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Abstract

There are several manufacturing processes where heat conduction is one of the key
physical phenomena that influence the process performance. Such processes include
molding operations, heat treatment, welding, flame bending etc. Typical temperature
control implemented in these processes, at best involves independent multi-zone type
regulation. (For example: barrel heaters in injection molding.) This thesis has addressed
the problem of controlling entire temperature distributions in such processes. Several
techniques developed in the theoretical literature on the control of distributed parameter
systems (DPS) have been investigated for their applicability to manufacturing processes.

An experiment has been setup using a scanned TIG torch to heat a rectangular specimen
with several thermocouples embedded within it. A detailed simulation study was
performed on a model of this experimental setup, to study the closed loop behavior of the
model under different scenarios. The simulations used a linear quadratic gaussian (LQG)
controller. The conclusion from this study was that the distribution of inputs and sensors
in the controlled object had a significant impact on the performance of the controller in
rejecting disturbances. However, there are no available techniques in the theoretical
literature to adequately address the issue of optimally distributing inputs.

This motivated the development of a technique for optimally distributing inputs across a
controlled object. The technique comprises separating the space and time part of the
governing partial differential equation, which results in the steady-state equation for heat
conduction within the controlled object. The steady-state Green's function corresponding
to this steady state heat conduction equation is determined. A quadratic performance
index comprising a heat flux term and a temperature error term is defined over the spatial
domain. A general form of a higher order cost functional is used along with the Green's
function to set up the optimization problem. Variational calculus is used to determine the
optimal heat flux distribution in steady state. This optimal heat flux distribution is in a
linear proportional feedback form wherein the heat flux needed in steady state depends on
the steady-state temperature error. Therefore such an approach can better adapt to model
errors and external disturbances.



Simulations have been performed on a rectangular solid to illustrate the optimal
distribution technique based on the steady-state optimization. The constraints on the
locations of the inputs and the types of disturbances considered were selected based on
typical requirements in a resin transfer molding (RTM) or a compression molding
application. The Green's functions were derived using a finite difference formulation for
the heat conduction in the solid. The design of the heating was separated into two parts:
In the first part, the heat flux locations and strengths were selected to satisfy the
requirements on the steady-state performance. In the second part, additional heaters were
introduced to improve the transient performance. In the first part of the design, the high
gain (MIMO) obtained as a part of the steady-state analysis was rolled off using a first
order frequency blending function. The MIMO Nyquist criterion was then used to
determine if the closed loop system was stable. The break frequency for the frequency
blending function is used as a controller design parameter and a suitable value is selected.
The predictions of the MIMO Nyquist criterion have been verified by simulating the
closed loop system. Additional heaters placed closed to the surface have been
incorporated into the design using a cross-over network type design. The improvement in
the transient performance has been demonstrated.

The problem of accelerated cooling of hot-rolled steel has been addressed as a transient
temperature distribution control problem. The major source of disturbance in this process
is a variation in the initial temperature of steel. There are no measurements possible once
the cooling process begins. The anomalous nature of the cooling process amplifies the
variations in the initial temperature distribution, if not compensated for. To compensate
for the variations in the initial conditions, a finite horizon quadratic performance index is
setup. The resulting feedback form for the optimal solution is simulated on the model for
the process, with the initial condition varied from the nominal initial condition. The
simulated input is then used as an open-loop input to the process to compensate for the
variations in the initial condition.
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Chapter 1

MOTIVATION AND BACKGROUND FOR TEMPERATURE CONTROL IN

MANUFACTURING PROCESSES

1. 1. Introduction:

In many manufacturing processes, temperature fields and heat fluxes are the primary

determinants of the process output and product quality. Such processes include all

solidification processes (casting, molding, welding) as well as solid phase processes

where thermal cycles are used to change properties or shape (e.g. heat treating and line

heating). A few such processes are discussed in section 1.2.

Influencing the process outputs such as material, geometric and mechanical properties in

all such processes, involves controlling the temperatures and heat fluxes. The processes

considered in this thesis involve situations where heat conduction is the dominant

physical phenomenon in determining the temperature distributions. This means that the

temperature distributions and heat fluxes are governed by the heat diffusion equation.

Equation 1.1.1., shows the heat diffusion equation:

dT
pC, (-,t) = V(k(T)V)T(x,t) + (x, t); 1.1.1

Bo(T(, t)) = 0; Boundary Condition

Where:



p: is the density V = + d +
C,: is the specificheat d dz
k(i): is the conductivity of the material Bo: Boundary conditions 1.1.2
x: is the vector spatial coordinates T(i, t) : temperature distribution
t :is time O((x, t) : distribution of the heat flux

The heat flux O(x, t) , which is incident on the solid within which the temperature is

being controlled, comprises of two components (see equation 1.2.3.). The first

component is the heat flux that can be actively manipulated and it will be referred to as

the controller heat flux c (i,t). The second component of the total heat flux, which

cannot be actively manipulated, is referred to as the disturbance heat flux D (x , t).

((X, t) = Oc(X, t) + D (X, t) 1.2.3.

For example, consider the problem of controlling the temperature distribution in an

injection mold, using cartridge heaters and cooling oil, when ambient temperature

changes during operation. The heat flux generated by cartridge heaters and cooling

passages can be actively controlled and hence any heat flux input due to these devices

will be considered to be the controller heat flux. However, the heat flux experienced by

the mold due to changes in the ambient temperature would be a part of the disturbance

heat flux.

Section 1.2 discusses some example processes where temperature control is of

importance. These are the processes that have motivated this thesis.



1.2 Processes with heat conduction:

Manufacturing processes are characterized by phenomena that have a spatial and temporal

variation. In the processes being studied here, heat conduction which is a spatially

distributed phenomenon, determines the process outputs. In some such processes, simple

lumped parameter models that do not capture the distributed nature of the heat conduction

phenomenon are used. These may be adequate in the manufacture of components where

the requirements on the process are not demanding. However, with more stringent

quality, productivity and energy consumption requirements on the processes, one needs to

fully consider the spatially distributed nature of the heat conduction in these processes.

This will lead to techniques that better aid in designing systems for heating and cooling

and thereby improving process quality, productivity and energy consumption.

1.2.1. Heat treatment.

Several products are manufactured by varying the temperature trajectory through which

the material of the product is taken through. Most steel products such as sheet steel,

beams for construction, steel slabs for bridges and pressure vessels are subjected to

different types of heat treatment. The specific temperature trajectory for each product is

dependent on the microstructure desired at different locations in the product. See

Kalpakjian(1995) for some examples of heat-treatment operations and corresponding

desired temperature trajectories.

Figure 1.2.1. shows a schematic of a steel slab being cooled using jets of water. The

edges have to be warmed with induction heaters to ensure the uniformity of temperature

across the slab.



COOLING SPRAY

INDUCTION HEATER

Figure 1.2.1. A cross-sectional schematic of the heat treatment operation for steel slabs.

The goal in this process is to take the material through a desired temperature trajectory

T(x,y,z,t). The temperatures experienced at different locations determine the material

properties at different locations within the slab being produced. By modulating the

cooling sprays and the induction heaters at different locations, the temperature

distribution throughout the slab can be manipulated.

This control has to be implemented such that the total amount of water consumed is

within acceptable limits. Simultaneously one has to ensure that the temperature

distribution trajectory achieved should be within acceptable limits in the presence of

process disturbances. The benefits of using such controlled cooling will be discussed in



detail in Chapter 5., which details the specifics of the method for controlling transient

temperature distributions.

1.2.2. Injection Molding:

The mold temperature is one of the determining factors in the quality and consistency of a

product produced using injection molding. There are several disturbances on the process

that include: change in the ambient temperature, change in the temperature of the plastic,

changes in the performance of the cartridge heaters or cooling oil of the mold, gradual

heating and cooling of the mold due to coming in contact with the plastic etc.

Sometimes it is desirable to impose gradients across the mold. (See Jansen(1993) for

example). The residual stress state in the part being produced using injection molding, is

dependent on the coupling between the pressure and the temperature profiles of the

cooling plastic. By carefully controlling the temperature profile, one can ensure that parts

with desirable residual stress states are produced. Jansen(1993) and Sha(1995) have done

some preliminary studies on the effect of temperature variations on the stress-state and

distortions on a part produced by injection molding. These studies have shown

qualitatively, that changes in mold temperature distributions do effect the residual stress

state and the optical properties of objects being produced. However, in order to conduct

better experimental studies, efficient mold temperature control is needed.

The temperature distribution within the mold is dependent on the locations of the heating

and cooling. Similarly, locations of the thermocouples determine the efficiency with

which disturbances are detected. The ability of any controller to efficiently compensate

14



for the disturbances occurring is also dependent on the locations of heating and cooling.

Chapter 4., shows a technique for designing locations of heating and cooling in order to

accurately control the temperatures in a mold.

1.2.3. Compression Molding and Resin Transfer Molding (RTM):

Compression molding and RTM are processes used for manufacturing composite parts

for different applications. Both these processes are matched die processes, which involve

taking the composite part through a specified temperature trajectory. Typically the part is

heated so that the temperature everywhere is uniform. The heating causes an exothermic

reaction in the resin within the part and causes it to cure. The disturbances in this process

include all of the disturbances one would deal with in the case of injection molding and in

addition, the uncertainty in the exothermic reaction manifests itself as an additional

disturbance. Figure 1.2.2. shows a schematic of a typical mold with heating and cooling

in it.

The controller design needs to be performed so that the steady-state temperature error is

minimized while ensuring a stable operation for the closed loop system. At the same time

one needs to minimize the number of heaters and cooling passages that one uses to

control the process. The best location for a given set of heaters and coolers needs to be

found.

In Chapter 4., presents an approach for designing the distribution of heating and cooling

in such a mold so as to maintain a desired temperature distribution on the mold surface.



1.2.4. Welding:

In a welding process, an intense heat source such as an electric arc or a laser is moved

over the surface of the component being welded. Filler material is sometimes added. The

nature of heat transfer in a traditional welding process, causes a heat effected zone (HAZ)

around the weld. In addition, the geometric attributes of the weld such as the width W of

the weld and the depth D of the weld are dependent on the temperature trajectory that the

base material goes through. See Doumanidis (1988) and Masmoudi (1993). The process

outputs such as the depth of weld, HAZ etc. are highly coupled and it is very difficult to

independently control these attributes The welding process could be better controlled

using a flexible heat source got by scanning a heat source such as a welding torch.

Doumanidis (1996) has recently implemented such a control for a scan welding process.

The goal of the controller in this process is to be able to achieve a certain specified

characteristics for the weld. However, approaching this problem via distributed

parameter systems could yield insight into the best achievable performance given the

constraints on the process.
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Figure 1.2.2 A schematic of a mold with heating and cooling.
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Figure 1.2.3. Geometry of the weld in a typical welding process.
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1.2.5. Flame bending:

Flame bending is a process used to manufacture one of a kind plates with specific

curvature. Flame bending is also termed as tool-less forming. A heat source such as a

flame or a plasma torch is scanned along specific lines in the component to induce

thermal stresses in the component. The thermal stresses cause permanent distortions in

the plate being deformed.

This process is employed to bend large and thick components in very low volume

production. The components produced by this method are typically used in ship building

and the manufacture of pressure vessels. Additionally, this approach could be used to

rectify the errors induced by other methods of forming.

The current industrial practice of flame bending involves bending the parts using a trial

and error method where incremental amount of bending is induced at each pass of the

flame. However, by better controlling the temperature distribution in this process better

control over the distortions could be obtained.

1.2.6. The requirements on the processes:

In all of the processes discussed in this section, there is a need for controlling temperature

distributions. The specific requirements may vary from process to process. In some

instances, one is interested in controlling the steady-state temperature distribution.

(Example: Mold temperature control). In other instances one needs to control a time

trajectory of the temperature distribution. (Example: Heat treatment). In examples such

as distortion control and length control one needs to control either the gradient of the



temperature or an integral of the temperature. One of the common requirements among

all the processes is that one needs to minimize the amount of hardware (e.g., heaters,

torches, thermocouples etc.) and the amount of energy used. This has to be done while

guaranteeing the performance of the process. The control theory that is of relevance to

present applications is in the field of distributed parameter systems (DPS) theory. The

DPS theory is concerned with controlling phenomena that are distributed in space and

vary with time. The problem of controlling heat conduction/ diffusion equations has been

widely studied in the distributed parameter systems literature. In the following sections a

review of the literature in the control of Distributed Parameter Systems (DPS) is

presented.

1.3. Distributed Parameter Systems (DPS) Literature:

There is a good deal of published research on the topic of controlling distributed

parameter systems. The theoretical aspects of controlling such systems have been

addressed, among others, by: Lions, (1971,1980), Balakrishnan, (1965,1976),

Butkovskii, (1969,1987), Delfour (1972,1982), Fattorini (1967,1985), Mitter (1969),

Russell (1973), Wang, (1964) Vidyasagar (1973). Several books and collections of

papers have been published on this topic: Butkovskii (1969,1987), Omatu and

Sienfeld(1983), Ray and Lainiotis (1978), Aziz, Wingate and Balas (1977), El Jai and

Pritchard (1988), Tzafestas (1982) etc.

1.3.1. Publications on controllability, observability and stability:

There is a plethora of publications dealing with system theoretic concepts such as

controllability, observability and stability of distributed parameter systems.



Controllability of the heat conduction system has been studied by several authors, for

example: Omatu and Seinfeld (1989), Tzafestas (1978), Amouroux (1975,78), Goodson

and Klein (1970), Sakawa (1974), Butkovskii (1969), Russell (1973), Fattorini (1967),

Seidman (1973) , Kamen (1976), Lions (1980), Triggiani (1975), etc. The range of

publications is varied. While Omatu and Seinfeld (1989), Tzafestas (1978) etc. have

studied the controllability problem using eigen function expansions, authors such as

Lions (1980), Triggiani (1975), etc. have addressed the problem using function theoretic

concepts.

Observability for DPS was defined by Wang(1964). Goodson and Klien (1970) have

derived observability results using an eigen-function expansion and this approach for

checking for observability can be found in a wide variety of publications. See: Omatu

and Seinfeld (1989) for a detailed derivation of several observability results.

Publications dealing with stability issues are far fewer and are very situation specific.

Wang, (1964b, 1971) show a couple of publications with stability results for specific

diffusion systems with delays.

1.3.2. Publications on optimal control and optimal sensor and actuator location:

For manufacturing applications, optimal control and optimal sensor and actuator location

are by far the most important issues to be considered. Butkovskii (1969), Goldwyn,

Sriram and Graham (1967) present a technique for time optimal control of heat

conduction systems. Amouroux and Babary (1978) discuss optimal control with point

actuators. Butkovskii (1987) addresses several issues dealing with optimally controlling



systems with mobile actuators. Ahmed and Teo (1981) has a collection of papers dealing

with Optimal control of DPS. Bellman (1957) and Lions (1971) treat the theoretical

aspects of the problem of optimal control of DPS. Lausterer (1977) discusses an example

of optimal control of a steel billet using LQG techniques. Kaiser (1968) discusses an

optimal control approach that addresses the problem of steady-state optimal control of

temperatures.

The problem of optimal location of actuators and sensors is unique to distributed

parameter systems. The performance of any controller depends critically on the location

of the sensors and actuators. This problem has been widely studied in the literature. El

Jai and Pritchard (1988) and Kubrusly and Malebranche (1985) have exhaustive surveys

on this topic. Sensor location literature primarily deals with locating point sensors,

however there are no guidelines for locating sensors that might have a distribution to

them. For example: if one could scan a pyrometer along specific lines to estimate

temperatures, there are no guidelines on how to select the lines along which the

pyrometer measurements should be scanned on. Kaiser (1971) illustrates one way of

optimally distributing sensing for a steady-state one-dimensional length control problem.

Most of the sensor location publications deal with minimizing some measure of steady-

state error covariance of an optimal estimator such as a Kalman Filter. Some algorithms

involve, sequentially locating the sensors, minimizing the error covariance at each step.

Other algorithms attempt to simultaneously locate N sensors so as to minimize the error

covariance of the optimal estimate. Bensoussan (1972) showed the existence of solution

for the optimal location problem using the covariance of the optimal estimate. Yu and



Seinfeld (1973) first developed a sub-optimal method of sequentially locating sensors.

Most algorithms used to evaluate the optimal locations involve some form of numerical

optimization and are very numerically intensive, even for problems with simple

geometries.

Amouroux and Babary (1975,78) discuss optimal location of actuators where the

locations of the actuators are selected so that a quadratic performance index similar to t e

cost in a linear quadratic regulator problem is minimized. Omatu and Seinfeld (1983)

illustrate a technique for optimal location of both point actuators and point sensors,

simultaneously. This technique involves minimizing the performance criterion on the

LQG problem. Kaiser (1971) illustrates a technique for determining optimal sensor-

actuator location and distribution for controlling steady-state temperature distributions.

El Jai and Pritchard (1988), Amouroux and Babary (1979) have addressed the problem of

determining optimal shapes or domain of action (regions within the controlled solid

where the input acts) for inputs. These publications deal with extremely simple

geometries and simple shapes for domains of action. The problems are numerically

solved after posing a parametric optimization problem. The applicability of these

techniques is in doubt due to the several simplifying assumptions made. A technique

developed by Kaiser (1969) which uses a 'Greens function' based description for the he t

conduction process, can be efficiently applied to problems dealing with steady-state

temperature control. The approach presented by Kaiser, involves minimizing a quadrati/

performance index defined in the spatial domain to obtain a optimal distribution of heat



flux. The optimal heat flux distribution thus obtained is in a feed-back form wherein the

heat flux depends on the temperature error. This implies that the heat flux distribution s

dependent on the disturbances and model errors and therefore a better scheme from an

application point of view. This thesis builds on the techniques developed by Kaiser

(1969).

1.3.3. Applications of DPS techniques:

The applications and experimental implementations to the DPS theory have been very

few. Lausterer (1977), Morari and O'Dowd (1980), Mader(1976), Kaiser (1968) have

performed experiments on controlling temperature distributions. All of these experiments

involved control of steady state temperature distributions. In Lausterer and Ray (1977)

the heaters and thermocouples were placed at arbitrary locations in the solid and a sub-

optimal state estimator has been implemented. The purpose of the experiment was to

verify the performance of the theoretical results in DPS estimation rather than to facilitate

better control in any specific process. Kaiser (1968) demonstrated temperature control in

a rod for controlling the length in the presence of thermal disturbances. All the other

applications involve experimental setups used to verify theoretical results as opposed to

real applications.

1.3.4. Conclusions from literature survey:

In spite of the vast amount of theoretical and experimental research on the control of

distributed parameter systems (DPS), there are virtually no real industrial applications o

DPS theory to manufacturing processes. The reasons for this could be many. One of th

f

reasons for this could be that implementing optimal estimation and control algorithms



require a large amount of computing power. With computing power becoming cheaper,

these methods will be more attractive to implement. Additionally, quality, productivity

and flexibility issues in manufacturing processes are becoming increasingly important.

Environmental requirements on processes have put energy conservation requirements o

the processes. Hence, the investigation of more advanced control methodologies, which

might yield better performance of the manufacturing processes, has to be performed.

In the following section, model forms used in implementing DPS controllers will be

discussed.

1.4. Model forms:

Equations 1.1.1. and 1.1.2. show the governing equation for linear conduction of heat.

For control and analysis purposes, this equation needs to be modified into forms that are

more suited to applying different control techniques. There are three major approaches

for performing this:

1. The first approach involves the use of the eigen function expansion of the partial

differential equation (PDE) in equation 1.1.1. and 1.1.2. The PDE can be equivalently

represented using an infinite set of ordinary differential equations that are derived

using the orthogonality property of the eigen functions. The infinite set of equations

is then truncated to get a finite dimensional approximation to the PDE. This approach

is by far the most common approach seen in most of the distributed parameter

systems literature.



2. The second approach uses some form of spatial discretization such as a finite

difference equations (FDE) based scheme. This involves spatially lumping the

geometry and deriving governing ordinary differential equations by performing energy

balance between neighboring nodes. Finite element and boundary element

approaches are also based on spatially discretizing the solid, similar to FDE. These

methods are widely employed in the analysis of thermal systems.

3. The third approach utilizes an integral equation representation for the temperature

distribution using Green's functions. The Green's function can be experimentally

determined, hence this is a useful technique.

These three approaches have been used in this thesis for different problems. In this

section a brief description of each of the techniques is presented along with the pros and

cons of each approach.

1.4.1. Eigen function expansion based models

The eigen-function expansion based approach involves computing the eigen values and

eigen functions associated with equation 1.1.1. Say the eigen functions and eigen values

associated with equation 1.1.1. are:

D i(T) : Eigen functions i = 1,2,...,oo

•t : Eigen values 1.4.1.

Where i is a vector of spatial coordinates used in the problem. For the heat conduction

system, the eigen values are all negative and decreasing and the eigen functions form a

complete set. This implies that any piece-wise continuous function can be represented as

a weighted infinite sum of the eigen functions. ( See Courant and Hilbert (1962)). The



temperature within a solid is a continuous function, hence the temperature can be written

as an infinite sum of the eigen functions as:

00

T(i,t) = X a.(t)4. (i) 1.4.2.
i=1

Where:

x: Vector of coordinates
t: time
T(i, t) : Time varying temperature distribution in

the solid
ai (t) : Fourier coefficients corresponding to the ith

eigen function D i(i)

Based on this eigen-function expansion a state-space representation can be derived by

substituting equation 1.4.2 in 1.1.1. (See Kubrusly and Malebrance (1985) for a detailed

derivation of the state-space equations). Additionally, chapter 2., presents a detailed

example of using an eigen-function expansion to derive a state-space description to the

heat conduction problem. In the eigen function expansion based model, the Fourier

coefficients ai(t)'s are the states and the corresponding state-space model is given in

equations 1.4.3-1.4.8.

X= AX+BU 1.4.3.
Y = CX

Where the state vector and the initial value of the state are given by:

X(t) = [a1 (t),a2 (t),- .. ]T
1.4.4.

X(O) = [a1 (0), a2 (0),...]T

The A matrix of this infinite dimensional system is given by:



Axn =diag -y=, }, n= 1,2,3,- --oo 1.4.5.

k
where ' - is the diffusivity.

pC,

If the heat flux distribution can be separated into its space and time parts, it can be written

as shown in equation 1.4.6.:

O(X, t) = Q(X)T U(t) 1.4.6.

Where Q(i) is the vector of functions describing the distribution of the inputs and U(t) is

the vector of intensities of each of the inputs. This separation is only possible in

situations where the locations where heat flux is applied is fixed in time, for example:

heaters and cooling passages whose locations do not change with time. The length of tie

Q(x) vector is dependent on the number of independent inputs that are available in the

process. The time varying amplitude of each of the inputs is governed by the values of

each entry in U(t). This decoupling is not possible in situations where the heat input

devices are moving, for example: heating with moving torches etc.

In situations where the space and time parts can be decoupled, the B matrix of equation

1.4.3. is given by: (See Kubrusly and Malebrance (1985))

Bi = fffci(3)Qj(x)dV i= 1,2,---oo; j=1,2,---p
D

p :Number of inputs 1.47.
D :Whole spatial domain spanning the solid

Similarly, if thermocouples in fixed locations are used to measure temperatures, the C

matrix can be computed as:



Cj = f j()8(- -i)dV i = 1,2,...q j = 1,2,...oo 1.4.8.
D

Where 3(x - X-) is Kroneker delta with T~'s the locations of the q thermocouples.

This eigen function based model is truncated at a suitable dimension to give a finite

dimensional approximation to the infinite-dimensional system. In most applications the

physical input devices (heaters and coolers) do not have a high spatial frequency content,

hence it is very difficult to "excite" the higher spatial harmonics. The eigen function

based models are, therefore, tend to be of a lower order.

The main disadvantages of using eigen function based models are:

1. The eigen functions are very sensitive to parameter variations and changes in

boundary conditions.

2. For complicated geometries they are more difficult to evaluate. Most standard Finite

Difference Equations (FDE) and Finite Element Analysis (FEA) packages do not have

the ability to extract eigen functions and eigen values for the heat diffusion problem.

3. They cannot be experimentally computed.

4. The effects of non-linearities and model uncertainties cannot be easily studied.

1.4.2. Models Based on Spatial discretization:

Modeling techniques such as finite differences and finite elements, involve discretizing

the domain into smaller parts and applying energy conservation to each element to

determine the interaction between successive elements. For example the rectangular solid

shown in 1.4.1. is discretized into a finite difference grid. The notation for the



temperatures at different nodes, in this finite difference grid is shown in figure 1.4.2.

Using this discretization, the governing equation for the temperature at the ijth node can

be written by performing energy balance at that node. Equation 1.4.9., shows the

resulting equation:

dT -

1.4.9.

+ kT-2 [ j+ Tij-1 - 2Ti'j + qi,j(Ay) +J+I

In equation 1.4.9., qij is the external heat input or the internal heat generated at the ijth

node, p is the density of the solid, C, is the specific heat of the solid and k is the thermal

conductivity. Ax and Ay are the dimensions of the finite difference grid as shown in

figure 1.4.2.

Equations similar to 1.4.9. can be written for all the nodes in the solid and arranged in a

vector to create the matrix differential equation:

S= AX + BU;
X [T,,T2...,mn ] T

;

U = [q, q2"... qmn ]; 1.4.10.
m :number of nodes along thickness
n :number of nodes along width

X is the vector of temperature at each of the nodes and U is the vector of the heat flux

generated/input at each of the nodes. The above equation is a finite dimensional

approximation to state space representation for the heat conduction problem, obtained by

spatial discretization.
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Figure 1.4.1. Spatial discretization of the rectangular domain into finite differences.

T.,
1,]

Figure 1.4.2. Temperatures at the different nodes in a finite difference scheme.



The advantages of using this representation are:

1. Finite differences are widely used in the analysis of heat conduction problems and

there are many commercially available packages that could be used to simulate the

models.

2. Non-linearities can be easily incorporated in the models.

3. The state of the system has a direct physical interpretation and therefore could aid in

developing better intuition in the process and thereby be able to design better

compensators.

The chief disadvantage of using a finite difference scheme is that the dimension of the

state space grows rapidly with the increased accuracy needed in the computation. This

makes it unattractive for real-time applications. However, with increased availability of

inexpensive computational power this may not be a problem. Another disadvantage of

the finite difference formulation is that the model cannot be experimentally derived.

1.4.3 Green's Function based models:

Green's function models use an integral equation representation for the PDE in 1.1.1.

The Green's function corresponding to equation 1.1.1., G(T, , t) is defined as the

temperature response at a location x (vector of coordinates) and at a time instant t caused

by a unit impulse of heat flux at a location 5 (vector of coordinates). Equation 1.4.11.

illustrates the definition of the Green's function.

dG
pC, (x, ,t) = V(k(0o)V)G(, y, t) + 6(- ,t);

0 B1.4.11.
Bo(G(x, ,t)) = 0; Boundary Condition



Where:

p: Density of solid
C : Specific heat of solid
V: The Laplacian operator
i,4 : Vectors of coordinates describing the solid

6(i - ,t) : unit impulse at iY = c, at t = 0
G(-Y, ,t): The Green's Function

The temperature within the solid due to arbitrary heat input O(I, t) can then be computed

by the principle of linear superposition as shown in equation 1.4.12.

T(=, t) = G( , 0, t),( , t)dý;
D 1.4.12.

D: The entire domain

Similarly, a steady-state Green's function can be defined as the steady state temperature

distribution obtained at a location Y caused by a unit heat input at a location .

Equation 1.4.13 shows the definition of a steady state Green's function.

V(k(Y)V)G(x,6) = -14 3
1.4.13.

Bos (G(i, 0 )) = 0; Boundary condition

Where, 8(T - ) is a unit (steady state) input at a location i = and k(Y) is the

conductivity and G(Q, ) is the steady-state Green's function. The steady state

temperature T(Y) can then be written by linear superposition as:

T(Y) = G(*, )O(ý)t()d;
D 1.4.14.

D :The entire domain

One of the chief advantages in using a Green's function based model is that the model

could be experimentally derived. From the definition of the Green's function we have

seen that it is the temperature response due to a unit input at Y = -. We could spatially



discretize the controlled solid into several smaller regions and apply input to one of these

regions and measure the temperature everywhere. By repeating this process for all the

discrete regions we could experimentally determine the Green's function. See Wilkinson

(1965) for a detailed explanation of this technique. The dimensionality of the problem is

dependent on the accuracy needed in the temperature distribution. As will be seen in

Chapter 4, the size of the problem can, however, be reduced considerably, after the

heating and cooling locations have been selected.

1.5 Cost functionals:

In manufacturing processes the energy and hardware available is limited and where

possible these should be conserved. However, in all applications, using less energy and

lesser amount of hardware manifests itself as degradation in the accuracy and speed of

response to which the temperature can be controlled. There is, therefore, a trade off

between the amount of energy used and the accuracy in the achieved temperature. This

trade off can be accomplished by implementing controllers that are optimal in some

sense. The quantity being optimized is termed as the cost functional. In this thesis, all

the cost-functionals considered are quadratic because of the availability of suitable theory

and the ease of implementation of the solutions obtained for such a formulation.

There are three classes of quadratic performance indices that are considered in this thesis:

1. An infinite horizon quadratic cost functional as shown in equation 1.5.1.

J =f T(P+ TQ 7dt 1.5.1.
0



where, Y is the state vector and - is the input vector as derived in any of the state-

space models discussed in section 1.4. P is the weighting matrix for the error in the

state and Q is the weighting matrix for the input. This cost functional is used in

situations where steady-state temperatures are being controlled. In situations where

the measurements and the states are not corrupted by noise, the problem of

optimizing the cost function in 1.5.1. reduces to the standard Linear Quadratic

Regulator (LQR) problem (See Anderson and Moore, (1989) pp. 35-55).

In the situation where the states and the outputs are corrupted with noise (assumed

Gaussian), the expected value of 1.5.1. is to be minimized. This leads to a Linear

Quadratic Gaussian (LQG) compensator. (See Kwakernaak and Sivan (1972) for

details). The controllers designed this way need an estimate of all the states. In

situations where model uncertainties are high and measurements are too few, these

full state estimates may not be adequately accurate and this technique is not suitable

in such situations. However, in situations where the models are better known and full

state estimates can be constructed, the structure of the compensator has several

desirable characteristics.

2. A finite horizon quadratic cost functional with penalty on the final value of the state:

J(U) = (X(T,) - X (T, ))T P(X(T,) - XD (T,))+

S(X(t) X,(t))T Q(X(t) - XD(t))+ UTRU}t 1.5.2.

0



t: time during cooling
Tf : The final time at the end of cooling
X(t): Vector of temperatures at all nodes
X D (t): Vector of desired temperature trajectories
U(t): input vector
P > O;Q > O;R > 0; weighting matrices

This cost functional is useful in situations where a temperature trajectory has to be

achieved during a specific duration of time. Heat treatment operations have such

requirements on the temperature trajectory. By picking values for P, Q and R,

different weights can be placed on the final value of temperature, the error in the

temperature trajectory and the amount of control effort used, respectively. This gives

a tool for trading off these three, often competing requirements. Chapter 5., deals

with this problem and its solution in some detail.

3. The third type of cost functional deals with spatial rather than time optimization.

Equation 1.5.3., shows a general form of such a cost functional.

J f L (T(x),Ti'(x),',c(1),'x)dx +

s 1.5.3.
il L2 (T()', T '(T), , (X), X, T(e ), T' (),'( ~(), ))dx-d4
S

L1 and L2 are quadratic functions of the first and second order respectively. i and (

are vectors of coordinates describing the geometry of the solid in which the

temperature is being controlled. S is the region of space occupied by the solid of

interest and the integrations are performed over this space. T(i) and T( ) are the

temperature distributions in steady state at locations i and 5 respectively. T,'(i) is



the gradient of temperature in the ith direction at a location i . c (X) is the control

heat flux input applied at a location T.

Such cost functionals are used in determining steady state distribution of heat fluxes

that achieve a desired steady state temperature distribution, therefore, this cost

functional does not involve time. The integrations are carried out over the space

variables, in both the terms of equation 1.5.3. This is in contrast to the two cost-

functionals discussed previously, where the integration was performed with respect to

time. L1 and L2 are two quadratic kernels, which could be functions of the

temperature, temperature gradient and controller heat flux. One of the advantages of

this cost functional over the cost functional considered in equation 1.5.1. is that the

compensators designed this way do not need full state estimates and lower order

compensators could be constructed with relative ease. The draw back here is that the

transient design has to be performed separately on a case by case basis. Chapters 3.,

and 4., discuss the use of such cost-functionals in great detail.

1.6. Structure of the thesis:

Figure 1.6.1. shows a schematic detailing the different aspects of controlling heat

conduction systems. Temperatures need to be controlled in a solid of an arbitrary shape.

The solid may have actuators such as heaters and cooling passages embedded within it

and may have actuators such as cooling sprays and plasma torches providing heat fluxes

at the surface. Similarly there could be measurement devices such as thermocouples

embedded within the solid or could have measurement devices such as pyrometers that



measure surface temperatures. The process requirements can be translated into a desired

temperature distribution trajectory TD(x,y,z,t) for the solid, whereas the actual temperature

achieved in the sold could be T(x,y,z,t). External disturbances such as changes in the

ambient temperature effect the temperature distribution in the solid.

Typically there is a maximum error in temperature that could be tolerated in a process and

external disturbances and model uncertainties exist and should be compensated for by the

controller. Based on these requirements designer then needs to select the following:

1. The types of models that are the most appropriate for the specific application.

2. The number, locations and intensities of the inputs (heaters and coolers) needed.

3. The locations of measurements.

4. The type of optimal control algorithms that best satisfy the process requirements.



Desired temperature
TD (x, y,z,t)

Actuatorn

SDravs I I---Cartridge
r

sturbances
Data

........... Pyrometer

Figure 1.6.1. Schematic of a typical closed-loop temperature distribution control
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The models for the heat conduction process are well developed, however, selecting the

appropriate model for each application is of great importance since it determines whether

real-time control can be applied or not. Sometimes picking the right kind of model can

reduce redundancy in hardware used (See, Wilkinson (1965)). This thesis shows the use

of an eigen-function expansion based model in Chapter 2., a Green's function based

model in Chapter 4., and a finite difference equation based model in Chapter 5.

The problem of arranging thermocouples and other point measurement devices is well

understood (see El Jai and Pritchard (1988)) and could be used directly in any application.

However, the problem of designing the locations and distribution for actuation is not well

understood. This is one area this thesis has explored in some detail and a method for

determining heater/cooler locations for steady-state temperature control has been

developed.

Chapter 2., discusses an example of steady-state temperature distribution control in a steel

specimen. A scanning type heat source is used as a heat input device. Several restrictions

posed by hardware limitations are examined here. An experiment was built using a

welding apparatus and a scanning mechanism with the purpose of exploring the hardware

issues that one would face in such a control problem. A detailed simulation study was

performed on a model of the experimental specimen. The use of an eigen-function

expansion based model is demonstrated in this study and a linear quadratic gaussian

(LQG) compensator based optimal control approach was used as for control. This

approach is the most commonly used approach in DPS literature and the purpose of the



experiment and simulation study that accompanied it was to explore the limitations of the

current state of the art in DPS control.

Chapters 3 and 4 form the central contributions of this thesis. Chapter 3., develops the

theory needed for determining the optimal spatial distribution of inputs for performing

steady state temperature control. A variational calculus approach is used to derive the

conditions of optimality. Cost functionals defined on a space (as opposed to time) are

used here (see equation 1.5.3.). Chapter 4., builds on this technique to illustrate an

application to designing a temperature controller for a molding application. The use of a

Green's function based model is illustrated in these two chapters. A technique for

designing stable controllers that satisfy the steady-state requirements on the process is

presented in Chapter 4.

A transient temperature control problem is presented in Chapter 5. A finite horizon

optimal tracker is implemented on a model of a steel slab. This problem is motivated by

the accelerated cooling process used in the manufacture of hot rolled steel slabs. A finite-

difference based model is used along with a finite horizon linear quadratic cost-functional

(see equation 1.5.2.) in this application.



Chapter 2

STEADY STATE OPTIMAL CONTROL OF TEMPERATURE IN TWO

DIMENSIONS

2.1 Prior experiments

In section 1.2. we have studied several possible applications of distributed parameter

systems control to manufacturing processes. As was mentioned in the previous chapter,

very few experimental implementations of distributed control for temperature have been

performed. Ray (1978) has a detailed survey of all the applications of distributed

parameter systems theory, till that date and there have been very few applications or

experiments since that review paper (See, Miho et. al.(1992)). In this section some of

these past experiments are discussed

Ray (1978), Lausterer (1977) and Morari and O'Dowd (1980) use an experimental setup

which has a cylindrical specimen in which temperature distributions are controlled. The

specimen is an annular cylinder in which the outer surface is insulated and the inner

surface is cooled with water. There are three sets of heaters embedded in the specimen at

different axial locations with a set of thermocouples embedded at different axial and

radial locations. Ray (1978) and Lausterer (1977) have implemented a sub-optimal

temperature estimator on the cylindrical specimen while Morari and O'Dowd (1980) have

used the same specimen to study the effect of non-stationary noise in heat conduction

systems. In this experiment the locations for heaters and sensors and their numbers were

selected arbitrarily. The purpose of this experiment is to verify the performance of



theoretical results in DPS theory rather than to facilitate better control of any process in

particular. In all the experiments performed by this group, an eigen-function expansion

based model was used.

The second experiment was performed by Ball and Hewitt (1974). This experiment

involved a copper bar with heating on one end of the bar. The copper bar was modeled as

a one-dimensional solid and the controller was designed to achieve a desired final

temperature distribution in the shortest amount of time. The model that was used here

was based on a Green's function for the transient problem, which was experimentally

evaluated. Again, the purpose of this experiment was to demonstrate a theoretical result

in time optimal control of the final value of the temperature and was not motivated by any

particular application.

The third experimental set up was built at the MIT instrumentation laboratory. Gould and

Murray-Lasso (1966) and Kaiser (1971) have used this experimental set up to verify

several theoretical techniques developed by them. The experiment comprised of an

insulated metallic bar in which temperatures were controlled. The bar was modelled as a

one-dimensional solid in these experiments. Gould and Murray-Lasso (1966) have used

this experimental set up to demonstrate modal control methods to control temperature

distributions, while Kaiser(1971) has performed experiments that involved steady state

temperature control involving a Green's function based approach. No optimal estimator

was utilized in these experiments and the temperatures were estimated by interpolating



the measured temperatures at specific locations. These experiments were motivated by

temperature control in precision instrumentation for aerospace applications.

One common thread to all the experiments performed is that they use some form of

optimal control to achieve the desired temperatures. This is also a suitable approach for

most processes because in all real processes there is a trade-off to be made between the

accuracy achieved and the amount of heating/cooling used. An optimal control approach

to the temperature control problem lends itself to making this trade off in an efficient

manner.

This chapter discusses an experiment that was set up, as a part of this thesis, to explore

the hardware limitations that limit the applicability of current distributed parameter

systems approaches to manufacturing processes. Several simulations were performed on

a model of the experimental specimen used in this experiment that highlight some of the

shortcomings of the present state-of-the-art.

2.1.1. The need for a detailed study to identify deficiencies in the state-of-the-art:

As can be seen from the prior section, the amount of experimental and application

oriented research work in the DPS area is very meager when compared to the vast amount

of literature on the theory. The lack of enough experimentation and applications of

distributed parameter systems control theory suggests that there are limitations in both the

theory and hardware available for designing controllers for processes with heat

conduction. There is therefore a need for more specific studies to investigate the

obstacles for implementing DPS control. The limitations could be caused by:



1. The availability and short comings of suitable actuators or sensors.

2. The deficiencies in the models used.

3. Computing requirements in implementing several types of control.

4. Suitability of different control approaches for different problems

Hence, there is a need to perform detailed studies to evaluate the short-comings in the

current state of the art. The experiment discussed in this chapter was set up with this in

mind. In all the experimental investigations discussed earlier in this section, the inputs

were limited in terms of their spatial manipulability. This is because, they were fixed in

space at arbitrary locations within the controlled solids. In manufacturing applications,

there are several input devices such as scanning torches, lasers, cooling jets etc. that can

be scanned on the surfaces of solids being heated/cooled. This gives a greater

manipulability for the input heat flux distribution. The experiment discussed in this

chapter uses a scanned Tungsten Inert Gas (TIG) welding torch. This provides a highly

flexible input device that is better suited for studying DPS control. The experiment aims

to control steady state temperatures in a steel specimen and is very similar to the control

problems that one deals with in welding, furnace temperature control, mold temperature

control etc.

As a part of this study, detailed simulations have been performed on a model of the

experimental setup. The key areas that need further investigation have been identified as

a part of this simulation study using the model. Some preliminary experiments were



conducted on the experimental setup, however in the interest of time, detailed

implementation of the controllers studied in simulation has not been performed.

2.2 Description of the experimental setup:

The experiment comprises of a mild steel rectangular specimen which is lcm x 10cm x

0.4cm. The two rectangular faces of the specimen were insulated with strips of Maycor

(sheets of Alumina), which is a ceramic insulating material. There are fourteen

thermocouples embedded within the specimen for temperature measurements. Figure

2.2.1 shows the specimen and the thermocouple locations. The thermocouples are laid

down in two rows, each with seven thermocouples evenly spaced, with a spacing of

12.5mm between them. The holes for the thermocouples are drilled to the mid point of

the steel specimen in its thickness direction (into the plane of the paper). The upper row

of thermocouples is 3mm from the surface and the lower row of thermocouples is 7mm

from the surface of the specimen.

The steel specimen and the Maycor strips are assembled on to a water cooled copper

jacket. Three sides of the rectangular block are in contact with the copper block and the

fourth side lies exposed to the top. A paste of thermally conductive grease is applied to

the interface of the copper block and the steel specimen. This ensures a good thermal

contact between the copper block and the steel specimen. The Maycor strips and the

water cooled copper jacket allow us to model the specimen as a two-dimensional

rectangular solid with a constant temperature boundary condition on the three surfaces in

contact with the copper block and a free convection boundary condition on the fourth

surface. (This will be discussed in detail in Section 2.3.) A cross-sectional schematic of
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the copper block is shown in figure 2.2.2. Figure 2.2.3. shows the assembly of the steel

specimen and the copper block.

The specimen and the copper block are placed under a TIG torch. The TIG torch is

reciprocating rapidly over the top surface of the steel specimen. The arc voltage, which is

a function of the arc height, is kept constant while the torch is moving. This is

accomplished by a servo on to which the torch is fitted in which the arc voltage is

measured and is fed back to the servo. This is indicated as the high bandwidth servo in

figure 2.2.4. The servo along with the torch is mounted on to a set of horizontal guide

ways and a lead screw. A DC motor actuates the lead screw and there is an encoder to

measure the rotational displacement of the motor. This DC motor along with the encoder

is used to control the horizontal motion of the torch parallel to the surface of the

specimen.

2.2.1. Idea behind the experiment:

If the scanning of the torch along the top surface is much faster than the dominant time

constant of the thermal system, the distribution of the heat flux will "look" to be

continuously distributed over the upper surface of the specimen. This means that the

temperature responses of the thermocouples will be very similar in the two cases: one in

which the heat flux is distributed everywhere and the other where this high speed

scanning is used.
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Figure 2.2.3. The steel specimen assembled on to the copper block.

High-Speed Traverse
4

Motor with
Encoder

Figure 2.2.4. The arc-scanning mechanism.



The position of the torch can be sensed using the encoder data and the current through the

torch can be varied with position. The high bandwidth servo is used to maintain the

voltage across the torch constant by controlling the arc length. The heat flux incident on

the surface at any location, O(x, t) is then given by:

O(x, t) = rlefI(x, t)V(x, t) 2.2.1

Where lff is an efficiency factor, I(x,t) is the value of the current through the welding

torch which is varied along the length of the specimen and with time. The voltage of the

arc V(x,t) can similarly be varying, but during the experiment it is held constant. Hence,

changing the current through the torch, the heat flux that is incident on the surface of the

specimen is varied. Figure 2.2.5 shows this effect.

Heat flux distribution 4(x,t)
y4+

Specimen
Figure 2.2.5. Continuously distributed heat flux due to scanning.
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Figure 2.2.6. The layout of the experiment.



2.2.2. Description of the hardware used for experiment:

A Hobart Cyber-TIG III welding power supply is used to power the TIG torch used in the

experiment. The power supply is a voltage driven current amplifier. A D/A (Data

Translation 2801 board) is used for the voltage input. The temperature data is acquired

using two boards: Omega 711 and Omega 789. The boards support 16 channels of which

14 are used for the experiment. An MC 100 single axis motion control card is used to

achieve the rapid traverse of the torch assembly across the specimen. The encoder data is

also read in by the MC 100 motion control card and an EG&G servo amplifier is used to

power the motor. Figure 2.2.6 shows a schematic of how the hardware is connected.

2.3. Model for control:

The two lateral sides of the rectangle are insulated with Maycor (ceramic) sheets. If we

can assume that the insulation is perfect, the heat transfer within the steel specimen can

be simplified to a two dimensional problem. This is because, the Maycor strips ensure

that there is no significant heat transfer in the direction perpendicular to the plane of the

page in figure 2.2.1. The three sides of the rectangle are in contact with the water-cooled

copper block. Copper has a significantly higher thermal conductivity than steel and if the

temperature of the water is constant, this boundary condition can be modeled as a

constant temperature boundary condition on three sides of the rectangle. The fourth side

facing up, is exposed to the ambient. Hence, this can be modeled as a free convection

boundary condition. Equation 2.3.1., shows the governing Partial Differential Equation.

0 02  d2
PC d ___ y,_t)__K -d
pC -T(x, y,t) = K• T(x, y,t)+K T(x, y, t);2.3.1.

O<x<b; O<y<a;



Where, the dimensions of the rectangular solid are "a" by "b". It is assumed here that the

different material properties remain constant with space and temperature. The boundary

conditions are then given by:

B. C.' s:

T(x,O, t) = 0; Cooling on three sides

T(x, a, t) = 0; - modelled as constant 2.3.2.

T(b, y,t) = 0; temperature

a dT Top surface with heat flux from
x- x=0 yt) torch and convection

With the initial condition:

T(x, y,O) = 0; 2.3.3.

Figure 2.3.1. shows the setup of the model (notice the change in axes from figure 2.2.5.).

Equations 2.3.1., 2.3.2. and 2.3.3. give us the equations for the heat conduction within the

specimen. These should be modified into a form that is more suitable for control. As

was seen in Chapter 1., there are several ways of representing this system of partial

differential equations. Here an eigen function expansion based model will be used. The

geometry is simple and the boundary conditions are well controlled and so we can derive

the eigen functions analytically. These eigen values and eigen functions are used for

deriving a state space system of equations, as will be discussed in what follows.
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Figure 2.3.1. The model for the heat conduction within the specimen
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2.3.1. Computation of the eigen functions and the eigen values:

The homogenous part of the PDE in 2.3.1.-2.3.3. is considered for deriving the eigen

values and eigen functions. The homogenous part of the equations is obtained by

dropping the heat flux term from the boundary conditions:

B. C.'s:

T(O, y, t) = 0;

T(x, b, t) = 0;

T(a, y, t) = 0;

2.3.4.

= 0;

Writing the temperature for the homogenous problem in a separated form as:

T(x, y, t) = G(t)F(x)H(y) 2.3.5.

Substituting equation 2.3.5. in equations 2.3.1. and 2.3.4., and finally dividing throughout

by G(t)F(x)H(y), the following equation is obtained:

1 dG(t)

kG(t) dt

1 d 2 F(x)

F(x) dx2
1 d 2H(y)

H(y) dy2

K
Where k - the thermal

pCp
diffusivity.

The boundary conditions can be reduced to the following:

H(O) = 0; H(a) = 0;

dF
- a x +fF = 0;

dx X=O
2.3.7.

To derive the eigen values and the eigen functions, both sides of equation 2.3.6. are

equated to the eigen values of the problem. The eigen values are expressed as a sum of

2.3.6.

d x-0



two different terms 21im and 121n as can be seen in equation 2.3.8. It will be seen in

what follows that this is a convenient form to express the eigen values of the problem.

1 dG(t)

kG(t) dt

1 d 2 F(x)

F(x) dx2

1
+ -

H(y)

d 2H(y)

dy2 2.3.8.

S--(A2 im •2 in )

The right hand and left hand side equations give rise to the following three equations:

1 dG(t) = (21m +A21 n

kG(t) dt
1 d 2F(x) 21

F(x) dx2

1 d 2H(y)

H(y) dy2

2.3.9.

=(A2n)

Boundary conditions in 2.3.7. are applied to the last two equations in 2.3.9. and solved.

This gives all the possible solutions for F(x) as O(x) and all possible solutions for H(y) as

m(x)= 

sin +(y)cos

On(X) = s[ sin( 2mx) + alm CoS X

2.3.10.

n (y) = sin(lny)

ni
A, - n = 1,2,..., o

a
i 2 m is positive solutions of

P sin( 2mb) = -aA2m cos( 2mb);

2.3.11.

m = 1,2,...,

(Nr is picked so that the norm of the eigen function is unity). The eigen functions and

eigen values of the two dimensional problem are then given by:

Where,



Eigen functions:

.(x, y) = .[ sin mx + m cosm x)] sin 2.3.12.
SN2a (2.3.12.

Eigen values:

A• =( 2 1n + A22m)

These eigen values and eigen functions can be used to compute the state-space

representation for the PDE.

2.3.2. Derivation of the State-Space model:

The state space model of the heat-conduction system is now derived, utilizing the eigen

functions and eigen values derived in equation 2.3.12. The eigen function expansion of

the temperature can be written as:

oo

T(x,y,t)= , ai(t)Di(x,y) 2.3.13.
i= 1

Where ai(t)'s are the Fourier coefficients for the temperature. The state-space system of

equations can now be written with the Fourier coefficients as the states.

X = AX + BU 2.3.14.
Y =CX

A =diag{-k~l },n = 1,2,3, .. oo 2.3.15.

The states and initial condition are given by:

X(t) = [a1 (t),a2 (t),. -.]T

X(O) = [a1 (0), a2 (0),...]

The matrices B and C are dependent on the distribution of the inputs and the

measurements.



If the distribution of the inputs can be rewritten as:

O(x, y,t) = I(x, y)T U(t) 2.3.17.

where the size of the vector I(x,y) is equal to the number of independently controlled

inputs, each entry in the vector I(x,y) is the distribution of each of the inputs. Each entry

in the vector U(t) is the time varying intensity of each of the inputs.

Similarly, the measurements are assumed to be distributed as M(x,y,t). In the present

case, the measurements are point measurements using thermocouples. Therefore,

M(x,y,t) will comprise of Kroneker S 's. The B and C matrices are then computed as:

ab

Bi = (x,y) (x, y)I(x, y)dxdy i= 1,2,...oo; j= 1,2,.. p 2.3.18.00

p: Number of inputs

ba

Cij = ji(x(xy)(x - xi, y - yi)dxdy i= 1,2,...q j = 1,2,..., 2.3.19.
00

Where p is the number of inputs and q is the number of measurements. (xi, yi) are the

coordinates of the measurements (thermocouples).

Equations 2.3.14-2.3.19, detail the derivation of the eigen-function based state-space

system of equations for the problem in equation 2.3.1. This size of the state space can be

seen to be infinite. By truncating the eigen function expansion at a sufficient number, a

finite dimensional approximation to the PDE is obtained. This finite dimensional model

is used for control.



2.4. The controller design:

The welding supply has limited power supply (of about 2KWatts). This is typical of

many processes where the power that we could use is limited. Hence a good way of

trading off the amount of energy used to the accuracy of the closed loop temperature, is

needed. A suitable way of achieving this is to use a quadratic performance index and

Linear Quadratic Regulator (LQR) theory is used here to achieve this.

The LQR theory assumes the availability of the full state, hence an observer or an

estimator that can evaluate the full-state from the partial measurements needs to be

constructed. Since the measurements from the thermocouples are corrupted by noise, a

Kalman Filter is used to perform this construction. This implementation of the LQR

along with a Kalman Filter is the Linear Quadratic Gaussian (LQG) problem.

The equations in 2.3.14., can be rewritten to include the noise terms as:

X = AX + BU + Fw 2.4.1.
Y=CX+v

Where "w" and "v" are assumed to be zero mean Gaussian stochastic processes, with

covariances:

E{wwT } = W > O, E{vv T } = V > 0 2.4.2.

Here E{.. } is the expectation operator. Hence the optimization problem that we are trying

to solve is to minimize the cost-functional:

J = limE (xTQx + uTRu)dt 2.4.3.
T-*- 0



Where, the weighting matrices are such that:

Q=Q T >0 and R = RT >0

By using the stochastic separation principle, this can be split up into two steps: First an

optimal estimate X of the state x is obtained, by minimizing the error covariance:

2.4.5.

This estimate is then used in the deterministic problem of minimizing:

J = (xTQx +uTRu)dt

The optimal input with this cost function is given by:

u = -K x

Where, the matrix Kc is computed via the Algebraic Riccati Equation as follows:

2.4.6.

2.4.7.

K c = -R-'BTP c  2.4.

Where Pc is a symmetric positive-semi-definite solution of:

AT Pc + PcA - PcBR-'BT Pc + Q = O 2.4.

Figure 2.4.1. shows the block diagram for the closed loop system. The discussion about

the location of the disturbance in the block diagram will be presented in the next section.

In the block diagram, the filter matrix Kf is given by another Algebraic Riccati Equation.

K, = PC TV -1 2.4.10.

Where Pf is the symmetric-positive-semidefinite solution of:

AT P, +PA - PC T V-'CPf +FWF=0

2.4.4.

3.

9.

2.4.11.



If the corresponding stabilizability and detectability conditions are satisfied, (see

Kwakernaak and Sivan (1972)), then the two matrices Kc and Kf exist and the

implementation of the optimal compensator shown in figure 2.4.1., can be carried out.

Equations 2.4.7-2.4.11. along with figure 2.4.1. show the structure of the optimal solution

and its implementation. In figure 2.4.1., A,B,C denote the model used for control

purposes and G(s) is the actual plant, i.e. the dynamics within the specimen. The input of

heat flux that the specimen experiences, is given by the sum of the disturbance and the

controller heat flux. The disturbance heat flux is implemented by adding a known

disturbance to the out-put of the controller as shown in figure 2.4.1.

As we have seen from the description of the experiment, the torch is scanned on the upper

surface of the specimen. For the ease of implementation, the upper surface is divided into

different zones where the input stays constant across the zone. The magnitude of the

input can however change with time. The position data from the encoder (see figure

2.2.6.) is used to determine when the torch crosses from one zone to the next. Once the

torch crosses over to the next zone the voltage value corresponding to the next zone is

output to the Hobart welding power supply, which outputs a suitable current. Figure

2.4.2. illustrates the implementation of the heat-flux input. In the simulation study to be

presented next, the same assumption is made on the distribution of the heat flux.



Figure 2.4.1. The LQG compensator structure used in study
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In this case the I(x,y) (see equation 2.3.17.) vector has 15 entries where each entry is a

function, similar to the ones shown in equation 2.4.12.

I,(x, y) =0 x>O

a
=1 x=0,Oy < -

15
2.4.12.

I2(x,y) =0 x>O 2.4.12.
a 2a

=1 x= • -< y <-
15 15

These values can be substituted in 2.3.18. to derive the B matrix. Similarly, knowing the

coordinates of the thermocouples, the C matrix can be computed using equation 2.3.19.

Selecting the matrices Q and R in equation 2.4.3. is the most important step in the design

of the compensator. This was done using Bryson's technique. This is a heuristic

technique which has been used as a starting point for the design. ( See Bryson and Ho

(1975) for further details). The first step in the method is to specify the maximum

allowable deviation in the values of the state and the input. Say these are x, and urn.

Now, the matrices Q and R are selected to be diagonal of the form qI and rI where q and

r are scalar variables and I is the identity matrix of the proper dimension. Bryson's

technique then says that a general thumb rule for picking the values of q and r is:

1
q ~ 2

1 2.4.13.
r- 2

U
m

These parameters could then be "tweaked" until desirable performance is obtained.



The next section details simulations that were performed for temperature control on the

steel specimen and the conclusions from this study.

2.5. Simulation results.

Several simulations to study the effects of the optimal regulator under different scenarios

have been performed. The model used for the simulations is based on the eigen function

expansion as discussed in section 2.3. The numerical values that were selected to here,

are:

1. The dimension of the block is 0.1m x 0.01m

2. The physical constants for convection boundary condition are: a = 60.2768 W/m.K,

p = 10 W/m2 K.

3. The diffusivity K / pCp =1.754e-5 m2 /s.

The eigen functions and eigen values have been computed by solving the equation 2.3.11,

numerically, using Newton-Raphson technique, since closed form solutions do not exist

for this problem. The covariance matrix "V" in equation 2.4.2., has been computed by

measuring the temperatures of the different thermocouples and calculating the variances

of the measured temperature. The structure of the matrix was diagonal, since the

thermocouple responses were not correlated to each other, with each diagonal entry to be

approximately 0.0625, which corresponds to a standard deviation in the measured

temperatures of 0.25 oC. The state-noise matrix W was chosen to be diagonal with the

diagonal entries to be 0.01. The state noise is difficult to estimate using an experiment

and a small value was selected arbitrarily.



Several classes of disturbances have been studied in the simulation study. For example,

consider the disturbance heat flux shown in figure 2.5.1. This is the distribution of the

disturbance heat flux along the top surface of the specimen. If no compensation were

present, i.e. u,(s)=O, in figure 2.4.1. The disturbance then results in an error temperature

in the uncompensated system as shown in figure 2.5.2. The LQG compensator is then

implemented on the system with the disturbance in figure 2.5.1., acting on the specimen.

The effect of the compensation on the error temperature and the controller heat flux are

shown in figures 2.5.2. and 2.5.3. It can be seen that when compensation is applied the

error temperatures are significantly small (as shown in figure 2.5.4.).

2.5.1. Effect of sensor location on controller performance:

The following set of simulations demonstrates the importance of sensor location in

disturbance rejection. To study the effect of sensor location, the thermocouple pairs 1

through 4 in figure 2.5.5. were not used for control but were still measuring temperatures

to indicate the temperature error. The optimal estimator was then implemented using the

measurements of thermocouple pairs indicated in figure 2.5.5. by numbers 5,6 and 7.

This implies that in the controller presented in figure 2.4.1., the filter gain Kf was

recalculated for the case when measurements are available only at thermocouple pairs

indicated by 5,6 and 7.

The linear quadratic regulator (LQR) controller gain Kc in figure 2.4.1., is the same as in

the previous study. The performance of the closed loop system with the fewer number of



sensors was studied. Figures 2.5.6. and 2.5.7. indicate the steady-state heat flux

distribution and the corresponding temperature errors measured at the different

thermocouples. It can be noticed that the temperature error in steady state, when the

disturbance is acting on the specimen is far larger at locations where there are no

measurements available for control. This demonstrates the importance of selecting

suitable sensor locations for control of distributed parameter systems.

2.5.2. Effect of input location on controller performance:

To study the influence of input location on the controller performance, the controller heat

flux is assumed to be available in regions shown in figure 2.5.7. The heat flux is

available at all the zones across the upper surface of the specimen, except for five zones

at the center. The optimal compensator gain Kc is recalculated for this input and all the

thermocouples are available for control.

The steady-state controller heat flux and the steady-state error temperatures at the

different thermocouples are calculated with the input restricted to the above mentioned

zones. Figure 2.5.8. shows the distribution of the optimal heat flux distribution and

figure 2.5.9. shows the corresponding error temperatures. It can be seen that the

performance is considerably degraded for regions where there is no input available. These

results demonstrate the importance of the availability of controller heat flux at the

different locations in the controlled specimen.



The distribution of the disturbance heat flux
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Figure 2.5.1. The distribution of disturbance heat flux along the upper surface of the specimen.
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The mean error temperatures at the fourteen thermocouples
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Figure 2.5.2. Error temperatures at the different thermocouples due to disturbance when no compensation is present.
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The distribution of the compensator heat flux
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Figure 2.5.3. Heat flux output by the compensator when the disturbance is present.
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Figure 2.5.4. Error temperatures when compensation is applied.
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Figure 2.5.5. Numbering for thermocouple pairs embedded in the specimen.
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The distribution of the compensator heat flux when some TC's are off
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Figure 2.5.6. The compensator heat flux when some of the thermocouple readings are not used for control.
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Figure 2.5.7. The error temperatures at the different thermocouples when only a few thermocouples are used for control.
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Figure 2.5.8. Controller heat flux not present in the central region of the specimen.



The distribution of the compensator heat flux when no HF is present in the center
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Figure 2.5.9. The distribution of the compensator heat flux if no heat flux is permitted in the central region.
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The mean error temperatures at thermocouples with no input at some locations
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Figure 2.5.10. The error temperatures resulting due to compensator heat flux not being present over the center.
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2.6. Conclusions:

The simulation study discussed in the previous section has lead to several conclusions

which have motivated several topics of this thesis. These conclusions are discussed in

this section.

The obvious conclusion is that an LQG compensator works satisfactorily in rejecting

disturbances that were introduced when actuation and well distributed measurements

were available to compensate for it. The advantages of having a flexible heat source has

been demonstrated. It was seen that one could efficiently counter disturbances distributed

over the controlled specimen by being able to better manipulate in space and time, the

controller input distribution.

The example considered in this study is similar to the problem of furnace temperature

control that occurs in many applications from steel to semiconductor manufacture. The

disturbance similar to figure 2.5.1. in a furnace could be due to the malfunctioning of a

heater used in the furnace. It is seen that if a distributed controller is used the rest of the

heaters could take up the slack caused by the malfunction.

Apart from the obvious conclusions above, there are several problem areas that need

work. In the example considered in this chapter as well as other investigations like

Lausterer (1977) there is very little discussion on how to attain reference temperatures

that might be needed, even when no disturbances are present. In reality, in most

processes, one is required to meet a pre-specified temperature distribution across the



controlled specimen. In figure 2.6.1., if a hot spot ant cold spot are desired at locations

shown, this temperature distribution is clearly not possible to achieve with the location

and distribution of heat flux input used in the experiment. If such a distribution is

desired, other locations for heating and cooling within the specimen or on its boundary

should be found. Techniques that help process design engineers design heating and

cooling so that a desired temperature distribution is achieved should be developed. The

literature in the DPS community does not address this very important issue. Chapters 3.,

and 4., address this issue by presenting a novel method for designing heating and cooling

for achieving a desired temperature distribution in steady-state along with a achieving

adequate performance in the presence of process disturbances and model uncertainties.

This is also an optimal control approach that does not require full state estimates and thus

helps in the necessary trade off between control effort used and temperature errors

tolerated, while according an implementable solution.

Similarly, if the input is constrained to lie in a specific part of the specimen and the

disturbance activity is at a different part of the specimen, efficacy of the controller in

rejecting external disturbances is limited. Figure 2.6.2. illustrates such a situation.

Therefore, the control designer should thoroughly understand the several worst case

disturbances that are possible in any specific process and carefully design the controller

heat-flux distribution.

In a similar way, if the sensors are situated away from the disturbance activity, the ability

of detecting and responding to the disturbance is limited. Figure 2.5.3. illustrates this



situation. The sensors should be located in a way that the disturbances are detected and

eliminated efficiently.

yT=

T=O

Heat flux distribution O(O,y,t) Free
ction

0

Colda Spot Hot Spot

Figure 2.6.1. Unachievable desired steady state temperature distribution in the specimen.

Hence control techniques that address control heat flux distribution and sensor location

while taking into account the possible worst case disturbance distributions , should be

developed. Chapter 3 and 4 present techniques for designing heating and cooling so that

set-points, disturbance locations and model imperfections can be incorporated into the

controller design. Chapter 6. motivates the problem of picking proper sensor locations

and describes an experiment that has been set up to study sensor location problems but an

analytical approach to the sensor location problem has not been addressed in this thesis

and should be a part of future work.
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Chapter 3

OPTIMAL INPUT DISTRIBUTION

3.1 Motivation for the distribution problem

This chapter revisits the different manufacturing processes described in Chapter 1., and

explores in detail the temperature control requirements in these processes and defines an

optimal control problem that addresses the requirements in these processes. It was

observed in Chapter 2., that the distribution of the inputs determine:

1. The range of temperature distributions that one can achieve

2. The efficiency with which any controller could reject spatially distributed

disturbances.

If infinitely manipulable heaters/coolers and temperature measurements can present

everywhere in the solid being controlled, then, one could theoretically create and hold any

arbitrary temperature distribution. This could be done for any possible disturbance

distribution. However, this is not possible to accomplish in most real applications. In all

real applications, there is always a trade-off between the amount of hardware used and the

cost incurred, which results in a trade-off between the performance of the process and the

cost of instrumenting a compensator. Sometimes, there are geometric constraints where

by, one cannot instrument more than a certain number heaters/coolers or instrument

heaters/coolers in certain locations.



Due to this trade off between the number and amount of heating/cooling used and the

performance of the temperature distribution controller, any method for the designing of

heating/cooling should be based on an optimal control approach. This allows the

designer to arrive an the design with the least amount of hardware such as heaters/coolers.

In Chapter 2., a Linear Quadratic Gaussian (LQG) controller was implemented in

simulation on a model of a steel specimen, where it was seen that LQG controller

functioned adequately in rejecting the disturbance applied to the specimen, when

adequate input was available at the right location. However, the shortcomings of the

current sate of the art in efficiently determining the distribution of inputs was detailed in

Section 2.5. A method of optimal control should be therefore be able to accommodate

the requirements on the desired steady-state temperatures while addressing disturbance

rejection.

Additionally, optimal control techniques such as LQG are based on calculating a full state

estimate. This requires a large array of sensors within the solid being controlled. Also,

control approaches that require full state estimation are sensitive to model uncertainties.

Therefore, this technique may not be very suitable for application in a wide variety of

processes where detailed modeling efforts may not be possible. Any control methodology

developed should be robust to the types of model uncertainty that could be expected.

The technique presented in this and the next chapters addresses all the considerations

raised above. The method involves separating the space and time parts of the problem

and applying optimal control over the space part. This gives a method for trading off



steady-state performance directly with the amount of energy used in steady-state. As will

be seen in the example presented in Chapter 4, the optimal solution thus obtained can be

used as a guideline for deciding on the location and distribution of inputs. In addition,

this technique offers an approach for implementing feed back compensators that do not

need full state estimates. This Chapter details the space part of the design which helps in

guaranteeing the steady-state performance. However, the problem of designing

compensators for stable operation will be posed by reintroducing time into the problem

after the design for steady-state performance is performed. An example showing the

details of designing such compensation is presented in Chapter 4.

In the next section, some of the processes discussed in section 1.2., are re-explored to

precisely define optimization problems, that address the needs of each of the processes.

3.2 Specific temperature control requirements on different processes:

Different manufacturing processes have been studied in section 1.2. and the temperature

control issues that are of importance to them have been briefly mentioned there. In this

section we revisit these manufacturing processes. The different requirements on the

temperature distributions in each of these processes are examined to a greater degree of

detail, so as to help us precisely formulate the distribution optimization problem. These

requirements can be categorized into the following three types:

1. Control of temperature distributions: either steady state temperature distributions or

transient temperature distributions.

2. Control of gradients of temperature distributions.
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3. Control of a functional of the temperature (typically the integral of temperature),

usually to control dimensions of components exposed to thermal drifts.

3.2.1 Molding Applications:

In molding operations, we need to control the temperature of the component being

manufactured. In compression molding and resin transfer molding, the process times are

long enough to attain a steady state temperature distribution. This means that controlling

the steady state surface temperatures in the mold can be effectively used to control the

temperatures in the component being manufactured. In injection molding the mold

surface temperature needs to be held mostly constant, with a pulse of heat flux to be

given, at the mold surface, just at the moment of injection of the plastic (See Jansen,

(1993)). The heating/cooling that one can use in this application typically, comprises of

using cartridge heaters, passages of heating/cooling oil and ribbon heaters for surface

heating. See figure 3.2.1., which shows a schematic of a mold with heating and cooling

in it.

The problem here is then to control the temperature T(x,y,z,t) across the mold-part

surface, which can be simplified to the problem of maintaining a specified steady-state

temperature distribution T(x,y,z), on the mold surface.

Until recently (see Upadhyay, (1988)) this problem of optimally designing the locations

of heating/cooling in molds received virtually no attention. Upadhyay, discusses a

technique for locating cartridge heaters in a mold to ensure uniform temperature on the

mold surface of a compression mold. However, this method does not consider model



errors, disturbances, sensor locations or stability during closed loop operation thus can be

very unreliable in implementation.

Recently, rapid tooling technology that can be used to include arbitrary heating and

cooling passages within molds, has been developed. These techniques include powder

based processes such as 3Dimensional printing and laminate based techniques such as

Profiled Edge Laminate (PEL) technology (ref. Wylonis (1995)and Walczyk (1996)).

These technologies have demonstrated the possibility of incorporating conformal

cooling/heating passages for tooling applications. To exploit these new innovations,

techniques for designing shapes for heating and cooling, need to be developed. An

optimal input distribution technique could help in determining the best shapes for the

conformal cooling passages and the best locations for any cartridge heaters being used.

3.2.2 Heat treatment:

In heat-treatment operations, the object being heat treated should be put through a

temperature transient. The cooling rates and the final temperatures attained at the

different locations on the steel part being heat-treated determine the material properties of

the steel at different locations. Cooling rates could vary from point to point in the object

being heat-treated. If uniform properties are desired, the distribution of cooling heat flux

has to be manipulated in a controlled manner. The manipulability of the input is

dependent on the locations of the various heating and cooling elements. Cooling jets and

induction heaters have a certain distribution of heat fluxes due to the physics associated

with them.
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Figure 3.2.1 A schematic of a mold with heating and cooling.
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This constrains the range of input distributions that can be achieved. The sprays and the

induction heaters should be suitably located so that the temperatures across the slab are

uniform and they should be modulated so that the temperature trajectories are what is

desired. Figure 3.2.2 shows a cross-sectional schematic of a cooling unit used to perform

the heat-treatment.

Unlike the mold temperature control problem, this cannot be reduced into a problem of

steady-state temperature distribution control. Chapter 5., details an approach for

controlling such transient problems. The discussion in Chapter 3 and Chapter 4 is not

relevant to this problem.

3.2.3. Flame bending:

Processes such as flame-bending involve imparting distortions to objects by inducing

thermal stresses. These thermal stresses are induced by creating temperature gradients.

Scanning a heat source such as a flame or a plasma torch along a predetermined path sets

up these thermal gradients. In order to control the distortion in the components being

produced, one has to precisely control the thermal gradients in the component. This

process is similar to a welding process, without the melting of material. If the scanning is

"slow" then on a reference frame moving with the flame the temperature field will look

static (without any disturbances) and hence this problem can be reduced to one of

controlling a steady state temperature gradient distribution.



3.2.4 Dimension control:

Controlling dimensions in the presence of thermal disturbances is of importance in many

applications. Active temperature control could be used in precision machine tools,

measurement equipment etc. to improve the dimensional accuracy by actively

compensating for thermal drifts. This typically means that one needs to control a

functional of the temperature. (Typically an integral over space). For example the change

in length of a bar with a coefficient of thermal expansion a, caused by a thermal drift of

T(x,t) is given by:

AL(t) = JaT((, t)dx 3.2.1
0

Controlling length implies that the above functional is controlled as opposed to the

temperature itself. Figure 4.2.4 shows a schematic of a controlled object which is a bar of

uniform cross section with a heater that has a heat flux that is distributed all along the

length of the bar. If the heat flux input along the bar can be manipulated arbitrarily, the

control problem is then to determine the distribution of the heat flux output by the heater

in order to achieve the control objective of controlling the length of the bar.
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3.3 Summary of requirements for input distribution:

To summarize the observations from the prior section, the temperature control

requirements can be expressed in terms of quantities such as

T(1, t): Control Temperature Trajectory
VT(-, t): Control Temperature Gradient 3.3.1

Jf T(-,t)dx: Control of length
0

Where a is the coefficient of thermal expansion. We should control these quantities

while satisfying several requirements on the processes. As was mentioned before, from a

practical point of view, the most important constraint or requirement on any process is to

use the least amount of energy and hardware.

3.4 Defining an approach for the problem:

In the theoretical distributed parameter systems literature, the problem of designing

control inputs has received some attention. Many publications : El Jai and Pritchard

(1988), Amouroux and Babary ( 1975, 1978,1979) etc. address this topic. However most

of these publications deal with extremely simple geometries (usually one dimensional

cases with Dirichlet boundary conditions) with severe restrictions on the classes of

distribution of inputs that could be used. Some form of parametric optimization is then

used to design the optimal shape of the input. In addition, the effect of process

disturbances and model uncertainties are not considered in these formulations. Hence,

the applicability of these techniques is in doubt.

A technique for designing heating for compensating thermal drifts in gyros has been

developed at the MIT Instrumentation Laboratory. (Ref: Gould (1966), Wilkinson(1965),



Kaiser(1968)) This technique uses the steady-state theory for designing the shape of the

distribution of the input for maintaining steady-state temperatures in the presence of

disturbances. The advantage of this approach is that it provides a feed-back form of

solution for the shape of the input. This is useful in studying the effect of disturbances,

modelling uncertainties etc. Additionally, these techniques were tested experimentally

and were later implemented on controlling thermal drifts in floated gyros. We will build

on the techniques developed in the work at the MIT Instrumentation Laboratory and

develop results that could be used to design heating and cooling in manufacturing

processes.

The method that will be developed here must satisfy the following stipulations:

1. Model errors exist in all processes. The technique that will be developed should be

able to compensate for these, or in the least one should be able to predict the effects of

worst case model uncertainties with known structures.

2. External disturbances will always be present. These should be compensated for and

the technique developed should be amenable to studying the effects of disturbances

with different spatial variations.

3. Arbitrary temperature distributions cannot be achieved with a given distribution of

heaters and coolers. Hence the best achievable temperature with the given

distribution of actuators needs to be determined.

4. Estimating the full state to the desired level of accuracy may not be possible, with the

number of sensors that could be used. Hence the method should be applicable in



situations where full state estimates are not available. However, if good full state

estimates are available, this technique should exploit this situation.

3.4.1. The method for input distribution and controller design:

The design is performed in two steps. In the first step the space and time parts of the

problem are separated and the input distribution is performed using the space part of the

problem by using a quadratic cost function in space. The conditions of optimality are

derived for this cost function, resulting in a feed-back form for the heat flux distribution.

The corresponding closed loop solution is used to perform a detailed study of the effects

of disturbances, set points and model uncertainties. If adequate performance is not

obtained, the cost-functional is altered in an iterative manner until desired performance is

obtained. At the end of this process, a good understanding of the steady state distribution

of heat input is obtained under different "worst-case" scenarios. After the input

distribution in steady-state is determined, the dynamics are reintroduced into the problem.

MIMO frequency domain techniques are then used to design the controller with a stable

and acceptable transient.

One of the key advantages of the technique developed here is that, if a detailed

characterization of the worst case model uncertainties and disturbances can be performed

over a wide range of frequencies, robust control techniques such as H-infinity and Mu-

synthesis could be implemented.

3.5 Model Development:

We have seen that the governing PDE is given by:



dT
pCp (-,t) = V(k(I)V)T(I,t) + (3, t);dt 3.5.1
Bo(T(Y, t)) = 0; Boundary Condition

In the above equation the different terms are:

p : is the density

C, : is the specific heat

k(i) : is the conductivity of the material

V =- + + 3.5.2adx dy dz

Bo: Boundary conditions

T(i, t) : temperature distribution

O(x, t) : distribution of the heat flux

This is the linear heat conduction equation. By setting t -- oo, equation 3.5.1 can be

reduced to its steady-state counterpart. This step has the effect of separating the space

and time parts of equation 3.5.1. Applying t --- oo to the different entries of equation

3.5.1, we have:

lim 0;t-lr> (dT(x t) )=0

lim (T(i, t)) = T(3);
t-->- 3.5.3

lim (O(X, t)) = O(X);
t--oo

lim (Bo(.)) = Bo, ();
t-)oo

Equation 3.5.1 then simplifies to the steady-state heat conduction equation:

V(k(i)V)T( ) = -();

BosT(i) = 0; Steady - state b.c. 3.5.4

For special cases involving simple geometries and boundary conditions, equation 3.5.4

can be solved analytically. However, for more complicated situations, numerical

techniques such as finite differences and finite elements can be used to solve this
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equation. The question here is however to determine the heat flux input distribution

(Yi) that gives a desired temperature T(T). Before proceeding to answer this question,

equation 3.5.4., should be represented in a more convenient form suitable for the spatial

optimization to be performed. The technique that is used in this chapter is to use a

Green's function description to the problem, which is a convenient representation of the

heat conduction system for the purpose of deriving conditions of optimality (this is in

addition to the advantages listed in Chapter 1). This is because, the Green's function

implicitly captures the steady-state heat conduction equation and the associated boundary

conditions in a single integral equation. This facilitates better book-keeping when

calculus of variations are used to derive conditions of optimality and eliminates the need

for solving a complex partial differential equation after the conditions of optimality are

derived. The Green's function description for equation 3.5.4. can be written as:

T(Y) = G(x, -)•(•)d4;
D 3.5.5

D: The entire domain

Where G(i, ) is the Green's function of the steady state problem, D is the spatial region

occupied by the controlled solid, T(Y) is the temperature distribution in the solid and

(Yi) is the distribution of heat flux. Green's function physically has the interpretation of

being the temperature that results from a point heat source at a specific location Y = ,

i.e.:

V(k(Y)V)G(X,-) = -( - )5.6
(G( 0; Boundary conditi3.5.6

Bo, (G(i, c )) = 0; Boundary condition



Where, k(1) is the conductivity, 3(X - ~) is a unit heat input at i = (the steady-state

spatial equivalent of an impulse function in the time domain). Hence, by linear

superposition the resulting temperature distribution T(i) due to an arbitrary heat flux

input O(T) can be written as shown in equation 3.5.5. This is similar to using the

impulse response function to evaluate the response to arbitrary inputs in the time domain.

Just as the impulse response function could be determined experimentally and used for

control, the advantage of using the Green's function representation is that, G(x,Y ) can be

experimentally computed. If there is access to the region within the object where inputs

could be applied, the Green's function can be calculated by performing an experiment

(see Wilkinson (1965)). Alternatively, if we have access to detailed higher order models

such as a finite element based model, we could determine G(i, ) via a simulation. This

is done by dividing the region of the input into discrete regions and a steady state heat

flux pulse is applied over each region and the response temperature is computed. Figure

3.5.1. indicates how this can be done. For example we can apply a unit pulse at a location

and measure the temperature distribution for all locations Y. By computing this for

heat input at each of the nodes, we can tabulate the approximate Greens function,

G(I,ý ). If the Green's function is needed to be more accurate, the spatial resolution

could be increased.



Suitable boundary conditions applied on the boundary
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Finite Difference representation of the object

Figure 3.5.1 Numerical computation of Green's function.

In equation 3.5.5 the total heat input O(T) that the object experiences has two

components. The heat flux that the controller output , (i) and the disturbance heat flux

O() = Oc (() + Od (Y) 3.5.7

Similarly, the Green's function that we have computed has some uncertainty associated

with it. The actual Green's function G(i,S) can then be represented as the nominal

Green's function with some additive uncertainty with a certain structure:

(, ) = G(,) + AG(, ) 3.5.8

Where AG(x, ) is the uncertainty in the Green's function G(i,4). The actual

temperature achieved due to the controller heat flux is then given by:

D 3.5.9
D: The entire domain



The compensator has to be designed so that the controller heat flux will be present at the

right places in the right amounts so that the worst case disturbances could be effectively

rejected. Similarly, if the structure of the worst case model uncertainty is known, the

controller should be designed so that satisfactory steady-state performance could be

obtained in the presence of worst case disturbance.

3.6 Cost functionals

In section 3.2, the requirements for different processes were identified. The quantities that

need to be controlled have been summarized in equation 3.3.1. These quantities should be

controlled while minimizing the amount of controller energy used. This is similar to the

situation encountered in optimal control in the time domain for linear systems. In time

domain optimal control we try to minimize the error between the desired and actual

values of the state while minimizing the amount of control energy used. This is

accomplished by formulating quadratic performance indices that are minimized (see

Anderson and Moore (1985)). It is well known that such an approach gives a feed-back

solution to the optimal input trajectory and thus giving the system an ability to operate

satisfactorily in the presence of disturbances. Similarly, quadratic performance indices

could be used for the steady state problem. It will shown that such an approach gives a

feed-back solution to the steady-state heat flux distribution in terms of the steady-state

temperature error distribution and thus has the ability to compensate for constant (or slow

moving) disturbances and model uncertainties concentrated at low frequencies.



3.6.1. Example cost functionals:

Some cost functionals are presented here for a simple analytical problem, to illustrate the

structure of cost-functionals in the space domain. Consider a rod whose ends are

maintained at some arbitrary boundary conditions and assume that heat flux distribution

can be manipulated all along the length of the bar (see figure 3.6.1 .). For the examples

presented here it assumed that the rod can be modeled as a one-dimensional solid. For

such a one-dimensional solid, quadratic cost functionals will be defined for deriving

optimal heat flux distributions for controlling quantities in equation 3.3.1.

Heat Flux Distribution

B.C x B.C

Figure 3.6.1. A rod that can be modeled as a one-dimensional solid.

Table 3.6.1 shows examples of some quadratic cost functionals that can be defined for

this simple example. The first cost functional is a quadratic functional which weighs the

control effort used against the temperature error. (The assumption here is that a zero

temperature needs to be achieved everywhere along the rod). The second cost functional

weighs the error in the gradient of the temperature with the amount of control effort used.

The third cost-functional weighs the error in the length of the rod with the amount of

control effort used.
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Table 3.6.1. The cost functionals for a one-D situation.
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1 This is a cost functional for attaining the zero
J= f c2(x)+ AT2 (x)dx0 temperature distribution while minimizing the

amount of control effort used. ýa is a scalar

multiplier that we pick later to satisfy the specs. on

the process.

1 cI/(x) 2 This is a cost functional that could be used for
J= c 2 (x) + dx

0 cAdx controlling the temperature gradient. The

temperature gradients have a direct bearing on the

thermal stresses and distortions introduced in the

object being controlled.

1 2 1 1 Here we are trying to control the intergral of the

J = f T(x)dx + 2 (x)dx temperature i.e. the length change due to

temperature errors.



The second and third cost functionals in table 3.6.1. are not encountered in time domain

cost functionals used in optimal cntrol. These two functionals involve derivative and

integral of temperatures being weighed against the control effort used. In addition, the

third cost functional can be rewritten as:

J = 2 (x)dx + fT(x)T(4)dxd4 3.6.1
0 00

This is a higher order cost functional. In the second term of the above cost functional the

integration is performed twice with respect to the space variable and thus this is a second

order cost functional. In case of a problem in higher dimensions, the integration will be

performed twice with respect to each of the space variables. The next section defines a

generalized form for cost functionals that could be constructed in any application.

3.6.2. Generalized form of cost functionals:

Cost functionals similar to those in table 3.6.1., can be constructed for other more

complex problems, depending on the requirements on the process. Any cost functional for

optimal control of temperature distribution, temperature gradient distribution or length

control can be represented in the general form shown in equation 3.6.2. A most

generalized structure is presented here so that the conditions of optimality can be derived

only once and every other cost functional can then be treated as a special case of this

generalized cost functional.

The first term, L1 (T(i), Ti '(i), 0, (i), x) is a cost functional of the first order, i.e. the

integration is performed only once with respect to the space variable, over this function.
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This can, in general, be selected as a quadratic function of the temperature distribution

T(Y), the temperature gradient distribution Ti'(i), the controller heat flux distribution

c, (2) and the spatial coordinates i .

The second term L2 (T(-), Ti '(c),Oc (i), -, T(), T.'( ), c (5), O ) is a cost functional of

the second order. It can be seen in equation 3.6.2., that the integration is being performed

twice with respect to the space variable. i and 5 are the variables of integration

representing the coordinates of all the points in the controlled object.

J= (fL(T(1),T.,'(-), c(T),-)d+

3.6.2

For equation 3.6.1, we can deduce that:

1
4-_2 (x) and I = T(x)T(ý);

AIt 3.6.3

The second order cost functional usually occurs only in problems involving dimensional

control in the presence of heat flux disturbances distributed on the controlled object.

The following section shows the derivation of the conditions of optimality with the

generalized cost functional of 3.6.2., using calculus of variations.

3.7 Derivation of the condition of optimality:

The conditions of optimality need to be derived for the generalized cost function defined

in the section 3.6.2. This cost functional is rewritten below:

103

I L 2 (T(X) T '(-)'Oc (X)'9', Ti' T .i c (- ), ý ( )'c)W d -



s 3.7.1.

fL 2 (T(), T'(), c (), T, T( ), T '(ý), c (ý),5 )djid
S

The governing equation for the steady-state heat conduction is given by equation 3.5.5.,

which is rewritten below:

T(T) = G(T,-)•(-)dý;
D 3.7.2.

D: The entire domain

Let o0 (i) be the optimal input around which small variations are considered and let the

corresponding temperature and temperature gradient due to this input are

To (Y) and To'(2 )). Now consider small variations about this optimal value of the input

and the corresponding variations in the temperature and the temperature gradient:

Oc(X) = 0o(X) + E60c (50
T(Y) = To(Y) + EST(Y) 3.7.3

T' () = To' () + e6T' (Y)

In equation 3.7.3, 60c (x) belongs to a set of permissible variations and e is a small

number. 6T(2) and 6T' (2?) are the variations that correspond to 4C (2).

The cost functional in equation 3.7.1., is expanded in a Taylor's series as:

J = Jo + ,iE + 12E 2 + O(e3) 3.7.4

Where I, and 12 are the first and second variations of J. By taking the first variation of

the both sides of equation 3.7.1, we obtain:
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I,1==&=I d (Y) oT +) + d4 (Y) d4tc (Y)3T("S(x jC 6Ti(( E +- 450 CXdT dTi ' dOC
dL2(,x )

+ dL2 ( - dL2 , )
iT( + IT,

dL2 (
do, () c

3.7.5

(Y d

All the first variations in the right hand side of equation 3.7.5, need to be expressed in

terms of 30(-). To achieve this, the first variation of equation 3.5.5 and the variation of

the derivative of equation 3.5.5 are computed as follows:

T()= G(-,))60 (=)d

3.7.6

T' (x) = f dG(X- -, ) (i)d
S dx

Substituting equation 3.7.6. in equation 3.7.5. and writing all the variations in terms of

60c (i) and rearranging, we obtain:

dL2 (d, )G(o,x)

' dL (i) dG(4 , +) + •, L2 ( )d
d)+- +2 d(

3.7.7

+ IidL '(d,) d8(X) d Ic (x)ad1. do '(CT) d

This is of the form:

s =f -- ,- 0 ()d- 3.7.8

For a minimum of the cost functional J, we need to minimize SJ. For an unconstrained

input case, 30c (Y) can take on any arbitrary value. Hence a necessary condition for the

optimum is then:
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OHl = 0 3.7.9
doc (X-)

i.e.

dL, (x) I dLl() -dL 1 (
/ °dG(5 ,x) dL2 (;), )+ G(,ý x) + - +2 d+

3.7.10
+2f dL2 , 'LG(2jT dL (,)dG(CY)+ 2' - G(d, x) +1 ( d- = 0

ss aT(6-) / d'(d-) di-

This is the necessary condition for an optimum for the distribution control problem. The

sufficient conditions for optimality can be derived using the second variation. This is

beyond the scope of this thesis and is therefore omitted.

Section 3.8 details a few simple examples illustrating the application of this optimality

condition for designing the distribution of heating on simple controlled objects in order to

optimally control the temperature distributions in them.

3.8 Example problems:

There are three example problems presented in this section to illustrate the use of the

optimality condition derived in the previous section. All the three examples are

constructed for the solid described in section 3.6.1. The first example demonstrates the

usage of the optimality condition for the control of temperature and temperature gradient

simultaneously, for a rod of unit length with zero temperature boundary conditions.

Example 2., illustrates the solution for length control and example 3., illustrates how the

information on the disturbance distribution can be used for selecting cost-functionals that

yield optimal solutions for better disturbance rejection.

106



3.8.1. Example 1:

Consider a rod of unit length and unit conductivity with both ends of the rod maintained

at zero temperature. The requirement of the heat flux is to optimally control the

distribution of temperature and temperature gradient. The governing equation for the

steady state temperatures in such a rod is given by:

02d T(x) = -O(x); for 0 < x < 1;f&2 3.8.1

T(x) = 0; for .x = 0 and 1

A cost functional shown in equation 3.8.2., is constructed for this problem. This is a first

order cost functional which trades off the amount of control effort used (heating and

cooling) with the accuracy achieved in both the temperature and the temperature gradient.

J= c2(X)+ ,2 ) + 2 dx 3.8.2

Equation 3.8.2 is a cost functional that only has a first order functional in it but has a

penalty on the error in the temperature and the gradient of the temperature. The objective

of this cost functional is to attain zero temperature and gradient of temperature along the

bar. The first order kernel of the cost functional is then:

L, = c 2 (X)+ 2IT 2 (x)+ A2 ax 2  3.8.3

The second order kernel is zero. We can then calculate the following first derivatives:
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= 20c
dLo

d= 2,IT 3.8.4
dT
dL, =2A aT)

Substituting these in the optimality condition equation 3.7.10, we obtain:

I IdT dG(4,x)
Oc(x) + f G(4,x)rT()d4+2 d4 d4 d4= 0 3.8.5

0 od

This equation shows the structure of the optimal input heat flux distribution in terms of

the actual temperature and the temperature gradient. The effect of optimizing over the

temperature versus the temperature gradient can be studied by setting either 21 or 22 to

zero. If in the cost function in 3.8.2 we set A2 to be zero, the optimal heat flux is given

by:

Oc (x) = -4 G(, x) T()d 3.8.5a
0

It can be seen that the heat flux depends on the temperature in a linear fashion. This is

therefore a linear feed back form for the input heat flux. Similarly if At is set to zero,

equation 3.8.5. reduces to equation 3.8.5b:

= dT dG(d, x)
dC W- d5 3.8.5b

We can see again that this is a linear feed back form for the heat flux in terms of the

gradient of the temperature. Integrating the right hand side of the above equation, we

have:
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°dG(•, x) 3.8.6S(x) = -T(x)- T(4) 3.8.6

If we had zero boundary conditions on the object the above equation reduces to:

S(x) = - 2T(x) 3.8.6a

This equation shows that if we are interested in controlling the temperature gradient, the

resultant heat flux distribution is proportional to the error temperature distribution.

To study the effect of a disturbance heat flux on the closed loop temperature distribution,

3.8.5a is substituted into equation 3.5.9. The closed loop temperature distribution is

given by:

TcL(x) = G(x,a) - G(,a)TcL ()d + D (a) da 3.8.7
0 0

That is,

1 1 1

TCL (x) + A, JJG(, G(x, a)TCL (g)dld = JG(x, a)D, (a)da 3.8.8
00 0

Equation 3.8.7 can be used to compute the closed loop temperature that results due to a

disturbance heat flux. Increasing A1 has the effect of reducing the closed loop error

temperature, therefore if the worst case disturbance distribution is known, A1 is picked to

be just large enough to satisfy the requirements on the error in the closed loop

temperature achieved in steady state. The resulting steady-state heat flux is the necessary

heat flux for maintaining a low closed loop temperature error when a disturbance is

active.
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3.8.2. Example 2:

Consider a bar of unit length, of unit conductivity and unit coefficient of thermal

expansion. Both ends of the bar are maintained at zero temperature. We are interested in

maintaining the length of the bar uniform, utilizing the least amount of thermal energy.

Heat Flux Distribution

T=O x T=O

Figure 3.8.1 Example 2, rod of unit length with unit conductivity.

The cost functional in this case trades off the square of the error in the length versus the

square of the amount of control effort used.

J r Td1 J2J f T(x)dx0 3.8.91 02(x)dx
0o

Equation 3.8.9 can be rewritten as:

3.8.10J = j2(x)dx + T(x)T(ý)dxd
0 00

Comparing the above cost functional with 3.7.1 it can be seen that we have both a first

order and a second order term in the cost functional:

L, - 2 (x) and L2 = T(x)T(ý)At 3.8.11
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Substituting these quantities in equation 3.8.11 in the condition of optimality, equation

3.7.10, we obtain:

1 1

(x) = - f G(o, x) T()d¢do
00

3.8.12

This can be rewritten as:

0 (x) = -A G(c, x)doj T(ý)d 3.8.13

The Green's function in this case can be analytically calculated as: (see I.Stackgold

(1979))

3.8.14
G(x, 5) = x(1 - ) x <

= (1- X) x>

Substituting equation 3.8.14 in equation 3.8.13, and integrating we get:

3.8.15
x(1 - x) 1

,(x) =- 2 f T(x)dx

Equation 3.8.15., suggests that the optimal distribution for the heat flux with the error in

the measured length being fed-back. It should be noticed that the optimal distribution of

heat input is parabolic.

3.8.3. Example 3:

In the examples considered so far, the distribution of the disturbance has not been

considered. If the disturbance distribution is restricted to specific functions, this

information could be incorporated into the design of the controller via the cost functional.
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Let 02ms (x) = E[O (x)] be the root mean squared (r.m.s.) value of the disturbance

distribution, this implies that more of the controller heat flux should be made available in

regions where the disturbance is active. This can be accomplished by incorporating it in

the cost functional as shown in equation 3.8.16., i.e. here we are penalizing the

availability of the heat flux lesser in regions where the disturbance magnitude is larger.

Similarly, if temperatures at certain locations should be better controlled, when compared

to other locations, a function b(x) could be used to address this need, i.e., b(x) is selected

to be large in regions where a high temperature error cannot be tolerated. The cost

functional can then be modified to:

1

J= 1 ~2 (x)+b(x)T2 (x)dx 3.8.16
0 O'rms

Applying the condition of optimality, equation 3.7.10 the optimal input distribution is:

1

c (x) = -Af Orms (x)G(ý, x)b(ý) T(4)d 3.8.17

It can be seen from the above that the feed back gain is higher in regions where the

disturbance is active and in regions with more stringent temperature error.

3.9. Design procedure for specific processes:

The following indicate the steps involved in designing heating and cooling for the

purpose of temperature control in specific processes. (Similar steps can be followed for

controlling temperature gradients and dimensions of controlled objects).
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1. The starting point for the optimal heating/cooling design problem is the specifications

on the amount of temperature error that can be tolerated and the characterization of

the disturbances for which the control system is being designed. Once these are

established, then the goal of the design process is to design the controller with the

least amount of hardware, such as the number and strength of heaters and cooling

passages.

2. As a first step, the cost functional in equation 3.8.16 can be used to compute the

optimal distribution of heat flux, as shown in 3.8.17. This gives the designer an idea

of where heating and cooling is needed in the presence of several disturbances and

model errors. This distribution can be used as a guideline for narrowing down the

regions where heating or cooling is permitted. This can be accomplished by

modifying the cost functional as shown:

J= fp(x) (x) +b(x)T 2 (x)dx 3.9.4.

3. The function p(x) is chosen to be unity in regions where heating and cooling is

permitted and a very large number elsewhere. This restricts the input to lie within

selected regions within the object. The optimal input heat flux will again have a

linear feed back form and the performance can be studied with the restriction on the

input locations.

4. This process is continued until the input is constrained to lie within an acceptable

number of locations and the performance is satisfactory.

5. After getting reasonably close to the required temperature distribution, with a

reasonable number of heating and cooling elements, a parametric search can be
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performed in a close neighborhood of this solution, using steps 1 and 2, to fine tune

the selection.

At the end of this design procedure, the locations and the steady-state strengths of heating

and cooling can be established. The next step is to design the controller so that the

transient performance is satisfactory. Several MIMO design techniques for designing the

controller have been investigated for addressing this problem. Design techniques that are

useful in specific applications can be found on a case by case basis and Chapter 4.

illustrates one such technique. The problem of finding a general method of compensator

design, that can be applied in any application, is still an open question and should be

investigated in future research work.

3. 10. Chapter conclusions:

In the context of manufacturing processes, temperature distributions, temperature

gradients and dimensions of objects are the quantities that we most often need to control.

An approach for calculating the optimal distribution of heat-flux to control the above

mentioned quantities is presented in this chapter. A steady-state Green's function

description for the steady state heat conduction problem is used in the analysis. If the

Green's functions can be computed, analytically, experimentally or numerically, such

Green's functions could be used for designing the controller. A cost functional defined

over the space variables associated with the problem is constructed and variational

calculus is used to derive the condition of optimality for this problem which results in a

feed-back form for the optimal heat flux input. The cost-functional should be carefully

chosen to truly represent the constraints on the process. This involves a thorough
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understanding of the requirements on the process and the costs associated with using

inputs at different locations and the cost of temperature errors.

The next chapter presents an example of using this spatial optimization technique to

design the optimal heating and cooling locations in a mold. The compensator design for

satisfactory transient performance is done after the selection of the heater and cooler

locations.
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Chapter 4

OPTIMAL DESIGN OF HEATING AND COOLING: AN EXAMPLE

4.1 Introduction:

This chapter presents detailed simulations that have been performed to illustrate the

optimal input location technique developed in Chapter 3. The example problem

presented in this chapter deals with controlling the steady-state temperature distribution

across one face of a rectangular solid. The example problem has been selected to

illustrate a technique that could be used to design heating and cooling in molding

operations.

This work was motivated in part by the recent work performed in the area of rapid

tooling. Walczyk (1996) and Wylonis (1995) have demonstrated the use of rapid tooling

technology for the purpose of designing conformal cooling/heating passages in molds.

These new techniques have created a way of incorporating complicated cooling and

heating passages within molds. These techniques are especially powerful in situations

where incorporating heating passages is extremely difficult due to the curvature of the

mold and other geometric constraints. See figure 4.1.1 for an example of the upper half

of a mold with curvature. Figure 4.1.2 shows how the rapid tooling technique developed

by Walczyk (1996) called Profiled Edge Laminate (PEL) technology could be used for

incorporating arbitrary passages in molds. There are presently, no guidelines or tools

available to design the distribution of heating and cooling passages.
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The optimal heating and cooling design technique developed in the previous chapter can

now be used to answer the question of where to locate the heating and cooling in a mold.

If conformal cooling passages can be incorporated, the technique can be used for

determining the shape of such passages.

4.1.1. Resin Transfer Mold (RTM) example problem:

The simulations presented in this chapter demonstrate a technique that could be used to

design heating and cooling in an RTM mold. In an RTM mold maintaining a uniform

temperature on the mold surface is key to ensuring the uniformity of cure in the

component being produced. Curing of composites is an exothermic reaction. This means

that thicker parts of the component have a higher amount of heat production within them.

If no attempt is made to control the distribution of temperature, this heat generation

causes the temperature to be higher closer to the thicker sections of the component.

Additionally, there might be some uncertainty present in the amount of heat being

released during curing and the ambient temperature could change altering the heat fluxes

on the mold. These effects manifest themselves as disturbances on the process.

Therefore, a good scheme for active control is needed to maintain a uniform mold surface

temperature in the presence of the disturbances.

Although this technique has been developed for RTM, this approach could be used for

many other processes where steady-state temperature distributions need to be controlled.

For example: in an injection mold, the temperatures of the mold need to be accurately

controlled so that the residual stresses in the components being produced do not change

from run to run. The disturbances on the process could involve changes in the properties
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of the plastic, variations in the ambient temperature etc. The mold temperatures need to

be kept constant in the presence of such disturbances.

4.2 Simulation Set-up:

The simulations have been performed for a mold that is rectangular in shape. The mold

dimensions are taken to be 0.5m x 1.0m, with the mold material being steel. Three sides

of the mold are exposed to the surrounding atmosphere and the fourth side is in contact

with the curing plastic.

The temperature that we are interested in controlling is the temperature along the side of

mold that is in contact with the part being manufactured. The heat input could be applied

anywhere within the mold. Hence, the region over which the temperature is being

controlled is a sub-set of the region over which the heat input can be applied. This means

that any Green's/influence function that is computed is in general non-symmetric. The

Green's function used in Chapter 3, assumes that the region of temperature measurement

is the same as the region of heat input. This is because, the Green's function calculation

(See Figure 3.5.1) assumes that we could apply a heat input everywhere and the resulting

temperature is measured everywhere in the object being considered. This results in a

symmetric Green's function. Here however, the input can occur anywhere in the mold

but the temperature of interest is only on one face of the mold. The results of Chapter 3

can be easily generalized to the case of non-symmetric Green's functions. Never the less,

the conditions of optimality will be re-derived for the special case considered in this

chapter.
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Heat transfer
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Figure 4.2.1. Schematic of the mold with convection on three sides

Desired temperature distribution To

Figure 4.2.2. Reference temperature needed on the bottom surface.
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In the RTM mold, if the resin is injected at the center, it flows outward to fill up the

mold. This means that if the temperature of the mold is constant across the surface, the

resin closer to the outer edges has a higher degree of cure. One of the ways of

compensating for this is to maintain the edges cooler than the center while the curing is

occurring. Figure 4.2.2 shows one such situation, where the desired temperature drops

from the center of the mold to the edge of the mold.

Section 4.3 shows the details of deriving the influence function (non-symmetric Green's

function) similar to equation 3.5.5. using a finite difference based model.

4.3 Finite Difference Model for Deriving Influence Functions:

A finite difference (FDE) model for the mold is set up by spatially discretizing the region

of the mold. In this example, the finite differences are generated for the steady state

problem. The governing equation for the temperature at any node is written by

performing energy-balance at that particular node. Figures 4.3.1 , 4.3.2 and 4.3.3 show

the FDE scheme for nodes at the corner, on the surface and in the interior of the mold,

respectively. The finite difference mesh for this problem has been created with the

discretization being equal in both the x and the y directions. (See figure 4.2.1 for x and y

directions) i.e., Ax = Ay.
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m,n m-1,n

m,n+

Figure 4.3.1 Finite difference node connectivity for nodes in the top left corner

m,n

m-1,n m+1,n

m,n+l

Figure 4.3.2. The finite difference node connectivity for nodes on the top boundary.

m,n-1

m-1,n
m,n

m+ 1,n

m,n+1

Figure 4.3.3 The finite difference node connectivity for a node in the interior.
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Equations 4.3.1, 4.3.2. and 4.4.3 show the steady state governing equations for the

temperature of a corner node, a surface node and a node on the interior respectively.

Tij is the temperature at the 'ij th' node and T is the ambient temperature. and qi,j is the

heat flux at a given node. See Incropera and De Witt (1985) for details of the derivation

of the equations for the finite difference scheme.

K [ T K [T -Tm +hT- T,, x+4mn = 0 4.3.12 '" T" 2 m+l,n m,n mx n

T[Tm-,n Tn] +--•m+n - Tm,I + K[Tm+,, - T + h[T T- Tmn ]Ax + 4m,n = 0 4.3.2

K[T,, -T,,n]+ K[Tm+,n - T,]j+ K[T,,+ 1, - Tm,n ]+ K[T,,, - T,,n] + , = 4.3.3

The above equations can be written for nodes everywhere in the object. The resulting set

of equations can then be rearranged into the form of equation 4.3.4:

MX + Ni- + WT = 0 4.3.4

Where X is the vector of all the nodal temperatures stacked together. The vector i-

contains the heat input at each node. The elements of W are non zero only for nodes on

the surface convecting to the ambient.

Knowing the input heat flux at each of the nodes and the ambient temperature, the

temperature vector can be found from equation 4.3.5:

X = M -' (-Nil - WT ) 4.3.5
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By picking the vector i- such that only one element is non zero (in simulations it is

assumed to be unity), i.e. we are applying a unit pulse (which is the steady-state

counterpart of an impulse in the time domain) at that location, we can compute the

temperature at all nodes due to the pulse at the chosen node. By doing this for all the

nodes in the finite difference scheme, we can tabulate the Green's function. Figure 4.3.4

shows this procedure. For our purpose we only need the temperatures of the bottom row

of nodes. Hence, only the temperatures of the bottom nodes due to the impulse are

picked out. These temperatures are stacked up to give us an influence matrix. As was

described earlier, this matrix is going to be non-symmetric. This stacking will give the

model shown in equation 4.3.6. G will be a rectangular matrix of size m by n, where m is

the total number of nodes used and n is the number of outputs considered.

T= Gu 4.3.6

This is equivalent to equation 3.5.5 with the integration over the spatial domain

performed approximately, by discretizing the spatial domain. The input u has two

components, the controller heat flux and the disturbance heat flux, as shown in equation

4.3.7.

u = uc + uD 4.3.7

After the influence function has been computed, a suitable cost functional that addresses

the needs of the process has to be developed. Section 4.4 details the cost functional and

the application of the optimality conditions to obtain the optimal distribution.
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Input moved from node
to node

Temperature computed

Mold Surface

Figure 4.3.4. Procedure for calculating the Green's function (Influence Matrix) G.
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4.4 The optimization over space:

The cost functional in equation 4.4.1. trades off the error between the achieved

temperature and the desired temperature To and the amount of heating or cooling used.

J = I (T - To)T P(T - To) + I LuQu 4.4.1
2 2L

The matrices P and Q are picked to reflect the importance of inputs or temperature error

at each of the nodes. L is a scalar gain that will be adjusted at the end of the optimization

to satisfy the specifications on the process. The cost functional in equation 4.4.1 is the

discretized version of equation 3.7.1. We do not have any second order functionals in

this case.

To perform the optimization, the equation 4.3.6 is adjoined to equation 4.4.1 to form the

Hamiltonian shown in equation 4.4.2. X is a Lagrange multiplier.

H = (T- )T P(T - T) + u'Qu + , T(T - Gu) 4.4.2

For achieving an optimum, the minimum principle is applied to equation 4.4.2. The

expressions shown in equation 4.4.3 have to be satisfied for the minimum principle to

hold.

dH
dT
9H

- 0 4.4.3du

-0
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The last condition of equation 4.4.3 gives back the governing equation 4.3.6. The other

two conditions of optimality give:

dH
- PT - PTo + =0

d4.4.4
dH Qu

- GT a = 0
du L

Eliminating the Lagrange multiplier X from the equations above we obtain the optimal

input to be:

UCL =-LQ-'1GTP(T- To) 4.4.5

We need to note here that it seems that if T=To then the control input is zero. This is, of

course, the nature of any proportional controller. Equation 4.4.5 is a proportional

controller, where Keq is the proportional feed-back matrix.

UCL = -Ke(T- T) 4.4.64.4.6
Where Kq = LQ-'GT P

The closed loop temperature due to the optimal input given in equation 4.4.6 is obtained

by substituting equation 4.4.6 in to equation 4.3.6.

TcL =G[- LQ'GP(TcL - T) +u] 4.4.7

Adding and subtracting To from both sides and rearranging terms we have:

TcL -T o = [I + LGQ-G P] GuD -[I + LGQ-'1GP]T o  4.4.8

The left hand side of the equation is the error temperature that results due to the controller

heat flux and the disturbance heat flux. It can be seen that as the scalar gain L is

progressively increased, the error temperature becomes progressively smaller. Therefore
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the design procedure consists of increasing the scalar gain until the error becomes

satisfactory.

Rearranging the terms in equation 4.4.8, we obtain:

TCL = [I + LGQ-'1G p] LGQ-'GT pTo +[I + LGQ-'G P] GuD 4.4.9

So the optimal closed loop input in terms of To and uD is given by:

ucL =-LQ-'GTP [I+LGQ-'G'P] LGQ-'GPTPI - ITo + [I+ LGQ-' P GuD

4.4.10

Equation 4.4.10 gives the closed loop heat flux that results in the presence of a

disturbance, for a given set point of temperature. This gives the designer a tool for

evaluating the amount of heating and cooling needed at the different locations in the

mold, under the requirements of achieving a certain temperature while rejecting the effect

of the disturbance. Hence for a given set of worst case disturbances and set points that

one may need, the locations and intensity of heat flux can be computed.

4.4.1. Effects of model errors:

The effects of modeling errors can also, similarly, be studied. Assume for example, that

the optimal control has been designed based on equation 4.4.5. If the structure and

magnitude of worst case modeling errors can be estimated, the effects of such errors on

the controller can be studied. In addition, the influence function can be re-computed

experimentally after the heating/cooling has been designed in. In what follows, a

technique for compensating for the effects of modeling errors is presented:
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If model errors are present, the true Green's function could be represented as:

j = G + AG 4.4.11

Where AG is the error in the model (we have assumed an additive form for the

uncertainty, however this method works even for uncertainty that is multiplicative). So

the governing equation for the system will be:

T = G(uc + UD) 4.4.12

Hence, the closed loop temperature with the true Green's function is given by:

T1 -G T -~TL = [I + LQ-GT P]-LGQ 1G PTo + [I + LCQ1GTP] GuD 4.4.13

The closed loop heat input with the uncertain Green's function is then given by

UCL = LQGTP[I + LQ G'P LQ'GT PTo - ITI + I + LGQ-G'1P] uDJ

4.4.14

This optimal closed loop heat flux captures the effects of model uncertainties, set-points

and the disturbances. Equation 4.4.14. can be used to study the effect of worst case

disturbances and the worst case model errors. A good picture of where heating and

cooling are needed in the mold under different situations could be found using this

equation.

4.4.2. Design procedure for narrowing down the locations of input:

1. Equation 4.4.14. can be used to study the required heat flux disturbance for the

different combinations of possible model uncertainties, worst case disturbances and

set points.
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2. After studying these required heat fluxes, the designer can restrict the set of inputs to

fewer regions within the mold. The idea behind doing this is to narrow down the

specific regions where the input is needed.

3. The optimal required heat flux at these restricted regions is then computed using the

same procedure by suitably manipulating the entries in the Q matrix. This gives the

exact amount of heating and cooling needed at these restricted locations.

Section 4.5 shows steps involved in selecting input locations using simulations that were

performed using Matlab. The finite difference model and the optimization were

implemented using Matlab routines.

4.5 Simulation results:

The mold dimensions used for simulation were 0.5m by 1.0m. There are 20 nodes along

the x axis and 10 nodes along the y axis. This implies that the size of the finite

differences is given by Ax = Ay = 0.05m. The reference temperature To is taken to be a

half sinusoid added to a flat temperature distribution. The reference temperature is

plotted in figure 4.5.1. The nodes are numbered from 1 to 20 on the bottom surface and

the corresponding desired temperature is plotted for the nodes on the bottom surface.
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The desired temperature across the mold surface
2

node number along the face of the mold

Figure 4.5.1. The desired temperature on the bottom surface of the mold.
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Mold

Disturbance heat flux

Figure 4.5.2. A disturbance that is constant across the surface.

Mold

~iY1

Disturbance heat flux

Figure 4.5.3. A disturbance that is linearly varying across the surface.
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As was mentioned ahead, curing of the composite is an exothermic reaction.

Uncertainties in this reaction manifests itself as a heat flux disturbance on the mold

surface in contact with the component. Two particular disturbances have been considered

for the simulations performed. The first disturbance is shown in Figure 4.5.2. This is a

disturbance whose intensity is constant across the face of the mold. Such a disturbance

could be caused by a part of constant thickness. The second disturbance that has been

considered is shown in Figure 4.5.3. This is a disturbance whose intensity varies a

linearly across the face of the mold. This could be the exothermic reaction caused by a

part whose thickness varies linearly across the mold.

Figures 4.5.4 and 4.5.5 show plots of the value of the disturbances at each of the nodes,

selected for the simulations. Since the disturbance acts only on the bottom surface of the

mold, in figures 4.5.4 and 4.5.5, disturbance has a non-zero value only on the nodes at

the bottom surface.
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The distribution of the constant disturbance heat flux

The length node number 0 0
The breadth node number

Figure 4.5.4. Distribution of disturbance whose intensity is constant magnitude across the

face of the mold.
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The distribution of the linearly varying disturbance heat flux

The length node number 0The breadth node number

Figure 4.5.5. Distribution of disturbance whose intensity varies linearly across the face of

the mold.

135

i



4.6 Design process for selecting locations for heat flux:

In any typical mold, the input is constrained to lie within specific regions of the mold.

These restrictions could be caused by geometric constraints, or are a result of structural

constraints on the mold. Alternately, if a large amount of heating or cooling is needed in

the mold, it may not be possible to design such heating and cooling very close to the

surface. Also, it is easier to extract a large amount of heat with a passage that can wind

through a larger volume than with a passage that winds through a smaller volume. The

example presented here illustrates how such considerations can be incorporated into the

analysis.

In the example discussed in this chapter, the design for maintaining a desired temperature

profile on a mold surface is split up into two parts. In the first part, input is restricted to

the half of the mold away from the surface so that large heaters or coolers that reside

close to the center of the mold, can be designed. In the second part, smaller heaters will

later be placed close to the surface so that the transient response of the system can be

improved.

4.6.1. Input restriction to half of the mold:

If no input is permitted on specific nodes in the simulation, this restriction can be

implemented in by placing a very large penalty on having input on those nodes. This is

accomplished in the matrix Q in equation 4.4.1., by picking high values for the

corresponding elements of Q where no input is allowed. If heaters/coolers are not

permitted in the bottom half of the mold, large values are picked for the elements in Q

corresponding to the bottom half of the mold. The closed loop heat flux and the resulting
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closed loop temperatures are then computed using equations 4.4.5 and 4.4.7. The

parameter L is picked high enough that the temperature distribution is within acceptable

limits. This results in the heat flux distribution shown in figure 4.6.1. Figure 4.6.2 shows

the corresponding closed loop temperature plotted along with the desired temperature. It

can be seen that the achieved temperature is very close to the desired temperature. The

corresponding error temperature is shown in figure 4.6.2a.

It should be noted here that, so far, the effects of disturbances and model uncertainties

have not been studied. In the following section, the effects of disturbances on the closed

loop heat flux are studied.

4.6.2. Effect of disturbances on closed loop behavior:

The disturbances described in figures 4.5.2 and 4.5.4 are applied to the face of the mold

and the resulting heat flux and temperatures are recalculated using equations 4.4.5 and

4.4.7. The parameter L is again adjusted so that the specifications on the temperature

error are met. The first disturbance which is a constant disturbance is applied to the

surface of the mold in contact with the part. The resulting heat-flux distribution and

temperature distribution can be seen in figures 4.6.3 and 4.6.4., respectively. It can be

seen that the closed loop heat flux changes from figure 4.6.1. to compensate for the

applied disturbance. The resulting error temperature is plotted in figure 4.6.4a.

The second disturbance shown in figures 4.5.3 and 4.5.5., is applied to the face of the

mold and the same procedure is carried out for the second disturbance. The resulting heat

flux distribution is shown in figure 4.6.5. The corresponding closed loop temperature is
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plotted along with the desired temperature in figure 4.6.6. The error temperature in this

case is indicated in figure 4.6.6a. Again it can be seen that the disturbance was efficiently

rejected.

The distribution of the closed loop heat flux with constant disturbance

The length node number The breadth node number

Figure 4.6.1. The heat flux distribution in the upper half of the mold with no disturbances

present.
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The desired and actual temperatures across the mold surface without disturbance

0 2 4 6 8 10 12 14 16 18 20
Node number along the face of the mold

Figure 4.6.2. The Actual vs. Desired temperatures without any disturbance.
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Error temperature without disturbances
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Figure 4.6.2a. The error temperature when no disturbances are present.
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The distribution of the closed loop heat flux with constant disturbance

The length node number 0The breadth node number

Figure 4.6.3. Heat flux distribution due to the constant disturbance.
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The desired and actual temperatures across the mold surface with constant disturbance
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Node number along the face of the mold

Figure 4.6.4. The desired and the actual temperature with constant disturbance.
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Error temperature with constant disturbance

0 ~ ~ 2_ 4_ 6_ 8_ 10 1 1 2
0 2 4 6 8 10 12 14 16 18 20

Node number along the side

Figure 4.6.4a. The closed loop error temperature when a constant disturbance is present.
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The distribution of the closed loop heat flux with linearly varying disturbance

15.
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The length node number 0 0 The breadth node number

Figure 4.6.5. The closed loop heat flux when the linearly varying disturbance is present.
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The desired and actual temperatures across the mold surface with linearly varying disturbance
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Figure 4.6.6. The closed loop temperature distribution when a linearly varying

disturbance is present.
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Error temperature with linearly varying disturbance
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Figure 4.6.6a. The temperature error when a linearly varying disturbance is present.
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4.6.3. Input restriction to fewer locations:

After observing the heat flux plots for the different worst case scenarios, i.e. figures

4.6.1., 4.6.3., and 4.6.5., the design engineer can get a good idea of which regions need

heating and which need cooling under different scenarios. This is used as a guide line to

narrow down these regions so that a smaller number of heaters/coolers can be used to get

the same performance. In the present case, ten nodes with the highest magnitude of

heating/cooling input have been picked to be the final locations of the inputs. In practice,

this could be the starting point for a parametric search within a small neighborhood of

these ten nodes. Figure 4.6.7., shows the ten nodes in the finite difference grid where the

inputs are going to lie.

Now, the performance of the closed loop system, with the inputs constrained to these

specific nodes can be studied using a similar procedure as was used earlier in this section.

In the matrix Q, the elements corresponding to the ten nodes are picked to be small and

the rest of the elements are picked to be very large. Equations 4.4.5 and 4.4.7 are then

recalculated for the new Q matrix and the scalar gain L is adjusted again to lower

temperature error. Figures 4.6.8. and 4.6.9. show the closed loop heat flux needed at each

of the ten nodes and the corresponding closed loop temperature. Figure 4.6.9a shows the

corresponding error temperature. It should be noted that the error temperature did not

worsen even though the input has been constrained to fewer locations.
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Figure 4.6.7. The restricted set of input locations..
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The optimal input with penality on the input and no disturbance

E

C

(D0.

t-"5

I--
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Figure 4.6.8. The heat-fluxes needed at each of the nodes when no disturbance is present.
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The desired and actual temperatures across the mold surface without disturbance
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Node number along the face of the mold

Figure 4.6.9. The temperatures at each of the nodes with input restricted to ten nodes and

no disturbance present.
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Error temperature without disturbances
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Figure 4.6.9a. The error temperature when inputs are constrained to ten nodes and no

disturbance is present.
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The effects of the two types of disturbances can be studied in a similar way as before.

Figures 4.6.10 and 4.6.11. show the closed loop heat flux the closed loop temperatures

with the constant disturbance shown in figure 4.5.2. Figure 4.6.11 a shows the

corresponding closed loop error temperature.

Figures 4.6.12 and 4.6.13.show the closed loop heat flux and the corresponding

temperatures for the linearly varying disturbance shown in figure 4.5.3. Figure 4.6.13.

shows the corresponding closed loop error temperature. Figure 4.6.13a shows the

corresponding error temperature. It should be observed that restricting the input to fewer

nodes did not significantly degrade the performance of the controller in the presence of

disturbances.

This completes all the steps in the design process for achieving a desired temperature

distribution with the input restricted to very few nodes.
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The distribution of the closed loop heat flux with constant disturbance
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The length node number 0 0 The breadth node number

Figure 4.6.10. The closed loop heat flux with constant disturbance when input restricted to ten nodes.
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The desired and actual temperatures across the mold surface with constant disturbance

0 2 4 6 8 10 12 14 16 18 20
Node number along the face of the mold

Figure 4.6.11. The closed loop temperature with constant disturbance when input restricted to ten nodes.
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Figure 4.6.11 la. The error temperature due to a constant disturbance when input restricted to ten nodes.
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The distribution of the closed loop heat flux with linearly varying disturbance

1•;

The length node number 0 0
The breadth node number

Figure 4.6.12. The closed loop heat flux for the linearly varying disturbance when input restricted to ten nodes.
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The desired and actual temperatures across the mold surface with linearly varying disturbance

0 2 4 6 8 10 12 14 16 18 20
Node number along the face of the mold

Figure 4.6.13. The closed loop temperature for the linearly varying disturbance when input restricted to ten nodes.
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Error temperature with linearly varying disturbance
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Figure 4.6.13a. The closed loop error temperature distribution with a linearly varying disturbance when input restricted to ten nodes..
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4.7 Conclusions from steady-state design:

The following conclusions can be drawn from the steady-state design method developed

in the prior section:

1. A technique for locating heating and cooling for achieving a desired steady state

temperature distribution has been developed.

2. The method yields a closed loop form for the heat flux in terms of the temperature

error.

3. Constraints on the distribution of inputs can be easily incorporated into the analysis.

4. Effects of disturbances can be easily studied due to the feed-back structure for the

solution.

5. A sub-optimal method for obtaining the fewest number of heaters and coolers to

achieve the desired steady-state performance can be obtained by using this method.

The next step is to add the dynamics back into the heat equation and design the transient

part of the controller so that stable operation can be guaranteed while ensuring desirable

performance at higher frequencies. These two objectives should be achieved while

maintaining the steady state performance obtained by the steady state design performed so

far.

4.8 Transient Design:

In the previous sections of this chapter, a technique for determining the locations and

strengths of heaters needed for good steady-state performance has been developed. The

feed back gain selected in equations 4.4.5. and 4.4.6. is very large in order to satisfy, as
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best as possible, the requirements on the temperature error. Equations 4.4.5 and 4.4.6 are

rewritten here in equation 4.8.1.:

UCL =-LQ-1'G P(T - T) 4.8.1.

CL = -Keq (AT)

Introducing the dynamics into the system, the output temperatures on the bottom surface

of the mold can be related to the input heat-flux at the ten selected nodes. This input-

output relationship can be represented by a multi-input multi-output (MIMO) matrix

transfer function. Equation 4.8.2 shows the matrix transfer function where T(s) and U(s)

are the temperature vector and the input vector respectively.

T, (s) G ,(s) G12(s) .. GI10(s) U,(s)
T2(S) G21•(S) . U2,(S)

T20 (s) G 201(s) G2010 (S) U10(S)
i.e., 4.8.2.
T(s) = G(s)U(s);

Then equation 4.3.6. is the steady state portion of the above MIMO transfer function and

can also be written (by setting s=O in equation 4.8.2.) as:

T(O) = G(0)U(O); 4.8.3.

The steady-state design preformed so far has evaluated the structure of the compensation

at s=O. We need to determine a compensation that yields a stable operation for the closed

loop system while retaining the same structure for the closed loop system in steady state.

The following section details the procedure for computing the transfer-function in

equation 4.8.2.
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4.8.1. The Dynamic model:

To compute the transfer function matrix shown in equation 4.8.2., dynamics need to be

added to the static model developed in section 4.3. This can be done by discretizing the

PDE in equation 3.3.1., with respect to the space domain while retaining the continuity in

the time domain. Equation 4.8.4. shows the governing equation for an interior node,

obtained by discretizing with respect to the space domain while retaining continuity in the

time domain. Similar equations can be written for the other nodes in the solid. (See

Incropera and DeWitt (1985)). Stacking up the differential equations obtained for all the

nodes in the solid, a state-space description for the system can be obtained as shown in

equation 4.8.5. The output matrix (C matrix) is then selected so that the outputs are the

temperatures at the nodes on the bottom surface of the mold.

p C, = k I +,j + Ti_, j - 2Tj
P dt (AX)2

4.8.4.

+ ( )2 ,j+ + T_ - 2Tj + qi,j

X = AX + BU;
Y = CX;

X = [T,,T2, ,To00]; 4.8.5
U= [q,,q 2,' q10 ] T;

Y = [T8,, " T200 ];

The transfer functions corresponding to the state-space description in equation 4.8.5. is

the same as the MIMO transfer function discussed in equation 4.8.2. This state-space

model has been used to compute the Bode-plots shown in figure 4.8.2.
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Figure 4.8.1. Transfer function between the 10h heater and the temperatures at the

bottom nodes.
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Figure 4.8.2. The notation for temperatures in the finite difference scheme.
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Before the compensation scheme is presented, a few observations can be made from the

Bode plots. Firstly, the transfer-functions between the heat inputs and the temperature

measurements are characterized by exponential phase loss and exponential gain

attenuation with increasing frequency. Further, the phase loss and gain attenuation

worsens with increase in the physical distance between the inputs and the measurements.

For example, consider the transfer functions between the 10th heater situated at node

number 70 and the twenty nodes on the mold surface in contact with the part. These

Bode plots correspond to the transfer functions of the last column in the transfer function

matrix shown in equation 4.8.2. Figure 4.8.1. shows the heater and the sensors between

which the transfer functions are being computed. The Bode plots corresponding to these

transfer functions are plotted in figure 4.8.3. The phase loss and the gain attenuation can

be noticed to decrease with frequency. Also, the curves with the higher phase loss and

gain attenuation correspond to the transfer functions between the 10th heater and the

nodes that are farther from the heater.

As a part of the steady state design a large proportional gain has been selected to best

satisfy the requirements on the steady-state error. If this gain were applied over all

frequencies, it is easy to drive the closed loop system unstable. Therefore a suitable

scheme must be devised to stabilize the system while maintaining the same steady-state

gain. The next section details a technique to design a compensator to ensure stability

while achieving the same steady-state performance discussed in the earlier sections. The

approach consists of rolling off the high steady state gain with frequency using a first

order roll off.

163



The Bodeplots for input at Node 70
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Figure 4.8.3. The Bode plots between input no: 10 and the output temperatures at the bottom nodes..
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4.9. Rolling off the gain to stabilize the system.

Designing a compensator so that the steady-state gain is as calculated in the prior section,

while guaranteeing stability of the closed loop system is the goal in this section. Many

multi-input multi-output (MIMO) compensation schemes can be envisaged to accomplish

this task. However, the technique that is presented here is appealing for its ease of

implementation and for the ease with which additional inputs can be incorporated to

improve the transient performance.

It can be observed from the Bode plots that the lag increases exponentially with

frequency. This implies that using the high feed-back gain of equation 4.8.1. across all

frequencies, will cause instability. The technique used here to stabilize the system is: roll

off the steady state gain with a first order frequency interpolation function as shown in

figure 4.9.1.

That is, the compensator transfer function matrix can be represented as:

1
K(s) - s Keq 4.9.1

The MIMO loop transfer function is then given by:

G(s)K(s) 4.9.2
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1
1 +s

Figure 4.9.1. First order transfer function used as a frequency blending function for

rolling-off Kq

The compensator design problem is then to determine the break frequency 1 / r so that

the closed loop system is stable. Thus the MIMO controller design problem is reduced to

finding a suitable break frequency 1 / T .

First an intuitive argument is presented on how to identify this break frequency and then

the MIMO Nyquist criterion is used to determine the exact value of this break frequency.
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It was seen that the phase loss in the transfer function between a given heater and a given

sensor increases with the distance between the heater and the sensor. This implies that in

the transfer function between the heater and sensor farthest from each other has the

highest phase loss. Instability will be introduced if the phase loss between this heater

sensor combination has increased beyond 1800 at gain cross-over. The time constant

between this heater and sensor can be selected as a first estimate for the desired the break

frequency in the first order roll off shown in figure 4.9.1. Figure 4.9.2. shows this largest

distance for the mold being considered here. Hence if r is large enough, we can "slow

down" the response of the heaters enough, so that instability does not occur. However,

we need to quantify this reasoning to get estimates of the margins of stability that can be

obtained using this technique.

For this purpose, MIMO Nyquist criterion can be used. (See Maciejowski (1989)). The

MIMO Nyquist criterion requires that if det(I + G(s)K(s)) has Pc zeros and Po poles in

the closed right half plane, then just as in case of SISO systems, the principle of the

argument shown in equation 4.9.3. can be used to determine stability.

A arg { det(I + G(s) K(s))} = -21r(P c - Po) 4.9.3

Here, A arg denotes the change in the argument as 's' traverses the Nyquist contour once-

up the imaginary axis, then along a semi-circular arc in the right half-plane and then up

the negative imaginary axis to the origin. In our case, Po =0, since G(s)K(s) does not

have any unstable poles. Nyquist criterion then requires that for closed loop stability, the

number of clock wise encirclements of the origin should be zero. Hence if the Nyquist

contour of det(I + G(s)K(s)) does not encircle the origin in the counter-ctQckwise

direction, the closed loop system can be guaranteed to be stable.
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Figure 4.9.2. The greatest lag occurs between the pair of heater and sensor farthest from each other.
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The intuitive argument, presented earlier, could now be used to determine if increasing

the value of r has the effect of making the system stable. The MIMO Nyquist plot can

be used for this purpose. The following is a numerical procedure for plotting the MIMO

Nyquist plot:

1. The det(I + G(io)K(io))) can be computed at a selected frequency "co", for any

given value of the break frequency r. This calculation yields a single complex__

number, which is a point on the MIMO Nyquist contour.

2. By performing this calculation at a given set of frequencies, a set of points on the

Nyquist contour could be obtained. Joining these points in the complex plane, we can

obtain the Nyquist plot for a given r.

3. The break frequency is then changed by changing r. The calculations in 1 and 2 are

repeated for the same set of frequencies and Nyquist plots are plotted.

The above procedure was performed for different z's and the corresponding Nyquist

plots are shown in Figure 4.9.3. The different values of r corresponding to each of the

Nyquist contours are indicated on the contours. It can be noticed that the Nyquist plots

predict that the closed loop system goes unstable in between the break frequencies of

/7 x 106) and X5x 106) H z .
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The MIMO Nyquist Plots for different c's
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Figure 4.9.3. The MIMO Nyquist plot for the closed loop system for different t's.
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4.10. Verification of the MIMO Nyquist prediction:

Simulations were set up in Simulink to test the predictions obtained from the Nyquist

plots. The finite difference state space model of 4.8.5 was used for the simulations.

Before the closed loop system is considered, the open loop transient response is studied.

Figure 4.10.1., shows the step response of the system. The value of the step-input is the

steady-state optimal input derived in section 4.6., and the step input is given at time t=0.

The initial condition is assumed to be a zero temperature distribution everywhere. Figure

4.10.1 shows the temperature response at each of the bottom nodes. The figure 4.10.2.,

compares the final value obtained from the step response with the value of the reference

temperature used in section 4.6.

The response in figure 4.10.1., seems to have a non-minimum phase behavior. This is

however, not the right conclusion. The dip in the response of some of the temperatures is

because the optimal input, which is applied as a step, has negative elements in it.

Figures 4.10.3-4.10.6. show the temperature response for the closed loop system for

different r 's. It can be seen that, just as predicted by the MIMO Nyquist criterion,

instability occurs just when the value of 7 decreases below 7x10 6.
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The step response of the mold
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Figure 4.10.1. The step response for the temperature distribution on the bottom surface.
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Desired temperature vs the final temperature of step input
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Figure 4.10.2. The value of the final temperature obtained from the step response along with the desired temperature.
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Closed loop temperature for = 108
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Figure 4.10.3. Closed loop temperature response for = 108.
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Closed loop temperature for = 107

Time in seconds

Figure 4.10.4. Closed loop temperature response for T = 107 .
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Closed loop temperature for t = 7 x 106
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Figure 4.10.5. Closed loop temperature response for r =7x 106.
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Closed loop temperature fortr = 5 x 106

Node number 0 0
Time in seconds

Figure 4.10.6. Closed loop temperature response for r = 5x 106
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Comparing figures 4.10.1. and 4.10.4, we can see that the speed of response of the closed

loop system is limited by the time constant between the heaters and the sensors. This is

the feature of any conduction system where the lag between the heater and sensor

determines the speed of the response.

Sometimes, there is a need to improve this response time. The only way of achieving this

is by decreasing the distance between the heaters and the sensors. There are two ways of

approaching this problem. One involves the addition of heaters, which are much smaller

in strength compared to the main heaters, closer to the sensors. In a molding example,

this can be achieved by installing ribbon heaters on the surface of the mold.

The second approach is to embed thermocouples closer to the heaters there by decreasing

the effective distance between the heaters and sensors. In both the cases, the closed loop

system can be properly designed so that in steady sate, the additional heaters and sensors

do not play a part. These details are discussed in what follows.

4.11. Improving the response of the system with additional heaters:

The heating developed in the earlier sections is designed for attaining the desired steady-

state while keeping the closed loop system stable. If we desire to improve the transient

response of the system, smaller heaters could be installed closer to the surface of the

mold. This cuts down the physical lag between the heaters and the sensors. In practice,

ribbon heaters could be placed on the mold surface. (See Jansen 1993).
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The design of the controller is now split up into two parts. The structure of the low

frequency part of the design is left the same. The new heaters are installed closer to the

surface of the mold and the compensator for actuating these smaller heaters is made so

that these heaters are actuated only by high frequency components of the temperature

error and have no effect at low frequencies. A cross-over network type design can be

used to separate the two parts of the design.

To complete the design, a high frequency gain between the "high frequency" heaters and

the sensors needs to be evaluated. Figure 4.11.1. shows a set of 10 high-frequency

heaters along with the low-frequency heaters.

A helpful feature of a heat conduction system is that the influence of the heaters at high

frequencies tends to be localized. That is, G(io) appears to be more and more sparse at

high frequencies. This is a direct result of the fact that the higher frequencies tend to be

attenuated to a larger degree when moving away from the heater. Figure 4.11.2.

illustrates this fact. Hence, the feedback matrix at high frequencies could be easily

designed to be a matrix with zeros everywhere except in the elements corresponding to

the nearest nodes on the bottom of the mold. The actual magnitudes of the non-zero

elements in the high-frequency feed-back matrix Khf (see equation 4.11.1) will be

selected later.
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Figure 4.11.1. The high frequency heaters located closer to mold surface.
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Figure 4.11.2. High frequency heaters have localized action at high frequencies.
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Hence a compensator structure is chosen so that the high frequency (Kh ) and low

frequency gains (Keq ) are active in the appropriate frequency ranges. Equation 4.11.1.

shows the structure of such a feed-back compensator. Here again ' and ', should be

selected to guarantee satisfactory and stable operation of the closed loop system.

1
K(s) = eq +

1+Ts
TKs

Khf
1 1IS

4.11.1

The two frequency blending functions are:

1
1+ Ts For the low frequencies

l+s
: For the high frequencies

I+T1S

4.11.2

r, and r should be appropriately selected to guarantee stability.

A new simulation is now set up as shown in figure 4.11.3. We now have three design

parameters that we need to evaluate: Khf , r, and r. This is more complicated than the

simple design procedure with only the low-frequency heaters. Figure 4.11.4. shows the

closed loop performance of this system.

Several values of Khf, t, and r have been tried. Figure 4.11.4. shows the Nyquist plot

for one specific set of values. It can be seen that this gives stable operation
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Figure 4.11.3. Closed loop system with both high frequency and low frequency heaters present.
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Figure 4.11.5. shows the response of the closed loop system at one particular node on the

bottom of the mold, for values of 'r= 5x10 6 and 'r, = 103 and different values for the

magnitude of the non-zero entries in Khf. It can be seen that increasing the value of the

Khf improves the response of the system. However, this comes at the cost of having to

use larger ribbon heaters, which are expensive. An engineering judgment should be made

to decide on the size of the ribbon heaters needed.

4.12. Conclusions:

This chapter has presented a design technique for designing heating and cooling in

molding applications. The steps involved in this design are as follows:

1. The steady state heat equation and a corresponding quadratic cost functional which

weighs the amount of heating/cooling used ( in steady-state) with the temperature

error (in steady-state) are formulated.

2. The input is restricted to only those locations where heating/cooling can be applied.

This is achieved by selecting weights in the quadratic cost functional.

3. The optimization is performed and a proportional feed-back form for the steady-state

input is obtained, in terms of the temperature error.

4. The effects of several steady-state disturbances and model errors are studied using the

formulation developed and the cost function is adjusted to obtain a satisfactory

temperature error in the presence of these model errors and disturbances.

5. By observing the results steps 1-4, input is further restricted to fewer locations by

modifying the weighting matrices and the steps 1-4 are performed again.

6. This results in identifying the amount of heat needed in steady state at the various

locations and the structure of the compensator at zero frequency.
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7. The transient heat conduction is now introduced and the transfer-function matrices are

evaluated.

8. A first order roll off is applied to the steady-state proportional gain obtained in step 4.

9. Multi-input multi-output (MIMO) Nyquist criterion is used to evaluate the break

frequency for the first order roll off.

10. Additional smaller heaters are then incorporated into the design and a frequency

cross-over scheme is used to ensure that the smaller heaters are active only at high

frequencies. The break frequency for the smaller heaters along with the high-

frequency proportional gain are used as additional design parameters.

The above approach has been presented for a molding application. However such a

design technique can be effectively used for other steady-state temperature control

applications.
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The MIMO Nyquist plot with t = 5 x 10 7 and tl = 103
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Figure 4.11.4. The Nyquist plot for the case with both high frequency and low frequency heaters.
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The effect on the closed loop response when Khf is increased
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Figure 4.11.5. The response of the closed loop system for different values of Khf , when both high frequency and low frequency are

heaters present
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Chapter 5

OPTIMAL CONTROL OF TRANSIENT TEMPERATURES: EXAMPLE

5.1. Introduction

The examples studied in the previous chapters involved applications that could be

addressed as a steady state temperature distribution control problem. There are

applications where this simplification is not possible. These are problems in which the

temperature transient of the entire object is to be controlled and no steady temperature

distribution needs to be controlled. The examples of these types of processes can be seen

in heat treatment operations.

In heat treatment operations, temperature transients determine the material properties of

the object being manufactured. In the steel industry, several products such as steel strips,

slabs etc. are manufactured for different applications where, each application stipulates

the material properties and strength properties for the steel. The different alloying

elements added and the nature of heat treatment rendered influences these properties.

The example presented here is one of heat treating a steel slab that is manufactured by hot

rolling of a larger billet. Hot rolling is one of the primary manufacturing processes used

in the steel industry producing products ranging from strips of steel to I-beams to plates

and slabs used in a wide variety of applications. In most of these applications

maintaining uniform and consistent material properties of the steel is extremely

important. The material properties determine the mechanical properties of the rolled steel
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like strength, hardness, weldability, formability etc. These properties critically depend on

the temperature history of the finished product. Hence, it is imperative that one control

the temperature history of the slab in order to achieve uniform and consistent material

properties. This should be done not only across each slab or strip but also from run to

run.

It is typical to have many process disturbances such as: varying initial temperatures of

slabs coming out of the furnace, variation in the temperature of the cooling water with the

time of the day and with the season. These disturbances vary with both space and time.

Hence a distributed parameter systems approach, such as the approach in this thesis is a

natural one resulting in a superior control algorithm. This chapter presents an application

of a distributed parameter optimal tracker to the manufacture of plates used for making

bridges, ships, pressure vessels etc. It should be noted that the techniques discussed in

this chapter are applicable to several other processes such as: hot-strip rolling and

continuous casting, involving the control of temperature transients.

Figure 5.1.1. shows a schematic of a typical slab mill. The billets (thick slabs) are

brought in to the mill from the continuous casting unit. The production process starts

with the steel billets (slabs) being heated in the furnace. The billets are then reheated to

above the recrystalization temperature and passed through a rough rolling step where the

thickness is reduced. An intermediate cooling is then applied to the hot slab by spraying

cool water on the slab. The temperature at the end of the intermediate cooling is brought

close to the recrystalization temperature and a finish rolling operation is performed where
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the size of the slab is brought down to the desired thickness. A second cooling unit is

then used to cool the slab down through a desired temperature trajectory. It should be

noted here that the water jets and sprays in the two cooling units are present both above

and below the slabs. ( The schematic only shows sprays above the slab). The term

Accelerated Cooling is used to describe the two cooling units described above.

Accelerated Cooling is typically employed in the cooling of the hot rolled slabs ranging

form 1/4" to 4" in thickness.

There are several benefits to using accelerated cooling units. The cooling in between the

two stages, which is the first cooling unit, serves to reduce the cycle time thereby

increasing the productivity. Since the temperature during the first stage of cooling is still

above the recrystallization temperature, the material properties of the finished product

are not dependent on the nature of cooling at this stage. However, care has to be taken to

not impart excessive thermal stresses to the slab so that distortions are prevented. At the

end of the first stage of cooling, the temperature of the slab is still above the

recrystallization temperature. However, one needs to ensure a uniform temperature

across the slab, in order to achieve uniform properties during the finish rolling. The

uniformity of temperature is important also to ensure the uniformity of cooling at the

second stage of cooling. This will be explained in detail in the section dealing with the

description of the cooling process.
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Figure 5.1.1. Schematic of a slab mill.
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The cooling after finish rolling is used to impart the desired material properties. This step

is the primary driving factor for implementing accelerated cooling in slab mills. There

are considerable savings in alloying costs, in using accelerated cooling here. This cost

saving is obtained by using the cooling system to heat treat the steel in order to impart the

same desired mechanical properties that one would obtain by alloying. An added benefit

is that the productivity increases due to decreased cooling time.

In order to maintain the uniformity of cooling rates on the upper and lower sides of the

slab, several sprays are used on either side of the slab. The water sprayed at the center of

the slab has to flow over the edges of the slab. This causes a higher cooling rate for the

edges compared to the center of the slab. This can be avoided if the sprays are designed

so that the heat fluxes are more evenly distributed. Some times, induction heaters are

installed after the cooling unit is designed, to compensate for this effect. Figure 5.1.2.

shows a typical cross section of a cooling unit.

5.2. Requirements on this process:

The accelerated cooling problem considered here has several requirements. Firstly, the

EPA regulates the total amount of water consumed by the plant. Hence, the amount of

water consumed by the plant should be minimized. This will help in reducing the total

water consumption of the whole steel plant. Additionally, the water saved by effective

control can be used elsewhere in the steel plant. Not having excessive cooling where it is

not needed, can eliminate the use of induction heaters. This will have the benefit of

reduced hardware as well as energy costs.
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Figure 5.1.2. Cross Section of the accelerated cooling unit.
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Secondly, the cooling rates should be very accurately controlled. The material properties

and the mechanical properties depend very critically on the cooling trajectory. Any

variations in the temperatures from run to run and from point to point in the object being

heat-treated results in non-uniform properties. These are not desirable for the consumers

of the steel, such as, the automobile and construction companies. Changes in material

properties change the formability, mechanical strength and weldability etc. of the steel

being produced. At the same time, excessive and non-uniform cooling rates may cause

residual stresses which may warp the slab or have a negative effect on the quality of the

surface of the steel produced. Thirdly, the terminal temperature of the process should be

accurately controlled. This again has direct bearing on the material properties of the steel.

To address these issues a suitable controls approach along with a suitable model should

be selected. As has been the approach throughout this thesis, we will address this

problem as an optimal control problem.

5.3. Sources of disturbances:

There are several sources of disturbances on the process:

1. The heating in the furnace could be uneven, this causes a build up of thermal

gradients in the slab prior to cooling.

2. When the slab is brought out of the furnace, it is guided to the rolling mill on skids

which are cooler and this produces cold spots on the slab. (See figure 5.3.1.)
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3. Cooling water temperature could change effecting the HTC. (See. Wolf et. al. (1993))

4. Surface distortions before cooling can cause puddling of water during cooling and can

cause variation in the amount of cooling

5. During cooling, a few nozzles could develop lower flow-rates, thereby altering the

cooling heat flux , locally.

6. There can be measurement errors due to the emmissivity changes.

5.4. Anomalous nature of the cooling water jets:

The disturbances in temperature discussed in the previous section pose a severe problem,

because the cooling is performed using water jets. The heat fluxes that the jets can

extract from the hot slab has an inverse relationship with the surface temperature of the

slab. This means that if we start with a cold spot on the surface of the slab, that location

experiences a higher heat flux and becomes even colder (see figure 5.4.1.). Thus there is

a compounding of the temperature difference between the different parts of the slab. This

results in a greater variation in properties of the steel within each specimen.

The reason for the inverse relationship for the heat fluxes with the slab temperature can

be explained by the film boiling phenomenon. When a cooling jet is sprayed on to a hot

slab, there are different regimes of boiling that result. There is a central region where

there is no boiling taking place. This is immediately followed by a region where there is

nucleate boiling taking place. See figure 5.4.2., which shows the different regimes of

boiling heat transfer. (Also see Southwick (1986)).
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These two regions are characterized by a high values of heat fluxes. Immediately after

the nucleate boiling regime there is a brief period of transition boiling followed by a fully

developed film. The region of film boiling is characterized by lower heat fluxes.

(See Incropera and DeWitt (1985) & Wolf et. al. (1993)).

The effective average heat flux extracted this jet can then be computed by by taking a

weighted average over the area of the slab. Figure 5.4.3. shows the top view of the jet

impinging on the hot slab. The three concentric circles show the different regions of

boiling heat transfer. The heat-transfer in region 3 is considerably less efficient when

compared to regions 1 and 2.

When the slab becomes hotter, the region 3 moves inward. This causes the effective heat

flux to diminish, due to the reduced area of more efficient heat transfer (see figure 5.4.4).

Alternatively, let us consider two situations, in which the temperature is the same but the

jet velocities are different. The case with a higher jet velocity, has the effect of pushing

the region 3 farther out. This increases the area of more effective heat transfer. Thus

increased jet velocity has the effect of increased average heat flux. (see figure 5.4.5.)
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Nucleate Boiling Hot slab
Figure 5.4.2. The different regimes of boiling heat transfer in a cooling jet.
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Figure 5.4.3. Top view of the jet with different boiling regimes.
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Figure 5.4.5. Film boiling region moves outward when jet velocity is increased.

198

I 'I I RI0

n8r)



Surface Temperature vs HF
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Figure 5.4.6. The relationship between the surface temperaturejet velocity

and the surface heat flux.
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Figures 5.4.4. and 5.4.5. illustrate this effect of the changes in the film initiation location.

Figure 5.4.6. shows a plot of the Jet velocity vs. Surface Heat Flux and Surface

Temperature vs. Surface Heat Flux.

5.5. Model for process:

The temperatures inside the slab are governed by the heat conduction equation:

a
pC, - T(x, y, z, t) = V(k(i)V) T(x, y,z, t) + q(x, y,z,t);

(x,y,z) ED; D:{the domain}
B T(x, y,z,t) = qb(x, y,z,t); (x, y,z) e dD; {boundary} 5.5.1.
T(x, y, z,O) = T (x, y, z);.

q(x, y,z,t) is the heat input within the domain.

qb (x, y, z, t) is the heat input on the boundary.

Where the material properties listed in Equation 5.5.1. can have a temperature

dependence:

p : is the density

C, : is the specific heat 5.5.2.

k(X): is the conductivity of the material

And the other entries in Equation 5.5.1. are

dx dy dz

Bo: Boundary conditions 5.5.3

T( i, t) : temperature distribution

In the simulations presented here, the slab is modeled as a two dimensional rectangular

object, so the above equation only has x and y as the space variables. This simplification

of the problem into only a two dimensional problem is only for the ease of performing
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simulations. The general technique presented here can just as easily be applied to a three

dimensional case.

5.5.1. Finite difference based model for the heat conduction in the slab:

The heat conduction equation (Equation 5.5.1.) should be approximated with a set of

ordinary differential equations, which may then be used for control purposes. There are

many ways of achieving this transformation including using truncated Eigen function

expansions, finite difference models and finite element models. In this case, a finite

difference scheme is used to model the transient temperature variations. The

discretization is performed only with respect to the space variables, leaving the time as a

continuous variable. This type of an approach is used to generate differential equations

which could be used for controller design. This section details the development of such a

model.

In the present case the slab is rectangular in shape and the inputs occur on the upper and

the lower surfaces of the slab. The discretization is performed along the length and

across the thickness as shown. The inputs are assumed to be present at each of the

boundary nodes on the top and the bottom. The sides are assumed to be insulated by

assuming negligible heat transfer due to free convection on the boundary. Figure 5.5.1.

shows the schematic of the finite difference scheme.
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Figure 5.5.1. Finite Difference Scheme for Accelerated Cooling Simulation.
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Figure 5.5.2. Notation for the nodes in a finite difference scheme.
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To derive the finite difference based model, we need to perform an energy balance

between adjacent nodes. Figure 5.5.2. shows the notation used for different nodes.

Ax and Ay are the distances between the nodes along the x and y axis respectively.

Writing the energy balance for each node gives the following equation for the temperature

at the node ij:

pC d, 1

dt (Ax) 2 [ +",j - ,j - 27>

5.5.4.
±k{( 1 +( -2( +
+ k{ (Aly)2 [ri,j+1 + ri,j-l - 2Ti,j + qi,j

The left hand side of equation 5.5.4. is the rate of change of heat content at node ij and

this equals the rate of heat flow from each of the neighboring nodes plus the rate of heat

generation at node i,j.

The equation 5.5.4., can be written for each of the nodes. The nodes at the top and

bottom of the slab have a cooling heat flux term. The rest of the nodes do not have the

heat input term because there is no heat source or sink present there. By suitably

numbering the nodes and stacking the equations up we arrive at a set of coupled

differential equations which form the state-space model shown below.

i = AX + BU;

X = [T,, IT2,... Tnn ]T

U = [ql,q2'"q2n, ] ; 5.5.5.
m : numberof nodes along thickness
n :numberofnodesalongwidth
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5.6. Control Approach:

In the section 5.4. we have seen the anomalous nature of cooling with water jets.

Compensating for the variations in the initial conditions is extremely important. By far

the largest source of product property variation results due to the variation in the initial

conditions. An effective way of approaching this problem is to estimate the heat-fluxes

that need to be extracted at different locations at different times. Knowing the jet

characteristics, we can then calculate the jet velocities that are needed to achieve the

desired heat fluxes.

5.6.1. Process requirements

There are competing process performance requirements and these are listed below:

1. EPA regulates the amount of water that could be consumed while cooling. Hence,

conserving "control energy" will result in savings in the cooling water. Therefore the

control scheme used should try to conserve the amount of "control energy" used.

2. Cooling rates determine the grain structure and certain other material properties.

Hence, deviations from the desired cooling rates should be penalized by the control

algorithm.

3. The terminal temperature is important, as this determines, what phases exist in the

steel at the end of the cooling.

5.6.2. Optimal closed loop solution:

We should construct a cost functional that incorporates the above process requirements

into it. This cost functional can be used for deriving an optimal control solution to the

problem. A quadratic cost functional shown in equation 5.6.1. is used for this

204



application. The first term on the right hand side corresponds to the weighting of the final

temperature attained, on the cost function J. This weight can be increased or decreased

by increasing or decreasing the elements of the matrix P. The second term in J is the

weighting on the temperature profile during cooling which can be modulated by varying

Q. The last term of J is the weight on the input which can be modulated by changing R.

J(U) = (X(T,) - X (T )y P(X(T,) - X, (T, ))+

J {(X(t) - XD (t))T Q(X(t) _ X, (t))+ UTRU}t 5.6.1.
0

Where:

t: time during cooling
T : The final time at the end of cooling
X(t) : Vector of temperatures at all nodes
X, (t): Vector of desired temperature trajectories
U(t): input vector
P > O;Q > O;R > 0; weighting matrices

The optimal control problem is then to evaluate the optimal input U(t) that minimizes the

cost-functional in 5.6.1. for the system with the state space description shown in equation

5.5.5. with a specific initial temperature distribution. The initial condition varies due to

process variations.

X=AX+BU; 5.6.2.
X(O) = X0 : The measured initial temperature

The above problem is the classical finite horizon linear quadratic optimal tracking

problem. By suitably choosing the matrices P, Q and R one could weigh the different

control objectives suitably. One of the advantages of posing the problem this way is that

we obtain a feedback solution which could help us investigate the advantage of being able
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to measure temperatures during cooling. This could motivate research work in the

development of suitable sensors. However, in the present situation, we only need an

open-loop solution. The solution to the optimal control problem is via the time varying

matrix Riccati differential equation and the loop adjoint equation, shown here in the set of

equations 5.6.3. A detailed derivation and a discussion of several theoretical issues can

be seen in Lewis F.L., (1986).

- S(t) = AT S + SA - SBR-'BT S + Q; : RiccatiDifferential
S(Tf )= P; Equation

- V(t) = (A - BK)T V(t) + QXD (t); :Adjoint Equation
V(T ) = PXD(T );

5.6.3.
Feedback Matrix:
K(t) = R-'BT S(t);

The optimal closed loop input is :

U*(t) = -K(t)X(t) + R-'BT V(t);

The solution found in equation 5.6.3. is a closed loop solution. However, the temperature

measurements on the slab are possible only before the slab is placed in the cooling

chamber. Once the slab enters the cooling chamber, no pyrometric measurements are

possible. (See figure 5.6.1.). However, the usefulness of the above solution lies in the

fact that, if some temperature data could be collected during the cooling process, one

could evaluate the potential benefits of this. This is because the solution is in a feed-back

form and if in process measurements are available, this could be better used to calculate

the required cooling heat flux.
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This could help evaluate the benefits from the development of new types of temperature

measurement devices that could measure temperatures, in process, during cooling. For

example, electrical resistance of the slab could be measured at selected locations on the

slab. Electrical resistance is a function of temperature and therefore if the electrical

resistance measurements are taken at different locations in the slab, these can be used to

estimate the temperature distributions during cooling. This estimate can then be used to

compute the optimal input shown in equation 5.6.3. Figure 5.6.2. shows a schematic of

such an in-process temperature measurement method.

In the present case, such an in-process temperature measurement is not available. The

only temperature measurement that is available is obtained by pyrometric measurement

just prior to the cooling. The following section details an approach for using the optimal

feed-back solution to derive an equivalent open-loop solution that can be used in this

process.

5.6.3. Optimal open-loop solution:

We could make use of the closed loop solution of equation 5.6.3. to derive an optimal

open loop solution. We know that the optimal input is given by:

U (t) = -K(t)X(t) + R-'BT V(t); 5.6.4.

Substituting this for U(t) in equation 5.6.4. we obtain:

X(t) = AX(t) - BK(t)X(t) + BR-'BT
V(t); 5.6.5.

X(O) = X0;

If we know the initial condition in the above equation 5.6.5., we can compute the state

trajectory. The initial condition can be estimated with the measurement as shown in
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figure 5.6.1. Let us call this state trajectory X(t). We can then compute the optimal

open loop input by substituting X(t) in equation 5.6.4.:

U * (t) = -K(t)X(t) + R-'BT
V(t); 5.6.6.

This is the expression for the time trajectory for the heat-flux distribution across the top

and bottom of the slab that compensates for variations in the initial condition. It is clear

that such a scheme can only compensate for variations in initial conditions and cannot

compensate for other in-process variations. This drawback can be overcome if in-process

temperature measurements are available during cooling, using the closed lop solution

derived in the prior section.

IR Camera

u 0 u 0 0 0 0 C

Cooling Unit

Figure 5.6.1. Temperature Measurements available only before cooling.
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electrodes for
resistance measurement

slab

Figure 5.6.2. Possible temperature measurement scheme for in-process measurement.

5.7. Numerical simulation of the cooling process

5.7.1. Details of simulation set up:

To illustrate the performance of the controller, the following simulations were performed.

A steel slab of dimensions 2cm x 50cm was considered with cooling on the upper and the

lower surfaces. The simulations were performed with 30 nodes along the length and 3

nodes along the thickness. So we have a total of 90 nodes which give us a state-space of

size 90. Hence the model used here is:

X =AX +BU;
5.7.1.
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The initial temperature of the slab is assumed to be as shown in figure 5.7.1. There is a

hot spot in the center of 750C. The rest of the slab has a uniform temperature of 700C,

which is the ideal initial condition. In this case the hot spot is the disturbance in the

initial condition. Figure 5.7.1I. shows a schematic of the slab with the initial temperature

distribution .

An arbitrary desired cooling temperature trajectory is generated by adding a sinusoid to a

linear cooling profile. The cooling profile was generated primarily to illustrate the effect

of the controller and is not based on a requirement on the cooling rates in the process.

We can see the desired temperature trajectory in both figure 5.7.2. and figure 5.7.3. as the

solid line and this is the value for the desired state trajectory, XD(t), that will be used in

the simulations.

7500C

700 C

Figure 5.7.1i. Slab initial conditions used in simulation.
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5.7.2. Numerical techniques for computing optimal solution:

Before we proceed to study the effect of this arbitrary initial condition, we need to

compute the values of the Riccati matrices and the adjoint states for different time

instants. We need these to compute the optimal input in equation 5.6.6. That is, we need

to solve equations 5.7.2. and 5.7.3 backwards in time.

- S(t) = ATS + SA - SBR-'BT S + Q; : RiccatiDifferential 5.7.2.
S(Tf ) = P; Equation

- V(t) = (A - BK)T V(t) + QXD (t); :Adjoint Equation 5.7.3.
V(Tf) = PXD(T );

Equations 5.7.2., and 5.7.3., are nonlinear matrix differential equations. These equations

have been solved using the 4 h order Matrix Runge-Kutta algorithm.

The following gives the details of the Matrix Runge-Kutta method used here. If the right

hand side of equation 5.7.2. is denoted as:

f(S,t) = AT S(t) + S(t)A - S(t)BR-'B T S + Q 5.7.4.

The Riccati equation (eqn. 5.7.2.) can then be written as:

dSdS = -f(S,t)
dt 5.7.5.
S(Tf) = P

The above equation 5.7.5. should be solved backwards in time. Let h denote the time step

used for the purpose of numerical integration. If we denote the value off(S,t) evaluated at

the nth and (n-l)th time step as:
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f(S, t.) = f(S(t), t.)
and 5.7.6.
f (Sn_, t 1_, ) = f(S(tn -h), t, - h)

Using the 4th order Runge-Kutta rule we can compute Sn-1 as:

ki = hf (Sn t, )

k, h
k2 = hf(S, - ,t, )2 2
k3 = hf (Sn - , n ) 5.7.7.

2 2
k4 =hf (S -k 3,t n -h)

s kk k3  kk
Sn-1 = S L k2 k3 k4 O(h5)6 3 3 6

By picking the integration time h suitably, we can compute the Riccati matrix at different

time instants. Similarly we can solve the adjoint equation 5.7.3. using 4 th order Matrix

Runge-Kutta method.

5.7.3. Selection of parameters in cost functional:

The weighting matrices P, Q and R in the cost function (equation 5.6.1.), were taken to

be diagonal matrices of the form pI, qI and rI. Where, I is the identity matrix and p, q

and r are scalars. By selecting the scalar weights p, q, and r we can weigh the different

factors in the cost functional as per our requirement. This structure for the weighting

matrices, implies that the temperature errors across the slab are penalized exactly the

same. Similarly the penalty on the control input has been selected to be the same for all

regions of the slab. This structure could be changed by changing the structure of P,Q and

R, if one wishes to penalize temperatures and control inputs in certain regions more than

the temperatures and control inputs in other regions.
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The values of p, q, and r can be selected, using Bryson's method and equation 5.7.8.,

shows the guidelines for selecting these different scalar parameters. This is the finite

horizon counterpart of the expressions in equation 2.4.13.

1 AX(t, )112

S= t, x AX(t)112  5.7.8.
q

r t jU,112
r

Where tf is the final time at the end of cooling and IIAX (tf ) is the norm of the maximum

allowable deviation in the final temperature and this deviation was selected to be 50C for

each node. Similarly IIAX(t)ll is the maximum allowable deviation in the norm of the

state at any given instant of time which was selected to be 100 C at each node. The norm

of Um is the maximum allowable input that is possible and this was selected to be 107

W/m2. This depends on the saturation characteristics of the jets. The scalar parameters

p,q and r are selected this way and they are "tweaked" around values selected in equation

5.7.8. until satisfactory performance is obtained.

5.7.4. Simulation results

With the initial condition shown in figure 5.7.1., equations 5.7.2. and 5.7.3. are solved

numerically, to compute the optimal input U*(t) and the optimal temperature trajectory

X(t). The elements of U*(t) give the different desired heat fluxes at different locations

of the surface of the slab. Figures 5.7.2 and 5.7.3. show the resulting temperature

trajectories plotted for locations numbered from 1-4 in figure 5.7.1. These temperatures
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are plotted along with the desired temperature trajectory. Figures 5.7.4 and 5.7.5. show

the corresponding cooling heat flux trajectories at nodes numbered 1 and 3 respectively.

As was mentioned ahead, the weighting matrices were selected so as to penalize the

temperature errors everywhere in the slab the same. However, we can influence the

temperature of the surface much more easily than the temperature at the center of the slab

(since cooling is available only on the surface). The consequence of this is that, by

putting the same severe restriction the center temperature as the boundary temperature,

the control input will be higher (in magnitude) than necessary and will result in cooler

surface temperature and a hotter interior. By noting the temperatures in figures 5.7.2 and

5.7.3., we can see that the temperature at node 1 on the surface, more or less, follows the

shape of the desired temperature trajectory but is a little lower. The temperature at the

center lags a bit and is higher than the desired temperature profile. This has occurred

because temperatures at all the nodes are weighed the same. The optimization algorithm

then gives us a temperature trajectory which when averaged over all the nodes is close to

the desired trajectory.

Comparing the temperature trajectories in figures 5.7.4 and 5.7.5., it can be noticed that

the plot of the inputs at the corner and the center differ significantly at the beginning, by a

factor of about seven. However, once the disturbance was rejected, the input values were

very similar. The temperature profiles in figures 5.7.2., and 5.7.3., show that in the center

of the slab with the higher initial condition, the cooling curves are initially far steeper
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than at the corner steep temperature profiles. However, once the disturbance is rejected

the cooling profiles look identical.

The next step is to translate the heat fluxes that we have generated into variables

concerning the cooling process such as the temperature of the coolant, velocity of the

jet/spray etc. This involves a thorough understanding of the cooling process which

involves several boiling regimes in addition to forced convection. This problem is very

well studied and analyzed by the engineers at the steel plants. In addition, there are many

publications that deal with modeling and characterizing cooling jets. A survey and

discussion of this problem can be found in Wolf, et. al., (1993). Several publications on

using jets to cool steel can be seen in this survey paper. e.g. Ochi et. al., (1983) and

Ishigai et. al. (1978). Using the models available from these sources, a look up table can

be constructed to translate the required heat fluxes into parameters of the cooling jet that

can be controlled (e.g. Jet velocity, volume flow rate etc.). The look up table can be used

in real-time to determine the cooling jet parameters for a given desired heat flux at

different time instants.

5.7.5. Control method when material properties have temperature dependence:

The technique presented in this chapter could be easily adapted to the situation where the

properties of the steel vary with temperature. Equations 5.6.1-5.6.6. hold good even if the

matrices A,B, C are time dependent. If the temperature trajectory is known, the time

dependence of the material properties can be found (since material properties depend on

temperature). This information could be used to capture the effects of parameter
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variations with temperature in a time varying linear model. An approach for performing

this could be:

1. Compute the temperature trajectory assuming no parameter variations.

2. With this temperature trajectory, compute the time variations for the different

parameters such as density, heat capacity and conductivity etc.

3. Using the finite difference model, represent the matrices A(t), B(t) and C(t) as time

varying matrices.

4. Perform the same optimization procedure and obtain the temperature trajectory.

5. Repeat steps 1-4 until convergence is obtained.

5.8. Conclusions:

The nature of the physics of the cooling process during accelerated cooling results in an

amplification effect of the initial temperature error. This has an adverse effect on the

quality of the steel produced. We have presented a distributed parameter control

algorithm that efficiently compensates for the variations in the initial condition. The

approach is based on evaluating the optimal feed-back solution and calculating the

optimal open loop solution by simulating the closed loop solution on a model of the

system. However, the approach presented here gives a feed back solution to the

controlled cooling problem. This enables one to study the benefits of developing sensors

for temperature measurements during cooling by sprays. The method developed here

could be easily applied to several other controlled cooling problems encountered in the

steel industry as well as in other industries where time trajectories of temperature

distributions need to be controlled.
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Figure 5.7.2. Cooling trajectories for the nodes at the corner.
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Temperature Profiles
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5.7.3. Cooling trajectory for the nodes in the center.
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Input profile
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5.7.4. Trajectory of heat flux over the corner node.
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Figure 5.7.5. Trajectory of heat flux over the center node.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions from thesis:

This thesis has explored the problem of controlling temperature distributions in a variety

of manufacturing processes. The several issues pertaining to the implementation of

temperature distribution control in these manufacturing processes have been identified.

In addition, a few implementations of temperature distribution control have been

demonstrated in this thesis. The following specific claims are made as contributions of

this thesis:

1. Different processes such as heat treatment, molding operations, welding, flame-

bending etc., have been studied and the corresponding differences in temperature

control requirements have been identified. Examples: Heat treatment requires

controlling transient temperature distributions vs. resin transfer molding which

requires controlling steady-state temperature distributions. Injection molding requires

temperature distribution control vs. Flame bending requires temperature gradient

control.

2. The vast amount of literature in the theory of distributed parameter systems control

has been evaluated for its applicability to controlling heat conduction in

manufacturing processes. Existing techniques that are applicable to controlling some

process have been identified. For example: use of finite horizon linear quadratic

optimal control for problems in heat treatment. However, several shortcomings in the

state-of-the-art have been identified. These are:
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- Lack of techniques for determining the optimal distribution of heat flux for desired

steady-state performance.

- Need for MIMO control approaches for control of heat conduction that do not utilize

full-state estimation.

Non-availability of techniques for sensor and actuator location for disturbance

rejection

- Lack of techniques for selecting heat flux distribution and creating a closed loop

system robust to model uncertainties.

3. A novel technique for optimal input distribution has been developed in Chapters 3.,

and 4. These chapters form the central contributions to this thesis and answer some of

the issues identified as deficiencies in the current state of the art. A generalized

optimization problem defined in chapter 3., can be used to derive steady-state optimal

heat flux distributions in a variety of problems requiring either temperature

distribution control or temperature gradient control or length control. This technique

yields a useful method for determining the distribution of inputs to guarantee

adequate steady-state performance in the presence of model uncertainties and external

disturbances. Additionally, this technique can also be used in situations where full

state estimates are unavailable.

4. Chapter 4., illustrates a complete compensator design method for steady-state

temperature distribution control. The steps included in this design procedure are:

a) determining the optimal locations for the minimum number of heaters and coolers

that provide the required steady-state performance

b) evaluating the effects of process disturbances and model uncertainties
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c) designing stable compensation while guaranteeing steady-state performance

d) incorporating additional actuators to improve transient performance.

5. The application of two techniques from linear optimal control to specific temperature

control problems has been illustrated in Chapters 2., and 5. Chapter 2., shows the

implementation of a Linear Quadratic Gaussian (LQG) type compensator to steady-

state temperature control and Chapter 5., illustrates the application of a finite horizon

linear quadratic tracker to the problem of controlling transient temperatures in an

accelerated cooling application.

We have also identified several areas of possible future research. The following section

highlights some of these possible research avenues.

6.2 Future work:

This section details work that has been performed as a part of this research work in the

context of optimal sensor location. A description of an experimental set up for studying

optimal sensor locations is presented.

6.2.1. Optimal sensor location in heat conduction systems:

There are two specific types of problems that are of interest in the context of optimal

sensor location:

1. The first problem deals with obtaining a full state estimate of the state (temperature)

which is then used for control. This is similar to the situation in Chapter 2, where the

optimal controller utilized an optimal estimator (Kalman Filter).
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2. The second problem deals with optimally locating sensors when the temperature

distribution is estimated by interpolating between a set of temperature measurements

using interpolating functions.

The first situation is well studied in the DPS literature and section 1.3. lists some of the

publications on this topic. The general approach is based on choosing locations for

sensors so that the error covariance in the temperature distribution estimate is minimized.

The goal of the control problem is to minimize the cost function in equation 6.2.1.

J = limE{f (xTQx + uTRu)dt 6.2.1.

Where x is the state, which in the present case corresponds to the temperature distribution

depending on the type of state-space description for the heat conduction system. Q is the

matrix weighting on the error in the state and R is the matrix weighting on the input u.

Using the stochastic separation principle this can be separated into an optimal estimation

problem and a deterministic optimal control problem, as seen in section 2.4. The sensor

location problem is then defined using the optimal estimation problem. If the state

equations in the case where the measurements and the state are corrupted by noise are

given by:

X = AX + BU + Fw 6.2.2.
Y=CX+v

Where "w" and "v" are assumed to be zero mean Gaussian stochastic processes, with

covariances:

E{ww T} = W > O, E{vV T} = V > 0 6.2.3.
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The matrix C in equation 6.2.2., depends on the location of the sensors. Therefore, the

steady state estimation error covariance P, is given by the positive semi-definite solution

to the Algebraic Riccati Equation:

ATPf + PA -PfC TV-'CPf + FWF = 6.2.4.

A measure for the goodness of the steady state estimation process can then be defined as:

M = Trace(Pf ) 6.2.5.

Clearly, M is a function of the output matrix C and the sensor error covariance V. Both

C and V are dependent on the sensor locations. Therefore, M depends on the locations of

sensing points. Therefore the optimal sensor location problem is one of determinig the

locations of the sensors so that M is minimized.

6.2.2. The optimization method:

The optimization method will consist of numerically searching for local minima for M.

The coordinates of the measurement locations span the parameter space. A method such

as the conjugate gradient method could be used for this purpose. However, this is

numerically intensive and a few trials performed as a part of this thesis did not yield

proper convergence. One alternative that could be considered to circumvent such

numerical difficulties involves a sequential optimization method where the measurement

locations are chosen for one sensor at a time, minimizing M for each sensor. At each step

of the optimization, a single sensor is located at the best location leaving the sensors

located by prior steps at the same locations. This however is a sub-optimal configuration

of sensor locations, since a better optimum would be expected by simultaneously locating

all the sensors.
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The second approach for optimal sensor location is useful in situations where full-state

estimates are not used in the distribution control problem. This is similar to the mold

temperature control problem in Chapter 4. The temperature distribution can be found by

interpolating the temperature measurements. For this purpose a suitable interpolation

function needs to be used. Kaiser (1968) uses Lagrange polynomials for interpolating the

measured temperatures. The interpolated temperature can then be used for the closed

loop temperature controller. The error in the resulting closed loop temperature

distribution can be minimized under different "worst-case" scenarios, similar to Chapter

4. A parametric optimization problem, similar to the one described in the prior paragraph

can then be used to select the measurement locations to minimize the error in the closed

loop temperature distribution.

An experiment has been set up to study the optimal sensor location problem and the

following section details this experiment.

6.2.3. Experimental setup for studying optimal sensor location:

The experiment is intended to study the effect of the number and location of

measurements on the error in the temperature distribution estimate. Figures 6.3.1., and

6.3.2. show a schematic and a photograph of the experimental set up. The experiment

consists of heating a rectangular specimen on the surface using a plasma torch. The

bottom of the specimen is in contact with a water cooled block. An infrared camera is

used to measure the surface temperature of the steel slab.
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The infrared camera provides temperature distribution for the entire surface and thus the

temperature estimate obtained from this measurement will be the best achievable

temperature estimate using surface temperature measurements. This estimate can be used

as a basis for evaluating the performance of temperature distribution estimators using

temperature measurements at fewer locations. One can select temperature measurements

at a few distinct locations from the measured temperature distribution obtained from the

infrared camera. The temperature estimation can be performed using these few locations

and the error in the temperature estimate can be compared to the one obtained by using

the entire temperature field measured by the camera. This can be used to evaluate the

performance of an estimator that utilizes a limited number of temperature measurement

locations. Thus this experiment can be used to experimentally verify the predictions from

any optimal sensor location strategy.

6.2.4. Other Future work:

The first topic that needs to be researched is the problem of optimal sensor location

strategies, both for situations involving state estimation and for situations involving

interpolating temperature measurements. The experiment described above, or a similar

experimental set up can be used for this purpose.

The heating/cooling technique developed in Chapters 3 and 4 needs to be tested in a

variety of manufacturing processes discussed in the thesis. Experimental investigations

utilizing the method presented in these chapters should be set up so as to facilitate the

transfer of this technology into industrial applications.
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The steady-state design methodology presented in Chapters 3., and 4., has general

applicability to a variety of situations, however the transient part of the design has been

developed for applications similar to molding operations. An approach for a generalized

transient design could be pursued as a topic of research. One particular technique for

designing stable controllers has been presented in this thesis, involving frequency

blending functions to roll off a high steady-state gain. Other techniques for transient

design with more general applicability, without too much additional complexity should be

developed.

Application of the techniques of Chapters 3 and 4 to processes such as wear control,

structural distortion control etc. should be investigated. These processes can also be

characterized by Green's functions and therefore can be addressed by the formulation

presented in Chapters 3 and 4.
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Figure 6.3.2. The layout of the experimental setup to study sensor location problem.
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