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Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter

(AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work

shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular

bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states.

We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature

limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore,

the renormalization group description of the resulting model is shown to be analogous to the strong disorder

renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to

a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by

the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models

on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.

I. INTRODUCTION

Years before the formulation of the holographic principle,

J. D. Brown and M. Henneaux noticed a peculiar property

of anti-de Sitter (AdS) spacetime, a solution to Einstein’s

equation with constant negative curvature: At its asymptotic

boundary, the generators of the symmetry group SO(2, 2)
of 2+1-dimensional AdS3 spacetime form a Virasoro alge-

bra describing a 2-dimensional conformal field theory (CFT)

with an effective central charge depending on the curvature

of the AdS bulk. Rather than a mathematical coincidence, the

AdS/CFT correspondence [1] propelled this observation to the

cornerstone of a holographic duality between gravity in d+2-

dimensional AdSd+2 spacetime and a conformal field theory

(CFT) on its d+1-dimensional boundary, with an equivalent

action describing both sides of the duality [2]. A key moti-

vation for the holographic principle was the discovery that a

black hole’s entropy scales with its horizon area rather than its

volume [3, 4]. The Bekenstein-Hawking entropy formula

SBH =
Ahor

4G
, (1)

where Ahor is the horizon area and G the gravitational

constant, has a surprising generalization in the context of

AdS/CFT: The entanglement entropy SA [5] of a boundary

region A follows the Ryu-Takayanagi (RT) formula [6]

SA =
|γA|
4G

, (2)

where |γA| is the area of an extremal surface γA in the bulk

whose boundary ∂γA matches the boundary ∂A. In 2+1
dimensions, γA is simply a geodesic curve and |γA| its length.

Both formulae (1) and (2) suggest an encoding of information

in Planckian pieces of area of size ∼G = l2p (in 3+1 bulk

dimensions).

While the AdS/CFT correspondence is formulated in the

continuum, tensor networks [5, 7–10] have become a popu-

lar approach for models built on a discretized AdS spacetime,

as they naturally incorporate the RT formula in the form of

an upper bound on entanglement and yield boundary quan-

tum states that can be efficiently computed. The multi-scale

entanglement renormalization ansatz (MERA) [11], a ten-

sor network that well approximates critical boundary states,

was identified as a possible realization of discrete hologra-

phy [12, 13], but the bulk geometry of the MERA cannot be

directly related to an AdS time-slice [14–16]. Instead, regu-

lar hyperbolic tilings have recently been used as the basis of

numerous discrete holographic models [17–23], elucidating

many aspects of AdS/CFT, particularly its deep connection to

quantum error correction [17, 24], However, a clear interpre-

tation of the resulting boundary states in terms of a critical

system, as is possible for the MERA, remained elusive.

Resolving this question, we show that tensor networks on

regular tilings lead to boundary quantum states whose sym-

metries naturally discretize conformal symmetries on time-

slices, allowing their maximal central charges to be analyti-

cally computed for any tiling. Relating this central charge to

the scalar curvature of the tiling then results in a discrete gen-

eralization of the Brown-Henneaux formula [25]. We demon-

strate these properties using a class of tensor networks based

on Majorana dimer states, whose exact central charges are

computed and are shown to saturate the upper bound in the

strong-curvature limit. This class of states includes the widely

studied hyperbolic pentagon code (HyPeC), an instance of

the HaPPY codes [17], a toy model for quantum error cor-

rection in AdS/CFT. In this paper, we argue that these dimer

models are a discrete approximation of a CFT with an ape-

riodic structure, the inflation rules of the tiling providing a

local renormalization group transformation identified with the

strong-disorder renormalization group (SDRG). The discrete

boundary thus exhibits quasi-regular symmetries, describing a

CFT discretization that breaks translation invariance and pos-

sesses disorder on all length scales. Such critical systems have

been extensively studied in the condensed matter literature,

but no connection to holographic models had been known un-

til now.
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II. CENTRAL CHARGES AND CURVATURE

In global AdS coordinates, AdS3 spacetime takes the form

ds2 = −(1 + r2/α2)dt2 +
α2dr2

α2 + r2
+ r2dφ , (3)

where α is the AdS radius. The scalar curvature or Ricci scalar

R of AdSd spacetime with d = 2+1 dimensions is given by

R = −d(d− 1)

α2
= − 6

α2
, (4)

corresponding to a negative cosmological constant Λ =
−1/α2. An AdS3 time-slice can be more conveniently

mapped to the Poincaré disk with

ds2 = 4α2 dρ
2 + ρ2dφ2

(1− ρ2)2
. (5)

Global and Poincaré disk coordinates are related by a radial

transformation r = 2αρ/(1−ρ2) and the time-slice constraint

dt = 0. The global radius is defined in r ∈ [0,∞[, so the AdS

boundary is mapped from r = ∞ to ρ = 1. Consider an

asymptotically AdS spacetime, i.e., one described by Eq. (5)

near the AdS boundary. In this asymptotic region ρ → 1,

a bulk geodesic γA corresponding to a boundary region A
will be unaffected by massive deformations further in the

bulk, simply following a radial direction (see Fig. 1). At two

different cutoff radii ρ1 < ρ2 close to unity, the subsystem

length ℓ = |A| at each cutoff is given by

ℓ(k) =
2αρk
1− ρ2k

∆φ ≈ α

1− ρk
∆φ , (6)

where ∆φ is the Poincaré disk angle subtended by A. The

difference in geodesic length |γA| between both cutoffs is

given by the lengths of two radial segments:

|γ(2)
A | − |γ

(1)
A | = 2

∫ ρ2

ρ1

2α

1− ρ2
dρ ≈ 2α ln

ℓ(2)

ℓ(1)
. (7)

Compare this with the entanglement entropy of a conformal

field theory for a small subsystem (∆φ≪ 2π), given by [26]

SA =
c

3
ln

(

2ℓ

∆φ ǫ
sin

∆φ

2

)

≈ c

3
ln

ℓ

ǫ
, (8)

where ǫ denotes the lattice spacing and c is the central charge

of the CFT. Assuming that the RT prescription holds, we

recover the Brown-Henneaux formula [25]

c =
3α

2G
. (9)

III. DISCRETE TENSOR NETWORK MODELS

A natural discretization of an AdS time-slice, or equiva-

lently, the Poincaré disk, is given by a regular hyperbolic

FIG. 1. (a) Continuous and (b) discretized geodesic γA in the

Poincaré disk with a deformation in the center and a boundary cutoff

shown as a dashed curve. In the asymptotic region towards the

boundary, the shape of γA is independent of bulk deformations.

tiling (Fig. 1). A regular {n, k} tiling, with k n-gon tiles at

each vertex, is hyperbolic if the sum of inner angles of each

n-gon is smaller than (n− 2)π, i.e., when 1/n+ 1/k < 1/2.

We can relate such a discretized bulk geometry to a quan-

tum state by identifying each n-gon tile with a rank n tensor

and contracting them over all edges, forming a tensor network

[5, 7–10]. The uncontracted edges on the boundary are then

identified as the physical sites of a boundary state. As the

Poincaré disk (1) can contain infinitely many tiles, a prescrip-

tion for constructing the tiling towards the asymptotic bound-

ary is needed. Starting with a given tile/tensor, we iteratively

“grow” our geometry by contracting layers of tensors in in-

flation steps, each step corresponding to a UV cutoff. A dis-

cretized boundary region A at such a discrete cutoff does not

follow a constant radius ρ in the Poincaré disk, with its length

ℓ being larger than expected for a radial cutoff in the contin-

uum. Similarly, as shown in Fig. 1, discretized geodesic cuts

γA no longer follow a smooth curve, with their lengths |γA|
also being larger than in the continuum. However, we can still

define a discrete analogue to the RT formula (2) as a bound on

the entanglement entropy of a boundary region A, given by

SA ≤
|γA|
s

lnχ , (10)

with ∂A = ∂γA and s being the length of each individual

edge. The bond dimension χ of each tensor index is assumed

to be constant throughout the network.

In analogy to the previous section, we now derive a dis-

cretized form of the Brown-Henneaux formula (9) from the

relative growth of boundary and geodesic lengths ℓ = |A| and

|γA| under inflation of the tiling. We specifically consider ver-

tex inflation, whereby an inflation step consists of filling each

open vertex with tiles. Vertices are labeled by their number

of neighbors up to the given inflation level. First consider the

n = 3 case, the triangular hyperbolic tiling, whose vertex in-

flation is shown in Fig. 2 (left). We start with a single triangle

with three vertices, each of which has two neighbours. The

first inflation step gives each vertex k−2 additional neigh-

bouring vertices, two of which are shared with its previous

neighbours. Thus, the inflation step adds k−3 new vertices for
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FIG. 2. Vertex inflation of (a) the {3, 7} and (b) the {4, 5} tiling,

with vertices labeled by type and each inflation layer colour-coded.

each old one. After the first inflation step, all boundary ver-

tices have either three or four neighbours, two of which are

other boundary vertices. Denoting vertices with two, three,

and four neighbours with the letters a, b, and c, respectively,

this pattern is summarized in the inflation rule

a 7→ bk−4c , b 7→ bk−5c , c 7→ bk−6c , (11)

where we encode the boundary vertices as a string of a, b
and c, ak denoting k repetitions of a. The inflation rule

for any hyperbolic {n, k} tiling produces a quasi-regular

sequence [27] exhibiting self-similarity: After sufficiently

many inflation steps, any starting sequence will lead to a

sequence with the same distribution of letters. In this steady

state the relative frequency of letters is given by the largest

eigenvalue of the substitution matrix M , where Mi,j is the

number of j vertices resulting from applying the inflation rule

on an i vertex. For the {3, k} tiling, it is given by

M =





0 k − 4 1
0 k − 5 1
0 k − 6 1



 . (12)

Here the rows and columns correspod to (a, b, c) vertices. The

largest eigenvalue of M ,

λ =
1

2

(

√

k2 − 8k + 12 + k − 4
)

, (13)

is the scaling factor of the sequence (and sufficiently large

subsystems thereof) in the steady state, i.e., after many in-

flation steps. The scaling of discrete geodesics can also be

computed: Coarse-graining a subsystem A of the sequence by

a deflation step maps the two vertices that bound A (and a few

of its neighbours) onto two vertices at a lower inflation layer.

For the {3, 7} tiling, this corresponds to removing two edges

from the geodesic γA, one on either end. Thus, the average

difference in entanglement entropy between both layers, de-

noted as ∆SA, is bounded by 2 lnχ. Relating this to (8) leads

to the central charge bound

c{3,k} =
3∆SA

lnλ
≤ 6 lnχ

ln
√
k2−8k+12+k−4

2

=: cmax
{3,k} . (14)

Generalizing this result to arbitrary hyperbolic {n, k} tilings

leads to further complications. For the {4, k} tiling (Fig. 2,

right), the vertex inflation rule is

a 7→ b(ab)k−3 , b 7→ b(ab)k−4 . (15)

Again a and b denote vertices with two and three neighbours

up to a given inflation layer. The substitution matrix and its

largest eigenvalues are found to be

M =

(

k − 3 k − 2
k − 4 k − 3

)

, λ =
√

k2 − 6k + 8 + k − 3 .

(16)

Unfortunately, the change of geodesic length under deflation

now depends on the vertices involved: As we can see in Fig.

2 (right), the deflation a←[ b still only involves moving along

one edge, but the deflation a← [ a involves two. To determine

the average change in geodesic length per deflation step, we

first compute the left and right eigenvectors of M for the

eigenvalue λ, given by

~l =

(√
8− 6k + k2

k − 2

)

, ~r =

(√
8− 6k + k2

k − 4

)

. (17)

When divided by their total sum, the components of ~l give

the relative frequencies P (a) and P (b) of a and b vertices in

the steady state. This is not a probabilistic process; however,

the relative frequencies can be captured on the formal level

by a discrete Markov chain. In this sense, we now wish to

compute the probability of a deflation step i ← [ j. Each

vertex type corresponds to a state with transition probabilities

to other states under a deflation step. After sufficiently many

steps, the probability of reaching any given state becomes

independent of the starting point. While Mi,j ∝ P (i 7→ j|i)
is the (relative) transition probability of reaching a j vertex

from an i one, we can construct the deflation matrix D giving

the probability of the reverse process,

Di,j = P (i←[ j|j) = P (i 7→ j|i)P (i)
∑

k P (k 7→ j|k)P (k)

=
Mi,j li

∑

k Mk,j lk
=

Mi,j li
λ lj

. (18)

The eigenvector ~p of D with eigenvalue 1 now encodes the

average probability of reaching each vertex type through de-

flation. We find pi = liri, as

∑

j

Di,jpj =
∑

j

Mi,j lirj
λ

= liri = pi . (19)

We normalize ~p so that
∑

i pi = 1. If an inflation step i 7→ j
adds Ei,j edges to a geodesic ending at an i vertex, i.e., adding

Ei,j lnχ to the entanglement bounded by the cut, then the

average entanglement entropy loss per deflation step is given

by

∆SA ≤
∑

i,j

Di,jEi,jpj lnχ =
1

λ

∑

i,j

Mi,jEi,j lirj lnχ .

(20)
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We thus call E the entanglement matrix. The central charge

bound for the hyperbolic {n, k} tiling thus becomes

c{n,k} ≤ cmax
{n,k} =

6
∑

i,j Mi,jEi,j lirj lnχ

λ lnλ
. (21)

For the {4, k} case, the entanglement matrix is simply

E =

(

1 2
1 2

)

, (22)

which yields a central charge bound

cmax
{4,k} =

9 lnχ

ln
(√

k2 − 6k + 8 + k − 3
) . (23)

Eq. (21) can be used to derive central charge bounds for

arbitrary {n, k} tilings. For k > 3, the inflation rules are

as follows:

n = 3 : n > 3 :

a 7→ bk−4 c , a 7→ an−4 b
(

an−3 b
)k−3

,

b 7→ bk−5 c , b 7→ an−4 b
(

an−3 b
)k−4

.
c 7→ bk−6 c .

(24)

As before, the letters a, b, c correspond to vertices with two,

three, and four neighbors. In the k = 3 case we also require

three letters a, b, c, where c now denotes a vertex to the right

of a b-type vertex, leading to

a 7→ c an−5 b , b 7→ c an−6 b , c 7→ ∅ . (25)

Here ∅ is the empty set, i.e., the letter disappears. While (24)

and (25) reproduce the quasi-regular sequences resulting from

vertex inflation, these forms are not sufficient to describe the

propagation of geodesics for n > 4. This requires distin-

guishing vertices by the graph distance of their neighbour-

ing vertices to the center, which determines which paths from

one inflation layer to the next correspond to discretized radial

geodesics. As in the continuous case, where we considered ra-

dial geodesics in an asymptotically AdS geometry, our tiling

can be non-regular in the center; only the tiling structure near

the boundary of the Poincaré disk is relevant to the central

charge of the boundary state. The maximum central charges

resulting from the full calculation for an arbitrary {n, k} tiling

are summarized in Tab. I. The corresponding inflation rules

and matrices M and E are given in the Appendix.

IV. CURVATURE OF REGULAR TILINGS

An {n, k} tiling embedded into the Poincaré disk is con-

structed of identical n-gons with an angle of 2π/k at each

corner (see Fig. 3). The geodesic length P1P2 = s between

two points P1 and P2 of the tiling determines the length be-

tween all other points in the tiling. The parameters n and

k further fix the angles β = ∡(OP1, OP2) = 2π/n and

γ = ∡(P1P2, P1O) = ∡(P2O,P2P1) = π/k. The hyper-

bolic law of cosines then states that

cosβ = − cos2 γ + sin2 γ cosh
s

α
. (26)

sP1 P2

O

FIG. 3. Sketch of a {5, 4} tiling in the Poincaré disk with three

reference points and one edge marked.
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Brown-Henneaux

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2
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6

8

AdS radius α / s

C
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al
ch
ar
g
e
c
/
ln

χ ● {3, k} bound

■ {4, k} bound

◆ {5, k} bound

▲ {6, k} bound

FIG. 4. Central charge bounds and AdS radii for {n, k} tilings, with

the continuum Brown-Hennaux formula for G = s/4 lnχ shown as

a dashed line. The data series start at k = 7 for n = 3, k = 5 for

n = 4, and k = 4 for both n = 5 and n = 6 (first data point of each

series in the upper-right corner).

Note that this form of the law of cosines holds for a Gaussian

curvature K = R/2 = −1/α2 of the time-slice metric. Using

this relation we can now express the AdS3 radius in terms of

the tiling parameters as

s

α
= 2arcosh

(

cos π
n

sin π
k

)

= 2 ln

(

2k

π
cos

π

n

)

+O(k−2) .

(27)

Thus, s/α diverges logarithmically in the large k limit. Note

that the hyperbolic area A = α2(n−2n/k−2) is finite in this

limit.

We can now directly relate the previously derived bounds

on central charges c to the AdS radius α of the correspond-

ing AdS geometry, with the results for various choices of n
shown in Fig. 4. These bounds can be compared to the contin-

uum Brown-Henneaux prescription (9), with the gravitational

constant G fixed through the RT formula: The length of a

discretized minimal geodesic γA corresponding to a bound-

ary region A can be written as |γA| = Ns, where N is the

number of edges that γA consists of (note that N →∞ in the

asymptotic limit). As each edge contributes lnχ to SA, we
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Maximal central charge cmax Slope cmax/α

k = 3 k = 4 k = 5 k = 6 General k k→∞ k→∞

n = 3 - - - - 6 lnχ

ln

√
k2

−8k+12+k−4

2

6 lnχ

ln(k−4)
12 lnχ

s

n = 4 - - 9 lnχ

ln(
√
3+2)

9 lnχ

ln(2
√

2+3)

9 lnχ

ln(
√

k2−6k+8+k−3)

9 lnχ

ln(2k−6)
18 lnχ

s

n = 5 - 10 lnχ

ln(
√
3+2)

10 lnχ

ln 3
√

5+7
2

10 lnχ

ln 4
√

6+10
2

10 lnχ

ln

√
9k2

−48k+60+3k−8

2

10 lnχ

ln(3k−8)
20 lnχ

s

n = 6 - 12 lnχ

ln(2
√
2+3)

12 lnχ

ln(2
√
6+5)

2 lnχ

ln(4
√

3+7)

12 lnχ

ln(2
√

k2−5k+6+2k−5)

12 lnχ

ln(4k−10)
24 lnχ

s

n = 7
66 lnχ

5 ln 3+
√

5
2

66 lnχ

5 ln(
√
15+4)

66 lnχ

5 ln
√

165+13
2

66 lnχ

5 ln(
√
15+4)

66 lnχ

5 ln
5k−12+

√
(5k−10)(5k−14)

2

66 lnχ

5 ln(5k−12)
132 lnχ

5s

n = 8
15 lnχ

ln(
√
3+2)

15 lnχ

ln(2
√
6+5)

15 lnχ

ln(3
√
7+8)

15 lnχ

ln(2
√
30+11)

15 lnχ

ln(
√

9k2−42k+48+3k−7)

15 lnχ

ln(6k−14)
30 lnχ

s

n = 9
114 lnχ

7 ln 5+
√

21
2

114 lnχ

7 ln(
√
35+6)

114 lnχ

119 ln 7+
√

357
2

114 lnχ

7 ln(2
√

42+13)

114 lnχ

7 ln
7k+

√
(16−7k)2−4−16

2

114 lnχ

7 ln(7k−16)
228 lnχ

7s

n→∞ 3(n+2) lnχ

2 ln(n−4)
3(n+2) lnχ

2 ln(2(n−3))
3(n+2) lnχ

2 ln(3n−8)
3(n+2) lnχ

2 ln(4n−10)
3(n+2) lnχ

2 ln((n−2)(k−2)−2)
3n lnχ

2 ln(nk)
3n lnχ

s

TABLE I. Maximal central charges cmax for the boundary state of a bond dimension χ tensor network embedded into a vertex-inflated regular

{n, k} tiling. The last column contains the slope of cmax with respect to the AdS radius α, given in terms of the geodesic edge length d. Full

derivations are given in Appendix A.

find

SA =
|γA|
4G

=
Ns

4G

!
= N lnχ . (28)

We can thus rewrite (9) as

cmax =
6α lnχ

s
. (29)

Comparing this to the behaviour of boundary states of {n, k}
tilings in Fig. 4, we find that these bounds are always above

(29). This implies that tensor networks with the same bulk

curvature and entanglement entropy growth as a continuum

model can always be constructed by choosing appropriate

tensors. Furthermore, we find a linear regime at large k in

all tilings with the slope depending on n. For example,

lim
k→∞

cmax
{3,k} s

α{3,k} lnχ
= 12 , lim

k→∞

cmax
{4,k} s

α{4,k} lnχ
= 18 . (30)

The general coefficients are given in Tab. I. Note that they

are significantly larger than the continuum value at small

curvature, and increase monotonically with n. At small k,

a second linear regime appears, with a slope much closer to

the Brown-Henneaux form, e.g.

cmax
{3,7} − cmax

{3,8}
α{3,7} − α{3,8}

≈ 6.38
lnχ

s
. (31)

As a tiling of lower curvature is a better approximation of

a continuous geometry, a result closer to the BH formula is

not unexpected; however, fixing n while varying k appears to

produce a central charge shift relative to the BH result that

remains constant for a large range of k, even as the curvature

increases significantly.

V. STRONG DISORDER RENORMALIZATION

Having established the previous bounds on entanglement

entropy asymptotics, we will consider cases when the central

charge can be calculated exactly. Interestingly, the method

that allows for such an exact calculation is deeply related to a

very early approach to real-space renormalization group trans-

formations that were originally introduced in Ref. [28] and

later extended in Ref. [29] to study the ground states, low-

energy excitations and spatio-temporal correlations of random

quantum spin chains. This technique, called the strong dis-

order renormalization group (SDRG) [30] has recently again

gained considerable attention due to its role in studying many-

body localization [31], quantum critical Floquet dynamics

[32] and models with highly area-law breaking ground states

(rainbow states) [33], see Ref. [34] and reference therein for

recent development.

We now describe the basic results of SDRG on some aperi-

odic singlet models that share the quasi-regular symmetries

of the boundary states described previously. One example

is given by the Fibonacci XXZ chain that is defined by the

Hamiltonian

H =
∑

i

Ji(S
x
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1), (32)

where Sα
i (with α = x, y, z) refers to spin- 12 operators.

The site-dependent couplings Jb > Ja > 0 are modulated

according to the aperiodic Fibonacci sequence obtained from

the inflation rule

a 7→ ababa , b 7→ aba . (33)
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The SDRG procedure predicts that for this aperiodic Hamil-

tonian the ground state (in the large system size limit) is char-

acterized by fully entangled pairs of sites [35, 36]. For exam-

ple, inflating the letter b twice leads to a Hamiltonian with the

ground state given by

a b a b a a b a a b a b a

(34)

where each double-line denotes a singlet bond. The entangle-

ment entropy of a subsystem A of such a singlet state is simply

computed by counting the number of singlets connecting it to

its complement AC. For example, in the state

A

(35)

we find five singlets passing through the cuts between A and

AC, resulting in an entanglement entropy SA = 5 ln 2.

Applying the SDRG procedure to this model [35], it fol-

lows that one can systematically obtain the ground state cor-

responding to the Hamiltonian after inflating the letter b for

n times by iterating the inverse of the renormalization steps,

giving rise to the inflation rules

a

→
a b a b a

, (36)

b

→
a b a

. (37)

Newly added singlets are highlighted. Intuitively, the fine-

graining effected by the inflation rule places two sites within

a singlet closer to each other than uncoupled neighbors. It-

eratively applying the inflation rule creates states with nonlo-

cal entanglement. Each inflation step thus adds short-range

entanglement on successively fine-grained scales, similar to

the entanglement renormalization produced by the MERA

[37]. Due to its strong disorder, i.e., strong aperiodicity on

all scales, this singlet model can be inflated locally without

changing the quasi-regular symmetry of the state. For suffi-

ciently large regions A, the dependency of the entanglement
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●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●∝ cFib

3
ln ℓ

1 10 100
0.0

0.5

1.0

1.5

2.0

2.5

Length ℓ

E
n
ta
n
g
le
m
en
t
S
A

● ● ● ● ●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●∝ cd{5,4}
3

ln ℓ

1 10 100
0

2

4

6

8

10

Length ℓ

E
n
ta
n
g
le
m
en
t
S
A

Singlets or dimers Entanglement

F
ib
o
n
a
cc
i
X
X
Z

{5
,4
}
M
a
jo
ra
n
a
d
im
er
s

FIG. 5. Fibonacci singlets (top) and {5, 4} HyPeC Majorana dimers

(bottom) shown in a disk projection along with their corresponding

scaling of entanglement entropy SA with subsystem size ℓ = |A|.
The translation-invariant form [26] with effective central charge c =
cFib from (38) and c = cd

{5,4} from (B7) are shown as dashed curves.

entropy on the region size |A| can be computed from the ape-

riodic symmetries themselves and the central charge can be

obtained analytically [35]. For example, the Fibonacci XXZ

chain has an effective central charge

cFib =

(

3− 3√
5

)

ln 2

ln(2 +
√
5)
≈ 0.7962 . (38)

The corresponding entanglement scaling is shown in Fig. 5

(top), showing the result of seven successive application of

the inflation rules (36) and (37) onto one singlet. Rather than

a smooth logarithmic entanglement scaling with ℓ = |A| that

we find in translation-invariant critical systems, a characteris-

tic feature of multiscale aperiodicity is a linear growth of SA

in fixed intervals of ln ℓ, with SA at the endpoints of these

intervals growing logarithmically.

In the next section, we give concrete examples of such

multiscale aperiodic models as the boundary states of regular

hyperbolic tilings and calculate their exact central charges.

Distinct from usual singlet models, we consider fractionalized

fermionic modes with large effective central charges. The

entangled pairs in these models exhibit crossing, requiring a

new approach to computing their entanglement entropies.

VI. MAJORANA DIMER MODELS

An efficiently contractible class of tensor networks with a

holographic interpretation is given by Majorana dimer states
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[23]: This versatile class of states corresponds to the intersec-

tion of stabilizer and free fermionic states; as part of the latter,

they can also be efficiently described by matchgate tensor net-

works [19]. In particular, the hyperbolic pentagon code (Hy-

PeC), a toy model of holographic quantum error correction

[17], can be expressed in this form. This model is based on

the [[5, 1, 3]] stabilizer code, which encodes one logical qubit

in five physical spins with a code distance of three, i.e., cor-

recting one Pauli error [38, 39]. The tensors corresponding

to its encoding isometry between logical and physical states

are now contracted along a {5, 4} tiling, with each pentagon

edge corresponding to a physical tensor leg. After contrac-

tion of this bulk tensor network, both the physical legs on the

boundary of the contracted geometry as well as one logical leg

per pentagon remain uncontracted. The whole tensor network

thus serves as an isometry between bulk and boundary sites,

with the bulk information fault-tolerantly encoded into the

boundary as expected from continuum AdS/CFT [24]. While

this model was originally formulated in terms of spin degrees

of freedom, it can be mapped to fermions under a Jordan-

Wigner transformation mapping Pauli operators (σx, σy, σz)
to Majorana operators γk, obeying {γj , γk} = 2δj,k, via

γ2k−1 = (σz)⊗(k−1)⊗σy ⊗ (12)
⊗(r−k)

, (39)

γ2k = (σz)⊗(k−1)⊗σx⊗ (12)
⊗(r−k)

. (40)

Note that we have swapped the definition of even and odd

operators with respect to Ref. [23] to simplify the following

visualizations. In this effective fermionic language, the two

logical basis states 0̄ and 1̄ that span the logical qubit space of

the [[5, 1, 3]] code become Gaussian, as the stabilizer Hamil-

tonian is quadratic in Majorana operators when the parity is

fixed. Furthermore, these basis states are composed of paired

Majorana modes – Majorana dimers – and can be represented

graphically as

|0̄ 〉5 =

1 2

3

4

5
67

8

9

10

, |1̄ 〉5 =

1 2

3

4

5
67

8

9

10

.

(41)

In this visualization, each edge of a pentagon tile is identified

with two Majorana modes, with each arrow j → k between

two modes j and k corresponding to a term i γj γk in the

stabilizer Hamiltonian. The orientation of each arrow relative

to the mode ordering gives it an associated dimer parity pj,k,

with pj,k = +1 for j < k (blue) and pj,k = −1 for

j > k (orange). The dimer pattern becomes clearer when

exchanging the ordering of odd and even Majorana modes,

leading to

|0̄′ 〉5 =

1 2

3

4

5

67

8

9

10

, |1̄′ 〉5 =

1 2

3

4

5

67

8

9

10

.

(42)

We will use this dual representation in all bulk plots, as it

makes the dimer paths along the tiling more apparent. The

usefulness of the Majorana dimer picture comes from the

simplicity of contracting tensors representing Majorana dimer

states such as (41): Contraction pairs up dimers along the con-

tracted edges, with each new dimer’s parity being the product

of the old parities [23]. In addition, computing the entangle-

ment entropy SA of a connected subsystem A of a Majorana

dimer state (or contraction thereof) reduces to simply counting

the dimers between A and its complement AC, each contribut-

ing ln(2)/2 to SA. While the HyPeC is generally composed

of arbitrary logical bulk states, i.e., superpositions of 0̄ and 1̄,

orthogonality conditions between the contracted states ensure

that two-point correlation functions still exhibit a dimer struc-

ture, i.e., vanishing correlations between Majorana modes un-

connected by dimers. Similarly, basis state superpositions af-

fect the entanglement entropies of the HyPeC by corrections

that depend on the logical states in residual bulk regions only

for certain boundary regions [17].

Beyond the HyPeC, whose logical states on each tile are

represented by perfect tensors that maximally entangle each

possible subsystem A with the remaining sites, Majorana

dimer states also represent block perfect tensors, where this

condition is relaxed to only hold for connected subsystems. A

suitable pair of logical eigenstates 0̄n and 1̄n can be found for

any n = 4m + 1,m ∈ N. For instance, for n = 9 the logical

basis is given by

|0̄ 〉9 =

1 2

3
4

5

6

7

8

9
1011

12

13

14

15

16

17
18

, |1̄ 〉9 =

1 2

3
4

5

6

7

8

9
1011

12

13

14

15

16

17
18

,

(43)

or equivalently,

|0̄′ 〉9 =

1 2

3
4

5

6

7

8

9
1011

12

13

14

15

16

17
18

, |1̄′ 〉9 =

1 2

3
4

5

6

7

8

9
1011

12

13

14

15

16

17
18

,

(44)

With the tools developed in the previous sections, the av-

erage entanglement entropy [5], and by extension the central

charge, can be computed for any regular tiling based on Ma-

jorana dimer states. We begin with the n = 5 case of the



8

Poincaré disk Poincaré half-space
V
er
te
x
in
fl
a
ti
o
n

E
d
g
e
in
fl
a
ti
o
n

FIG. 6. Edge- and vertex-based inflation of the {5, 4} HyPeC in

the form (42), with inflation layers colour-coded. The full tiling

in the original Poincaré disk projection is shown on the left, while

the dimers at the first three inflation layers are shown on the right,

unfolded onto a line (Poincaré half-space projection).

HyPeC. For simplicity, we consider edge inflation rather than

vertex inflation in the following calculation: At each step, the

tiles on all open edges are added to the contraction. The more

complicated case of vertex inflation, which is more generaliz-

able to arbitrary {n, k} tilings, will be treated in Appendix B.

The edge inflation rules for the {5, 4} tiling are

a 7→ caab , b 7→ cab , c 7→ ∅ . (45)

where the letters label boundary edges. On the level of the

{5, 4} tiling, these inflation rules can be visualized as follows:

a

7→
c

a a

b , (46)

cb

7→
c

a
b

. (47)

We have combined the rules for b and c as they always appear

in the combination bc. A boundary region ending at the

marked letter, as well as its inflated version, is highlighted in

green. Fig. 6 (bottom) shows how these inflation rules act on

the whole tiling, starting with a central pentagon (the sequence

a5). To see the change in dimer structure more clearly, one can

project the boundary onto a line. The inflation rules are then

given by

a

7→
c a a b

, (48)

b c

7→
c a b

. (49)

The new dimers added at each step are drawn in a lighter

colour, while the ones that are extended from the previous

layer are drawn darker. As we are interested in entanglement

properties, the dimer parities (which we previously colour-

coded) are irrelevant here.

Having associated geometrical features of the inflated tiling

with a specific dimer configuration, we can now exactly cal-

culate the entanglement entropy that each inflation step pro-

duces. As in the previous section, first consider a deflation

or coarse-graining step that removes dimers and thus, entan-

glement entropy. Consider how a cut (green line) changes

throughout a deflation step:

a

1

← [

c a a b

3 3 3 0

, (50)

b c

0

← [

c a b

4 4 2

. (51)

The green number counts the dimers that pass through the cut

to the right to it, i.e., the local entanglement of a boundary

region ending on a given edge. From these diagrams, we

now construct the substitution and entanglement matrices M
and E that describe the Markov process underlying vertex

inflation. While M is constructed as before, the entries of E
are now composed of half the difference in dimer cuts between

two inflation layers for a given substitution, as each dimer

carries ln(2)/2 entanglement. We thus find

M =





2 1 1
1 1 1
0 0 0



 , E =





1 0 1
2 1 2
0 0 0



 . (52)

Using (21), which now becomes an equality rather than an

upper bound, this leads to an effective central charge

cd
{5,4}e

=
6 ln 2

ln 3+
√
5

2

≈ 4.32 , (53)
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FIG. 7. Central charges for the {5, k}, {9, k}, and {13, k} Majo-

rana dimer models (solid curves, bottom to top) and corresponding

geodesic bounds (dashed curves). The continuum Brown-Hennaux

formula for G = s/4 lnχ is shown as a dashed line.

a result in agreement with previous numerical studies [23].

Note that used the subscript of {5, 4}e to denote edge infla-

tion, while all values without such a subscript in this text re-

fer to vertex inflation. The computation of effective central

charges follows analogously for vertex inflation, which we

can generalize to arbitrary {5, k} tiling with a finite number

of letters. We can further extend this approach to the block

perfect tensors associated with {4m + 1, k} tilings. The cen-

tral charges for these general cases are computed in Appendix

B. The results for m = 1, 2, 3, i.e., the hyperbolic pentagon

code and the block-perfect nonagon and tridecagon codes, are

shown in Fig. 7. For all of these codes, the central charges sat-

urate to their maximum allowed value at large k, with a slope

at small k similar to the Brown-Henneaux value. Explicitly,

at large n and k both the central charge bound and the exact

Majorana dimer value scale as

cd
{4m+1,k} = cmax

{4m+1,k} =
(6m+ 9

2 ) lnχ

ln ((4k − 8)m− k)
+O

(

m−1
)

,

(54)

with a bond dimension χ = 2 for the dimer model. Thus,

we conclude that for tilings with high curvature (large n and

k), our class of hyperbolic block perfect codes based on Majo-

rana dimers produce maximal entanglement for any connected

boundary region A. This is equivalent to a statement that

residual bulk regions become negligible in this limit, with a

maximal flow of entanglement through the minimal cut γA.

VII. DISCRETE CONFORMAL TRANSFORMATIONS

In our analysis of central charges of discrete critical sys-

tems, we only considered the behavior of boundary states un-

der global scaling transformations, corresponding to an appli-

cation of inflation rules on all boundary sites at once. How-

ever, global scaling transformations only form a subset of

the conformal algebra. To study the remaining symmetries,

we can equivalently consider the bulk symmetries [25]; in

our time-slice case, these are the symmetries of the Poincaré

disk (5). Whereas the original AdS spacetime (3) enjoys an

0 0.5 π π 1.5 π 2 π0

0.5 π
π

1.5 π
2 π

Old angle ϕ-ω

N
ew
an
g
le

ϕ'-ω w0= 0.00

w0= 0.40

w0= 0.80

w0= 0.99

FIG. 8. Local scale transformation of Poincaré disk angle φ on the

boundary under a translation in the bulk.

SO(2, 2) symmetry (most apparent in its embedding as a hy-

perboloid in 2+2-dimensional flat spacetime), the Poincaré

disk is only invariant under PSL(2,R) transformations, a

subset of the Möbius transformations. If we represent a point

in the disk as a complex number z = ρ e iφ, then these trans-

formations Mθ,v are given by

z 7→ z′ = Mθ,v(z) = e iθ w + z

1 + w⋆z
, (55)

where 0 ≤ θ < 2π and w = w0 e
iω defines a point in

the Poincaré disk, i.e., with |w| < 1. We can see how

these transformations act on the AdS boundary by taking the

ρ = ρ0 → 1 limit. We find:

• A global scale transformation determined by a change

in cutoff ρ0 → ρ′0: The total length L of the flat AdS

boundary changes as

L 7→ L′ =
1− ρ0
1− ρ′0

L , (56)

assuming that ρ0 and ρ′0 are close to one.

• A translation Tθ = Mθ,0 produced by a rotation of

the Poincaré disk. Introducing the boundary coordinate

x = αφ/(1− ρ0), this corresponds to a transformation

x 7→ x′ = x+
α θ

1− ρ0
. (57)

• A local scale transformation Dw = M0,w by shifting

the center of the Poincaré disk towards a point w =
w0e

iω 6= 0. Without loss of generality, we now assume

that ω = 0. At ρ→ 1, we then find a transformation of

the Poincaré angle φ of the form

φ 7→ φ′ = arctan
(1− w2

0) sinφ

(1 + w2
0) cosφ+ 2w0

. (58)

This transformation is shown in Fig. 8 for different val-

ues of w0 and general ω. Lengths around the boundary

point x = αω/(1− ρ0) are stretched to

x 7→ x′ =
1 + w0

1− w0
x, (59)
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while those around y = α(π + ω)/(1 − ρ0) are con-

tracted to

y 7→ y′ =
1− w0

1 + w0
y. (60)

We can rewrite any combination of translations and local scale

transformations as a single Möbius transformation Mθ,v =
Tθ ◦Dv by using the identities

Tθ ◦ Tφ = Tθ+φ , (61a)

Dv ◦Dw = Targ 1+vw⋆

1+v⋆w

◦D v+w

1+vw⋆
, (61b)

Dv ◦ Tθ = Tθ ◦De− iθv . (61c)

All transformation considered so far preserve orientation. If

we drop this constraint, we also find the following:

• An inversion Iv,θ through a bulk reflection around a

geodesic through a point v at normal angle θ, expressed

with the complex conjugate C(z) = z⋆ as

z 7→ Iv,θ(z) = Dv ◦ Tθ ◦ C ◦ T−θ ◦D−v(z)

= D−v ◦ T−2θ ◦Dv⋆ ◦ C(z) . (62)

Note that I2v,θ = 1, and that any inversion is equivalent

to complex conjugation and a Möbius transformation.

For a boundary coordinate system centered around a

boundary angle φ = 0 and “infinity” identified as

φ = π, we choose v = x with x ∈ R and θ = −π/2,

leading to a canonical inversion

z 7→ Ix(z) = D 2x
1+x2

◦ Tπ ◦ C(z)

= C ◦ Tπ ◦D −2x

1+x2
(z) . (63)

• By combining inversion and translation, we can also

construct the special conformal transformation

z 7→ Kθ,x(z) = Ix ◦ Tθ ◦ Ix(z)
= D 2x

1+x2
T−θD −2x

1+x2
(z) , (64)

which is just an (orientation-preserving) Möbius trans-

formation.

Discretizing the Poincaré disk with a (regular) tiling breaks

these continuous symmetries. First consider global and local

scaling transformations. Rather than a continuous transforma-

tion (56), global inflation (Fig. 9, top) rescales the subsystem

by an asymptotic constant λ, the eigenvalue of the substitution

matrix for the given tiling. When a tensor network is embed-

ded into a regular tiling, choosing identical tensors that are

invariant under cyclic permutations of indices, thus preserv-

ing the tiling symmetries, leads to boundary states that can be

fine- or coarse-grained by any power of λ under inflation or

deflation.

Next, consider the local scale transformations: A regular

tiling is invariant only under those bulk Möbius transforma-

tion that map tiles onto tiles. As shown in Fig. 9 (center), this

requires a combination of bulk translation and rotation. At

(a) Global boundary scaling

(b) Local boundary scaling

(c) Boundary special conformal transformation

FIG. 9. (a) Global scale transformation by growing the hyperbolic

bulk tiling through vertex inflation. (b) Local scale transformation by

a Möbius transformation composed of a bulk translation (first step)

and a rotation (second step). (c) Successive reflections around a bulk

edge and its tiling-symmetric rotation (green lines), with the same

effect as a Möbius transformation.

finite cutoff, i.e., finite number of tiles, this reduces the den-

sity of boundary edges in one region of the boundary while

increasing it in the opposing region, just as for the continuous

case shown in Fig. 8.

Finally, special conformal transformations are broken down

in two parts, as they can be composed of inversions and trans-

lations: We previously constructed inversions through a bulk

reflection around a geodesic, while in a {n, k} tiling such

transformations only leave the lattice invariant if we reflect

around its (geodesic) edges. Furthermore, translations are bro-

ken down to Zn and Zk rotations when centering the lattice

around tiles and vertices, respectively. The resulting transfor-

mation, shown in Fig. 9 (bottom), is again equivalent to a bulk

translation and rotation, yielding no new symmetries. Note

that while exact translation invariance is broken, the quasireg-

ular structure of the boundary still exhibits self-similarity be-

tween any sufficiently large subsystems [27].

To exemplify these invariance properties with actual states,

consider the {5, 4} HyPeC in Majorana dimers. By projecting

the dimer endpoints on the Poincaré disk boundary, we can

directly compare the states at different cutoffs, as shown in

Fig. 10. A global scale transformation increases the resolution

of the dimer pattern evenly on the boundary, while a local

scale transformation changes it unevenly (Fig. 10, bottom).

At the same time, the correlation structure of the boundary

states is preserved. The local scale transformation produced

by a bulk Möbius transformation can be seen as a special

case of a local application of inflation and deflation rules.
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(a) Vertex inflation (one step)

(b) Vertex inflation (two steps)

(c) Vertex inflation (two steps) and Möbius transformation

FIG. 10. (a) A contraction of a hyperbolic tensor network built

from Majorana dimers (left) leads to a boundary Majorana dimer

state (right). (b) An inflation step on the tiling (right) leads to a

global scale transformation on the boundary state (right). (c) Certain

combinations of Poincaré disk translations and rotations in the bulk

(left) produce a local scaling transformation on the boundary state

(right).

Suitable combinations of such local and global scalings are

equivalent to an inflation rule applied only to a subsystem

of the boundary, leaving the remainder unchanged. Note

that these transformations are independent from the the actual

choice of inflation rule, which fixes the boundary central

charge.

VIII. DISCUSSION

In this work we have studied the entanglement entropy scal-

ing of boundary states of generic hyperbolic tensor networks

based on regular tilings. This has allowed us to derive a maxi-

mal central charge cmax that such boundary states can possess,

with a saturation of this bound corresponding to maximal en-

tanglement through the bulk for any connected boundary re-

gion. We have then related cmax to the radius of curvature α
of the metric into which the tiling is embedded, leading to

a discrete analogue of the continuum Brown-Henneaux (BH)

formula, where we have identified the gravitational constant G
via the Ryu-Takayanagi (RT) prescription. We find that these

bounds are always above the continuum value, i.e., that bulk

entanglement through a regular hyperbolic tensor network can

be as large as through a continuum AdS time-slice. We have

further identified two distinctly different regimes: At large

AdS radius α and central charge cmax, where the RT iden-

tification of G is expected to hold, we find an approximate

relationship

cmax ≈ c0 + 6
α lnχ

s
, (65)

where s is the geodesic length of each edge in the tiling and χ
the bond dimension of the tensor network embedded into the

tiling. The constant c0, which produces an offset compared

to the BH formula, depends on the n-gon tiling and increases

with n. As the hyperbolic area of a single n-gon increases

with n as well but remains finite at large k, we may interpret c0
as counting the additional degrees in each n-gon in the coarse-

grained lattice compared to the continuous Poincaré disk. In

the opposite limit at small α and c, however, we identify a

linear relationship without an offset,

cmax ≈ fn
α lnχ

s
, (66)

where the tiling-dependent constant fn increases with n, tak-

ing its lowest value f3 = 12 for triangular tilings.

Furthermore, we find a specific holographic tensor network

model that saturates these bounds: The hyperbolic pentagon

code (HyPeC), a toy model for quantum error correction in

AdS/CFT. This model as well as its generalizations can be ex-

pressed in the fermionic language of Majorana dimers, which

allows for an exact treatment of its entanglement structure

in terms of paired Majorana modes. Using this picture, we

showed how successively larger contractions of the tensor net-

work produce a strong disorder renormalization group flow.

This allowed us to endow a class of models of holographic

quantum error correction with the notion of a discretized con-

formal field theory with aperiodic structure. The exact central

charges resulting from this physical CFT interpretation were

derived and shown to saturate to cmax at large curvature.

Our approach advances the understanding of boundary

states of holographic tensor network models, with bounds on

central charges for any model based on a regular bulk geome-

try, which includes the HaPPY holographic codes [17], block

perfect CSS codes [21], holographic codes on ideal regular

tilings [20], hyper-invariant tensor networks [18], random ten-

sor networks on fixed backgrounds [40], and p-adic AdS/CFT

models [41], whose Bruhat-Tits tree is identified with a regu-

lar tiling [42]. Note that our procedure reverses the approach

of dynamically reconstructing a discrete bulk geometry from

the entanglement structure of a given boundary state, such

as considered in Refs. [43, 44]; instead, we started with a

bulk geometry and derived constraints on the boundary entan-

glement. We have also shown that the formulation of quan-

tum error correcting codes in terms of Majorana dimers is es-

sential for understanding their boundary states and RG flow.
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The boundary states of these dimer models extend the prop-

erties of widely studied aperiodic singlet models to fractional

fermionic modes with similar entanglement and RG proper-

ties, suggesting that both approaches are representations of a

more general class of aperiodic critical theories. While the

Majorana dimer states are non-interacting, their use as a code

basis in a quantum error correction code such as the HyPeC

generally leads to interacting boundary states whose corre-

lations and entanglement structure follow those of the non-

interacting basis states. Our results thus show that entangle-

ment renormalization of CFTs can be performed with tensor

network approaches other than the MERA, realizing geome-

tries that can be more naturally embedded into an AdS time-

slice. Understanding their discrete symmetries will be crucial

for the development of more powerful tensor network models

of AdS/CFT.
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Appendix A: Geodesic inflation

In order to build inflation rules for regular tilings that inflate vertices on radial geodesics, we need to label vertices by their

graph distance d to the center of the tiling, or depth. For an {n, k} tiling with n > 5 and k > 3, we first distinguish between

a vertices, which have two neighbouring vertices (up to the given inflation layer), and b vertices, which have three. Within the

sequence of vertices at a given layer, we consider the depths dL and dR of the neighbours to the left and right with respect to the

depth d of a given vertex. For b vertices, (dL, dR) = (d + 1, d + 1). However, we need to distinguish five types of a vertices,

listed in Tab. II. For even n = 2m, only a1 to a3 appear, leading to an inflation rule

a1 7→ am−3
3 b

(

am−2
2 a1a

m−2
3 b

)k−3
am−3
2 a1 , (A1)

a2 7→ am−3
3 b

(

am−2
2 a1a

m−2
3 b

)k−3
am−2
2 a1 , (A2)

a3 7→ am−2
3 b

(

am−2
2 a1a

m−2
3 b

)k−3
am−3
2 a1 , (A3)

b 7→ am−2
3 b

(

am−2
2 a1a

m−2
3 b

)k−4
am−2
2 a1 , (A4)

and a corresponding substitution matrix

M{2m,k} =







k − 2 k(m− 2)− 2m+ 3 k(m− 2)− 2m+ 3 k − 2
k − 2 (k − 2)(m− 2) k(m− 2)− 2m+ 3 k − 2
k − 2 k(m− 2)− 2m+ 3 (k − 2)(m− 2) k − 2
k − 3 (k − 3)(m− 2) (k − 3)(m− 2) k − 3






. (A5)

The edge increase from inflation onto a b vertex is always 1, and increases with distance from the nearest b vertex. This is

summarized in the entanglement matrix

E{2m,k} =













m+ 1
2−k

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 1

m m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 1

m+ 1
2−k

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 1

m m+1
2

m+1
2 1













. (A6)

Applying (21) leads to the central charge bound

c{2m,k} ≤ cmax
{2m,k} =

3(m+ 1) lnχ

ln
(

k(m− 1) +
√

(k − 2)(m− 1)((k − 2)m− k)− 2m+ 1
) , (A7)

where χ is the bond dimension of the underlying tensor network embedded into the {2m, k} tiling. For odd n = 2m+1, the

inflation rule is more complicated and includes all five types of a vertices,

a1 7→ a5a
m−3
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−3
am−3
2 a4 , (A8)

a2 7→ a5a
m−3
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−3
am−1
2 a4 , (A9)

a3 7→ a5a
m−1
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−3
am−3
2 a4 , (A10)

a4 7→ am−3
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−3
am−1
2 a1 , (A11)

a5 7→ a5a
m−1
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−3
am−3
2 a4 , (A12)

b 7→ am−1
3 b

(

am−1
2 a4a5a

m−1
3 b

)k−4
am−1
2 a4 . (A13)

Type a1 a2 a3 a4 a5 b = b1 b2 b3

dL d− 1 d− 1 d+ 1 d− 1 d d+ 1 d+ 1 d

dR d− 1 d+ 1 d− 1 d d− 1 d+ 1 d d+ 1

TABLE II. Relative depth of vertex neighbours to the left and right of a given vertex with depth d.
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This leads to a substitution matrix

M{2m+1,k} =















0 k(m− 2)− 2m+ 3 k(m− 2)− 2m+ 3 k − 2 k − 2 k − 2
0 (k − 2)(m− 2) k(m− 2)− 2m+ 3 k − 2 k − 2 k − 2
0 k(m− 2)− 2m+ 3 (k − 2)(m− 2) k − 2 k − 2 k − 2
1 (k − 2)(m− 2) k(m− 2)− 2m+ 3 k − 3 k − 2 k − 2
0 k(m− 2)− 2m+ 3 (k − 2)(m− 2) k − 2 k − 3 k − 2
0 (k − 3)(m− 2) (k − 3)(m− 2) k − 3 k − 3 k − 3















. (A14)

The entanglement matrix is given by

E{2m+1,k} =























0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m+ 1

2−k
m+ 1

2−k
1

0 m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m m+ 1

2−k
1

0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 m+ 1

2−k
m 1

m m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m m+ 1

2−k
1

0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 m+ 1

2−k
m 1

0 m+1
2

m+1
2 m m 1























. (A15)

The resulting central charge bound is

cmax
{2m+1,k} =

3
(

m− 1
4m−2 + 3

2

)

lnχ

ln
2km+

√
(−2km+k+4m)2−4−k−4m

2

. (A16)

Note that for large n, (A7) and (A16) lead to the same asymptotic behavior,

cmax
{n,k} =

(6 + 3n) lnχ

2 ln (2− 2k + (k − 2)n)
+O

(

n−1
)

. (A17)

For {n, 3} tilings (hyperbolic for n > 6), we also need to distinguish between even and odd n. In the case n = 2m, we find the

inflation rule

a1 7→ am−3
3 bam−3

2 a1 , (A18)

a2 7→ am−3
3 bam−2

2 a1 , (A19)

a3 7→ am−2
3 bam−3

2 a1 , (A20)

b 7→ ∅ . (A21)

and the substitution and entanglement matrices

M{2m,3} =







1 m− 3 m− 3 1
1 m− 2 m− 3 1
1 m− 3 m− 2 1
0 0 0 0






, E{2m,3} =









m− 1 m
2

m
2 1

m m+1
2

m
2 1

m− 1 m
2

m+1
2 1

0 0 0 0









. (A22)

This yields a maximum central charge

cmax
{2m,3} =

3(m+ 1) lnχ

ln
(√

m2 − 4m+ 3 +m− 2
) . (A23)

For odd n = 2m+ 1, inflation again involves a1 to a5:

a1 7→ a5a
m−3
3 bam−3

2 a4 , (A24)

a2 7→ a5a
m−3
3 bam−2

2 a4 , (A25)

a3 7→ a5a
m−2
3 bam−3

2 a4 , (A26)

a4 7→ a5a
m−3
3 bam−2

2 a1 , (A27)

a5 7→ am−2
3 bam−3

2 a4 , (A28)

b 7→ ∅ . (A29)
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This corresponds to

M{2m+1,3} =















0 m− 3 m− 3 1 1 1
0 m− 2 m− 3 1 1 1
0 m− 3 m− 2 1 1 1
1 m− 2 m− 3 0 1 1
0 m− 3 m− 2 1 0 1
0 0 0 0 0 0















, (A30)

E{2m+1,3} =















0 m
2

m
2 m− 1 m− 1 1

0 m+1
2

m
2 m m− 1 1

0 m
2

m+1
2 m− 1 m 1

m m+1
2

m
2 0 m− 1 1

0 m
2

m+1
2 m− 1 0 1

0 0 0 0 0 0















, (A31)

and gives a central charge bound of

cmax
{2m+1,3} =

3
(

m− 1
4m−2 + 3

2

)

lnχ

ln
√
4m2−12m+5+2m−3

2

. (A32)

Note that even though the inflation rules are different, the bounds (A23) and (A32) agree with the generic {n, k} bounds (A7)

and (A16) derived earlier. Similarly, the {n, k} inflation rules for n = 4 and n = 5 are special, as well, but lead to the same

bounds. The n = 4 case was already covered in the main text. For n = 5, we need to split up b vertices into three categories b1,

b2, and b3. For n = 5, we find the inflation rules

a1 7→ b3(a2a3b1)
k−4a2a3b2 , (A33)

a2 7→ b3(a2a3b1)
k−4a2a3b1a1 , (A34)

a3 7→ b1(a2a3b1)
k−4a2a3b2 , (A35)

b1 7→ a3b1(a2a3b1)
k−4a2 , (A36)

b2 7→ a3b1(a2a3b1)
k−4a1 , (A37)

b3 7→ b1(a2a3b1)
k−4a2 , (A38)

leading to substitution and entanglement matrices

M{5,k} =















0 k − 3 k − 3 k − 4 1 1
1 k − 3 k − 3 k − 3 0 1
0 k − 3 k − 3 k − 3 1 0
0 k − 3 k − 3 k − 3 0 0
1 k − 4 k − 3 k − 3 0 0
0 k − 3 k − 4 k − 3 0 0















, E{5,k} =















0 2 2 1 1 1
2 2 2 1 0 1
0 2 2 1 1 0
0 2 2 1 0 0
2 2 2 1 0 0
0 2 2 1 0 0















. (A39)

This yields the expected maximum central charge

cmax
{5,k} =

10 lnχ

ln
√
9k2−48k+60+3k−8

2

. (A40)
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Appendix B: Majorana dimer polygon models

We can construct block perfect Majorana dimer models for an {n, k} tiling for n = 4m+1,m ∈ N. The n = 5 case is simply

the HyPeC model. In the main text, we already computed its central charge under edge inflation, which we now generalize to

vertex inflation. From (24), we find the inflation rule

a 7→ abaab , b 7→ ab . (B1)

Without loss of generality, we identify each letter with the edge on the left/clockwise to the vertex it stands for. To distinguish

dimer content, we need to designate four sub-letters a1, a2, b1, b2. In terms of dimer diagrams, using the convention of (41), the

inflation rule is given by

a1

7→
a1 b1 a2 a1 b2

,

a2

7→
a2 b1 a2 a1 b2

, (B2)

b1

7→
a1 b1

,

b2

7→
a1 b2

. (B3)

As in the main text, new dimers added at each step are drawn in a lighter colour than those that are extended from the previous

layer. Note that each inflated dimer configuration contains two open dimers on either end of the sequence that connect to the

previous and following sequence within the layer added in a vertex inflation step. The full dimer configuration in the Poincaré

disk is shown in Fig. 6 (top) along with the dimers at the first three inflation layers. When starting from the central pentagon, the

initial sequence is given by (a1)
5.

Again, we calculate the central charge by considering the loss of local entanglement through deflation. The corresponding

cuts (green lines) and the number of dimers passing through it (green number) are given by

a1

1

← [

a1 b1 a2 a1 b2

3 3 5 5 3

,

a2

2

←[

a2 b1 a2 a1 b2

4 4 6 6 4

, (B4)

b1

1

← [

a1 b1

3 3

,

b2

0

←[

a1 b2

4 2

. (B5)

These diagrams lead us to the substitution and entanglement matrices M and E of the Markov process of the form

M =







2 1 1 1
1 2 1 1
1 0 1 0
1 0 0 1






, E =









3
2 2 1 1
2 3

2 1 1
1 0 1 0
2 0 0 1









. (B6)

Turning (21) into an equality, we find the effective central charge

cd
{5,4} =

9 ln 2

ln
(√

3 + 2
) ≈ 4.74 . (B7)

Note that this result is larger than cd
{5,4}e

from (53), our result for edge inflation. Instead of a {5, 4} tiling, we can also consider

a general {5, k} tiling with k > 3, using the same perfect tensors on each tile. This corresponds to a vertex inflation rule

a1 7→ a1b1 (a2a1b2)
k−3

, b1 7→ a1b1 (a2a1b2)
k−4

, (B8)

a2 7→ a2b1 (a2a1b2)
k−3

, b2 7→ a1b2 (a2a1b2)
k−4

. (B9)
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The substitution and entanglement matrices then take the more general form

M =







k − 2 k − 3 1 k − 3
k − 3 k − 2 1 k − 3
k − 3 k − 4 1 k − 4
k − 3 k − 4 0 k − 3






, (B10)

and

E =











1+2(k−3)
1+k−3 2 1 1

2 1+2(k−3)
1+k−3 1 1

1+2(k−4)
1+k−4 2 1 1
2 2 0 1











. (B11)

This leads us to the central charge

cd
{5,k} =

(

2
10−3k + 10

)

ln 2

ln
(

1
2

(√
9k2 − 48k + 60 + 3k − 8

)) . (B12)

Note that this model corresponds to a bond dimension χ = 2, hence the ln 2 term in the numerator. Considering the large k
limit, we find

cd
{5,k} =

10 ln 2

ln (3k − 8)
+O

(

k−1
)

, (B13)

which is exactly the same limit as the geodesic bound on central charges (Tab. I). As shown in Fig. 7, this saturation occurs

quickly as k is increased.

For n = 9 and more complex polygons, we have to distinguish two cases: If k = 3, the inflation rule requires five different

types of letters, while only four are needed in the k > 3 case. The inflation rule for the {9, 3} tiling with dimer states (43)

follows from (25) and is given by the following dimer substitutions:

a1

7→
c a2 a1 a1 a3 b

,

a2

7→
c a2 a2 a1 a3 b

, (B14)

a3

7→
c a2 a1 a3 a3 b

,
b c

7→
c a2 a1 a3 b

. (B15)

The inflation rule for the letters b and c has been combined for the sake of simplicity. The entanglement change under deflation

depends on the cut and is given by

a1

1

← [

c a2 a1 a1 a3 b

5 7 7 7 5 3

,

a2

2

←[

c a2 a2 a1 a3 b

4 6 8 8 6 4

, (B16)

a3

0

← [

c a2 a1 a3 a3 b

6 8 8 6 4 2

,
b c

0

←[

c a2 a1 a3 b

6 8 8 6 4

. (B17)

The substitution and entanglement matrices follow accordingly,

M =











2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 1 1
0 0 0 0 0











, E =











3 3 2 1 2
3 5

2 2 1 1
4 4 5

2 1 3
4 4 3 2 3
0 0 0 0 0











, (B18)
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which leads to a central charge

cd
{9,3} =

16 ln 2

ln
√
21+5
2

≈ 7.08 . (B19)

We can generalize this result to tilings at higher n = 4m+1, which correspond to an inflation rule

a1 7→ ca2m−3
2 a1a1a

2m−3
3 b , b 7→ ca2m−3

2 a1a
2m−3
3 b , (B20)

a2 7→ ca2m−2
2 a1a

2m−3
3 b , c 7→ ∅ , (B21)

a3 7→ ca2m−3
2 a1a

2m−2
3 b . (B22)

The matrices M and E then take the form

M =











2 2m− 3 2m− 3 1 1
1 2m− 2 2m− 3 1 1
1 2m− 3 2m− 2 1 1
1 2m− 3 2m− 3 1 1
0 0 0 0 0











, E =











2m− 1 m+ 1 m 1 2
2m− 1 m+ 1

2 m 1 1
2m m+ 2 m+ 1

2 1 3
2m m+ 2 m+ 1 2 3
0 0 0 0 0











. (B23)

From this we find the central charge

cd
{4m+1,3} =

(

6m+ 3
10−8m + 9

2

)

ln 2

ln
√
16m2−24m+5+4m−3

2

. (B24)

Now consider the cases n = 4m+1, k > 3, which correspond to the inflation rules

a1 7→ a2m−2
2 a1a1a

2m−3
3 b

(

a2m−1
2 a1a

2m−2
3 b

)k−3
, (B25)

a2 7→ a2m−1
2 a1a

2m−3
3 b

(

a2m−1
2 a1a

2m−2
3 b

)k−3
, (B26)

a3 7→ a2m−2
2 a1a

2m−2
3 b

(

a2m−1
2 a1a

2m−2
3 b

)k−3
, (B27)

b 7→ a2m−2
2 a1a

2m−2
3 b

(

a2m−1
2 a1a

2m−2
3 b

)k−4
. (B28)

We explicitly compute the {9, 4} tiling, which can be expressed by the dimer inflation rules

a1

7→

a2 a2 a1 a1 a3 b a2 a2 a2 a1 a3 a3 b

,

a2

7→

a2 a2 a2 a1 a3 b a2 a2 a2 a1 a3 a3 b

, (B29)

a3

7→

a2 a2 a1 a3 a3 b a2 a2 a2 a1 a3 a3 b

,

b

7→

a2 a2 a1 a3 a3 b

. (B30)

Under deflation, the letters correspond to the following cuts:
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a1

1

←[

a2 a2 a1 a1 a3 b a2 a2 a2 a1 a3 a3 b

5 7 7 7 5 3 5 7 9 9 7 5 3

,

a2

2

← [

a2 a2 a2 a1 a3 b a2 a2 a2 a1 a3 a3 b

4 6 8 8 6 4 7 8 1010 8 6 4

, (B31)

a3

0

←[

a2 a2 a1 a3 a3 b a2 a2 a2 a1 a3 a3 b

6 8 8 6 4 2 4 6 8 8 6 4 2

,

b

0

← [

a2 a2 a1 a3 a3 b

6 8 8 6 4 2

. (B32)

From this we construct the entanglement and substitution matrices

M =







3 5 3 2
2 6 3 2
2 5 4 2
1 2 2 1






, E =









10
3

14
5

7
3 1

7
2

5
2

7
3 1

4 16
5

5
2 1

4 7
2

5
2 1









. (B33)

We then find the central charge

cd
{9,4} =

81 ln 2

5 ln
(√

35 + 6
) ≈ 4.53 . (B34)

For arbitrary k, we find

M =







k − 1 3k − 7 2k − 5 k − 2
k − 2 3(k − 2) 2k − 5 k − 2
k − 2 3k − 7 2(k − 2) k − 2
k − 3 3k − 10 2(k − 3) k − 3






, E =









4k−6
k−1

22−9k
7−3k

13−5k
5−2k 1

4k−9
k−2

3k−7
k−2

13−5k
5−2k 1

4 20−9k
7−3k

5
2 1

4 29−9k
10−3k

5
2 1









, (B35)

leading to

cd
{9,k} =

6 19k−49
7k−18 ln 2

ln
√
49k2−224k+252+7k−16

2

. (B36)

Generalizing even further to arbitary n = 4m+1 yields the matrices

M =







k − 1 −4m+ k(2m− 1) + 1 2k(m− 1)− 4m+ 3 k − 2
k − 2 (k − 2)(2m− 1) 2k(m− 1)− 4m+ 3 k − 2
k − 2 −4m+ k(2m− 1) + 1 2(k − 2)(m− 1) k − 2
k − 3 −6m+ k(2m− 1) + 2 2(k − 3)(m− 1) k − 3






, (B37)

E =















2m− 2
k−1

−4m(m+1)+k(2m2+m−1)+2

−k+2(k−2)m+1
−4m2+k(m−1)(2m+1)+3

2k(m−1)−4m+3 1

2m+ 1
2−k

k−3
k−2 +m −4m2+k(m−1)(2m+1)+3

2k(m−1)−4m+3 1

2m 2(k−2)m2+(k−2)m−k

−k+2(k−2)m+1 m+ 1
2 1

2m 2(k−3)m2+(k−3)m−k+1
−k+2(k−3)m+2 m+ 1

2 1















. (B38)
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Finally, the central charge for the {4m+1, k} (block) perfect Majorana dimer model for m ≥ 1, k ≥ 4 follows as

cd
{4m+1,k} =

6
(

−3km+k+6m+1
−4km+k+8m+2 +m

)

ln 2

ln
4km+

√
(−4km+k+8m)2−4−k−8m

2

. (B39)

In the large k limit the central charge behaves as

cd
{4m+1,k} =

6
(4m2+2m−1)

4m−1 ln 2

ln ((4m− 1)k − 8m)
+O

(

k−1
)

. (B40)
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