2.06 ± 1.68 

 Rowing - Rowing moderate - Rowing 30spm 2.09 ± 0.88 1.95 ± 0.96 2.62 ± 0.91 

 Running - Treadmill 4mph - Treadmill 0  1.03 ± 0.31 0.91 ± 0.28 1.42 ± 0.48 

 Running - Treadmill 5mph - Treadmill 0  1.38 ± 0.68 1.29 ± 0.71 1.85 ± 0.81 

 Running - Treadmill 6mph - Treadmill 0  2.51 ± 0.93 2.46 ± 0.93 2.89 ± 1.17 

 Sitting 0.26 ± 0.20 0.23 ± 0.19 0.34 ± 0.25 

 Sitting - Fidget feet legs 0.30 ± 0.20 0.29 ± 0.21 0.34 ± 0.20 

 Sitting - Fidget hands arms 0.36 ± 0.17 0.35 ± 0.17 0.42 ± 0.19 

 Stairs - Ascend stairs 5.09 ± 0.26 5.08 ± 0.26 5.44 ± 0.25 

 Stairs - Descend stairs 1.22 ± 0.42 1.17 ± 0.39 1.41 ± 0.52 

 Standing 0.25 ± 0.19 0.22 ± 0.17 0.32 ± 0.25 

 Walking - Treadmill 2mph - Treadmill 0  0.32 ± 0.28 0.29 ± 0.29 0.45 ± 0.30 

 Walking - Treadmill 3mph - Treadmill 0  0.35 ± 0.23 0.31 ± 0.23 0.49 ± 0.26 

 Walking - Treadmill 3mph - Treadmill 3  - light 2.00 ± 0.38 1.99 ± 0.38 2.28 ± 0.41 

 Walking - Treadmill 3mph - Treadmill 6  - moderate 1.27 ± 0.42 1.25 ± 0.43 1.59 ± 0.45 

 Walking - Treadmill 3mph - Treadmill 9  - hard 0.64 ± 0.28 0.60 ± 0.30 0.87 ± 0.33 

 kneeling 0.32 ± 0.16 0.30 ± 0.16 0.41 ± 0.19 

Carrying groceries 0.74 ± 0.38 0.70 ± 0.38 0.96 ± 0.47 

Doing dishes 0.64 ± 0.26 0.64 ± 0.26 0.70 ± 0.28 

Gardening 1.79 ± 0.44 1.79 ± 0.44 1.96 ± 0.46 

Ironing 0.82 ± 0.26 0.78 ± 0.28 0.98 ± 0.30 

Making the bed 1.23 ± 0.55 1.09 ± 0.49 1.63 ± 0.67 

Mopping 0.88 ± 0.40 0.84 ± 0.41 1.10 ± 0.44 

Playing videogames 0.51 ± 0.14 0.50 ± 0.15 0.57 ± 0.12 

Scrubbing a surface 1.34 ± 0.41 1.31 ± 0.41 1.63 ± 0.42 

Stacking groceries 0.50 ± 0.35 0.47 ± 0.37 0.58 ± 0.33 

Sweeping 0.85 ± 0.27 0.79 ± 0.29 1.12 ± 0.33 

Typing 0.69 ± 0.14 0.67 ± 0.14 0.82 ± 0.16 

Vacuuming 1.06 ± 0.39 1.03 ± 0.41 1.26 ± 0.39 

Walking around block 0.98 ± 0.34 0.90 ± 0.36 1.33 ± 0.44 

Washing windows 0.79 ± 0.35 0.77 ± 0.35 0.94 ± 0.37 

Watching TV 0.16 ± 0.05 0.13 ± 0.05 0.24 ± 0.07 

Weeding 2.19 ± 0.38 2.15 ± 0.41 2.53 ± 0.51 

Wiping/Dusting 0.51 ± 0.23 0.49 ± 0.24 0.64 ± 0.26 

Writing 0.78 ± 0.18 0.77 ± 0.19 0.85 ± 0.18 

taking out trash 0.43 ± 0.22 0.38 ± 0.20 0.64 ± 0.29 

Table B5-2: Results of estimating energy expenditure using the closest Compendium activities over 

the MIT energy expenditure dataset assuming activity is known. MAE stands for mean absolute 

error, RMSE for root mean squared error, and MAED for maximum absolute error deviation. 
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Figure B5-1: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 Indirect Calorimeter for subject MIT-001. The activities 

shown are only the directly comparable to the compendium Activities (comparable set).  

 

 

 

0123456789

Ly
in

g_
dow

n
Ly

in
g_

dow
n

Ly
in

g_
dow

n
Sitt

in
g Sta

nd
in

g kn
ee

lin
g

W
alki

ng
_-

_T
re

ad
m

ill_
2m

ph
_-

_T
re

ad
m

ill_
0_

W
alki

ng
_-

_T
re

ad
m

ill_
3m

ph
_-

_T
re

ad
m

ill_
0_

W
alki

ng
_-

_T
re

ad
m

ill_
3m

ph
_-

_T
re

ad
m

ill_
0_

R
un

ni
ng

_-
_T

re
ad

m
ill_

4m
ph

_-
_T

re
adm

ill_
0_

R
un

ni
ng

_-
_T

re
ad

m
ill_

5m
ph

_-
_T

re
adm

ill_
0_

C
al

ist
he

ni
cs

_-
_S

it_
up

s
Ly

in
g_

dow
n

Ly
in

g_
dow

n
Ly

in
g_

dow
n

M
ak

in
g_t

he
_b

ed
Iro

ni
ng

Iro
ni

ng

D
oi

ng
_d

is
he

s

W
ip

in
g/

D
us

tin
g

W
ip

in
g/

D
us

tin
g

ta
ki

ng
_ou

t_
tra

sh

Sta
ck

in
g_

gr
oc

er
ie

s

Sta
ck

in
g_

gr
oc

er
ie

s Sw
ee

pi
ng

M
op

pin
g M

op
pin

g
Vac

uu
m

in
g

W
ash

in
g_

w
in

dow
s

Scr
ub

bi
ng

_a
_s

urfa
ce

Scr
ub

bi
ng

_a
_s

urfa
ce

W
atc

hi
ng

_T
V

Typ
in

g
Typ

in
g

W
rit

in
g

W
alki

ng
_a

ro
un

d_b
lo

ck

W
alki

ng
_a

ro
un

d_b
lo

ck W
eed

in
g G

ar
den

in
g

T
im

e

METs

C
o
m

p
e
n
d

iu
m

C
o
s
m

e
d



   

417 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B5-2: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 Indirect Calorimeter for subject MIT-003. The activities 

shown are only the directly comparable to the compendium Activities (comparable set).  
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Figure B5-3: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 Indirect Calorimeter for subject MIT-004. The activities 

shown are only the directly comparable to the compendium Activities (comparable set).  
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Figure B5-4: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 Indirect Calorimeter for subject MIT-018. The activities 

shown are only the directly comparable to the compendium Activities (comparable set).  
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Figure B5-4: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 indirect calorimeter for subject MIT-001. The activities 

shown are the closest with respect to the compendium activities (closest set).  
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Figure B5-5. Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 indirect calorimeter for subject MIT-004. The activities 

shown are the closest with respect to the compendium activities (closest set).  
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Figure B5-6: Plot of energy expenditure estimated using the Compendium of Physical Activities vs. 

the one measured using the Cosmed K4b2 indirect calorimeter for subject MIT-018. The activities 

shown are the closest with respect to the compendium activities (closest set).  
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Appendix B6: Estimating Energy Expenditure Using Linear 
Regression and the ACAbsArea Feature Computed over One 
Minute Windows. 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 0.27 ± 0.18 0.24 ± 0.16 0.34 ± 0.25 

Bench_weight_lifting_-_light 0.58 ± 0.19 0.54 ± 0.20 0.70 ± 0.23 

Bench_weight_lifting_-_moderate 0.53 ± 0.28 0.49 ± 0.27 0.63 ± 0.35 

Bicep_curls_-_hard 1.41 ± 0.63 1.40 ± 0.64 1.53 ± 0.64 

Bicep_curls_-_light 1.10 ± 0.41 1.09 ± 0.44 1.25 ± 0.32 

Bicep_curls_-_moderate 1.40 ± 0.37 1.38 ± 0.40 1.55 ± 0.26 

Calisthenics_-_Crunches 1.31 ± 0.85 1.17 ± 0.80 1.62 ± 1.00 

Calisthenics_-_Sit_ups 1.40 ± 0.79 1.17 ± 0.65 1.88 ± 1.06 

Cycling_-_Cycle_hard_-_Cycle_80rpm 2.92 ± 1.19 2.90 ± 1.20 3.19 ± 1.22 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.50 ± 0.78 1.43 ± 0.82 1.82 ± 0.79 

Cycling_-_Cycle_light_-_Cycle_60rpm 1.05 ± 0.51 1.03 ± 0.53 1.19 ± 0.50 

Cycling_-_Cycle_light_-_Cycle_80rpm 1.36 ± 0.62 1.32 ± 0.64 1.59 ± 0.65 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 2.04 ± 1.06 2.01 ± 1.04 2.24 ± 1.19 

Lying_down 0.49 ± 0.15 0.48 ± 0.16 0.61 ± 0.14 

Rowing_-_Rowing_hard_-_Rowing_30spm 2.94 ± 1.70 2.84 ± 1.64 3.38 ± 1.99 

Rowing_-_Rowing_light_-_Rowing_30spm 1.95 ± 1.29 1.82 ± 1.19 2.37 ± 1.56 

Rowing_-_Rowing_moderate_-_Rowing_30spm 2.73 ± 1.55 2.62 ± 1.54 3.21 ± 1.77 

Running_-_Treadmill_4mph_-_Treadmill_0_ 1.19 ± 0.56 1.06 ± 0.60 1.63 ± 0.68 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.00 ± 0.63 0.93 ± 0.63 1.28 ± 0.79 

Running_-_Treadmill_6mph_-_Treadmill_0_ 0.92 ± 0.76 0.91 ± 0.76 1.07 ± 0.83 

Sitting 0.43 ± 0.17 0.42 ± 0.17 0.50 ± 0.16 

Sitting_-_Fidget_feet_legs 1.01 ± 0.36 1.00 ± 0.35 1.09 ± 0.41 

Sitting_-_Fidget_hands_arms 0.96 ± 0.38 0.95 ± 0.39 1.05 ± 0.39 

Stairs_-_Ascend_stairs 0.60 ± 0.34 0.54 ± 0.34 0.83 ± 0.39 

Stairs_-_Descend_stairs 1.11 ± 0.36 1.08 ± 0.33 1.25 ± 0.43 

Standing 0.45 ± 0.14 0.43 ± 0.13 0.55 ± 0.18 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.88 ± 0.41 0.85 ± 0.42 1.11 ± 0.39 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 1.08 ± 0.49 1.05 ± 0.50 1.32 ± 0.56 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.66 ± 0.37 0.63 ± 0.38 0.88 ± 0.45 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.67 ± 0.42 0.63 ± 0.43 0.85 ± 0.44 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.28 ± 0.79 1.25 ± 0.78 1.49 ± 0.90 

kneeling 0.33 ± 0.18 0.31 ± 0.19 0.39 ± 0.19 

Unknown 1.31 ± 0.33 1.02 ± 0.24 3.26 ± 0.87 

Carrying_groceries 1.26 ± 0.37 1.17 ± 0.40 1.70 ± 0.45 

Doing_dishes 0.56 ± 0.18 0.55 ± 0.18 0.65 ± 0.20 

Gardening 0.51 ± 0.41 0.47 ± 0.41 0.65 ± 0.44 

Ironing 0.55 ± 0.18 0.51 ± 0.18 0.72 ± 0.27 

Making_the_bed 0.84 ± 0.36 0.70 ± 0.30 1.28 ± 0.59 

Mopping 0.50 ± 0.24 0.46 ± 0.23 0.70 ± 0.35 

Playing_videogames 0.55 ± 0.17 0.54 ± 0.18 0.63 ± 0.17 

Scrubbing_a_surface 0.48 ± 0.23 0.42 ± 0.22 0.73 ± 0.31 

Stacking_groceries 0.66 ± 0.30 0.63 ± 0.32 0.79 ± 0.30 

Sweeping 0.47 ± 0.28 0.41 ± 0.24 0.72 ± 0.44 

Typing 0.52 ± 0.12 0.50 ± 0.12 0.62 ± 0.14 

Vacuuming 0.47 ± 0.32 0.44 ± 0.30 0.63 ± 0.42 

Walking_around_block 1.78 ± 0.27 1.71 ± 0.30 2.24 ± 0.33 

Washing_windows 0.58 ± 0.28 0.51 ± 0.27 0.80 ± 0.42 

Watching_TV 0.53 ± 0.14 0.52 ± 0.14 0.63 ± 0.17 

Weeding 0.46 ± 0.30 0.39 ± 0.26 0.64 ± 0.44 

Wiping/Dusting 0.69 ± 0.37 0.64 ± 0.33 0.91 ± 0.53 

Writing 0.54 ± 0.19 0.53 ± 0.19 0.61 ± 0.18 

taking_out_trash 0.65 ± 0.23 0.60 ± 0.23 0.90 ± 0.29 

Table B6-1: Performance per activity obtained when estimating energy expenditure using a 

multivariable linear model per activity over the MIT dataset. The models are trained using the 

ACAbsArea feature computed per sensor over one minute sliding windows. 
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Figure B6-1. Plot of energy expenditure (in METS) computed using linear regression over the sum of 

the areas over all axis per sensor (7) and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-

001 over one minute windows. 
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Figure B6-2. Plot of energy expenditure (in METS) computed using linear regression over the sum of 

the areas over all axis per sensor (7) and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-

004 over one minute windows. 
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Figure B6-3. Plot of energy expenditure (in METS) computed using linear regression over the sum of 

the areas over all axis per sensor (7) and the Cosmed K4b2 Indirect Calorimeter for Subject MIT-

018 over one minute windows.
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Appendix B7: Estimating Energy Expenditure Using One 
Linear Regression Model Per Known Activity 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 0.16 ± 0.16 0.14 ± 0.14 0.21 ± 0.20 

Bench_weight_lifting_-_light 1.01 ± 0.74 0.94 ± 0.66 1.25 ± 0.98 

Bench_weight_lifting_-_moderate 1.07 ± 0.49 0.96 ± 0.39 1.37 ± 0.73 

Bicep_curls_-_hard 0.31 ± 0.15 0.28 ± 0.16 0.40 ± 0.17 

Bicep_curls_-_light 0.62 ± 0.40 0.50 ± 0.26 1.05 ± 0.97 

Bicep_curls_-_moderate 0.80 ± 0.47 0.79 ± 0.46 0.93 ± 0.56 

Calisthenics_-_Crunches 3.27 ± 5.09 3.13 ± 5.11 3.76 ± 5.39 

Calisthenics_-_Sit_ups 1.54 ± 0.56 1.39 ± 0.52 2.03 ± 0.79 

Cycling_-_Cycle_hard_-_Cycle_80rpm 1.24 ± 0.46 1.17 ± 0.47 1.53 ± 0.50 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.07 ± 0.57 1.02 ± 0.55 1.37 ± 0.73 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.64 ± 0.59 0.62 ± 0.59 0.77 ± 0.66 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.87 ± 0.59 0.82 ± 0.60 1.10 ± 0.67 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.14 ± 0.60 1.07 ± 0.59 1.36 ± 0.66 

Lying_down 0.21 ± 0.09 0.18 ± 0.09 0.34 ± 0.16 

Rowing_-_Rowing_hard_-_Rowing_30spm 1.49 ± 0.72 1.38 ± 0.73 1.89 ± 0.83 

Rowing_-_Rowing_light_-_Rowing_30spm 1.51 ± 1.13 1.40 ± 1.11 1.89 ± 1.21 

Rowing_-_Rowing_moderate_-_Rowing_30spm 1.49 ± 1.18 1.42 ± 1.19 1.87 ± 1.30 

Running_-_Treadmill_4mph_-_Treadmill_0_ 1.10 ± 0.64 0.97 ± 0.60 1.52 ± 0.88 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.16 ± 0.61 1.05 ± 0.62 1.54 ± 0.74 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.29 ± 1.06 1.23 ± 1.05 1.51 ± 1.24 

Sitting 0.26 ± 0.22 0.25 ± 0.21 0.31 ± 0.28 

Sitting_-_Fidget_feet_legs 0.34 ± 0.12 0.32 ± 0.12 0.40 ± 0.15 

Sitting_-_Fidget_hands_arms 0.22 ± 0.15 0.21 ± 0.15 0.27 ± 0.18 

Stairs_-_Ascend_stairs 0.31 ± 0.15 0.27 ± 0.13 0.46 ± 0.25 

Stairs_-_Descend_stairs 2.46 ± 2.66 2.39 ± 2.67 2.81 ± 2.75 

Standing 0.30 ± 0.28 0.27 ± 0.26 0.40 ± 0.35 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.49 ± 0.36 0.45 ± 0.37 0.65 ± 0.38 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.57 ± 0.49 0.53 ± 0.50 0.75 ± 0.56 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.62 ± 0.49 0.57 ± 0.51 0.81 ± 0.54 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.70 ± 0.54 0.65 ± 0.54 0.94 ± 0.63 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 0.85 ± 0.65 0.82 ± 0.66 1.07 ± 0.72 

kneeling 0.33 ± 0.26 0.30 ± 0.26 0.40 ± 0.30 

Unknown 1.33 ± 0.34 1.02 ± 0.25 3.11 ± 0.90 

Carrying_groceries 0.57 ± 0.25 0.52 ± 0.26 0.76 ± 0.33 

Doing_dishes 0.16 ± 0.12 0.14 ± 0.12 0.24 ± 0.17 

Gardening 0.80 ± 0.63 0.77 ± 0.60 1.03 ± 0.88 

Ironing 0.34 ± 0.22 0.29 ± 0.17 0.50 ± 0.36 

Making_the_bed 1.02 ± 0.62 0.91 ± 0.60 1.42 ± 0.73 

Mopping 0.55 ± 0.36 0.50 ± 0.33 0.74 ± 0.52 

Playing_videogames 0.21 ± 0.10 0.19 ± 0.09 0.31 ± 0.16 

Scrubbing_a_surface 0.48 ± 0.22 0.39 ± 0.17 0.72 ± 0.35 

Stacking_groceries 0.59 ± 0.23 0.55 ± 0.26 0.71 ± 0.19 

Sweeping 0.35 ± 0.12 0.30 ± 0.11 0.52 ± 0.19 

Typing 0.22 ± 0.10 0.19 ± 0.08 0.32 ± 0.18 

Vacuuming 0.60 ± 0.50 0.54 ± 0.49 0.79 ± 0.60 

Walking_around_block 0.60 ± 0.23 0.52 ± 0.20 0.83 ± 0.34 

Washing_windows 0.42 ± 0.25 0.39 ± 0.23 0.57 ± 0.34 

Watching_TV 0.18 ± 0.07 0.16 ± 0.07 0.24 ± 0.10 

Weeding 0.65 ± 0.64 0.60 ± 0.62 0.87 ± 0.77 

Wiping/Dusting 0.46 ± 0.27 0.43 ± 0.25 0.63 ± 0.37 

Writing 0.27 ± 0.17 0.25 ± 0.16 0.35 ± 0.25 

taking_out_trash 0.37 ± 0.11 0.33 ± 0.11 0.53 ± 0.14 

Table B7-1: Performance per activity when estimating energy expenditure using a multivariable 

linear model per activity over the MIT dataset. The models are trained using the ACAbsArea feature 

computed per sensor over one minute sliding windows. 
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Figure B7-1. Plot of energy expenditure (in METS) estimated using one linear regression model per 

activity vs. energy expenditure measured using the Cosmed K4b2 Indirect Calorimeter for Subject 

MIT-004. Energy is predicted using the ACAbsArea feature (7) computed per sensor over one minute 

windows when activities are assumed to be known. 
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Figure B7-2. Plot of energy expenditure (in METS) estimated using one linear regression model per 

activity vs. energy expenditure measured using the Cosmed K4b2 Indirect Calorimeter for Subject 

MIT-018. Energy is predicted using the ACAbsArea feature (7) computed per sensor over one minute 

windows when activities are assumed to be known. 
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Appendix B8: Estimating Energy Expenditure Using One Non-
Linear Regression Model Per Known Activity 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 0.19 ± 0.21 0.17 ± 0.19 0.24 ± 0.27 

Bench_weight_lifting_-_light 0.94 ± 0.66 0.91 ± 0.65 1.09 ± 0.81 

Bench_weight_lifting_-_moderate 0.93 ± 0.58 0.91 ± 0.56 1.12 ± 0.73 

Bicep_curls_-_hard 0.48 ± 0.29 0.46 ± 0.29 0.58 ± 0.34 

Bicep_curls_-_light 0.65 ± 0.43 0.49 ± 0.23 1.14 ± 1.04 

Bicep_curls_-_moderate 0.36 ± 0.29 0.32 ± 0.24 0.44 ± 0.37 

Calisthenics_-_Crunches 1.64 ± 1.15 1.45 ± 1.03 2.11 ± 1.51 

Calisthenics_-_Sit_ups 1.88 ± 1.30 1.77 ± 1.30 2.24 ± 1.39 

Cycling_-_Cycle_hard_-_Cycle_80rpm 1.12 ± 0.23 1.04 ± 0.25 1.51 ± 0.35 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.10 ± 0.52 1.05 ± 0.50 1.41 ± 0.65 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.62 ± 0.47 0.60 ± 0.49 0.74 ± 0.48 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.78 ± 0.48 0.73 ± 0.49 1.00 ± 0.54 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.07 ± 0.58 1.01 ± 0.58 1.28 ± 0.63 

Lying_down 0.21 ± 0.08 0.18 ± 0.08 0.35 ± 0.14 

Rowing_-_Rowing_hard_-_Rowing_30spm 1.47 ± 1.10 1.34 ± 1.04 1.89 ± 1.21 

Rowing_-_Rowing_light_-_Rowing_30spm 1.63 ± 1.32 1.47 ± 1.34 2.10 ± 1.48 

Rowing_-_Rowing_moderate_-_Rowing_30spm 1.50 ± 0.71 1.43 ± 0.74 1.87 ± 0.78 

Running_-_Treadmill_4mph_-_Treadmill_0_ 1.02 ± 0.60 0.89 ± 0.54 1.43 ± 0.85 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.11 ± 0.53 1.01 ± 0.54 1.47 ± 0.68 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.23 ± 0.62 1.17 ± 0.60 1.45 ± 0.75 

Sitting 0.25 ± 0.23 0.24 ± 0.22 0.30 ± 0.28 

Sitting_-_Fidget_feet_legs 0.31 ± 0.12 0.29 ± 0.12 0.37 ± 0.13 

Sitting_-_Fidget_hands_arms 0.22 ± 0.16 0.20 ± 0.15 0.27 ± 0.19 

Stairs_-_Ascend_stairs 0.36 ± 0.21 0.31 ± 0.19 0.53 ± 0.30 

Stairs_-_Descend_stairs 1.59 ± 0.42 1.47 ± 0.35 1.91 ± 0.65 

Standing 0.23 ± 0.24 0.21 ± 0.23 0.28 ± 0.31 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.41 ± 0.36 0.37 ± 0.37 0.58 ± 0.39 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.51 ± 0.43 0.47 ± 0.44 0.68 ± 0.48 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.48 ± 0.43 0.43 ± 0.44 0.66 ± 0.50 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.67 ± 0.53 0.62 ± 0.54 0.88 ± 0.58 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 0.88 ± 0.57 0.84 ± 0.58 1.12 ± 0.61 

kneeling 0.28 ± 0.21 0.26 ± 0.20 0.35 ± 0.27 

 Unknown 1.36 ± 0.34 1.08 ± 0.26 3.37 ± 1.07 

Carrying_groceries 0.51 ± 0.26 0.46 ± 0.27 0.70 ± 0.32 

Doing_dishes 0.15 ± 0.09 0.14 ± 0.09 0.23 ± 0.12 

Gardening 0.79 ± 0.60 0.76 ± 0.56 1.02 ± 0.85 

Ironing 0.34 ± 0.23 0.29 ± 0.18 0.50 ± 0.39 

Making_the_bed 1.09 ± 0.68 1.02 ± 0.67 1.43 ± 0.76 

Mopping 0.63 ± 0.36 0.57 ± 0.32 0.85 ± 0.51 

Playing_videogames 0.21 ± 0.10 0.18 ± 0.09 0.31 ± 0.17 

Scrubbing_a_surface 0.44 ± 0.15 0.38 ± 0.14 0.60 ± 0.18 

Stacking_groceries 0.53 ± 0.31 0.48 ± 0.31 0.65 ± 0.35 

Sweeping 0.33 ± 0.11 0.28 ± 0.10 0.49 ± 0.17 

Typing 0.23 ± 0.09 0.21 ± 0.09 0.32 ± 0.12 

Vacuuming 0.53 ± 0.34 0.48 ± 0.32 0.71 ± 0.47 

Walking_around_block 0.63 ± 0.28 0.54 ± 0.23 0.88 ± 0.42 

Washing_windows 0.46 ± 0.30 0.42 ± 0.29 0.64 ± 0.38 

Watching_TV 0.16 ± 0.07 0.15 ± 0.06 0.22 ± 0.09 

Weeding 0.48 ± 0.33 0.43 ± 0.29 0.66 ± 0.46 

Wiping/Dusting 0.43 ± 0.26 0.40 ± 0.24 0.58 ± 0.36 

Writing 0.26 ± 0.16 0.24 ± 0.15 0.35 ± 0.24 

taking_out_trash 0.35 ± 0.13 0.31 ± 0.14 0.50 ± 0.18 

Table B8-1: Performance per activity when estimating energy expenditure using a non-linear model 

(M5‟ model tree) per activity over the MIT dataset. The models are trained using the ACAbsArea 

feature computed per sensor over one minute sliding windows.  
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Figure B8-1: Plot of energy expenditure (in METS) estimated using one non-linear regression model 

per activity (M5‟ model tree) vs. energy expenditure measured using the Cosmed K4b2 Indirect 

Calorimeter for Subject MIT-004. Energy is predicted using the ACAbsArea feature (7) computed 

per sensor over one minute windows when activities are assumed to be known. 
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Figure B8-2: Plot of energy expenditure (in METS) estimated using one non-linear regression model 

per activity (M5‟ model tree) vs. energy expenditure measured using the Cosmed K4b2 Indirect 

Calorimeter for Subject MIT-018. Energy is predicted using the ACAbsArea feature (7) computed 

per sensor over one minute windows when activities are assumed to be known. 
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Appendix B9: Estimating Energy Expenditure Using Linear 
and Non-linear Regression Algorithms 
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Activity LR RT MT ε-SVR 

Bench weight lifting - hard 0.6 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.7 ± 0.4 

Bench weight lifting - light 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.4 

Bench weight lifting - moderate 0.7 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.7 ± 0.5 

Bicep curls - hard 1.0 ± 0.4 0.8 ± 0.4 0.5 ± 0.3 0.9 ± 0.5 

Bicep curls - light 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.5 0.6 ± 0.4 

Bicep curls - moderate 0.7 ± 0.3 0.7 ± 0.3 0.6 ± 0.5 0.6 ± 0.2 

Calisthenics - Crunches 1.7 ± 0.9 1.8 ± 0.8 2.0 ± 1.0 1.3 ± 0.9 

Calisthenics - Sit ups 1.3 ± 0.4 1.6 ± 0.6 1.7 ± 0.6 1.3 ± 0.4 

Cycling - Cycle hard - Cycle 80rpm 1.8 ± 1.0 2.0 ± 1.0 2.0 ± 1.1 1.7 ± 0.9 

Cycling - Cycle light - Cycle 100rpm 1.2 ± 0.8 1.2 ± 0.7 1.1 ± 0.4 1.1 ± 0.5 

Cycling - Cycle light - Cycle 60rpm 0.8 ± 0.5 0.7 ± 0.4 0.8 ± 0.5 0.7 ± 0.4 

Cycling - Cycle light - Cycle 80rpm 1.1 ± 0.8 0.9 ± 0.3 1.2 ± 0.7 0.9 ± 0.6 

Cycling - Cycle moderate - Cycle 80rpm 1.5 ± 0.7 1.4 ± 0.9 1.5 ± 0.6 1.3 ± 0.5 

Lying down 0.4 ± 0.2 0.2 ± 0.1 1.0 ± 2.8 0.3 ± 0.1 

Rowing - Rowing hard - Rowing 30spm 1.8 ± 1.6 2.0 ± 1.5 2.3 ± 1.4 1.4 ± 1.2 

Rowing - Rowing light - Rowing 30spm 1.4 ± 1.1 1.6 ± 1.1 1.8 ± 0.9 1.3 ± 0.8 

Rowing - Rowing moderate - Rowing 30spm 1.7 ± 1.5 2.1 ± 1.6 2.2 ± 1.3 1.4 ± 1.2 

Running - Treadmill 4mph - Treadmill 0  1.3 ± 0.7 1.2 ± 0.6 1.3 ± 0.7 1.0 ± 0.5 

Running - Treadmill 5mph - Treadmill 0  1.4 ± 0.8 1.4 ± 0.9 1.8 ± 1.0 1.3 ± 0.5 

Running - Treadmill 6mph - Treadmill 0  1.8 ± 1.1 1.4 ± 1.1 1.6 ± 1.1 1.4 ± 0.8 

Sitting 0.7 ± 0.2 0.6 ± 0.2 1.9 ± 4.7 0.5 ± 0.2 

Sitting - Fidget feet legs 1.3 ± 0.5 1.2 ± 0.9 1.3 ± 0.6 0.7 ± 0.3 

Sitting - Fidget hands arms 0.8 ± 0.4 0.6 ± 0.2 0.6 ± 0.3 0.5 ± 0.2 

Stairs - Ascend stairs 0.9 ± 0.2 0.9 ± 0.2 1.0 ± 0.2 0.9 ± 0.3 

Stairs - Descend stairs 1.5 ± 0.3 1.5 ± 0.2 1.5 ± 0.2 1.4 ± 0.5 

Standing 0.4 ± 0.1 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.2 

Walking - Treadmill 2mph - Treadmill 0  0.8 ± 0.5 0.6 ± 0.3 0.6 ± 0.3 0.4 ± 0.2 

Walking - Treadmill 3mph - Treadmill 0  1.0 ± 0.6 0.8 ± 0.3 0.8 ± 0.2 0.5 ± 0.2 

Walking - Treadmill 3mph - Treadmill 3  - light 0.8 ± 0.5 0.7 ± 0.2 0.8 ± 0.4 0.5 ± 0.2 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.0 ± 0.5 1.1 ± 0.4 1.1 ± 0.6 0.8 ± 0.3 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.5 ± 0.7 1.6 ± 0.6 1.5 ± 0.7 1.3 ± 0.6 

kneeling 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.4 ± 0.2 

unknown 1.5 ± 0.3 1.5 ± 0.4 1.6 ± 0.4 1.5 ± 0.4 

Carrying groceries 0.9 ± 0.2 0.8 ± 0.2 1.0 ± 0.2 0.8 ± 0.3 

Doing dishes 0.5 ± 0.3 0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Gardening 0.7 ± 0.4 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.3 

Ironing 0.5 ± 0.2 0.6 ± 0.2 0.8 ± 1.0 0.5 ± 0.2 

Making the bed 1.0 ± 0.4 1.0 ± 0.4 1.2 ± 0.5 0.9 ± 0.3 

Mopping 0.6 ± 0.2 0.7 ± 0.3 0.8 ± 0.3 0.6 ± 0.2 

Playing videogames 0.7 ± 0.4 0.4 ± 0.2 1.1 ± 1.9 0.4 ± 0.2 

Scrubbing a surface 0.9 ± 0.5 0.8 ± 0.3 0.7 ± 0.2 0.6 ± 0.2 

Stacking groceries 1.0 ± 0.5 0.7 ± 0.2 1.0 ± 0.5 0.7 ± 0.2 

Sweeping 0.7 ± 0.4 0.6 ± 0.3 0.8 ± 0.4 0.6 ± 0.3 

Typing 0.5 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 

Vacuuming 0.5 ± 0.1 0.5 ± 0.2 0.6 ± 0.2 0.4 ± 0.1 

Walking around block 1.1 ± 0.5 1.0 ± 0.2 1.3 ± 0.9 0.9 ± 0.5 

Washing windows 0.7 ± 0.4 0.6 ± 0.3 0.8 ± 0.5 0.5 ± 0.2 

Watching TV 0.7 ± 0.5 0.4 ± 0.2 1.1 ± 2.0 0.4 ± 0.2 

Weeding 0.8 ± 0.2 0.6 ± 0.2 0.9 ± 0.2 0.8 ± 0.3 

Wiping/Dusting 0.7 ± 0.6 0.6 ± 0.2 0.6 ± 0.3 0.5 ± 0.2 

Writing 0.6 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 

taking out trash 0.7 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.1 

Table B9-1: Root mean square error obtained while estimating energy expenditure using different 

linear and non-linear regression algorithms utilizing all the accelerometer-based features computed 

per sensor over sliding windows of 5.6s in length. LR stands for linear regression, RT for regression 

trees, MT for model trees and ε-SVR for epsilon support vector regression. 
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Activity LR RT MT ε-SVR 

Bench weight lifting - hard 0.5 ± 0.4 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.3 

Bench weight lifting - light 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.4 

Bench weight lifting - moderate 0.6 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 0.6 ± 0.5 

Bicep curls - hard 0.9 ± 0.5 0.7 ± 0.3 0.5 ± 0.3 0.8 ± 0.5 

Bicep curls - light 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.4 0.6 ± 0.3 

Bicep curls - moderate 0.6 ± 0.3 0.5 ± 0.2 0.4 ± 0.4 0.5 ± 0.2 

Calisthenics - Crunches 1.5 ± 0.8 1.6 ± 0.8 1.8 ± 0.9 1.2 ± 0.8 

Calisthenics - Sit ups 1.2 ± 0.3 1.4 ± 0.6 1.5 ± 0.5 1.1 ± 0.4 

Cycling - Cycle hard - Cycle 80rpm 1.7 ± 1.0 1.9 ± 1.0 1.9 ± 1.0 1.6 ± 0.9 

Cycling - Cycle light - Cycle 100rpm 1.1 ± 0.8 1.1 ± 0.8 1.0 ± 0.4 1.0 ± 0.6 

Cycling - Cycle light - Cycle 60rpm 0.7 ± 0.5 0.6 ± 0.4 0.8 ± 0.5 0.6 ± 0.4 

Cycling - Cycle light - Cycle 80rpm 1.0 ± 0.8 0.8 ± 0.3 1.0 ± 0.6 0.8 ± 0.6 

Cycling - Cycle moderate - Cycle 80rpm 1.4 ± 0.7 1.3 ± 0.9 1.3 ± 0.5 1.2 ± 0.5 

Lying down 0.4 ± 0.3 0.2 ± 0.1 0.7 ± 1.9 0.3 ± 0.1 

Rowing - Rowing hard - Rowing 30spm 1.7 ± 1.5 1.8 ± 1.5 2.1 ± 1.4 1.3 ± 1.2 

Rowing - Rowing light - Rowing 30spm 1.2 ± 1.0 1.4 ± 1.1 1.6 ± 0.9 1.1 ± 0.8 

Rowing - Rowing moderate - Rowing 30spm 1.6 ± 1.5 1.9 ± 1.6 1.9 ± 1.2 1.3 ± 1.2 

Running - Treadmill 4mph - Treadmill 0  1.1 ± 0.7 1.1 ± 0.6 1.1 ± 0.6 0.9 ± 0.4 

Running - Treadmill 5mph - Treadmill 0  1.2 ± 0.8 1.2 ± 1.0 1.4 ± 0.9 1.2 ± 0.5 

Running - Treadmill 6mph - Treadmill 0  1.6 ± 1.1 1.3 ± 1.1 1.4 ± 1.2 1.3 ± 0.9 

Sitting 0.6 ± 0.2 0.4 ± 0.2 0.7 ± 1.0 0.4 ± 0.2 

Sitting - Fidget feet legs 1.2 ± 0.5 1.0 ± 0.8 1.1 ± 0.5 0.6 ± 0.3 

Sitting - Fidget hands arms 0.7 ± 0.4 0.5 ± 0.2 0.5 ± 0.3 0.4 ± 0.2 

Stairs - Ascend stairs 0.8 ± 0.2 0.7 ± 0.1 0.8 ± 0.2 0.8 ± 0.2 

Stairs - Descend stairs 1.3 ± 0.3 1.3 ± 0.2 1.2 ± 0.2 1.2 ± 0.5 

Standing 0.4 ± 0.1 0.5 ± 0.3 0.5 ± 0.2 0.4 ± 0.2 

Walking - Treadmill 2mph - Treadmill 0  0.7 ± 0.5 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Walking - Treadmill 3mph - Treadmill 0  0.9 ± 0.6 0.6 ± 0.3 0.6 ± 0.3 0.4 ± 0.2 

Walking - Treadmill 3mph - Treadmill 3  - light 0.7 ± 0.5 0.6 ± 0.2 0.7 ± 0.3 0.4 ± 0.1 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.9 ± 0.5 1.0 ± 0.4 0.9 ± 0.5 0.7 ± 0.3 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.4 ± 0.7 1.5 ± 0.7 1.4 ± 0.7 1.2 ± 0.6 

kneeling 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.2 

unknown 1.2 ± 0.2 1.1 ± 0.3 1.2 ± 0.3 1.1 ± 0.3 

Carrying groceries 0.7 ± 0.2 0.7 ± 0.2 0.8 ± 0.1 0.7 ± 0.3 

Doing dishes 0.4 ± 0.3 0.3 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 

Gardening 0.6 ± 0.4 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.3 

Ironing 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.3 0.4 ± 0.2 

Making the bed 0.8 ± 0.3 0.8 ± 0.3 1.0 ± 0.4 0.7 ± 0.3 

Mopping 0.5 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.2 

Playing videogames 0.6 ± 0.4 0.3 ± 0.2 0.8 ± 1.4 0.3 ± 0.2 

Scrubbing a surface 0.8 ± 0.4 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 

Stacking groceries 0.9 ± 0.5 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 

Sweeping 0.6 ± 0.4 0.5 ± 0.2 0.6 ± 0.4 0.5 ± 0.3 

Typing 0.4 ± 0.2 0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 

Vacuuming 0.4 ± 0.1 0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.1 

Walking around block 1.0 ± 0.5 0.8 ± 0.2 0.9 ± 0.2 0.8 ± 0.5 

Washing windows 0.6 ± 0.3 0.5 ± 0.2 0.6 ± 0.3 0.4 ± 0.2 

Watching TV 0.6 ± 0.5 0.3 ± 0.2 0.8 ± 1.5 0.4 ± 0.2 

Weeding 0.7 ± 0.2 0.5 ± 0.2 0.7 ± 0.2 0.7 ± 0.3 

Wiping/Dusting 0.6 ± 0.5 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Writing 0.5 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 

taking out trash 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 

Table B9-2: Mean absolute error obtained while estimating energy expenditure using different linear 

and non-linear regression algorithms utilizing all the accelerometer-based features computed per 

sensor over sliding windows of 5.6s in length. 
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Activity LR RT MT ε-SVR 

Bench weight lifting - hard 0.9 ± 0.5 1.1 ± 0.5 1.2 ± 0.6 1.2 ± 0.5 

Bench weight lifting - light 1.4 ± 0.5 1.2 ± 0.4 1.4 ± 0.5 1.2 ± 0.5 

Bench weight lifting - moderate 1.2 ± 0.5 1.3 ± 0.5 1.3 ± 0.9 1.2 ± 0.6 

Bicep curls - hard 1.9 ± 0.4 1.8 ± 1.0 1.2 ± 0.8 1.4 ± 0.7 

Bicep curls - light 1.7 ± 0.4 1.9 ± 1.0 2.6 ± 1.6 1.3 ± 1.0 

Bicep curls - moderate 1.4 ± 0.5 1.9 ± 0.9 1.5 ± 1.6 1.3 ± 0.2 

Calisthenics - Crunches 2.8 ± 1.1 3.5 ± 0.8 3.9 ± 2.4 2.5 ± 1.5 

Calisthenics - Sit ups 2.4 ± 0.7 2.6 ± 0.7 3.3 ± 1.3 2.1 ± 0.5 

Cycling - Cycle hard - Cycle 80rpm 2.6 ± 1.0 3.0 ± 1.4 3.7 ± 2.4 2.5 ± 1.0 

Cycling - Cycle light - Cycle 100rpm 2.1 ± 1.1 2.0 ± 0.9 2.3 ± 0.9 2.0 ± 0.7 

Cycling - Cycle light - Cycle 60rpm 1.3 ± 0.6 1.3 ± 0.7 1.6 ± 0.7 1.2 ± 0.5 

Cycling - Cycle light - Cycle 80rpm 1.9 ± 1.0 1.8 ± 0.6 2.6 ± 2.1 1.5 ± 0.7 

Cycling - Cycle moderate - Cycle 80rpm 2.3 ± 0.9 2.4 ± 1.1 2.8 ± 0.9 2.2 ± 0.6 

Lying down 1.0 ± 0.4 0.5 ± 0.2 1.8 ± 4.3 0.7 ± 0.2 

Rowing - Rowing hard - Rowing 30spm 2.8 ± 2.0 3.0 ± 1.6 3.9 ± 1.7 2.3 ± 1.4 

Rowing - Rowing light - Rowing 30spm 2.4 ± 1.3 2.7 ± 1.2 3.3 ± 1.4 2.4 ± 1.1 

Rowing - Rowing moderate - Rowing 30spm 2.5 ± 1.8 3.2 ± 1.8 4.1 ± 2.0 2.2 ± 1.4 

Running - Treadmill 4mph - Treadmill 0  2.6 ± 1.2 2.4 ± 0.9 3.1 ± 1.7 2.1 ± 1.0 

Running - Treadmill 5mph - Treadmill 0  2.7 ± 1.0 2.7 ± 1.1 4.2 ± 2.8 2.3 ± 0.8 

Running - Treadmill 6mph - Treadmill 0  3.3 ± 1.3 2.2 ± 1.3 3.0 ± 1.8 2.2 ± 1.0 

Sitting 1.6 ± 0.5 1.4 ± 0.7 7.6 ± 21.9 1.0 ± 0.3 

Sitting - Fidget feet legs 1.9 ± 0.6 2.0 ± 1.3 2.6 ± 1.0 1.3 ± 0.6 

Sitting - Fidget hands arms 1.6 ± 0.6 1.1 ± 0.4 1.2 ± 0.5 1.1 ± 0.4 

Stairs - Ascend stairs 1.8 ± 0.4 2.0 ± 0.4 2.2 ± 0.4 2.0 ± 0.5 

Stairs - Descend stairs 2.6 ± 0.4 2.9 ± 0.5 3.1 ± 0.7 2.6 ± 0.8 

Standing 1.0 ± 0.2 1.4 ± 0.7 1.4 ± 0.8 1.0 ± 0.4 

Walking - Treadmill 2mph - Treadmill 0  1.5 ± 0.6 1.4 ± 0.6 1.5 ± 0.8 0.9 ± 0.3 

Walking - Treadmill 3mph - Treadmill 0  1.8 ± 0.6 1.6 ± 0.5 1.8 ± 0.4 1.0 ± 0.3 

Walking - Treadmill 3mph - Treadmill 3  - light 1.5 ± 0.6 1.4 ± 0.4 1.8 ± 0.7 1.0 ± 0.4 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.8 ± 0.7 1.8 ± 0.5 2.1 ± 0.8 1.4 ± 0.4 

Walking - Treadmill 3mph - Treadmill 9  - hard 2.3 ± 0.8 2.6 ± 0.8 2.8 ± 1.1 2.0 ± 0.8 

kneeling 1.2 ± 0.5 1.2 ± 0.5 1.3 ± 0.5 0.8 ± 0.2 

unknown 5.3 ± 0.8 5.0 ± 1.1 6.8 ± 3.2 5.2 ± 1.2 

Carrying groceries 2.0 ± 0.8 1.8 ± 0.4 2.3 ± 0.7 1.7 ± 0.8 

Doing dishes 1.0 ± 0.5 0.9 ± 0.4 1.1 ± 0.4 0.8 ± 0.2 

Gardening 1.6 ± 0.7 1.2 ± 0.2 1.4 ± 0.2 1.3 ± 0.5 

Ironing 1.2 ± 0.4 1.3 ± 0.5 3.1 ± 6.8 1.1 ± 0.6 

Making the bed 2.1 ± 1.0 2.7 ± 1.3 3.2 ± 1.9 2.0 ± 0.7 

Mopping 1.6 ± 0.6 1.5 ± 0.7 1.9 ± 0.5 1.2 ± 0.3 

Playing videogames 1.5 ± 0.6 1.0 ± 0.5 1.9 ± 2.8 0.9 ± 0.5 

Scrubbing a surface 2.2 ± 1.3 2.2 ± 0.9 1.8 ± 0.7 1.4 ± 0.5 

Stacking groceries 2.1 ± 0.9 1.9 ± 0.6 3.0 ± 2.4 1.4 ± 0.4 

Sweeping 1.5 ± 0.5 1.5 ± 0.7 2.0 ± 1.2 1.3 ± 0.5 

Typing 1.1 ± 0.4 0.9 ± 0.4 0.9 ± 0.5 0.9 ± 0.4 

Vacuuming 1.2 ± 0.2 1.2 ± 0.5 1.7 ± 0.6 0.9 ± 0.4 

Walking around block 2.3 ± 0.6 2.3 ± 0.6 4.5 ± 7.0 1.8 ± 0.7 

Washing windows 1.7 ± 0.7 1.7 ± 1.1 2.6 ± 2.2 1.2 ± 0.3 

Watching TV 1.4 ± 0.7 1.2 ± 0.5 2.0 ± 2.7 0.9 ± 0.5 

Weeding 1.7 ± 0.7 1.2 ± 0.6 1.9 ± 0.8 1.5 ± 0.5 

Wiping/Dusting 1.6 ± 0.9 1.3 ± 0.4 1.5 ± 0.7 1.1 ± 0.4 

Writing 1.2 ± 0.4 1.0 ± 0.6 1.0 ± 0.5 0.8 ± 0.3 

taking out trash 1.6 ± 0.4 1.6 ± 0.4 1.7 ± 0.4 1.2 ± 0.3 

Table B9-3: Maximum absolute error deviation obtained while estimating energy expenditure using 

different linear and non-linear regression algorithms utilizing all the accelerometer-based features 

computed per sensor over sliding windows of 5.6s in length. 
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Appendix B10: Estimating Energy Expenditure When Band-
Pass Filtering the Accelerometer Signal and When Not 
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 Gymnasium Activity RMSE 

ACAbsArea 

 Without 

 Band-pass 

Filtering 

RMSE 

ACAbsArea  

with  

Band-pass 

Filtering 

RMSE 

ACFFTPeaks 

without  

Band-pass 

Filtering 

RMSE  

ACFFTPeaks  

with  

Band-pass 

Filtering 

Bench weight lifting - hard 0.89 ± 0.69 0.39 ± 0.25 0.53 ± 0.27 0.54 ± 0.28 

Bench weight lifting - light 0.70 ± 0.47 0.54 ± 0.21 0.65 ± 0.27 0.63 ± 0.32 

Bench weight lifting - moderate 0.81 ± 0.59 0.56 ± 0.25 0.64 ± 0.38 0.64 ± 0.41 

Bicep curls - hard 1.02 ± 0.37 1.38 ± 0.57 1.47 ± 0.65 1.44 ± 0.74 

Bicep curls - light 0.81 ± 0.43 1.09 ± 0.37 1.17 ± 0.38 1.13 ± 0.61 

Bicep curls - moderate 0.70 ± 0.43 1.32 ± 0.32 1.37 ± 0.41 1.24 ± 0.56 

Calisthenics - Crunches 1.19 ± 0.54 1.40 ± 0.68 1.44 ± 0.63 1.56 ± 0.66 

Calisthenics - Sit ups 2.21 ± 0.81 1.48 ± 0.67 1.71 ± 0.72 1.62 ± 0.60 

Cycling - Cycle hard - Cycle 80rpm 2.59 ± 1.08 2.83 ± 1.06 2.10 ± 1.18 2.10 ± 1.13 

Cycling - Cycle light - Cycle 100rpm 1.82 ± 0.88 1.54 ± 0.83 1.33 ± 0.62 1.22 ± 0.52 

Cycling - Cycle light - Cycle 60rpm 0.82 ± 0.45 1.04 ± 0.46 0.76 ± 0.35 0.80 ± 0.37 

Cycling - Cycle light - Cycle 80rpm 1.32 ± 0.67 1.39 ± 0.63 1.20 ± 0.61 1.24 ± 0.68 

Cycling - Cycle moderate - Cycle 80rpm 2.10 ± 1.09 2.26 ± 0.93 1.65 ± 1.01 1.62 ± 0.95 

Lying down 2.11 ± 1.41 0.62 ± 0.15 0.58 ± 0.72 0.35 ± 0.06 

Rowing - Rowing hard - Rowing 30spm 3.01 ± 1.78 3.07 ± 1.75 2.23 ± 1.63 2.30 ± 1.73 

Rowing - Rowing light - Rowing 30spm 1.98 ± 1.36 2.12 ± 1.31 1.47 ± 1.15 1.46 ± 1.34 

Rowing - Rowing moderate - Rowing 30spm 2.67 ± 1.59 2.85 ± 1.60 2.08 ± 1.44 2.13 ± 1.62 

Running - Treadmill 4mph - Treadmill 0  1.14 ± 0.45 1.22 ± 0.50 1.38 ± 0.56 1.42 ± 0.70 

Running - Treadmill 5mph - Treadmill 0  1.38 ± 0.70 0.98 ± 0.53 1.34 ± 0.87 1.45 ± 0.93 

Running - Treadmill 6mph - Treadmill 0  1.37 ± 0.75 1.05 ± 0.67 2.02 ± 1.51 2.03 ± 1.54 

Sitting 1.08 ± 0.52 0.56 ± 0.15 0.47 ± 0.19 0.59 ± 0.25 

Sitting - Fidget feet legs 1.22 ± 0.43 1.05 ± 0.33 1.12 ± 0.42 1.11 ± 0.48 

Sitting - Fidget hands arms 1.02 ± 0.48 1.00 ± 0.35 0.67 ± 0.28 0.62 ± 0.29 

Stairs - Ascend stairs 0.93 ± 0.24 0.87 ± 0.23 0.87 ± 0.21 0.91 ± 0.27 

Stairs - Descend stairs 1.30 ± 0.37 1.35 ± 0.30 1.44 ± 0.32 1.44 ± 0.35 

Standing 1.26 ± 0.31 0.58 ± 0.13 0.60 ± 0.17 0.56 ± 0.12 

Walking - Treadmill 2mph - Treadmill 0  0.66 ± 0.31 0.84 ± 0.35 0.77 ± 0.29 0.78 ± 0.30 

Walking - Treadmill 3mph - Treadmill 0  0.68 ± 0.31 0.97 ± 0.42 0.87 ± 0.44 0.89 ± 0.40 

Walking - Treadmill 3mph - Treadmill 3  - light 0.55 ± 0.32 0.57 ± 0.28 0.66 ± 0.29 0.66 ± 0.28 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.13 ± 0.45 0.73 ± 0.43 0.97 ± 0.44 0.96 ± 0.39 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.93 ± 0.63 1.45 ± 0.72 1.59 ± 0.64 1.64 ± 0.62 

Kneeling 2.02 ± 0.53 0.48 ± 0.19 0.44 ± 0.15 0.56 ± 0.18 

Unknown 1.73 ± 0.45 1.53 ± 0.35 1.61 ± 0.36 1.55 ± 0.36 

 Carrying groceries 1.05 ± 0.66 1.14 ± 0.29 0.99 ± 0.33  0.91 ± 0.26 

 Doing dishes 1.20 ± 1.12 0.60 ± 0.16 0.77 ± 0.51  0.53 ± 0.09 

 Gardening 1.62 ± 1.10 0.56 ± 0.34 0.85 ± 0.40  0.55 ± 0.20 

 Ironing 1.11 ± 0.88 0.62 ± 0.17 0.92 ± 0.36  0.60 ± 0.15 

 Making the bed 1.19 ± 0.72 0.93 ± 0.30 1.01 ± 0.41  0.91 ± 0.31 

 Mopping 1.13 ± 1.16 0.58 ± 0.22 0.74 ± 0.61  0.63 ± 0.17 

 Playing videogames 1.93 ± 1.77 0.68 ± 0.17 0.92 ± 0.98  0.46 ± 0.13 

 Scrubbing a surface 1.10 ± 0.64 0.61 ± 0.18 1.00 ± 0.45  0.71 ± 0.27 

 Stacking groceries 1.25 ± 1.34 0.78 ± 0.28 1.10 ± 0.85  1.08 ± 0.52 

 Sweeping 1.07 ± 1.37 0.56 ± 0.30 0.87 ± 0.99  0.59 ± 0.25 

 Typing 1.41 ± 0.98 0.63 ± 0.12 0.71 ± 0.34  0.47 ± 0.10 

 Vacuuming 0.92 ± 0.82 0.54 ± 0.26 0.60 ± 0.34  0.50 ± 0.20 

 Walking around block 1.39 ± 1.01 1.63 ± 0.29 1.39 ± 0.64  1.22 ± 0.33 

 Washing windows 0.97 ± 0.74 0.62 ± 0.20 0.98 ± 0.48  0.67 ± 0.22 

 Watching TV 2.00 ± 1.83 0.67 ± 0.14 0.84 ± 0.92  0.48 ± 0.16 

 Weeding 1.87 ± 1.17 0.57 ± 0.31 0.83 ± 0.50  0.64 ± 0.22 

 Wiping/Dusting 0.89 ± 0.98 0.70 ± 0.29 0.90 ± 0.48  0.66 ± 0.22 

 Writing 1.27 ± 1.03 0.65 ± 0.19 0.76 ± 0.35  0.52 ± 0.16 

 Taking out trash 1.04 ± 0.77 0.78 ± 0.20 0.97 ± 0.33  0.79 ± 0.23 

Table B-10: Performance of multivariable linear regression per activity in predicting energy 

expenditure when band-pass filtering is applied and not. The features utilized are the ACAbsArea 

feature and the ACFFTPeaks feature computed per sensor over windows of 5.6s in length. 
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Appendix B11: Feature Computation per Sensor vs. Feature 
Computation per Axis for Energy Expenditure Estimation 
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Activity Feature Computation Per Sensor Feature Computation Per Axis 

RMSE MAE MAED RMSE MAE MAED 

Bench weight lifting - hard 0.4 ± 0.2 0.3 ± 0.2 0.8 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 1.1 ± 0.6 

Bench weight lifting - light 0.5 ± 0.2 0.5 ± 0.2 0.9 ± 0.3 0.8 ± 0.5 0.7 ± 0.5 1.1 ± 0.5 

Bench weight lifting - moderate 0.6 ± 0.2 0.5 ± 0.2 0.8 ± 0.3 0.7 ± 0.5 0.7 ± 0.5 1.1 ± 0.5 

Bicep curls - hard 1.4 ± 0.6 1.4 ± 0.6 1.8 ± 0.6 1.0 ± 0.9 1.0 ± 0.9 1.4 ± 1.0 

Bicep curls - light 1.1 ± 0.4 1.0 ± 0.4 1.6 ± 0.4 1.0 ± 0.7 1.0 ± 0.7 1.5 ± 0.9 

Bicep curls - moderate 1.3 ± 0.3 1.3 ± 0.3 1.8 ± 0.2 1.0 ± 0.8 0.9 ± 0.8 1.3 ± 0.8 

Calisthenics - Crunches 1.4 ± 0.7 1.2 ± 0.7 2.1 ± 0.8 1.6 ± 0.8 1.5 ± 0.8 2.4 ± 1.2 

Calisthenics - Sit ups 1.5 ± 0.7 1.3 ± 0.6 2.4 ± 0.7 1.4 ± 0.5 1.2 ± 0.5 2.4 ± 0.8 

Cycling - Cycle hard - Cycle 80rpm 2.8 ± 1.1 2.8 ± 1.1 3.4 ± 1.0 2.4 ± 0.9 2.4 ± 0.9 3.0 ± 1.0 

Cycling - Cycle light - Cycle 100rpm 1.5 ± 0.8 1.5 ± 0.9 2.1 ± 0.8 1.5 ± 1.6 1.3 ± 1.6 2.3 ± 1.9 

Cycling - Cycle light - Cycle 60rpm 1.0 ± 0.5 1.0 ± 0.5 1.3 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 1.0 ± 0.3 

Cycling - Cycle light - Cycle 80rpm 1.4 ± 0.6 1.3 ± 0.6 1.8 ± 0.6 0.8 ± 0.6 0.7 ± 0.6 1.3 ± 0.8 

Cycling - Cycle moderate - Cycle 80rpm 2.3 ± 0.9 2.2 ± 0.9 2.8 ± 1.0 1.7 ± 0.9 1.6 ± 0.9 2.3 ± 1.0 

Lying down 0.6 ± 0.2 0.6 ± 0.2 0.8 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 

Rowing - Rowing hard - Rowing 30spm 3.1 ± 1.8 3.0 ± 1.6 3.8 ± 2.0 2.3 ± 1.5 2.2 ± 1.4 3.1 ± 1.7 

Rowing - Rowing light - Rowing 30spm 2.1 ± 1.3 2.0 ± 1.2 2.8 ± 1.6 1.5 ± 1.1 1.3 ± 1.0 2.4 ± 1.2 

Rowing - Rowing moderate - Rowing 30spm 2.8 ± 1.6 2.7 ± 1.6 3.5 ± 1.8 2.1 ± 1.4 1.9 ± 1.4 2.8 ± 1.7 

Running - Treadmill 4mph - Treadmill 0  1.2 ± 0.5 1.0 ± 0.5 2.6 ± 1.1 1.3 ± 0.5 1.0 ± 0.5 2.8 ± 1.2 

Running - Treadmill 5mph - Treadmill 0  1.0 ± 0.5 0.9 ± 0.5 1.9 ± 1.1 1.2 ± 0.7 1.0 ± 0.6 2.1 ± 0.8 

Running - Treadmill 6mph - Treadmill 0  1.0 ± 0.7 1.0 ± 0.7 1.8 ± 1.1 1.5 ± 0.8 1.4 ± 0.8 2.4 ± 1.4 

Sitting 0.6 ± 0.2 0.5 ± 0.2 0.8 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 

Sitting - Fidget feet legs 1.0 ± 0.3 1.0 ± 0.3 1.4 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 1.0 ± 0.4 

Sitting - Fidget hands arms 1.0 ± 0.4 1.0 ± 0.4 1.4 ± 0.5 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.3 

Stairs - Ascend stairs 0.9 ± 0.2 0.8 ± 0.2 1.6 ± 0.4 0.9 ± 0.2 0.7 ± 0.2 1.8 ± 0.4 

Stairs - Descend stairs 1.4 ± 0.3 1.2 ± 0.3 2.3 ± 0.3 1.4 ± 0.4 1.2 ± 0.4 2.5 ± 0.4 

Standing 0.6 ± 0.1 0.6 ± 0.1 0.9 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.2 

Walking - Treadmill 2mph - Treadmill 0  0.8 ± 0.4 0.8 ± 0.4 1.4 ± 0.4 0.6 ± 0.2 0.6 ± 0.2 1.1 ± 0.4 

Walking - Treadmill 3mph - Treadmill 0  1.0 ± 0.4 0.9 ± 0.4 1.6 ± 0.6 0.8 ± 0.4 0.8 ± 0.4 1.4 ± 0.5 

Walking - Treadmill 3mph - Treadmill 3  - light 0.6 ± 0.3 0.5 ± 0.3 1.0 ± 0.4 0.5 ± 0.2 0.4 ± 0.2 0.9 ± 0.3 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.7 ± 0.4 0.7 ± 0.4 1.1 ± 0.4 0.9 ± 0.4 0.8 ± 0.4 1.3 ± 0.5 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.4 ± 0.7 1.4 ± 0.7 1.9 ± 0.8 1.6 ± 0.5 1.6 ± 0.5 2.2 ± 0.6 

kneeling 0.5 ± 0.2 0.4 ± 0.2 0.9 ± 0.3 0.4 ± 0.2 0.3 ± 0.2 0.7 ± 0.3 

unknown 1.5 ± 0.4 1.2 ± 0.2 4.9 ± 1.1 1.6 ± 0.4 1.2 ± 0.3 5.4 ± 1.3 

Carrying groceries 1.1 ± 0.3 1.0 ± 0.3 2.2 ± 0.6 0.9 ± 0.4 0.8 ± 0.4 2.1 ± 0.7 

Doing dishes 0.6 ± 0.2 0.6 ± 0.2 1.0 ± 0.4 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.2 

Gardening 0.6 ± 0.3 0.5 ± 0.3 1.1 ± 0.5 0.6 ± 0.2 0.5 ± 0.2 1.2 ± 0.3 

Ironing 0.6 ± 0.2 0.6 ± 0.2 1.1 ± 0.4 0.4 ± 0.2 0.3 ± 0.1 1.0 ± 0.6 

Making the bed 0.9 ± 0.3 0.8 ± 0.2 2.0 ± 0.7 1.0 ± 0.3 0.9 ± 0.3 1.9 ± 0.4 

Mopping 0.6 ± 0.2 0.5 ± 0.2 1.3 ± 0.5 0.9 ± 0.6 0.8 ± 0.6 1.5 ± 0.8 

Playing videogames 0.7 ± 0.2 0.7 ± 0.2 1.0 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.2 

Scrubbing a surface 0.6 ± 0.2 0.5 ± 0.2 1.4 ± 0.3 0.9 ± 0.4 0.8 ± 0.4 1.6 ± 0.6 

Stacking groceries 0.8 ± 0.3 0.7 ± 0.3 1.4 ± 0.3 1.0 ± 0.5 0.8 ± 0.4 2.0 ± 1.1 

Sweeping 0.6 ± 0.3 0.4 ± 0.2 1.1 ± 0.4 0.7 ± 0.4 0.6 ± 0.4 1.4 ± 0.5 

Typing 0.6 ± 0.1 0.6 ± 0.1 0.9 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 0.5 ± 0.2 

Vacuuming 0.5 ± 0.3 0.5 ± 0.3 1.2 ± 0.4 0.8 ± 0.6 0.7 ± 0.6 1.5 ± 0.8 

Walking around block 1.6 ± 0.3 1.5 ± 0.3 2.7 ± 0.3 1.4 ± 0.4 1.2 ± 0.5 2.5 ± 0.6 

Washing windows 0.6 ± 0.2 0.5 ± 0.2 1.3 ± 0.4 0.6 ± 0.4 0.6 ± 0.3 1.3 ± 0.6 

Watching TV 0.7 ± 0.1 0.6 ± 0.1 1.0 ± 0.3 0.5 ± 0.2 0.4 ± 0.2 0.8 ± 0.2 

Weeding 0.6 ± 0.3 0.5 ± 0.3 1.3 ± 0.8 0.7 ± 0.4 0.6 ± 0.4 1.3 ± 0.6 

Wiping/Dusting 0.7 ± 0.3 0.6 ± 0.3 1.6 ± 0.5 0.4 ± 0.2 0.4 ± 0.2 1.0 ± 0.6 

Writing 0.6 ± 0.2 0.6 ± 0.2 0.8 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 

taking out trash 0.8 ± 0.2 0.6 ± 0.2 1.7 ± 0.4 0.7 ± 0.4 0.6 ± 0.4 1.4 ± 0.5 

Table B11-1: Performance obtained using multivariable linear regression for estimating energy 

expenditure using all the accelerometer-based features computed per sensor and per axis over sliding 

windows of 5.6s in length. 
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Appendix B12: Window Length Selection for Energy 
Expenditure Estimation 
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Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 1.38 ± 0.30 

(1.04 ± 0.17) 

1.37 ± 0.30 

(1.03 ± 0.17) 

1.36 ± 0.30 

(1.02 ± 0.17) 

1.34 ± 0.30 

(1.01 ± 0.17) 

1.32 ± 0.30 

(0.98 ± 0.17) 

1.27 ± 0.27 

(0.9 ± 0.16) 

1.16 ± 0.24 

(0.87 ± 0.15) 

Postures 0.8±0.2  
(0.7±0.2) 

0.7±0.2  
(0.7±0.2) 

0.7±0.2  
(0.7±0.2) 

0.7±0.2  
(0.7±0.2) 

0.6±0.2  
(0.6±0.2) 

0.6±0.2  
(0.6±0.2) 

0.5±0.2  
(0.5±0.2) 

Ambulation 1.1±0.4  

(1.0±0.4) 

1.1±0.4  

(1.0±0.4) 

1.1±0.4  

(1.0±0.4) 

1.1±0.4  

(1.0±0.4) 

1.1±0.5  

(1.0±0.5) 

1.0±0.5  

(1.0±0.5) 

0.8±0.4  

(0.8±0.5) 

Exercise 1.5±0.7  
(1.4±0.7) 

1.5±0.7  
(1.4±0.7) 

1.5±0.7  
(1.4±0.7) 

1.5±0.7  
(1.4±0.7) 

1.5±0.7  
(1.4±0.7) 

1.4±0.7  
(1.4±0.7) 

1.3±0.7  
(1.3±0.7) 

Resistance 

Exercise 

1.4±0.6  

(1.3±0.6) 

1.4±0.6  

(1.3±0.6) 

1.4±0.6  

(1.3±0.6) 

1.3±0.6  

(1.3±0.6) 

1.3±0.6  

(1.3±0.6) 

1.3±0.6  

(1.2±0.6) 

1.2±0.6  

(1.2±0.6) 

Household 0.8±0.2  
(0.7±0.2) 

0.8±0.2  
(0.7±0.2) 

0.7±0.2  
(0.6±0.2) 

0.7±0.2  
(0.6±0.2) 

0.7±0.2  
(0.6±0.2) 

0.7±0.3  
(0.6±0.3) 

0.7±0.3  
(0.6±0.3) 

Table B12-1: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure in a subject independent manner using multivariable linear regression 

and the ACAbsArea feature computed per sensor over window of varying lengths.  

 

 

 

 

 
Activity 

Category 

1.4s 2.8s 5.6s 11.3s 22.7s 45.5s 91.0s 

All 1.29 ± 0.28 

(0.94 ± 0.16) 

1.28 ± 0.29 

(0.93 ± 0.17) 

1.28 ± 0.29 

(0.93 ± 0.17) 

1.25 ± 0.30 

(0.91 ± 0.18) 

1.22 ± 0.29 

(0.88 ± 0.18) 

1.21 ± 0.29 

(0.87 ± 0.18) 

1.13 ± 0.29 

(0.79 ± 0.16) 

Postures 0.7±0.2  
(0.6±0.2) 

0.6±0.2  
(0.6±0.2) 

0.6±0.2  
(0.6±0.2) 

0.7±0.3  
(0.6±0.3) 

0.6±0.3  
(0.6±0.3) 

0.7±0.3  
(0.6±0.3) 

0.5±0.3  
(0.5±0.3) 

Ambulation 1.2±0.5  

(1.1±0.5) 

1.2±0.5  

(1.1±0.5) 

1.2±0.5  

(1.1±0.5) 

1.2±0.6  

(1.0±0.6) 

1.2±0.7  

(1.1±0.7) 

1.2±0.7  

(1.1±0.7) 

1.0±0.6  

(0.9±0.6) 

Exercise 1.3±0.7  
(1.2±0.7) 

1.3±0.7  
(1.2±0.7) 

1.3±0.7  
(1.2±0.7) 

1.3±0.8  
(1.2±0.8) 

1.3±0.8  
(1.2±0.8) 

1.3±0.9  
(1.2±0.9) 

1.2±0.9  
(1.2±0.9) 

Resistance 

Exercise 

1.2±0.6  

(1.1±0.6) 

1.2±0.6  

(1.0±0.6) 

1.2±0.6  

(1.0±0.6) 

1.1±0.7  

(1.0±0.7) 

1.1±0.7  

(1.0±0.7) 

1.1±0.7  

(1.0±0.7) 

1.0±0.7  

(0.9±0.7) 

Household 0.8±0.2  
(0.6±0.2) 

0.7±0.2  
(0.6±0.2) 

0.7±0.2  
(0.6±0.2) 

0.6±0.2  
(0.5±0.2) 

0.6±0.2  
(0.5±0.2) 

0.6±0.3  
(0.5±0.2) 

0.4±0.3  
(0.4±0.2) 

Table B12-2: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure in a subject independent manner using multivariable linear regression 

and the FFTCorr (ACFFTPeaks + ACCorr) feature set computed per sensor over windows of varying 

lengths. 
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Activity 

Category 

5.6s 11.3s 22.7s 45.5s 91.0s 

All 1.24 ± 0.29 
(0.86 ± 0.19) 

1.29 ± 0.31 
(0.90 ± 0.20) 

1.24 ± 0.27 
(0.87 ± 0.18) 

1.13 ± 0.23 
(0.8 ± 0.2) 

0.97 ± 0.22 
(0.7 ± 0.2) 

Postures 0.6±0.3  

(0.5±0.2) 

0.6±0.3  

(0.5±0.3) 

0.5±0.3  

(0.5±0.3) 

0.6±0.4  

(0.5±0.3) 

0.4±0.3  

(0.4±0.3) 

Ambulation 1.1±0.4  
(0.9±0.4) 

1.2±0.5  
(1.1±0.5) 

1.2±0.6  
(1.1±0.6) 

1.1±0.5  
(1.0±0.5) 

0.8±0.5  
(0.8±0.5) 

Exercise 1.3±0.7  

(1.2±0.7) 

1.3±0.7  

(1.2±0.7) 

1.2±0.7  

(1.1±0.7) 

1.2±0.6  

(1.1±0.6) 

0.9±0.6  

(0.9±0.6) 

Resistance 

Exercise 

1.1±0.6  

(1.0±0.6) 

1.1±0.6  

(1.0±0.6) 

1.1±0.6  

(1.0±0.6) 

1.0±0.5  

(0.9±0.5) 

0.8±0.5  

(0.7±0.5) 

Household 0.6±0.3  

(0.5±0.2) 

0.6±0.3  

(0.5±0.3) 

0.6±0.3  

(0.5±0.3) 

0.6±0.3  

(0.5±0.3) 

0.6±0.3  

(0.6±0.3) 

Table B12-3: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure in a subject independent manner using M5‟ model trees and the 

ACAbsArea feature computed per sensor over windows of varying lengths  

 

 

 

 

 

 
Activity 

Category 

5.6s 11.3s 22.7s 45.5s 91.0s 

All 1.26 ± 0.33 

(0.88 ± 0.21) 

1.23 ± 0.34 

(0.88 ± 0.22) 

1.26 ± 0.35 

(0.87 ± 0.21) 

1.19 ± 0.35 

(0.83 ± 0.20) 

1.03 ± 0.24 

(0.74 ± 0.17) 

Postures 0.6±0.3  

(0.5±0.2) 

0.6±0.3  

(0.4±0.2) 

0.6±0.3  

(0.5±0.3) 

0.5±0.4  

(0.4±0.3) 

0.5±0.4  

(0.5±0.4) 

Ambulation 1.3±0.5  
(1.1±0.5) 

1.2±0.4  
(1.0±0.4) 

1.2±0.7  
(1.1±0.7) 

1.2±0.6  
(1.1±0.6) 

0.8±0.5  
(0.8±0.5) 

Exercise 1.3±0.7  

(1.1±0.7) 

1.3±0.7  

(1.1±0.6) 

1.3±0.9  

(1.2±0.9) 

1.2±0.8  

(1.1±0.8) 

1.0±0.8  

(1.0±0.8) 

Resistance 

Exercise 

1.1±0.5  
(1.0±0.5) 

1.1±0.6  
(0.9±0.6) 

1.1±0.7  
(1.0±0.7) 

1.0±0.7  
(0.9±0.6) 

0.9±0.7  
(0.8±0.7) 

Household 0.6±0.2  

(0.5±0.2) 

0.7±0.3  

(0.5±0.2) 

0.6±0.3  

(0.5±0.2) 

0.6±0.3  

(0.5±0.3) 

0.5±0.3  

(0.5±0.3) 

Table B12-4: Root mean squared error and mean absolute error (shown in parenthesis) obtained by 

estimating energy expenditure in a subject independent manner using M5‟ model trees and the 

FFTCorr (ACFFTPeaks + ACCorr) feature computed per sensor over windows of varying lengths. 
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Activity Root Mean Squared Error 

1.4s 2.8s 5.6s 11.3s 22.7s 44.5s 90s 

Bench weight lifting - hard 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.4 0.5 ± 0.4 0.4 ± 0.5 0.5 ± 0.4 

Bench weight lifting - light 0.6 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 0.7 ± 0.4 0.6 ± 0.4 0.7 ± 0.5 0.8 ± 0.5 

Bench weight lifting - moderate 0.7 ± 0.2 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.4 0.7 ± 0.4 0.7 ± 0.3 0.8 ± 0.4 

Bicep curls - hard 1.1 ± 0.4 1.2 ± 0.6 1.2 ± 0.6 1.4 ± 0.8 1.2 ± 0.7 1.3 ± 0.8 1.2 ± 0.7 

Bicep curls - light 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 1.0 ± 0.6 0.9 ± 0.5 1.3 ± 0.8 1.2 ± 0.9 

Bicep curls - moderate 0.9 ± 0.1 0.8 ± 0.3 0.8 ± 0.3 1.2 ± 0.5 1.0 ± 0.3 0.9 ± 0.6 0.6 ± 0.5 

Calisthenics - Crunches 1.6 ± 1.0 1.5 ± 0.9 1.5 ± 0.9 1.6 ± 0.8 1.5 ± 0.6 1.7 ± 0.7 1.4 ± 0.9 

Calisthenics - Sit ups 1.3 ± 0.4 1.3 ± 0.5 1.3 ± 0.5 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.5 0.9 ± 0.3 

Cycling - Cycle hard - Cycle 80rpm 2.0 ± 1.1 2.0 ± 1.1 2.0 ± 1.1 1.9 ± 1.1 1.9 ± 1.0 1.9 ± 1.1 1.7 ± 1.3 

Cycling - Cycle light - Cycle 100rpm 1.3 ± 0.7 1.3 ± 0.6 1.3 ± 0.6 1.3 ± 0.7 1.2 ± 0.8 1.2 ± 0.7 0.9 ± 0.8 

Cycling - Cycle light - Cycle 60rpm 0.8 ± 0.3 0.8 ± 0.4 0.8 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 1.0 ± 0.4 1.0 ± 0.6 

Cycling - Cycle light - Cycle 80rpm 1.2 ± 0.5 1.2 ± 0.6 1.2 ± 0.6 1.3 ± 0.7 1.3 ± 0.7 1.2 ± 0.7 1.4 ± 0.9 

Cycling - Cycle moderate - Cycle 80rpm 1.5 ± 0.9 1.6 ± 0.9 1.6 ± 0.9 1.6 ± 0.9 1.5 ± 0.9 1.4 ± 0.9 1.3 ± 1.1 

Lying down 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

Rowing - Rowing hard - Rowing 30spm 2.2 ± 1.8 2.1 ± 1.8 2.1 ± 1.8 1.9 ± 1.9 1.8 ± 1.7 1.7 ± 1.8 1.5 ± 1.1 

Rowing - Rowing light - Rowing 30spm 1.5 ± 1.3 1.4 ± 1.3 1.4 ± 1.3 1.4 ± 1.3 1.3 ± 1.2 1.3 ± 1.2 1.0 ± 1.0 

Rowing - Rowing moderate - Rowing 30spm 2.0 ± 1.6 2.0 ± 1.7 2.0 ± 1.7 1.8 ± 1.7 1.7 ± 1.6 1.7 ± 1.8 1.5 ± 1.5 

Running - Treadmill 4mph - Treadmill 0  1.4 ± 0.6 1.4 ± 0.7 1.4 ± 0.7 1.6 ± 0.8 1.7 ± 0.9 1.7 ± 1.1 1.5 ± 1.1 

Running - Treadmill 5mph - Treadmill 0  1.3 ± 0.6 1.4 ± 0.8 1.4 ± 0.8 1.4 ± 1.0 1.5 ± 1.1 1.6 ± 1.4 1.8 ± 1.6 

Running - Treadmill 6mph - Treadmill 0  1.7 ± 1.3 1.8 ± 1.2 1.8 ± 1.2 1.9 ± 1.3 2.0 ± 1.6 2.2 ± 2.1 2.2 ± 1.1 

Sitting 0.5 ± 0.1 0.6 ± 0.2 0.6 ± 0.2 0.8 ± 0.3 0.8 ± 0.4 0.9 ± 0.4 0.7 ± 0.4 

Sitting - Fidget feet legs 1.2 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 1.0 ± 0.5 0.9 ± 0.5 0.9 ± 0.6 0.7 ± 0.5 

Sitting - Fidget hands arms 0.8 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.4 

Stairs - Ascend stairs 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.8 ± 0.2 0.7 ± 0.3 0.6 ± 0.3 0.0 ± -0.0 

Stairs - Descend stairs 1.5 ± 0.3 1.5 ± 0.3 1.5 ± 0.3 1.4 ± 0.4 1.4 ± 0.5 1.4 ± 0.4 0.0 ± -0.0 

Standing 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.3 ± 0.2 

Walking - Treadmill 2mph - Treadmill 0  0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 0.7 ± 0.4 

Walking - Treadmill 3mph - Treadmill 0  0.8 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 1.0 ± 0.6 1.1 ± 0.6 1.2 ± 0.6 1.1 ± 0.7 

Walking - Treadmill 3mph - Treadmill 3  - light 0.7 ± 0.4 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.5 0.8 ± 0.6 0.8 ± 0.5 0.8 ± 0.4 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.1 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 1.0 ± 0.4 0.9 ± 0.4 0.9 ± 0.5 0.9 ± 0.6 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.7 ± 0.7 1.7 ± 0.8 1.7 ± 0.8 1.5 ± 0.7 1.5 ± 0.7 1.4 ± 0.7 1.4 ± 0.8 

kneeling 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.3 0.8 ± 0.3 0.8 ± 0.4 0.6 ± 0.4 

unknown 1.6 ± 0.4 1.6 ± 0.4 1.6 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 1.4 ± 0.4 1.4 ± 0.6 

Carrying groceries 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.8 ± 0.2 0.9 ± 0.3 0.9 ± 0.3 0.6 ± 0.4 

Doing dishes 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 

Gardening 0.6 ± 0.2 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 

Ironing 0.8 ± 0.1 0.7 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.3 

Making the bed 1.1 ± 0.3 1.1 ± 0.4 1.1 ± 0.4 0.9 ± 0.3 0.9 ± 0.3 0.8 ± 0.4 0.6 ± 0.3 

Mopping 0.7 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.3 0.6 ± 0.4 0.4 ± 0.3 

Playing videogames 0.5 ± 0.2 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 

Scrubbing a surface 0.8 ± 0.3 0.9 ± 0.4 0.9 ± 0.4 0.8 ± 0.3 0.7 ± 0.3 0.6 ± 0.3 0.6 ± 0.5 

Stacking groceries 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.4 1.0 ± 0.4 0.9 ± 0.4 0.3 ± 0.0 

Sweeping 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.2 

Typing 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Vacuuming 0.7 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.4 

Walking around block 1.3 ± 0.3 1.2 ± 0.2 1.2 ± 0.2 1.0 ± 0.3 0.9 ± 0.3 0.8 ± 0.4 0.6 ± 0.3 

Washing windows 0.8 ± 0.2 0.8 ± 0.3 0.8 ± 0.3 0.7 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 0.4 ± 0.4 

Watching TV 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 

Weeding 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.4 ± 0.3 

Wiping/Dusting 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 

Writing 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 

taking out trash 0.8 ± 0.2 0.8 ± 0.1 0.8 ± 0.1 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Table B12-5: Root mean squared error when predicting energy expenditure in a subject independent 

manner using multivariable linear regression with the FFTCorr feature computed per sensor over 

sliding windows of varying length. 
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Appendix B13: Feature Selection for Energy Expenditure 
Estimation 
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Activity All Fast to 

compute 

Invariant 

Reduced 

ACFFTPeaks 

ACAbsArea 

ACFFTPeaks. 

ACEntropy 

ACMCR, 

ACModVigEnerg

y 

ACFFTPeaks., 

ACMCR 

ACModVigEnergy 

Bench weight lifting - hard 0.6 ± 0.4 0.5 ± 0.4 0.7 ± 0.3 0.6 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 

Bench weight lifting - light 0.7 ± 0.3 0.6 ± 0.3 0.7 ± 0.2 0.6 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 

Bench weight lifting - moderate 0.7 ± 0.4 0.5 ± 0.2 0.7 ± 0.3 0.6 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 

Bicep curls - hard 1.0 ± 0.4 1.1 ± 0.5 1.3 ± 0.6 1.4 ± 0.6 1.3 ± 0.6 1.2 ± 0.6 

Bicep curls - light 0.7 ± 0.2 0.8 ± 0.3 0.9 ± 0.4 1.1 ± 0.5 1.0 ± 0.4 1.0 ± 0.4 

Bicep curls - moderate 0.7 ± 0.3 1.0 ± 0.2 1.0 ± 0.4 1.1 ± 0.4 1.0 ± 0.5 1.0 ± 0.4 

Calisthenics - Crunches 1.7 ± 0.9 1.6 ± 0.8 1.8 ± 0.9 1.6 ± 0.7 1.6 ± 0.6 1.6 ± 0.6 

Calisthenics - Sit ups 1.3 ± 0.4 1.5 ± 0.5 1.8 ± 0.8 1.7 ± 0.6 1.6 ± 0.5 1.6 ± 0.5 

Cycling - Cycle hard - Cycle 80rpm 1.8 ± 1.0 1.8 ± 1.0 1.9 ± 1.2 2.1 ± 1.2 1.9 ± 0.9 1.9 ± 1.0 

Cycling - Cycle light - Cycle 100rpm 1.2 ± 0.8 1.1 ± 0.5 1.3 ± 0.6 1.3 ± 0.6 1.2 ± 0.6 1.2 ± 0.6 

Cycling - Cycle light - Cycle 60rpm 0.8 ± 0.5 0.6 ± 0.4 0.7 ± 0.4 0.8 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 

Cycling - Cycle light - Cycle 80rpm 1.1 ± 0.8 0.9 ± 0.6 1.2 ± 0.6 1.2 ± 0.6 1.0 ± 0.7 1.0 ± 0.7 

Cycling - Cycle moderate - Cycle 80rpm 1.5 ± 0.7 1.4 ± 0.7 1.5 ± 0.8 1.7 ± 1.0 1.6 ± 0.7 1.6 ± 0.7 

Lying down 0.4 ± 0.2 0.6 ± 0.4 0.5 ± 0.3 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

Rowing - Rowing hard - Rowing 30spm 1.8 ± 1.6 2.0 ± 1.6 2.0 ± 1.6 2.2 ± 1.7 2.1 ± 1.7 2.1 ± 1.7 

Rowing - Rowing light - Rowing 30spm 1.4 ± 1.1 1.3 ± 1.1 1.4 ± 1.2 1.4 ± 1.3 1.4 ± 1.3 1.4 ± 1.3 

Rowing - Rowing moderate - Rowing 30spm 1.7 ± 1.5 1.8 ± 1.4 1.8 ± 1.6 2.1 ± 1.6 2.0 ± 1.6 1.9 ± 1.6 

Running - Treadmill 4mph - Treadmill 0 1.3 ± 0.7 1.3 ± 0.7 1.4 ± 0.6 1.4 ± 0.8 1.2 ± 0.6 1.2 ± 0.6 

Running - Treadmill 5mph - Treadmill 0 1.4 ± 0.8 1.4 ± 0.8 1.5 ± 0.9 1.5 ± 0.9 1.3 ± 0.7 1.4 ± 0.8 

Running - Treadmill 6mph - Treadmill 0 1.8 ± 1.1 1.8 ± 0.8 2.0 ± 1.3 2.1 ± 1.5 1.8 ± 1.3 1.9 ± 1.4 

Sitting 0.7 ± 0.2 0.5 ± 0.2 0.7 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 

Sitting - Fidget feet legs 1.3 ± 0.5 1.4 ± 0.7 1.1 ± 0.4 1.0 ± 0.4 1.2 ± 0.5 1.2 ± 0.5 

Sitting - Fidget hands arms 0.8 ± 0.4 1.1 ± 0.9 0.8 ± 0.4 0.6 ± 0.2 0.7 ± 0.6 0.8 ± 0.6 

Stairs - Ascend stairs 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.3 0.9 ± 0.2 0.9 ± 0.2 

Stairs - Descend stairs 1.5 ± 0.3 1.5 ± 0.3 1.5 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 1.4 ± 0.3 

Standing 0.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 

Walking - Treadmill 2mph - Treadmill 0 0.8 ± 0.5 0.9 ± 0.4 0.6 ± 0.3 0.7 ± 0.3 0.8 ± 0.4 0.8 ± 0.4 

Walking - Treadmill 3mph - Treadmill 0 1.0 ± 0.6 1.0 ± 0.5 0.8 ± 0.4 0.9 ± 0.4 1.0 ± 0.4 1.0 ± 0.5 

Walking - Treadmill 3mph - Treadmill 3  - 

light 

0.8 ± 0.5 0.6 ± 0.4 0.6 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

1.0 ± 0.5 0.9 ± 0.4 1.0 ± 0.4 1.0 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 

1.5 ± 0.7 1.5 ± 0.7 1.6 ± 0.6 1.6 ± 0.6 1.6 ± 0.7 1.6 ± 0.7 

kneeling 0.5 ± 0.2 0.4 ± 0.3 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 

unknown 1.5 ± 0.3 1.6 ± 0.4 1.6 ± 0.3 1.5 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 

Carrying groceries 0.9 ± 0.2 1.0 ± 0.4 1.0 ± 0.3 0.9 ± 0.2 0.9 ± 0.2 1.0 ± 0.2 

Doing dishes 0.5 ± 0.3 0.5 ± 0.6 0.5 ± 0.4 0.5 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 

Gardening 0.7 ± 0.4 0.9 ± 0.9 0.8 ± 0.7 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 

Ironing 0.5 ± 0.2 0.5 ± 0.3 0.5 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Making the bed 1.0 ± 0.4 1.0 ± 0.5 1.0 ± 0.4 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 

Mopping 0.6 ± 0.2 0.6 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 

Playing videogames 0.7 ± 0.4 0.8 ± 0.6 0.8 ± 0.5 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Scrubbing a surface 0.9 ± 0.5 0.9 ± 0.6 0.9 ± 0.5 0.7 ± 0.4 0.7 ± 0.2 0.7 ± 0.2 

Stacking groceries 1.0 ± 0.5 1.0 ± 0.6 1.1 ± 0.6 1.1 ± 0.5 1.0 ± 0.3 1.0 ± 0.4 

Sweeping 0.7 ± 0.4 0.7 ± 0.7 0.7 ± 0.6 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 

Typing 0.5 ± 0.2 0.4 ± 0.3 0.6 ± 0.3 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Vacuuming 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 

Walking around block 1.1 ± 0.5 1.5 ± 0.6 1.3 ± 0.6 1.3 ± 0.3 1.2 ± 0.2 1.3 ± 0.2 

Washing windows 0.7 ± 0.4 0.7 ± 0.4 0.8 ± 0.3 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 

Watching TV 0.7 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Weeding 0.8 ± 0.2 1.0 ± 0.5 0.8 ± 0.4 0.7 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 

Wiping/Dusting 0.7 ± 0.6 0.8 ± 0.8 0.7 ± 0.4 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.2 

Writing 0.6 ± 0.2 0.5 ± 0.4 0.6 ± 0.3 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

taking out trash 0.7 ± 0.2 0.8 ± 0.2 0.8 ± 0.3 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 

Table B13-1: Root mean square error per activity obtained when estimating energy expenditure 

using multivariable linear regression and different subsets of features computed per sensor over 

windows of 5.6s in length. 
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Activity All Fast to 

comput

e 

Invariant 

reduced 

ACFFTPeak

s 

ACAbsArea 

ACFFTPeaks. 

ACEntropy 

ACMCR, 

ACModVigEner

gy 

ACFFTPeaks. 

ACMCR 

ACModVigEne

rgy 

Bench weight lifting - hard 0.5 ± 0.4 0.5 ± 0.3 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Bench weight lifting - light 0.6 ± 0.3 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 

Bench weight lifting - moderate 0.6 ± 0.4 0.5 ± 0.2 0.6 ± 0.3 0.6 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 

Bicep curls - hard 0.9 ± 0.5 1.0 ± 0.5 1.2 ± 0.6 1.2 ± 0.7 1.2 ± 0.6 1.1 ± 0.6 

Bicep curls - light 0.6 ± 0.2 0.7 ± 0.3 0.8 ± 0.4 1.0 ± 0.5 0.9 ± 0.4 0.8 ± 0.4 

Bicep curls - moderate 0.6 ± 0.3 1.0 ± 0.2 1.0 ± 0.5 1.0 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 

Calisthenics - Crunches 1.5 ± 0.8 1.5 ± 0.8 1.7 ± 0.9 1.4 ± 0.6 1.4 ± 0.5 1.4 ± 0.6 

Calisthenics - Sit ups 1.2 ± 0.3 1.3 ± 0.5 1.6 ± 0.7 1.4 ± 0.5 1.4 ± 0.5 1.4 ± 0.5 

Cycling - Cycle hard - Cycle 80rpm 1.7 ± 1.0 1.7 ± 1.0 1.9 ± 1.2 2.0 ± 1.2 1.8 ± 1.0 1.8 ± 1.0 

Cycling - Cycle light - Cycle 100rpm 1.1 ± 0.8 1.0 ± 0.5 1.2 ± 0.6 1.2 ± 0.6 1.1 ± 0.6 1.0 ± 0.6 

Cycling - Cycle light - Cycle 60rpm 0.7 ± 0.5 0.6 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 

Cycling - Cycle light - Cycle 80rpm 1.0 ± 0.8 0.9 ± 0.6 1.1 ± 0.6 1.1 ± 0.6 0.9 ± 0.6 0.9 ± 0.7 

Cycling - Cycle moderate - Cycle 80rpm 1.4 ± 0.7 1.3 ± 0.7 1.4 ± 0.8 1.6 ± 1.0 1.4 ± 0.7 1.4 ± 0.7 

Lying down 0.4 ± 0.3 0.6 ± 0.4 0.4 ± 0.3 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 

Rowing - Rowing hard - Rowing 30spm 1.7 ± 1.5 1.8 ± 1.5 1.8 ± 1.6 2.1 ± 1.6 2.0 ± 1.6 1.9 ± 1.6 

Rowing - Rowing light - Rowing 30spm 1.2 ± 1.0 1.2 ± 1.0 1.2 ± 1.1 1.3 ± 1.2 1.2 ± 1.2 1.2 ± 1.2 

Rowing - Rowing moderate - Rowing 

30spm 

1.6 ± 1.5 1.7 ± 1.4 1.7 ± 1.6 2.0 ± 1.6 1.8 ± 1.6 1.8 ± 1.6 

Running - Treadmill 4mph - Treadmill 0 1.1 ± 0.7 1.1 ± 0.7 1.2 ± 0.6 1.2 ± 0.7 1.0 ± 0.5 1.0 ± 0.5 

Running - Treadmill 5mph - Treadmill 0 1.2 ± 0.8 1.2 ± 0.8 1.3 ± 0.9 1.2 ± 0.9 1.1 ± 0.7 1.2 ± 0.8 

Running - Treadmill 6mph - Treadmill 0 1.6 ± 1.1 1.6 ± 0.8 1.8 ± 1.3 1.9 ± 1.6 1.6 ± 1.3 1.7 ± 1.4 

Sitting 0.6 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Sitting - Fidget feet legs 1.2 ± 0.5 1.4 ± 0.7 1.0 ± 0.5 1.0 ± 0.4 1.2 ± 0.5 1.2 ± 0.5 

Sitting - Fidget hands arms 0.7 ± 0.4 1.0 ± 0.8 0.7 ± 0.4 0.5 ± 0.2 0.6 ± 0.6 0.7 ± 0.6 

Stairs - Ascend stairs 0.8 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 

Stairs - Descend stairs 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.4 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 

Standing 0.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Walking - Treadmill 2mph - Treadmill 0 0.7 ± 0.5 0.8 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.8 ± 0.4 0.8 ± 0.4 

Walking - Treadmill 3mph - Treadmill 0 0.9 ± 0.6 0.9 ± 0.5 0.8 ± 0.5 0.8 ± 0.4 0.9 ± 0.5 0.9 ± 0.5 

Walking - Treadmill 3mph - Treadmill 3  - 

light 

0.7 ± 0.5 0.6 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

0.9 ± 0.5 0.8 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 

Walking - Treadmill 3mph - Treadmill 9  - 

hard 

1.4 ± 0.7 1.4 ± 0.7 1.6 ± 0.6 1.5 ± 0.6 1.5 ± 0.7 1.5 ± 0.7 

kneeling 0.4 ± 0.2 0.4 ± 0.3 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

unknown 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 

Carrying groceries 0.7 ± 0.2 0.8 ± 0.3 0.8 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 

Doing dishes 0.4 ± 0.3 0.4 ± 0.5 0.4 ± 0.4 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Gardening 0.6 ± 0.4 0.8 ± 0.9 0.8 ± 0.7 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Ironing 0.4 ± 0.2 0.4 ± 0.3 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

Making the bed 0.8 ± 0.3 0.8 ± 0.4 0.8 ± 0.3 0.8 ± 0.2 0.8 ± 0.3 0.8 ± 0.3 

Mopping 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 

Playing videogames 0.6 ± 0.4 0.8 ± 0.6 0.7 ± 0.5 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

Scrubbing a surface 0.8 ± 0.4 0.8 ± 0.5 0.8 ± 0.5 0.6 ± 0.3 0.5 ± 0.2 0.6 ± 0.2 

Stacking groceries 0.9 ± 0.5 0.9 ± 0.6 0.9 ± 0.6 1.0 ± 0.4 0.9 ± 0.3 0.9 ± 0.4 

Sweeping 0.6 ± 0.4 0.6 ± 0.7 0.6 ± 0.6 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Typing 0.4 ± 0.2 0.4 ± 0.3 0.5 ± 0.3 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

Vacuuming 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Walking around block 1.0 ± 0.5 1.3 ± 0.6 1.2 ± 0.6 1.1 ± 0.3 1.1 ± 0.2 1.1 ± 0.3 

Washing windows 0.6 ± 0.3 0.6 ± 0.4 0.6 ± 0.3 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 

Watching TV 0.6 ± 0.5 0.8 ± 0.6 0.7 ± 0.5 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 

Weeding 0.7 ± 0.2 0.8 ± 0.4 0.7 ± 0.4 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 

Wiping/Dusting 0.6 ± 0.5 0.7 ± 0.7 0.6 ± 0.4 0.6 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 

Writing 0.5 ± 0.2 0.5 ± 0.4 0.6 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 

taking out trash 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.3 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 

Table B13-2: Mean absolute error per activity obtained when estimating energy expenditure using 

multivariable linear regression and different subsets of features computed per sensor over windows 

of 5.6s in length. 
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Activity All Fast to 

comput

e 

Invariant  

Reduced 

ACFFTPeak

s 

ACAbsArea 

ACFFTPeaks. 

ACEntropy 

ACMCR, 

ACModVigEne

rgy 

ACFFTPeaks. 

ACMCR 

ACModVigEn

ergy 

Bench weight lifting - hard 0.9 ± 0.5 1.0 ± 0.6 1.2 ± 0.4 1.1 ± 0.4 1.0 ± 0.4 1.1 ± 0.4 

Bench weight lifting - light 1.4 ± 0.5 1.1 ± 0.4 1.3 ± 0.4 1.2 ± 0.4 1.3 ± 0.5 1.3 ± 0.4 

Bench weight lifting - moderate 1.2 ± 0.5 0.9 ± 0.3 1.2 ± 0.4 1.1 ± 0.5 1.1 ± 0.6 1.1 ± 0.6 

Bicep curls - hard 1.9 ± 0.4 1.6 ± 0.5 2.2 ± 0.5 2.4 ± 0.6 2.3 ± 0.8 2.2 ± 0.7 

Bicep curls - light 1.7 ± 0.4 1.4 ± 0.5 1.8 ± 0.5 2.1 ± 0.5 2.0 ± 0.6 1.9 ± 0.6 

Bicep curls - moderate 1.4 ± 0.5 1.5 ± 0.2 1.9 ± 0.6 2.1 ± 0.6 1.9 ± 0.6 1.9 ± 0.6 

Calisthenics - Crunches 2.8 ± 1.1 2.4 ± 0.9 2.9 ± 1.2 2.8 ± 1.2 2.8 ± 1.2 2.8 ± 1.1 

Calisthenics - Sit ups 2.4 ± 0.7 2.4 ± 0.7 2.9 ± 0.8 2.8 ± 0.6 2.8 ± 0.6 2.7 ± 0.6 

Cycling - Cycle hard - Cycle 80rpm 2.6 ± 1.0 2.4 ± 1.2 2.6 ± 1.3 2.8 ± 1.3 2.8 ± 1.1 2.7 ± 1.1 

Cycling - Cycle light - Cycle 100rpm 2.1 ± 1.1 1.8 ± 0.7 2.1 ± 0.9 2.1 ± 0.9 2.2 ± 0.8 2.1 ± 0.8 

Cycling - Cycle light - Cycle 60rpm 1.3 ± 0.6 1.1 ± 0.5 1.1 ± 0.5 1.2 ± 0.4 1.1 ± 0.5 1.1 ± 0.5 

Cycling - Cycle light - Cycle 80rpm 1.9 ± 1.0 1.6 ± 0.9 1.9 ± 0.8 2.0 ± 0.9 1.9 ± 1.1 1.9 ± 1.1 

Cycling - Cycle moderate - Cycle 80rpm 2.3 ± 0.9 2.1 ± 0.9 2.2 ± 1.0 2.5 ± 1.1 2.5 ± 0.9 2.4 ± 0.9 

Lying down 1.0 ± 0.4 0.8 ± 0.4 1.2 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 

Rowing - Rowing hard - Rowing 30spm 2.8 ± 2.0 2.9 ± 1.8 2.8 ± 1.9 3.2 ± 2.0 3.1 ± 2.0 3.1 ± 2.0 

Rowing - Rowing light - Rowing 30spm 2.4 ± 1.3 2.2 ± 1.3 2.2 ± 1.4 2.3 ± 1.5 2.4 ± 1.5 2.3 ± 1.5 

Rowing - Rowing moderate - Rowing 30spm 2.5 ± 1.8 2.5 ± 1.7 2.5 ± 1.8 2.9 ± 1.8 2.8 ± 1.8 2.7 ± 1.8 

Running - Treadmill 4mph - Treadmill 0 2.6 ± 1.2 2.7 ± 1.3 2.8 ± 1.3 2.9 ± 1.6 2.6 ± 1.4 2.6 ± 1.4 

Running - Treadmill 5mph - Treadmill 0 2.7 ± 1.0 2.4 ± 1.1 2.8 ± 1.1 3.0 ± 1.2 2.8 ± 1.0 2.9 ± 1.1 

Running - Treadmill 6mph - Treadmill 0 3.3 ± 1.3 2.8 ± 1.0 3.5 ± 1.5 3.7 ± 1.6 3.4 ± 1.6 3.4 ± 1.6 

Sitting 1.6 ± 0.5 0.9 ± 0.2 1.3 ± 0.4 1.2 ± 0.6 1.2 ± 0.6 1.2 ± 0.6 

Sitting - Fidget feet legs 1.9 ± 0.6 2.0 ± 0.7 1.6 ± 0.4 1.6 ± 0.5 1.8 ± 0.6 1.8 ± 0.6 

Sitting - Fidget hands arms 1.6 ± 0.6 1.7 ± 1.1 1.4 ± 0.5 1.2 ± 0.4 1.4 ± 0.8 1.4 ± 0.9 

Stairs - Ascend stairs 1.8 ± 0.4 1.8 ± 0.3 1.8 ± 0.4 1.7 ± 0.4 1.8 ± 0.4 1.8 ± 0.4 

Stairs - Descend stairs 2.6 ± 0.4 2.6 ± 0.5 2.6 ± 0.5 2.5 ± 0.4 2.3 ± 0.3 2.3 ± 0.4 

Standing 1.0 ± 0.2 0.5 ± 0.2 0.9 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 

Walking - Treadmill 2mph - Treadmill 0 1.5 ± 0.6 1.6 ± 0.5 1.3 ± 0.4 1.3 ± 0.5 1.5 ± 0.5 1.5 ± 0.5 

Walking - Treadmill 3mph - Treadmill 0 1.8 ± 0.6 1.7 ± 0.6 1.5 ± 0.6 1.7 ± 0.4 1.7 ± 0.5 1.7 ± 0.5 

Walking - Treadmill 3mph - Treadmill 3  - light 1.5 ± 0.6 1.3 ± 0.5 1.2 ± 0.4 1.4 ± 0.6 1.4 ± 0.4 1.4 ± 0.5 

Walking - Treadmill 3mph - Treadmill 6  - 

moderate 

1.8 ± 0.7 1.7 ± 0.6 1.8 ± 0.4 1.8 ± 0.5 1.7 ± 0.6 1.7 ± 0.6 

Walking - Treadmill 3mph - Treadmill 9  - hard 2.3 ± 0.8 2.2 ± 0.9 2.4 ± 0.8 2.4 ± 0.8 2.4 ± 0.7 2.4 ± 0.8 

kneeling 1.2 ± 0.5 0.8 ± 0.3 1.0 ± 0.3 1.2 ± 0.3 1.2 ± 0.4 1.2 ± 0.4 

unknown 5.3 ± 0.8 5.1 ± 1.0 5.0 ± 1.0 5.0 ± 1.1 5.0 ± 1.1 5.0 ± 1.1 

Carrying groceries 2.0 ± 0.8 2.0 ± 0.9 2.0 ± 0.8 2.0 ± 0.6 2.0 ± 0.6 2.1 ± 0.6 

Doing dishes 1.0 ± 0.5 1.0 ± 0.8 0.9 ± 0.5 1.0 ± 0.3 1.0 ± 0.2 1.0 ± 0.2 

Gardening 1.6 ± 0.7 1.7 ± 1.1 1.6 ± 1.0 1.3 ± 0.3 1.3 ± 0.5 1.2 ± 0.4 

Ironing 1.2 ± 0.4 1.0 ± 0.4 1.0 ± 0.4 1.2 ± 0.5 1.3 ± 0.5 1.3 ± 0.5 

Making the bed 2.1 ± 1.0 2.4 ± 1.2 2.0 ± 0.9 2.0 ± 0.7 2.0 ± 0.7 2.0 ± 0.7 

Mopping 1.6 ± 0.6 1.4 ± 0.5 1.5 ± 0.7 1.6 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 

Playing videogames 1.5 ± 0.6 1.1 ± 0.6 1.5 ± 0.6 1.1 ± 0.6 1.1 ± 0.7 1.0 ± 0.7 

Scrubbing a surface 2.2 ± 1.3 2.0 ± 0.9 2.0 ± 1.2 1.7 ± 1.1 1.5 ± 0.4 1.6 ± 0.5 

Stacking groceries 2.1 ± 0.9 1.7 ± 0.9 2.0 ± 0.9 2.1 ± 0.9 1.9 ± 0.4 1.9 ± 0.6 

Sweeping 1.5 ± 0.5 1.5 ± 0.8 1.4 ± 0.8 1.3 ± 0.3 1.5 ± 0.3 1.4 ± 0.3 

Typing 1.1 ± 0.4 0.8 ± 0.6 1.1 ± 0.6 1.0 ± 0.4 1.0 ± 0.4 1.0 ± 0.4 

Vacuuming 1.2 ± 0.2 1.2 ± 0.2 1.1 ± 0.4 1.1 ± 0.4 1.4 ± 0.2 1.3 ± 0.3 

Walking around block 2.3 ± 0.6 2.7 ± 0.7 2.4 ± 0.7 2.4 ± 0.6 2.3 ± 0.4 2.4 ± 0.4 

Washing windows 1.7 ± 0.7 1.8 ± 0.9 1.6 ± 0.6 1.6 ± 0.5 1.5 ± 0.3 1.5 ± 0.3 

Watching TV 1.4 ± 0.7 1.1 ± 0.7 1.3 ± 0.6 0.9 ± 0.2 1.0 ± 0.3 1.0 ± 0.2 

Weeding 1.7 ± 0.7 1.7 ± 0.8 1.6 ± 0.8 1.5 ± 0.5 1.5 ± 0.5 1.5 ± 0.5 

Wiping/Dusting 1.6 ± 0.9 1.7 ± 1.0 1.5 ± 0.7 1.4 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 

Writing 1.2 ± 0.4 0.8 ± 0.5 1.2 ± 0.4 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 

taking out trash 1.6 ± 0.4 1.8 ± 0.4 1.8 ± 0.5 1.9 ± 0.5 1.7 ± 0.4 1.8 ± 0.4 

Table B13-3: Maximum absolute error deviation per activity obtained when estimating energy 

expenditure using multivariable linear regression and different subsets of features computed per 

sensor over windows of 5.6s in length. 
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Appendix B14: Energy Expenditure Estimation Using Heart 
Rate Data 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 1.93 ± 1.22 1.86 ± 1.19 2.49 ± 1.65 

Bench_weight_lifting_-_light 1.70 ± 0.59 1.68 ± 0.58 2.11 ± 0.74 

Bench_weight_lifting_-_moderate 1.63 ± 0.69 1.60 ± 0.66 2.19 ± 1.10 

Bicep_curls_-_hard 1.97 ± 0.72 1.96 ± 0.72 2.39 ± 0.81 

Bicep_curls_-_light 1.65 ± 0.63 1.62 ± 0.64 1.95 ± 0.61 

Bicep_curls_-_moderate 1.83 ± 0.62 1.80 ± 0.65 2.35 ± 0.68 

Calisthenics_-_Crunches 1.86 ± 0.82 1.77 ± 0.75 2.39 ± 0.92 

Calisthenics_-_Sit_ups 1.43 ± 0.76 1.30 ± 0.82 2.29 ± 0.78 

Cycling_-_Cycle_hard_-_Cycle_80rpm 1.86 ± 1.67 1.79 ± 1.67 2.45 ± 1.93 

Cycling_-_Cycle_light_-_Cycle_100rpm 0.85 ± 0.66 0.81 ± 0.66 1.14 ± 0.71 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.48 ± 0.26 0.46 ± 0.26 0.75 ± 0.33 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.63 ± 0.34 0.60 ± 0.34 0.92 ± 0.38 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.34 ± 1.07 1.22 ± 1.06 2.20 ± 1.54 

Lying_down 0.25 ± 0.11 0.23 ± 0.10 0.47 ± 0.19 

Rowing_-_Rowing_hard_-_Rowing_30spm 0.92 ± 0.45 0.84 ± 0.45 1.57 ± 0.78 

Rowing_-_Rowing_light_-_Rowing_30spm 0.73 ± 0.42 0.66 ± 0.41 1.19 ± 0.52 

Rowing_-_Rowing_moderate_-_Rowing_30spm 0.73 ± 0.37 0.68 ± 0.36 1.09 ± 0.48 

Running_-_Treadmill_4mph_-_Treadmill_0_ 0.97 ± 0.53 0.86 ± 0.50 1.61 ± 0.96 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.34 ± 0.77 1.28 ± 0.77 1.89 ± 0.92 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.63 ± 0.98 1.55 ± 0.95 2.29 ± 1.41 

Sitting 0.54 ± 0.18 0.41 ± 0.14 1.27 ± 0.48 

Sitting_-_Fidget_feet_legs 0.34 ± 0.21 0.30 ± 0.20 0.61 ± 0.35 

Sitting_-_Fidget_hands_arms 0.49 ± 0.26 0.45 ± 0.26 0.71 ± 0.30 

Stairs_-_Ascend_stairs 0.83 ± 0.41 0.73 ± 0.38 1.57 ± 0.68 

Stairs_-_Descend_stairs 0.94 ± 0.39 0.80 ± 0.33 1.72 ± 0.69 

Standing 0.89 ± 0.49 0.86 ± 0.50 1.20 ± 0.54 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.56 ± 0.37 0.49 ± 0.29 1.05 ± 0.99 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.58 ± 0.26 0.55 ± 0.26 0.87 ± 0.33 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.74 ± 0.29 0.71 ± 0.30 1.04 ± 0.31 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.95 ± 0.43 0.91 ± 0.44 1.47 ± 0.73 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.10 ± 0.54 1.07 ± 0.55 1.47 ± 0.64 

kneeling 0.65 ± 0.43 0.58 ± 0.45 1.03 ± 0.49 

unknown 1.11 ± 0.38 0.89 ± 0.30 3.44 ± 1.67 

Carrying_groceries 0.88 ± 0.42 0.81 ± 0.40 1.25 ± 0.57 

Doing_dishes 0.45 ± 0.10 0.40 ± 0.10 0.77 ± 0.18 

Gardening 0.40 ± 0.16 0.32 ± 0.15 0.93 ± 0.36 

Ironing 0.46 ± 0.17 0.39 ± 0.15 0.88 ± 0.42 

Making_the_bed 0.80 ± 0.35 0.71 ± 0.32 1.34 ± 0.45 

Mopping 0.74 ± 0.40 0.67 ± 0.39 1.25 ± 0.70 

Playing_videogames 0.25 ± 0.12 0.22 ± 0.11 0.50 ± 0.21 

Scrubbing_a_surface 0.68 ± 0.33 0.60 ± 0.30 1.31 ± 0.75 

Stacking_groceries 0.54 ± 0.16 0.49 ± 0.13 0.96 ± 0.36 

Sweeping 0.57 ± 0.17 0.50 ± 0.16 1.07 ± 0.42 

Typing 0.31 ± 0.13 0.27 ± 0.12 0.60 ± 0.24 

Vacuuming 0.65 ± 0.47 0.59 ± 0.47 1.13 ± 0.66 

Walking_around_block 0.67 ± 0.19 0.58 ± 0.18 1.18 ± 0.29 

Washing_windows 0.63 ± 0.30 0.52 ± 0.27 1.26 ± 0.53 

Watching_TV 0.25 ± 0.12 0.21 ± 0.13 0.51 ± 0.17 

Weeding 0.58 ± 0.27 0.54 ± 0.27 0.93 ± 0.38 

Wiping/Dusting 0.42 ± 0.24 0.36 ± 0.20 0.81 ± 0.44 

Writing 0.30 ± 0.15 0.28 ± 0.15 0.49 ± 0.18 

taking_out_trash 0.71 ± 0.50 0.63 ± 0.48 1.28 ± 0.89 

Table B14-1: Estimation of energy expenditure estimation using linear regression and the ScaledHR 

feature evaluated in a subject independent manner. The heart rate feature was computed over sliding 

windows of 5.6s in length. 
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Figure B14-1. Subject independent estimation of energy expenditure using linear regression and the 

ScaledHR feature computed over windows of 5.6s in length.  
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 1.87 ± 0.91 1.79 ± 0.89 2.43 ± 1.24 

Bench_weight_lifting_-_light 1.70 ± 0.64 1.69 ± 0.63 2.10 ± 0.82 

Bench_weight_lifting_-_moderate 1.52 ± 0.71 1.49 ± 0.69 2.04 ± 1.09 

Bicep_curls_-_hard 1.82 ± 0.36 1.81 ± 0.36 2.23 ± 0.44 

Bicep_curls_-_light 1.63 ± 0.49 1.61 ± 0.49 1.95 ± 0.52 

Bicep_curls_-_moderate 1.72 ± 0.48 1.70 ± 0.49 2.26 ± 0.65 

Calisthenics_-_Crunches 1.67 ± 0.61 1.59 ± 0.58 2.19 ± 0.63 

Calisthenics_-_Sit_ups 1.30 ± 0.45 1.14 ± 0.52 2.27 ± 0.47 

Cycling_-_Cycle_hard_-_Cycle_80rpm 1.67 ± 1.46 1.58 ± 1.45 2.29 ± 1.71 

Cycling_-_Cycle_light_-_Cycle_100rpm 0.69 ± 0.45 0.65 ± 0.45 1.00 ± 0.49 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.40 ± 0.24 0.37 ± 0.25 0.69 ± 0.33 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.47 ± 0.28 0.44 ± 0.28 0.74 ± 0.35 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.17 ± 0.98 1.07 ± 0.95 1.92 ± 1.49 

Lying_down 0.39 ± 0.26 0.37 ± 0.26 0.60 ± 0.29 

Rowing_-_Rowing_hard_-_Rowing_30spm 0.83 ± 0.39 0.71 ± 0.40 1.60 ± 0.86 

Rowing_-_Rowing_light_-_Rowing_30spm 0.66 ± 0.33 0.57 ± 0.33 1.16 ± 0.44 

Rowing_-_Rowing_moderate_-_Rowing_30spm 0.69 ± 0.42 0.62 ± 0.43 1.15 ± 0.50 

Running_-_Treadmill_4mph_-_Treadmill_0_ 0.90 ± 0.38 0.81 ± 0.35 1.55 ± 0.77 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.25 ± 0.65 1.20 ± 0.64 1.79 ± 0.82 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.32 ± 1.01 1.25 ± 0.96 1.96 ± 1.51 

Sitting 0.56 ± 0.25 0.46 ± 0.26 1.25 ± 0.46 

Sitting_-_Fidget_feet_legs 0.36 ± 0.23 0.33 ± 0.23 0.60 ± 0.39 

Sitting_-_Fidget_hands_arms 0.45 ± 0.28 0.41 ± 0.28 0.66 ± 0.33 

Stairs_-_Ascend_stairs 0.79 ± 0.35 0.68 ± 0.32 1.50 ± 0.58 

Stairs_-_Descend_stairs 0.91 ± 0.36 0.76 ± 0.31 1.65 ± 0.58 

Standing 0.81 ± 0.49 0.78 ± 0.50 1.13 ± 0.58 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.62 ± 0.31 0.56 ± 0.24 1.10 ± 0.85 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.65 ± 0.20 0.62 ± 0.20 0.97 ± 0.29 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.75 ± 0.23 0.72 ± 0.24 1.05 ± 0.24 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.96 ± 0.33 0.91 ± 0.34 1.51 ± 0.82 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.04 ± 0.42 1.01 ± 0.43 1.44 ± 0.49 

kneeling 0.68 ± 0.48 0.64 ± 0.49 1.01 ± 0.51 

unknown 1.03 ± 0.33 0.83 ± 0.26 3.33 ± 1.64 

Carrying_groceries 0.81 ± 0.31 0.76 ± 0.29 1.18 ± 0.45 

Doing_dishes 0.40 ± 0.15 0.36 ± 0.14 0.70 ± 0.25 

Gardening 0.35 ± 0.14 0.28 ± 0.14 0.84 ± 0.32 

Ironing 0.39 ± 0.19 0.32 ± 0.17 0.79 ± 0.45 

Making_the_bed 0.79 ± 0.30 0.71 ± 0.29 1.32 ± 0.43 

Mopping 0.67 ± 0.33 0.60 ± 0.32 1.16 ± 0.58 

Playing_videogames 0.22 ± 0.17 0.19 ± 0.16 0.41 ± 0.20 

Scrubbing_a_surface 0.57 ± 0.29 0.49 ± 0.26 1.19 ± 0.72 

Stacking_groceries 0.46 ± 0.18 0.41 ± 0.17 0.88 ± 0.30 

Sweeping 0.49 ± 0.08 0.41 ± 0.04 0.97 ± 0.37 

Typing 0.30 ± 0.12 0.26 ± 0.12 0.61 ± 0.24 

Vacuuming 0.60 ± 0.47 0.55 ± 0.47 1.07 ± 0.73 

Walking_around_block 0.67 ± 0.15 0.59 ± 0.16 1.13 ± 0.22 

Washing_windows 0.62 ± 0.31 0.51 ± 0.28 1.25 ± 0.50 

Watching_TV 0.23 ± 0.15 0.19 ± 0.13 0.49 ± 0.26 

Weeding 0.51 ± 0.31 0.46 ± 0.32 0.83 ± 0.30 

Wiping/Dusting 0.41 ± 0.28 0.35 ± 0.25 0.82 ± 0.50 

Writing 0.27 ± 0.19 0.25 ± 0.19 0.45 ± 0.23 

taking_out_trash 0.66 ± 0.42 0.59 ± 0.40 1.21 ± 0.80 

Table B14-2: Estimation of energy expenditure using linear regression and the ScaledHR feature 

evaluated in a subject dependent manner. The heart rate feature was computed over sliding windows 

of 5.6s in length. 
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Activity MAE RMSE MAED 

Bench_weight_lifting_-_hard 1.21 ± 0.98 1.28 ± 1.00 1.79 ± 1.27 

Bench_weight_lifting_-_light 1.02 ± 0.53 1.06 ± 0.53 1.52 ± 0.65 

Bench_weight_lifting_-_moderate 0.94 ± 0.59 1.00 ± 0.59 1.53 ± 0.87 

Bicep_curls_-_hard 0.96 ± 0.79 1.02 ± 0.76 1.62 ± 0.83 

Bicep_curls_-_light 0.72 ± 0.44 0.80 ± 0.42 1.40 ± 0.50 

Bicep_curls_-_moderate 0.84 ± 0.51 0.93 ± 0.47 1.63 ± 0.45 

Calisthenics_-_Crunches 1.26 ± 0.64 1.39 ± 0.67 2.21 ± 0.77 

Calisthenics_-_Sit_ups 1.22 ± 0.31 1.33 ± 0.33 2.13 ± 0.58 

Cycling_-_Cycle_hard_-_Cycle_80rpm 1.70 ± 1.26 1.78 ± 1.27 2.46 ± 1.38 

Cycling_-_Cycle_light_-_Cycle_100rpm 0.92 ± 0.53 0.99 ± 0.51 1.52 ± 0.59 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.46 ± 0.33 0.50 ± 0.32 0.84 ± 0.40 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.61 ± 0.47 0.65 ± 0.46 1.03 ± 0.55 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.14 ± 0.90 1.26 ± 0.90 2.18 ± 1.28 

Lying_down 0.23 ± 0.10 0.27 ± 0.10 0.67 ± 0.37 

Rowing_-_Rowing_hard_-_Rowing_30spm 1.08 ± 0.70 1.18 ± 0.70 1.88 ± 0.87 

Rowing_-_Rowing_light_-_Rowing_30spm 0.82 ± 0.55 0.91 ± 0.59 1.44 ± 0.82 

Rowing_-_Rowing_moderate_-_Rowing_30spm 0.96 ± 0.54 1.02 ± 0.57 1.50 ± 0.77 

Running_-_Treadmill_4mph_-_Treadmill_0_ 0.76 ± 0.34 0.92 ± 0.43 2.08 ± 1.06 

Running_-_Treadmill_5mph_-_Treadmill_0_ 0.94 ± 0.43 1.07 ± 0.45 2.11 ± 0.74 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.15 ± 0.64 1.27 ± 0.67 2.19 ± 1.14 

Sitting 0.34 ± 0.14 0.43 ± 0.19 0.94 ± 0.46 

Sitting_-_Fidget_feet_legs 0.42 ± 0.17 0.46 ± 0.18 0.81 ± 0.33 

Sitting_-_Fidget_hands_arms 0.38 ± 0.15 0.42 ± 0.16 0.73 ± 0.20 

Stairs_-_Ascend_stairs 0.72 ± 0.30 0.83 ± 0.31 1.61 ± 0.52 

Stairs_-_Descend_stairs 0.86 ± 0.30 0.98 ± 0.35 1.72 ± 0.56 

Standing 0.57 ± 0.33 0.62 ± 0.34 1.00 ± 0.38 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.37 ± 0.26 0.44 ± 0.33 0.96 ± 0.83 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.38 ± 0.20 0.45 ± 0.20 0.93 ± 0.33 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.40 ± 0.17 0.45 ± 0.18 0.87 ± 0.29 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.57 ± 0.27 0.64 ± 0.27 1.24 ± 0.42 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 0.84 ± 0.48 0.89 ± 0.47 1.43 ± 0.58 

kneeling 0.47 ± 0.34 0.52 ± 0.33 0.90 ± 0.37 

unknown 0.82 ± 0.21 1.04 ± 0.27 3.51 ± 1.30 

Carrying_groceries 0.55 ± 0.28 0.62 ± 0.31 1.14 ± 0.52 

Doing_dishes 0.34 ± 0.12 0.40 ± 0.13 0.85 ± 0.27 

Gardening 0.34 ± 0.16 0.40 ± 0.18 0.89 ± 0.38 

Ironing 0.33 ± 0.15 0.40 ± 0.20 0.85 ± 0.49 

Making_the_bed 0.60 ± 0.30 0.69 ± 0.31 1.36 ± 0.50 

Mopping 0.58 ± 0.31 0.67 ± 0.32 1.25 ± 0.51 

Playing_videogames 0.23 ± 0.14 0.28 ± 0.14 0.63 ± 0.26 

Scrubbing_a_surface 0.60 ± 0.28 0.71 ± 0.29 1.45 ± 0.54 

Stacking_groceries 0.51 ± 0.22 0.62 ± 0.29 1.29 ± 0.66 

Sweeping 0.47 ± 0.17 0.55 ± 0.16 1.11 ± 0.23 

Typing 0.29 ± 0.10 0.34 ± 0.11 0.71 ± 0.24 

Vacuuming 0.54 ± 0.39 0.61 ± 0.38 1.22 ± 0.46 

Walking_around_block 0.46 ± 0.15 0.56 ± 0.17 1.18 ± 0.35 

Washing_windows 0.50 ± 0.21 0.61 ± 0.23 1.31 ± 0.39 

Watching_TV 0.24 ± 0.14 0.28 ± 0.15 0.62 ± 0.24 

Weeding 0.51 ± 0.31 0.58 ± 0.29 0.97 ± 0.42 

Wiping/Dusting 0.34 ± 0.17 0.42 ± 0.20 0.90 ± 0.35 

Writing 0.25 ± 0.12 0.29 ± 0.12 0.54 ± 0.20 

taking_out_trash 0.50 ± 0.34 0.58 ± 0.35 1.15 ± 0.61 

Table B14-3: Estimation of energy expenditure using linear regression and the 

ScaledHR+ACFFTPeaks feature evaluated in a subject independent manner. The features were 

computed over sliding windows of 5.6s in length. 
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Appendix B15: Feature Selection over Subsets of 
Accelerometers for Energy Expenditure Estimation 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 0.37 ± 0.25 0.32 ± 0.21 0.77 ± 0.50 

Bench_weight_lifting_-_light 0.53 ± 0.25 0.48 ± 0.25 0.88 ± 0.35 

Bench_weight_lifting_-_moderate 0.56 ± 0.26 0.53 ± 0.24 0.86 ± 0.33 

Bicep_curls_-_hard 1.22 ± 0.54 1.20 ± 0.55 1.57 ± 0.58 

Bicep_curls_-_light 0.92 ± 0.42 0.86 ± 0.44 1.46 ± 0.60 

Bicep_curls_-_moderate 1.13 ± 0.35 1.08 ± 0.35 1.63 ± 0.28 

Calisthenics_-_Crunches 1.31 ± 0.42 1.17 ± 0.42 2.07 ± 0.70 

Calisthenics_-_Sit_ups 1.75 ± 0.86 1.54 ± 0.77 2.58 ± 1.04 

Cycling_-_Cycle_hard_-_Cycle_80rpm 2.94 ± 0.95 2.89 ± 0.98 3.50 ± 0.91 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.60 ± 0.89 1.51 ± 0.93 2.24 ± 0.85 

Cycling_-_Cycle_light_-_Cycle_60rpm 1.00 ± 0.48 0.97 ± 0.50 1.31 ± 0.45 

Cycling_-_Cycle_light_-_Cycle_80rpm 1.33 ± 0.72 1.28 ± 0.74 1.72 ± 0.75 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 2.36 ± 0.87 2.29 ± 0.87 2.94 ± 0.84 

Lying_down 0.70 ± 0.16 0.69 ± 0.16 0.90 ± 0.13 

Rowing_-_Rowing_hard_-_Rowing_30spm 3.06 ± 1.80 2.95 ± 1.70 3.70 ± 2.14 

Rowing_-_Rowing_light_-_Rowing_30spm 2.10 ± 1.35 1.94 ± 1.23 2.77 ± 1.59 

Rowing_-_Rowing_moderate_-_Rowing_30spm 2.82 ± 1.67 2.70 ± 1.64 3.49 ± 1.92 

Running_-_Treadmill_4mph_-_Treadmill_0_ 1.19 ± 0.48 0.97 ± 0.43 2.68 ± 1.25 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.03 ± 0.38 0.88 ± 0.36 2.07 ± 0.98 

Running_-_Treadmill_6mph_-_Treadmill_0_ 0.99 ± 0.49 0.90 ± 0.47 1.79 ± 1.04 

Sitting 0.63 ± 0.16 0.60 ± 0.18 0.86 ± 0.12 

Sitting_-_Fidget_feet_legs 1.03 ± 0.35 1.01 ± 0.35 1.39 ± 0.45 

Sitting_-_Fidget_hands_arms 1.00 ± 0.31 0.98 ± 0.32 1.34 ± 0.35 

Stairs_-_Ascend_stairs 0.85 ± 0.22 0.73 ± 0.21 1.66 ± 0.40 

Stairs_-_Descend_stairs 1.39 ± 0.29 1.27 ± 0.30 2.34 ± 0.27 

Standing 0.64 ± 0.15 0.61 ± 0.16 0.90 ± 0.19 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.87 ± 0.43 0.83 ± 0.45 1.49 ± 0.53 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 1.00 ± 0.48 0.94 ± 0.50 1.64 ± 0.68 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.60 ± 0.37 0.53 ± 0.37 1.10 ± 0.52 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.73 ± 0.41 0.67 ± 0.42 1.16 ± 0.45 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.42 ± 0.73 1.38 ± 0.73 1.89 ± 0.79 

kneeling 0.54 ± 0.19 0.51 ± 0.20 0.87 ± 0.24 

unknown 1.54 ± 0.35 1.16 ± 0.24 5.15 ± 1.17 

Carrying_groceries 1.12 ± 0.40 0.97 ± 0.40 2.23 ± 0.81 

Doing_dishes 0.69 ± 0.16 0.64 ± 0.17 1.21 ± 0.33 

Gardening 0.62 ± 0.41 0.54 ± 0.39 1.17 ± 0.65 

Ironing 0.65 ± 0.18 0.59 ± 0.18 1.15 ± 0.44 

Making_the_bed 0.93 ± 0.30 0.79 ± 0.27 1.93 ± 0.57 

Mopping 0.59 ± 0.22 0.51 ± 0.22 1.31 ± 0.47 

Playing_videogames 0.76 ± 0.16 0.75 ± 0.17 1.05 ± 0.32 

Scrubbing_a_surface 0.86 ± 0.27 0.71 ± 0.24 1.91 ± 0.55 

Stacking_groceries 0.84 ± 0.29 0.77 ± 0.31 1.43 ± 0.39 

Sweeping 0.55 ± 0.28 0.45 ± 0.23 1.18 ± 0.44 

Typing 0.71 ± 0.14 0.68 ± 0.14 1.00 ± 0.21 

Vacuuming 0.55 ± 0.25 0.47 ± 0.24 1.17 ± 0.47 

Walking_around_block 1.60 ± 0.36 1.48 ± 0.39 2.73 ± 0.44 

Washing_windows 0.83 ± 0.37 0.71 ± 0.34 1.67 ± 0.77 

Watching_TV 0.75 ± 0.15 0.74 ± 0.15 1.04 ± 0.34 

Weeding 0.63 ± 0.27 0.54 ± 0.23 1.27 ± 0.64 

Wiping/Dusting 0.85 ± 0.26 0.74 ± 0.24 1.78 ± 0.53 

Writing 0.74 ± 0.19 0.73 ± 0.20 0.95 ± 0.21 

taking_out_trash 0.78 ± 0.21 0.65 ± 0.18 1.65 ± 0.37 

Table B15-1: Energy expenditure estimation using linear regression and the ACAbsArea feature 

computed per sensor over the accelerometers at the hip, dominant wrist and dominant foot evaluated 

in a subject independent manner. The feature is computed over windows of 5.6s in length. 
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Activity RMSE MAE MAED 

Bench_weight_lifting_-_hard 0.46 ± 0.21 0.39 ± 0.18 0.94 ± 0.34 

Bench_weight_lifting_-_light 0.59 ± 0.22 0.52 ± 0.22 1.12 ± 0.35 

Bench_weight_lifting_-_moderate 0.62 ± 0.30 0.56 ± 0.28 1.06 ± 0.44 

Bicep_curls_-_hard 1.54 ± 0.74 1.45 ± 0.77 2.38 ± 0.75 

Bicep_curls_-_light 1.22 ± 0.55 1.11 ± 0.57 2.12 ± 0.53 

Bicep_curls_-_moderate 1.44 ± 0.44 1.33 ± 0.46 2.47 ± 0.53 

Calisthenics_-_Crunches 1.50 ± 0.60 1.31 ± 0.53 2.75 ± 1.27 

Calisthenics_-_Sit_ups 1.77 ± 0.88 1.56 ± 0.79 2.75 ± 1.07 

Cycling_-_Cycle_hard_-_Cycle_80rpm 2.22 ± 1.08 2.14 ± 1.10 3.02 ± 1.15 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.26 ± 0.71 1.16 ± 0.72 2.09 ± 0.91 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.72 ± 0.43 0.68 ± 0.45 1.10 ± 0.48 

Cycling_-_Cycle_light_-_Cycle_80rpm 1.09 ± 0.67 1.00 ± 0.68 1.83 ± 0.87 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.76 ± 0.93 1.66 ± 0.92 2.56 ± 1.08 

Lying_down 0.37 ± 0.08 0.31 ± 0.08 0.86 ± 0.37 

Rowing_-_Rowing_hard_-_Rowing_30spm 2.30 ± 1.79 2.15 ± 1.69 3.24 ± 2.13 

Rowing_-_Rowing_light_-_Rowing_30spm 1.49 ± 1.32 1.35 ± 1.22 2.27 ± 1.64 

Rowing_-_Rowing_moderate_-_Rowing_30spm 2.13 ± 1.66 2.01 ± 1.65 2.88 ± 1.85 

Running_-_Treadmill_4mph_-_Treadmill_0_ 1.31 ± 0.73 1.08 ± 0.60 2.94 ± 1.76 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.51 ± 0.65 1.27 ± 0.64 3.23 ± 0.95 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.65 ± 1.05 1.40 ± 1.04 3.37 ± 1.67 

Sitting 0.51 ± 0.20 0.45 ± 0.19 0.91 ± 0.32 

Sitting_-_Fidget_feet_legs 1.05 ± 0.40 1.00 ± 0.41 1.55 ± 0.45 

Sitting_-_Fidget_hands_arms 0.71 ± 0.32 0.65 ± 0.33 1.19 ± 0.43 

Stairs_-_Ascend_stairs 0.85 ± 0.20 0.72 ± 0.18 1.72 ± 0.40 

Stairs_-_Descend_stairs 1.48 ± 0.38 1.31 ± 0.35 2.66 ± 0.52 

Standing 0.49 ± 0.14 0.43 ± 0.15 0.92 ± 0.19 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.72 ± 0.32 0.64 ± 0.32 1.41 ± 0.48 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.82 ± 0.36 0.72 ± 0.35 1.67 ± 0.67 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.65 ± 0.29 0.55 ± 0.29 1.36 ± 0.43 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.97 ± 0.45 0.87 ± 0.47 1.85 ± 0.59 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.69 ± 0.62 1.62 ± 0.64 2.58 ± 0.78 

kneeling 0.51 ± 0.15 0.44 ± 0.15 1.00 ± 0.24 

unknown 1.53 ± 0.37 1.16 ± 0.26 5.22 ± 1.10 

Carrying_groceries 0.88 ± 0.33 0.75 ± 0.29 1.92 ± 0.78 

Doing_dishes 0.64 ± 0.12 0.58 ± 0.11 1.23 ± 0.20 

Gardening 0.57 ± 0.24 0.50 ± 0.22 1.15 ± 0.35 

Ironing 0.62 ± 0.17 0.54 ± 0.15 1.21 ± 0.41 

Making_the_bed 0.93 ± 0.30 0.78 ± 0.26 2.01 ± 0.71 

Mopping 0.63 ± 0.19 0.52 ± 0.17 1.57 ± 0.50 

Playing_videogames 0.55 ± 0.18 0.49 ± 0.19 1.06 ± 0.32 

Scrubbing_a_surface 0.76 ± 0.26 0.62 ± 0.21 1.84 ± 0.62 

Stacking_groceries 1.13 ± 0.68 0.99 ± 0.58 2.05 ± 1.30 

Sweeping 0.61 ± 0.28 0.49 ± 0.22 1.32 ± 0.46 

Typing 0.54 ± 0.13 0.48 ± 0.13 1.05 ± 0.31 

Vacuuming 0.52 ± 0.16 0.43 ± 0.15 1.18 ± 0.34 

Walking_around_block 1.11 ± 0.33 0.95 ± 0.32 2.33 ± 0.54 

Washing_windows 0.75 ± 0.28 0.63 ± 0.27 1.64 ± 0.55 

Watching_TV 0.55 ± 0.21 0.50 ± 0.21 1.02 ± 0.34 

Weeding 0.60 ± 0.31 0.50 ± 0.26 1.31 ± 0.71 

Wiping/Dusting 0.72 ± 0.24 0.61 ± 0.23 1.56 ± 0.42 

Writing 0.57 ± 0.20 0.52 ± 0.20 1.02 ± 0.27 

taking_out_trash 0.76 ± 0.23 0.63 ± 0.21 1.59 ± 0.41 

Table B15-2: Energy expenditure estimation using linear regression and the ACFFTPeaks feature 

computed per sensor over the accelerometers at the hip, dominant wrist and dominant foot evaluated 

in a subject independent manner. The feature is computed over windows of 5.6s in length. 
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Activity MAE RMSE MAED 

Bench_weight_lifting_-_hard 0.42 ± 0.24 0.49 ± 0.27 0.92 ± 0.45 

Bench_weight_lifting_-_light 0.52 ± 0.26 0.59 ± 0.26 1.11 ± 0.34 

Bench_weight_lifting_-_moderate 0.57 ± 0.40 0.64 ± 0.44 1.11 ± 0.58 

Bicep_curls_-_hard 1.36 ± 0.63 1.47 ± 0.60 2.37 ± 0.67 

Bicep_curls_-_light 1.05 ± 0.55 1.17 ± 0.54 2.08 ± 0.50 

Bicep_curls_-_moderate 1.21 ± 0.51 1.33 ± 0.47 2.27 ± 0.60 

Calisthenics_-_Crunches 1.34 ± 0.56 1.55 ± 0.64 2.89 ± 1.44 

Calisthenics_-_Sit_ups 1.55 ± 0.77 1.75 ± 0.87 2.81 ± 1.06 

Cycling_-_Cycle_hard_-_Cycle_80rpm 2.01 ± 0.90 2.09 ± 0.89 2.91 ± 1.00 

Cycling_-_Cycle_light_-_Cycle_100rpm 1.02 ± 0.50 1.14 ± 0.49 2.04 ± 0.63 

Cycling_-_Cycle_light_-_Cycle_60rpm 0.65 ± 0.41 0.70 ± 0.39 1.12 ± 0.42 

Cycling_-_Cycle_light_-_Cycle_80rpm 0.90 ± 0.62 1.00 ± 0.61 1.81 ± 0.86 

Cycling_-_Cycle_moderate_-_Cycle_80rpm 1.52 ± 0.76 1.63 ± 0.78 2.47 ± 0.92 

Lying_down 0.28 ± 0.06 0.34 ± 0.07 0.87 ± 0.47 

Rowing_-_Rowing_hard_-_Rowing_30spm 2.05 ± 1.63 2.20 ± 1.72 3.11 ± 1.99 

Rowing_-_Rowing_light_-_Rowing_30spm 1.29 ± 1.16 1.43 ± 1.25 2.25 ± 1.44 

Rowing_-_Rowing_moderate_-_Rowing_30spm 1.90 ± 1.57 2.00 ± 1.58 2.71 ± 1.79 

Running_-_Treadmill_4mph_-_Treadmill_0_ 0.98 ± 0.51 1.18 ± 0.61 2.58 ± 1.42 

Running_-_Treadmill_5mph_-_Treadmill_0_ 1.18 ± 0.74 1.37 ± 0.73 2.76 ± 0.89 

Running_-_Treadmill_6mph_-_Treadmill_0_ 1.51 ± 0.90 1.73 ± 0.90 3.36 ± 1.50 

Sitting 0.41 ± 0.17 0.48 ± 0.20 0.89 ± 0.36 

Sitting_-_Fidget_feet_legs 0.95 ± 0.39 1.00 ± 0.38 1.50 ± 0.47 

Sitting_-_Fidget_hands_arms 0.49 ± 0.23 0.56 ± 0.22 1.10 ± 0.37 

Stairs_-_Ascend_stairs 0.72 ± 0.18 0.85 ± 0.18 1.67 ± 0.34 

Stairs_-_Descend_stairs 1.31 ± 0.30 1.44 ± 0.27 2.37 ± 0.30 

Standing 0.34 ± 0.11 0.40 ± 0.11 0.81 ± 0.23 

Walking_-_Treadmill_2mph_-_Treadmill_0_ 0.95 ± 0.38 1.00 ± 0.37 1.63 ± 0.49 

Walking_-_Treadmill_3mph_-_Treadmill_0_ 0.83 ± 0.46 0.91 ± 0.44 1.65 ± 0.54 

Walking_-_Treadmill_3mph_-_Treadmill_3__-_light 0.48 ± 0.19 0.56 ± 0.19 1.17 ± 0.35 

Walking_-_Treadmill_3mph_-_Treadmill_6__-_moderate 0.76 ± 0.42 0.85 ± 0.40 1.58 ± 0.57 

Walking_-_Treadmill_3mph_-_Treadmill_9__-_hard 1.55 ± 0.65 1.61 ± 0.64 2.34 ± 0.79 

kneeling 0.41 ± 0.16 0.49 ± 0.17 1.07 ± 0.37 

unknown 1.15 ± 0.27 1.53 ± 0.37 4.96 ± 1.12 

Carrying_groceries 0.82 ± 0.17 0.97 ± 0.18 2.05 ± 0.55 

Doing_dishes 0.39 ± 0.08 0.46 ± 0.08 0.98 ± 0.15 

Gardening 0.49 ± 0.14 0.58 ± 0.17 1.22 ± 0.30 

Ironing 0.41 ± 0.13 0.50 ± 0.18 1.11 ± 0.46 

Making_the_bed 0.79 ± 0.29 0.93 ± 0.31 1.99 ± 0.75 

Mopping 0.55 ± 0.17 0.66 ± 0.17 1.52 ± 0.27 

Playing_videogames 0.38 ± 0.15 0.44 ± 0.16 0.94 ± 0.28 

Scrubbing_a_surface 0.54 ± 0.20 0.66 ± 0.24 1.57 ± 0.50 

Stacking_groceries 0.93 ± 0.53 1.07 ± 0.61 2.07 ± 1.21 

Sweeping 0.51 ± 0.21 0.63 ± 0.26 1.36 ± 0.39 

Typing 0.40 ± 0.12 0.47 ± 0.13 1.03 ± 0.34 

Vacuuming 0.44 ± 0.20 0.52 ± 0.22 1.19 ± 0.44 

Walking_around_block 1.17 ± 0.26 1.31 ± 0.24 2.39 ± 0.26 

Washing_windows 0.54 ± 0.22 0.67 ± 0.23 1.55 ± 0.49 

Watching_TV 0.43 ± 0.20 0.49 ± 0.20 0.96 ± 0.33 

Weeding 0.48 ± 0.23 0.59 ± 0.30 1.26 ± 0.70 

Wiping/Dusting 0.55 ± 0.23 0.66 ± 0.23 1.51 ± 0.52 

Writing 0.45 ± 0.15 0.52 ± 0.15 1.02 ± 0.27 

taking_out_trash 0.68 ± 0.20 0.81 ± 0.22 1.66 ± 0.42 

Table B15-3: Energy expenditure estimation using linear regression and the ACFFTPeaks + 

ACModVigEnergy + ACMCR feature computed per sensor over the accelerometers at the hip, 

dominant wrist and dominant foot evaluated in a subject independent manner. The feature is 

computed over windows of 5.6s in length. 
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Appendix B16: MIT Energy Expenditure Dataset Statistics 
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   Activity Energy Expenditure 

In METs 

(Mean ± Std) 

   Bench weight lifting - hard 2.041 ± 0.234 

   Bench weight lifting - light 1.859 ± 0.5 

   Bench weight lifting - moderate 1.887 ± 0.474 

   Bicep curls - hard 1.456 ± 0.485 

   Bicep curls - light 1.852 ± 0.35 

   Bicep curls - moderate 1.582 ± 0.372 

   Calisthenics - Crunches 1.751 ± 1.161 

   Calisthenics - Sit ups 3.788 ± 0.808 

   Cycling - Cycle hard - Cycle 80rpm 5.719 ± 1.569 

   Cycling - Cycle light - Cycle 100rpm 5.607 ± 0.781 

   Cycling - Cycle light - Cycle 60rpm 3.372 ± 0.438 

   Cycling - Cycle light - Cycle 80rpm 4.362 ± 0.602 

   Cycling - Cycle moderate - Cycle 80rpm 5.4 ± 0.72 

   Lying down 0.99 ± 0.16 

   Rowing - Rowing hard - Rowing 30spm 5.984 ± 1.831 

   Rowing - Rowing light - Rowing 30spm 4.92 ± 1.376 

   Rowing - Rowing moderate - Rowing 30spm 5.776 ± 1.798 

   Running - Treadmill 4mph - Treadmill 0  4.844 ± 0.799 

   Running - Treadmill 5mph - Treadmill 0  6.736 ± 0.765 

   Running - Treadmill 6mph - Treadmill 0  7.352 ± 1.017 

   Sitting 1.139 ± 0.264 

   Sitting - Fidget feet legs 1.254 ± 0.245 

   Sitting - Fidget hands arms 1.176 ± 0.203 

   Stairs - Ascend stairs 3.104 ± 0.23 

   Stairs - Descend stairs 3.417 ± 0.748 

   Standing 1.131 ± 0.255 

   Walking - Treadmill 2mph - Treadmill 0  2.627 ± 0.361 

   Walking - Treadmill 3mph - Treadmill 0  3.352 ± 0.351 

   Walking - Treadmill 3mph - Treadmill 3  - light 4.033 ± 0.372 

   Walking - Treadmill 3mph - Treadmill 6  - moderate 4.77 ± 0.431 

   Walking - Treadmill 3mph - Treadmill 9  - hard 5.633 ± 0.548 

   kneeling 1.221 ± 0.222 

   unknown 2.666 ± 0.561 

   Carrying groceries 3.211 ± 0.697 

   Doing dishes 1.665 ± 0.263 

   Gardening 2.219 ± 0.425 

   Ironing 1.606 ± 0.427 

   Making the bed 3.094 ± 0.541 

   Mopping 2.746 ± 0.521 

   Playing videogames 1 ± 0.151 

   Scrubbing a surface 2.53 ± 0.452 

   Stacking groceries 2.031 ± 0.409 

   Sweeping 2.522 ± 0.283 

   Typing 1.123 ± 0.143 

   Vacuuming 2.53 ± 0.534 

   Walking around block 2.777 ± 0.51 

   Washing windows 2.418 ± 0.619 

   Watching TV 0.985 ± 0.129 

   Weeding 2.312 ± 0.48 

   Wiping/Dusting 2.098 ± 0.34 

   Writing 1.03 ± 0.186 

   taking out trash 2.452 ± 0.417 

Table B16-1: Average energy expenditure per activity in METs (Mean ± STD) computed for all the 

subjects included in the MIT energy expenditure dataset. The average was computed over all the 

activity duration, without eliminating periods corresponding to non steady-state energy expenditure. 
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Activity Energy Expenditure in 

Kcal/Min 

(Mean ± Std) 

Bench weight lifting - hard 2.88 ± 0.515 

Bench weight lifting - light 2.503 ± 0.776 

Bench weight lifting - moderate 2.581 ± 0.638 

Bicep curls - hard 1.908 ± 0.696 

Bicep curls - light 2.389 ± 0.427 

Bicep curls - moderate 2.054 ± 0.489 

Calisthenics - Crunches 2.314 ± 1.551 

Calisthenics - Sit ups 4.908 ± 1.141 

Cycling - Cycle hard - Cycle 80rpm 7.268 ± 2.113 

Cycling - Cycle light - Cycle 100rpm 6.967 ± 1.008 

Cycling - Cycle light - Cycle 60rpm 4.272 ± 0.497 

Cycling - Cycle light - Cycle 80rpm 5.519 ± 0.621 

Cycling - Cycle moderate - Cycle 80rpm 6.708 ± 0.928 

Lying down 1.292 ± 0.285 

Rowing - Rowing hard - Rowing 30spm 7.896 ± 2.915 

Rowing - Rowing light - Rowing 30spm 6.423 ± 2.092 

Rowing - Rowing moderate - Rowing 30spm 7.575 ± 2.719 

Running - Treadmill 4mph - Treadmill 0  6.054 ± 1.074 

Running - Treadmill 5mph - Treadmill 0  8.457 ± 1.366 

Running - Treadmill 6mph - Treadmill 0  9.33 ± 2.023 

Sitting 1.478 ± 0.442 

Sitting - Fidget feet legs 1.626 ± 0.431 

Sitting - Fidget hands arms 1.524 ± 0.371 

Stairs - Ascend stairs 3.899 ± 0.574 

Stairs - Descend stairs 4.319 ± 1.16 

Standing 1.45 ± 0.401 

Walking - Treadmill 2mph - Treadmill 0  3.298 ± 0.603 

Walking - Treadmill 3mph - Treadmill 0  4.198 ± 0.6 

Walking - Treadmill 3mph - Treadmill 3  - light 5.048 ± 0.658 

Walking - Treadmill 3mph - Treadmill 6  - moderate 5.97 ± 0.746 

Walking - Treadmill 3mph - Treadmill 9  - hard 7.084 ± 1.181 

kneeling 1.566 ± 0.389 

unknown 3.468 ± 0.806 

Carrying groceries 4.274 ± 1.229 

Doing dishes 2.199 ± 0.483 

Gardening 3.106 ± 0.94 

Ironing 2.077 ± 0.437 

Making the bed 3.981 ± 0.927 

Mopping 3.385 ± 0.615 

Playing videogames 1.329 ± 0.24 

Scrubbing a surface 3.09 ± 0.528 

Stacking groceries 2.598 ± 0.637 

Sweeping 3.13 ± 0.516 

Typing 1.493 ± 0.35 

Vacuuming 3.098 ± 0.519 

Walking around block 3.738 ± 1.185 

Washing windows 3.116 ± 0.718 

Watching TV 1.318 ± 0.277 

Weeding 3.221 ± 0.995 

Wiping/Dusting 2.685 ± 0.532 

Writing 1.342 ± 0.22 

taking out trash 3.144 ± 0.712 

Table B16-2: Average energy expenditure per activity in Kcal/min (Mean ± STD) computed for all 

the subjects included in the MIT energy expenditure dataset. The average was computed over all the 

activity duration, without eliminating periods corresponding to non steady-state energy expenditure. 
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   Activity Heart Rate 

in BPM 

(Mean ± Std) 

   Bench weight lifting - hard 105.803 ± 17.434 

   Bench weight lifting - light 105.219 ± 14.674 

   Bench weight lifting - moderate 104.009 ± 15.293 

   Bicep curls - hard 103.279 ± 18.848 

   Bicep curls - light 103.816 ± 15.641 

   Bicep curls - moderate 104.364 ± 14.466 

   Calisthenics - Crunches 105.112 ± 15.706 

   Calisthenics - Sit ups 125.837 ± 18.782 

   Cycling - Cycle hard - Cycle 80rpm 124.149 ± 28.561 

   Cycling - Cycle light - Cycle 100rpm 144.068 ± 27.564 

   Cycling - Cycle light - Cycle 60rpm 110.288 ± 19.285 

   Cycling - Cycle light - Cycle 80rpm 125.54 ± 25.041 

   Cycling - Cycle moderate - Cycle 80rpm 129.489 ± 26.728 

   Lying down 64.764 ± 10.693 

   Rowing - Rowing hard - Rowing 30spm 144.113 ± 16.766 

   Rowing - Rowing light - Rowing 30spm 132.423 ± 20.585 

   Rowing - Rowing moderate - Rowing 30spm 141.078 ± 17.359 

   Running - Treadmill 4mph - Treadmill 0  129.144 ± 27.538 

   Running - Treadmill 5mph - Treadmill 0  150.453 ± 24.984 

   Running - Treadmill 6mph - Treadmill 0  157.564 ± 22.615 

   Sitting 74.005 ± 13.449 

   Sitting - Fidget feet legs 76.991 ± 14.33 

   Sitting - Fidget hands arms 78.385 ± 14.099 

   Stairs - Ascend stairs 115.256 ± 21.955 

   Stairs - Descend stairs 107.139 ± 22.107 

   Standing 85.288 ± 14.404 

   Walking - Treadmill 2mph - Treadmill 0  94.879 ± 24.702 

   Walking - Treadmill 3mph - Treadmill 0  103.268 ± 23.886 

   Walking - Treadmill 3mph - Treadmill 3  - light 112.353 ± 24.231 

   Walking - Treadmill 3mph - Treadmill 6  - moderate 121.403 ± 25.435 

   Walking - Treadmill 3mph - Treadmill 9  - hard 134.084 ± 27 

   kneeling 81.124 ± 12.448 

   unknown 102.588 ± 16.651 

   Carrying groceries 100.205 ± 10.553 

   Doing dishes 82.965 ± 14.384 

   Gardening 90.935 ± 8.824 

   Ironing 80.428 ± 13.641 

   Making the bed 97.61 ± 14.814 

   Mopping 94.711 ± 12.615 

   Playing videogames 70.771 ± 10.447 

   Scrubbing a surface 95.536 ± 10.933 

   Stacking groceries 84.708 ± 10.772 

   Sweeping 90.987 ± 12.919 

   Typing 69.467 ± 10.497 

   Vacuuming 88.993 ± 10.27 

   Walking around block 94.379 ± 9.452 

   Washing windows 89.432 ± 14.269 

   Watching TV 67.808 ± 11.203 

   Weeding 88.933 ± 12.831 

   Wiping/Dusting 83.843 ± 12.822 

   Writing 71.034 ± 10.211 

   taking out trash 92.181 ± 11.946 

Table B16-3: Average heart rate per activity in beats-per-minute (BPM) (Mean ± STD) computed for 

all the subjects included in the MIT energy expenditure dataset. The average was computed over all 

the activity duration, without eliminating periods corresponding to non steady-state heart rate. 
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   Activity METs 

(Mean ± Std) 

   Bench weight lifting - hard 2.122 ± 0.51 

   Bench weight lifting - light 1.946 ± 0.532 

   Bench weight lifting - moderate 1.967 ± 0.623 

   Bicep curls - hard 1.485 ± 0.508 

   Bicep curls - light 1.781 ± 0.312 

   Bicep curls - moderate 1.538 ± 0.317 

   Calisthenics - Crunches 1.493 ± 1.205 

   Calisthenics - Sit ups 4.306 ± 1.201 

   Cycling - Cycle hard - Cycle 80rpm 5.927 ± 1.528 

   Cycling - Cycle light - Cycle 100rpm 5.862 ± 0.824 

   Cycling - Cycle light - Cycle 60rpm 3.395 ± 0.484 

   Cycling - Cycle light - Cycle 80rpm 4.544 ± 0.62 

   Cycling - Cycle moderate - Cycle 80rpm 5.655 ± 0.737 

   Lying down 0.931 ± 0.143 

   Rowing - Rowing hard - Rowing 30spm 6.412 ± 2.157 

   Rowing - Rowing light - Rowing 30spm 5.458 ± 1.701 

   Rowing - Rowing moderate - Rowing 30spm 6.183 ± 1.958 

   Running - Treadmill 4mph - Treadmill 0  5.273 ± 0.959 

   Running - Treadmill 5mph - Treadmill 0  7.035 ± 0.776 

   Running - Treadmill 6mph - Treadmill 0  7.469 ± 0.978 

   Sitting 1.076 ± 0.241 

   Sitting - Fidget feet legs 1.274 ± 0.26 

   Sitting - Fidget hands arms 1.145 ± 0.213 

   Stairs - Ascend stairs 3.352 ± 0.311 

   Stairs - Descend stairs 4.409 ± 1.433 

   Standing 1.055 ± 0.254 

   Walking - Treadmill 2mph - Treadmill 0  2.722 ± 0.365 

   Walking - Treadmill 3mph - Treadmill 0  3.478 ± 0.379 

   Walking - Treadmill 3mph - Treadmill 3  - light 4.157 ± 0.373 

   Walking - Treadmill 3mph - Treadmill 6  - moderate 4.919 ± 0.432 

   Walking - Treadmill 3mph - Treadmill 9  - hard 5.766 ± 0.599 

   kneeling 1.177 ± 0.24 

   unknown 2.484 ± 1.016 

   Carrying groceries 3.427 ± 0.755 

   Doing dishes 1.672 ± 0.266 

   Gardening 2.271 ± 0.405 

   Ironing 1.564 ± 0.31 

   Making the bed 3.447 ± 0.733 

   Mopping 2.894 ± 0.618 

   Playing videogames 0.984 ± 0.128 

   Scrubbing a surface 2.656 ± 0.523 

   Stacking groceries 2.051 ± 0.558 

   Sweeping 2.601 ± 0.34 

   Typing 1.051 ± 0.169 

   Vacuuming 2.517 ± 0.533 

   Walking around block 3.086 ± 0.607 

   Washing windows 2.511 ± 0.661 

   Watching TV 0.949 ± 0.127 

   Weeding 2.486 ± 0.584 

   Wiping/Dusting 2.202 ± 0.432 

   Writing 1.022 ± 0.182 

   taking out trash 2.575 ± 0.485 

Table B16-4: Average energy expenditure per activity in METs (Mean ± STD) computed for all the 

subjects included in the MIT energy expenditure dataset. The average was computed over the 

activity duration after eliminating 33.3% (1/3) of the data at the beginning of the activity. In other 

words, non-steady state energy expenditure periods at the beginning of each activity were first 

eliminated. 
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   Activity Kcal/min 

(Mean ± Std) 

   Bench weight lifting - hard 2.974 ± 0.716 

   Bench weight lifting - light 2.606 ± 0.763 

   Bench weight lifting - moderate 2.686 ± 0.825 

   Bicep curls - hard 1.949 ± 0.735 

   Bicep curls - light 2.299 ± 0.414 

   Bicep curls - moderate 1.995 ± 0.411 

   Calisthenics - Crunches 1.973 ± 1.583 

   Calisthenics - Sit ups 5.602 ± 1.705 

   Cycling - Cycle hard - Cycle 80rpm 7.526 ± 2.09 

   Cycling - Cycle light - Cycle 100rpm 7.289 ± 1.09 

   Cycling - Cycle light - Cycle 60rpm 4.293 ± 0.498 

   Cycling - Cycle light - Cycle 80rpm 5.75 ± 0.632 

   Cycling - Cycle moderate - Cycle 80rpm 7.009 ± 0.824 

   Lying down 1.212 ± 0.246 

   Mask off 2.075 ± 1.319 

   Rowing - Rowing hard - Rowing 30spm 8.446 ± 3.289 

   Rowing - Rowing light - Rowing 30spm 7.137 ± 2.55 

   Rowing - Rowing moderate - Rowing 30spm 8.118 ± 2.985 

   Running - Treadmill 4mph - Treadmill 0  6.57 ± 1.149 

   Running - Treadmill 5mph - Treadmill 0  8.842 ± 1.456 

   Running - Treadmill 6mph - Treadmill 0  9.481 ± 2.043 

   Sitting 1.402 ± 0.436 

   Sitting - Fidget feet legs 1.652 ± 0.442 

   Sitting - Fidget hands arms 1.482 ± 0.363 

   Stairs - Ascend stairs 4.191 ± 0.472 

   Stairs - Descend stairs 5.615 ± 2.17 

   Standing 1.353 ± 0.398 

   Walking - Treadmill 2mph - Treadmill 0  3.413 ± 0.586 

   Walking - Treadmill 3mph - Treadmill 0  4.349 ± 0.588 

   Walking - Treadmill 3mph - Treadmill 3  - light 5.205 ± 0.68 

   Walking - Treadmill 3mph - Treadmill 6  - moderate 6.159 ± 0.786 

   Walking - Treadmill 3mph - Treadmill 9  - hard 7.251 ± 1.211 

   kneeling 1.511 ± 0.399 

   unknown 3.177 ± 1.269 

   Carrying groceries 4.544 ± 1.242 

   Doing dishes 2.21 ± 0.502 

   Gardening 3.185 ± 0.959 

   Ironing 2.034 ± 0.353 

   Making the bed 4.426 ± 1.084 

   Mopping 3.571 ± 0.746 

   Playing videogames 1.31 ± 0.243 

   Scrubbing a surface 3.238 ± 0.592 

   Stacking groceries 2.618 ± 0.799 

   Sweeping 3.225 ± 0.525 

   Typing 1.388 ± 0.301 

   Vacuuming 3.072 ± 0.471 

   Walking around block 4.149 ± 1.31 

   Washing windows 3.24 ± 0.784 

   Watching TV 1.269 ± 0.273 

   Weeding 3.486 ± 1.275 

   Wiping/Dusting 2.811 ± 0.584 

   Writing 1.331 ± 0.214 

   taking out trash 3.297 ± 0.764 

Table B16-5: Average energy expenditure per activity in Kcal/min (Mean ± STD) computed for all 

the subjects included in the MIT energy expenditure dataset. The average was computed over the 

activity duration after eliminating 33.3% (1/3) of the data at the beginning of the activity. In other 

words, non-steady state energy expenditure periods at the beginning of each activity were first 

eliminated. 
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   Activity Heart rate 

In BPM 

(Mean ± Std) 

   Bench weight lifting - hard 108.849 ± 18.292 

   Bench weight lifting - light 107.459 ± 16.378 

   Bench weight lifting - moderate 105.803 ± 14.457 

   Bicep curls - hard 103.969 ± 21.227 

   Bicep curls - light 104.206 ± 15.464 

   Bicep curls - moderate 104.839 ± 16.127 

   Calisthenics - Crunches 103.747 ± 14.175 

   Calisthenics - Sit ups 129.052 ± 16.831 

   Cycling - Cycle hard - Cycle 80rpm 124.215 ± 28.577 

   Cycling - Cycle light - Cycle 100rpm 147.408 ± 28.928 

   Cycling - Cycle light - Cycle 60rpm 110.627 ± 20.166 

   Cycling - Cycle light - Cycle 80rpm 127.33 ± 25.803 

   Cycling - Cycle moderate - Cycle 80rpm 132.088 ± 28.317 

   Lying down 63.215 ± 10.275 

   Rowing - Rowing hard - Rowing 30spm 147.396 ± 18.017 

   Rowing - Rowing light - Rowing 30spm 136.31 ± 21.743 

   Rowing - Rowing moderate - Rowing 30spm 144.858 ± 18.085 

   Running - Treadmill 4mph - Treadmill 0  131.842 ± 29.207 

   Running - Treadmill 5mph - Treadmill 0  152.657 ± 25.488 

   Running - Treadmill 6mph - Treadmill 0  159.805 ± 22.842 

   Sitting 71.226 ± 14.892 

   Sitting - Fidget feet legs 77.391 ± 14.46 

   Sitting - Fidget hands arms 78.595 ± 14.396 

   Stairs - Ascend stairs 119.833 ± 23.442 

   Stairs - Descend stairs 115.07 ± 27.293 

   Standing 84.344 ± 14.72 

   Walking - Treadmill 2mph - Treadmill 0  94.794 ± 25.079 

   Walking - Treadmill 3mph - Treadmill 0  103.981 ± 23.966 

   Walking - Treadmill 3mph - Treadmill 3  - light 113.649 ± 24.526 

   Walking - Treadmill 3mph - Treadmill 6  - moderate 122.897 ± 25.634 

   Walking - Treadmill 3mph - Treadmill 9  - hard 135.759 ± 27.694 

   kneeling 79.729 ± 13.307 

   unknown 97.78 ± 22.956 

   Carrying groceries 103.357 ± 10.957 

   Doing dishes 84.161 ± 13.878 

   Gardening 93.015 ± 8.096 

   Ironing 80.183 ± 12.836 

   Making the bed 99.07 ± 15.228 

   Mopping 96.53 ± 13.969 

   Playing videogames 70.829 ± 10.693 

   Scrubbing a surface 97.137 ± 12.125 

   Stacking groceries 85.968 ± 7.527 

   Sweeping 92.062 ± 14.429 

   Typing 69.155 ± 10.716 

   Vacuuming 89.592 ± 10.741 

   Walking around block 96.73 ± 9.189 

   Washing windows 91.046 ± 15.489 

   Watching TV 67.345 ± 11.389 

   Weeding 91.688 ± 13.852 

   Wiping/Dusting 84.183 ± 13.725 

   Writing 70.87 ± 10.487 

   taking out trash 93.797 ± 12.284 

Table B16-6: Average heart rate per activity in beats-per-minute (Mean ± STD) computed for all the 

subjects included in the MIT energy expenditure dataset. The average was computed over the 

activity duration after eliminating 33.3% (1/3) of the data at the beginning of the activity. In other 

words, non-steady state heart rate periods at the beginning of each activity were first eliminated. 
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Appendix B17: Data Collection Sessions Included in the MIT 
Energy Expenditure Dataset 
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Subject Gym Dataset Cleaning Dataset 

MIT-001 Yes Yes 

MIT-002 Yes Yes 

MIT-003 Yes Yes 

MIT-004 Yes Yes 

MIT-005 No No 

MIT-006 Yes Yes 

MIT-007 Yes No 

MIT-008 No No 

MIT-009 Yes No 

MIT-010 No No 

MIT-011 Yes Yes 

MIT-012 No No 

MIT-013 Yes Yes 

MIT-014 Yes Yes 

MIT-015 No Yes 

MIT-016 Yes No 

MIT-017 Yes Yes 

MIT-018 Yes Yes 

MIT-019 Yes Yes 

MIT-020 Yes No 

Table A17-1: Datasets utilized in energy expenditure experiments. The datasets marked as No were 

left out from the analysis due to consistent low readings from the Cosmed K4b2 indirect calorimeter 

perhaps caused by an improper attachment of the face mask as identified by visual inspection of the 

datasets. 

 

 

 
 Gym Dataset Cleaning Dataset 

Total datasets 15 12 

Different subjects 16 

Table A17-1: Total number of datasets utilized in the energy expenditure experiments and total 

number of different subjects utilized in the experiments after eliminating datasets with suspicious 

Cosmed K4b2 indirect calorimeter readings identified by visual inspection.  

 



   

470 

 

Appendix B18: Performance Measures for Energy 
Expenditure Estimation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

471 

 

 
 

Error Measure Brief Description Formula 

Root Mean Squared Error 

(RMSE)  

It is the most often used measure of error. It is also known 

as the Standard Error for the Estimate (SEE) in linear 

regression. The smaller the RMSE, the better the fit to the 
data. It shows the error in the same units and scale as the 

predicted values 

 



N

i

ii ap
N 1

21
 

Mean Absolute Error 
(MAE) 

Also known as the average absolute deviation. It is a 
weighted average of the absolute errors, similar to RMSE 

but less sensitive to large prediction errors and preferred 

over small datasets. It shows the error in the same units 
and scale as the predicted values 
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Maximum Absolute Error 

Deviation (MAED) 

It is the maximum absolute error between predicted and 

actual values over all the data points. It gives an idea of 

the maximum magnitude in the prediction error one can 
expect.  

),...,max( 11 NN apap   

Pearl‘s Correlation 

Coefficient (r) 

Measures the linear relationship between the predicted 

and actual values. The value varies between [-1, +1], -1 
indicating a decreasing linear relationship and +1 

indicating an increasing linear relationship. The larger the 

absolute value of the number, the better the fit to the data. 
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Squared Pearson‘s 

Correlation Coefficient 

(r2) 

Also known as coefficient of determination. Its value 

varies from zero to one and it may be interpreted as the 

proportion of variance in the dependent variable that can 
be accounted for by the regression equation. For example, 

62.02 r  indicates that 62% of the variance in the 

dependent variable can be explained by the given 

regression equation. The remaining 38% is unexplained. 
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Table B18-1: Some popular performance measures utilized during energy expenditure estimation. 

The performance measures utilized in this work are shown in bold letters. 
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Appendix B19: Activity-dependent Regression Models  
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Activity RMSE MAED 

Bench weight lifting - hard 0.60 ± 0.26 1.32 ± 0.65 

Bench weight lifting - light 0.88 ± 0.73 2.30 ± 2.52 

Bench weight lifting - moderate 1.29 ± 0.92 3.17 ± 2.80 

Bicep curls - hard 0.55 ± 0.18 1.28 ± 0.38 

Bicep curls - light 0.63 ± 0.37 1.66 ± 1.00 

Bicep curls - moderate 0.54 ± 0.40 1.39 ± 1.50 

Calisthenics - Crunches 1.53 ± 0.79 4.05 ± 2.92 

Calisthenics - Sit ups 2.18 ± 0.93 3.74 ± 1.37 

Cycling - Cycle hard - Cycle 80rpm 1.96 ± 0.75 3.30 ± 0.79 

Cycling - Cycle light - Cycle 100rpm 1.41 ± 0.79 2.85 ± 1.04 

Cycling - Cycle light - Cycle 60rpm 0.96 ± 0.55 2.18 ± 0.99 

Cycling - Cycle light - Cycle 80rpm 1.24 ± 0.50 2.50 ± 0.73 

Cycling - Cycle moderate - Cycle 80rpm 1.35 ± 0.53 2.90 ± 1.13 

Lying down 0.20 ± 0.08 0.41 ± 0.15 

Rowing - Rowing hard - Rowing 30spm 1.84 ± 0.99 3.78 ± 2.49 

Rowing - Rowing light - Rowing 30spm 1.88 ± 1.29 4.58 ± 5.44 

Rowing - Rowing moderate - Rowing 30spm 1.90 ± 1.07 3.79 ± 2.20 

Running - Treadmill 4mph - Treadmill 0  1.43 ± 0.58 2.88 ± 0.95 

Running - Treadmill 5mph - Treadmill 0  1.99 ± 1.61 4.03 ± 2.98 

Running - Treadmill 6mph - Treadmill 0  1.96 ± 1.68 3.17 ± 2.79 

Sitting 0.30 ± 0.14 0.71 ± 0.36 

Sitting - Fidget feet legs 1.70 ± 1.46 4.23 ± 2.81 

Sitting - Fidget hands arms 0.73 ± 0.53 1.66 ± 1.27 

Stairs - Ascend stairs 1.03 ± 0.19 2.64 ± 0.75 

Stairs - Descend stairs 1.52 ± 0.32 2.93 ± 0.64 

Standing 0.31 ± 0.13 0.72 ± 0.47 

Walking - Treadmill 2mph - Treadmill 0  1.10 ± 0.48 2.65 ± 0.98 

Walking - Treadmill 3mph - Treadmill 0  1.26 ± 0.44 2.34 ± 0.92 

Walking - Treadmill 3mph - Treadmill 3  - light 1.30 ± 0.33 2.36 ± 0.65 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.60 ± 0.51 2.76 ± 0.66 

Walking - Treadmill 3mph - Treadmill 9  - hard 2.10 ± 0.83 3.22 ± 0.88 

kneeling 0.34 ± 0.15 0.73 ± 0.45 

Carrying groceries 1.13 ± 0.43 2.97 ± 0.95 

Doing dishes 0.62 ± 0.36 1.98 ± 2.05 

Gardening 0.85 ± 0.53 2.47 ± 1.69 

Ironing 0.75 ± 0.47 2.29 ± 2.55 

Making the bed 1.15 ± 0.59 2.95 ± 1.83 

Mopping 0.91 ± 0.48 2.33 ± 1.33 

Playing videogames 0.43 ± 0.44 1.81 ± 2.60 

Scrubbing a surface 0.79 ± 0.40 1.90 ± 0.84 

Stacking groceries 1.10 ± 0.48 3.18 ± 1.97 

Sweeping 1.08 ± 0.79 3.00 ± 1.87 

Typing 0.31 ± 0.13 1.13 ± 0.96 

Vacuuming 0.89 ± 0.81 3.42 ± 4.60 

Walking around block 1.46 ± 0.42 3.69 ± 1.07 

Washing windows 1.16 ± 1.01 4.57 ± 4.51 

Watching TV 0.29 ± 0.19 0.98 ± 1.21 

Weeding 1.42 ± 1.38 4.93 ± 7.79 

Wiping/Dusting 0.89 ± 0.55 2.84 ± 2.43 

Writing 0.26 ± 0.10 0.69 ± 0.47 

taking out trash 0.90 ± 0.32 3.09 ± 1.16 

Table B19-1: Estimation of energy expenditure using activity-dependent linear regression models in 

a subject independent manner using the invariant reduced feature set during activity recognition and 

the ACFFTPeaks and a linear regression model per activity during energy expenditure estimation 

(ARSISI LR). Features were computed over sliding windows of 5.6s in length. Features are also 

computed over sensors at the hip, dominant wrist, and dominant foot. 
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Activity RMSE MAED 

Bench weight lifting - hard 0.56 ± 0.23 1.19 ± 0.45 

Bench weight lifting - light 0.71 ± 0.45 1.41 ± 0.87 

Bench weight lifting - moderate 0.85 ± 0.49 1.66 ± 0.84 

Bicep curls - hard 0.57 ± 0.30 1.04 ± 0.78 

Bicep curls - light 0.53 ± 0.34 1.37 ± 0.95 

Bicep curls - moderate 0.49 ± 0.28 1.12 ± 1.10 

Calisthenics - Crunches 1.45 ± 0.65 2.63 ± 1.42 

Calisthenics - Sit ups 2.12 ± 1.11 3.47 ± 1.18 

Cycling - Cycle hard - Cycle 80rpm 1.81 ± 0.89 3.13 ± 1.01 

Cycling - Cycle light - Cycle 100rpm 1.18 ± 0.76 2.59 ± 1.09 

Cycling - Cycle light - Cycle 60rpm 0.90 ± 0.53 1.90 ± 0.82 

Cycling - Cycle light - Cycle 80rpm 1.15 ± 0.51 2.23 ± 0.66 

Cycling - Cycle moderate - Cycle 80rpm 1.22 ± 0.64 2.64 ± 1.27 

Lying down 0.19 ± 0.08 0.38 ± 0.15 

Rowing - Rowing hard - Rowing 30spm 1.70 ± 1.08 3.06 ± 1.69 

Rowing - Rowing light - Rowing 30spm 1.69 ± 0.69 3.39 ± 1.46 

Rowing - Rowing moderate - Rowing 30spm 1.81 ± 0.85 3.34 ± 1.03 

Running - Treadmill 4mph - Treadmill 0  1.33 ± 0.55 2.72 ± 1.19 

Running - Treadmill 5mph - Treadmill 0  1.57 ± 1.05 2.86 ± 1.02 

Running - Treadmill 6mph - Treadmill 0  1.45 ± 1.26 2.32 ± 1.37 

Sitting 0.29 ± 0.13 0.75 ± 0.54 

Sitting - Fidget feet legs 1.30 ± 0.80 3.15 ± 1.54 

Sitting - Fidget hands arms 0.64 ± 0.35 1.40 ± 1.02 

Stairs - Ascend stairs 0.98 ± 0.16 2.34 ± 0.77 

Stairs - Descend stairs 1.47 ± 0.33 2.81 ± 0.77 

Standing 0.30 ± 0.12 0.74 ± 0.50 

Walking - Treadmill 2mph - Treadmill 0  1.07 ± 0.49 2.58 ± 1.01 

Walking - Treadmill 3mph - Treadmill 0  1.15 ± 0.51 2.07 ± 0.85 

Walking - Treadmill 3mph - Treadmill 3  - light 1.14 ± 0.34 1.98 ± 0.42 

Walking - Treadmill 3mph - Treadmill 6  - moderate 1.48 ± 0.50 2.30 ± 0.50 

Walking - Treadmill 3mph - Treadmill 9  - hard 2.09 ± 0.77 3.02 ± 0.82 

kneeling 0.35 ± 0.16 0.79 ± 0.60 

Carrying groceries 1.06 ± 0.39 2.67 ± 0.81 

Doing dishes 0.66 ± 0.44 1.62 ± 0.99 

Gardening 0.66 ± 0.42 2.00 ± 1.52 

Ironing 0.71 ± 0.37 1.88 ± 1.22 

Making the bed 1.06 ± 0.41 2.47 ± 1.22 

Mopping 0.91 ± 0.44 2.27 ± 1.15 

Playing videogames 0.34 ± 0.23 1.38 ± 1.44 

Scrubbing a surface 0.65 ± 0.23 1.50 ± 0.56 

Stacking groceries 0.91 ± 0.40 2.31 ± 1.12 

Sweeping 1.02 ± 0.92 2.14 ± 1.30 

Typing 0.33 ± 0.18 1.29 ± 1.28 

Vacuuming 0.64 ± 0.25 1.81 ± 0.94 

Walking around block 1.34 ± 0.35 3.33 ± 0.65 

Washing windows 0.79 ± 0.37 1.69 ± 0.66 

Watching TV 0.23 ± 0.10 0.57 ± 0.30 

Weeding 0.87 ± 0.29 2.01 ± 0.94 

Wiping/Dusting 0.81 ± 0.37 2.28 ± 1.41 

Writing 0.25 ± 0.12 0.65 ± 0.59 

taking out trash 0.85 ± 0.25 2.76 ± 1.03 

Table B19-2: Estimation of energy expenditure using activity-dependent models in a subject 

independent manner using the invariant reduced feature set during activity recognition and mean 

value predictions per activity during energy expenditure estimation (ARSISI Mean). Features were 

computed over sliding windows of 5.6s in length. Features are also computed over sensors at the hip, 

dominant wrist, and dominant foot. 
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Activity RMSE MAED 

Bench weight lifting - hard 0.59 ± 0.19 1.22 ± 0.57 

Bench weight lifting - light 0.78 ± 0.21 1.62 ± 0.55 

Bench weight lifting - moderate 0.91 ± 0.36 1.95 ± 0.89 

Bicep curls - hard 0.72 ± 0.37 1.18 ± 0.37 

Bicep curls - light 0.47 ± 0.25 1.18 ± 0.74 

Bicep curls - moderate 0.50 ± 0.29 1.07 ± 0.58 

Calisthenics - Crunches 2.01 ± 1.25 5.46 ± 4.60 

Calisthenics - Sit ups 1.96 ± 0.98 4.07 ± 1.54 

Cycling - Cycle hard - Cycle 80rpm 1.61 ± 0.98 2.74 ± 1.22 

Cycling - Cycle light - Cycle 100rpm 1.13 ± 0.40 2.36 ± 0.67 

Cycling - Cycle light - Cycle 60rpm 0.57 ± 0.25 1.15 ± 0.53 

Cycling - Cycle light - Cycle 80rpm 0.92 ± 0.37 2.17 ± 1.02 

Cycling - Cycle moderate - Cycle 80rpm 1.11 ± 0.40 2.42 ± 1.16 

Lying down 0.20 ± 0.08 0.47 ± 0.25 

Rowing - Rowing hard - Rowing 30spm 2.47 ± 1.45 5.57 ± 5.11 

Rowing - Rowing light - Rowing 30spm 1.51 ± 0.88 3.35 ± 2.09 

Rowing - Rowing moderate - Rowing 30spm 1.54 ± 0.48 3.46 ± 1.28 

Running - Treadmill 4mph - Treadmill 0  1.26 ± 0.60 2.52 ± 1.07 

Running - Treadmill 5mph - Treadmill 0  1.44 ± 0.82 3.54 ± 3.33 

Running - Treadmill 6mph - Treadmill 0  1.32 ± 0.61 2.34 ± 1.00 

Sitting 0.33 ± 0.21 0.75 ± 0.45 

Sitting - Fidget feet legs 0.53 ± 0.43 1.57 ± 1.62 

Sitting - Fidget hands arms 0.38 ± 0.22 0.98 ± 0.62 

Stairs - Ascend stairs 0.95 ± 0.28 2.14 ± 0.89 

Stairs - Descend stairs 1.51 ± 0.31 3.04 ± 0.68 

Standing 0.32 ± 0.20 0.74 ± 0.52 

Walking - Treadmill 2mph - Treadmill 0  0.53 ± 0.34 1.49 ± 1.21 

Walking - Treadmill 3mph - Treadmill 0  0.74 ± 0.26 1.91 ± 0.67 

Walking - Treadmill 3mph - Treadmill 3  - light 0.78 ± 0.23 1.72 ± 0.53 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.90 ± 0.44 2.17 ± 0.81 

Walking - Treadmill 3mph - Treadmill 9  - hard 1.00 ± 0.57 2.18 ± 0.93 

kneeling 0.36 ± 0.18 0.90 ± 0.81 

Carrying groceries 0.74 ± 0.19 1.80 ± 0.49 

Doing dishes 0.33 ± 0.13 0.98 ± 0.40 

Gardening 0.66 ± 0.24 1.56 ± 0.54 

Ironing 0.48 ± 0.28 1.22 ± 0.73 

Making the bed 1.02 ± 0.31 2.42 ± 0.53 

Mopping 0.73 ± 0.32 1.88 ± 0.85 

Playing videogames 0.28 ± 0.20 0.90 ± 1.22 

Scrubbing a surface 0.82 ± 0.31 2.46 ± 1.91 

Stacking groceries 0.73 ± 0.19 1.83 ± 0.76 

Sweeping 0.62 ± 0.24 1.48 ± 0.72 

Typing 0.27 ± 0.11 0.80 ± 0.42 

Vacuuming 0.60 ± 0.20 1.48 ± 0.62 

Walking around block 0.68 ± 0.12 1.51 ± 0.38 

Washing windows 0.70 ± 0.33 2.11 ± 1.42 

Watching TV 0.28 ± 0.24 1.07 ± 1.49 

Weeding 0.73 ± 0.39 1.45 ± 0.80 

Wiping/Dusting 0.51 ± 0.14 1.23 ± 0.35 

Writing 0.26 ± 0.09 0.71 ± 0.45 

taking out trash 0.57 ± 0.18 1.43 ± 0.37 

Table B19-3: Estimation of energy expenditure using activity-dependent linear regression models in 

a subject dependent manner using the invariant reduced feature set during activity recognition and 

the ACFFTPeaks and a linear regression model per activity during energy expenditure estimation 

(ARSDSI LR). Features were computed over sliding windows of 5.6s in length. Features are also 

computed over sensors at the hip, dominant wrist, and dominant foot. 
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Activity RMSE MAED 

Bench weight lifting - hard 0.40 ± 0.21 0.78 ± 0.45 

Bench weight lifting - light 0.54 ± 0.24 0.90 ± 0.34 

Bench weight lifting - moderate 0.55 ± 0.33 0.82 ± 0.45 

Bicep curls - hard 0.41 ± 0.40 0.69 ± 0.50 

Bicep curls - light 0.45 ± 0.31 1.14 ± 1.11 

Bicep curls - moderate 0.46 ± 0.17 0.79 ± 0.19 

Calisthenics - Crunches 1.29 ± 0.91 2.68 ± 2.00 

Calisthenics - Sit ups 1.41 ± 0.39 2.62 ± 0.52 

Cycling - Cycle hard - Cycle 80rpm 1.27 ± 1.00 2.22 ± 1.31 

Cycling - Cycle light - Cycle 100rpm 0.93 ± 0.37 2.05 ± 0.90 

Cycling - Cycle light - Cycle 60rpm 0.48 ± 0.24 0.95 ± 0.62 

Cycling - Cycle light - Cycle 80rpm 0.77 ± 0.32 1.78 ± 0.74 

Cycling - Cycle moderate - Cycle 80rpm 0.98 ± 0.53 2.33 ± 1.28 

Lying down 0.20 ± 0.08 0.49 ± 0.38 

Rowing - Rowing hard - Rowing 30spm 1.92 ± 1.03 2.81 ± 1.30 

Rowing - Rowing light - Rowing 30spm 1.62 ± 0.88 2.85 ± 0.98 

Rowing - Rowing moderate - Rowing 30spm 1.86 ± 0.98 2.84 ± 1.07 

Running - Treadmill 4mph - Treadmill 0  1.14 ± 0.46 2.33 ± 0.99 

Running - Treadmill 5mph - Treadmill 0  1.06 ± 0.34 2.41 ± 1.20 

Running - Treadmill 6mph - Treadmill 0  1.02 ± 0.57 1.88 ± 1.26 

Sitting 0.27 ± 0.21 0.51 ± 0.43 

Sitting - Fidget feet legs 0.46 ± 0.24 1.25 ± 1.12 

Sitting - Fidget hands arms 0.31 ± 0.22 0.75 ± 0.58 

Stairs - Ascend stairs 0.91 ± 0.22 2.01 ± 0.76 

Stairs - Descend stairs 1.40 ± 0.33 2.50 ± 0.75 

Standing 0.31 ± 0.23 0.71 ± 0.67 

Walking - Treadmill 2mph - Treadmill 0  0.44 ± 0.28 1.19 ± 0.85 

Walking - Treadmill 3mph - Treadmill 0  0.56 ± 0.17 1.51 ± 0.46 

Walking - Treadmill 3mph - Treadmill 3  - light 0.59 ± 0.15 1.49 ± 0.36 

Walking - Treadmill 3mph - Treadmill 6  - moderate 0.72 ± 0.20 1.72 ± 0.37 

Walking - Treadmill 3mph - Treadmill 9  - hard 0.76 ± 0.30 1.86 ± 0.64 

kneeling 0.37 ± 0.28 0.93 ± 1.37 

Carrying groceries 0.86 ± 0.35 1.82 ± 0.70 

Doing dishes 0.36 ± 0.16 0.88 ± 0.34 

Gardening 0.63 ± 0.30 1.64 ± 1.10 

Ironing 0.51 ± 0.31 1.30 ± 0.82 

Making the bed 1.01 ± 0.34 2.24 ± 0.59 

Mopping 0.66 ± 0.32 1.36 ± 0.45 

Playing videogames 0.26 ± 0.22 0.93 ± 1.36 

Scrubbing a surface 0.62 ± 0.24 1.39 ± 0.62 

Stacking groceries 0.58 ± 0.20 1.20 ± 0.25 

Sweeping 0.53 ± 0.13 1.12 ± 0.29 

Typing 0.27 ± 0.13 0.73 ± 0.44 

Vacuuming 0.59 ± 0.32 1.26 ± 0.49 

Walking around block 0.74 ± 0.22 1.43 ± 0.45 

Washing windows 0.70 ± 0.28 1.53 ± 0.60 

Watching TV 0.28 ± 0.20 1.06 ± 1.36 

Weeding 0.65 ± 0.33 1.44 ± 0.69 

Wiping/Dusting 0.52 ± 0.25 1.46 ± 0.94 

Writing 0.22 ± 0.07 0.54 ± 0.42 

taking out trash 0.60 ± 0.19 1.39 ± 0.27 

Table B19-4: Estimation of energy expenditure using activity-dependent models in a subject 

dependent manner using the invariant reduced feature set during activity recognition and mean value 

predictions per activity during energy expenditure estimation (ARSDSI Means). Features were 

computed over sliding windows of 5.6s in length. Features are also computed over sensors at the hip, 

dominant wrist, and dominant foot. 
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Figure B19-1: Estimation of energy expenditure using activity-dependent linear regression models in 

a subject independent manner using the invariant reduced feature set during activity recognition and 

the ACFFTPeaks and a linear regression model per activity during energy expenditure estimation 

(ARSISI LR). Features were computed over sliding windows of 5.6s in length. Features are also 

computed over sensors at the hip, dominant wrist, and dominant foot. 
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Figure B19-2: Estimation of energy expenditure using activity-dependent models in a subject 

independent manner using the invariant reduced feature set during activity recognition and mean 

value predictions per activity during energy expenditure estimation (ARSISI Mean). Features were 

computed over sliding windows of 5.6s in length. Features are also computed over sensors at the hip, 

dominant wrist, and dominant foot. 
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Figure B19-3: Estimation of energy expenditure using activity-dependent linear regression models in 

a subject dependent manner using the invariant reduced feature set during activity recognition and 

the ACFFTPeaks and a linear regression model per activity during energy expenditure estimation 

(ARSDSI LR). Features were computed over sliding windows of 5.6s in length. Features are also 

computed over sensors at the hip, dominant wrist, and dominant foot. 
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Figure B19-4: Estimation of energy expenditure using activity-dependent models in a subject 

dependent manner using the invariant reduced feature set during activity recognition and mean value 

predictions per activity during energy expenditure estimation (ARSDSI Means). Features were 

computed over sliding windows of 5.6s in length. Features are also computed over sensors at the hip, 

dominant wrist, and dominant foot. 
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