
Interfaces for Creating

Quantitative Conceptual Diagrams

by

Robin S. Stewart

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Robin S. Stewart, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by. .
David R. Karger

Professor of Electrical Engineering and Computer Science
on behalf of: mc schraefel

Research Affiliate, Computer Science and Artificial Intelligence
Laboratory

Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Interfaces for Creating
Quantitative Conceptual Diagrams

by
Robin S. Stewart

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Modern chart-making, illustration, and mathematical tools poorly support the use
of conceptual components in quantitative graphs such as Economics diagrams. The
substantial time those tools require to achieve the desired results leads many people to
sketch their graphs with pencil and paper instead of using a computer. In this thesis,
I address the challenge of designing a software user interface that not only includes
all features necessary to create a wide range of quantitative conceptual diagrams, but
also is dramatically more efficient to use than existing programs. My design takes
several important interaction techniques that previous applications used separately
and comprehensively integrates them in order to create new, flexible capabilities. I
have implemented this design as a desktop application called Graph Sketcher, and I
present results of studies which show that my interface halves the time required to
complete several common graph creation tasks. I also show that the 700 students,
teachers, professionals, and hobbyists worldwide who choose to use Graph Sketcher
in their everyday work find the interface intuitive, enjoyable, and empowering for
generating many different types of graphs.

Thesis Supervisor: mc schraefel
Title: Research Affiliate, Computer Science and Artificial Intelligence Laboratory

Acknowledgments

When I first noticed, more than five years ago, that there was no good software
for sketching Economics graphs, I never imagined that this small observation would
eventually grow into a major software product and the basis for an entire masters
thesis.

Over those five years, there are a lot of people to thank; I will name a few of them
here. Lucie Schmidt drew beautiful Economics diagrams on the board on my first
day at Williams College. Ted Smith forced me to run cross-country in high school,
which led me to become a habitual jogger, which gave me time to dream about graph
sketching interfaces as I ran through the hills of Williamstown. Duane Bailey taught
me that the best way to improve code is to delete it; that garbled code is also called
“job security”; and that software engineers should sign their work. Ashleigh Theberge
showed me how to use multiple highlighters to understand scientific papers. Aaron
Hillegass wrote the book Cocoa Programming for Mac OS X, from which I learned
how to make Mac applications and decided that a graph sketching program might
be fun to build. Karl Naden, Evan Miller, Katie Belmont, Leah Weintraub, Miriam
Lawrence, and many other friends were there to help me test Graph Sketcher, play
with it, and solve geometry problems during the formative — and extremely cold —
January of 2004.

Emily Fertig convinced me to study abroad in New Zealand for a semester, which
gave me the time to read lots of books about human-computer interaction (HCI).
Kris Kirby agreed to advise my subsequent independent study on graph sketching
interfaces, “strongly encouraged” me to add best-fit lines, and was a wonderful mentor
over the years. Bill Lenhart taught an excellent four-student lecture class on computer
graphics and helped me derive curved line algorithms. Several other professors who
will go unnamed told me simply “yep, it’s possible to solve that.”

Regina Barzilay admitted me to MIT on the assumption that I would do natural
language processing, and Victor Zue convinced me that I would survive. Brainstorm-
ing meetings with Michael Bernstein and Max Van Kleek helped me realize that I
was more interested in interfaces than in probability theory. David Karger provided
supplemental funding for my second year on the assumption that I would do research
related to semi-structured information retrieval, and he has been everything I could
ask for in an advisor. Sara Su and Jaakko Lehtinen helped me derive yet more curve
algorithms for Graph Sketcher. And when I decided to drop everything else and write
my thesis on graph sketching, mc schraefel stepped in with abundant enthusiasm,
ideas, advice, and support, despite her physical location in the UK.

Throughout all this, Graph Sketcher’s wonderful beta testers and many other users
have continued to give me feedback, find bugs, and suggest further improvements. The
software would never have come this far if they had not repeatedly convinced me that
it was actually useful.

Finally, the less specific but more important thanks to all the people I love: mom,
dad, sista, grandma “B,” grandpa “Abe,” crazy techno dancers, Haystack homies,
and the Williams alums who have helped keep me sane over the past two years.

5

This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship. Any opinions, findings, conclusions or recommenda-
tions expressed in this publication are those of the author and do not necessarily
reflect the views of the National Science Foundation.

6

Contents

1 Introduction 11

1.1 Visual Presentation of Quantitative Concepts 11

1.2 Contributions . 12

1.3 Organization of This Thesis . 13

2 Motivation 15

2.1 Quantitative Conceptual Diagrams 15

2.1.1 Analysis of economics diagrams 15

2.2 Computer-Generated vs. Drawing By Hand 18

2.2.1 Survey of economics professors 18

2.3 Properties of Quantitative Conceptual Diagrams 20

2.4 Shortcomings of Existing Tools . 22

2.5 Proposed Improvements . 22

3 Related Work 25

3.1 Chart Creation Interfaces . 25

3.2 Interactive Information Visualization 26

3.3 Visual Annotations . 26

3.4 Snapping and Constraint-based Interfaces 27

3.5 Pen-based Interfaces . 28

4 Realization 29

4.1 Graph Sketcher’s Interface . 29

4.1.1 Visual input of quantitative conceptual objects 30

4.1.2 Precise positioning via snapping 30

4.1.3 Maintaining geometric relationships 31

4.1.4 Other functionality . 32

4.2 Implementation . 32

4.2.1 Bidirectional mapping . 32

4.2.2 Direct manipulation . 33

4.3 Verification: Comparative Task Analysis 34

4.3.1 Diagram creation . 34

4.3.2 Axis range adjustment . 35

4.3.3 Discussion . 36

7

5 Exploration 39
5.1 Going Beyond “Chart Types” . 39

5.1.1 Data-driven annotations . 39
5.1.2 Statistical annotations . 40

5.2 Visual Data Manipulation and Analysis 43
5.2.1 Visual data entry and manipulation 43
5.2.2 Quantitative inspection . 44

5.3 Curve Manipulation . 44
5.3.1 Taxonomy of lines in economics diagrams 45
5.3.2 Position-based curve manipulation 45

5.4 Curve Creation . 48
5.4.1 Straight Line Interface . 49
5.4.2 Arc Recognition Interface . 49
5.4.3 Stroke Segmentation Interface 50
5.4.4 Comparative User Study . 53
5.4.5 Results . 55
5.4.6 Discussion . 57

6 Evaluation 59
6.1 Longitudinal Evaluations . 59

6.1.1 Analysis of support logs . 60
6.1.2 Survey of example graphs . 60

6.2 Discussion . 65

7 Conclusion 67
7.1 Future Work . 68

Bibliography 71

8

List of Figures

1-1 A typical diagram from an economics textbook [19] consists solely of
conceptual lines and labels. 12

1-2 This graph from an article on climate policy [34] combines plotted data
points with quantitative conceptual elements. 13

2-1 A sampling of quantitative conceptual economics diagrams from a
Microeconomics textbook [25]. The goal of this thesis is to better
support the creation of such diagrams. 16

2-2 The prevalence of various components in 178 graphs from an introduc-
tory economics textbook [19]. The conceptual components are printed
in bold. 17

2-3 Histogram summarizing 19 Economics professors’ estimates of the per-
centage of their students who turn in computer-generated diagrams on
problem sets. 19

2-4 This economics diagram [25] demonstrates (a) the need for visual input
of lines, labels, and filled areas, and (b) the presence of geometric
relationships between the various components. 21

2-5 This climate policy diagram [34] demonstrates that both conceptual
components and data points are positioned relative to the quantitative
unit system displayed by the axes. 21

2-6 An example of what can happen when conceptual components are not
positioned relative to axis units. 23

4-1 Graph Sketcher’s tools for creating and modifying graph components. 29
4-2 In Graph Sketcher, all visual components are anchored to the axis

scale, just like data. So when an axis range is updated (here to look
further into the future), all components are adjusted accordingly. . . . 30

4-3 Graph Sketcher’s snapping features make it much faster to create this
economics diagram. 31

4-4 Maintaining geometric relationships while a line is manipulated. . . . 32
4-5 Results of the diagram creation task analysis. 35
4-6 The graphs produced by each of the programs tested in the diagram

creation task. 36
4-7 Results of the axis range adjustment task analysis. 37
4-8 The graphs produced by each of the programs tested in the axis range

adjustment task. 37

9

5-1 Common “chart types” found in data graphing programs. 40
5-2 An engraving published in 1786 by William Playfair, a pioneer of

information graphics who was not tied down by software limitations
[38]. 41

5-3 Playfair’s graph (Figure 5-2) can be re-created easily in Graph Sketcher. 41
5-4 Extensions which are difficult to formulate as “chart types” can still

be created easily in Graph Sketcher, as these two examples demonstrate. 42
5-5 Visual manipulation of data in a bar chart. 43
5-6 Visual data entry is performed by simply clicking on the graph surface

in “draw” mode. 44
5-7 The data point marked “outlier” is moved around to demonstrate (in

real time) its effect on a best-fit line. 45
5-8 The four types of lines found in economics diagrams, ordered from

most to least common: straight, simple curved, complex curved, and
following data series. 46

5-9 The standard curve manipulation handles provided by illustration pro-
grams. 46

5-10 A graph with a curve that interpolates a data series. 47
5-11 The middle curve in this graph needs to pass through (2, -2) and (3,0),

both circled in red. 47
5-12 Curves can be manipulated very quickly in Graph Sketcher by simply

dragging an interpolation point (here visualized as a “curve handle”). 48
5-13 (a) A curved stroke with an illustration of the arc recognizer’s geometry

calculations, and (b) the resulting smooth curve overlaid. 50
5-14 An unlikely example of a jagged line in a quantitative diagram. . . . 51
5-15 The (a) initial and (b) pruned segmentation of a stroke. 52
5-16 The (a) initial and (b) final recognition of what seemed to be two

straight segments. 53
5-17 The graphs that users were asked to re-create with Graph Sketcher. . 54
5-18 Study participants were asked to fill out this short questionnaire after

using each interface version. 54
5-19 The average number of steps users took to create each type of line in

each interface version. The boxed results indicate matching line and
interface types. 56

6-1 A user-created economics diagram which is not based on numerical data. 62
6-2 A user-created chemistry diagram showing the phases of water. 62
6-3 A user-created diagram for materials engineering. 63
6-4 A graph produced by high school students for an in-class optics lab. . 64

7-1 The interfaces described in this thesis make it possible to quickly and
easily create beautiful quantitative conceptual diagrams such as this one. 68

7-2 Tufte’s [38] English translation of Minard’s celebrated 6-factor depic-
tion of Napoleon’s doomed 1812 Russian campaign. The original was
drawn in 1869. 69

10

Chapter 1

Introduction

1.1 Visual Presentation of Quantitative Concepts

Information graphics are useful both for analyzing data sets and for visually presenting
quantitative ideas. The relational graph, which plots the relationship between two
variables by making use of two spatial dimensions, first came into wide use in the late
1700’s, most often with time as one of the variables [38]. Since then, teachers of eco-
nomics, math, physics, chemistry, and other subjects have found the two-dimensional
relational abstraction to be an excellent method not only for plotting data but also for
describing quantitative concepts. For example, most introductory economics students
are shown (and are often asked to draw) conceptual graphs that look something like
Figure 1-1 [19]. Although most such diagrams are at least motivated by real data,
they do not necessarily plot any data points.

Despite this rich history of conceptual graphing, modern chart creation tools make
the explicit or implicit assumption that all charts are based around data sets. Not
surprisingly, this assumption has resulted in chart-making interfaces which make
it very difficult, if not impossible, to create purely conceptual graphs. Equally
worrisome, these interfaces poorly support the large spectrum of graphs which include
both data and conceptual components. For example, Figure 1-2, which was published
in an article on climate policy, shows the actual carbon emissions during the past 50
years along with a range of emissions scenarios for the next 50 years [34]. The diagram
conveys several interesting quantitative concepts: an extrapolation of past trends (the
“current predicted path”); a goal scenario (a “flat path” that “avoids doubling”); and
the notion of a “stabilization triangle” which represents the carbon that must not be
emitted in order to achieve the flat path. Chart making programs easily plot the
historical emissions data, but I will show that they break down when it comes to
adding and modifying the conceptual components.

For many graphs, the best existing solution is to use complex, general-purpose
illustration programs which require considerable time and expertise to learn and use.
Since people have limited time, most do one of two things instead. First, they use a
hand-drawn sketch if it is acceptable for the situation at hand. For example, most
students in introductory economics courses draw graphs by hand on the problem

11

Figure 1-1: A typical diagram from an economics textbook [19] consists solely of
conceptual lines and labels.

sets they turn in (Chapter 2.2.1). If a hand-sketched diagram is not sufficiently
professional, transmittable, or precise, people might skip the graphic altogether and
simply rely on verbal descriptions — which are comparatively easy to create with
the highly refined word processing capabilities of modern computers. These verbal
descriptions are useful, but the fact remains that many concepts are best described
graphically — such as the “stabilization triangle” of Figure 1-2.

Because of the difficulty of creating professional-quality quantitative conceptual
diagrams, the use of these diagrams is limited to textbooks and other professional
publications. If these diagrams were substantially easier to create — as easy as verbal
descriptions, for example — their use could be expanded into everyday mediums such
as lecture notes, essays, problem sets, and blogs.

1.2 Contributions

This thesis addresses the challenge of designing a user interface that not only provides
all features necessary to create graphs like Figures 1-1 and 1-2, but also is dramatically
more efficient to use than existing programs. I show that neither current charting
tools, illustration tools, nor mathematical tools satisfactorily support the creation of
this class of information graphics. To improve this situation, I motivate and develop
a graphing interface that treats conceptual components as data objects which can be
created and modified visually in a manner that mimics sketching by hand. I have
implemented this interface as a Mac OS X application called Graph Sketcher which

12

Figure 1-2: This graph from an article on climate policy [34] combines plotted data
points with quantitative conceptual elements.

is being used by over 700 students, teachers, professionals, and hobbyists worldwide.
Graph Sketcher has enabled these users to quickly create a wide range of quantitative
conceptual diagrams which they otherwise perhaps never would have made.

I primarily used the domain of Economics to motivate and inform my design.
There are several reasons behind this choice. First, conceptual graphs are very
common in Economics textbooks, problem sets, and research publications. Second,
these graphs use a wide range of diagrammatic components, including straight and
curved lines, data sets, complex filled areas, and contextual labels. Third, I have
personally taken several Economics classes, so I am familiar with the subject matter
of these graphs as well as the experience of creating them (in class notes and problem
sets). Last and perhaps most important, while quantitative conceptual diagrams are
found in many fields, narrowing the scope of inquiry helps make the problem tractable
and ensures that the design will be highly useful in at least one domain.

1.3 Organization of This Thesis

The rest of this thesis is organized as follows. In Chapter 2, I look at usage patterns
and properties of quantitative conceptual diagrams in order to motivate an improved
interface design. In Chapter 3, I overview the related research concerning graph-

13

ical interfaces for chart making, information visualization, contextual annotations,
geometric constraints, and pen-based input. In Chapter 4, I describe my interface
approach in more detail and show that it is substantially more efficient than existing
programs. In Chapter 5, I explore novel interaction techniques made possible by
Graph Sketcher’s design and I study its curve creation and manipulation interfaces
in detail. In Chapter 6, I evaluate the success of the interface beyond economics
diagrams by investigating how it is used longitudinally in the context of everyday
work. Finally, in Chapter 7, I offer conclusions and directions for future work.

14

Chapter 2

Motivation

2.1 Quantitative Conceptual Diagrams

I consider a diagram to be quantitative if it involves a continuous scale, usually
represented by an axis. The term is distinct from an ordinal set (where order matters
but there is no scale) or a nominal set (simply an unordered collection). These can be
combined; for example, a bar chart might show the quantitative height of a nominal
set of people. Quantitative diagrams are also to be distinguished from qualitative
diagrams, which might illustrate a concept with drawings of different phases, such as
the growth of a caterpillar into a butterfly. A diagram can be both quantitative and
qualitative, for example if the caterpillar pictures are arranged along a timeline scale.

In quantitative diagrams, I distinguish conceptual components from concrete data
sets. The most common type of chart simply visualizes a set of data points, which
might come from a scientific experiment, a sales database, thin air, etc. Quantitative
conceptual components have quantitative meaning but are more complex or more
abstract than a single data point. For example, a diagonal line on a 2D graph could
be a quantitative conceptual object that represents an increasing trend over time. A
shaded area could be a quantitative conceptual object that represents the total net
gain over some time period. Diagrams often include both data sets and conceptual
components, as seen in the carbon emissions diagram in Figure 1-2.

Quantitative conceptual diagrams are used to teach almost every quantitative
discipline. They are especially common in economics, where they’re used to visually
explain a plethora of quantitative theories, such as the relationships between quantity
and price of a good (see Figure 2-1). They’re also used to describe concepts in
chemistry, biology, physics, and engineering. Often, a plotted data set forms the
core of the graph, and conceptual marks are overlaid to indicate the generalizable
concepts.

2.1.1 Analysis of economics diagrams

Before diving in to a thorough study of quantitative conceptual diagrams, it would
be prudent to verify that they are indeed important and widely used in the world. To
verify this in one domain, and to better understand what components these diagrams

15

(a) (b)

(c) (d)

(e) (f)

Figure 2-1: A sampling of quantitative conceptual economics diagrams from a
Microeconomics textbook [25]. The goal of this thesis is to better support the creation
of such diagrams.

16

1000 10 20 30 40 50 60 70 80 90

Numbered axis

Data series

Straight lines

Simple curves

Complex curves

Jagged lines

Filled areas

Labels

Percentage of graphs containing each component

92.1%

14.6%

0%

0.56%

21.3%

78.7%

19.1%

39.3%

78.7%

21.3%

14.6%

Figure 2-2: The prevalence of various components in 178 graphs from an introductory
economics textbook [19]. The conceptual components are printed in bold.

typically contain, I analyzed all of the diagrams in a typical introductory economics
textbook [19]. Out of 190 diagrams total, 178 (94%) were two-dimensional graphs
with axes. The properties of these 178 graphs are summarized in Figure 2-2. For this
analysis I did not count lines and labels found in the axes, because all of the graphs
included both axes and axis labels.

Consistent with the definitions above, conceptual components are filled areas or
lines that do not represent data series (the conceptual types are printed in bold in
Figure 2-2). By this definition, fully 82% of the economics graphs contain at least one
conceptual component, and in fact 80.9% of graphs have only conceptual components.
By far the most common component is the straight line, which appears on 78.7% of
graphs. Simple curves appear in 21.3% of graphs, and only one curve required more
than one inflection point (curves are discussed in detail in Chapter 5.3). I found filled
areas in 14.6% of graphs, representing concepts such as “consumer surplus” and “total
cost.” Finally, there were a significant number of data series plots in the textbook
diagrams (19.1%), only two of which also contained conceptual components.

Importantly, 20.2% of the diagrams had numbered axes and solely contained
conceptual components (such as Figures 2-1b and 2-1f). These are quantitative
conceptual diagrams in the deepest sense, because the lines and filled areas refer
to real, scaled quantitative units. In the 60.7% of diagrams which were conceptual
and without a unit scale, the lines and filled areas are still quantitative insofar as
their meaning depends on a generic scale. For example, the relative slope of different
lines on the graph or relative areas of different regions is quantitatively meaningful.

This analysis shows that quantitative conceptual graphs are indeed a critical part
of introductory economics: the standard textbook I analyzed contains diagrams on

17

23% of its pages and 82% of those diagrams have conceptual components. Thus,
making it easier to create these diagrams would benefit at the very least the large
number of people who take or teach introductory economics, and probably many
more people in other quantitative fields such as physics, chemistry, biology, and math.
However, it is still not clear whether it is even possible to make it significantly easier
to create these diagrams, so in the next section I look for indications that there is
indeed room for substantial improvement.

2.2 Computer-Generated vs. Drawing By Hand

The second motivation to study quantitative conceptual diagrams is the observation
that they are commonly drawn by hand rather than using computer software. On
the one hand, if the diagrams have to look professional, such as in textbooks, lecture
slides, and scientific papers, then people do use computers to make them. But when
the diagrams are used in less formal places such as class notes and problem sets, they
are commonly drawn by hand. This observation caught my attention because one of
the promises of computer technology is to be more efficient than pencil and paper. In
many classrooms, laptops are already replacing paper notebooks for taking notes; so
why not for sketching graphs? If people are choosing to make graphs by hand, then
clearly the existing computer interfaces are insufficient.

2.2.1 Survey of economics professors

To verify my initial, anecdotal observations that most students draw their economics
diagrams by hand rather than using a computer, I emailed 128 economics professors at
Stanford University, Tufts University, University of Wisconsin-Madison, and Univer-
sity of Pennsylvania. I asked a single question: “Approximately what percentage
of your students, if any, turn in computer-generated diagrams on their problem
sets instead of drawing them by hand?” I received 24 responses (a 19% response
rate), five of which stated that their classes did not require diagrams on problem
sets. The remaining 19 answers ranged from zero to 100% of students turning in
computer-generated diagrams. The mean estimate was 30.5%, and the median was
20%. A histogram of all 19 estimates appears in Figure 2-3.

The survey results are strongly skewed towards drawing economics diagrams by
hand, particularly in introductory classes. Only one professor reported that 100% of
students use the computer, and the majority of professors estimated that number at
less than 30%. Some professors expressed pity for their students making computer
diagrams: “In my most recent class (a graduate class) probably more than half. Not
sure how they do it - some combination of powerpoint, latex [typesetting software],
other software I don’t even know about...” Another remarked, “Frankly, I find
producing computer graphics much too time consuming and fiddly myself, so I do
not expect them from students.” By contrast, most college students write their short
essays, reading responses, etc. using the computer, presumably because it is faster to
type and easier to read digital text than hand writing. Indeed, one economics professor

18

1000 10 20 30 40 50 60 70 80 90

8

0

1

2

3

4

5

6

7

Percent of students who turn in computer-generated diagrams

Bi
nn

ed
 c

ou
nt

 o
f p

ro
fe

ss
or

 re
sp

on
se

s

Figure 2-3: Histogram summarizing 19 Economics professors’ estimates of the
percentage of their students who turn in computer-generated diagrams on problem
sets.

in the survey remarked that half of the students who wrote up their problem sets with
a word processor still drew in the graphs by hand (I, too, did this in my introductory
economics course).

These responses suggest that most students have not found a satisfactory way
to create conceptual economics diagrams using existing software interfaces. One
explanation for this could be that satisfactory software does exist but most students
have just not found it. This explanation is unlikely, because no one mentioned
any tools that are not widely available, nor did my extensive research of existing
tools find any eligible programs. Instead, I conclude that the existing software is
only satisfactory for a subset of students. Perhaps these students are expert users
of existing charting or illustration software, or perhaps their professors strongly
encourage the use of computer-generated diagrams even if it is very time-consuming.
It seems likely that a much larger proportion of students would voluntarily make
diagrams by computer if it saved them time — or even if the time penalty for getting
professional-looking results was merely not as large. With this in mind, I turn to
analyzing why existing software interfaces do not satisfactorily support the creation
of these diagrams.

19

2.3 Properties of Quantitative Conceptual Diagrams

In this section I look at two quantitative conceptual diagrams in detail (Figures 2-4
and 2-5) to better understand their requirements.

Figure 2-4 is another typical diagram from an economics textbook [25]. It is not
based on a data set, so it would be difficult to create with typical charting tools.
The axes do not have explicit units, so it makes little sense to define the lines as
equations (as is done in mathematical software) or as a set of numbers (as is done
in spreadsheet and database software [5]). Instead, the quickest way to define the
lines is to input them visually — the method used in typical illustration programs
(e.g. Adobe Illustrator [14]). The labels and the yellow filled area are also most easily
defined using visual input. Thus, software that supports this type of diagram should
allow visual input of lines, labels, and filled areas.

However, the diagram has more structure than a generic visual collection of lines
and labels: the various components are strongly related and connected to each other.
For example, the dashed vertical and horizontal lines start at curved line intersections
and end at the axes; labels like “MBC1” appear just at the ends of lines; and the
yellow filled area is in the region between lines. Thus, software that supports this
type of diagram should help establish relationships between components, and help to
maintain them when various aspects of the diagram are modified.

The diagram from climate policy that we saw in the introduction (and is reprinted
below as Figure 2-5) contains many of the same components as Figure 2-4 — i.e.
lines, labels, filled areas, axes — but in a more numeric context. The axes have units
attached, and regular data points (the “historical emissions”) are plotted accordingly
alongside conceptual components (such as the “flat path”). The positions of the
plotted data and conceptual components alike are given meaning by the units on the
axes. For example, the “flat path” is not merely a line on a page but a line from
(2004, 7 billion) to (2054, 7 billion). The shaded areas are similarly bounded by these
quantitative measures. And the axis labels (such as “1954”) obviously need to appear
at the quantitative positions they correspond to. Thus, software that supports this
type of diagram should have the ability to anchor all graphical components (not just
data points) in the unit system given by the axes.

In summary, I claim that three capabilities in particular are necessary to fully
support quantitative conceptual diagrams.

1. Visual input of lines, labels, and filled areas.

2. Detection and maintenance of geometric relationships between components.

3. Positioning of all components (not just data points) relative to axis units.

Of course, there are many additional needs, such as axis creation and manipulation,
data set storage and viewing, copy/paste and undo functionality, and the formatting
of text, lines, and fills. However, these are widely supported by most software
(including my implementation) and thus fall outside the focus of this thesis.

20

Figure 2-4: This economics diagram [25] demonstrates (a) the need for visual input of
lines, labels, and filled areas, and (b) the presence of geometric relationships between
the various components.

Figure 2-5: This climate policy diagram [34] demonstrates that both conceptual
components and data points are positioned relative to the quantitative unit system
displayed by the axes.

21

2.4 Shortcomings of Existing Tools

Existing tools often support one or two of the capabilities outlined in Section 2.3,
but not all three. In particular, there is a disconnect between illustration programs
which support visual (cursor-based) input of graphical components, and math- or
data-focused tools which position components relative to a quantitative scale but
do not support visual input. A few of the tools in both categories also detect and
maintain geometric relationships to varying degrees.

Because of this tool dichotomy, the traditional method of creating a diagram like
Figure 2-5 is to graph the data in a quantitative visualization program and then
export the result to an illustration program to add the conceptual components. This
pipelined approach suffers from the problem that if any data is added or modified, or
the axis ranges need to be changed — in other words, if the underlying visualization
has to be changed in any way — the export/import pipeline has to be started over
again.

Microsoft Excel [5] solves the pipeline problem by providing both data visualiza-
tion and illustration tools within the same program. However, it fails to actually
integrate these two sets of functionality. In particular, illustration components added
to a chart are not treated like data — they simply float on the chart surface indepen-
dently of the axes and data sets. This means that when the axis ranges are changed,
the annotation objects stay where they are, thus losing their meaning (Figure 2-6).
In addition, it is difficult or impossible to establish relationships between illustration
objects and data points, such as connecting a line to the end of a data set or filling
an area bordered by a data series (both of which are needed for Figure 2-5).

2.5 Proposed Improvements

In this chapter, I have described several indicators which suggest that quantitative
conceptual diagrams are important yet poorly supported by existing software. I
have also put forth the hypothesis that three interface capabilities in particular are
most relevant: visual input, positioning relative to axis units, and detection and
maintenance of geometric relationships. This leads me to propose that an interface
which integrates all three of these capabilities would be markedly more efficient for
creating and modifying quantitative conceptual diagrams. In Chapter 3, I describe
related research which is relevant to the task of designing such an interface. In Chapter
4, I describe my implementation and show that it indeed provides a substantial
improvement over existing programs.

22

(a) Independently floating conceptual compo-
nents work so long as the visualization does not
change.

(b) If we adjust the x-axis to look further into
the future, the data points get adjusted but the
conceptual components don’t.

(c) If we zoom in on a 20-year interval,
the conceptual objects become completely
meaningless.

Figure 2-6: An example of what can happen when conceptual components are not
positioned relative to axis units.

23

24

Chapter 3

Related Work

To my knowledge, no prior work has specifically addressed the design of interfaces for
creating quantitative conceptual diagrams. However, the interface techniques I use
draw on a large body of related research.

3.1 Chart Creation Interfaces

The most commonly used chart-making programs include Microsoft Excel [5], Adobe
Illustrator [14], OpenOffice.org [23], and Apple iWork [15]. Excel, OpenOffice, and
iWork are designed to allow novice users to easily create charts that visualize existing
data sets. They also include a wide range of visual annotation tools for adding
lines, labels, clip art, and other objects to graphs. Illustrator is more flexible but
requires a higher level of expertise to use. Because it is a general-purpose illustration
program, it can be used to create any imaginable information graphic, but it does
not provide many features to make chart creation more efficient. I already discussed
some of the limitations of these programs in Chapter 2.4, and I will analyze them
more quantitatively in Chapter 4.3.

Several research prototypes have explored alternative interfaces for creating busi-
ness charts (mostly bar charts, x-y plots, and pie charts [40]). None of these proto-
types can create conceptual Economics diagrams such as Figure 2-4, but the systems
are still interesting as related work. I describe three examples here.

“Gold” is a system for creating business charts by demonstration [22]. The user
puts data in a spreadsheet, and then starts to draw a chart using vector drawing
tools such as rectangles. The system uses heuristics to guess which properties of the
graphical objects map to which data fields, and automatically completes the chart
by cleaning up the already-drawn rectangles and adding the rest according to the
data. Graph Sketcher’s approach is different: all data is immediately plotted on the
2D surface, and the user can then simply choose how they want it displayed. One
advantage of this approach is that a default display can be produced without any
user input beyond importing the data. It also completely avoids the difficulty Gold
faces in distinguishing between new data series and one-time annotations.

Mackinlay developed a system for automatically generating information graphics

25

from a given set of database relations [18]. It tries to optimize the presentation
for both graphical standards and human perceptual ability. A disadvantage is that
it requires the underlying data to be formally specified as quantitative, ordinal, or
nominal (unordered set). This approach could be used in Graph Sketcher to provide
an initial chart design, but the user still needs to be able to customize the design and
add conceptual annotations.

SageBrush [30] in a sense brings both of the previous approaches together. The
user specifies a graph design by dragging “graphemes” (e.g. points and bars) into the
workspace and attaching data columns to grapheme properties such as position, color,
and width. A single grapheme represents an entire data series, so the output graphic
looks much different from the specification graphic. Anything that is left unspecified
gets determined by the automatic presentation engine. SageBrush also lets the user
easily reuse graphic designs by dragging new data columns into the grapheme property
widgets. However, once again it does not support conceptual components or visual
manipulation of the data.

3.2 Interactive Information Visualization

Some aspects of Graph Sketcher’s interface were pioneered by interactive information
visualization tools. For example, many of those tools (such as Spotfire [37]) let the
user visually select data by clicking or dragging out a rectangular region. The selected
data can sometimes be zoomed in on or have its formatting changed, but cannot be
repositioned since the data is assumed to be fixed. Fathom [27], a visual tool for
teaching statistics, includes a richer than usual set of direct-manipulation graphing
abilities, such as the ability to drag a data set onto an axis and rescale axes by
dragging them. It also lets the user directly manipulate certain lines while it updates
the displayed line function. However, the lines must be straight and “infinite” in
length and can only be adjusted from one end at a time. More complex functions can
be adjusted in real time only via sliders that control variables in the function.

These information visualization tools are generally designed for data exploration
and analysis. By contrast, Graph Sketcher is primarily designed for presenting data
and concepts that have already been analyzed — though it can also be used to explore
and analyze simple data sets.

3.3 Visual Annotations

As discussed in Chapter 2.4, Excel and other charting programs generally put user-
defined visual annotations on a layer that floats independently above the graph
surface. The advantage of this approach is that the visual annotation tools can be
used across all types of underlying content (plots, pie charts, images, etc.). Indeed,
ScreenCrayons [6] lets users annotate any window appearing in the operating system.
The disadvantage with this approach is that the annotations quickly become useless
if the underlying document is dynamic, for example if the text size is changed, the
columns are resized, or of course, if the content is re-written.

26

The “sense.us” system for collaborative information visualization by Heer et al.
[12] ties annotations to specific states of the visualization such that they only appear
when the visualization has been drilled down accordingly. However, given a drill-down
state, the annotations are still positioned independently of the chart. Because of this,
if new census data were to be added, the visualization would shift the old data to the
left and thereby cause old annotations to become misaligned. Also, if viewers were
allowed to interact with the visualization more flexibly — for example, rescaling the
axes to zoom in on arbitrary time windows of interest — the screen-based annotations
would quickly lose their meaning (as was demonstrated in Figure 2-6).

WaveMetrics’ Igor Pro [39] takes the first small step towards solving the visualization-
rescaling problem by letting users anchor text notes to individual data points. But
it does not address the problem for lines, shaded areas, or even labels that are not
attached to specific data points.

Substantial work has been done to improve the situation for annotations on text
documents. Golovchinsky and Denoue [10] anchored hand-drawn annotations to
character positions so that each annotation was dynamically rendered at a size and
location relative to the bounding box of the characters of interest. This allows the font
size to be changed or the columns to be re-flowed while still maintaining the semantics
of the annotation marks. Our interface is the first we know of to comprehensively
provide this capability for information graphics.

3.4 Snapping and Constraint-based Interfaces

Earlier work in constraint-based interfaces has explored the idea of snapping and
anchoring visual objects to each other. The basic idea of snapping to previously-
drawn points goes back to the pioneering work of Ivan Sutherland’s “Sketchpad” [36].
Bier & Stone [3] developed “snap-dragging” as a method for defining constraints
among objects and created a system designed to resemble drawing with compass and
straightedge. Gleicher and Witkin [8, 9] took the next step with Briar, an ingenious
drawing program which used snapping to define a wide range of constraints, including
relative angles, distances, and co-location. The fundamental idea is that the set of
circumstances that cause a snap also inform the type of constraint to establish. For
example, if a point is snapped along an existing line, the constraint to establish is
that the point should be coincident with that line. Briar also includes “alignment
objects” which allow users to set up constraints such as a constant distance from a
point or a particular orientation in space.

Most of these ideas have not migrated into commercial illustration software,
perhaps because geometric constraints are not useful to most graphic designers.
However, they have been adopted in applications where geometric constraints play
a key role, such as computer-aided design and simulation. The constraint-based
approach has also been applied to interactively laying out graphs of the data-structure
and org-chart variety [31]; OmniGraffle [11] further includes the notion of “connector
magnets” for maintaining lines between boxes.

Graph Sketcher is the first to extend these snapping constraint-based techniques

27

out of the physical 2D or 3D space and into the more abstract realm of relational
graphs that map arbitrary quantitative units to each dimension. (It’s interesting
to note that a similar progression occurred with quantitative information graph-
ics themselves, which began as cartographic maps, progressed to time series plots,
and eventually introduced relations between non-spatial/temporal variables.) Graph
Sketcher also goes beyond simple geometric constraints with tools for making anno-
tations based on data — such as shaded areas that automatically follow curved lines
and data series.

3.5 Pen-based Interfaces

An arguably more “natural” way to sketch graphs is with a pen interface, which
strengthens the metaphor of drawing on paper. On the other hand, a pen is a poor
metaphor for directly manipulating already-drawn objects. Baudel [2], Michalik et al.
[20], and Mohammad and Nishida [21] have explored pen-based curve manipulation
via the addition of new strokes. Igarashi et al. defined “interactive beautification”
[13], which automatically applies constraints to each pen stroke drawn on a page,
helping to maintain connectedness, parallelism, alignment, and other geometric prop-
erties.

Most pen-based interfaces have focused on recognizing gestures (via machine
learning) so that the pen strokes can be treated as objects with greater meaning.
For example, Ouyang and Davis [24] automatically convert strokes into chemical dia-
grams. Lower-level stroke recognition techniques include those developed by Sezgin,
Stahovich, and Davis [32, 35] and Agar and Novins [1]. Pen interface research has also
focused on removing tool modes in favor of automatically interpreting the intention of
a gesture. The downside of fewer modes is a longer learning curve, a greater potential
for ambiguity, or both. In Graph Sketcher, the decision to use four modes instead of
one (see Chapter 4.1) was motivated by an early user study.

The closest I have seen to a pen-based interface for creating relational graphs is
MathPad2 [16], a tablet system for exploring math and physics concepts. A simple
graph can be created via a suitably angled pen stroke, and the axes can be configured
by hand-writing new minimum or maximum values. However, this system does not
support conceptual annotations — it can only make simple function graphs.

Graph Sketcher’s interface is applicable to both pen interfaces and traditional
pointing devices. To date, however, it has only been tested with mice and trackpads.
Expanding this research to pen or multi-touch interfaces remains future work.

28

Chapter 4

Realization

The core of Graph Sketcher’s interface is not a fundamentally new technology but
rather a novel synthesis of many of the techniques described in the previous chapters.
Just as Briar [8, 9] integrated snapping with constraints to create a substantially
more usable interface, Graph Sketcher integrates the three capabilities that were
described in Chapter 2.3 as the most important for creating quantitative conceptual
diagrams. The first, visual input, is common in illustration and computer-aided design
(CAD) software. The second, positioning relative to axis units, is a fundamental part
of information visualization and is sometimes even combined with visual input in
geographic information systems (GIS). The third, snapping to geometric relationships,
is used in CAD, physical simulation, and visual layout software.

The intention of comprehensively integrating these capabilities — which no soft-
ware has done before — is to design a graph-making interface that is both intuitive
and maximally efficient for the user. In this chapter I describe the resulting interface
and its implementation. I then perform task analyses across Graph Sketcher and three
preexisting tools to show that Graph Sketcher’s interface is approximately twice as
efficient as the competition.

4.1 Graph Sketcher’s Interface

Graph Sketcher uses four tools to support creation and manipulation of graph com-
ponents (Figure 4-1). The first tool (“Modify”) allows the user to select and directly
manipulate all objects on the graph. The latter three tools enable quick visual creation
of each basic component type: lines, filled areas, and text labels.

Figure 4-1: Graph Sketcher’s tools for creating and modifying graph components.

29

 1950 2060

7

14

Year

B
il
li
o
n

s
o
f

to
n

s
o
f

ca
rb

o
n

 e
m

it
te

d
 p

e
r

y
e
a
r

2004

Curre
ntly

pred
icte

d path

Stabilization
triangle

Flat path Avoid
doubling

Toward
tripling

one "wedge"

historical emissions

(a) 1950–2060

 1960 2060 2110 2150

7

14

Year

B
il
li
o
n

s
o
f

to
n

s
o
f

ca
rb

o
n

 e
m

it
te

d
 p

e
r

y
e
a
r

2004

Cu
rre

nt
ly

pr
ed

ict
ed

 pa
th

Stabilization
triangle

Flat path Avoid
doubling

Toward
tripling

one "wedge"

historical emissions

(b) 1950–2150

Figure 4-2: In Graph Sketcher, all visual components are anchored to the axis scale,
just like data. So when an axis range is updated (here to look further into the future),
all components are adjusted accordingly.

4.1.1 Visual input of quantitative conceptual objects

Graph Sketcher’s visual input interface is much like a typical illustration program,
but the visually-input objects are treated like data in plotting software. With the
appropriate tool selected, users can create lines by dragging across the graph surface,
filled areas by clicking on each corner of the area in turn, and text labels by clicking
at the cursor location. But unlike illustration programs, in Graph Sketcher all of
these components are positioned relative to the unit scale of the axes. This means
that when the axis ranges are changed, the conceptual lines, fills, and labels all shift
accordingly (Figure 4-2).

4.1.2 Precise positioning via snapping

To make it possible to position these quantitative components quickly and precisely,
all of the tools snap to various visual and geometric aspects of the graphic [3, 9].
Currently, components snap to existing:

• points

• lines

• line intersections

• axes

• grid lines

and lines also snap to horizontal, vertical, and 45 degrees. These snap-constraints
are a subset of those supported in research prototypes such as Briar [8, 9] and

30

Quantity of iPhones

Pr
ic

e
of

 iP
ho

ne
s

Supply

Demand

iPhone Supply and Demand

Fixed Price

Q*Q'

P*

Figure 4-3: Graph Sketcher’s snapping features make it much faster to create this
economics diagram.

interactive beautification [13], which were chosen because they seemed to be the
easiest constraints for users to understand.

These snapping behaviors make it more efficient to position nearly every element
in Figure 4-3. Line endpoints snap to the axis, and even to individual tick marks.
One end of each dotted line is snapped to an intersection, while the other end is
snapped to horizontal/vertical and an axis. The corners and edges of filled areas are
snapped to lines, intersections, and axes. And labels are snapped to lines, including
the “Demand” label which was automatically rotated as a result. These snapping
behaviors occur both as the annotations are being created (using the draw, fill and
text tools) and as they are being adjusted (using the modify tool). Also, the snaps
are displayed in real time so the user can see whether a snap will occur before lifting
the mouse button.

4.1.3 Maintaining geometric relationships

As in Briar [8, 9], most snapped objects also maintain their snap-constraints when
the object they were snapped to is moved. In Figure 4-4, for instance, the user
manipulated only the curvature of the main line, while the other annotations stayed
attached. Currently, only one constraint per position is maintained during ma-
nipulations, despite the fact that many constraints might apply to a given snap.
For example, a line cannot be constrained during a manipulation as both vertical
and attached to another line (in this case, only attachment to the line will be

31

(a) (b) (c)

Figure 4-4: Maintaining geometric relationships while a line is manipulated.

maintained). However, it is easy to regain the extra constraints if necessary by simply
snapping the annotations back into position. Automatically maintaining multiple
constraints during manipulations would require the use of a much more complex
constraint-solving engine such as the one described in [8].

4.1.4 Other functionality

For the program to be useful in realistic settings, Graph Sketcher also includes a
range of supporting functionality such as axis creation, grids, grouping, locking, data
set management, copy/paste, undo, and formatting of color, size, font, transparency,
shadow, etc. of graph elements. Such functionality is widely supported and thus
does not need to be described here in detail. However, these features are crucial
if the program is to be voluntarily used in realistic settings outside the lab. Since
one of the goals of this thesis is to evaluate the interface design in realistic settings,
implementation of these supporting features along with the novel features is vital.

4.2 Implementation

In this section I describe the implementation details of Graph Sketcher’s core func-
tionality: displaying and manipulating visual objects that are positioned relative to
the axis units.

4.2.1 Bidirectional mapping

Since all annotation types are anchored to the visualization, the heart of my imple-
mentation is a two-way mapping between data coordinates and screen/pixel coor-
dinates. All information visualization systems map from data to the screen, but
few map from the screen back to the data. This operation is more common in
geographic systems which allow the user to visually add new roads and other items.
Data coordinates are used in the data model, while screen units are crucial for
human interactions such as selecting and dragging. In Graph Sketcher, the following
components use data coordinates:

32

• axis ranges

• positions of points, lines, fills, and text labels

while the following are maintained in screen units:

• cursor “sensitivity” value for selecting and snapping

• line widths, font sizes, and styles

• amount of white space

• positions of axis titles.

All graphics are strictly vector-based. The diagram image itself is produced in the
usual way by mapping from data to screen coordinates. Simple visual data entry
works by mapping in the reverse direction. The positions of lines and fills are defined
by their endpoints and corner locations, respectively.

4.2.2 Direct manipulation

Most direct-manipulation operations are implemented by the following sequence:

1. convert all relevant positions to screen coordinates

2. run the direct-manipulation algorithm

3. convert the results back to data coordinates for the data model

The “direct-manipulation algorithms” range from detecting that the cursor is near a
line, to snapping a line to an intersection, to dragging a group of objects across the
graph surface. It is essential that these direct-manipulation algorithms are performed
in screen coordinates because they depend on parameters (such as the cursor sensitiv-
ity distance) which are defined in screen units. In order to show the manipulation in
real time, step 3 is usually executed continually so that all aspects of the visualization
are kept up to date. Step 1 is only executed once for a given manipulation, both
for efficiency and to avoid the escalating margins of error that would result from
repeatedly composing the inverse mappings.

I use a variation of this sequence to support various forms of direct-manipulation
of the axes to modify the range of the graph. Step 1 is executed once to establish the
connection between the initial axis range and the initial screen location of the cursor.
Step 3 does not use the standard mapping function, but rather calculates new values
for the axis range which are sent to the model and visualized in real time.

33

4.3 Verification: Comparative Task Analysis

To more quantitatively motivate Graph Sketcher’s interface for creating and modify-
ing conceptual diagrams, I performed a task analysis across several existing software
programs. The other programs were chosen because they have a wide enough feature
set to support a range of quantitative graphs and are designed for novice to moderately
advanced users. Besides Graph Sketcher, I analyzed: Excel (part of Microsoft Office
Mac 2008), Numbers (part of Apple’s iWork 2008 suite), and Adobe Illustrator (in
Adobe’s Creative Suite 3). The tasks were chosen to focus on the types of graphs
which I claim these existing programs’ interfaces have neglected. Task 1 requires
creating a simple economics diagram (Figure 4-6). Task 2 requires adjusting the
graph range to make space for more items (Figure 4-8).

The analysis measures the number of “steps” required to carry out each task, to
estimate the time needed by a user who is skilled at each interface. I approximate
the keystroke-level model [4] by counting a step as any action that requires mouse
targeting. If the target size is very small (within a few pixels) then I count the
targeting action as two steps to approximate the extra time needed. (Fitt’s law
predicts that pointing time increases logarithmically as the target size decreases; a
target size of 2 pixels unsnapped vs. 12 pixels snapped — the default in Graph
Sketcher — predicts an increase of approximately a factor of 1.8.) So to draw a
straight line with automatically-snapped endpoints in Graph Sketcher just requires
positioning the mouse at each endpoint in turn (a total of 2 steps), but if the endpoints
do not snap then each target also requires fine positioning (for a total of 4 steps). In
addition, I approximate short typing sequences (such as typing the word “demand”
or the axis maximum “180”) as two steps.

For each program I carefully tried to find the most efficient sequence of steps that
did not use keyboard shortcuts or other advanced techniques that beginners would
not be familiar with. Thus it is likely that slightly faster sequences are possible
for expert users, and perhaps for other charting and illustration programs that were
not analyzed. However, as we will see, the disparity between Graph Sketcher and
the other programs is far greater than the margin of error. In addition, I did not
make any effort to format the graphs because formatting interfaces are very similar
between programs and were not the focus of this investigation. Instead I simply used
the default colors, sizes, fonts, etc. In a few cases the defaults were vastly too big, so
I adjusted the size but did not count these adjustments in the task analysis.

4.3.1 Diagram creation

The first task is to create a simple economics diagram with numbered axes, four lines,
three labels, and a filled area. The output of each program is displayed in Figure 4-6,
and the analysis results are in Figure 4-5. These results show that Graph Sketcher’s
interface features substantially reduce the time it takes to set up every aspect of this
diagram. The axis ranges can be set most quickly in Graph Sketcher because they can
be typed directly into the graph, rather than requiring repeated traversal of dialog
boxes or inspector panels. Lines can be drawn most quickly primarily because Graph

34

Axes

Lines

Filled Area

Labels

Total

0 10 20 30 40 50 60 70 80

28

7

4

11

6

46

10

11

15

10

72

14

13

29

16

55

15

8

22

10

Number of steps needed to complete the diagram creation task

Excel

Numbers

Illustrator

Graph Sketcher

Figure 4-5: Results of the diagram creation task analysis.

Sketcher’s geometric snapping features eliminate fine positioning steps. Creating the
filled area is dramatically faster in Graph Sketcher because it snaps the cursor to
each corner and automatically follows the curved edge (as far as I could determine,
none of the other programs I analyzed let the user create filled areas whose edges are
defined by existing objects). Finally, text labels were created most quickly in Graph
Sketcher primarily because it automatically rotates the “Demand” label.

The results of the diagram creation task primarily illustrate the substantial time
savings that can be gained by using snapping and relative-positioning features. These
features could theoretically be adopted in future versions of any of the programs I
analyzed, independently of whether they position visual objects relative to axis units.

4.3.2 Axis range adjustment

The second task is to simply adjust the x-axis range to allow more space for other hy-
pothetical lines, labels, data, etc. (Figure 4-8). The results (Figure 4-7) demonstrate
the utility of Graph Sketcher’s treatment of all graph objects as data anchored in axis
units. In Graph Sketcher, updating the x-axis maximum merely requires dragging the
“180” label to the left until the desired maximum comes into view (and snaps to tick
marks) — and all of the graph components are automatically repositioned accordingly
in real time — so the entire operation requires just 2 task steps. In Illustrator and
Numbers, the independent graph objects can be selected, grouped, and resized to
the left, which unfortunately leaves the labels looking squished. In Excel, I had to

35

1800 20 40 60 80 100 120 140 160

60,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

X Axis

Y
Ax

is

Car Supply and Demand

Supply

Demand

(a) Graph Sketcher

!""""#

!$"""#

%""""#

%$"""#

&""""#

&$"""#

'""""#

'$"""#

$""""#

$$"""#

(""""#

"# %"# '"# ("#)"# !""# !%"# !'"# !("# !)"#

!"#$%&''()$"*+$,-."*+$

(b) Excel

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140 160 180

Car Supply and Demand

Supply

Demand

(c) Numbers
0 50 100 150 200

10000

20000

30000

40000

50000

60000 Car Supply and Demand

Supply

Demand

(d) Illustrator

Figure 4-6: The graphs produced by each of the programs tested in the diagram
creation task.

re-adjust each component manually, requiring many more fine positioning steps (23
steps total).

The axis range adjustment task illustrates the importance of positioning graph
objects relative to axis units. Axis adjustments can be necessary for many reasons,
including reading units incorrectly the first time, extending a graph further into the
future or the past (as in Figure 4-2), and making space for new explanatory labels.

4.3.3 Discussion

These task analyses verify that Graph Sketcher’s interface — which integrates the
three important capabilities of visual input, positioning relative to axis units, and
snapping according to geometric relationships — indeed provides substantial user
efficiency improvements over existing interfaces. Quantifying these gains more pre-

36

Excel

Numbers

Illustrator

Graph Sketcher

Excel

Numbers

Illustrator

Graph Sketcher

Excel

Numbers

Illustrator

Graph Sketcher

Excel

Numbers

Illustrator

Graph Sketcher

Excel

Numbers

Illustrator

Graph Sketcher

0 10 20 30

2

2

2

2

2

8

8

8

8

8

17

17

17

17

17

23

23

23

23

23

Number of steps needed to complete the axis adjustment task

Figure 4-7: Results of the axis range adjustment task analysis.

2400 40 80 120 160 200

60,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

X Axis

Y
Ax

is

Car Supply and Demand

Supply

Demand

(a) Graph Sketcher

!""""#

!$"""#

%""""#

%$"""#

&""""#

&$"""#

'""""#

'$"""#

$""""#

$$"""#

(""""#

)!"# '"# *"# !'"# !*"# %'"#

!"#$%&''()$"*+$,-."*+$

(b) Excel

0

10000

20000

30000

40000

50000

60000

0 40 80 120 160 200 240

Car Supply and Demand

Supply

Dem
and

(c) Numbers
0 50 100 150 200 250

10000

20000

30000

40000

50000

60000 Car Supply and Demand

Supply

Demand

(d) Illustrator

Figure 4-8: The graphs produced by each of the programs tested in the axis range
adjustment task.

37

cisely would require more detailed modeling, more comprehensive task analyses, or an
in-lab user study. However, the task analyses presented here show a sufficiently large
improvement that more detailed analysis is unnecessary for verifying the usefulness
of the interface approach. In the next chapter, I describe how this interface can be
extended to provide novel features that go beyond simply improving user efficiency.

38

Chapter 5

Exploration

This chapter builds on Graph Sketcher’s foundations to explore novel chart-based
interaction techniques. In Chapter 4, I showed that integrating several important
interface capabilities led to an interface design that was substantially more efficient
than existing programs for creating Economics diagrams. In this chapter, I introduce
several novel interaction techniques that take advantage of that unique foundation
to allow users to interact with their quantitative diagrams in new ways. These new
capabilities are similar to interaction techniques sometimes used in spatial domains
such as illustration and GIS, but to my knowledge, they have never before been
developed in the context of 2D graphs.

First, I describe how filled areas can be flexibly anchored to data series or other
user-defined boundaries. This is an example of what I call data-driven annotation
and I show that the concept extends to other objects such as statistical visualiza-
tions. Second, I describe how Graph Sketcher can be used to visually update and
analyze data by taking advantage of the two-way mapping between screen and axis
coordinates. Last, I dive into a detailed study of curve creation and manipulation
interfaces. I critically examine the curve interfaces used in other domains and study
three interfaces that are specifically optimized for quantitative conceptual diagrams.

5.1 Going Beyond “Chart Types”

5.1.1 Data-driven annotations

Chart-making software and information visualization programs try to achieve flexi-
bility by offering in some cases hundreds of “chart types.” For example, a “scatter
plot” shows just the data points, while an “area” graph fills in the area underneath
the data series (Figure 5-1). But both of these (and many others) are really just 2D
relational graphs with the optional inclusion of special data-driven annotations such
as shaded areas. A fundamental problem with the “chart types” paradigm is that
even hundreds of options do not approach the combinatoric space of customizations
that are possible. For example, even the simple shaded areas in Figure 5-2 are beyond
the capabilities of all charting programs I am aware of.

39

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

(a) Line plot

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

(b) Area graph

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

(c) Bar chart

Figure 5-1: Common “chart types” found in data graphing programs.

Graph Sketcher goes beyond “chart types” to instead help users make their own
data-driven annotations. For example, the edges of filled areas automatically follow
data series and curved lines. This means that each of the shaded areas in Figure
5-2 require at most five clicks to create (and no searching through menus): with the
“fill” tool, the user simply clicks on the start and end of the top and bottom data
series segments to define the corners of the filled area (possibly adding a fifth corner
at the intersection point in the center). The “draw” tool can be used similarly to
connect the points in a data series. Thus Figure 5-2 can be re-created easily, as shown
in Figure 5-3. These data-driven annotations can be thought of as providing a new
type of constraint [8] that snaps objects according to data series instead of geometric
relationships.

Proponents of the “chart types” paradigm might respond by adding yet another
type of chart to their arsenal, perhaps a style that shades in areas between data series
but not between data and the x-axis. But as noted earlier, such an approach does
not scale. It is almost always easy to imagine how a given example could be extended
beyond its “chart type.” For instance, how should the chart type deal with a third
data series, as in the examples of Figure 5-4a and 5-4b? Graph Sketcher’s data-driven
annotation approach allows either specification to be chosen easily. This makes it
possible to easily create a far greater range of graphs than can be done with existing
programs: using chart-making software, the examples of Figure 5-4 are impossible to
create, and with illustration software they are at best very time-consuming.

5.1.2 Statistical annotations

Statistical features such as box plots, histograms, and best fit lines are also commonly
handled by “chart types” in existing software. However, these are really just another
type of data-driven annotation, and treating them as such in the interface enables
new possibilities. For example, in Graph Sketcher the user can visually select a subset
of data and then apply a best-fit line just to that subset. Other best-fit lines can then
be applied to other, perhaps overlapping, subsets of data. Once again, this makes
it possible to easily create a much greater range of graphs than is possible with the

40

Figure 5-2: An engraving published in 1786 by William Playfair, a pioneer of
information graphics who was not tied down by software limitations [38].

17801700 1710 1720 1730 1740 1750 1760 1770

190

10

30

50

70

90

110

130

150

170

The Bottom line is divided into Years, the Left hand line into L10,000 each.

Exports and Imports to and from Denmark & Norway from 1700 to 1780

Line of Imports

Line of Exports

Balance in

Favour of

England.

Balance Against

Ex
po

rt
s

Imports

Figure 5-3: Playfair’s graph (Figure 5-2) can be re-created easily in Graph Sketcher.

41

17801700 1710 1720 1730 1740 1750 1760 1770

190

10

30

50

70

90

110

130

150

170

The Bottom line is divided into Years, the Right hand line into L10,000 each.

Exports and Imports to and from Denmark & Norway from 1700 to 1780

Line of Imports

Line of Exports

Balance in

Favour of

England.

Balance Against

Ex
po

rt
s

Imports

Estimated effect

of the 1705-1735 tariff

(a)

17801700 1710 1720 1730 1740 1750 1760 1770

190

10

30

50

70

90

110

130

150

170

The Bottom line is divided into Years, the Left hand line into L10,000 each.

Exports and Imports to and from Denmark & Norway from 1700 to 1780

Line of Imports

Line of Exports

Balance L
IN

E

Ex
po

rt
s

Imports

(b)

Figure 5-4: Extensions which are difficult to formulate as “chart types” can still be
created easily in Graph Sketcher, as these two examples demonstrate.

42

(a) (b)

Figure 5-5: Visual manipulation of data in a bar chart.

“chart types” approach of existing software, which limits statistical visualizations to
whole data series. This framework generalizes beyond best-fit lines to any statistical
visualization. Although Graph Sketcher only supports best-fit lines currently, I have
completed proofs of concept with histograms and it is easy to imagine how this
approach would apply to bell curves, box plots, and even pie charts.

5.2 Visual Data Manipulation and Analysis

So far, we have seen the benefits of being able to visually create and modify quantita-
tive conceptual objects such as lines and filled areas. In this section, I show that these
benefits apply to simple data points as well. Interactive information visualization
tools such as Spotfire [37] let users visually inspect the data, but they do not let users
update the data by dragging it. By contrast, all visual objects in Graph Sketcher
can be directly manipulated. I also describe some of Graph Sketcher’s features for
quantitatively inspecting visual objects. Since all objects are positioned relative to
axis units in Graph Sketcher, it can provide the type of information normally found in
advanced mathematical software, such as line equations and averages. This capability
is not present in any other chart-making or illustration programs because they do not
treat user-defined lines and filled areas in this quantitative manner.

5.2.1 Visual data entry and manipulation

Once a data set has been plotted, Graph Sketcher allows the user to adjust data
points visually rather than going back to the spreadsheet to enter new numbers.
For example, if a student in a 3rd-grade class reads more books, the teacher can
simply drag that student’s bar upwards by the appropriate amount (Figure 5-5). The
interface makes this even easier by snapping to grid lines and displaying the current
coordinates in the status bar. To avoid modifying data points by accident, Graph
Sketcher also provides an option to lock them in place.

If the data is not already in the computer, a user can enter it visually by simply
clicking on the chart surface using the “draw” tool. For example, a patient that

43

180 2 4 6 8 10 12 14 16

100

65

70

75

80

85

90

95

Month of December: Daily readings

G
lu

co
se

 L
ev

el

Figure 5-6: Visual data entry is performed by simply clicking on the graph surface in
“draw” mode.

needs to track his glucose can take a daily reading and plot it by clicking at the
corresponding spot in the graph (Figure 5-6).

5.2.2 Quantitative inspection

Graph Sketcher provides simple tools for examining data sets or conceptual compo-
nents in a visual, quantitative manner. For example, selecting a point displays its
coordinates in the status bar; selecting a line displays its equation. Selecting multiple
points displays their average x- and y-values. An extrapolation can be explored by
drawing an appropriate line and examining its position. In addition, all points can be
viewed in tabular format in a spreadsheet-like listing or can be exported to another
program for further numerical analysis. A tight connection between the table and
the graphic is maintained by indicating the currently selected items in both views
simultaneously.

Combining these techniques with statistical annotations (described in Section
5.1.2) allows for even more powerful visual exploration. For example, to understand
the effect of an outlier on a best-fit line, a data point can be dragged around while
the fit line is updated in real time (Figure 5-7).

5.3 Curve Manipulation

Many curve creation and manipulation techniques have been developed (e.g., [7,
17, 20, 26, 28, 2, 21]), but it is unclear which techniques best support the types
of curves found in quantitative conceptual diagrams. In this section, I argue that

44

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9 outlier?

y = -0.18416x + 7.75847 R² = 0.09621

(a)

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

y = -0.71942x + 9.36425 R² = 0.99517

(b)

Figure 5-7: The data point marked “outlier” is moved around to demonstrate (in real
time) its effect on a best-fit line.

the tangent-angle curve manipulation techniques used in illustration programs do
not optimally support the types of curves that are used in Economics diagrams.
I then describe Graph Sketcher’s curve manipulation interface, which extends the
interpolation techniques commonly used in data series plots (such as Figure 5-10)
and applies them to conceptual curves.

5.3.1 Taxonomy of lines in economics diagrams

My analysis of the diagrams in a Microeconomics textbook (see Section 2.1.1) found
four categories of line, which are illustrated in Figure 5-8. Ordered from most to least
common, they are:

1. straight lines

2. simple curved lines

3. more complex curved lines that involve at least one inflection point

4. lines that follow data series (could be curved or straight)

Straight lines and simple curved lines are by far the most common, which suggests
that the optimal curve creation and manipulation tools for quantitative conceptual
diagrams may be substantially different than the tools used in illustration programs,
whose users routinely create very complex curved shapes.

5.3.2 Position-based curve manipulation

Modern illustration tools allow the user to manipulate the position, tangent angle, and
two-sided “weight” of each interpolation point via graphical manipulation handles, as

45

Figure 5-8: The four types of lines found in economics diagrams, ordered from most
to least common: straight, simple curved, complex curved, and following data series.

Figure 5-9: The standard curve manipulation handles provided by illustration
programs.

shown in Figure 5-9 (using techniques derived by Fowler and Bartels [7]). However,
in most quantitative diagrams, the position of the curve at certain key points is much
more important than the tangent angles or the exact shape of the curve. This is
particularly clear for lines that follow data series, such as in Figure 5-10. But it is
also true for lines that are conceptual. For example, the graph for a calculus exam
shown in Figure 5-11 is not based on real data but still requires that the curves pass
through specific points (circled in red in the figure).

These curves must be smooth and look reasonable, but their exact shape is not
important. Thus, rather than providing tangent angle controls, I chose to base all
curves on a natural interpolating spline [29], which interpolates a given set of points
and maintains a continuous second derivative throughout for maximum smoothness.
With traditional illustration programs, the user has fine-grained control of the shape
but often has to individually manipulate the tangents just to make the curve look
reasonable. One way to speed up the curve manipulation is to use two-handed input to
simultaneously manipulate the tangent angle and position of a point [17]. In Graph
Sketcher, the user has less control over the shape but can still specify reasonable
curves quickly using a standard cursor input. For example, if the curve has only one
interior interpolation point, the user can explore all of the possible shapes in real
time simply by dragging that point. In Graph Sketcher this interpolation point is
visualized as a handle that will affect the bulge of the curve (Figure 5-12).

Manipulation of curves having more than one interior control point brings with it
several interesting issues. Graph Sketcher does not yet fully implement such curves;

46

 Q1 '07 Q2 Q3 Q4 Q1 '08

13

3

4

5

6

7

8

9

10

11

12

Pr
ofi

ts
 ($

m
ill

io
ns

)

release of new
 product

Profit Forecast

Figure 5-10: A graph with a curve that interpolates a data series.

Figure 5-11: The middle curve in this graph needs to pass through (2, -2) and (3,0),
both circled in red.

47

Figure 5-12: Curves can be manipulated very quickly in Graph Sketcher by simply
dragging an interpolation point (here visualized as a “curve handle”).

currently, users must create multiple line segments and manipulate their curve points
individually in order to build up complex curves. However, the following interaction
approach is planned. Between every interior point there appears a curve handle (as in
Figure 5-12) which allows the user to further specify the curvature in that region by
dragging. When a curve handle is dragged, it becomes an interior point and two new
curve handles appear in the neighboring segments. An interior point can be removed
by selecting and deleting it. An advantage of this “curve handle approach” is that it
maintains the single “modify” tool — it does not require separate tools for changing
the curvature vs. selecting and dragging the curve as a whole.

5.4 Curve Creation

In the previous section, I claimed that the types of curves used in Economics dia-
grams merit different manipulation techniques than are commonly used in illustration
software. In this section, I study in depth several curve creation techniques that can
generate the appropriate types of curves. The techniques I analyze are inspired by the
pen-based interface approach because it clearly follows the intuitive, visual interaction
paradigm used throughout Graph Sketcher (and even implied in the tool’s name). But
while I aimed to mimic the techniques of freehand sketching, I also aimed to improve
upon the actual experience of drawing [33]. For example, it is intuitive to draw lines
by hand, but they tend to be imprecise and wobbly; by contrast, computer interfaces
should make it easy to create lines that are precise and smooth.1

I chose to implement and study three progressively more complex interfaces for
curve creation, which I describe in detail below. The first is the “baseline” interface
that is part of the publicly available version of Graph Sketcher, which only allows
input of straight lines (which can later be curved, as illustrated in Figure 5-12). This

1As another example of improving upon a direct physical analogy, when designing the “fill”
interface, I thought about closely imitating the behavior of a highlighter pen. The most extreme
approach would force the user to manually shade the whole area by stroking back and forth. A more
moderate approach has the user drag the cursor around the boundary of the fill, as one might do
with a highlighter before shading in the interior. The design I eventually chose has the user simply
click on each corner of the filled area in turn. This bears little similarity to using a highlighter, but
it is the most efficient way to specify a polygonal visual object.

48

behavior is similar to “straight line” tools in illustration programs. The second is an
“arc recognition” interface which allows users to specify simple curves having a single
interior interpolation point. This behavior is unusual in that it allows arbitrarily
complex strokes but always converts them into a simple curve. The third is a full
stroke recognition interface which uses a series of calculations to convert a freehand
stroke into a smooth, arbitrarily complex curved line. This functionality is based on
existing work from pen-based interfaces [35] and is similar to “vector pen” tools in
advanced illustration programs (e.g., [14]).

I ran an empirical user study to compare these interfaces, which led to the
conclusion that the choice of interaction methods is highly dependent on the type of
line being drawn. In particular, interaction methods that let users specify their input
the most directly end up being the most efficient. Drawing a freehand stroke is a fairly
indirect method of curve specification compared to other possibilities, and appears
to be less efficient; combined with its difficulty of implementation, this study raises
serious questions about the utility of stroke recognition in the domain of quantitative
conceptual diagrams. As a novel alternative, I describe a composite interface that
supports the creation of all common types of line, and optionally includes stroke
recognition.

5.4.1 Straight Line Interface

Graph Sketcher’s “baseline” interface for creating lines assumes that new lines are
straight. This is motivated by the finding that the majority of lines in the survey of
textbook Economics diagrams are in fact straight (Figure 2-2). To create a new line
in this baseline interface, the user enters “draw” mode and drags the mouse across the
graph surface. Unlike in normal drawing, the drawn line is constrained to be straight
— regardless of any meandering mouse movements. This means that the new line is
simply a straight line between the current mouse location and the location at which
the mouse button was first pressed down. This behavior makes it very easy to try out
a variety of slopes and lengths for straight lines by simply moving the mouse around
before ending the drag. To create a curve, the user must first draw a straight line
and then use the curve handle to add curvature (Figure 5-12).

5.4.2 Arc Recognition Interface

I hypothesized that a more intuitive, quick, and precise interface for creating curves
requires a closer approximation to freehand drawing. Such an interface requires some
form of stroke recognition: in this case, a mechanism for converting wobbly freehand
strokes into smooth, vector-based curves. Achieving robust stroke recognition is
still an active area of research, but limiting the domain to the set of curves found
in quantitative conceptual diagrams makes it possible to achieve a high degree of
accuracy with current methods. Thus I created two new interfaces for creating lines,
based on increasingly sophisticated stroke recognition techniques.

The first stroke recognition based interface assumes that each new drawn line is
either straight or a simple curve (with no inflection points). These two categories are

49

(a) (b)

Figure 5-13: (a) A curved stroke with an illustration of the arc recognizer’s geometry
calculations, and (b) the resulting smooth curve overlaid.

sufficient for creating over 99% of the diagrams in an introductory Economics textbook
(Figure 2-2). To create a new line with this interface, the user enters “draw” mode and
draws the line by hand; the raw stroke is displayed on the screen while being drawn.
When the mouse button is lifted, a simple arc recognition algorithm determines the
extent and direction of curvature in the stroke and replaces the freehand line with
a vector curve. As before, the user can delete and try again, or switch to “modify”
mode to adjust the curvature.

This recognition approach required the addition of a stroke-capture mechanism in
Graph Sketcher. During a stroke, the system continually checks the cursor location
and the time using the finest temporal resolution possible: once per cycle of the event
loop. However, digitized points are only recorded if the cursor falls on a different pixel
than the previous data point. I will refer to these recorded points as ink points. Using
this recording method, a typical sketched arc contains about 30 to 100 ink points.

The arc recognition algorithm calculates the perpendicular distance of each ink
point from the diagonal between the stroke’s start and end (bottom line in Figure
5-13a). The furthest ink point is chosen as the location of the curve point, resulting
in a single smooth curve (Figure 5-13b). If the distance of the curve point from the
diagonal is less than a set proportion of the diagonal length, the segment is made
perfectly straight instead. Based on my own experimentation with trying to draw
straight lines, I set this cutoff at 8 percent of the diagonal length.

5.4.3 Stroke Segmentation Interface

If we add the ability to recognize complex curves (involving one or more inflection
points), then the user will be able to directly draw all of the lines found in all of
the quantitative conceptual diagrams that were surveyed. An important observation
from my analysis of economics diagrams (Section 2.1.1) was that “jagged” lines that
are not based on data sets, such as the hypothetical example of Figure 5-14, are
rare — none at all were found in the introductory economics textbook (Figure 2-2).
There are several likely reasons for this absence: real world trend lines don’t usually
have such sharp discontinuities, and smoothly curving lines tend to look better for the
purposes of rough forecasts or trends. Thus, it seems prudent for the stroke recognizer
to assume that all drawn lines are smooth (have a continuous first derivative). Note

50

Q1 '08 Q1 Q2 Q3 Q4

75

35

40

45

50

55

60

65

70

Quarter

Re
ve

nu
e

($
 m

ill
io

ns
)

Earthquake hits

Defect discovered

Instant comeback

Figure 5-14: An unlikely example of a jagged line in a quantitative diagram.

that this does not limit the interface’s expressive power; a user can still create a jagged
line by simply drawing two coincident lines instead of a single stroke.

The observations throughout this chapter motivated the following desired proper-
ties of the full stroke recognizer:

1. It should avoid over-fitting noisily drawn strokes. Most strokes are probably
intended to be long, straight segments or gently curving arcs. If recognized as
such, they will look smoother and will be easier to adjust later.

2. It should assume all lines are smoothly curving and thus does not need to
recognize sharp corners. For the rare cases when users do want jagged lines,
they can simply lift the mouse button or pen momentarily and start a new
stroke.

3. It should be able to recognize inflection points. To support complex curves, the
recognizer must be able to detect changes in curvature despite a lack of sharp
corners.

Implementation

My stroke recognizer implementation is based on the method in Stahovich [35].
The recognizer starts by computing the arc length, smoothed slopes, and smoothed
curvature at each ink point. I used a window size of 7 ink points on either side (15
total) for computing the slopes with a linear regression, and 10 ink points (21 total)
for similarly deriving the curvature. These window sizes were settled on during early
experimentation; their exact values do not greatly affect the final accuracy of the

51

(a) initial segmentation (b) pruned segmentation

Figure 5-15: The (a) initial and (b) pruned segmentation of a stroke.

segmentation. Using the smoothed curvature values, the algorithm sets candidate
segmentation points everywhere the curvature changes sign, illustrated in Figure
5-15a. It is clear that the recognizer would create far too many segments if it stopped
at this stage. Property 1 above specifies that as few as possible segments should be
generated, while still doing a good job of fitting the curve. So I needed a way to
prune the set of candidate segmentations.

The intuition is that neighboring segments which both curve in the same direction
should really be part of one longer segment. Thus to determine whether neighboring
segments should be merged, the stroke recognizer needs to determine the direction
and amount of curvature of each segment. To determine this, my stroke recognizer
computes the adjusted total curvature (ATC) of each proposed segment. This measure
adds up the curvature values at each point in the segment, multiplies this sum by the
segment’s total arc length, and divides by the number of ink points n in the segment.

ATC =
Σ(curvatures) · Σ(lengths)

n
(5.1)

The rationale behind the ATC measure is as follows. The sum of the curvature
values determines how substantially a segment is curved and in what direction it
bends (positive or negative curvature). For noisy, squiggly segments, the positive and
negative curvature values will roughly cancel each other out. Multiplying by the arc
length boosts the ATC of segments that are longer, so that long segments are more
likely to be retained than shorter ones. Finally, the slower the user draws a line, the
more ink points get recorded, which artificially increases the summed curvature; so
dividing by the number of ink points (n) in the segment cancels this effect.

The recognizer labels each segment as negatively curved, straight, or positively
curved, and if two subsequent candidate segments have the same type, they are
merged into a single segment. Based on my own experimentation with a range of
line shapes and drawing speeds, and observation of one other user, I set an ATC

52

(a) initial segmentation (b) final interpretation

Figure 5-16: The (a) initial and (b) final recognition of what seemed to be two straight
segments.

threshold of 30 as the cutoff between labeling segments as straight vs. curved. This
means that segments with an adjusted total curvature above 30 are deemed to be
positively curved (i.e. curving to the left), those below -30 are deemed negatively
curved (i.e. curving to the right), and those between -30 and 30 are deemed straight.
In addition, if the segment’s curvature is less than the arc recognition algorithm’s 8%
cutoff (described in section 5.4.2), the segment is deemed straight regardless of the
ATC.

This process of pruning is continued recursively until no more segmentation points
can be removed. Finally, the arc recognition algorithm (see section 5.4.2) is used to
determine the actual curvature of each surviving segment, and the resulting curved
segments (Figure 5-15b) then replace the stroke ink. Note that segments made up
of merged “straight” pieces may well end up substantially curved (Figure 5-16). As
before, the user can modify these curves if necessary.

Stroke recognition interface

Even with very long and complicated strokes, the full segmentation algorithm finishes
within two milliseconds on a 2.16 Ghz Macbook Pro. This low latency actually makes
it possible to view the recognized line in real time as the user is drawing the stroke.
While this functionality was very useful for iterating the stroke recognition algorithm,
it proved disorienting for regular program use. Thus, the versions of Graph Sketcher
used in the following sections do not present a recognized curve until the user has
finished the stroke.

5.4.4 Comparative User Study

I ran a formative evaluation with five participants to estimate the accuracy of stroke
segmentation and to compare the three interface approaches. I used a within-subjects
design so that each participant used all three of the interfaces (in randomized order).
For each interface, I asked participants to recreate the two hand-drawn graphs in
Figure 5-17 using Graph Sketcher, “keeping in mind that this is just a sketch: you
do not need to do any calculations or precision measurements. Overall, speed is more
important than perfection.” I also instructed participants to ignore axes, grid lines,

53

(a) (b)

Figure 5-17: The graphs that users were asked to re-create with Graph Sketcher.

Please rank on a scale of l to 5 how much you agree with the following statements:

 disagree neutral agree

I thought Version ____ was:

 • Intuitive: using it felt natural. 1 2 3 4 5

 • Efficient: it allowed me to work quickly. 1 2 3 4 5

 • Fun: I enjoyed using it. 1 2 3 4 5

 • Better than sketching by hand. 1 2 3 4 5

Figure 5-18: Study participants were asked to fill out this short questionnaire after
using each interface version.

and any other formatting. I briefly described the purpose of Graph Sketcher at the
beginning of the session, but I did not provide any instruction about how to use the
program or any of the curve interfaces, nor any information about how the interfaces
differed.

While each participant worked, I watched closely and recorded how many times
lines were drawn, deleted, adjusted in position, or adjusted in curvature: in short, the
number of actions needed to specify the line to satisfaction. I captured these counts
separately for each line type (straight, simple curve, and complex curve). After the
subject completed a pair of graphs, I had them fill out a short questionnaire evaluating
the interface version they had just used (Figure 5-18). At the very end of the session,
each participant was also asked to rank the three interface versions according to which
they liked most.

54

draw

attempts

curvature

adjusts

endpoint

adjusts

deletions

straight

arc

complex

1.3 0 0.7 0.6

1.2 0.4 1 0.8

2 3.2 4.8 1.2

Table 5.1: Stroke segmentation accuracy as measured by the number of adjustments
users made.

5.4.5 Results

Stroke recognition accuracy

The accuracy of stroke recognition is highly user-dependent. It is not always clear
what the correct stroke is, and in the context of sketching graphs, it is often the case
that a whole range of lines are good enough for the purposes of the sketch. Thus,
I measure accuracy by recording the number of times users adjusted or deleted the
lines they drew in the stroke segmentation interface. However, the results are for
new users who had never used the interface (or the software) before, so some of the
deletions and adjustments can be classified as learning effects. In addition, in all
cases subjects used a mouse — an input device which is fairly difficult to accurately
draw with. Some users also experimented with a digitizing tablet, but in the end
were more comfortable using a mouse for the study.

Table 5.1 shows the average number of adjustments users made for each type
of line (straight, arc, and complex curve). Straight lines were recognized extremely
accurately, with none of them being interpreted as curves, though occasionally the
recognizer split them into two segments, causing a deletion or a redraw. Arcs were
also recognized correctly most of the time, though again there were some unwanted
segmentations and on average users corrected the curvature or endpoints almost every
time. Finally, complex lines almost never turned out right the first time, and usually
most of the segments were adjusted later in both curvature and endpoints.

The results for complex curves would clearly be improved if Graph Sketcher
supported multiple interior control points. That way, even if there were too many
segmentations, the resulting curve would be smooth; and most segmentation errors
could be fixed by simply deleting a control point or two. This feature has not yet
been completed because the implementation of natural interpolating spline curves —
and their integration with other features of Graph Sketcher such as fills with curved
edges — was much more challenging than expected.

Comparative Usability

The three interfaces I tested roughly correspond to the three types of lines which
users were asked to draw: in the original interface, strokes are constrained as lines;

55

straight line

interface

arc

interface

recognizer

interface

average

straight

arc

complex

overall

1.3 2.4 2.6 2.1

4.4 1.4 3.4 3.1

11.6 11.6 11.2 11.5

5.8 5.1 5.7 5.5

Table 5.2: The average number of steps users took to create each type of line in each
interface version.

0

3

6

9

12

15

straight arc complex overall

straight line interface arc interface recognizer interface

Average number
of operations to
create a line of

each type

Figure 5-19: The average number of steps users took to create each type of line in
each interface version. The boxed results indicate matching line and interface types.

in the intermediate interface, they are confined to single arcs, and in the full stroke
recognition interface they can be complex curves. A reasonable hypothesis, then, is
that each interface is best matched to drawing its corresponding type of line. The
results support this hypothesis (Table 5.2 and Figure 5-19). The advantage of matched
interface and line type is much more pronounced for straight lines and arcs in these
results, but I suspect that support for multiple interior control points would extend
this trend to complex curves.

56

Questionnaire results

Users did not rank the interfaces significantly differently on the measures of intuitive,
efficient, and fun. However, when asked to rank the three interfaces, almost all users
preferred the arc interface and least preferred the recognizer interface.

5.4.6 Discussion

When the interfaces were compared on their performance for creating all types of
lines (“overall” results in Figure 5-19), none of the interfaces were clear winners. This
suggests that the best interface will integrate the three versions studied in order to give
users access to all of them. My proposal for such an interface, which still maintains a
single “draw” tool, is as follows. A single click starts the drawing process. If the user
lifts the mouse and moves it to another location, a straight line is shown between the
original click and the current cursor position. Further single clicks establish interior
control points for a smooth curve, similar to how the arc interface was really based
on three input points. A double-click ends the line segment. Finally, if the user
drags the mouse instead of using separate clicks, an ink stroke is drawn which gets
automatically segmented when the stroke is finished. This latter method may be most
intuitive for some users, even though the generalized “series of clicks” curve creation
method has the same expressive power and less ambiguity.

Implications for stroke recognition

The poor user acceptance of the sophisticated stroke recognition interface helps to
explain why pen interfaces have not become more widely used. Even for an application
domain that clearly lends itself to a sketch-like interface, and even with a fairly
accurate stroke recognizer, the recognition approach was the least useful. For one
thing, users seemed disconcerted by the unpredictable nature of the stroke recognition;
they were downright annoyed when the system failed to read their mind. Users
also seemed stressed about having to perform accurately in order for the system to
correctly recognize their intentions.

Although improvements in software and hardware interfaces could lessen both
of these problems, I think the deeper issue here is that of appropriate constraints.
Pen interfaces tend to be highly unconstrained, which gives them flexibility and
power but also makes them overwhelming, stressful, ambiguous, and often inefficient.
The most obvious example is with text input: typing is faster, more satisfying, and
more accurate than tablet PC handwriting precisely because typing is so much more
constrained: each button does precisely one thing. Even if there existed a handwriting
recognizer that recognized with human accuracy, most people would still rather use
a keyboard for the task of inputting characters.

A similar argument can be made for the domain of quantitative diagrams. All
lines, whether straight or wildly twisted, can be represented as a series of interpolating
control points (which specify the locations the curve passes through). The arc
interface in effect lets users precisely and easily specify the three points of a simple arc

57

segment, without any unsettling surprises from the recognizer. Rather than coping
with the true ambiguity in every pen stroke, it seems more efficient and elegant to
simply specify one’s intentions at the outset using the “series of clicks” interface I
have proposed. No matter the future improvements in automatic stroke recognition,
clicking in a series of precise locations will still be easier than precisely drawing a pen
stroke.

58

Chapter 6

Evaluation

In previous chapters I evaluated the extent to which specific interface techniques
make it easier to create quantitative conceptual diagrams. In Chapter 4, I performed
heuristic task analyses to measure the benefits of comprehensively integrating three
fundamental capabilities: visual input, positioning relative to axis units, and snapping
according to geometric relationships. Comparing Graph Sketcher to a variety of
existing programs, I showed that Graph Sketcher’s approach provides substantial user
efficiency improvements in all areas measured, including positioning lines, creating
filled areas and labels, and adjusting axis ranges. In Chapter 5, I ran a small user
study with the primary goal of comparing the performance of three curve creation
techniques. The results showed that each technique was best suited to the creation of
a specific type of line — straight, simple curved, or complex curved — which led to the
conclusion that the three techniques should be integrated into a single “draw” tool.
The study also demonstrated in general that novice users with no prior instruction
could quickly create simple diagrams using the software.

In this chapter, I turn to more holistic, longitudinal evaluations of Graph Sketcher’s
use “in the wild.” The purpose of these evaluations is to verify that the improvements
highlighted earlier do indeed make it easier to create a wide range of quantitative
conceptual diagrams (not just in economics), by real users in their everyday settings.
I also wanted to ensure that the interface is not just more efficient but also intuitive
to users, and that it enables users to create graphs that they would not have even
attempted in the past due to the complexity or limitations of existing tools. To do
this, I studied the experiences of people who already use Graph Sketcher in their
everyday work.

6.1 Longitudinal Evaluations

The most basic indication that Graph Sketcher has succeeded in its design goals
is the simple fact that indeed a large number of people voluntarily use it for their
everyday work. As of this writing, there are 764 registered users; these are people
who independently found Graph Sketcher online, downloaded and started using it,
and ultimately paid $10 to $30 to continue using it. To find out more specifically

59

whether the novel interface features contributed to this success, the extent to which
the program as a whole is easy to understand, and the range of diagrams its users can
create, I carried out two investigations of the use of Graph Sketcher “in the wild.”

First, I sent out a survey which requested examples of charts made with Graph
Sketcher. Of the 478 people who were emailed the survey, 20 (4%) participated.
Second, I looked at two months of support email received from a potential pool of 623
registered users. There were 34 such emails. Throughout the investigation period (and
afterwards), I periodically released updated versions of Graph Sketcher, and new users
continued to download and begin using the program. Most of the features described
in this thesis were available throughout the investigation period; the exceptions are
some of the advanced features described in Chapter 5: bar charts, filled areas bounded
by data series, and multiple-interior-control-point curves. I describe the results and
analysis of these investigations below.

6.1.1 Analysis of support logs

If Graph Sketcher’s interface were confusing to users, we would expect some of them to
ask support questions about how to use it. Yet out of 34 support emails received, none
complained of or asked questions about ways to carry out any particular operation.
Six emails asked whether it was possible to, e.g., add subscripts, un-snap points from
each other, or automate the tool. In each case the answer was “not yet” so these
emails were considered feature requests. Including these, 76% of the support emails
were feature requests; none of the requests were for features which would violate
Graph Sketcher’s interface techniques (i.e. there were no requests to provide “chart
types” or to disconnect objects from the axis scale). 21% of the emails were bug
reports, and one was simply an unsolicited note of appreciation.

6.1.2 Survey of example graphs

My survey went out to the 478 users who were registered when it was administered.
I requested an example graph, asked in open-response format why they used Graph
Sketcher instead of another program to make their graph, and offered a $15 gift
certificate for the most “interesting” graphs received. I chose to ask for interesting
graphs rather than random samples in order to better understand the breadth of
Graph Sketcher’s capabilities. I received 20 responses (a 4% response rate), from
nine different fields of study: economics (8), chemistry (3), biology (2), physics (2),
calculus, materials engineering, consulting, population studies, and fly fishing. This
long-tail distribution with economics making up about half is roughly representative
of Graph Sketcher’s full user base, according to feedback I request when users register
the software.

I explicitly designed Graph Sketcher to support the use of conceptual components
(such as trend lines and areas) because my analysis of economics diagrams (Section
2.1.1) indicated that those components are widely used. Thus, I expected users’
graphs to contain many conceptual elements. This prediction was supported by the
survey results. Defining “conceptual components” as any marks that are not data

60

points, titles, legends, or standard axis components, 18 of the graphs (90%) contain
them: 13 use a combination of data points and conceptual components, while 5
have no underlying data at all (such as Figure 6-1). The remaining two used Graph
Sketcher as a quick way to plot data. I note that because I encouraged users to send
their most “interesting” graphs, these results are probably biased towards the more
heavily annotated. Regardless, these responses demonstrate that users understand
how to create conceptual components and use them in their graphs at least some of
the time.

Finally, I looked at why respondents said they used the program. Of the 15 who
answered this open question, the most common reasons cited were: generally easy
to use (7), fast to use (5), intuitive (3), precise annotations (3), simple features (2),
visual data entry, and fit-lines on subsets of data. Most of these responses were quite
vague (“easy to use”) but I highlight the three most specific responses below. These
users contrast Graph Sketcher with traditional programs and cite the importance of
precise conceptual components.

I teach introductory chemistry and advanced inorganic chemistry. Graph
Sketcher has been of tremendous help in generating quick, qualitative
graphs easily. I’m attaching the phase diagram for water to this e-mail
(Figure 6-2). What made Graph Sketcher so useful was the ability to
easily draw lines, and then to color in the different phase areas; the colors
actually stuck to the lines! The program has definitely freed time I would
have spent fiddling with other drawing programs, and has allowed me to
devote more time to my course content.

A materials engineer wrote:

This is actually the first figure I sketched with your software and it took
about 5 minutes (Figure 6-3). Until now, I’ve been drawing these by
hand because plotting in Excel was too tedious (each line represents a lot
of math), and drawing them freehand in Inkscape [an illustration program]
was too inexact.

A high school teacher who uses Graph Sketcher in his classroom wrote:

Here’s a graph a lab group in my physics class recently turned in (Figure
6-4). [It] shows the relationship between the object and image distance
for real images formed by a concave mirror....

Excel is way too complicated for our average student’s comfort or ability
level. Graph Sketcher takes very little time out of physics instruction, and
the kids just ”get it” right away.

As evidence, his students “got the lab and the graph done in less than 40 minutes”
(Figure 6-4).

61

 Quantity of Socks

 P

ric
e

of
 S

oc
ks

Demand

Q2 Q1

P

Ps

Price
buyers
pay

Price
sellers
receive

A tax on sellers shifts
the supply curve
upward by the amount
of the tax

Equilibrium
with tax

Equilibrium
without tax

Price
without
tax

SupplyB

Tax

Revenue

0

A

B

D

C

E

F

FIGURE 4

Figure 6-1: A user-created economics diagram which is not based on numerical data.

Temperature (⁰C)

Pr
es

su
re

 (a
tm

)

4.58 torr

0.0098

1

100

solid

liquid

gas
triple point

Figure 6-2: A user-created chemistry diagram showing the phases of water.

62

2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

pH

Po
te

nt
ia

l,
V

Fe2O3

Fe

Fe2+

Fe3O4

0 2 6 10 14 16 12 14 16

Corrosion

Passivity

Immunity

Figure 6-3: A user-created diagram for materials engineering.

63

1000 10 20 30 40 50 60 70 80 90

120

-20

0

20

40

60

80

100

Object Distances (Cm)

Im
ag

e
D

is
ta

nc
es

 (C
m

)

Real Images

Virtual Images

USD

Larger

RSU

Larger

Larger

Smaller

focal length

fo
ca

l l
en

gt
h

ra
di

us

Sam
e Size

The Concave Mirror Lab Data and image Types PRoduced

Fizx--Mr. S. Pd. 3
Shaun, Zach, Colleen

Figure 6-4: A graph produced by high school students for an in-class optics lab.

64

6.2 Discussion

The results of the longitudinal evaluations show that the interface is useful in a wide
range of disciplines, beyond those that were used to motivate my design. Across these
disciplines, users took advantage of Graph Sketcher’s capabilities to produce precise,
conceptual, quantitative information graphics. The survey also showed that the tool
serves a wide user population that includes both university and high school students
and faculty, authors, hobbyists, and consultants. Finally, the fact that many people
are voluntarily using the software is compelling evidence that the existing tools are
insufficient. After all, these users were not recruited to use Graph Sketcher in the
lab; all of them found it online. According to my website’s log statistics, more than
half of visitors came via search engines — indicating that users are proactively going
in search of better alternatives.

What most distinguishes Graph Sketcher from preexisting programs is not any
one feature in particular, but rather the careful integration of many useful features.
As discussed in Chapter 2.4, Excel includes both plotting and illustration tools but
does not integrate them beyond allowing illustration objects to appear on top of data
plots. By contrast, my interface treats all components as both data and illustration
objects, so that whichever properties are most appropriate at a given time can be
used. The task analyses in Chapter 4.3 showed that snapping features are crucial for
tasks such as line creation, while positioning relative to axis units is most useful for
axis adjustments. Importantly, these two features are inseparably linked: the lines
snap to grid positions defined by axis units, and the axis adjustments themselves use
snapping features. Even in the narrow subtopic of curve creation (Chapter 5.4), my
studies showed that different techniques were most useful for different types of curves
— and thus the challenge is to integrate these techniques in a way that is efficient to
use and easy to understand.

When I asked users to explain why they used Graph Sketcher, most people could
not narrow it down to any specific feature. As described above, half of the survey
respondents simply sent comments equivalent to “easy to use.” Outside the context
of the survey, a user sent me the following feedback:

thank you, thank you, thank you [...] you made me the little quick and
easy program that doesn’t do things i don’t want it to and acts like a
student with graph paper.

In response, I asked him what “specifically makes the difference” compared to Excel
and other tools. He replied simply, “Three words for your program – Ease of Use!”
and went on to describe what he used it for and what other features he wanted.
It seems that what underlies the interface’s usability is not one or two features in
particular, but rather all of the little features that emerge from the comprehensive
integration of functionality.

65

66

Chapter 7

Conclusion

In this thesis I motivated and designed a new interface for creating quantitative
conceptual diagrams. This interface both provides all features necessary to make
beautiful diagrams such as Figure 7-1 and is dramatically more efficient to use than
existing programs. It goes beyond existing chart-making tools by comprehensively
integrating three capabilities:

• Visual input of lines, labels, and filled areas;

• Detection and maintenance of geometric relationships between components;

• Positioning of all components relative to axis units.

I also explored some of the novel possibilities offered by this interface approach,
including flexible data-driven annotations, visual data manipulation, and intuitive
curve creation and manipulation.

To motivate the research, I showed that quantitative conceptual diagrams are
widely used in economics but that there is a common desire for software that makes
it easier to create such diagrams. To evaluate my design, I implemented and deployed
a desktop software application, Graph Sketcher, which is already being used by over
700 students, teachers, professionals, and hobbyists worldwide. I found that Graph
Sketcher users seem to understand the interface well and have created a wide variety
of conceptual graphs for many disciplines beyond economics.

By making it easier to create quantitative conceptual diagrams, this research
ultimately aims to improve the visual presentation of quantitative ideas everywhere.
In classrooms, scientific papers, seminars, and websites, I hope that more visual
diagrams will be used to better convey the quantitative ideas in any topic. Some have
noted that Graph Sketcher also makes it easier than ever to create lies: professional-
looking yet false data presentations. But such “lying with statistics” is nothing new.
If quantitative diagrams are as easy to produce as text, perhaps people will come to
look at them more critically, the same way they already do with words from unknown
sources. And if quantitative diagrams are ubiquitous, perhaps society will come to
better understand the quantitative concepts they depict.

67

 1950 2060

7

14

Year

B
il
li
o
n

s
o
f

to
n

s
o
f

ca
rb

o
n

 e
m

it
te

d
 p

e
r

y
e
a
r

2004

Curre
ntly

pred
icte

d path

Stabilization
triangle

Flat path Avoid
doubling

Toward
tripling

one "wedge"

Historical carbon emissions with two
potential pathways for the future
Source: R. Socolow, R. Hotinski, J.B. Greenblatt, and S. Pacala

historical emissions

Each "wedge" avoids 1 billion tons

of carbon emissions per year

by 2050.

Figure 7-1: The interfaces described in this thesis make it possible to quickly and
easily create beautiful quantitative conceptual diagrams such as this one.

7.1 Future Work

It is likely that the techniques I have presented will become more important over
time as collaborative work demands that visualizations are computerized, shared,
and contain an increasing number of contextual annotations. In addition, the more
interactive and manipulable information graphics become, the more important it
will be to dynamically maintain meaningful positioning of quantitative conceptual
components. My evaluation of Graph Sketcher’s use in the wild already shows the
wide applicability of the interface in many disciplines. However, a longitudinal study
of the graphs that users produce over time with and without the tool could also
determine the tool’s affect on their diagrams’ creativity, clarity, and precision.

Many directions exist for enhancing Graph Sketcher’s feature set further. I am still
in the process of fully implementing curves that have multiple interior interpolation
points. I would like to add more visualization types, such as logarithmic axes and
pie charts; incorporate more statistical annotations such as box plots and histograms;
implement some of Tufte’s [38] suggestions for more elegant axes, bar charts, and
labeling techniques; and provide the ability to layer multiple graphs next to or on top
of each other. It would also be interesting to extend these interaction techniques to

68

Figure 7-2: Tufte’s [38] English translation of Minard’s celebrated 6-factor depiction
of Napoleon’s doomed 1812 Russian campaign. The original was drawn in 1869.

mathematical functions (I imagine dragging a function graph to change its m and b
equivalents).

Last, I would like to extend Graph Sketcher to handle multi-dimensional repre-
sentations such as points whose sizes and colors are based on data values. I note that
even Minard’s celebrated 6-factor depiction of Napoleon’s doomed Russian campaign
(Figure 7-2) does not show the actual geography of the return trip (drawn in black).
Instead, Minard shifted the return trip downward to avoid overlapping with the
light brown outbound path [30]. This is exactly the type of data-focused, visual
manipulation that my interface approach was designed to support.

69

70

Bibliography

[1] Peter Agar and Kevin Novins. Polygon recognition in sketch-based interfaces
with immediate and continuous feedback. In GRAPHITE ’03: Proceedings of
the 1st international conference on Computer graphics and interactive techniques
in Australasia and South East Asia, pages 147–150. ACM, 2003.

[2] Thomas Baudel. A mark-based interaction paradigm for free-hand drawing. In
UIST ’94: Proceedings of the 7th annual ACM symposium on User interface
software and technology, pages 185–192. ACM, 1994.

[3] Eric A. Bier and Maureen C. Stone. Snap-dragging. SIGGRAPH Comput.
Graph., 20(4):233–240, 1986.

[4] Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level model
for user performance time with interactive systems. Commun. ACM, 23(7):396–
410, 1980.

[5] Microsoft Corp. Excel:mac. Desktop software, 2008.

[6] Jerry Alan Fails Dan R. Olsen Jr., Trent Taufer. Screencrayons: Annotating
anything. In Proc. UIST ’04, 2004.

[7] Barry Fowler and Richard Bartels. Constraint-based curve manipulation. IEEE
Comput. Graph. Appl., 13(5):43–49, 1993.

[8] Michael Gleicher. A graphics toolkit based on differential constraints. In Proc.
UIST ’93, pages 109–120. ACM, 1993.

[9] Michael Gleicher and Andrew Witkin. Drawing with constraints. The Visual
Computer, 11(1):39–51, 1994.

[10] Gene Golovchinsky and Laurent Denoue. Moving markup: Repositioning
freeform annotations. In Proc. UIST ’02, 2002.

[11] Omni Group. Omnigraffle 5. Desktop software, 2008.

[12] Jeffrey Heer, Fernanda B. Viégas, and Martin Wattenberg. Voyagers and voyeurs:
supporting asynchronous collaborative information visualization. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 1029–1038. ACM, 2007.

71

[13] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka.
Interactive beautification: a technique for rapid geometric design. In Proc. UIST
’97, pages 105–114. ACM, 1997.

[14] Adobe Systems Inc. Illustrator cs3. Desktop software, released 2007.

[15] Apple Inc. iwork 2008. Desktop software, 2008.

[16] Jr. Joseph J. LaViola and Robert C. Zeleznik. Mathpad2: a system for the
creation and exploration of mathematical sketches. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 432–440. ACM, 2004.

[17] Celine Latulipe, Stephen Mann, Craig S. Kaplan, and Charlie L. A. Clarke.
symspline: symmetric two-handed spline manipulation. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing systems, pages 349–
358. ACM, 2006.

[18] Jock Mackinlay. Automating the design of graphical presentations of relational
information. ACM Transactions on Graphics, 1987.

[19] N. Gregory Mankiw. Principles of Economics. Harcourt College Publishers,
second edition, 2001.

[20] Paul Michalik, Dae Hyun Kim, and Beat D. Bruderlin. Sketch- and constraint-
based design of b-spline surfaces. In SMA ’02: Proceedings of the seventh ACM
symposium on Solid modeling and applications, pages 297–304. ACM, 2002.

[21] Yasser F. O. Mohammad and Toyoaki Nishida. Naturaldraw: interactive
perception based drawing for everyone. In IUI ’07: Proceedings of the 12th
international conference on Intelligent user interfaces, pages 251–260. ACM,
2007.

[22] Brad A. Myers, Jade Goldstein, and Matthew A. Goldberg. Creating charts by
demonstration. In CHI ’94: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 106–111. ACM, 1994.

[23] OpenOffice.org. Open office 2. Desktop software, 2008.

[24] Tom Y. Ouyang and Randall Davis. Recognition of hand drawn chemical
diagrams. In Proceedings of AAAI, pages 846–851, 2007.

[25] Robert S. Pindyck and Daniel L. Rubinfeld. Microeconomics. Prentice Hall,
Upper Saddle River, NJ, 2001.

[26] Sviataslau Pranovich, Jarke J. van Wijk, and Kees van Overveld. The kite
geometry manipulator. In CHI ’02: CHI ’02 extended abstracts on Human factors
in computing systems, pages 764–765. ACM, 2002.

[27] Key Curriculum Press. Fathom dynamic data software 2.1. Desktop software,
2008.

72

[28] Roope Raisamo. An alternative way of drawing. In CHI ’99: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 175–182.
ACM, 1999.

[29] Richard Rasala. Explicit cubic spline interpolation formulas, pages 579–584.
Academic Press, Inc., Orlando, FL, 1990.

[30] Steven F. Roth, John Kolojejchick, Joe Mattis, and Jade Goldstein. Interactive
graphic design using automatic presentation knowledge. In CHI ’94: Proceedings
of the SIGCHI conference on Human factors in computing systems, 1994.

[31] Kathy Ryall, Joe Marks, and Stuart Shieber. An interactive constraint-based
system for drawing graphs. In Proc. UIST ’97, pages 97–104. ACM, 1997.

[32] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based
interfaces: early processing for sketch understanding. In PUI ’01: Proceedings
of the 2001 workshop on Perceptive user interfaces, pages 1–8. ACM, 2001.

[33] Ben Shneiderman. Why not make interfaces better than 3d reality? In IEEE
Computer Graphics and Applications, pages 12–15, 2003.

[34] Robert Socolow, Roberta Hotinski, Jeffery B.Greenblatt, and Stephen Pacala.
Solving the climate problem: technologies available to curb co2 emissions.
Environment, 46(10):8–19, 2004.

[35] Thomas F. Stahovich. Segmentation of pen strokes using pen speed. In AAAI Fall
Symposium Series 2004: Making Pen-Based Interaction Intelligent and Natural,
2004.

[36] I. Sutherland. Sketchpad: a man-machine graphical communication system. Phd
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1963.

[37] Tibco. Spotfire 2.1. Desktop and online software, 2008.

[38] Edward Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Conn., 1983.

[39] WaveMetrics. Igor pro 6. Desktop software, 2008.

[40] Gene Zelazny. Say it with charts: the executive’s guide to visual communication.
McGraw-Hill, 4th edition, 2000.

73

