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Concomitant with the rapid development of quantum technologies, challenging demands arise concerning the

certification and characterization of devices. The promises of the field can only be achieved if stringent levels of

precision of components can be reached and their functioning guaranteed. This review provides a brief overview

of the known characterization methods of certification, benchmarking, and tomographic recovery of quantum

states and processes, as well as their applications in quantum computing, simulation, and communication.

a. Introduction. Recent years have seen a rapid devel-

opment of quantum technologies, promising new real-world

applications in communication, simulation, sensing and com-

putation [4]. Quantum internet infrastructure enables uncon-

ditionally secure transmission and manipulation of informa-

tion [70, 124]. Highly engineered quantum devices allow

for the simulation of complex quantum matter [29]. While

noisy intermediate scale quantum devices [94] are on the

verge of outperforming classical computing capabilities [7],

a longer term perspective of fault tolerant quantum computers

[23] aims to solve impactful problems from industry that are

out of reach for classical computers. These prospects come

along with enormously challenging prescriptions concerning

the precision with which the components of the quantum de-

vices function. The task of ensuring the correct functioning

of a quantum device in terms of the accuracy of the output is

referred to as certification or sometimes verification. Bench-

marking more generally assigns a reproducible performance

measure to a quantum device.

The very tasks of certification and benchmarking are chal-

lenged by intrinsic quantum features: The involved configu-

rations spaces have enormous dimensions, a serious burden

for any characterization. What is more, certification comes

along with an ironic twist: It is highly non-trivial in light of

the fact that certain quantum computations are expected to ex-

ponentially outperform any attempt at classically solving the

same problem. While a large-scale universal quantum com-

puters are still out of reach, already today do we have ac-

cess to quantum simulators, that is, special-purpose, highly

controlled quantum devices aimed at simulating physical sys-

tems [13, 29]. And, indeed, for such systems, often, no ef-

ficient classical simulation algorithm is available. As a con-

sequence, as quantum devices are scaled up to large system

sizes, application-specific tools of certification are required

that go beyond standard approaches such as re-simulating a

device on a classical computer or full tomographic reconstruc-

tion. It is such specifically ‘quantum’ certification tools that

this review summarizes and puts into context.

∗ J. E. and D. H. have contributed equally.

To do so, we offer a framework in which the resource cost,

the information gained as well as the assumptions made in

such approaches are cast very naturally. We then turn to chart-

ing the landscape of different approaches to quantum certi-

fication within our framework, ranging from practically in-

dispensable, economic diagnostic tools such as randomized

benchmarking to cryptographically secure techniques such as

self-testing or the verification of arbitrary quantum computa-

tions in an interactive fashion [43, 50]. In doing so, we aim at

painting a panoramic sketch of this landscape useful for cat-

egorizing various tools and putting them into context. Some

of the methods we lay out are crucial for the development and

engineering of noisy near-term devices, some will find prac-

tical applications once large-scale sophisticated devices be-

come available. The main importance of yet others rests in

setting the stage of the possible, highlighting extremal points

of this landscape, and inviting future method development to

find good compromises between desirable features of a proto-

col. In this review, we therefore aim to be explicit about the

resource costs and assumptions made in specific protocols.

FIG. 1. Schematic of a classification scheme for some of the certi-

fication protocols discussed in this article. One axis quantifies the

information gain, the other the strength and number of assumptions

required. For clarity, we leave out the complexity of the protocol. An

example of a protocol is discussed in BOX 2.

ar
X

iv
:1

9
1
0
.0

6
3
4
3
v
2
  
[q

u
an

t-
p
h
] 

 2
9
 F

eb
 2

0
2
0



2

BOX 1: Measures of quality

Since a certificate should guarantee the correct functioning of a given quantum process or the correct preparation of a desired

quantum state, it should ideally be phrased in terms of a measure of distance between two such objects that has an operational

interpretation as their worst-case distinguishability. Preferably, such measures should also be composeable, meaning that individual

device or protocol certificates can be combined to certify larger, composite systems, which is especially crucial for cryptographic

applications [93]. Specifically, certificates for quantum states are often phrased in terms of the trace distance d(σ, ρ) = tr[|σ − ρ|]/2,

and for quantum channels in terms of the diamond norm [123], which can be conceived as a stabilized trace distance for channels.

For state vectors |ψ〉, certificates can be easily phrased in terms of the fidelity F (ρ, |ψ〉〈ψ|) = 〈ψ| ρ |ψ〉, which measures the overlap

between |ψ〉〈ψ| and ρ. The quality of quantum gates is commonly expressed in terms of the average gate fidelity [105]. This quantity

expresses the overlap of the output with the anticipated output of the quantum gate, in a way that is agnostic to the direction in

Hilbert space. The fidelity for quantum states directly bounds the trace distance via 1 − F (σ, ρ)1/2 ≤ d(σ, ρ) ≤ (1− F (σ, ρ))1/2

and therefore certifies worst-case performance. In contrast, the average gate fidelity only yields useful bounds that do not incur a

dimension factor for the diamond norm in certain special situations [75] and can therefore certify performance typically only on

average. For concrete tasks at hand, other measures of quality may apply. Building upon such notions of fidelities, specific measures

of quality have been introduced in different contexts. Examples include the cross-entropy [18] or cross-entropy benchmarking [7]

aimed at verifying classical distributions or the quantum volume [32] aimed at capturing the quality of entire quantum circuits or gate

sets. In the context of quantum simulation, as breaking up the entire scheme into physical and conceptual building blocks is less

obvious, notions of coherence [109], entanglement [55], non-classicality [81] or purity (i.e., tr
(

ρ2
)

) are made use of. In order to

compare the quality of devices, one can define a precisely reproducible task and take a well-defined measure of performance in this

task (e.g., number of secure bits in a quantum key distribution protocol [103]) as a valid figure of merit, a benchmark, in itself.

b. Classifying quantum certification. In any task of

quantum certification, the core aim is to establish the correct

functioning of a quantum device. Given the enormous ef-

fort of a full tomographic characterization of quantum states

and processes, in many practical applications, protocols for

certification will necessarily be constrained in the available

resources and at the same time governed by the advice one

hopes to gain from the protocol. With this in mind, it is in-

structive to conceptualize the quantum certification problem

as a protocol between the quantum device, seen as being pow-

erful, and its user, who is restricted in her or his measurement

devices and computational power. One can classify schemes

according to the effort and information gained, as well as in

the assumptions made on the device and its user (see Fig. 1).

Ultimately, even when one aims for tomographic knowledge,

one may conceive of certification as a protocol that outputs

‘accept’ if the device functions correctly, and ‘reject’ if it does

not. Whether the protocol accepts or rejects is determined ac-

cording to reasonable measures of quality that are appropri-

ate for the respective property of the device being certified

(BOX 1).

The assumptions made on the devices and their users de-

pend, among other aspects, on one’s trust levels and the spe-

cific setting at hand. Typically, which assumptions are made

also has an effect on the protocol’s complexity in one way

or the other, or even renders certification feasible in the first

place. Conceptually speaking, there are three building blocks

entering, each of which equipped with certain assumptions.

This is, firstly, the quantum device to be certified, a distinct

and often physically separate entity. In experimental scenar-

ios it is commonly reasonable to include knowledge concern-

ing the underlying physical mechanism and potential sources

of error in terms of an adequate modelling framework. How-

ever, it can also make sense to merely assume that the de-

vice is a quantum mechanical object. Secondly, it is useful

to distinguish the quantum measurement apparata used in the

characterization, which might include state preparation and

short circuits. In an idealized setting, they may be assumed to

be perfect. More practically relevant are situations in which

one has a solid understanding of their functioning and char-

acterized their efficiencies to some level. In many physical

architectures, in particular in key platforms for quantum sim-

ulation, one can perform certain quantum measurements very

accurately, but is severely limited in the type of measurements

that can be performed. Thirdly, and finally, there is the clas-

sical data processing which consumes storage capacity and

processing time. Ultimately, any characterization provides

classical numbers. The device-independent setting makes no

assumptions at all about the measurement apparata and the

device, taking into account the final data only. Such a setting

is adequate, for example, if the device is a remote and un-

trusted quantum device that may be accessible only through

the cloud.

The effort or complexity of such a certification protocol can

be divided into several distinct parts: This is the number of

different settings or rounds in which data is obtained from the

measurement device (measurement complexity). Implement-

ing those different settings might require different quantum

computational effort as for example quantified by the length

of the circuit that implements a certain measurement. Then,

there is a minimal number of experiments and resulting sam-

ples that need to be obtained for a protocol to meaningfully

succeed (sample complexity). Finally, one needs to process

those samples involving classical computational effort in time

and space (post-processing complexity).

Often, the complexity of a protocol can be traded for the

amount of information about the device that the user can ex-

tract when running the protocol. Such information is crucial

when it comes to designing and improving a concrete experi-

mental setup, while it may be less important when the user’s

goal is merely to check the correct functioning of, say, a newly

bought device, or a remote server. Indeed, whilst many cer-
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tification techniques have been developed with specific appli-

cations in mind, the abstract criteria outlined above provide a

framework to discuss the strengths, weaknesses and relevant

application of these techniques in more general terms.

For example, one can consider the relative importance

of these criteria for applications on the spectrum from ex-

ploratory science, through proof-of-principle demonstrations

to large scale technological implementation. At the ex-

ploratory end of the spectrum, information gain is at a pre-

mium as the researcher endeavors to maximise their under-

standing of the underlying physics. Often, such experiments

are small-scale and involve well characterised measurement

devices probing a relatively less understood target device.

Here, the complexity of a technique will be less important

and, while some assumptions regarding the measurement ap-

paratus may be reasonable, they should be avoided as much as

possible regarding the device to be certified. As we will see

in the next section, this combination of desiderata would mo-

tivate the use of quantum state tomography and related tech-

niques. In a proof-of-principle demonstration of a larger-scale

but better controlled device the relative importance of the as-

sumptions made and the information gained is reduced with

respect to complexity involved. If presented instead with a

high-quality, large-scale device, efficiency will become cru-

cial and remote users may prioritise simple-to-use certifica-

tion techniques such as self-testing or benchmarking at the

level of applications rather than hardware.

We now present and assess various tools for characteri-

sation ordered according to, first, the information that may

be extracted from the protocol, and, second, the assumptions

made in the protocol. Rather than being exhaustive and tech-

nically detailed, our selection highlights distinct points within

our framework with the goal to sketch a panoramic view of

the landscape it gives rise to. In addition to the main text,

we provide a tabular overview in which we quantitatively

assess exemplary certification protocols for applications in

cloud computing, demonstrating a quantum advantage, and

quantum simulation and computation according to our clas-

sification (TABLE I). We illustrate how to read this table by

means of exemplary cases in BOX 4.

c. Certification protocols. In many scenarios, it is rea-

sonable to assume that one’s quantum measurements are

rather well characterized and that the object of interest is ei-

ther a quantum state or process that can be accessed in inde-

pendently identically distributed (i.i.d.) experiments. These

assumptions are often very natural in laboratory settings in

which the quantum device can be directly accessed. They are

therefore at the heart of many characterization protocols and

shall be our starting point for now.

The most powerful but at the same time most resource-

intense such technique of certification is full quantum tomog-

raphy [64, 67]. Here, the idea is to obtain knowledge of the

full quantum state or process by performing sufficiently many

(trusted) measurements. Given tomographic data, one can in

particular obtain a certificate that the state lies in some region

in state space. For many years such regions were typically

constructed heuristically by first applying maximum likeli-

hood estimation to construct a point estimate of the state [65]

BOX 2: Randomized benchmarking

Randomized benchmarking (RB) refers to a collection

of methods that aim at reliably estimating the magnitude

of an average error of a quantum gate set in robust fash-

ion against state preparation and measurement (SPAM) er-

ror. It achieves this goal by applying sequences of feasible

quantum gates of varying length, so that small errors are

amplified with the sequence length leading. From a prag-

matic point of view, RB protocols thereby define bench-

marks that can be used to compare different digital quan-

tum devices. In important instances, the benchmark can be

related to the average gate fidelity, rendering RB protocols

flexible certification tools. To this end, a group structure of

the gate set is made use to achieve two goals: On the one

hand, this is to control the theoretical prediction of error-

free sequences. On the other hand, this allows one to an-

alyze the error contribution after averaging using represen-

tation theory. Originally devised for random unitary gates

[34, 38, 76], RB is most prominently considered for Clif-

ford gates [73, 78], and has been extended to other finite

groups [9, 24, 33, 39, 62, 90]. Assumptions on having iden-

tical noise levels per gate have been lessened [118], and RB

with confidence introduced [61, 121]. RB schemes have

been generalized to other measures of quality, such as rel-

ative average gate fidelities [79] with specific target gates,

fidelities per symmetry sector [24, 90], the unitarity [117],

measures for losses, leakage, addressibility and cross-talk

[49, 119, 120] or even tomographic schemes that combine

data from multiple RB experiments [47, 71, 102]. In addi-

tion, RB protocols have been devised that directly work on

the level of generating gate sets [48, 95].

and then using resampling techniques to obtain error bars.

More recently, techniques to obtain more rigorous region es-

timates have appeared including Bayesian credibility regions

[14, 41] and confidence regions [15, 28, 122] where the former

are usually smaller but depend strongly upon the Bayesian

prior. Most importantly, from these tomographic reconstruc-

tions, one exactly learns the nature of deviation of the imper-

fect implementation to the target. Such data proves crucial

when designing experimental setups as it yields information

about the particular sources of errors present in the setup and

hence functions as ‘actionable advice’ on how to improve the

setup.

However, generic quantum state and process tomography is

excessively costly in the size of the quantum system. For-

tunately, many quantum states and processes that are en-

countered in realistic experiments exhibit significant struc-

ture: States are often close to being pure or have approxi-

mately low rank, so that methods of compressed sensing to-

mography [53, 56, 69] can be applied in which less resource

expensive or more reliable recovery is possible based on the

same type of (but randomly chosen) measurements compared

to full tomography. Similarly, quantum processes are often

close to being unitary [45, 72]. For local Hamiltonian sys-

tems, even further structure of locality comes into play. In

particular, tensor network states can provide meaningful vari-

ational sets for tensor network tomography, which basically



4

BOX 3: Certifying a quantum advantage or quantum computational supremacy

Using a quantum computer to efficiently perform computational tasks that are provably intractable for classical computers marks a

key milestone in the development of quantum technologies. Various sub-universal models of quantum computing have been proposed

to demonstrate, with near-term achievable technology, a so-called quantum advantage or quantum computational supremacy. A crucial

part of the demonstration of this claim with a given model is the verification of the output of the corresponding quantum device. But

the nature of the computational task is precisely such that it cannot be reproduced classically and therefore the traditional means of

verifying a computation fail. What is more, the proposed sub-universal quantum devices produce samples from exponentially flat

probability distributions to the effect that it requires exponentially many samples to classically verify that the obtained samples are

indeed distributed according to the target distribution, independently of the hardness of producing the samples [58, 116]. The latter

result severely restricts the possibilities for deriving classical verification protocols for quantum computational supremacy even under

the assumption that the verifier has access to arbitrary computational power.

To circumvent this no-go result and arrive at a sample-efficient verification protocol one may take very different routes: First, one

might ask for less than verification of the full output distribution such as merely distinguishing against the uniform or certain efficiently

sampleable distributions, which can often be done in a computationally efficient way [2, 25, 92, 108]. Allowing for exponential time

in classical post-processing, one can also sample-efficiently verify coarse-grained versions of the target distribution [19], make use

of certain complexity-theoretic assumptions [3], or assumptions on the noise in the quantum device [18, 19, 40]. The latter allows

one to use weaker measures, like the cross-entropy [18, 19] or variants thereof such as the cross-entropy benchmarking fidelity [7].

If one gives qualitatively more power to the user, e.g., trusted single-qubit measurements [59, 91, 112], this even allows one to fully

efficiently verify the prepared quantum state and thereby the sampled distribution. Finally, one may use more complicated, interactive

protocols which require a universal quantum device, e.g., the one presented in Ref. [80], which relies on the post-quantum security of

a certain computational task to classically delegate a universal computation. Given the importance of verifying a quantum advantage,

it is a pressing challenge to derive fully efficient verification protocols which involve minimal assumptions. We expect that this will

require custom-tailored techniques for the different available proposals.

makes the structural assumption that there is little entangle-

ment in the state, an assumption that is often valid for quantum

many-body states to an extraordinarily good approximation

[10, 31, 66, 89]. Also, variational sets inspired by machine

learning have been considered [26, 113]. In such situations,

the effort of quantum state and process tomography can be

significantly reduced. At least for intermediate-sized systems,

such techniques are practically highly important.

If one is only interested in certain properties of a quantum

state or process one may resort to so-called learning tech-

niques, which scale much more favourably. For instance,

one may merely be interested in probably approximately cor-

rectly (PAC) learning the expected outcomes of a certain set of

measurements, e.g., local observables on the quantum state.

PAC learning is possible with a measurement complexity that

scales only linearly (in the number of qubits) in certain set-

tings [1, 100, 101] but still incurs exponential computational

effort. In another instance of learning, one might be confident

that the given data is described by a certain restricted Hamil-

tonian (or Liouvillian) model whose parameters are however

not known. Hamiltonian (or Liouvillian) learning techniques

solve this task and recover the Hamiltonian parameters from

suitable data [52, 63].

In contrast to the aforementioned tools for characterizing

a quantum device, fidelity estimation aims merely at deter-

mining the overlap of the actual quantum state or process im-

plemented in a given setup with the ideal one. While fidelity

estimation yields much less information than full tomography,

one saves tremendously in measurement and sample complex-

ity. In fact, using importance sampling one can estimate the

fidelity of an imperfect preparation of certain pure quantum

states in constant measurement complexity [46]. This pro-

tocol can be extended to optimally estimating the fidelity of

quantum channels [98].

A yet weaker notion than fidelity estimation is fidelity wit-

nessing. The idea of a fidelity witness is to cut a hyper-plane

through quantum state space which separates states close in

fidelity to a target state from those far away. Efficient fidelity

witnesses can often be derived in settings in which the tar-

get state satisfies some extremality property so that it lies in a

low-dimensional corner of state space, such as certain multi-

partite entangled states [91], Gaussian bosonic states [6] or

ground states of local Hamiltonians [59].

A still weaker approach merely aims at verifying or estimat-

ing the presence of certain key properties, such as entangle-

ment from realistic measurements, to, say, observe entangle-

ment propagation [68]. Here again, notions of (quantitative)

witnesses that provide bounds to entanglement measures play

an important role [8, 36, 54]. Such witnesses can be measured

by exploiting randomness [22].

In case one has a good understanding of the physical mech-

anisms governing the device, it is often useful to build trust in

the quantum device. This approach is particularly prominent

in the context of quantum simulation: Here, the idea is to cer-

tify a quantum device by validating its correct functioning in

certain classically simulable regimes through comparison to

classical simulations [20, 104, 114, 115]. In some instances,

stronger statements can be made when invoking notions of

self-validation [74] or cross-platform verification [37]. It is

also common to certify the components of a device, for exam-

ple, individual gates, and extend the trust obtained in this way

to the full device, making the assumption that all sources of

errors are already present for the individual components. In

such approaches, it is assumed that no additional sources of

errors arise when moving out of the strictly certifiable regime

again.

An important drawback of most schemes discussed so far,

however, is that they assume i.i.d. state preparations. This lim-
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BOX 4: A guide to TABLE 1

In TABLE 1, we are comparing a wide range of protocols some of which are structurally distinct. We have settled on certain criteria

described above to meaningfully compare a variety of techniques in a unified language. But of course more fine-grained distinctions

are necessary to exhaustively describe all the protocols. For example, in delegated computing protocols natural figures of merit include

the number of communication rounds and transmitted bits as well as overhead in terms of qubit number. However, such quantities do

not appear in state tomography protocols. As the number of qubits and rounds affects the number of single-qubit measurements that

need to be performed by the server in a blind computing protocol our criteria capture the effort required to perform the protocol. Let

us give provide two examples.

Example 1 (Blind computing via trap qubits [44]): Here, the client prepares and sequentially transmits to the server a product

quantum state of N ∈ O(nD log(1/ǫ) many qubits in order to delegate and verify a depth-D quantum computation on n qubits with

trace-distance error ǫ. The server entangles the qubits in a graph state, measures all of them, and sends the outcomes to the client for

post-processing who simply compares certain outcomes. The number of distinct single-qubit measurements is therefore given by one

choice of settings for a single N -qubit measurement, while the number of samples is 1 as the protocol is single-shot. To obtain the

certificate, O(N) many of the single-qubit measurement outcomes need to be compared and hence the post-processing is linear in

that number.

Example 2 (Low-rank state tomography with 2-designs [57]): Here, one repeatedly measures a positive operator valued measure

(POVM) that constitutes a complex projective 2-design on O(2nr2/ǫ2) i.i.d. copies of an n-qubit rank-r quantum state. Such a

POVM consists of at least O(4n) elements and, hence, requires an exponential number of observables. The sampling complexity is

of order of the degrees of freedom of a rank-r state up to an additional factor of r. From the frequency estimates one calculates a

linear least-square estimator and subsequently projects the result onto quantum states which requires a time complexity of O(23n) on

a classical computer. A trace-norm ball around the obtained estimate is a confidence region depending only on the estimate’s rank.

itation can be overcome using quantum de Finetti arguments

to obtain non-i.i.d. tomographic regions [28, 122] and distance

certificates [112], the use of which has been optimized in var-

ious works for the case of graph states [82, 111] as well as for

continuous variable states [27].

More severely still, in the standard setting a high level of

trust in the measurement devices is required giving rise to

a vicious cycle: After all, to calibrate the measurement de-

vices in the first place, one requires quantum probe states

which are well characterized, a task that requires well cali-

brated measurement devices. This raises the question whether

one can simultaneously learn about the quantum device and

the quantum measurement apparatus in a self-consistent or

semi-device-dependent way. The rather extreme and resource-

intense solution to this problem is gate set tomography which

instead of focusing on a single quantum channel or state, char-

acterizes an entire set of quantum gates, the state preparation

and the measurement self-consistently from different gate se-

quences [16, 17, 85]. Other solutions have been demonstrated

in optics settings where one can perform state tomography in

a self-calibrating way [21, 86]. Such schemes at times even

come with error bars [107]. One can also exploit well charac-

terized reference states such as coherent states [87] as a lever

to perform uncalibrated tomography [97]. In another vein, one

can mitigate uncertainty in the model that generated the data

by using model averaging techniques [42]. A particularly im-

portant example of fidelity-estimation protocols for quantum

processes that break this vicious cycle have been proposed in

the context of randomized benchmarking [34, 38, 76, 78] (see

(BOX 2)).

If a quantum device already allows for a level of abstrac-

tion that is close to an envisioned application, one can use

more specific or even ad hoc performance measures in sim-

ple tasks as a benchmark. For example, quantum key distribu-

tion is usually certified entirely at the application level through

the number of secure distributed bits [103]. One can also run

small instances of quantum algorithms on prototypes of digi-

tal quantum computers [35, 77].

One could imagine, however, applications where even mild

assumptions cannot be guaranteed. In such a scenario, one

could utilize a range of cryptographic tool-kits to ensure that

the above assumptions are indeed enforced. One prominent

example of such setting is where one has to work in a black-

box setting, i.e., with no assumptions made about the under-

lying devices. Remarkably, the non-local correlations demon-

strated by quantum mechanics allow for certain entangled

states and non-commuting measurements to be certified in this

setting (up to local isometries) solely via the observed statis-

tics [83]. This procedure of self-testing is typically achieved

through the violation of a Bell inequality, with the paradig-

matic example being the maximal violation of the CHSH in-

equality which self-tests non-commuting Pauli measurements

made upon a maximally entangled pair of qubits. A substan-

tial body of literature has extended these results in many di-

rections, including generalisations to multi-partite entangled

states [84], gates and instruments [106], and approximate col-

lections of maximally entangled qubit pairs [99] which have

been made increasingly robust [88] (a recent and comprehen-

sive review of self-testing can be found in Ref. [110]).

In the context of computation, the key idea of device-

independent schemes is to hide the delegated computation

from a remote black box server in such a way that the pow-

erful server cannot retrieve any information about the com-

putation without leaking to the client that a deviation has oc-

curred. The use of the quantum twirling lemma or similar

technique allows one to simplify the analysis under a general

deviation (with no assumptions) to a simple (i.i.d.) case lead-

ing to efficient verified blind quantum computation schemes

[30, 44, 99]. Guarantees of correctness have been achieved

in this manner in various scenarios, giving different degrees
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of control to the user. These powerful verification schemes,

while removing many trust assumptions and providing effi-

cient protocols, remain only applicable to a remote verifier

with limited quantum capacity, such as single qubit gates [44],

or access to entangled servers [30, 99]. These last obstacles

have recently been overcome by utilizing yet another crypto-

graphic toolkit, this time from the classical domain. The usage

of post-quantum secure collision-resistant hash functions has

enabled a fully classical client to hide and verify the remote

quantum computation [51, 80]. However, these new schemes

come with a significant overhead that can be reduced to some

extent [5], and they are no longer fully unconditionally secure,

as they are based on a computational assumption, that is, the

existence of classical problems that are computationally hard

to solve even for a quantum computer [96]. We provide a case

study of how different certification methods can be applied in

the context of verifying a quantum computational advantage

(BOX 3).

d. Outlook. In this review, we have provided an

overview of methods for certifying and benchmarking quan-

tum devices as they are increasingly becoming of key impor-

tance in the emerging quantum technologies (for detailed, up-

to-date information, see (BOX 5)). We hope that our frame-

work will prove to be a useful means of assessing and putting

into a holistic context methods to be developed in the future.

Indeed, achieving good compromises between resource cost,

obtainable information and assumptions made in a protocol

may well be a make-or-break topic for quantum technologies.

In this mindset, this review – and the quantitative framework

provided here – is also meant to be an invitation and guideline

for future method development to a growing field of research

that combines sophisticated mathematical reasoning with a

data-driven experimental mindset.
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BOX 5: Online certification library

Some of the present authors have curated an online li-

brary of certification protocols on the Quantum Protocol

Zoo, hosted at wiki.veriqloud.fr under certification library.

The aim of this repository is to provide a compact and pre-

cise review of the existing certification techniques and the

corresponding protocols beyond the scope of this work. As

of today, this library consists of a few concrete protocols in

a specified format, classified in different techniques, where

the technique page also includes a brief description, prop-

erties and the references. For every protocol, we provide

its detailed outline, the assumptions considered, resources

and requirements, a mathematical description of the pro-

cedure and properties including sample and measurement

complexity. Certification plays an important role in the de-

velopment of quantum devices and we hope this library will

help the community classify the certification techniques and

also keep updating them with the progress in this field.
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N. Lütkenhaus, and M. Peev. The security of practical quan-

tum key distribution. Rev. Mod. Phys., 81(3):1301–1350,

September 2009.

[104] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
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