
Applied High Resolution Digital Control for

Universal Precision Systems

by

Aaron John Gawlik

B.S., Mechanical Engineering, University of Minnesota (2006)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

A uthor ........ ........................
Department of Mechanical Engineering

May 13, 2008

Certified by.. ..............................
David L. Trumper

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by...................... ....................
Lallit Anand

Chairman, Department Committee on Graduate Students
MASSACHLOSTTS INSTMlArE,

OF TEOHNOLOGY

JUL 2 9 2008

LIBRARIES

I II





Applied High Resolution Digital Control for Universal

Precision Systems

by

Aaron John Gawlik

Submitted to the Department of Mechanical Engineering
on May 13, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

This thesis describes the design and characterization of a high-resolution analog in-
terface for dSPACE digital control systems and a high-resolution, high-speed data
acquisition and control system. These designs are intended to enable higher precision
digital control than currently available. The dSPACE system was previously designed
within the PMC Lab and includes higher resolution A/D and D/A interfaces than
natively available. Characterization on the custom A/D channel demonstrates 20.1
effective bits, or a 121 dB dynamic range, and the custom D/A channel demonstrates
15.1 effective bits, or a 91 dB dynamic range. This compares to a 15.7 effective bits on
the A/D dSPACE channel and 12.3 effective bits on the D/A dSPACE channel. The
increased resolution is attained by higher performance hardware and oversampling
and averaging the A/D channel. The sampling rate is limited to 8 kHz.

The high-resolution, high-speed data acquisition and control system can sample
two A/D channels at 2.5 MHz and display/save an acquired one second burst. The
A/D channel is characterized at 109 dB dynamic range with a grounded input and 96
dB dynamic range, or 0.74 nm RMS over a 50 pm range, with a fixtured capacitive
probe. Acquisition at 2.5 MHz and closed-loop control at 625 kHz sampling rate is
implemented on a National Instruments FPGA. The A/D circuit was designed and
built on a custom printed circuit board around the commercially available AD7760
sigma-delta converter from Analog Devices and includes fully differential ±10 V in-
puts, a dedicated microcontroller to provide an initialization sequence, and digital
galvanic isolation. LabVIEW FPGA code demonstrates arbitrary transfer fuiction
control implementation. The digital platform is applied to a 1-DOF positioner to
demonstrate 0.10 nm RMS control over a 10 pm mechanical range when filtered to
the 1.5 kHz closed-loop bandwidth, which is limited by the A/D converter architecture
propagation delay.

Thesis Supervisor: David L. Trumper
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

For any precision motion control application, it is critical to maintain precision among

varying engineering fields and through the combination of actuators, mechanical sys-

tems, sensors, electronics and digital computations, which generally requires an ad-

vanced knowledge and application of structural mechanics, design, analog electron-

ics, digital electronics, electromagnetics, signal processing, and control. This thesis

focuses on enabling precision motion control hardware systems by improving or de-

signing digital control environments that increase performance over what is currently

available.

Precision control has a variety of definitions in a variety of applications. Precision

is technically the degree to which a measurement (e.g., the mean estimate of a treat-

ment effect) is derived from a set of observations having small variation (i.e., close in

magnitude to each other) [13]. A narrow confidence interval indicates a more precise

estimate of effect than a wide confidence interval. This is applicable to digital data,

where a more precise numerical value contains a greater number of meaningful bits.

1.1 Project Goal and Summary

This thesis focuses on two separate high precision digital control systems for differ-

ent applications. The first focuses on creating more precise analog-to-digital (A/D)

and digital-to-analog (D/A) interfaces for the commonly used dSPACE [14] control



platform. The Precision Motion Control (PMC) Laboratory at the Massachusetts

Institute of Technology, as well as the mechatronics and digital control graduate

courses use varying products from dSPACE, Inc [14]. The platform is intended as an

embedded control environment with built-in peripherals, providing a real-time envi-

ronment that can be programmed with Matlab's Simulink Real-Time Workshop [15].

The DS1103 dSPACE platform provides 16-bit A/Ds and 14-bit D/As with double

floating-point, or 64-bit sliding window, calculations. Loop rates up to 100 kHz are

possible if the calculation load is small.

David Otten, a research scientist previously with the PMC Laboratory, designed

and built these interfaces [4] as a universal high-resolution peripheral option opposed

to the dSPACE native analog interfaces. The design was initially applied to con-

trol a sub-atomic measuring machine (SAMM) at the University of North Carolina-

Charlotte (UNCC) [16]. The high-resolution system by Otten required the physical

design of the A/D and D/A channels and their software interface to the real-time

dSPACE environment and Simulink functions. Up to 8 inputs or 6 outputs could

be interfaced through a modular breakout PCB and Simulink software. Each A/D

and D/A channel is built on an individual PCB with dedicated power regulation.

These are shown in Figure 1-1. A distinct feature are digital isolators for galvanic

isolation which break ground loops between the analog hardware plant and the digi-

tal environment, a commonly significant source of disturbances or noise in precision

systems.

High-speed sampling and averaging is used to increase the A/D resolution to

20.1 effective bits. A dedicated DSP on the A/D PCB sums the A/D samples at

800k samples per second (SPS) and counts the number of samples. The sum and

count is then transferred to dSPACE hardware through the software interface where

it is averaged. This resolution compares to 15.7 effective bits as measured with the

dSPACE A/D channels. Figure 1-2 shows a comparison between the dSPACE (DS)

and the high-resolution (HR) channel. Significant quantization relating to errors

distributed over several LSB are apparent in the dSPACE baseline noise response.

These quantization levels are 305 mV/LSB for a 16-bit converter on a 20 V range. The



Figure 1-1: dSPACE high-resolution DAC (Left) and ADC (Right) PCB.

high-resolution measurement however displays no discernable quantization levels and

has a noise level of 15 pV RMS. Likewise, the 1 mV amplitude sine wave demonstrates

the increased resolution performance as well.

There was little characterization data available on the performance of the two

channels when I inherited the high-resolution design. Several anomalies appeared

in initial tests that required design changes. The most significant was a change to

the fully differential analog front-end input of the A/D converter. Initially the RMS

noise of a digital sample would vary from 16 to over 20 effective bits based on the

input voltage level. This issue was solved by altering the configuration of anti-aliasing

capacitors.

A 16-bit D/A PCB was designed and built as a companion to the A/D channel

which also utilized digital isolation a small footprint so it could be located near

the analog plant. Figure 1-3 demonstrates the increased performance for the high-

resolution channel against the dSPACE channel for a small amplitude output. The

dSPACE D/A has a quanta size of 1.2 mV for its 14-bit converter and the high-

resolution D/A has a quanta size of 305 mV for the 16-bit output.

This increased resolution comes at the cost of a maximum loop rate of 8 kHz.

A slave DSP on the dSPACE hardware is used to interface with the custom PCBs.

The slave DSP needs to interact with the main processor that runs the Simulink



0 0.0 0.1 0.15 0.2 0.25 0.3 0.35 OA 045 0.5
Tlme[Sl Time[S]

Figure 1-2: A/D noise floor (left) and A/D response to 10 Hz sine wave (right). The
standard dSPACE (DS) and out high-resolution (HR) A/D channel are compared.
On the left is the zero-input case. The graph on the right shows the response to a 1
mV amplitude sine wave.
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Figure 1-3: Small amplitude D/A output. The standard dSPACE D/A and and our
high-resolution (HR) D/A are compared.
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application and does so through a communication buffer that requires communication

time. The slave DSP then clocks data to D/A channels and from A/D channels, which

requires 32 clock cycles. The total process time is 113 As and is the limiting factor

for the maximum loop rate.

Additional improvements to the prior system designed by David Otten included

debugging of why only 6 of 8 D/A channels were available at a time. I found that

although software provided an 8-bit port in software, only 7 bits were available in the

cabling pinout. Further, of these 7 bits, one was not correctly interfaced. The 7th

D/A channel was implemented but in order to add the 8th channel additional steps

would need to be added to the slave DSP and thus further decreasing the maximum

loop rate.

Other than the maximum loop rate constraint, these high-resolution peripher-

als appear as any dSPACE peripheral does and are essentially invisible to the user

to implement and operate. Applications for this first work are systems requiring

high-resolution with relatively low bandwidth, i.e. on the order of bandwidths of

Hz. Examples include vibration isolation with bandwidths on the order of 10 Hz or

precision atomic force microscopy, with bandwidths on the order of 100 Hz.

The second half of this thesis focuses on a high-speed, high-resolution data ac-

quisition and control digital platform. The design was driven by specifications for

a high-speed atomic force microscope which required over 20-bit resolution data ac-

quisition at greater than 1 MHz sampling rates as well as real-time control. Data

acquisition as opposed to control implies that while data must be sampled and stored

at a given rate, processing of said data can be done off-line and at slower rates. These

specifications require both hardware and software to be operating at high rates and

high resolutions, so it is attractive to use the same hardware and software to close

the control loop.

Various commercial options were evaluated and it was determined that we should

design our own A/D PCB built around a 24-bit, 2.5 million samples per second

converter that is interfaced to field programmable gate array (FPGA) with a host

for data offloading and supervisory control. A custom A/D PCB was designed and



tested based on the Analog Devices AD7760 sigma-delta IC. Most of the design con-

cepts were adapted from an evaluation board design available from Analog Devices.

I considered purchasing the evaluation board and merely designing the interface elec-

tronics, however the board was never available for purchase over the course of the

project. Furthermore, errors were discovered in the evaluation board design through-

out the testing and debugging phase that would have limited its functionality had it

been available.

The A/D PCB incorporates the same digital galvanic isolators as the high-resolution

dSPACE PCBs, as well as a dedicated microcontroller to provide an initialization se-

quence for the A/D converter IC and supervisory control during operation. Locating

the initialization sequence on the PCB actually reduces the hardware complexity be-

cause fewer digital isolators are required, since only unidirectional digital isolators are

available at the required data rates. Additionally, the inexpensive microcontroller re-

duces expensive resources that need to be allocated from the FPGA. The operational

A/D PCB is shown in Figure 1-4, with a U.S. quarter for scale.

Although the A/D converter is listed as a 24-bit converter, the dynamic range

is much less at high sampling speeds. The datasheet claims only 100 dB SNR at

2.5 MSPS. Tests on a grounded input demonstrated 66 pV RMS noise over a ±10

V range, which is equivalent to 109 dB RMS noise. Tests on a high performance

capacitive probe fixtured to a stationary target matched the noise characterization

of the probe itself. The capacitive probe had a characterization noise level of 309 pV

RMS and the A/D measured 298 pV RMS without any additional filtering.

No viable commercial options were available at the time of initial design of the

A/D PCB. Since that time a commercial option has become available from Innovative

Integration [17] based on the same A/D hardware and similar processing hardware has

become available. In retrospect, using that commercial board would have saved some

repetitive design and debugging, however it would be less advantageous considering

cost and future flexibility in implementation and expansion.

Several options existed as the digital processing platform. These ranged from a

custom designed and programlmed array of dedicated digital signal processors (DSP)



Figure 1-4: ADC PCB (quarter shown for scale).



to third-party hardware and software. Ultimately an FPGA-based product from

National Instruments [18] was selected that could operate with existing hardware

in lab. This existing hardware included a PXI chassis with a dedicated real-time

computer. This computer runs a real-time operating system and has much higher

real-time performance than a Windows or even Unix-based system.

National Instruments also supplied a high-level graphical programming language

and environment (LabVIEW) for all hardware aspects. This included the develop-

ment platform for the FPGA program, real-time application, and supervisory host.

FPGAs are physically thousands of reprogrammable logic units that are connected by

reprogrammable interconnects with logic suited to fixed bits of simple data manipula-

tion operations. LabVIEW provides high-level, complex operations which reduces the

learning curve for writing FPGA code and allows implementation of more complex

applications more quickly.

FPGA code in the LabVIEW environment was written for 2.5 MHz data acquisi-

tion and closed-loop control rates up to 625 kHz. Data acquisition from the D/A is

completed with a finite state machine clocked at 80 MHz. LabVIEW also provides

other complex features that can be easily implemented. For example, direct memory

access was used to transfer the acquired samples directly into the host computer's

memory without being delayed by host processing. Although sustainability tests were

not completed, the system was able to store at 20 MB over one second bursts. This

enabled data storage and off-line post-processing.

A D/A channel is also required to enable closed-loop operation. Following an

available product survey, I decided that the previously designed high-resolution D/A

channel for the dSPACE environment was an appropriate option for the FPGA system

as well. However, the closed-loop cycle rate is limited to 625 kHz by the rate at which

the D/A can be clocked.

Traditional linear feedback control can be quantitatively designed and is typically

implemented with lead-lag control. The NI LabVIEW FPGA module provides a PID

implementation, however it is limited in functionality and flexibility. The PID coeffi-

cients cannot be easily adapted to a lead configuration, and the data path is limited to
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Figure 1-5: IIR filter canonical control direct form II block diagram.

16 bits whereas a 32-bit data path is preferred. The most efficient method to process

a controller transfer function is in canonical direct from II, represented in Figure 1-5.

The transfer function is implemented as zero coefficients bi and pole coefficients aj.

The canonic form reduces the ai and bi coefficients to the minimal representation and

direct form II reduces the number of delay/memory (z- 1) elements required. The only

operations required for processing a direct form II filter are addition, multiplication,

and state delays. The filters are defined as discrete-time filters in the z-plane with

sampling time Ts = 400 ns. They are transformed from the s-plane with the Tustin

transformation without warping. I found that time delays due to data transferring

were minimized by implementing control before decimation.

A LabVIEW FPGA function is used to generate the controller filter code that is

compiled to the FPGA. The filter is an infinite impulse response filter because it has

coefficients in both the forward and reverse directions, indicating that there are non-

zero poles and an impulse can persist infinitely. LabVIEW code was written to import

an arbitrary floating-point control filter and convert it to a fixed-point filter. This

introduces quantization errors as the overall word length and integer word lengths for

the coefficients are individually specified. Coefficients that are widely spaced, such

as 100, 0.1, and 10- 4, provide issues in quantization because they require both a



wide range and decimal precision. For filters whose performance depends on closely

spaced poles, particularly as they approach the unit circle of the z-plane, significant

quantization errors can often reduce performance or introduce instability.

In our approach, control filters designed in the real-time domain are reduced to

second-order stages. A cascaded transformation to can be used in the LabVIEW

filter generation, however quantization can only be specified for the entire system,

whereas when separate control filters are manually cascaded then quantization can

be specified for each filter individually. Quantization settings are also applied to other

operations by the LabVIEW filter generation process, such as addition, multiplication,

and delays. Delays are implemented as block RAM on the FPGA board and decreases

the number of required registers.

Fixed-point filters and their operations are implemented as integer operations.

This requires a pre- and post-scaling by a fixed decimal word length. Fixed-point

multiplication also presents a challenging issue because for every operation of order

n, the output order is 2n. Two 16-bit integers multiplied together require a 32-

bit output to avoid overflow saturation. Therefore a special multiplication block

was created in LabVIEW that multiplies to the full precision and then translates

back to the original order. This significantly reduces rounding errors. The block

was implemented as parallel operations to use more readily available logic blocks

on the FPGA and operate more efficiently. These multiplication blocks were also

used to implement arbitrary gains that a user can vary. Along with traditional lead-

lag transfer functions, other control oriented features are described and used. This

includes saturation for integral anti-windup and reference signal generation.

This high-speed, high-resolution digital platform was implemented with AFM

scanner hardware designed and built by Ian MacKenzie. The scanner has 2-axis po-

sition feedback from two high-performance capacitive probes from ADE [19], model

6501 with ranges of 40 and 50 pm. These probes have a baseline noise of 181 and 309

pV RMS, respectively, as characterized by ADE for +10 V outputs at a bandwidth

of 100 kHz. When sampled with the custom A/D channel, an approximate 100 kHz

disturbance was generated within the capacitive probe driver and measurement elec-



tronics. This is due to the A/D channel but the mechanism by which it is affecting

the measurement electronics is not known, despite extensive tests. The disturbance

can be measured even when the A/D channel is not connected but merely running in

the vicinity. Varying grounding configurations were able to reduce this disturbance

but it currently introduces the dominant noise content when the probe is measuring

a stationary target.

The A/D channel is able to measure 252 and 298 pV RMS unfiltered, respectively,

on a stationary target at 2.5 MSPS. Control was implemented on one of the axes

designed for 10 pm range with the 40 pm probe and achieved 430 pV RMS unfiltered,

or 0.86 nm RMS. When filtered to the 1.5 kHz closed-loop bandwidth, control achieved

0.10 nm RMS, equivalent to 111.7 dB dynamic range and 18.3 effective bits. The

closed-loop sample rate was 625 kHz and the phase margin at 1.5 kHz crossover

frequency was 37 degrees. The control scheme was a triple-lead, single-lag controller

and was implemented as the series combination of a loop gain, three IIR lead filters,

and lag with anti-windup. The loop required approximately 20 degrees of additional

phase compensation due to the A/D and processing time delay. The A/D is a sigma-

delta converter and thus introduces a propagation delay of 10.8 ps. The remaining

time delay leading to a total of 23.2 ps is due to acquiring the data, passing the data

between parallel loops, and passing the data through IIR control filters. The data

processing is capable of a 400 ns sample rate with an arbitrary number of control

filters because data pipelining is utilized. This maintains a high sample rate but

also increases the propagation delay. Alternatively the sample rate can be decreased

down to the output rate of 625 kHz but the time delays associated with data transfers

would then be increased. The closed-loop bandwidth could be increased but the linear

phase loss due to the time delays requires increasing lead control. This increasing lead

compensation is limited by the magnitude roll-off.

The other axis consisted of a parametric amplitude control loop. Although the

FPGA design is presented, it was not implemented in hardware. The single axis

however demonstrates sub-nanometer control.



1.2 Motivation and Context

Analog electronics can resolve on the order of a part in a million in a carefully designed

setup. This relates the absolute range to the resolution of the system. Precision con-

trol can thus be attained for meter ranges with sub-millimeter resolution, or micron

ranges with sub-nanometer resolutions. Analog electronics are then able to control

to this precision. The ability to actuate a given system and then sense that motion

is another issue altogether. Precision motion control is driven by improving compo-

nents with dominant noise contributions, which is a reason why piezoelectrics and

electromagnetics are common actuators; their precision is commonly limited to the

electronics driving them. This is also a reason why mechanical flexures are extremely

popular for constrained motion as they allow linear motion without stiction and other

discontinuous affects on a fine scale. Similarly, technology in capacitive sensors, en-

coders, and laser interferometry is providing higher precision position sensing.

Analog controls can be applied in contrast to digital controls. Analog systems

are simple to implement for linear systems and high precision can easily be attained

for high bandwidths with a low cost. However, analog controls are not very flexible.

Digital systems on the other handle allow a multitude of control algorithms to be

flexibly implemented, albeit at a greater cost, such as discontinuous, nonlinear, adap-

tive, or feedforward control. Digital systems and their implemented control are also

not prone to environmental conditions, to the first order, as opposed to capacitors

and resistors in analog systems. The maximum bandwidth for an analog system can

easily be greater than 1 MHz with better than 10 ppm resolution. It is difficult to

match these specifications with digital systems at this time.

This thesis works to improve the available resolution and bandwidth of digital

control systems. Chapter 2 describes a design for a high-resolution analog interface

that was previously designed and built by David Otten within the PMC lab as another

option to native dSPACE A/D and D/A converters. The design is characterized and I

describe improvements for a lower baseline noise. Chapter 3 presents requirements for

a high-resohltion and high-speed data acquisition and control digital platform as well



as viable options and the selected components. Subsequent chapters detail the design

of the hardware, software, and control implementation as well as characterization and

results when the digital system is applied to a 1-DOF positioner of 10 pm range and

sub-nanometer control at 1.5 kHz crossover frequency.

The remainder of this section describes various digital control, A/D, and D/A

architectures. These three components determine the closed-loop precision and data

rate. It is important to understand the background and available options for the

various components and techniques within high-resolution digital systems and the

associated interfaces.

1.2.1 Digital Control Systems

Digital control uses electronic logic to act on a system. The implemented hardware

can range from an ASIC to a microcontroller to a full dedicated computer. The

difference between a piezoelectric actuator and a stepper motor are analogous to

the difference between an analog and a digital control system; the digital system

is inherently finite precision whereas the analog system merely has a baseline noise

floor. This introduces quantization in coefficients and operations. The analog-to-

digital and digital-to-analog interfaces are also finite precision and introduce their own

quantization. Another difference between analog and digital systems is propagation

delays. Digital systems frequently have a non-negligible computation time. High

data rates can be maintained by pipelined computations, however the time latency

still introduces a phase lag at the bandwidth of interest, which is troublesome for

closed-loop control bandwidth.

Digital sampling usually introduces a zero-order hold at its output due to the

discontinuous nature of the input/output samples. The time delay from the input to

the output of a digital system with ideal converters in this case is half the sampling

time T,. The time delay due to computations or latency in the digital system is

Td. The total delay time is then Td + L. This demonstrates that it is necessary to

minimize any system latency while also maintaining a high sampling rate for high

bandwidth systems. Computations with increasing precision, such as floating-point



as opposed to fixed-point, require more time to complete.

The high-resolution, high-speed system described in Chapters 3 through 6 is im-

plemented with a system that is expected to have a closed-loop bandwidth up to

5 kHz. Typically a digital system requires requires a sampling rate on the order

of 10-20 times the closed-loop bandwidth [20], thus requiring a closed-loop rate of

approximately 50-100 kHz for this bandwidth.

The digital system architecture determines Td for a given controller. A digital

system, or a real-time computer, needs to provide low latency real-time services as

well as a user interface. Real-time services act on the signal and determine the

controlled output at a fixed frequency. The user interface displays measured signals,

allows user interaction with gains and controllers, and provides data logging. The

earliest architecture to achieve these two services was the the Uni-Body architecture

which operates with interrupts and a foreground-background architecture on a single

computer. An interrupt is initiated at a fixed frequency. The interrupt then runs the

real-time services in the background and the remaining time before the next interrupt

constitutes the foreground where the user interface is processed. If the foreground

processing consumes too many resources then loop jitter and latency is introduced.

Running an operating system such as Windows requires a lot of resources and the

fixed sampling rate needs to be decreased.

The next architecture is the Dual-Body which has a host and a target. The

Uni-Body architecture is implemented on the target computer with a dedicated real-

time operating system (RTOS). The host machine runs an operating system such as

Windows and displays the semi-real-time data transmitted from the target machine.

The target machine sampling rate is still constrained by processing an interrupt, the

real-time services, and the foreground services. Examples of commercial Dual-Body

architectures are Real-Time Windows Target by Mathworks, dSPACE, xPC Target

by Mathworks, and the Real-Time Module from National Instruments. Most of these

use a single dedicated processor, such as a PowerPC or computer chip from Intel or

AMD.

Instead of interrupt-driven processing, polling operation can be implemented. This



removes the interrupt associated latency but also removes the host interface. This is

generally not acceptable in real-time control applications, particularly in the controller

development process or when data acquisition is required.

A multi-processor Dual-Body architecture is also becoming more popular, espe-

cially because dual and quadcore processors are decreasing in price. The processors

communicate with each other over direct inter-processor data busses. These systems

are capable of increased computing performance but are still limited by interrupt

associated latency.

A Triple-Body architecture decouples the foreground and background threads on

the target machine. This architecture dedicates one or more processors to the back-

ground real-time services tasks and a separate processor to the foreground threads

and host machine interface. The foreground processor interfaces with the other pro-

cessors on a shared data bus and multi-port RAM. This has been implemented in

various applications [6, 21].

Thus far only traditional processor have been considered. Field programmable

gate arrays (FPGA) are increasing in computational power while becoming less ex-

pensive. The logic gates are reconfigured for a specific application and the gates

are essentially reconfigured to a customizable dedicated electric circuit with clocking

rates up to 200 MHz or greater. The FPGA can have many separate logic circuits

that are run in parallel. A single FPGA can then replace the multiple processors of

a Dual- or Triple-Body architecture. The computations are limited however because

the logic architecture is suited for fixed-point simple bit operations. Even division

requires complex hardware to implement efficiently for both hardware utilization and

operation rate. Newer FPGA models are beginning to incorporate dedicated pro-

cessors directly into FPGA fabric, allowing for the high-speed data transfer and bit

operations in the FPGA and complex data manipulation in the dedicated processor.

Commercial vendors such as Innovative Integration [17] or VMETRO [22] provide an

array of FPGA/DSP combinations intended for high loop rates.

Along with sampling speed and time latency, another consideration is the precision

of the implemented computations. Data types from a single bit to signed integers to



double precision are available in processors and fixed-point types are available in

FPGAs. Floating-point computations can be emulated in IP programs on FPGAs,

however they are extremely resource intensive. The fixed-point data type introduces

quantization that needs to be considered in an error budget for the digital platform.

The series of computations also needs to be analyzed so there are not underflows or

overflows to due rounding and saturation. Increasing data type resolutions require

either increasing parallel hardware in an FPGA or a longer computation time in

digital signal processors.

Chapter 2 focuses on the analog interfaces as they are implemented with a dSPACE

system. Computation precision is considered briefly when the A/D oversample and

average method is discussed. The limiting factor in the system design is system la-

tency due to data transfer to/from and within the dSPACE multiple processors. The

rest of this thesis considers a suitable architecture and then suitable hardware to

implement for a high-resolution, high-speed digital acquisition and control platform.

1.2.2 Analog-to-Digital Conversion Methods

A primary focus of this research effort is the design of analog-to-digital interfaces.

It is possible to design the converter from discrete components, however commer-

cial options are available with different architectures to meet our requirements for

various applications. This section details different analog-to-digital converter (ADC)

technologies and the application each type is designed for.

State-of-the-art technology, in both research and commercial devices, demon-

strates an inherent trade-off between resolution and sampling speed. Continuing

development and advances are expected to follow this general trend [23]. High pre-

cision instrumentation as well the communications industry have continually pushed

the limits of ADCs. Reviews of the state-of-the-art devices have been published ev-

ery 3-6 years over the last several decades, and while earlier ones demonstrate the

continuing trends, the limits are being pushed further due to technological advances

[23, 24, 25].

Analog-to-digital conversion, as the name implies, is the interface between the



analog and digital environments. Many sensors, such as a capacitive probe or geo-

phone, output an analog signal. This interface is then necessary in order to implement

digital acquisition or control. Critical criteria include the ADC native resolution and

signal distortion, or signal-to-noise ratio (SNR). Power consumption, the amount of

hardware required, and the characteristics of erroneous readings are also important.

Other factors include the sampling rate, generally measured in samples per second

(SPS), and the throughput delay. In a pipeline architecture, data must pass through

sequential stages. When a sample reaches one stage, a subsequent sample can enter

the previous stage, thus numerous samples can sequentially be passing through the

pipeline at a time. Therefore the differentiation must be made between the sampling

rate period T, and throughput delay Td.

ADCs are available in several standard techniques. These include successive ap-

proximation, flash, integrating, sigma-delta, pipeline, and hybrid technique convert-

ers.

Consumer driven markets are currently pushing converters towards higher speeds

at higher resolution while reducing power consumption. This is partly achieved by

lower supply voltages. This however requires smaller signal voltages that are then

more susceptible to noise from a variety of sources such as power supplies, references,

digital signals, electromagnetic and radio frequency interference (EMI/RFI), and poor

layout, grounding, and decoupling techniques. Moves away from bipolar devices also

mean that ADC differential inputs are not generally referenced to ground and thus

require differential amplifiers that can scale and shift the signal.

Flash Converter

A flash, or parallel-encoded, converter uses 21 - 1 comparators that are synchronously

converted where n is the number of bits of resolution. The complementary compara-

tor inputs are connected to a corresponding reference voltage on an equally spaced

network of 2" - 1 voltages. Digital logic then decodes the output to n bits. The

digital value is found at the break between comparators being on and being off. This



method is by far the fastest method and can convert a sample on the order of several

clock cycles. However, the hardware increases with the resolution. Not only does

it add complexity to implement that many comparators, but tolerances also become

extremely tight on the reference voltage network. Also, false comparator values in

the thermometer code output can easily return a full scale error. Power consumption

is a concern because each comparator has a minimum quiescent current. This cur-

rent is increased in order to operate at high speeds. Assuming a 10-bit converter, 1k

comparators would be required as well as logic devices. Assuming 1 mA quiescent

current per comparator with a 5 V supply rail, the IC would need to dissipate over 5

W of power.

Typically flash converters do not require a sample and hold (S&H) because the

sample is converted over a very small period and is not expected to be changing.

Typically flash converters are available in 8 or 10-bit architectures with sampling

rates up to 1 GSPS.

Successive Approximation Converter

Successive approximation register (SAR) converters, as the name implies, estimate

what the sample voltage is, compare the estimation to the sample, and then refine

the estimation. The SAR converter uses DAC feedback and a comparator to compare

the sample and estimation. A S&H circuit is required to maintain a constant voltage

during the conversion period. The successive approximations are bitwise. All bits are

initially zero and each bit under test is set to 1. The MSB comparison occurs first.

If the sample is higher than the D/A voltage, the bit is left high and the next bit is

tested. This requires n conversions for n bits of resolution.

The conversion time is limited by the settling time of the internal DAC. As the

ADC resolution increases, the required DAC settling time decreases as well because it

must settle to a finer resolution. Errors can be up to 1 full scale and be nonlinear due

to jumped codes for a constant input. SAR converters can reach 20 bit resolution but

require longer conversion periods due to the additional number of approximations



required and the DAC settling time. Typically the integrated DAC uses charge-

redistribution or a switched capacitor configuration. The digital sample is generally

ready after n comparisons as there is negligible latency in the conversion process.

Integration Converter

Integration conversion is a very popular technique for precision instrumentation when

using discrete components, however it has been used less with the advances of inte-

grated circuits. Typically dual integration is used. A reference voltage is integrated,

with an integrator op-amp configuration, for a given amount of time measured by

a stable clock source and a counter. The integrator input is then switched to the

sample voltage and integrated again. This essentially "deintegrates" the voltage back

and when it reaches the initial voltage a comparator signals completion. The conver-

sion is then proportional to the sample voltage and does not depend to first order on

the capacitor or clock speed. Absolute accuracy is limited by the voltage reference

and clock jitter. The resolution is limited by component errors, such as temperature

coefficients and offsets, as well as the clock rate. A benefit is that changes in the

sample voltage are averaged by the integration process, in particular at integer values

of the integration frequency. This is useful for removing 60 Hz content on the sample.

The trade-off between conversion rate and resolution is one of the main drawbacks

for integration converters, however 18-bit converters are available at lower rates.

Sigma-Delta Converter

Sigma-delta (E - A) converters are a form of an integrator converter and have become

more popular with technology improvements in integrated circuits. Their analog

electronics are simple compared to other techniques but are replaced by relatively

complex operations of oversampling, noise shaping, digital filtering, and decimation

on the digital side. The analog electronics are simplified as shown in Figure 1-6. The

voltage input is subtracted, or summed depending on the configuration, with a binary
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Figure 1-6: Simplified schematic of sigma-delta analog operation, adapted from [1].

feedback signal. This signal is then integrated and compared to a constant voltage.

The comparator output is fed back to the input summing junction through a 1-bit

DAC, creating the binary feedback. The comparator output is also fed to the digital

circuitry as a bit stream, which is proportional to the sample voltage. Because the

feedback is a single bit, the settling time is much faster than for SAR feedback.

For example, given a DC input at VIN, the integrator is constantly ramping up

or down at node A. Negative feedback through the single bit forces node B to be

equal to VIN on average. This intuitively means that the average bitwise stream is

proportional to VIN. A bitwise stream of all zeros relates to -VREF and all ones

relates to +VREF.

In order to understand the digital techniques employed, it is important to under-

stand some fmndamental concepts. Quantization is the discretization of a continuous

signal. In this case, a sample voltage is quantized to a digital word. The quanta size

is synonymous with resolution, which is defined by

VRANGE
VQ= (1.1)

For example, a 1 V range with 8 bits has a resolution, or quanta size, of 3.9 mV.

When a continuous signal is quantized, there is inherently an error of as large as 1

the resolution. This can be seen in Figure 1-7 where the quanta size is 0.5. Note that



the zero-order hold time delay is not shown. For a uniformly distributed signal across

all quantization levels, the signal-to-noise ratio (SNR) is modeled as [26]

SNR = 6.0206n + 4.77 - 10logl0or [dB] (1.2)

where 77 is the signal's peak-to-average-power ratio and n is the number of bits. For

a sinusoidal signal 77 = 2 [26],

SNR f 1.763 + 6.0206n [dB] (1.3)

This can be rearranged to solve for the effective number of bits (ENOB) when the

SNR, in dB, is measured
SNR - 1.763

ENOB = - 1.763 (1.4)
6.0206

This is typically a better figure of merit compared to the specified number of bits

for an ADC because it includes signal distortion. The effective number of bits is

analogous to numerical precision. The fact that a number can be recorded with a

certain precision does not guarantee that the precision is actually 1 LSB. The ENOB

does guarantee precision to this standard.

For a signal that is sampled at a sampling rate of f,, the quantization noise power

is [27]

02 =  (1.5)
12

The quantization noise in this model has a uniform spectrum is then spread from DC

to the Nyquist frequency, 1. When oversampling is implemented by a factor of K,

the the Nyquist band is -i-2. The simplest model assumes a uniformly distributed

zero mean white noise [10]. The claim is also made that conversion values depend on

past conversions, so the error is not entirely uniformly distributed [28]. Quantization

is inherently a nonlinear process, but the linear models presented above give a simple

model for its effects on a signal.

In a sigma-delta converter, the original signal is maintained while removing ad-

ditional quantization noise by then digitally filtering the oversampled signal back to



1

0.8

0.6

0.4

- 0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-- - Continuous
Si -- Quantized

. -Error

-.

.... ............. ........ .. ..... i .......... ... ..

.. . . . . . .I I IN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

Figure 1-7: Quantized sine wave with n = 2 bits.

. The relationship between the oversampling ratio K and the increased effective

resolution n' due to removed noise spectra is [29]

K = 22n' (1.6)

Another step that can be included before digitally filtering is noise shaping. This

is the process of shaping the quantization noise so it lies above the passband of the

digital output filter. This is completed in the analog electronics before the digital

filtering. From the simple, first-order model shown in Figure 1-6, the bitwise stream

is proportional to the signal. Figure 1-8 shows a simplified block diagram for the

analog sigma-delta modulator adapted from [30]. The integrator is replaced by a

theoretically ideal integrator with the Laplace variable s. In Figure 1-8, X is the input

signal, Y is the single bit feedback, and Q is the quantization noise. By inspection,

the block diagram is
1

Y = - (X - Y) + Q (1.7)
S

· · ·

- ·. ·

r..... .... .............



Figure 1-8: Block diagram of sigma-delta modulator, adapted from [1].

Solving for Y gives
x sQ

Y = + (1.8)
s+1 s+1

By taking the frequency f limits, where s = 27rfi, the distribution of signal and noise

versus frequency is shown. As the frequency f -+ 0, the output Y approaches the

input signal X and the quantization noise is not present. As the frequency f - o00,

the output Y approaches the quantization noise and the signal X is not present.

Intuitively this is reasonable because the integrator acts as a low-pass average of the

DC, non-zero input X and as a high-pass filter on the noise.

Just as higher orders of integration increase attenuation, they also increase their

noise shaping effect. The additional orders are obtained by adding another integrator

and summation block as shown in Figure 1-9, adapted from [1, 31]. The noise is then

shaped as in Figure 1-10. With these results, one would then intuitively increase the

integrator order until the noise is effectively eliminated in the band of interest. How-

ever, the system would then become unstable assuming an infinite gain comparator.

When assuming finite gain comparators though, instability is not guaranteed. By

properly monitoring the bitwise stream in the digital electronics, incipient instability

can be detected and prevented [30, 32, 33]. These details in which the converter can

exhibit self-excited oscillations are another level of complexity. Commercial ADCs

are available with as high as fourth-order sigma-delta modulators.

The digital filtering is not as simple as a low-pass filter shown in simplified de-

scriptions. A finite impulse response (FIR) filter is digitally implemented and, as the
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Figure 1-10: Sigma-delta modulation noise distribution.
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name implies, has a finite response to an impulse. As opposed to an infinite impulse

response (IIR) filter, which has internal feedback and can potentially respond indef-

initely to a transient, an Nth order FIR filter has a response that is N + 1 samples

long. This FIR filter can be described to have a flat passband with relatively sharp

cutoff. A large portion of the group delay is due to the phase delay of the FIR filter

[34]. For the ADC implemented in Chapter 4, the FIR filter response is shown in

Figure 1-11. The group delay could be decreased by using a smaller order filter.

Finally the output signal is decimated (downsampled). High sampling rates are

used to minimize noise content; however after digital filtering these additional samples

provide no more information on the original signal. Therefore decimation by a factor

of M could be accomplished by passing every Mth result and dropping the rest.

Conceivably these samples could be averaged together before passing on. Assuming

the noise is a Gaussian distributed random signal in the M interval, the resolution

would be increased by an additional factor of

1
(1.9)

45

PASS-BAND RIPPLE = 0.05dB
-0.1dB FREQUENCY = 1.004MHz

-3dB FREQUENCY = 1.06MHz.
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It is important that the output data rate after decimation is at least twice the signal

bandwidth so that signal information is not lost.

Due to the single bit architecture of the ADC, the output is inherently very linear

and errors are within a small window as opposed to the potential missing codes

of other ADC techniques. Sigma-delta converters generally operate with the best

resolutions at the highest rates, and exhibit a correspondingly high SNR within this

performance area. These converters are capable of high data rates but are limited in

real-time control due to the propagation delay.

Hybrid A/D Converter

A multitude of possibilities exist for combining different A/D converting technologies

in an effort to balance hardware, resolution, and conversion speed. One method is to

have multiple flash converters for different ranges of bits. These are sometimes referred

to as subranging or half-flash ADCs. For a 16-bit example, the 8 most significant bits

(MSB) can be flash converted and the digital word can be fed back through a D/A

converter and subtracted from the original analog value. The 8 least significant bits

(LSB) are then flash converted and the bits are combined [35]. Another method would

be to use successive approximation on the MSB and flash conversion on the LSB.

While requiring a number of comparators on the order with flash converter, a

successive approximation converter can be produced from a chain of 2" - 1 resistors

and analog switches to track the sample. These resistors and switches replace the

DAC of a typical SAR converter and does not have the discontinuous errors typically

seen in SAR converters. However, the conversion rate for a new sample depends on

the change in the sample voltage from the previous conversion.

Another SAR converter configuration uses several stages with multiple ADC mod-

ules. This creates a pipelined design. This increases the resolution with modest

additional hardware, however it also introduces a pipeline latency delay.



1.2.3 Digital-to-Analog Converting Methods

A digital-to-analog converter generates an analog output based on a digital word

input. Typically the voltage output is created by summing voltages representing a

digital bit. The voltage can be created with a resistor or capacitor network and by

switching either a reference voltage or current to the proper input terminals of the

network as a function of the digital input.

The simplest method is a weighted-resistor network which uses a single, constant

voltage across a resistor network. A 3-bit converter is shown in Figure 1-12. The

resistor values increase to 2' for an n-bit converter. The tolerances required for the

two extremes of resistor values limit the resolution. The voltage across these parallel

resistors creates a current that is then dropped across a load resistor, thus generating

an output voltage.

An improved design is a weighted R-2R resistor network. The currents associated

with each digital bit are created across repeated stages of 2R and R resistors. Two

configurations of a 3-bit converter is shown in Figure 1-12. The first method creates

a voltage output and the second produces a current output, which can be converted

to a voltage across an output op-amp. The accuracy is dependent on the resistor

matching as well as load resistance. The resistors in the first method act as current

dividers and the current sum is dropped across a load resistor to create the output

voltage. Without this output resistor, a current output is possible. The output buffer

stage is typically more advanced than a single resistor, but rather an op-amp to drive

the output which is generally the slowest part of the converter. Some high-speed D/A

converters use a current output with a high-speed external op-amp to drive a voltage

output.

Hybrid combinations are common for high-precision converters, particularly with

separate MSB and LSB stages. For example, the AD768 converter from Analog

Devices uses current sources for the MSB portion and an R-2R ladder for the LSB

portion and the two outputs are summed together. Accuracy can be maintained by

designing the circuit on a single monolithic IC and laser trimming components during
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Figure 1-12: D/A converter hardware architectures. 1 - Weighted-resistor network.
2.1 - Voltage output R-2R resistor network. 2.2 - Current output R-2R resistor
network. The output node can be terminated at a virtual ground of an op-amp to
form a current-to-voltage converter. 3 - Segmented implementation



testing before final packaging. Essentially all D/A converters are a combination of

either current or voltage sources with current/voltage steering or current/voltage

dividers.

D/A converter resolution can range from 6 to 18 bits with a settling times from

15 ns to 100 Is [27, 35]. The settling time is defined as the time it takes to settle to

the specified accuracy. The update rate can be much higher however, and is limited

by the rate at which digital logic can be clocked in the D/A and in the internal

digital switching components. A fast settling time is essential to maintaining high-

resolution when high update rates are necessary. Faster update rates are possible

with parallel digital inputs. This removes a serial to parallel register within the D/A

converter as well as the need to clock in up to 16 bits, generally with a maximum

clocking frequency of 40 MHz. The parallel inputs also add hardware and necessary

logic lines, increasing the cost, physical footprint, and required logic lines from the

controlling circuit.

High-speed, high-resolution D/A converters are specified with their resolution,

update rate, settling time, and input format. The specific internal D/A conversion

implementation has little effect on additional specifications.

This chapter has presented an overview of the work completed in this thesis, as

well as a background on high-resolution digital systems. These system require an

understanding of the computation/data manipulation platform and the analog in-

terfaces, both input and output, to the digital system. These architectures impact

system performance. Chapter 2 discusses high-resolution analog interfaces designed,

built, and tested for a dSPACE digital system. The remainder of the thesis describes

a high-resolution, high-speed digital platform designed, built, and applied to an ex-

perimental plant.





Chapter 2

dSPACE Interoperable

High-Resolution Analog Interface

This chapter describes high-resolution hardware and software designed to operate

with a dSPACE control environment. The hardware consists of a custom A/D PCB,

D/A PCB, and connector breakout PCB. The software consists of embedded firmware

on the A/D PCB and interface software for the dSPACE system. The hardware and

software was designed by David Otten as a research scientist with the Precision Mo-

tion Control Laboratory in cooperation with the SAMM stage design at the University

of North Carolina in Charlotte [16]. The design is considered freely available to the

public'. This chapter describes the overall design as well as characterization and

improvements made to the design.

The high-resolution A/D and D/A system utilize a slave DSP on the dSPACE

1103 PPC controller board to transfer data. The custom PCBs are shown in Figure

2-1. The system provides galvanic isolation between dSPACE and the plant to disrupt

ground loop effects. A small footprint permits the input/output to be located near

the signal source/sink to increase signal fidelity. The A/D channel uses an on-board

DSP and a high-speed A/D converter for oversampling and averaging to increase

the effective number of bits from 18 to 20 bits compared to a maximum of 16 bits

with dSPACE. The D/A channel uses a precision 16-bit converter as opposed to the

1Available at dspace.mit.edu



Figure 2-1: dSPACE high-resolution DAC (Left) and ADC (Right) PCB.

dSPACE 14-bit converter. Up to 8 A/D and 7 D/A channels are run to a dSPACE

interface board through digital modular cabling. The increased resolution gained

by oversampling and averaging introduces additional phase lag of 0.8 samples and a

magnitude decrease as the signal frequency approaches the Nyquist frequency. The

sampling frequency is limited to 8kHz due to the slave DSP communication processes.

2.1 System Description and Design

The dSPACE 1103 PPC controller board (DS1103) uses a PowerPC 604e running

at 400 MHz with a slave Texas Instruments DSP running at 20 MHz. The DS1103

supplies 16-bit multiplexed ADCs with +10 V range and 80 dB signal-to-noise ratio

(SNR), as well as eight 14-bit DACs with +10 V range. The high-resolution PCBs

interface with the slave DSP to take advantage of its processing power, allowing

time consuming arithmetic to be completed by the DS1103 as opposed to on-board

the slower and less precise A/D DSP. A serial interface is used to facilitate galvanic
isolation with high-speed digital isolators. This isolates the plant electronics from
the dSPACE system in an effort to eliminate ground loops as well as allowing the
input/output boards to be powered with the same power source as the plant. Signal
fidelity can be maintained by locating the PCB boards near the signal source/sink



and then digitally interfacing the boards to a central dSPACE interface board.

Oversampling and averaging improves the resolution of a signal that is corrupted

by white noise. In our implementation at most 100 samples can be averaged per cycle

with the A/D converter operating at 800 kSPS and the slave DSP at 8 kHz. The noise

is assumed to have a Gaussian distribution, and thus a sum of N equally weighted

samples divided by N reduces the standard deviation by . Therefore the expectedVrN*
improvement is a factor of 10, or 3.3 effective bits. This also introduces an additional

TAD SAMPL' time delay, where TAD SAMPLE = 1.25 ps, into the feedback loop. The2

frequency response of the averaging fitler to an impulse over the sampling period is

given by [36]
M

1
H(e jL )  2M+1 Z e-wk (2.1)

k=-M

where M = . The magnitude of this frequency response is shown in Figure 2-2. The

width of the first lobe is ý, or approximately 50.3kHz for 800 kSPS. The magnitude

decrease at higher frequencies is intuitively understood by realizing the sample does

not represent the precise signal at that instant; rather it represents an average of the

signal since the last acquisition. At low frequencies there are many samples taken for

each sine wave so the magnitude decrease at the peaks is negligible, but at higher

frequencies where the signal is represented by only several samples, peaks become

rounded off showing a noticeable magnitude decrease. The discrete z-domain transfer

function is

1 + z - 1 +... + z- 98 + z- 99  z 99 + Z9 + ... + z1 + 1
H (z)= 100 10z99 (2.2)100 100z99

where z is the z-transformation variable. This digital filter is a boxcar finite impulse

response (FIR) filter. Equation 2.2 does not imply decimation however. Decimation

can be a distinctly separate process of taking every Nth point. By combining the

boxcar filter with the decimation, the full sample data can be utilized for higher

resolution at a slower, decimated data rate. The boxcar filter and decimation is

discussed further in Section 5.1.
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Figure 2-2: Magnitude frequency response of averaging filter for N = 100 at 800 kSPS,
before decimation.

The high-resolution A/D PCB designed by David Otten is built around a com-

mercial, high-speed 18-bit A/D converter IC (AD7674) from Analog Devices which is

coupled with a 16-bit fixed-point digital signal processor (DSP) IC (TMS320LF2604)

commercially available from Texas Instruments. The A/D converter operates at 800k

samples per second (SPS) while the DSP sums the samples and formats the data for

serial transmission to the dSPACE slave DSP. The average is not calculated on the

DSP because the fixed-point precision limits accuracy.

The A/D converter is provided with a fully differential input front-end that can

accept up to +10 V signals. The circuit is built on a small printed circuit board

(2.5" x 2.6") and located in an aluminum case that can be matched to any available

electrical common. An 8-pin modular connector is used for the high-speed digital

signals between the analog input board and dSPACE. The design uses readily available

ethernet cables for cabling because their twisted pair construction and controlled

impedance is favorable and they are available pre-terminated in a variety of lengths.

As a companion to the high-resolution A/D, a high-resolution D/A was also de-

signed and built by David Otten. A 16-bit low glitch voltage output D/A from Linear



Technology (LTC1650) is used. The circuit is also built on a small printed circuit

board that can be located close to the destination of the signal and utilizes an isolated

interface to the DS1103 to eliminate ground loop problems. The data for the D/A is

serially shifted out of the DS1103 slave DSP at the same time the A/D data is shifted

in. This overlap efficiently minimizes serial clock signals for transmitting data to and

from the DS1103.

The D/A IC itself only outputs a ±4.5 V signal. The output of the PCB is driven

with a non-inverting op-amp configuration to scale the voltage to ±10 V. The resistor

ratio is
R2 110k

k = 1 + = 1 + 10k= 2.210 (2.3)
R, 90.9k

where R 1 is between the inverting terminal and ground and R 2 is in the feedback

path. Because the gain factor k is not exactly 2.222, the output range is limited

to +9.946 V. Hence a scale factor is included in the slave DSP to account for this

difference. The results incorporate this scale factor, however it is essential to check

this factor for any new setup as resistor tolerance or reference accuracies can vary

between PCBs.

The relevant internal components of the DS1103 relating to the high-resohlution

system are outlined in Figure 2-3. The digital I/O are used to clock and transmit

data through the interface PCB to all channels. The DS1103 slave DSP reads from/to

the 32-bit I/O bus and the master processing unit performs the complex data ma-

nipulation. Along with the high-resolution boards, 2 interfaces for Zygo ZMI 4004

interferometer boards are included in David Otten's design, allowing up to 8 measure-

ment channels. This additional design implementation is not described herein but is

documented in the available resources [4, 16].

Only 7 output D/A channels are available because the output data port only

provides 7 bits. The software and DS1103 board itself uses the full 8 bits of the port

but the DS1103 cabling and breakout box only brings out 7 bits. It is possible to use

another port however the data transfer on the additional port limits the closed-loop

sample rate to approximately 6 kHz as opposed to 8 kHz. Cabling is provided for this
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Figure 2-3: dSPACE data flow with high-resolution platform, adapted from [3].

extra channel on the PCB interface board, and the two sets of compiled software files

are available for the instance when all 8 D/A channels are required, albeit at a slower

sampling rate. Initially only 6 channels were operational but during characterization

the breakout connector PCB was rerouted for the 7th channel.

The software interface is implemented with three programs: a custom written

Simulink S-Function, a set of user-defined functions for the slave DSP on the DS1103

PPC controller, and a custom firmware program to control the A/D DSP. This DSP

requires a one-time program write with specific program emulation hardware from

TI. A user-defined Matlab Simulink model is generated for each specific application

where the S-Function provides a user interface with 8 inputs and 7 outputs in the

Simulink environment.

The S-Function generates a communication path between the DS1103 master and

slave DSP. This includes data formatting, scaling, sorting, and interfacing to the 16-

bit communication buffer. The slave DSP interfaces with the communication buffer



and then reformats the data from 16-bit words back into 32-bit words. One bit is

sent to each D/A channel and one bit is received from each A/D channel on each

clock pulse. The D/A channels require 16 bits for an output, and the A/D channels

require 32 bits to be acquired. Of the 32 bits there are 25 bits of data and 7 bits

representing the number of samples taken. For each instance where data is requested

by the slave DSP from the A/D DSP, 32 bits are transferred to the A/D DSP serial

output buffer and a new sum is started. This allows as many A/D samples N per

period as possible.

The sampling rate of dSPACE is limited by the time it takes to transfer and

process data between the components of Figure 2-3. Table 2.1 details the functions

within one Simulink time step. The majority of time is spent by the slave DSP

transferring and clocking data, as shown with Figure 2-4. This process is straight

line coded in assembly language to minimize the delay time. The complete step time

subsequently limits the dSPACE sampling rate to 8 kHz. The relative time at which

each channel is latched to the input or output is shown over 2 time samples in Figure

2-5. The dSPACE channels are represented with DS and the custom high-resolution

channels are represented by HR. The timescale is given in ps.

2.2 System Characterization and Results

All digital systems create a phase delay, or time lag, due to the processing and trans-

port of digital signals. This requires at least one time step, as it takes time for the

data to transfer from the Simulink model to the D/A converters and then time for

the A/D converters to sample the data and send it back to the Simulink model. Fig-

ure 2-6 shows various time delays for different combinations of dSPACE (DS) and

high-resolution (HR) systems. There is a single time sample delay from the DS D/A

output to the DS A/D input relative to an internally generated sine wave. The HR

D/A to the DS A/D is not shown here, since it has the same phase lag because both

D/A channels are outputted before the subsequent DS A/D reading. This was also

shown in Figure 2-5. The DS D/A to HR A/D has a larger phase lag due to the
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Figure 2-4: dSPACE subsystem timing [4].

Time Sample 0 L- Time Sample 1

Figure 2-5: dSPACE and high-resolution latching timeline at 8 kHz sampling. The
dSPACE channels are represented by DS and the high-resolution are represented by
HR. The time scale is microseconds.
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Table 2.1: dSPACE Subsystem Timing

Master DSP - mdlUpdate Function
Flush communication buffer
Acquire D/A data from model and scale
Sort channels
Reformat data
Output D/A data to comm. buffer
Slave DSP
Acquire D/A data from comm. buffer
Clock data to/from analog hardware
Output A/D data to comm. buffer
Master DSP - mdlOutput Function
Acquire A/D data from comm. buffer
Reformat data
Sort Channels
Scale A/D data and output to model
Complete Cycle Time:

Time [ps]
0.96
0.68
0.13
1.31
1.79

14.94
48.25
35.35

4.07
2.92
0.13
2.42

112.95

Total [ps]

4.87

98.54

9.54

averaging from the previous time sample. The HR D/A to HR A/D delay is over 2

time samples because for a given sample output, as shown in Figure 2-5, the A/D

input is latched in before the output is latched out. This is in addition to the A/D

averaging over the preceding time sample.

These delays can also be viewed in the frequency domain. Figure 2-7 shows the

frequency responses of the four possible system combinations. The top magnitude

and middle phase frequency responses were obtained with a digital dynamic signal

analyzer designed for Simulink and the dSPACE family by Katherine Lilienkamp [37].

The bottom plot was measured with an external DSA. These two methods are further

discussed below. For the DS D/A and HR D/A to DS A/D there is a 45 degree phase

shift at 1 kHz, corresponding to a single sample delay, as demonstrated by Figure

2-6. The transfer function for this pure time delay is

G = e - T wj (2.4)

where T = 125 ps is the sample time. As previously described with Equations 2.1 and
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Figure 2-6: Phase delay of 100 Hz sine wave for several connection options. The time
axis is in milliseconds. Digital system sample rate is 8 kHz.

2.2, the HR A/D introduces a magnitude and phase decrease. The magnitude decrease

is expected to be 4 dB at the Nyquist frequency of 4 kHz and the phase delay is

expected to be 1.5 samples, or 188 ps. The experimental phase delay has a longer time

constant of T = 225 ps, corresponding to a 1.8 sample delay and a magnitude decrease

on the same order as that expected. This experimental difference is attributed to HR

A/D latching occurring well into the time step and is thus averaging a changing D/A

signal. The combination of both high-resolution systems introduces further dynamic

effects due to the data clocking and latching order shown in Figure 2-5. The D/A

data is latched out to the analog domain almost half a time sample after the A/D

sample is latched in. Additionally, the A/D sample is averaged over the previous time

sample. This introduces the larger phase lag of 2.5 samples, or T = 315 ps.

The increased phase lag when measuring with the high-resolution A/D from the

high-resolution D/A also corresponds to a larger magnitude decrease due to the high-

speed sample averaging, particularly as the sampling frequency approaches Nyquist.
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Figure 2-7: Frequency response comparison, up to the Nyquist frequency. The fre-

quency response as measured with the dSPACE DSA for both magnitude (top) and

phase (middle) and the magnitude frequency response as measured with the HP DSA

(bottom).
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Figure 2-8: Dynamic signal analyzer configurations for dSPACE software DSA (left)
and hardware HP DSA (right).

The clocking order was designed to optimize the overall DSP processing time, thus

constraining the A/D and D/A latching sequences. The >20 dB magnitude attenua-

tion at Nyquist is merely an artifact of the frequency response measurement method

however. An alternative method to the dSPACE dynamic signal analyzer (DSA) de-

signed by Katherine Lilienkamp for measuring the frequency response is to use an

external DSA (HP model 35665A). The two configurations are shown in Figure 2-8.

The bottom plot in Figure 2-7 shows the magnitude frequency response when mea-

suring with the high-resolution A/D. As expected, the magnitude decrease due to

sample averaging is the same regardless of signal source. The external DSA better

simulates the hardware as it would be used in a system.

While the high-resolution A/D design introduces magnitude and phase losses due

to the digital averaging, the effective resolution of the analog input channels between

the dSPACE channels and the high-resolution channels are increased from 15.7 to 20.1

bits. In analyzing analog-to-digital converter results, peak-peak and RMS amplitudes

are used as well as the signal-to-noise ratio (SNR) and the effective number of bits

(ENOB). Technically the noise includes all distortion in the signal up to the Nyquist

frequency, excluding dc. The SNR is computed by

SNR = 201og RMSNOISE20[V] [)dB] (2.5)

where the RMSERROR is measured about the average of the total samples for a

constant input and the range is 20 volts.

i
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Figure 2-9: A/D noise floor (Left) and A/D response to 10 Hz sine wave (Right).

To quantitatively demonstrate the high-resolution improvement, the A/D chan-

nels were initially tested with 50 Q BNC terminators. The terminator shorts the

differential inputs to create a theoretically zero input. Figure 2-9 shows a sample

data capture with grounded inputs. Results are also listed in Table 2.2. Most of the

dSPACE A/D noise is limited to ±1 LSB, or +305 1 V. These quanta divisions, and

the lack thereof in the high-resolution A/D system, are further shown in response to a

1 mV, 10 Hz sine wave which was resistively attenuated by 60 dB to 1 mV amplitude.

Table 2.2: A/D Noise Floor Comparison

dSPACE A/D HR A/D
Pk-Pk [jV] 2136.2 809.0
RMS [1pV] 302.3 15.0
SNR [dB] 96.4 122.5
ENOB [bits] 15.7 20.1

With an understanding of the A/D dynamics and basic noise floor, I implemented

static tests to demonstrate linearity, offset, and RMS noise over the full output range.

A schematic of the test equipment is shown in Figure 2-10. A high-resolution D/A

board generates an expected voltage output that is low-passed at approximately 0.3

Hz with a high-performance polypropylene 0.47 pF capacitor. This signal is then

measured with an A/D board under test, by a Keithley 2700 6.5 digit DMM, and

by a Tektronix AM502 differential amplifier. The A/D board under test samples

t . . ...
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Figure 2-10: High-resolution characterization schematic for A/D and D/A channels.

over a given period whereupon the average is calculated to give the measured voltage

and the RMS noise is calculated about this average. The DMM is operated with

extended conversions to produce low variation results, giving an assumed absolute

voltage. The differential amplifier is AC-coupled to a dSPACE A/D and is used to

measure the RMS noise present in the signal. A large gain is used on the differential

amplifier to avoid quantization due to the dSPACE A/D converters. The signal RMS

noise is also measured to ensure it is significantly below the A/D measured RMS

noise. This same setup is used to characterize the high-resolution D/A systems, with

several items removed as shown.

The high-resolution A/D converter is a commercially available IC from Analog

Devices (part number AD7678) and is an 18-bit switched capacitor successive ap-

proximation register (SAR) converter. The converter operates at its maximum con-

version rate of 800 kHz and has fully differential inputs with a fixed gain front-end

instrumentation amplifier configuration. Figure 2-11 shows the RMS noise levels for

the source signal, the dSPACE A/D, and the high-resolution A/D. The noise present

on the signal line is included to verify that the most significant noise source is the

A/D itself. The dSPACE A/D achieves 15.4 effective bits over the full range. As
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Figure 2-11: RMS noise on A/D channels across full input range.

previously shown, the HR A/D channel has an effective resolution of over 20 bits, but

this resolution is only achieved for an input signal close to 0 V. The noise grows with

the signal level. The effect is likely due to the SAR converter relying on an external

voltage reference for the internal DAC. This DAC introduces a symmetrical noise

source from the voltage reference which is further explained with the high-resohltion

D/A results.

When this design was first adopted and throughout characterization, the A/D

design displayed an asymmetric RMS baseline noise distribution. This asymmet-

ric response is shown in Figure 2-12. The debugging process focused on the analog

portion of the circuit leading into the A/D converter. The converter datasheet rec-

ommends the configuration on the left of Figure 2-13 where shunt capacitors low-pass

the differential signals to common. The poor noise was improved by changing to the

configuration shown in the right of Figure 2-13 where a single capacitor is referenced

to the differential signal. It is not clear why higher RMS noise levels are measured

with positive versus negative input voltages. There is no commonly accepted method

as the literature recommends both methods [2, 8]. The important frame of reference

DS AID

Signal Noise HRA/D

6VA
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Figure 2-12: Asymmetric RMS noise on high-resolution A/D channel across full input
range. The original configuration has two capacitors references to common and the
revised configuration has a single capacitor referenced between the differential signals.

is the relative signal dynamics because that is the converted voltage as opposed to

the absolute dynamics relative to the ground reference. This improved configuration

is recommended by the differential amplifier datasheet.

The high-resolution D/A board utilizes a D/A converter with higher resolution

than available in the DS1103. The dSPACE D/As implement a sample and hold

that limits the glitch conversion effect common to D/A converters. There is a finite

time where the output impulses when the D/A converter modifies its output. Figure

Figure 2-13: High-resolution analog front-end configurations: asymmetric high-noise
configuration (left) and symmetric low-noise configuration (right).
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Figure 2-14: High-resolution D/A glitch.

2-14 demonstrates a glitch from the designed D/A channel after passing through the

final gain. The peak-to-peak amplitude is 50.8 pV over a 2.5 ps span. The glitch

energy shown is 0.127 nV-s, compared to the 1.8 nV-s specification in the datasheet.

A sample and hold could be implemented as a possible means of mediating the glitch

effect.

As with the A/D channels, the baseline noise was also taken for the D/A chan-

nels. Figure 2-15 shows a differential amplifier trace after adjusting for offset. The

peak-peak and RMSERROR improvement provides over 2 effective bits of increased

resolution. The dSPACE D/A is specified for 14-bit resolution, which corresponds to

1.2 mV per step. The high-resolution D/A uses a 16-bit converter for 305 -IV steps

over the full range.

The noise present over the full range is further characterized in the plots in Figure

2-10. Static tests were also used to determine the total linearity, offset, and noise

present. Figure 2-16 shows the RMS noise on the dSPACE D/A channel (dachl)

versus the high-resolution D/A channels (da). There are several important features.

The dSPACE channel has a peak effective resolution of approximately 12.3 bits while
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Figure 2-15: D/A baseline noise with 1 MHz low-pass filter on differential amplifier.

the high-resolution boards approach 15 bits. The RMS noise increases at the range

extremes due to the architecture of a digital-to-analog converter, in that the refer-

ence voltage is multiplied by the digital code representing the desired output. The

high- resolution design further amplifies this noise with an output gain of over 2. The

noise present on the voltage reference is symmetrically scaled through the D/A con-

verter over the output range. While the dSPACE D/A converter architecture has not

been investigated, it is provided for relative comparisons and is assumed to operate

similarly.

The offset and linearity for the system was also characterized. Differential non-

linearity is the error for a 1 LSB step and is rated at 0.15 LSB for the DAC. Integral

nonlinearity is the worst case deviation between the ideal line and DAC output as

adjusted for offset. This is rated at 8 LSB whereas I found an average of 6.2 LSB

and an offset of -110 MV. I expected that offset and linearity adjustments or a lookup

table within Simulink are implemented to maintain absolute voltage outputs. Addi-

tionally, the increased resolution is demonstrated by small amplitude signals. Figure

2-17 shows the output of a 3 mV amplitude sine wave of 100 Hz. The dSPACE D/A
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Figure 2-16: RMS noise present on D/A channels across full range. A single dSPACE
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Figure 2-17: Small amplitude D/A output.

goes peak-peak in 5 steps, which is expected at

6mV = 1.2mV (2.6)
5 quanta

With a 30 kHz low-pass filter in place on the differential amplifier, the noise can be

seen to be less than +0.5 bit, as expected from the specifications. The high-resolution

D/A however provides 19 steps over 6mV, demonstrating the expected resolution of

6mV
= 316pV (2.7)

19 quanta

The noise is also approaching 0.15 LSB.

This chapter described the high-resolution analog system previously design for the

dSPACE digital platform as well as improvements and system characterization. The

following chapters describe a new high-resolution, high-speed complete digital envi-

ronment which I designed. The chapters describe project requirements, component

selection, and system design.



Chapter 3

High-Speed, High-Resolution

Digital Platform Requirements and

Selection

This chapter introduces the second portion of my thesis and presents an application

that requires both high-resolution and a high sampling rate analog-to-digital interface.

This chapter details what is required for a digital platform, from the A/D to the

digital processing component to the D/A, and compares and discusses why I selected

the ultimately implemented design.

3.1 Application Description

In coordination with a project being led by Ian MacKenzie, the need for a high-

speed, high-resolution digital acquisition and control system became necessary. The

application was for an atomic force microscope (AFM) that could image a 50x50

/pm surface with 1024x1024 pixels at 1 Hz. This presents interesting mechanical

challenges with respect to the actuation and sensing methods. In order to provide

a proof of concept demonstration, a 2 degree-of-freedom positioner was designed by

Ian MacKenzie [12]. This provides one scanning axis along the surface and a second

height-following vertical axis. The remaining third axis required for imaging is driven



by a subsequent system either moving the sample or the 2-DOF scanner mechanism.

Much lower accelerations and velocities are required on this third axis. The 50 pm

scan axis operates at resonance and the perpendicular axis provides random access

positioning over a 10 pm range. Stacked, 2-DOF electromagnetic actuators generate

motion through constraining flexures. Position sensing is implemented with high-

precision capacitive probes from ADE [19]. Subsequent design revisions will explore

sensing from linear encoders and scales. A resolution of 0.1 nm RMS was desired on

the scan axis and 0.02 nm RMS on the vertical axis. The hardware design is discussed

further in Section 6.2.

To obtain the required specifications, 220 pixels must be acquired within 1 second.

This is slightly over 1 million samples per second (MSPS). The capacitive probes were

selected to minimize the RMS noise over the required range. The sample measurement

needs to be good to 2 parts per million (ppm) on the scan axis to achieve 0.1 nm RMS

resolution over a 50 pm range. This is equivalent to 113.7 dB SNR or 18.6 equivalent

number of bits. Care must be taken even in analog electronics to maintain 2 ppm

resolutions, let alone analog and digital interfaces at the sampling speeds required

by this application. The same requirements apply to the vertical axis because the

RMS resolution and range are equivalently scaled. The selected high-performance

capacitive probes have a 50 and 40 pm range for the x- and z-axis, respectively.

However, the probes were only specified at 0.77 nm and 0.36 nm RMS at 100 kHz

bandwidth. This equates to a dynamic range of 96.2 dB and 100.9 dB for each axis,

respectively. Even at these less stringent specifications, few options exist to provide

lower RMS noise components.

The instrumentation needed to be capable of digitally acquiring pixels and storing

them for review and post-processing at a subsequent time. In addition, real-time

control must be implemented in order to scan at resonance and track the sample

surface with the vertical axis. The vertical axis closed-loop bandwidth is set between

1 and 5 kHz. The closed-loop sampling rate needs to be at least 100 kHz for the

vertical axis to accommodate up to a 5 kHz closed-loop bandwidth. Conceptually the

real-time control could be completed with analog electronics and the pixel acquisition



could be completed with a high-resolution, high-speed analog-to-digital interface. An

analog controller offers distinct advantages over a discrete control system because it

is easily implemented with traditional op-amp circuits, has low cost, low latency, and

high bandwidth. However, analog controllers are limited to gain, summing junctions,

and traditional linear transfer functions. A digital control system, is much more

flexible because it can implement complex feedforward, nonlinear, or discontinuous

control that are not easily realized with analog circuits.

The following criteria were evaluated when selecting the digital control platform

components:

* Required resources to develop/implement hardware and software to meet min-

imum baseline specifications

* Development/implementation 6-month timeline risk

* Flexibility for future expansion

* Single supplier dependence

* Technical support by supplier

* Cost

The three main sections that need to be selected and potentially designed if no

commercial option is available are the analog-to-digital converter, the digital platform

that acquires, stores and manipulates data, and the digital-to-analog converter to

close the control loop. The rest of this chapter explores potential options for these

three top-level components, their interdependence, and why each component was

selected.

3.2 ADC Requirements and Selection

The state-of-the-art technology in analog-to-digital converters exhibit a trade-off be-

tween high-resolution and high-speed. Different converting technologies exist that are

advantageous for one aspect more than the other. Integration of an incoming signal

requires a longer conversion time, but it also averages the signal to a higher preci-



sion over that period of time more than other methods. Alternatively, methods like

flash conversion are extremely high-speed but require increasingly larger amounts of

components for greater resolution. The number of integrated components in a flash

converter increase by 2' for n bits. Different A/D topologies and their features were

discussed in Section 1.2.

As shown in Chapter 2, it is possible to average samples to obtain a lower RMS

noise. Conceptually it would then be possible to use a high-speed A/D converter of

lower resolution and average the conversions to meet specifications. This however

requires hardware operating at these higher speeds to complete the averaging. This

technique can be implemented in hardware with a sigma-delta ADC or with a lower

resolution ADC with a dedicated DSP or FPGA to sum and average the samples.

The required RMS resolution on the two separate axes is 18.6 effective bits, or a

dynamic range of 113.7 dB. The specifications are given in dynamic range rather than

an RMS voltage because the capacitive probe measurement can be scaled or shifted

to match the ADC. The effective number of bits (ENOB) is different from the listed

number of bits for an A/D converter. A true sample contains spectral noise that

can vary by many LSB from sample to sample even though each individual sample is

represented by a greater resolution of n bits. The effective number of bits accounts for

this noise and describes the actual precision of the digital sample. A sample rated to

24-bit resolution offers 59.6 ppb native resolution. However, the 24-bit ADC selected

for implementation only has a specified dynamic range of 100 dB. This equates to

16.3 ENOB or 12.2 ppm.

According to the described requirements, an ADC must have a sample rate of at

least 1 MSPS. Operating at higher sampling speeds allows more flexibility in hardware

operation. A minimum of 1 MSPS is obtained by assuming that a datapoint is taken

uniformly over the sample area. For a resonant scanner, this implies that datapoints

would be taken along the entire scan and in both directions of the scan axis. In

many cases data is only collected in one direction along a scan axis to limit direction

dependent hysteresis and errors. Therefore it is advisable to seek an ADC sohltion

that has higher sampling rates available.



I initially evaluated potential commercial IC and then evaluated third-party ven-

dors to implement the selected converter or a custom converter. Table 3.1 lists the

highest performance IC options from the leading ADC suppliers.

Table 3.1: Analog-to-Digital Converter IC Commercial Options

ADC Supp. Res. SNR Rate Prop. Arch.
P/N [bits] [dB] [MSPS] Delay [ps]

AD7760 AD 24 100 2.5 10.8 EA
AD7641 AD 18 93.5 2 0 SAR
AD7982 AD 18 98 1 0 SAR
AD9446 AD 16 81.8 100 0.13 Pipeline
AD10678 AD 16 80.5 80 0.007 Subrange
ADS1271 TI 24 109 0.105 360 EA
ADS8412 TI 16 93 2 0 SAR
ADS8482 TI 18 99 1 0 SAR
ADS1625 TI 18 93 1.25 20.8 EA
LTC2440 LTC 24 0.0035 EA
LTC2202 LTC 16 81.6 25 0.28 EA

MAX11038 Maxim 16 2.25 0 SAR

From these findings of currently available ICs, there are three potential solutions.

First is the AD7760, which I selected and developed. The AD7760 has an appropriate

sampling rate and initially appears to satisfy the resolution requirement, however the

dynamic range is 13 dB less than is required. Averaging by a factor of 2 will only

increase the SNR to 103 dB. Another option is the AD9446. Clearly the native

dynamic range is much too low but oversampling and averaging can be used. By

averaging by a factor of 100, the dynamic range would then be 102 dB. The ADS1271

was not considered because of the very low sampling rate. Because the AD7760

and AD9446 have very similar signal-to-noise ratios after averaging, the AD7760 was

selected because it presents a more flexible IC that does not require additional data

processing. The SNR was found to be higher than 100 dB in actual testing. With

post-processing and filtering, the measured SNR can surpass the requirement. The

final option is the ADS8482 from Texas Instruments. Based strictly on dynamic range

and sampling rates, this A/D matches the capacitive probe noise characterization and



the minimum sampling rate.

The AD7760 24-bit converter was also selected over 16- or 18-bit converters be-

cause the resolution is not constrained by the digital output precision. If the converter

resolution were not limited by the dynamic range but rather by digital output pre-

cision, the 24-bit converter would have a precision of 144 db whereas the 18- and

16-bit converters would only have a precision of 108 and 96 dB, respectively. The

datasheet dynamic range for these 16- and 18-bit converters are approaching their

digital output limit. The AD7760 IC is able to measure up to a 109 dB dynamic

range in experimental results.

The converter configuration affects how the A/D is implemented. Both the sigma-

delta and pipeline converters introduce a significant propagation delay. This time

delay causes a linear phase loss at increasing bandwidths. While the converter can

provide temporally accurate samples for data acquisition, closed-loop control becomes

more difficult at higher bandwidths. This delay places additional constraints on the

rest of the control loop to minimize delays. For example, the selected AD7760 A/D has

a propagation delay of 10.8 ps whereas a sample from an SAR converter is available

immediately following the conversion. The converter architecture indicates the order

of group delay and the datasheet group delay is also listed in Table 3.1.

I also considered potential third-party solutions. This would include a constructed

ADC interface with all supporting circuitry and an interface to subsequent hardware

either through a computer data bus or digital outputs. Essentially the ADC would

appear as a black-box peripheral to any higher-level control. These options are pre-

sented in Table 3.2 and are compared against developing our own ADC interface with

the AD7760.

Table 3.2: Analog-to-Digital Converter Commercial Options

ADC Supplier Additional development
AD7760 converter Analog Devices PCB design & testing
AD7760 eval. board Analog Devices Interface & availability
X3-SFD PCIe1  Innovative Integration Software Development
NI 5922 National Instruments Resolution



The National Instruments platform does not provide a viable solution for a number

of reasons. The instrument is designed as a digitizer/oscilloscope and is not intended

for real-time applications. Interfacing to the data in a real-time environment would

then be troublesome and introduce complexity. The converter has 24-bit resolution

but only at low sampling rates. At greater than 1 MSPS, the resolution decreases to

16 bits. The system also costs on the order of $15,000 to implement with a high-speed

acquisition and control platform.

The AD7760 evaluation board could have provided the quickest development time

as it would have only required interfacing to the digital connections, as well as being

the lowest cost solution. From the time of product selection and the following ten

months, Analog Devices was not able to deliver any evaluation boards due to lead-

free certification delays. Even if the board were available, this route was not ideal for

several reasons. The AD7760 requires a boot-up sequence upon startup to initialize

settings and begin sampling. The evaluation boards would require a manual boot-up

sequence through Analog Devices proprietary software. This is neither robust nor

convenient. Additionally, there is no digital isolation between the PCB and the data

acquisition/control hardware. This allows ground loops to form and digital noise to

pass from the computer through sensitive analog electronics. Unbeknownst to me

at the time of product selection, several errors also existed in the evaluation board

design, which may account for delays in availability. These were found during the

course of the custom PCB design and testing as the design was adapted from the

evaluation board design. These errors are discussed in Chapter 4.

At the time of the product survey, building our own PCB based on the AD7760,

the AD7760 evaluation, and the National Instruments system were the only available

options. Thus I decided that a custom A/D PCB based on the AD7760 was necessary.

This design is detailed in Chapter 4. After the implemented design was built and

debugged, the Innovative Integration X3-SDF product was released. The third-party

solution represents a viable option had it been available, and is listed for retrospective

comparison. The product is shown in Figure 3-1.

1Product not available for initial product survey, www.innovative-dsp.com



Figure 3-1: X3-SDF hardware by Innovative Integration [5].

The X3-SDF is based on four ADC channels with a 1-million gate Xilinx FPGA on

a PCIe board. An external connector provides analog inputs, external triggering and

synchronization, and 44 digital inputs/outputs. There is 4 MB of SRAM included on

the board as well as direct memory access (DMA) hardware to allow DMA transfer

for data acquisition.

The four A/D converters are the AD7760 ICs also implemented in the custom

PCB design. They can be completely synchronized and the AD7760 registers are

accessed through mapped libraries in software provided by Innovative Integration.

These libraries are available for $2,500 in addition to the hardware. FPGA fumc-

tionality and the user interface are accessed through Matlab/Simulink blocks. The

Innovative Integration blocks are similar to the dSPACE blocks; external peripherals

are accessed by custom, proprietary S-Functions. This essentially hides their opera-

tion but allows access to their functionality. User defined code is then linked to these

peripherals. The Simulink program is compiled with Xilinx's ISE CORE Generator,

part of the Xilinx ISE Foundation pack and available for $2,500.

The X3-SDF is intended for hardware-in-the-loop operation and can have very

high loop rates when the PCIe bus and host computer are not included in the loop.

Latency, or propagation delay, due to the AD7760 conversion is still a significant



factor. To utilize DMA transfers or include the host computer in the loop, a packet

protocol on the PCI bus is utilized. The X3-SDF packages a data packet and transmits

it over the PCI bus when a user-determined amount of data is collected on the DMA

target. This generates an interrupt in the host computer to perform the necessary

action, whether it be storing data or manipulating it and thus returning data to

the X3-SDF. The loop determinism is greatly decreased due to the host computer

operating system when the host computer is included in the loop. This product is

not designed to operate in a real-time operating system (RTOS) platform such as

the National Instruments RTOS and is intended primarily for data acquisitions. In

this application the FPGA would strictly provide the data processing structure to

implement controller and an external D/A would close the loop.

The costs associated with implementing the X3-SDF are shown in Table 3.3.

Several disadvantages to this product are the lack of potential for future expansion,

user operation, and long-term availability risk. The X3-SDF is designed as a stand-

alone card in a host computer. While more cards could be added, their communication

relies on the PCIe bus. The user operation is not as simple as merely designing

a Simulink model and compiling it as with dSPACE products. A graphical user

interface needs to be written by the user and the libraries for this are only available

in C++, requiring user proficiency in this language. As opposed to the National

Instruments LabVIEW platform which is designed for much more high-level drag-

and-drop programming, the learning curve on the X3-SDF related software is much

more difficult. Additionally, the Simulink blockset options are limited to those that

can be implemented in FPGA logic, which removes many of the commonly used

control and floating-point functions. Control would need to be custom designed. Even

with LabVIEW features designed specifically for this task, control implementation

proved to be difficult. Designing the control implementation from scratch adds more

development risk to this option. Although the extent to which the X3-SDF and

custom designed PCB differ in design, the analog signal input resistors would need

to be changed to accommodate the fully differential +10 V signals that are measured

from the capacitive probes. Lastly, the level of available user support for the hardware



and software from Innovative Integration is not known, and could potentially become

an issue.

Table 3.3: Innovative Integration X3-SDF Implementation Estimated Costs

Description
X3-SDF Hardware
FrameWork Logic Software
FPGA Code ISE Foundation
Real-Time/Development Computer
Total Cost

Cost
$2,000
$2,500
$2,500
$1,500
$8,500

Supplier
Innovative Integration
Innovative Integration
Xilinx
Dell

I selected the AD7760 IC to be developed on a custom PCB for the analog-to-

digital portion of the digital platform. Even if the X3-SDF product were available

at the time of the initial product survey, the custom design has more flexibility than

a fully packaged product. Likewise, the AD7760 evaluation board lacked both avail-

ability, features, and flexibility as opposed to the custom PCB design. The AD7760

was selected over other converter options because it provides the greatest resolution

at the greatest sampling rate. However, the propagation delay negatively impacts the

controllability of high bandwidth control loops.

3.3 Digital Platform Requirements and Selection

The digital platform needs to collect, process/manipulate, and output data at MHz

rates, as well as acquire samples and store them for viewing and post-processing.

The application requires a 1 second acquisition with a minimum of 220 data samples.

The selected ADC was the AD7760 IC with a sample rate of 2.5 MSPS and thus data

acquisition must operate at this minimum rate. Additionally, the system must be able

to store these samples. Assuming a 24-bit value and 2.5 million samples collected in

1 second, the data rate over this single second is then 7.5 MB/second per channel.

Unless custom data bus protocols are written that define the length of packet sizes,

typical DMA transmissions occur with 32-bit word lengths, or 4 bytes, requiring a 10

MB/second per channel data rate. This data rate does not need to be sustained but
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Figure 3-2: Real-Time computer developed by Xiaodong Lu [6].

cannot have dropped samples. The burst data rate becomes a factor for a minimum

of two acquisition channels.

Other issues considered in evaluating potential commercial digital platforms versus

what could be developed with laboratory resources included performance, timeline,

future expansion, development support, and cost. The resources for a custom designed

digital platform are evaluated on what has previously been done within the Precision

Motion Control Laboratory by Xiaodong Lu [6]. The block diagram for the real-time

computer system Xiaodong Lu developed is shown in Figure 3-2.

Xiaodong Lu compares the indeterminant temporal responses from existing real-

time services (RTS) and the need for a wholly dedicated platform to operate with up

to MHz loop rates [6]. The most flexible and universal RTS operate with interrupts.

Peripherals initiate an interrupt when they require attention and the computer re-

sponds based on the interrupt priority and the current RTS operation. The processor

saves the current operations to the stack, processes the interrupt function, reloads the

stack, and continues with its previous operation. The RTS response to an interrupt

has jitter on the ps level that is responsible for an indeterminant temporal response.

This environment also requires that user interaction/monitoring use processor re-



sources. The graphical user interface (GUI) adds additional latency to the loop rate

with a single processor. As the jitter and latency increase, the overall determinism

and maximum loop rate decreases.

System architectures such as a Uni-, Dual, and Triple-Body systems are reviewed

in Section 1.2. An example of a Dual-Body architecture is the dSPACE platform. A

dedicated PowerPC processor runs the RTS with user-loaded operations. The maxi-

mum loop rate is 100 kHz on the dSPACE DS1103 platform for simple applications.

The GUI is distributed to the host computer across the ISA data bus on the com-

puter motherboard. This system neither provides the requisite A/D resolution or

acquisition rates.

Xiaodong Lu's system, named the ThunderStorm, is a Triple-Body design. An

FPGA front-end is used to interface with the high-speed peripheral inputs and out-

puts. The FPGA brings in analog inputs at 1 MSPS as well as tracking a digital

encoder and moves the samples to the multiprocessor data bus into shared memory.

Two dedicated DSPs poll for ready data, perform data manipulation computations,

and return the output data to the shared memory where the FPGA closes the loop

by outputting samples on the D/A channels. Polling operation is used instead of

interrupts to eliminate the interrupt associated latency. This is possible because the

DSPs are fully dedicated to a single processing thread. A third servant DSP utilizes

the data bus in the interim and processes the GUI interface. Because a GUI requires

relatively low update rates, the servant DSP is able to utilize resources as a secondary

user while they are not being used by hardware that is maintaining critical loop rates.

The servant DSP outputs data through parallel logic in the FPGA as serial output

to a host computer GUI. The serial interface is a good example of the flexibility of an

FPGA. Standardized RS-232 serial communication has a maximum baud rate of 115.2

kHz with 8-bit packets, whereas the custom designed serial interface by Xiaodong Lu

has a maximum baud rate of 1 MHz with 64-bit packets.

This Triple-Body architecture is capable of 1 MHz loop rates with four ADCs, four

DACs, quadrature encoder tracking, digital I/O, and a 64-bit serial port. The ADCs

used by Lu are Linear Technology LTC8412 and are presented in Table 3.1. The



motherboard was constructed on a 12-layer central processing PCB and connected to

a daughter peripheral board that interfaced through the FPGA. The ADCs are 16-bit,

2 MSPS SAR converters. If this digital design were adapted to this project, the A/D

dynamic range would be a limiting factor and the A/D would need to be replaced.

The system loop rate of 1 MHz would be entirely acceptable because while data

acquisition occurs at 2.5 MSPS with the AD7760, the control loop can be decimated

to lower loop rates. This decimation can be completed in the FPGA and not be

limited by the DSPs. Assuming the real-time computer could be adapted within the

available timeframe, we would own the entire design and have the resources to develop

it due to the extensive documentation of Xiaodong Lu's original design. There would

be a large risk associated with prototyping the design because any flaw in the layout

would void that revision and all the prototyped hardware. Vendor support would

be limited beyond the available datasheets for individual components. The system

could also be adapted to future expansion as it would not be strictly dependent on

any particular technology or vendor.

The primary reason why this design was not adapted to this application was

the available timeline and development risk. Xiaodong Lu spent over a year on

the development of the hardware design and software interface. At the time I was

evaluating potential platforms, less than six months remained before a scheduled

project demonstration. This was not enough time to become familiar with Xiaodong

Lu's design, adapt, construct, debug, and test it. The DSP and FPGA coding was

also implemented in C and VHDL, both low-level languages relative to LabVIEW.

Being able to efficiently work in these languages on Lu's system would present its

own learning curve. Of all potential options this design presented the most risk,

particulary with the cost. An estimated cost of $11,000 is presented in Table 3.4.

The ADC and DAC hardware is not included in this cost summary.

The option exists to implement the data processing on DSPs or an FPGA. The

DSPs allow more complex arithmetic as well as more precise computations, however

computation time increases with precision and complexity. An FPGA would be still

required as a digital front-end as was used in the ThunderStorm architecture. A single



Table 3.4: Custom Real-Time Computer of Xiaodong Lu Estimated Costs

Item
Xilinx FPGA
FPGA Code ISE Foundation
Two DSPs
DSP TI Development Software
DSP Programmer JTAG Emulator
PCB Prototype and Assemble
Total Cost

Cost
$3,000
$2,500
$600
$3,600
$1,000
$1,300
$11,000

Supplier
Xilinx
Xilinx
TI
TI
TI
Advanced Circuits

FPGA however is capable of both the digital interfacing and control implementation.

As the technology has become more common in industry, prices have decreased for

correspondingly increasing performance. A distinct benefit of an FPGA is the hard-

ware parallelism. Logic elements are clocked in parallel whereas a DSP runs lines

of instructions in sequence. For a complex operation to be completed on an FPGA,

it is possible to break up the operation into simpler, more efficient parallel tasks.

If the ThunderStorm architecture were to be adapted to this application, it would

be necessary to reevaluate whether DSPs would be the proper processing hardware.

Because of the necessity to have at least one FPGA in the system, products based on

an FPGA were evaluated.

There are numerous companies that provide embedded high-performance digital

environments. The simplest would begin with an evaluation or development board

from Xilinx or Altera. These boards are available for all product lines and generally

come with complete documentation and even demonstration software. Additionally,

the hardware is completely tested. The compromise comes in the number of available

I/O channels. These boards are generally designed to demonstrate a wide range of

peripherals such as audio I/O, video I/O, data storage, or PCI interface. Compared to

the custom real-time computer described above, this solution requires fewer resources

on hardware development and testing but more resources on interfacing with a host

system. Because the application requires data acquisition, a host interface is critical

as opposed to entirely embedded control.

I



Most FPGA vendors offer embedded DSP solutions. Newer product lines have

the DSP engine constructed directly on the FPGA fabric and are able to create a

microcontroller style unit for high-speed throughput. Other models have an FPGA

front-end and dedicated DSPs for computations. Although not determined to be es-

sential for acquisition and linear control, DSPs allow complex computations generally

not easily implemented in fixed-point FPGA HDL. Therefore it would be beneficial,

although not required, to select an option with this flexibility.

The evaluation or development board solution is fairly flexible and allows a rela-

tively inexpensive development platform to be adapted to future designs. Ideally the

development kit would be tested and the features most useful would be developed

into a custom PCB platform when deadlines are less stressed. An advantage of the

development kits are that the design is completely open and basic design files such as

bill of materials and PCB Gerber files are freely available. With the decision to design

our own ADC PCB, being able to design the low-level FPGA code to interface with

the A/Ds becomes a concern with respect to the 6-month project window. Other

than the time to implement, there is little risk, as sufficient technical documenta-

tion is available and the platform selection would not constrain future development

and expansion with different brands and products. Available development kits range

widely in price and features available, however cost estiamtes for a higher-end model

are shown in Table 3.5 at $5,400.

Table 3.5: Xilinx Development Platform Estimated Costs

Item
FPGA/DSP Development Kit
FPGA Code ISE Foundation
Interface Hardware
Total Cost

Cost
$2,500
$2,500
$400
$5,400

Supplier
Xilinx
Xilinx
Misc.

Third-party vendors also provide general products like the development kits avail-

able from Xilinx and Altera as well as more specialized products. A survey included

the companies VMETRO, Hunt Engineering, HiTech Global Distribution LLC, Xelic



Inc., Cast Inc., Coreworks, and Nallatech. These products are generally intended for

direct industrial implementation as opposed to a development platform. They also

usually come with custom development software that can range from low-level HDL

to high-level graphical code like LabVIEW. Because the products are specialized, it

is easy to find one strictly for digital I/O, acquisition, and high-speed control.

Formal quotes and detailed product exploration was completed on VMETRO [22]

options. Estimated costs are shown in Table 3.6. They offer a range of FPGA/DSP

combined industry products. These products can be stand-alone or operate within

a computer chassis on a PCI bus. Also included with the product are development

tools for intellectual property (IP) development. Provided software includes libraries,

examples, and extensive documentation for target as well as host development. A

hardware block diagram for a potential solution is shown in Figure 3-3. VMETRO

also offers products with analog interfaces but not to the resolution required for this

application. The host interface interacts through the PCI bus and is implemented by

C++ libraries for turnkey solutions. FPGA development can be completed within

VHDL or Matlab through the Xilinx System Generator. These are both low-level

programming environments with few complex operations included.

Table 3.6: Third-Party Digital Platform Estimated Costs

Item
VMETRO FPGA/DSP Hardware
Programming Software

Support License
Total Cost

Cost
$10,000
$2,300
$200
$12,500

Supplier
VMETRO
VMETRO
VMETRO

Although this solution presents a viable option, it is less flexible for future de-

velopment. In order to build on the software development required for this product,

we would need to stay with products from the same company which could become

limiting depending on what is needed in the future. Also, the amount of support

required and provided are not entirely known without becoming deeply involved in

the development. Lastly, there is a minimum lead-time of four weeks and potentially
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Figure 3-3: VMETRO embedded computing FPGA block diagram [7].

up to 10 weeks. For a product that would require significant software development,

this lead-time becomes a risk in the project timeline.

Another third-party supplier not yet discussed is National Instruments (NI). They

provide turnkey hardware and software to design, prototype, and deploy systems for

measurement, automation, and embedded applications. They have a significant mar-

ket share and presence in both academia and industry in a reported 25,000 different

companies. Their software is based on NI LabVIEW which is a high-level graphical

coding interface. Their hardware ranges from data acquisition to vision to real-time

control. They provided the ultimately selected digital platform.

Both real-time hardware and software platforms are available. These embedded

machines have a dedicated computer to run the real-time operating system (RTOS)

while a host machine runs the user GUI. These systems have more determinism

than a Windows-based system but can still have jitter on the order of tts which

limits loop rates to less than 1 MHz. A recent product roll-out has been the FPGA

Module. Select NI LabVIEW graphical coding elements are available to be compiled

and implemented on the FPGA. Different commercial options for purchase include
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PXI Chassis

Digital Data I Control Lines

Figure 3-4: Data acquisition and control hardware overview.

analog converters and the number of logic elements on the FPGA. The hardware

required to operate the FPGA is all local to the FPGA PCB and thus it can be

deployed to a host or real-time dedicated computer. In the dedicated computer setup,

the embedded computer and resources can be utilized by the FPGA. Figure 3-4 is a

block diagram of the data acquisition system with only a single control channel.

A previous research project within the PMC Laboratory utilized a NI real-time

application. The hardware was located in a PXI chassis. The PXI standards are built

on the PCI computer backplane but intended for rugged, industrial applications. The

embedded computer provides the DSP capabilities for slower loop rates and the off-line

data acquisition and data storage required for this application. Another benefit is the

high-level graphical coding interface which does not require an intimate knowledge

of HDL but permits VHDL to be implemented for custom blocksets. The coding

style easily allows both sequential and parallel loops with drag-and-drop interfaces to

digital I/O and features on the embedded computer. These features include access

to data transfer and storage. Included on the FPGA board is DMA hardware which

allows a DMA buffer to control the PXI data bus and directly access the system

memory without working through the processor.

The National Instruments FPGA platform provides the lowest risk of any options.



The technical support has been demonstrated in the past and the coding language is

intended for quick implementations by beginner users. The hardware lead-time was

approximately two weeks which was beneficial from a timeline aspect. The estimated

costs are shown in Table 3.7.

Table 3.7: National Instruments Digital Platform Estimated Costs

Item
PXI-7813R FPGA Hardware
Breakout Hardware
PXI Chassis
PXI Computer
NI Software
Total Cost

Cost New
$2,160
$1,440
$800
$3,145
$2,000
$9,545

Cost to PMC
$2,160
$1,440
$0
$0
$2,000
$5,600

National Instruments also offers such a wide range of options so that future ex-

pansion is not limited. Additional FPGA boards can fill seven additional PXI slots

in the PXI chassis. Each board has a direct bus to each neighbor, allowing high-

speed communication without relying on the backplane and its associated delays.

Additional embedded controllers can also be added in parallel with the existing PXI

chassis. Alternatively, FPGA and other real-time hardware can be implemented in

a user-purchased computer chassis, thus allowing the user to determine the amount

of real-time performance required. The latest NI Real-Time Module utilizes multiple

computing cores as well. One can specify the threads running on each core within

software and a quad-core processor is then the equivalent of four parallel DSPs.

There are advantages and disadvantages to each potential digital platform solu-

tion, but NI offers a fast implementation turnkey option and was subsequently selected

for this design. The hardware setup for the embedded controller and FPGA board in

a PXI chassis is shown in Figure 3-5. The embedded controller and PXI chassis were

existing hardware and used for this setup.

The selected FPGA board (PXI-7813R) has 160 digital I/O with a Xilinx 3-million

gate XC2V3000-4FG676I FPGA. Additional digital I/O were considered more impor-

tant than low-resolution analog interfaces. The 3-million gate FPGA was selected over

Supplier
NI
NI
NI
NI
NI



Figure 3-5: National Instruments PXI chassis with embedded controller and FPGA
board

a 1-million gate option to allow more complex control algorithms to be implemented.

The baseline clock is 40 MHz but additional clock rates can be derived at numerous

speeds. The PXI chassis also has a real-time embedded controller and runs a real-time

operating system that dedicates the hardware to specific tasks and does not need to

deal with the overhead associated with an operating systems such as Windows. The

embedded controller is a NI PXI-8176, which has a Pentium III 1.26 GHz proces-

sor with 384 MB of RAM. The host/supervisory PC interfaces with the embedded

controller and allows user interaction and data monitoring.

Table 3.8 compares the various digital platform options. I selected the National In-

struments option because it offered high-level programming with complex operations

that could be implemented quickly. It also has the lowest risk and a relatively low

cost. Because the coding language is very high-level but still accommodates low-level

HDL, it has the flexibility to quickly implement processing algorithms not available

in other options while still being able to build custom complex HDL operations from

the ground up. Table 3.8 presents estimates and in retrospect these are not entirely



accurate. For example, the development time for the NI system was approximately

6 months due to the control implementation. Section 7.2 discusses whether the NI

system was the ideal selection for the defined application.

Table 3.8: Digital Platform Estimated Comparison

Platform Cost Dev Time Risk Flx Exp Support
X3-SDF $8,500 2 months Med Low ???
Custom RT Comp $11,000 6 months Med High Med
Xilinx Dev Brd $5,400 2 months Low Med Low
3rd Party Dev Brd $12,500 1.5 months Med Low ???
NI Real-Time $5,600 1 month Low High High

3.4 DAC Requirements and Selection

An output D/A converter is required for closed-loop control to supply a control signal

to power amplifiers and thus the electromagnetic actuators. The D/A selection is

not as difficult as the A/D selection because there are generally fewer trade-offs in

resolution versus speed and the requirements are not as demanding. The highest

resolution converters available are 16-bit for high-speed operation. Faster settling

times are available by using a current output because a voltage does not need to slew

across any built-in or stray capacitance. However, a voltage is required to drive the

power amplifier. An external op-amp can be added to convert the current to a voltage

but this generally creates a slower settling rate than a monolithic IC that is designed

to output a voltage.

There are few specifications related to selecting a D/A converter. The minimum

closed-loop sampling rate is 100 kHz to accommodate potential z-axis bandwidths

because the sampling rate should be at least 10-20 times greater than the expected

closed-loop bandwidth [20]. Otherwise the control scheme needs to be adjusted.

Other requirements are that the DAC must be able to be implemented within the

timeline of the project and not be a dominant noise source in the control loop. Cost

is a consideration as well.



Table 3.9 lists several commercial D/A IC converter options and is only a sampling

of what is available. These are representative of the more important metrics. One

metric not specified is the digital data input format. The update rate of the converters

is limited by the rate at which data can be clocked into the data registers and latched.

The LTC1650 requires a minimum of 80 ns clock pulses for all 16-bits while the

LTC2641-16 requires only 19 ns per clock pulse. The AD768, DA712, and LTC1821

are parallel input DACs and have a 16-bit data bus along with three control lines.

This allows data to be latched on the order of 100 ns. While it is initially tempting

to select a converter that can be updated extremely fast, the additional parallel data

bits require additional FPGA digital outputs. With 19 outputs per parallel converter,

the number of converters that could be in a system becomes limited. The AD768 is a

current output DAC which is why settling time is the fastest. This requires an output

op-amp to generate the output voltage and thus the true settling time is limited by

the selected op-amp.

Table 3.9: Digital-to-Analog Converter IC Commercial Options

DAC Supp. Res. Settling Rate Cost
[bits] Time [ps] [MSPS]

AD5542 AD 16 1 1.5 $16.50
AD768 AD 16 0.025 30 $42.41

DAC712 TI 16 4 10 $28.50
LTC1650 LTC 16 4 0.694 $32.50
LTC1821 LTC 16 2 5 $87.13

LTC2641-16 LTC 16 1 3.09 $12.83

I selected the LTC1650 DAC because it was already designed into a modular PCB

with the work described in Chapter 2 and provides comparable performance to other

high-performance DACs. The DAC design surpasses the minimum output rate re-

quirement and has already demonstrated operation with a full noise characterization.

The PCB and associated IC converter could potentially be upgraded at a later time

with little or no affect on the rest of the system. The biggest advantage of this se-

lection was that there were already several operational D/A PCBs available in lab



which meant there was no implementation risk or cost to this portion of the project.

The D/A PCB design is not described further, but the software interface is described

in Chapter 5. The complete schematic is included in Appendix A.

This chapter described the baseline specifications and component selection for a

high-resolution, high-speed data acquisition and control digital platform including the

A/D converter, digital processor, and D/A converter. The AD7760 was selected as

the A/D converter because it offered the highest performance, particularly the highest

dynamic range while meeting the 1 MSPS requirement. The converter architecture

does introduce a propagation delay which will significantly affect a closed-loop phase

response. Despite comparable products becoming available after completion of the

AD7760 PCB, the custom design remains the best selection. A National Instruments

FPGA system was also selected because it offers high-level functionality with the least

risk to implement while maintaining flexibility for future expansion. The custom PCB

design to implement the AD7760 is described in the next chapter.





Chapter 4

24-bit A/D Circuit & PCB Design

This chapter describes the detailed design, debugging, and development process of

the A/D circuit and PCB. Results and characterization of the circuit are presented

in Chapter 6.

There are distinct functional areas required for the PCB to operate correctly.

The analog signal must be cleanly brought onto the PCB and signal conditioning is

used to properly shift and scale the input signal to that required by the ADC IC.

Power conditioning must be implemented to reduce any affects from power supply

variations or feedthrough of unwanted signals/noise. Coming out of the AD7760,

the digital output must be interfaced from the IC to any external platform, such as

the FPGA. Digital galvanic isolation is implemented to reduce ground loop affects

between the analog plant and digital electronics. The AD7760 requires an external

boot-up sequence to be inputted on the same bidirectional data bus that the digital

conversion is outputted on. This boot-up sequence can be implemented by the FPGA

or digital circuitry located on the PCB.

A high-level view of the PCB with these functional groups is shown in Figure 4-1.

The complete schematic is provided in Appendix A along with the bill of materials.

The PCB design is adapted from the Analog Devices AD7760 evaluation board [2, 38].

The PCB is shown in Figure 4-2 with the funmctional groups labeled.
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4.1 Analog Interface

An A/D converter is designed to generate a digital word for a corresponding differ-

ential input voltage. Some designs use a reference as one of the differential voltages,

such as a shared common or earth ground. A ground reference refers to a single-ended

input whereas pseudo-differential inputs have a user defined common as the common.

The single-ended input is the least robust because the common can potentially form a

ground loop and requires that the data acquisition hardware and device under test be

at the same potential. This is difficult to achieve when instrumentation is remotely

located or sensors are referenced to different commons. Also, this is impossible to

achieve in the presence of any loops coupled by magnetic fields. In these cases, differ-

ential or instrumentation amplifiers are required to separate these commons, which

adds an additional layer of complexity and source of error. A single-ended inter-

face can be converted to a differential signal by pairing the signal with its inverted

complement. A simple inverting op-amlp circuit implements the inversion. However,

the inverting circuit introduces additional issues of isolation and accuracy and the

differential pair is not truly isolated.

A more robust approach is to use fully differential inputs. An example of differ-

ential inputs and their requisite shift and scaling for the AD7760 is shown in Figure

4-3. The scale factor required is

3.685 - 2.048
fscale 10 = 0.1637 (4.1)10

This scale factor converts the expected input voltage levels into an appropriate voltage

range for the A/D. We also must offset the input to 2.048 V. If a pseudo-differential

or single-ended input were used, the scale factor f•mie would be twice as big and

only provide half as much common mode rejection. Common mode signals are most

commonly seen as 60 Hz, or some multiple of 60 Hz, "noise". Technically this is

not noise because the source can be attributed to poor power supply rejection or

a ground loop and is instead a disturbance. However these terms are commonly

used interchangeably in literature. Other sources of error include electromagnetic
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scaling; analog input to PCB (left) and analog

interference such as from electronic ballasts in fluorescent lights or nearby high-power

equipment and motors. The differential inputs do not ideally rely on any common

voltage because if the common voltage increases relative to earth ground, each signal

voltage also increases by that amount. Therefore the relative separation VIN+ - VIN-

remains the same. Typically the signals are carried on two lines that are kept in close

proximity to one another. Noise invariably couples to any cabling. However, when

it couples equally to both differential signals it appears as a common mode voltage

disturbance. By rejecting this common mode voltage, the system is more robust to

external noise.

The shift and scaling is performed with a fully differential amplifier as shown

in Figure 4-5. As opposed to a standard operational amplifier which has a single

output, a fully differential amplifier has two differential outputs. The symbol for such

an amplifier is shown in Figure 4-4. The output common mode voltage, VOCM, is

independently set after the input common mode voltage is rejected. Figure 4-5 shows

a simplified representation of the internal components of a fully differential amplifier

+3.685V

A

n



VOUT+

VIN+ VOUT.

VOCM
Figure 4-4: Fully differential amplifier symbol.

[8] and shows how common mode input voltage is rejected while independently setting

the output common mode voltage. A differential front-end of Q1 and Q2 creates

differential currents that are mirrored to the gain stage. The input common mode

voltage is rejected in this first stage. The differential outputs are obtained by sampling

both sides of the gain stage. A final output stage is shown with output buffers. The

output common mode voltage is maintained by internal feedback as set by VOCM.

Commercially available fully differential amplifiers are generally high speed, low

cost, have a small footprint, and have low power consumption. Although not critical

to this application, differential amplifiers also inherently introduce a 2x gain which

is very beneficial in low voltage measurements. Some analog front ends, such as

that designed for the dSPACE high-resolution system, use instrumentation amplifier

configurations. These have several advantages. The analog inputs have a very high

input impedance. The A/D differential amplifier configuration input impedance is

RIN = 4.02 kQ. The instrumentation configuration also does not require perfectly

symmetric matching of components. Resistor matching for the differential amplifier

is tolerable with 0.1% resistors but becomes difficult for the anti-aliasing capacitors.

Instrumentation amplifiers are available as integrated devices however the IC gain

is generally restricted to being greater than or equal to one. Alternatively, three

individual operational amplifiers can be used as was shown in the dSPACE high-

resolution design in Chapter 2.

A distinct benefit for the used differential amplifier configuration is that only a

single supply is required for bipolar operation. The AD7760 is designed to convert
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Figure 4-5: Simplified fully differential amplifier internal circuitry [8].
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Figure 4-6: Fully differential amplifier with scaling and anti-aliasing components.

voltages between 0.410 V and 3.685 V which are centered around 2.048 V. The dif-

ferential amplifier is able to convert a ±10 V bipolar signal to this required range

with only a single supply and appropriate feedback attenuation. An instrumenta-

tion amplifier would require dual supplies for the input buffer stage of the amplifier.

This introduces additional power regulation components, cost, space, and complex-

ity. However, a separate instrumentation amplifier probably would have given better

noise rejection, as well as having allowed better board layout for stray impedances. I

selected the differential amplifier configuration because an amplifier was already avail-

able built into the AD7760 IC and the evaluation board design used this method.

External feedback components used in this design form a third-order anti-aliasing

filter in addition to scaling the signal. Figure 4-6 shows the configuration used in the

analog front end design where Al is built into the AD7760 IC. The voltage labels are

referenced to the A/D converter; hence VIN is the output of the differential amplifier.

Voltages A and B are the amplifier differential input voltages.

The transfer function equations are generally straightforward without anti-aliasing

poles, and get more complex with each additional order. The indicated symmetric

102

RIN
A O-- ---

C,,

B RN
RIN

RM V.

u~



feedback do not drive the amplifier unstable because both feedback paths form neg-

ative feedback loops. This is so because the inverting input terminal is connected to

the non-inverted output terminal through RFB, and vice versa. It is important to

understand the fundamental circuit equations before considering anti-aliasing config-

urations. First, assuming only RFB and RIN are used, the amplifier equation is

VIN+ - VIN- = G (Al+ - Al-) (4.2)

where G is the amplifier gain. By using superposition and considering the resistor

network as voltage dividers, the input node equations are

( RFB RIN

RIN + RFB ) RIN + RFB

Al = B RFB - + VIN+ RIN (44)
RIN + RFB R + RIRFB

By substituting Equations 4.3 and 4.4 into Equation 4.2,

RFB
VIN+ - VN- = (A - B) R+R RIN (4.5)

Here, GRIN is assumed to be much greater than (RIN + RFB). This gain expression

then simplifies to

G = VIN+ - VIN_ = (A - B) RFB (4.6)
RIN

The differential circuit gain then becomes simply RF~ Matching external componentsRIN

here is extremely critical for good common mode rejection. The use of 0.1% resistors

in the implemented design result in a 60 dB common mode rejection ratio (CMRR).

The CMRR could be significantly improved with an instrumentation amplifier.

A first-order anti-aliasing filter is considered next. Referring to Figure 4-6, capac-

itors CFB are now included in the analysis. By using the equivalent impedance for

the feedback path, the ideal (high gain) transfer function becomes

RFB 1(4.7
RIN RFBCFBS + 1
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Figure 4-7: Half-circuit analysis of symmetric fully differential amplifier with shunt

capacitor. The single capacitor (left) between differential signals can be replaced by

two capacitors (right) referenced to ground.

where the DC gain is set by the resistor ratio as in a typical inverted amplifier con-

figuration and a low-pass RC filter is created between the feedback components. A

second pole is included by accounting for the shunt capacitor Cs. The second-order

transfer function then becomes

RFB 1 1

RIN RFBCFBS + 1 2RINCss + 1

The second pole location is half the expected frequency because it is acting be-

tween differential signals. To maintain the same breakpoint frequency, Cs could

be replaced by two capacitors of 2 x Cs each. This is shown in Figure 4-7. Each

differential signal would have a single capacitor referenced to ground and the sym-

metric circuit can be analyzed with only a half-circuit. Some claims are made that

this actually gives better common mode noise rejection [8]; however the opposite was

demonstrated in characterization of the A/D designs for the high- resolution dSPACE

system. Recalling the asymmetric noise distribution of the high-resolution A/D PCBs

in Chapter 2, a single capacitor between the differential signals decreased the RMS

noise compared to two capacitors referenced to ground.

Finally, a third pole is added at higher frequency with RM in concert with the

input capacitance of the AD7760 A/D converter, as well as stray capacitances. These

resistors set the impedance between the differential amplifier and the A/D converter.

The analog input capacitance for the AD7760 IC is listed in the datasheet as CAD =
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55 pF. There will also be parasitic capacitance on any PCB layout. The parasitic

capacitance between signal traces on the PCB is estimated as Cp = 0.5 pF. These

two capacitances paired with RM creates the pole. This produces an overall transfer

function of

RFB 1 1 1
G4(s) = (4.9)

RIN RFBCFBS + 1 2RINCss + 1 2RM (CAD + CP) s + 1

The AD7760 IC has a built-in fully differential amplifier. The datasheet claims all

specifications with the differential amplifier as part of the analog input signal path.

This reduces external components and minimizes layout considerations. The common

mode voltage, VOCM, is not shown in Figure 4-6. VOCM is set internally to the AD7760

as 1 the analog reference voltage, or VOCM = 2.048 V. This sets the midpoint of the

A/D converter and allows for the greatest range to be achieved in the sigma-delta

conversion.

The input voltages are scaled to utilize the range of the A/D converter about

the shifted common mode voltage. The scaling is calculated as shown in Equation

4.1. Through discussions with an Analog Devices product applications engineer,

recommended values for all components were given as in Table 4.1 where RIN can be

changed for different input ranges [39]. Fully differential inputs of ±10 V are designed

for, which sets RIN = 4.02 kQ.

Table 4.1: Differential Amplifier Component Values

VOCM RIN RFB RM Cs CFB
2.048 V 4.02 kQ 649 Q 17.8 2 2.2 pF 33 pF

The dynamics of the differential amplifier itself are expected to be at higher fre-

quencies than the anti-aliasing filter and are thus neglected. Specifications for the

integrated differential amplifier are not given in the AD7760 IC datasheet. The low-

pass pole locations are given in Table 4.2. The frequency response of this transfer

function is shown in Figure 4-8. The recommended design by Analog Devices places

the first two poles at 7.43 and 36.2 MHz. The presented design with breakpoints at
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Figure 4-8: Analog input differential amplifier anti-alias configuration frequency re-
sponse.

7.43 and 9.00 MHz will therefore have more roll-off than the recommended design.

Because of the pipeline delay of sigma-delta converters, they are not expected to be

used with extremely high control loop rates. Therefore, the additional attenuation

gained by lower frequency poles is not expected to significantly affect the loop dy-

namics in any applications of this design. If this were considered to be an issue, Cs

could be replaced with a 0.55 pF capacitor to maintain the same relative attenuation

at the recommended breakpoint frequencies.

Table 4.2: Analog Input Differential Amplifier Anti-alias Pole Locations

Pole Pole Location [ns] Pole Location [MHz]
RFBCFB 21.42 7.43
2RINCS 17.69 9.00

2RM (CAD + CP) 1.98 80.55

Almost as important as analog design and component selection is the physical

layout. The designed PCB is based directly on the evaluation board for the AD7760.
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Figure 4-9: Analog input PCB layout.

This includes locating all components close to the AD7760 IC and using symmetric

routing of traces on both sides of the differential amplifier. The layout is shown in

Figure 4-9. A grounded shield path is included around the traces between the analog

input connector and the differential components to reduce surface charge leakage

currents. The 0405 and 0603 surface mount device (SMD) packages are used for all

critical components located close to the AD7760 IC in order to save surface area. An

XLR audio connector is used to bring the analog signals onto the PCB. This allows

for low cost, pre-terminated twisted pair cables within a third shield conductor. The

shield encapsulates the twisted pair through the connector and onto the PCB. The

cable shield is tied back to the source and not tied to the PCB ground, in order

to prevent ground loops. Additionally, charge coupled electrostatically to the shield

conductor drives currents in the source common as opposed to the A/D PCB common

where it could introduce signals on the sensitive analog input.
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4.2 Power Regulation and Decoupling

The AD7760 requires both 2.5 V and 5 V supplies while the rest of the PCB is

designed to operate on 5 V. The digital outputs of the AD7760 IC are at 2.5 V

and thus level translators are required to step the voltage up to 5 V to interface

with the microcontroller and be interfaced to the external FPGA. In general, the

recommended supporting circuitry design and devices given for the evaluation PCB

were used, however there are differences due to additional requirements, as described

below.

A simplified schematic of the voltage regulation for the PCB is shown in Figure

4-10. There are two options for the input voltage so different power supplies can be

selected. Since 15 V supplies are commonly available, and is the same voltage supplies

as used by the ADE capacitive probe drivers. Maintaining low power is not a design

requirement for this PCB, so a linear regulator is acceptable for dropping the voltage.

Linear regulators are selected versus switching converters because there is much less

high frequency noise content. The input voltage is user selected by two jumpers.

Alternatively an 8 V input can be used. Separate voltage regulators are dedicated

to the AD7760 in order to follow the recommended design and limit the influence

of digital electronics on the analog converter. This provides the best opportunity to

match the datasheet performance specifications.

The ADP3334 ICs are adjustable regulators. The voltage is defined by a voltage
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Figure 4-11: Example of AD7760 supply decoupling.

divider resistor network. The voltage absolute accuracy is only as good as the resistor

tolerances and temperature coefficients but this is not critical. The AD7760 IC uses a

precision voltage reference for the conversion process so a wide supply voltage window

does not affect performance. The remaining two regulators are fixed voltage.

The voltage regulators also have extensive decoupling and each IC on the PCB is

bypassed with at least a 0.1 pF capacitor close to the supply pin with the other end

near the IC ground pin. This ensures that return currents are flowing to the correct

pin. The AD7760 datasheet recommends specific decoupling for each supply pin [2].

An example of this is shown in Figure 4-11. FB refers to a ferrite bead. These are

used to suppress high frequency noise. These beads create inductance and have high

impedance at high frequencies. These sub-circuits are located as close to the AD7760

IC as possible.

Also included on all AD7760 IC supply pins and other regulated lines are EMI sup-

pression filters. An equivalent circuit is shown in Figure 4-12. These are 3-terminal

capacitors with integrated ferrite beads to minimize resonance with surrounding cir-

cuits.

Typically the analog and digital ground planes are isolated from one another

and only connect at the external ground connection. This is not done on the PCB

because there is very limited space to route multiple ground planes. It is important

to minimize the trace length of any ground pin to the ground plane. Analog and
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Figure 4-12: EMI suppression equivalent circuit.

digital ground pins from the AD7760 IC do not share return paths to the ground

plane with any other pins. The PCB is manufactured as a 4-layer board where the

second layer is a ground plane. This reduces ground loop affects and aids in heat

dissipation. This is critical with surface mount devices as the ground plane has the

lowest thermal resistance and can dissipate the most power. Roughly 50% of the

AD7760 IC is an exposed paddle for dissipating power. If further PCB revisions

were to be constructed, an interesting experiment would be to separate the analog

and digital ground planes by placing the analog ground plane on the third layer and

comparing performance measurements. The AD7760 evaluation board uses a single

ground plane and thus that example was followed. A comprehensive discussion on

grounding in mixed analog/digital systems is presented in [1, 40].

4.3 Digital Interface and Microcontroller Design

This section describes the selection and design of the digital interface to the AD7760

IC and the external sampling FPGA. This includes digital isolation, level shifting,

microcontroller design, and multiple channel synchronization. The associated compo-

nents are shown in Figure 4-13. The external interface connector is digitally isolated

from the PCB signals, supplies, and ground through digital galvanic isolators. A

microcontroller initializes the AD7760 IC and monitors the A/D operation. Level

shifters convert between the 5 and 2.5 V logic necessary for the AD7760 IC.

The AD7760 IC has internal registers that control sampling rate and digital fil-

tering. These registers are accessed through a bidirectional data bus. The AD7760

is interfaced with two control lines, the 16-bit data bus, and several other lines for
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Figure 4-13: AD7760 PCB digital interface and components.

initialization. This is documented in the AD7760 datasheet [2]. The RD/WR line

controls the direction of the data bus. The chip select, CS, low pulse either sets

or reads out the appropriate register on the rising edge depending on the RD/WR

status. Other control lines are unidirectional and include a clock source CLK, reset

RST, and synchronization SYNC.

Chapter 2 discussed the importance of digital galvanic isolation. The external

interface connections are all passed through high-speed isolators in order to ensure

that potential ground loops are broken. A high density D-sub connector is used

with twice the number of connections necessary so each signal is transmitted as a

twisted pair with either a ground or source voltage. This source voltage drives the

external side of the digital isolators. The internal side of the isolators is driven by

the 5 V PCB digital logic voltage. Separate voltage sources are required for both

sides of the digital isolation ICs or else there would be no isolation. Care is taken

to reduce ground coupling. For example, the PCB ground plane is broken below

the connector and the digital isolators. The isolators are 4-bit unidirectional units.

Four ICs pass the data bus to the external connector, one IC passes two outgoing

signals, and one IC passes incoming signals. Because the ICs are unidirectional, an
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additional four ICs would be required to utilize a bidirectional data bus with the

FPGA and retain galvanic isolation. At approximately $9 per IC and the additional

footprint associated with each SOIC-16 package, it was determined that AD7760 IC

initialization should be completed locally on the PCB. Another benefit is that FPGA

resources are not lost to a one-time operation. Upon initial PCB design, the National

Instruments platform was not selected and options remained open, so incorporating

the initialization onto the PCB also reduced the FPGA design requirements. This

was the largest factor in deciding to use a local microcontroller. An additional benefit

to an on-board microcontroller was the possibility to use it for data sampling during

the testing phase.

The AD7760 outputs data at 2.5 MHz, however it is outputted as two 16-bit

words. A microcontroller by Microchip [41] was selected to be implemented because

our laboratory has programming hardware and personal experience with that archi-

tecture and programming language. This brand is known for quick implementation

and is designed for hobbyists as well as industry. The device architecture, program-

ming environment, and language has a relatively fast learning curve but also provides

functionality appropriate for industrial applications. Competing devices are made by

Atmel, Freescale, and Parallax. A full DSP from a company such as TI would be

faster but more expensive, as well as require a more intimate design knowledge for

this simple application. From the line of Microchip microcontrollers, the dsPIC6012a

was selected because it has a 16-bit data path for all operations and operates at the

highest rates available. The maximum cycle rate is 30 million instructions per second

(MIPS). This allows 13 instruction cycles per 400 ns, which is the data update rate of

the AD7760 IC. This is enough instructions to sample the AD7760 in real-time and fill

the available RAM. The dsPIC6012a also has sufficient I/O for easy implementation

and a full DSP library for any manipulation if that were deemed necessary. This line

runs on 5 V like the NI FPGA board, as opposed to 3.3 V.

The complete microcontroller code is presented in Appendix B. The code is pri-

marily written in C because it is more intuitive to a secondary user and quicker to

implement high-level functionality such as UART communication. Initial microcon-

112



troller code development was completed without a fully fmnctioning PCB. This was

possible by using DIP components and developing the code structure. The final code

structure is shown in Figure 4-14. There is a general setup of the I/O pins and

peripheral devices when the program is initially run. This setup defines the sub-

function macros and sets configuration registers for the microcontroller hardware.

Three interrupts are used. A UART interrupt receives RS-232 commands from a

host computer. The PCB has a serial RS-232 level translator and serial D-sub 9-pin

connector. Within the interrupt macro, the received byte is read into a register and

a case structure determines which action to respond with. This was typically used

as a debugging process to ensure that the PCB was properly built and soldered, and

that IC interacted as expected. This mode was also able to acquire a limited number

of samples to output to the host. The host commands and interface can be accessed

through Matlab.

Another interrupt is a timer, which is configured as a 32-bit timer and decimates

the cycle clock so that an interrupt is generated approximately every 200 ms. An

external flip-flop is triggered by a data ready pulse, DRDY, from the AD7760 IC.

The status of this flip-flop is read on the timer interrupt and reset. Based on the

status of the flip-flop, the board ready, BRDY, line is updated to the FPGA. This

process ensures that the AD7760 IC is operating. If the A/D is not operating, this

section is where the A/D IC would be reinitialized. This is not included in the current

code but could be with several lines. Monitoring of the DRDY pulse could also be

completed by the FPGA because it uses the DRDY pulse to acquire the sample data

anyway. However, it was considered more flexible to locate this monitoring on the

microcontroller and again save FPGA resources. A much more simple FPGA loop

monitors the BRDY signal.

One of the signals coming in from the external FPGA is the initialization trigger

INIT, which is an edge-triggered interrupt. Upon the interrupt, the microcontroller

enters the initialization function. This can also be reached by a UART command.

Outputs, which are timing-critical, are written in assembly language so as to be

optimized for speed. The AD7760 initialization sequence follows that described in
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Case Structure-
- Flip 1/0
- Run /D initiazation -Control CS & RDiWR pins
- Reset - Set data bus to output
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Assembly
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Timer1 interrupt
Set registers
- address 1
- data 1
- address 2
- data 2

Program sequence with
1 cycle NOP period

-Release CS & RD/JWR nm
- Set data bus to input
- Set BRDY

Figure 4-14: Microcontroller code block diagram.
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Figure 4-15: AD7760 PCB clock management block diagram.

the datasheet [2]. Two 16-bit registers are loaded into the AD7760 IC. One PCB

feature is a built-in digital switch on the PCB that allows the microcontroller to

command the RD/WR and CS control lines as opposed to the FPGA. When the

AD7760 is fully programmed, the digital switch is released back to the FPGA and

the microcontroller sets the board ready BRDY line, and then returns to a wait mode

in the main function. Early in the design phase, the microcontroller entered sleep

mode to save power. This would be reasonable if all interrupts were turned off so it

would not come out of sleep, but the PCB is intended to be able to be re-initialized

or re-synchronized to allow more flexibility for how it is operated from the FPGA. I

found that the microcontroller coming out of sleep mode would introduce very large,

high frequency disturbances on the sensor channels. The sleep functionality was then

removed. This is described further in Section 6.1.

The clock management is shown in Figure 4-15 with a simplified block diagram.

There is a clock source built onto the PCB, which is a standard 40 MHz oscillator

selected to meet the AD7760 clock jitter requirements. A jumper is also used to select

either the on-board clock source or an external clock source. This allows the clock

source to be shared between multiple PCBs so they may be synchronized together.

From the jumper, the clock signal passes through an AND gate to clean up the edges.

This is especially critical for external signals brought onto the board. The AND gate

is located at this point in the signal path so that a clock source experiences the same

time delays whether it is internal or external. From the AND gate the signal is passed

into the AD7760 IC. A 0 Q resistor indicates that the signal path should be short and

of very low impedance.
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An important issue in synchronization between multiple channels are time delays

experienced in parallel signal paths. The propagation delay of a signal along a wire

can in principle be accurately modeled, however a conservative assumption is a delay

of 1 ns/ft. For PCBs located in close proximity, a conservative estimation for the wire

length is 1 ft, or a 1 ns delay. If the delay becomes greater than 12.5 ns, then the

data measurements can be only synchronized to within 25 ns as opposed to <1 ns.

A possible solution to long transmission lines is to bring the clock source off a PCB

for all A/D channels being used, including that of the clock source. This means there

would be a transmission line to all channels and each PCB would have the jumper

set to external. With equal length lines this would ensure equal propagation delays.

In this case it is important to use shielded cable to reduce interference. I took no

considerations for transmission line termination in this current design. It would be

possible to match termination impedance or add more clock management hardware

in a future revision, however this would also increase the complexity.

Because the AD7760 operates on 2.5 V digital communication, a series of bidirec-

tional level translators are used to convert the data bus and control signals to/from

5 V. They need to be bidirectional because the 16-bit data bus needs to be driven to

boot-up the AD7760 initially while it is driven by the AD7760 when outputting data

samples. A parallel data path, as opposed to a serial interface, is necessary due to

the high sampling rate and large number of bits. While the selected level translators

(Analog Devices ADG3308BRUZ) are the most applicable in terms of number of bits,

speed, and selectable voltage levels, there is little documentation as to the required

surrounding circuitry [9]. For example, the maximum current output is not listed.

The datasheet only states that the output is intended for CMOS-compatible loads

and buffers should be used for current-driving capabilities.

In this application, control of the data bus while sampling is only taken when the

AD7760 is outputting data. The data bus is left floating with high source impedance

for the other two-thirds of the sampling period. For a bidirectional level translator,

simplified in Figure 4-16, a source on one side is required. Otherwise any charge

build-up can cause the one-shot generator to drive the line. The one-shot generator is
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a monostable multivibrator for creating fast switching characteristics. The one-shot

generator output then in turn creates a charge at the other level. This process repeats

itself and the line oscillates at the highest rate possible. This sinks a large amount of

current which can either affect the voltage regulator by reducing the supplied voltage

or it can disrupt the other level translator bits.

To avoid this problem, I used pull-down or pull-up resistors to provide a source

when nothing else is controlling the lines. However, the level translators can only

source a fixed amount of current, thus limiting their operation on additional pins

when at this current limit. Datasheet specifications are not provided on sinking versus

sourcing current capabilities. Several different resistor values were tested to find the

suitable resistor value of 56 kQ. A user selectable jumper determines whether the

resistors are pull-up or pull-down. CMOS devices can commonly sink more current

than they can source, however notable performance increases with either configuration

were not documented. Currently the resistors are in the pull-down configuration.

This issue presented difficult debugging challenges due to the lack of documentation.

I found that as the analog input voltage level would change, certain data bits from the

A/D would be unstable and result in erroneous data readings on the FPGA. This issue

could be attributed to a number of components along the data bus, FPGA connector

or breakout cabling, or even PCB construction. Only with a diligent debugging

process was the issue tracked back to the pull-down resistor value. The debugging

process was additionally slowed because all components on the PCB are surface mount

devices.

4.4 PCB Construction and Debugging

The PCB is constructed on a 4.75 x 6 inch 4-layer PCB from Advanced Circuits [42]

for $66 per board. There are 168 surface mount components located on the PCB.

These were soldered by hand. This proved to be extremely tedious and required the

use of soldering paste, a rework/desoldering station, and a 20x/40x microscope. It

takes approximately 16 hours per board to hand-solder all components assuming there
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Figure 4-16: Level translator simplified schematic [9].

are no defaults or shorts/missed connections. Four complete PCBs were constructed

in this fashion. This was beneficial to gain an intimate knowledge of the board

layout and to debug issues throughout the development process. With a proven

design however, Advanced Circuits is also able to do the component assembly for an

additional $180 per board for ICs that are difficult to solder by hand. This includes the

AD7760, microcontroller, level translators, as well as several others. The remaining

components could then easily be soldered by hand with little worry of error. The

tightest IC pin spacing is found on the AD7760 and is 0.007 inches, or 179 pm.

Several features were changed from the AD7760 evaluation board. The most trou-

blesome issue was the level translators instability. It is possible that the evaluation

board accounted for pull-up or pull-down resistors within another component that

would control a data line when nothing else was controlling it, however this was not

demonstrated in the available design documentation. Other features, such as a 2.5 V

voltage monitoring IC, were removed because they were considered redundant with

other features added to the design. Lastly, features such as the on-board microcon-

troller and digital isolation were added.

In Chapter 3, I discussed why it was necessary to design our own A/D PCB to
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achieve high-resolution and high-speed acquisition and control. This chapter pre-

sented the A/D PCB design. The following chapters describe how the A/D PCB is

interfaced with acquisition and control software in the overall digital platform, as well

as experimental results. The A/D PCB design shown here is operational and achieves

the specifications stated in the AD7760 datasheet.
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Chapter 5

LabVIEW Control Software

The National Instruments (NI) LabVIEW FPGA Module and the FPGA hardware

allows one to create custom I/O and control hardware without prior knowledge of

traditional HDL languages or board-level hardware design. The NI LabVIEW FPGA

Module uses the LabVIEW graphical development platform to directly compile appli-

cations onto FPGA hardware, thus allowing applications to be written for a number of

platforms, such as an embedded real-time processor or FPGA, with little modification

required between systems.

As with any real-time system, computing precision needs to be considered. Tra-

ditional DSP platforms allow double precision, or 64-bit floating-point precision. In

order to decrease the number of clock cycles required to complete a full computation,

shorter variable definitions are used. These include long integer, short integer, single

floating-point precision, character, and logical that range from 1 bit to 32 bits. For

efficient computations, it is critical to evaluate the required precision versus time to

compute. Fixed-point precision is introduced by scaling decimal number to integers

and allowing strictly integer computations. Rational numbers within a user-specified

range and with a user-specified precision are represented as integers by scaling vari-

ables by the same number of bits n. The result is then post-scaled by -n bits to obtain

the equivalent decimal value following the computations. A fixed-point number can

be specified any size between 1 and 64 bits, inclusive, and as signed or unsigned within

the NI language.
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FPGA operations are physically based on reconfigurable logical gates along with

more complex combinational functions. Floating-point precision is not possible except

in advanced, proprietary intellectual property (IP) cores which compensate for the

simplicity and precision with speed and utilized resources. The LabVIEW FPGA

Module implements fixed-point numbers as the most complex definition. Boolean

operations are preferred because these synthesize the most easily to FPGA logic.

While the FPGA operations are scaled back from the general LabVIEW platform,

additional hardware interface features are available. These include a host interface

and first in, first out (FIFO) buffers. The host interface allows for triggering, generally

used to initiate data transfer, processor computation, and data return for loops that

require complex computations with the dedicated RTOS processor in the loop. Direct

memory access (DMA) is also available which allows the FPGA hardware to directly

access system memory without occupying processor resources. FIFO buffers are used

for communication within the FPGA to store and transfer data from one control loop

to another, generally at different loop rates.

Figure 5-1 shows the general relationship between generating the software appli-

cations and the implementation on hardware. The FPGA virtual instrument (VI) is

created on the host/development computer and then compiled to a bitfile. Within the

compilation process, the graphical LabVIEW FPGA code is first translated to text-

based VHDL code. Additionally, timing constraints are applied to the circuit design.

The Xilinx ISE compiler tools are then invoked. The VHDL code is optimized, the

logic is reduced, and the gate array configuration is synthesized. This stage contains

the detailed hardware information is implemented. Logic synthesis locates the logic

blocks and routes interconnects. A final timing verification tests for expected errors.

The output of this stage is the bitfile. The NI FPGA hardware has a base clock of 40

MHz and can be derived to other rates from 10 MHz to 200 MHz by a PLL. The loop

rates defined in the VI are applied to the constraints in the synthesis stage. Compiling

the FPGA code requires many computational resources to complete. A new host/de-

velopment computer was purchased to satisfy the minimum hardware requirement for

the FPGA Module software. This included 2 GB of RAM and a 2+ MHz multicore
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processor. Even with a high-performance computer, synthesis can take 60 minutes

for a bitfile that only utilizes 25% of the 3M gate FPGA. Once compiled, loading the

actual bitfile to the FPGA board takes a matter of seconds.

The host VI loads and initiates the FPGA bitfile on the hardware and interacts

with data I/O as necessary. During testing this included setting variables to optimize

delay times and implement different filters without recompiling. The final implemen-

tation initiates the 1 second data acquisition, saves the data to a file, and displays

data as well as characteristic measurements of it for the user. The final program is

compiled to the real-time operating system of the embedded controller. From Fig-

ure 5-1, the host computer displays the GUI by communicating over an ethernet

connection.

5.1 High Level Layout

Digital systems operate in a discrete domain as opposed to a continuous domain.

Figure 5-2 shows the configuration used in the implemented system. This differs

from a continuous system because it only acts on discrete samples kT, where k is any

integer. This block diagram is more general than the actual implementation because

the output sample rate is decimated from the input sample rate. The operation and

PCB design of the A/D has been described in previous chapters. The reference signal

is generated within the FPGA or real-time embedded computer.

Figure 5-3 shows the functional elements of the FPGA application. The primary

advantage of FPGAs are the high-speed parallel processing capabilities. This allows

parallel loops of varying complexity and varying loop rates. Figure 5-3 represents

only a single control channel. The experimental hardware results operate with two

simultaneous, parallel loops.

While the A/D outputs data at 2.5 MHz, the D/A can only output samples at

625 kHz. This means that the data stream must be downsampled to an appropriate

frequency. Several approaches can be taken to downsampling the data. A discrete

data sequence can be defined as integer samples of period T from a continuous signal
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Figure 5-2: Digitized control platform block diagram.
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Figure 5-4: Block diagram of discrete sampling rate compressor, adapted from [10].

by

x[n] = x,(nT) (5.1)

In this case the period T is 400 ns, corresponding to 2.5 MHz. A downsampled period

T' is then defined by

T' = MT (5.2)

where M is an integer decimation factor. The new data sequence is

xd[n] = x[nM] = xc(nT') = x,(nMT) (5.3)

Integer M in Equation 5.3 is defined as a sampling rate compressor [10]. The block

diagram of this system is shown in Figure 5-4.

For a bandlimited continuous signal, it is important to ensure no aliasing occurs.

Aliasing occurs when the downsampled signal set drops below twice the continuous

signal frequency. A low-pass filter must precede the compressor to ensure frequency

content is not aliased into Xd[n] for an arbitrary continuous signal that is not aliased

in x[n]. To avoid aliasing when downsampling by a factor of M in the frequency

domain requires that

WN < 7 (5.4)

The AD7760 has a signal bandwidth of 1 MHz but the control bandwidth of inter-

est is approximately 10 kHz due to the phase loss from the large group delay. In

Figure 5-3, data acquisition through the DMA occurs before any digital filtering or

decimation and thus acquired data is only bandwidth limited to 1 MHz. The control

implementation is discussed fulrther in Section 5.4.
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5.2 A/D Acquisition Interface

The AD7760 datasheet specifies the timing requirements to acquire data. The 24-bit

sample is acquired across a 16-bit data bus and is therefore acquired as two 16-bit

words. The additional 8 bits provide A/D operation status and ensure data integrity.

The timing requirements are not repeated here, although the overall A/D PCB design

needs to be considered with respect to timing due to digital propagation delays. The

worst case delays due to different components are shown in Figure 5-5. The delay time

for signals along the cabling is estimated at 1 ns/ft. Specifications for the internal

propagation delays on the FPGA board are not given and assumed to be negligible.

This includes signal transmission between the I/O connector and the FPGA IC itself.

The FPGA A/D acquisition loops run at 80 MHz, thus having a 12.5 ns period. For

a signal generated at the AD7760 IC, such as the data ready DRDY signal, the

estimated delay for the signal to reach the FPGA, be acted upon, and a response

signal to reach the AD7760 is

TD = 2TTx + 2Tiso + 2 TTRAN + TFPGA

= 2 -8 + 2 - 15 + 2 -5 + 12.5 = 68.5 ns (5.5)

where TTX is due to the level translators, TIso is due to the digital isolators, TTRAN

is due to the transmission length of external cabling, and TFPGA is due to the FPGA

80 MHz loop response. The full window to acquire a valid sample at 2.5 MSPS is

400 ns and this simple sensing/responding that data is ready consumes 17% of the

period. The FPGA responds by clocking chip select (CS) and read/write (RD/WR)

pins. Sample data is then driven to the data bus by the AD7760 IC tristate. The

propagation delay TD is particularly important when reading in the sample data.

The datasheet specifies that data access time is at most 41 ns, however when this is

coupled with the propagation delay TD, the total access time before data can be read

into the FPGA is 109.5 ns. The sample reading is invalid if the sample is read into

the FPGA too soon.
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Figure 5-5: A/D to FPGA signal propagation delays.

The A/D data acquisition for each sample is completed by finite state control. A

distinct advantage to the NI LabVIEW programming language is the ease of imple-

menting sequential logic. FPGA code is most easily implemented with combinational

logic, which is strictly a function of the current inputs. Sequential logic output is a

function of the current input as well as previous inputs, implying that there is mem-

ory. This adds complexity not only for how to generate the memory but also the

increasing logic required to sort out which state is being processed in the finite state

machine.

The states of the finite state machine used here are:

* SenseDRDY - Detect DRDY signal from AD7760 IC that a data sample is

ready. It is expected to arrive every 400 ns presuming the A/D is operating

correctly. The A/D and FPGA use different clocks and cannot be assumed to

be synchronized.

* LowerCS - Lower the A/D chip select pin CS.

* LowerRD - Lower the read/write (RD/WR).

* RaiseCS - Raise the A/D chip select pin CS.

* RaiseRD - Raise the read/write (RD/WR).

* Wait - Wait for a selected number of clock ticks. The wait period is defined by

the previous state.

* CounterSetup - Increment or reset DMA counter. This is completed prior to

DMA transfer to reduce the number of required computations in a single clock

cycle.
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Figure 5-6: A/D acquisition state diagram.

* ReadMSB - Read in most significant bits (MSB). These are placed in a shift

register to be combined with the least significant bits (LSB).

* ReadLSB - Read in least significant bits. These are combined with the MSB.

Data integrity on the lower 8 bits is checked for A/D errors. The upper 24 bits

are shifted from the unsigned two's complement format of the A/D output to

unsigned and signed integers for transfer to the DMA and FIFO, respectively.

The finite state machine is shown in Figure 5-6. Each state completes its individual

task as well as defines the next state. If the next state is Wait, then it also defines

the wait period and post-wait state. The CS and (RD/WR) controls are each used

twice for each A/D sample so a single bit, labeled as bit in Figure 5-6, is used to

distinguish whether the MSB or LSB needs to be read in next. An example of the

RaiseRD state is shown in Figure 5-7. Complete LabVIEW code for the acquisition

finite state machine is included in Appendix C.

Understanding the scale factor of the A/D is essential to interpreting the data.
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Figure 5-7: Example of LabVIEW FPGA code for A/D acquisition - RaiseRD state.

The A/D data sample is outputted in two's complement format. This is shown in

Figure 5-8. Two's complement is a system in which the negative number is represented

as the the two's complement of the absolute value and is beneficial because it allows

addition and subtraction by only adding two numbers as the sign is built into the

number. For n-bit precision, numbers are wrapped around on overflow. It is also

beneficial because zero is only represented once. However, for it to be used correctly,

the word bit size must be maintained for all operations.

The LabVIEW FPGA module works with several different data types, including

8, 16, 32, and 64-bit signed and unsigned integers as well as a fixed-point data type.

Double precision representation is only available in floating-point processors. The

fixed-point data type allows the total and integer world length to be defined for

each variable. This sets the maximum range and precision. However, few high-level

LabVIEW functions used the fixed-point data type.

Fixed-point numbers can also be represented as integers by pre- and post-scaling

the decimal number. As with A/D sampling where the sample is limited to the
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Figure 5-8: A/D data sample output two's complement format.

precision of the output number of bits and dynamic range, fixed-point numbers are

quantized to a fixed-precision number of bits. To multiply the U32 (unsigned 32-bit

integer) number 100 by Q16 (16 fractional bits) number 0.1, the coefficient 0.1 is pre-

and post-scaled by 216. The quantized value of the Q16 coefficient is subsequently

0.100006. The fixed-point multiplication of this operation is

ROUND (100 -ROUND (0.1 x 216)) x 2- 16 = 10 (5.6)

No quantization affects are seen in the output because values were chosen that utilized

the ranges of the data types. For the number 223 = 8388608 with the coefficient 10- 5,

the answer should be 83.9, however with quantization and rounding it is

ROUND (223 . ROUND (10-5 x 216)) x 2-16 = 127 (5.7)

The error is principally due to the coefficient quantization, which was actually 1.526 x

10-5 . The LSB size was 1.526 x 10- 5 in this example.

Along with quantization, the data type word length is important for saturation
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Figure 5-9: Converting two's complement to signed 32-bit integer.

effects. Two's complement is based on the wrap overflow method, but this is only for
addition and subtraction while maintaining a constant word length. In multiplication

operations, the word length needs to be doubled. For two 16-bit numbers multiplied

together, the output data type needs to be 32 bits to avoid overflow. This can
be compensated for by multiplying to 32-bit precision and then scaling the output
down by 16 bits. This again introduces an error due to fixed-point computation but
maintains 16-bit precision [10].

Because the A/D converter output is truly representative of signed values, the
24-bit two's complement value is converted to a signed 32-bit integer. This process
is shown in Figure 5-9. The first subtraction block moves the zero point by 223 with
the overflow wrap method. The second operation converts the value to the LabVIEW
signed integer. The equivalent bit values for these two operations are shown in Figure
5-8.

5.3 D/A Output Interface

The D/A output module is implemented similarly to the A/D acquisition. The mod-
ule is a finite state machine with 6 states and the block diagram is shown in Figure
5-10. The D/A has three input lines for data DIN, clock CLK, and chip select latch
CS/LD. The datasheet specifies that the chip select latch is to be pulled low while
loading data. The data is latched into the D/A register with serial communication,
set on the rising edge of the clock CLK. As with the A/D acquisition module, wait
commands are used so every state must specify the digital output condition, the next
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state, and wait and post-wait state if necessary. The D/A converter is 16-bit and

thus requires that the sample output be decimated to unsigned 16 bits. The 6 finite

states are:

* LowerCsn - Lower the chip select latch CS/LD.

* SetSDI - Set the data line. The data is latched to the D/A register from MSB

to LSB. Therefore a left bit shift with carry operation is used.

* Wait - Wait for a selected number of clock ticks. The wait period is set at one

80 MHz tick, or 12.5 ns, for the fastest error-free operation.

* SetSclk - Set the clock to latch the data line into the D/A register.

* ClearSclk - Clear the clock line.

* RaiseCsn - Raise the chip select latch CS/LD line and latch D/A register to

D/A output. This creates the new conversion voltage on the D/A output.

The high-resolution dSPACE interoperable system described in Chapter 2 had a

maximum loop rate of 8 kHz, however this was not limited by the D/A hardware.

The datasheet claims a 16-bit settling time of 4 ps, or a maximum sample rate of

250 kHz. However, timing constraints allow for 625 kHz loop rates. For each sample

output a glitch is incurred. The 2 nV-s glitch impulse, documented in Figure 2-14, is

generally negligible when the output is connected to electromechanical systems that

have much lower bandwidths. Better accuracy on the output at these high sample

rates could be obtained by using a different D/A converter that has a faster settling

time to 16-bit accuracy.

5.4 Digital Control Implementation

Sigma-delta converters, while providing high-resolution at high sampling rates, intro-

duce an inherent propagation delay because the necessary computations for filtering

take time to complete. Samples between separate A/D converters remain synchro-

nized throughout this pipeline delay so they also remain synchronized in the temporal

domain. The main problems with this delay is a phase loss in the control loop. The

133



Figure 5-10: D/A output state diagram.

dominant time delay is due to the A/D converter itself. For 2.5 MHz sampling, the

propagation delay is TAD = 10.8 j.s. The time to bring the digital sample into the

FPGA to a FIFO is an additional 400 ns. The remaining stages are simplified in the

Figure 5-3 block diagram.

As mentioned earlier, FPGAs are ideal for parallel processing. For a series of ci

computations that take ti long to each compute, there are two methods for processing.

The first is to be sequentially processed, where the loop period is

TSEQ = E ti (5.8)

to complete all computations and repeat. The time for a sample to enter the compu-

tation stream and then exit is also TSEQ. Only one stage is processed at a time which

means that each stage is not efficiently used, however there are no delays between

stages. The other method is to process the computations in parallel. In this case the

loop period is

TpIPE = max (ti) (5.9)

and the time for a sample to pass through all the computations is n, x max (ti).

Each computation is processed in parallel and placed in a shift register, however

the subsequent loop of computations cannot be processed until all shift registers
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Figure 5-11: FPGA sequential (left) versus parallel/pipeline (right) processing.
Pipeline processing can be implemented with shift registers (top) or feedback nodes
(bottom).

clock in new data. The computation time for all stages then becomes the maximum

computation time for any one stage. Parallel, or pipeline, processing can have higher

loop rates but at the cost of the total computation time for a single sample. This is

the same as the sigma-delta converter operation which uses the terms propagation or

group delay. Alternatively, sequential processing has slower loop rates but a shorter

group delay time. Data registers are used in pipelined processing to pass samples

from one computation to another. The two methods are shown in Figure 5-11.

The computation time for the implemented controllers and logic depends on the

controller complexity. For the lag, triple-lead, and high-frequency low-pass controller

implemented in Section 6.2, there are six shift registers representing a controller

computation time delay of TCTR = 2.4 ps. From Section 5.1, downsampling is required

to decimate from 2.5 MHz down to 625 kHz. The process is shown in Figure 5-12. A

4-point averager is used to decimate the data stream to 625 kHz by summing 4 points

and on the last summation scaling by 1 to output to the D/A FIFO. The time delay

due to this averaging is captured in the FIR representation first discussed in Chapter

2. This FIR filter representation is

1 -1  -2  + 2+ 1 (5.10)GFIR (z)= 4 (1 + z-1 + Z-2 + z-3) = Z (5.10)4 4z3.10
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Figure 5-12: Block diagram of discrete downsampler, adapted from [10].

Poe-Zero Map

---------------------- -----

.-..... ..................... 
.
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Red Axis

Figure 5-13: FIR N = 2 pole-zero map and
rate.

frequency response at 2.5 MHz sampling

where z has a sampling time of 400 ns. This finite impulse response filter has memory

limited to the last 2 N points. All the system poles are located at zero and the zeros

are equally spaced on the unit circle. The pole-zero map and frequency response are

shown in Figure 5-13. The ideal filter cuts off at the first lobe of 625 kHz however

a non-ideal lobe is also present. The non-ideal lobe allows aliasing however signal

size is typically strongly attenuated at those frequencies. The first lobe is primarily

responsible for reducing aliasing effects.

The time delay associated with the D/A FIFO and transmitting the data to the

D/A is TDA = 9.6 ps. A data register is required to break the path between the FIFO

read and the D/A output. Without this register the path would require 85 clock

ticks at 40 MHz which is equivalent to a maximum data rate of 470 kHz, however the

register also adds an additional 3.2 ps delay. This brings the total propagation/system
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delay to

TDLY = TAD + TCTR + TDA = 11.2 + 2.4 + 9.6 = 23.2 ps (5.11)

where TAD is the time to acquire a sample through the A/D, TCTR is the time to

process the controller, and TDA is the time to output a data sample. The transfer

fiunction due strictly to a time delay in the continuous-time domain is

GDLY (S) = e - TDLYS = e - 23.2ps-s (5.12)

The time delay converted to the discrete-time domain requires that the delay time

TDLY be an integer number of time samples T = 400 ns, which defines the discrete-

time operator z. The equivalent discrete-time transfer function is

GDLY (z) = z-58  (5.13)

and the complete transfer fimnction due to the digital platform is

z3 + z2  1

GDIG (z) = GDLY (z) GFIR () = - 58  + (5.14)
4z 3

The expected phase loss is -42.8 degrees for a closed-loop bandwidth at 5 kHz and is

the limiting factor on the closed-loop bandwidth of a controlled system because the

phase loss increases linearly with frequency. The expected frequency response for the

digital control system is shown in Figure 5-14. The 0.5 magnitude (-6.02 dB) scale

factor is included to compensate for the A/D front-end configured for fully differential

signals. Test hardware such as an HP dynamic signal analyzer axe typically single-

ended and are thus attenuated by a factor of 2, or 6.02 dB.

Closed-loop sample rates must be at least 10-20 times greater than the closed-loop

bandwidth [20]. Sigma-delta converters paired with FPGA control systems shift the

limiting factor from sampling rate as seen in traditional embedded processing systems

to phase losses as described here.

The terms controller and filter are used interchangeably throughout this work.
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Figure 5-14: Expected frequency response for the digital control system.

Controllers typically refer to the hardware that implements digital or analog filters.

These filters interact with dynamic signals and modify them to produce a desired
output. It is common to refer to a discrete controller transfer function as H (z)
but this is also considered a filter and used interchangeably throughout this work.
LabVIEW refers to the implemented transfer function as a digital filter.

5.4.1 PID Control

LabVIEW provides basic PID control functionality with the discrete PID FPGA
block shown in the Figure 5-15. This simplified block is limited in functionality
and is intended for users with little experience in implementing linear controls. One
limitation is that the data path is limited to 16 bits, with the gains having 8 bits
to represent the decimal portion of the gain. Simple PID also does not have the
universality that arbitrary controller transfer finctions are capable of. For a typical
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Figure 5-15: LabVIEW PID block.

PID representation of
K

HPID (s) = Kp + Ki + KDs
S

(5.15)

a single PID block is only capable of proportional and lag control. Lag control is

achieved by a PI combination, giving

Ki Ks + K
HpI (s) = Kp +1  =

S 8
(5.16)

Lead control would need to be implemented as a combination of several PID blocks

and require more complex design than a lead controller in designed Matlab. LabVIEW

functions such as the discrete PID block are also designed for ease of implementation

and simple usability as opposed to efficiency or use of resources. Benchmark tests

on FPGA utilization are not provided for the PID block but the maximum operating

frequency is 3.33 MHz. The IIR filter method described below can run a single lead

controller at 5.7 MHz on a 32-bit data path.
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5.4.2 IIR Control from Arbitrary Discrete Transfer Function

An infinite impulse response (IIR) filter contains memory and has an infinite impulse

response to an impulse input. A finite response filter (FIR) has all the poles at zero

in the discrete plane, while the IIR can have the poles arbitrarily spaced. There

are several ways to represent difference equations, but when system performance is

limited by the number and complexity of computations, it is essential to implement a

simplified form. Control canonical form provides this simplification and is described

in numerous sources on the fundamentals of discrete systems [13, 10]. A control

transfer function is comprised of state coefficients in

b (z) boz i + bz i- 1 + + bi(5.17)
H (z)- (5.17)

a(z) zi+aizi-1 + --- +ai

There are a number of ways to organize these coefficients such as direct form I, direct

form I transposed, direct form II, or direct form II transposed [10, 11]. The minimum

number of delay elements are required in direct form II. An example of this form is

shown in Figure 5-16. The transposed form reverses the direction of all signal paths

and is the same equivalent transfer function but alters whether the input flows through

the bi coefficients before the delay elements or after. Depending on the implemented

filter, a transposed form may or may not be beneficial to minimize rounding and

saturation effects in delay, addition, or multiplication operands. Both direct form II

implementations were tested with negligible differences in the designed filters.

Another option is for cascaded systems. This takes a high-order filter and factors it

into second-order cascaded systems. These can provide numerous combinations. The

cascaded systems are equivalent in the case of infinite precision arithmetic, however

varying fixed-point configurations can produce different results due to finite precision.

Cascaded form generally requires more resources because each stage is constrained to

second-order and thus a third-order filter will have a zero coefficient.

National Instruments provides a number of tools to work with discrete filters.

Most of them are available in the add-on Discrete Filter Design Toolkit. The tools

range from filter design, to simulation, to FPGA code generation. I completed all filter
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Figure 5-16: IIR filter canonical control direct form II block diagram.

design with Matlab in continuous-time and then converted to discrete form. The filter

transfer function is then imported to a custom written LabVIEW virtual instrument

that quantizes the discrete coefficients, simulates the filter response, and generates the

FPGA code to be compiled in the end application. The code is based on an example

VI provided with LabVIEW documentation but there are three major features. First,

a custom VI was written to import a Matlab transfer function. Second, advanced

instances were used as opposed to simple instances to allow more specific features

to be set. Third, analysis and simulation features were added. Complete LabVIEW

code for the FilterFPGACodeGenerator.vi is included in Appendix C.

The transfer function designed in Matlab is converted to the discrete-time domain

with the Tustin bilinear approximation, or trapezoid rule. Other options would be

to use forward or backward Euler approximations. The Tustin method maps the

entire left half of the s-plane into the unit circle of the z-plane. The s- to z-plane

transformation is
2 z-1

s T z + 1 (5.18)T, z+l

where T, is the sampling period. The forward method can lead to instabilities because

the left half of the s-plane can map outside of the unit circle whereas the backward

method is conservative and maps to within a quarter portion of the unit circle. Lab-

141



VIEW uses the backward method for transforming to discrete-time filters, such as

the discrete integrator. Although the stability boundaries are mapped coincidentally

in the case of the Tustin approximation, there is distortion (or warping) within the

unit circle. This warping is not compensated for in the discrete approximation.

Averaging and decimation can be implemented before or after control is imple-

mented. This determines what discrete sampling time is defined in the discrete con-

troller approximation. Using a discrete-time filter at sampling frequencies other than

that designed for distorts the frequency response and can even lead to instability.

An important factor in where to place the downsampler is the effect on time delays.

When considering the time delays associated with sequential versus pipelined pro-

cessing, it was shown that the overall time to process all the computations is longer

for pipeline but the sample rate is higher. The sample rate is limited by the length

of the longest single computation. Sampling at 2.5 MHz is possible as long as each

string of computations can be processed in 400 ns or less. Generally a single lead

filter can be have loop rates up to 5.7 MHz with a 40 MHz master clock. A sampling

rate of 625 kHz for the controller would allow many more sequential computations

but associated delays in parallel processes would be higher. I found that there was

a smaller overall time delay by downsampling after the control implementation and

directly before the output without a large increase in utilized FPGA resources.

Figure 5-17 presents a block diagram of the IIR filter generation code. The first

step is to import the discrete-time filter with a custom written VI from a specified

text file. The VI first reads the number of zeros in the filter and then the number of

poles. Two separate FOR loops then read in the specified number of zeros and poles

and indexes them to an output array. Sufficient precision is obtained with floating-

point of % 2 0. 30 f form from Matlab. To determine the expected coefficients for a

given filter from ZPK form, the filter is converted to TF form and the coefficients are

the numerator and denominator matrices.

The next stage in the IIR filter generation VI is coefficient quantization, or convert-

ing the floating-point filter to fixed-point. As previously discussed with fixed-point

data types, quantization and overflow mode have a large affect on how a filter op-
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Figure 5-17: FPGA IIR filter code generation block diagram.
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Figure 5-18: Quantizer error introduction in a fixed-point filter [11].

erates. Figure 5-18 shows the different sources of quantization error for a single a

coefficient. The quantization settings are only set by the user for the b and a co-

efficient quantizers (Qc), but settings are also needed for input (QI), output (Qo),
multiplicand (QM), product (Qp), sum (Qs), and delay (QD). The input and output

word lengths are manually set to accommodate the data stream. The remaining coef-

ficients are automatically set by the LabVIEW VI to accommodate the user-defined

quantizers and embedded design rules.

The coefficient quantizers need to be determined through trial and error with

simulation. This requires using a simulated data stream similar to that found in
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the end application. The overall word length and integer word length is set when

defining the coefficient quantizer. The overall word length is maintained at 32 bits

which is the maximum for the LabVIEW VI. The data stream word length could be

decreased to save resources but this is only necessary when FPGA resources become

limited. A narrowed data stream does allow faster throughput computing but the

saved time is negligible relative to the decreased performance due to the decreased

precision. The integer word length sets the integer range and the remaining bits

set the decimal precision. The appropriate word length and integer word length are

entirely filter dependent based on order, pole/zero locations, and overall gain. The

frequency response and pole-zero map are both plotted for floating- and fixed-point

filters to compare quantization effects.

The saturation mode is also a critical component in the quantizer. For example,

an integral controller with a steady-state error will quickly rail and saturate. The

saturation mode determines whether the internal operations and output will saturate

at the limit or wrap around. Typically the output is set for saturation in order to

avoid signal discontinuities or sudden changes in amplitude. However, the saturation

mode is more complicated than the wrap mode and requires more FPGA resources.

For internal quantizers, such as the sum quantizer, the wrap mode is required because

this made allows intermediate overflows and underflows within a certain range as long

as the final output does not contain overflows or underflows.

A final quantizer setting is the rounding mode. The "nearest" mode rounds to the

closest representable number. If the two closest representable numbers are an equal

distance apart, this mode rounds to the closest representable number whose least

significant bit is 0. The rounding error of this mode is zero-mean, but this mode has

higher implementation complexity than the truncation mode due to the computation

of choosing the closest representable number. The "truncation" mode rounds to the

closest representable number less than the original value. This mode is the most

common but has a nonzero mean.

The next subVI sets the input and output word length. The input is set to 24

bits, the same as the A/D output, and the output to 32 bits, the largest data path
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possible for the LabVIEW provided Digital Filter Design Toolkit. Following that VI,

a text report is generated about the floating-point to fixed-point quantization. The

report lists both the reference value and the quantized value and indicates whether the

quantized coefficients have overflows, underflows, or are zeroes, as well as providing

the total number of overflows, underflows, and zeroes that the quantizing generates.

No metric is provided on the amount of quantization. Provided there are no errors,

significant quantization effects are shown on the comparative frequency responses.

The final stage is FPGA code generation, which creates a subVI that can be

directly placed in the FPGA application code and compiled to hardware. It also

returns the maximum sampling frequency of the filter based on the computation

length. The number of required loop iterations increases as the order or number of

cascaded systems increases, thus decreasing the maximum sampling frequency. An

example IIR filter is included in Appendix C.3.

The precise implementation of the FPGA code generation subVI provided great

difficulty in implementing the IIR FPGA control. The a and b coefficient quantizers

are the only quantizers set in the process. The remaining quantizers are set by

LabVIEW. Although the input and output word lengths are defined by the user, the

full input and output quantizers are defined by LabVIEW, including the integer word

length. Therefore it is necessary to modify the generated FPGA code to account for

the integer word length scaling [43]. Each IIR FPGA filter has an input scale factor

of 2" , however there is no output scale factor. The scale factor of 2nou• , where ni,

= -not, is manually inserted into the output stream. Although no specific reason

was provided by National Instruments through technical support on this issue, the

lack of the output scale factor is most likely to keep the data stream from saturating.

For example, a lead-filter has unity gain at DC and greater than unity gain at high

frequencies. The filter may be compensating for the high frequency gain to avoid

saturation. However, changing the set input and output word lengths had no effect on

the input and output scale factors. The IIR FPGA code example shown in Appendix

C.3 includes this scale factor, as does the experimental results in Chapter 6.

Within the generated IIR filter code, a complex control unit determines which
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computations are completed on each loop iteration. The code is placed within a

single cycle timed loop (SCTL) to create a known computation length and reduce

utilized resources. The SCTL requires that all computations are processed within

one clock cycle. The LabVIEW FPGA Module automatically inserts a shift register

between every operation except when the operation is located in an SCTL structure.

This proves to be an extremely conservative approach but reduces timing constraints

in the code compilation process. The principal reason for this is that it reduces the

required design ability of the user and allows a broader range of FPGA code users.

Code located within an SCTL structure does not have registers located between

operations and thus can fail more easily during compilation due to timing. The

forward and backward coefficient paths are processed in parallel. The delay blocks

are implemented as block RAM located on the NI FPGA board.

Addition and multiplication operations present unique challenges in fixed-point

arithmetic. The output of two 16-bit values added together requires 17 bits to avoid

overflow. The output of two 16-bit values multiplied together requires 32 bits to avoid

overflow. The LabVIEW IIR filter implementation is only capable of 32-bit data

paths, however sensor data is 24 bits and this precision is retained along the data

path until decimation on the output. The multiplication subVI created by LabVIEW

multiplies the signal and coefficient to 64 bits and then scales back the value to 32-bit

precision. As discussed earlier, the a and b coefficients are converted to fixed-point

integers. This post-scaling value is embedded in the multiplication block.

Another interesting approach is that the 32 by 32-bit multiplication is separated

into parallel arithmetic paths and recombined at the end. Each 32-bit word is sep-

arated into two 16-bit words. For a signal x and coefficient a, the multiplication is
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simplified to

al a2

X X1 X 2

a1x2  a2x2

+ ailx a2X1  0

(a 1xi) (aiX2 + a2X1) (a2X2 ) (5.19)

where the three outputs are combined to form a 64-bit word before it is post-scaled.

This includes carry operations for the addition stage.

FPGA hardware is constructed with configurable logic blocks (CLB). The exact

number of CLBs and features vary from device to device, but each CLB consists of

a configurable switch matrix with 4 or 6 inputs, some selection circuitry (such as a

MUX), and flip-flops. The switch matrix is highly flexible and can be configured to

handle combinatorial logic, shift registers, or RAM. In some designs, these logic units

are replaced with more application specific circuitry, such as dedicated multipliers.

This is beneficial because the dedicated logic is more efficient for that specific applica-

tion when utilized. While the CLB provides the logic capability, flexible interconnects

route signals between CLBs and to and from the digital I/Os. With application spe-

cific logic units, signals must be routed to and from these blocks. This can cause

timing issues and can increase the complexity of routing in the logic synthesis. The

LabVIEW FPGA Module masks the interconnect routing task from the user to reduce

design complexity.

The National Instruments FPGA device has 96 18 by 18-bit dedicated multiplier

blocks. A single IIR filter uses 8 of these blocks, 4 for each 32-bit multiplication

subVI. When these are consumed, CLBs need to be configured as multipliers which

is not efficient for FPGA resources and can lead to timing errors. The IIR filter

is designed to reuse these multiplication subVIs for each coefficient by utilizing the

SCTL structure. The SCTL is clocked at 40 MHz, allowing for 16 loop iterations to

process a 2.5 MHz data stream. The IIR filter master control unit determines which
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signals, coefficients, and arithmetic operations are completed in a single cycle as well

as the address of RAM for which it is stored to or read from.

5.4.3 Additional Filter Implementations

An important aspect of most control schemes is the accuracy of the DC response. This

is obtained by integral control, generally with a lag term that provides infinite DC gain

with minimal magnitude and phase at the crossover frequency. The integral windup

term needs to be limited or else damaging outputs or long recovery times could be seen

in the face of different error sources. An integral or lag controller can be designed and

imported to the FPGA code generator VI previously described, however the internal

quantizers use wrap for the overflow mode and this causes discontinuities in the filter

output. The LabVIEW FPGA Module also provides a discrete-time integrator block.

An example of this implementation is shown in Figure 5-19. An ideal integrator is

transformed with the backward method so that

1 1
HINT = - 1 (5.20)

the integrator is implemented simply as an accumulator of the signal and previous

sum by

yi = xi + Yi-1 (5.21)

The implementation assumes a sampling interval of dt = 1 and the user is required to

multiply the input or output by dt in a host VI. This external factor is implemented

by an adaptation of the IIR filter multiplication block. The coefficient is converted

to a fixed-point integer and a multiplication block with the correct post-scaler is used

to maximize the range and precision. For the example given in Figure 5-19, the word

length is 32 bits and the integer length is 4 bits. The integral gain KINT is 50 and

the sampling frequency is 2.5 MHz, which gives a coefficient value of

KINT 50 -228
c1 - ROUND ( 2.5 = 5369 (5.22)

fs 2.5M
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Figure 5-19: Discrete-Time integrator with anti-windup example.

The anti-windup term is achieved with saturation limits. This could easily be

implemented with < or > and select logic, but it is conveniently provided as an "in

range and coerce" LabVIEW block. The LabVIEW provided "saturate" block is

merely the "in range and coerce" block with a different icon. The saturation limit

in this example is set to +4.76x10 -7 when the data path is normalized to ±1. The

boolean logic shown in Figure 5-19 turns on/off the integrator term to the data stream

and reinitializes the integrator when the integrator switch transitions true.

An FIR boxcar filter provides an efficient method of averaging a window of data

samples. An N-point moving window is implemented as shown in Figure 5-20. The

size of the window N is held constant. The first 2N points are then stored to RAM

and summed together. The next point is then added to the sum and the first point

is subtracted. The output is scaled by 2
-N to produce the average of the N points.

The RAM is implemented as a FIFO buffer, simplifying the tracking of the first point

in the window. This moving window implementation is compiled within an SCTL so

it is computed in 25 ns.

A design for parametric amplitude control is presented in Section 6.2. While the

concept is somewhat advanced, it is implemented with a series of parallel loops com-

prised of traditional controllers. The only advanced feature is an amplitude measuring

function. LabVIEW provides an RMS measuring block where the measurement pe-
riod is set. The parametric amplitude control ensures resonant control of a system
even as the resonant frequency shifts. Therefore the RMS measurement period needs
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Figure 5-20: N-point average window FPGA implementation.

to be larger than any resonant period. A custom peak-peak detector was also written,

which finds the maximum and minimum values over a given period and then outputs

the amplitude of them. The custom peak-peak detector has a larger RMS of returned

amplitude values because signal noise on any peaks are considered to be the peak

itself. Another option is to square the signal and then low-pass it.

Waveform generation is another set of useful LabVIEW FPGA subVIs. They

allow for sine or square waves to be easily embedded within control VIs while still

interfacing amplitude, frequency, etc settings. These are useful for generating known

references without requiring an additional A/D to bring in analog references.

With the ability to convert any transfer function into an FPGA IIR filter and

the additional control features that can be implemented within the LabVIEW en-

vironment, it is clear that most traditional control systems can be run with the

LabVIEW setup described here. The largest disadvantage is to the FPGA control

implementation is in flexibility, development, and debugging. The compile process

takes approximately one hour for any change in the VI and thus the debugging pro-

cess must be designed in during the development and design process. The addition of
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lookup tables also allow for complex equations to be embedded and processed quickly.

5.5 User Interface and Post-Processing

While a control system runs on embedded hardware, it is equally critical that a user

be able to view the system and interact with settings, variables, gains, and filters. A

benefit of the LabVIEW setup is the ease with which user interfaces are created and

linked to embedded systems. This was critical throughout the testing and debugging

phase to locate errors and evaluate performance. Although data can be transferred as

a single word, it is more efficiently transferred in large quantities with direct memory

access (DMA). The user interface presented below collects a one second burst of two

channels sampling at 2.5 MHz. For 32 bits per sample, 8 bits for data integrity and

24 for the sample itself, a 20 MB data burst is seen. This is well within the DMA

capabilities.

Moving the data to a computer also allows for floating-point computations. The

user interface does not require nearly as high update rates as the control loop itself

so the additional computation time is generally tolerable. The data can also be

postprocessed. National Instruments and LabVIEW, as well as users and third-party

vendors, provide numerous features to use, evaluate, and store data.

An example of a user interface is shown in Figure 5-21. The embedded FPGA

VI does not have any control in this example but if it did, it would include inputs

for references, loop gains, and integrator/filter control. The data samples are read in

and statistics such as the mean and RMS noise in several units are calculated. The

raw data as well as an FFT is displayed for each channel through tabbed control.

The data samples are also stored to a Matlab file for further viewing. This data

would be postprocessed and mapped onto a topographical plot for the intended ap-

plication as the data acquisition and control system for an AFM scanner. At this

point of experimental results, each channel measures an individual axis and cross-

coupling of those axes are not analyzed so pairing of the data is not yet an issue.

However, the synchronization of the two channels is guaranteed by the initialization
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and operation of the DMA transfer process. Postprocessing will most certainly in-

clude high-order filtering. This is useful in removing high-frequency noise that often

dominates baseline noise measurements.

This chapter described the LabVIEW software design to interface with analog

peripherals and implement real-time control, as well as a host GUI. The next chapter

presents experimental results for the A/D PCB design and the full digital platform

as it is applied to a mechanical positioner. The application demonstrates 1.5 kHz

control bandwidth sub-nanometer control for micron-scale ranges at 625 kHz closed-

loop sampling rates.
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Figure 5-21: Front panel user interface.
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Chapter 6

Experimental Results

This chapter discusses the characterization of the custom 2.5 MHz A/D PCB and the

application of the digital platform to an experimental hardware setup. The hardware

is a flexure-based, electromagnetic 2-DOF scanner designed by Ian MacKenzie for

high-speed atomic force microscopy. The AFM scanner provided the initial specifi-

cations for the digital platform. The digital platform can be applied to a variety of

hardware systems and the AFM scanner results are presented as an example of the

digital platforms application in a precision system.

6.1 A/D Characterization Results

The custom A/D PCB was tested with a variety of inputs. One caveat of char-

acterizing a high-performance A/D converter is that the analog source needs to be

extremely low-noise, accurate, and provide its own known characterization. Most of

the characterization tests presented here are completed with a grounded input. The

precision of the analog source or electronics is discussed as well as the measured re-

sults for dynamic inputs. Three operational A/D PCBs have been built and tested.

There are several revision changes between them but only for debugging purposes.

The measured results are representative of all three PCBs.

By providing a grounded input between the differential inputs of the A/D, the

measured unfiltered signal-to-noise ratio (SNR) is 66 MV RMS relative to a 20 V range
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Figure 6-1: Grounded input A/D count histogram.

at 2.5 MSPS. This is equivalent to 109.6 dB or 17.9 effective bits. The histogram for

a one-second set of 2.5x106 data samples is shown in Figure 6-1. The x-axis is

presented in integer counts where - = 8388608 is the midpoint corresponding to 0

V input. The results show that there is an offset within the converter of 2 mV which

is corrected for in software. The AD7760 datasheet claims a SNR of at least 100 dB,

which demonstrates that the analog front-end, power-conditioning, and PCB layout

matches or exceeds the requirements for the A/D converter IC. This is a factor of 2.8

better than the expected RMS noise.

A time-scale response over a 400 ps interval as well as the FFT over a one-second

interval for the grounded input is shown in Figure 6-2. The maximum frequency

content occurs at approximately 670 Hz and can arbitrarily shift by several hundred

Hz. Although an effort could be made to locate the source this content, the noise floor

is better than expected from the datasheet and larger disturbances are introduced

when measuring actual signals. Also shown is the signal response when filtered to

100 kHz with a 25-point digital boxcar filter. The signal baseline noise then improves

to 14.8 pV RMS, or 122.6 dB SNR.

A dynamic frequency response was taken on the A/D, FPGA, and D/A system.
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The system input is the analog signal to the A/D and sampled at 2.5 MHz. The 24-bit

digital sample is then transferred to the FPGA where a 4-sample average is computed

to decimate the output sample rate down to 625 kHz. This is then transferred to the

D/A and converted to an analog output. Figure 6-3 shows this frequency response.

The predicted model given by

GDIG (z) = GDLY (z) GFIR (z) = z583 + 2 + z1 + (6.1)
4z3

The z- 58 time delay is equivalent to TDLY = 23.2 ps where T = 400 ns defines z. The

expected controller computing time TCTR = 2.4 ps is simulated with shift registers

where control would otherwise be implemented. The expected frequency response

matches the measured response with the computation delay included. The constant

scale factor discussed in Chapter 2 relating to the D/A output amplifier gain is also

included in the digital control system to remove the magnitude offset. The linear

phase loss due to the time delay becomes non-negligible above 1 kHz and limits the

ability to close a control loop beyond 10 kHz. This is discussed further below when

the system is applied to a position system with 1.5 kHz closed-loop bandwidth.

A signal generator was used to generate a constant 1 kHz sine wave input in order

to demonstrate the acquisition of an external signal. Although the signal generator1

has a frequency resolution of +0.05 Hz, the distortion is only rated to 70 dB. Fig-

ure 6-4 shows the power density of the acquired signal and demonstrates a distortion

floor limited by the function generator and not the ADC. Any power line pickup or

feedthrough is also eliminated by the common mode rejection of the ADC differential

amplifier as no 60 Hz multiple is shown in the response.

Several issues arose when the data acquisition system was coupled with an analog

input from an ADE capacitive probe (gauge 6810, probe model 6501) [19]. The first

was a ground loop. This was clear by the dominant signal content at a multiple of

60 Hz, generally 120 Hz or 180 Hz. This was measured with the capacitive probe

fixtured to a stationary target in order to measure the baseline noise of the probe and
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Figure 6-3: A/D, FPGA, D/A system frequency response. The magnitude of the
measured digital platform with delay and the expected with delay are coincident and
thus the measured result is not independently visible.
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analog interface itself. This effect was attributed to ground loops forming through the

separate instruments. Signal isolation is critical between analog and digital systems,

which is why the PCB designs include galvanic digital isolators. However, analog

components also need to be isolated, particularly when different power supplies are

used.

The ground loop was solved by using fully differential outputs from the probe

driver. The A/D analog input was originally designed as a single-ended input with the

second input referenced to ground. This meant that the capacitive probe driver and

the A/D PCB shared a common ground, which is where the ground loop formed. The

change required different A/D analog front-end passive components to accommodate

twice the attenuation, which meant doubling the resistance of the feedback resistors

and varying the other components to retain the appropriate anti-aliasing poles. The

final design for fully differential inputs has been described throughout this work.

The output of any sensor needs to be known because if a single-ended output were

now connected to the A/D PCB input, the digital sample would be attenuated by

half. The single-ended input can be compensated with a simple, commonly described

op-amp input circuit for converting single-ended channels to fully differential [35].

In addition to power line pickup, operation of the A/D PCB injects an approxi-

mate 100 kHz disturbance into the capacitive probe measurements. This is present

even when the driver output is only connected to a Tektronix AM502 differential

amplifier and oscilloscope with the A/D operating several feet away and measuring

ground input. The disturbance has been attributed to the A/D PCB running but the

disturbance is generated within the capacitive probe electronics. The disturbance can

be measured with different different analog sinks individually without the A/D PCB

connected but merely running. The disturbance is also eliminated when the custom

A/D PCB is turned off. Significant efforts were made to identify and eliminate the

medium on which this disturbance is injected, however it could only be minimized,

and the exact source was never determined. Efforts included:

* using an isolated power transformer for the National Instruments PXI chassis

and A/D PCB power supplies.
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* earth grounding the isolation table test surface with a "star" configuration.

This method creates a single point where all voltages are referenced. This

can also introduce additional loops because power supplies can add unwanted

noise or that supply currents, flowing in existing ground paths, are sufficiently

large, or noisy, or both. This is minimized with separate power supplies for

each component. Separate analog and digital supplies, and separate analog and

digital grounds, joined at the star point, can potentially assist in minimizing

ground loop issues.

* connecting the common of the FPGA breakout chassis to the earth ground,

A/D PCB chassis, or PXI chassis.

* floating or earth grounding the A/D PCB power supply.

* floating or earth grounding the capacitive probe driver chassis and system

ground.

* connecting the analog signal shields to the A/D PCB or capacitive probe driver

chassis.

* connecting the A/D PCB chassis to the A/D PCB, earth ground, or analog or

digital cable shields.

Variations of these combinations were tested to achieve the lowest RMS baseline noise

measurement. Some variations had very little effect while others could introduce mV

level disturbances. The isolated transformer proved to have the worst results because

then the ground reference needed to be provided through the test surface or another

instrument ground, creating much worse ground loops.

Another issue that introduced additional disturbances was the microcontroller

operation on the A/D PCB. I measured approximately 800 kHz disturbance bursts

which were generated each time the microcontroller came out of sleep mode. The

initial microcontroller design used an internal timer as an interrupt. The microcon-

troller would enter sleep mode and be brought out by the internlpt, check that the

A/D was still operating properly, reset the timer counter, and then enter sleep mode.

This issue was solved by eliminating the microcontroller sleep mode and leaving it
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constantly running. The described design in Chapter 4 and Appendix B reflects this

final design implementation.

Ultimately, a baseline noise measurement of approximately 300 pV was measured

with the capacitive probe on a stationary target. The grounding configuration is

shown in Figure 6-5. This figure presents the full configuration for the experimental

setup discussed in Section 6.2, however for this test the "isolation table" is replaced

with the fixture clamped to an electrically isolated surface. The most significant

factor was providing an earth ground to the test structure. The capacitive probe

technically grounds the target surface and probe, but the a direct connection to earth

ground provided better results. Two separate capacitive probes were tested. Their

characterization results from the manufacturer and the measurements are provided

in Table 6.1.

Table 6.1: Capacitive Probe Characterization and Baseline Measurement Results

Probe 1 Probe 2
Bandwidth 100 kHz 100 kHz
Range 40 pm 50 pm
Specified Noise (RMS) 181 pV 309 pV
A/D Measured Noise (RMS) 252 pV 298 pV
Diff Amp Measured Noise (RMS) 2 165 pV 260 pV

The measurements on the differential amplifier were taken with the A/D PCB

turned off and not connected. The measurements were also taken with a 100 kHz,

3rd-order low-pass filter in place on the differential amplifier. An example of the FFT

of the approximately 100 kHz disturbance is shown in Figure 6-6. This is an FFT

response of the 50 pm probe on the stationary target. The A/D is the dominant

noise source for Probe 1, however the A/D is not the dominant noise source for Probe

2, even with the approximately 100 kHz disturbance, because the measured noise is

lower than the characterized noise. One reason the A/D measured noise is lower than

the characterized noise is because the characterized noise is measured out to 4.6 MHz,

2Low-pass filtered to 100 kHz on Tektronix AM502 differential amplifier
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whereas the A/D noise is only measured to 1 MHz as set by the anti-aliasing filters

and digital filters in the sigma-delta converter.

6.2 Sub-Nanometer Position Control Results

This section describes results for applying the designed digital platform to a single

axis of the AFM scanner designed by Ian MacKenzie in the Precision Motion Control

Laboratory. We intended to control both axes with the digital platform, however

the project was terminated and the following results are merely an example of the

application of the digital platform. A design for parametric amplitude control is

presented but was not implemented.

The hardware and 2-axis control designed and tested by Ian MacKenzie was the

second of two prototypes [12]. The intended application of the atomic force micro-

scope (AFM) was for high-speed, high-resolution in-line measurement processes for

the semiconductor industry. The design is a 2 degree of freedom scanner for a high-

speed scan axis and an orthogonal vertical axis. The ultimate goal was to scan a 50

pm by 50 pm scan area of 106 pixels with a vertical range of 10 ,/m in one second. The

third axis is not part of this design because the specifications are not as demanding.

The high-speed scan axis operates in resonance at approximately 1030 Hz along

the x-axis as shown in the Figure 6-7. The point of interest is m2, since it carries the

probe. The vertical axis then acts along the z-axis with conventional random access

control. Motion is constrained by the pairs of flexures labeled in Figure 6-7. Flexures

are the primary structure element in part because they can be designed to allow single

DOF movement without friction, to the first order, and can be readily scaled to small

ranges of motion. The hardware is machined as a monolithic structure to allow each

DOF to essentially operate independently. The actuator used is a 2-DOF Lorentz

motor with a moving-magnet, labeled in Figure 6-7, and stationary-coil design. The

shear-mode actuators are in a stacked configuration which allows for the same type

of coil to be used for both the x- and z-axis with decoupled forces, to the first order.

The coils are stacked in complimentary pairs about both sides of the magnet. The
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Figure 6-5: Grounding diagram for capacitive probe measurements with "star" earth
ground configuration on experimental AFM scanner application. Stationary/fixtured
probe tests use the same configuration, although the "isolation table" is replaced by
the fixture.
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Figure 6-6: FFT of the response of 50 pm probe on stationary target with 298 pV
RMS unfiltered baseline noise. This was measured on with the custom A/D PCB
hardware and LabVIEW acquisition software.

bottom of the moving mass m 2 is where the AFM tip would be located in future

designs, but this design is only intended to demonstrate the scanner design.

The physical hardware with the actuator and capacitive probes in place is shown

in Figure 6-8. The capacitive probes measure the moving target. The flexures are

designed as part of a lightly-damped spring-mass-damper system. The x-axis is de-

signed for the first mode shape of [1 2]T where the moving mass m 2 translates 2 units

for every unit the magnet moves. The x-axis flexure pairs are the same length so

there is theoretically no cross-coupling with the vertical axis.

The spring-mass-damper system for the model shown in Figure 6-9 is a simple

2nd-order system given by

G' z (s) 1 (6.2)

F (s) = F(s) - ms 2 + bes + k, (6.2)
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Figure 6-7: 2-DOF high-scan rate positioner CAD model [12].
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Figure 6-8: 2-DOF high-scan rate positioner hardware.

By accounting for the Lorentz force actuators, the plant is modeled by

Z(s) K
G (s)_ (6.3)

z () = (s) m,,Ls3 + (mR + bL) s2 + (bR + kýL + K 2) s + kzR

where R is the series resistance, L is the inductance, and K is the motor constant. The

three poles occur very near each other at 400 Hz. The z-axis controller implemented

by Ian MacKenzie was a lag, triple-lead controller of the form

0.002344s + 1 (0.0002344s + 1) (6.4)
0.002344s 4.803 x 10-ss + 1)

This designs for a 35 degree phase margin at a closed-loop bandwidth of 1.5 kHz. The

measured plant frequency response and the applied controller to the plant is shown

in Figure 6-10. This controller was implemented on a dSPACE platform with a 50

kHz closed-loop sampling rate. The sensor was the 40 pm range capacitive probe

and associated driver. With the native 16-bit ADCs and 14-bit DACs provided by

dSPACE, this system was capable of 50 kHz data sampling and 5.0 nm RMS unfiltered
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Figure 6-9: Spring-mass-damper mechanical model.

control positional response.

In order to implement the controller on the high-speed, high-resolution platform,

the controller was redesigned to accommodate the additional phase loss due to the

time delay. At 1.5 kHz, an additional 23 degrees of positive phase is added to the

design. The controller used was

Hz (= (0.002287s + 1 0.0001714s + 0.7495\
0.002287s 2.188 x 10- 5s + 1

( 0.0002287s + 1 0.0002437s+1 (6.5)
k 2.188 x 10-5s + 1 2.053 x 10-5s + 1

The gain was combined with the first lead controller to reduce the number of

operations required in the data path. The third lead controller has an additional 2

degrees added to the desired phase so that the zeros and poles of all the filters do

not lie directly on top of each other. I found in testing that when this was the case,

high frequency blips would be generated after several filter stages and be continually

amplified until the high frequency blip dominated the signal.

A Butterworth filter was also included in the feedback path to reduce high fre-

quency content. This reduces the possibility of saturation in the data stream due to

high frequency gain of the lead controllers. Figure 6-11 shows the time and frequency

response for a constant reference with closed-loop control. The unfiltered RMS noise

is 430 pV or 0.86 nm and 51.9 pV or 0.10 nm RMS when filtered to 1.5 kHz. The

filtered measurements correspond to 111.7 dB dynamic range and 18.3 effective bits.

The unfiltered FFT response shows that the dominant signal in the data acquisition

stream is the 100 to 200 kHz disturbance. The 60 Hz, or multiple of 60 Hz, is a strong
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Figure 6-10: Z-axis measured open-loop and expected system loop transmission on
dSPACE control platform [12].
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Figure 6-11: Controlled z-axis time response (top) and FFT (bottom).

contributor to noise content even with fully differential signals.

These results compare to the dSPACE control implementation on the z-axis for a

constant reference. The dSPACE closed-loop system was measured at 5.0 nm RMS

unfiltered and 3.2 nm RMS low-pass filtered at 30 kHz. The unfiltered relative mea-

surements between the two control systems are shown in Figure 6-12. The plot on

the right demonstrates both the high-resolution and high-sample rate of the FPGA

platform versus the dSPACE platform.

Figure 6-6 and Table 6.1 demonstrates that low-noise acquisition of the capaci-

tive probe is possible. In the stationary target instance, which exhibited less 60 Hz

content, an aluminum mount was machined and clamped to a nonconductive table.

The capacitive surface of this target is much less than the capacitive surface of an

isolation table. Different variations of grounding were tested to find that with the

least amount of 60 Hz content. However, the baseline noise on the isolation table
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Figure 6-12: Relative comparison of unfiltered measured RMS position with dSPACE
and FPGA digital platform closed-loop control to a constant reference over 20 ms
(left) and 200 ps (right).

could not be matched to that of the stationary target. An ultimate lesson from this

application is that for each high-resolution measurement setup, ground paths need to

be critically analyzed and tested with different configurations to find the lowest noise

setup possible. The best configuration tested is shown in Figure 6-5.

The loop transmission for the closed-loop system is shown in Figure 6-13. The

additional phase peak was shifted to a higher frequency to account for the linear

phase loss. The additional phase loss due to the digital platform is apparent versus

the phase loss for the plant in Figure 6-10, as well as the additional phase required in

the controller. The measured step response and error is shown in Figure 6-14. With a

phase margin of 35 degrees, the expected overshoot is approximately 35% whereas the

measured overshoot was only 8%. The controller could be redesigned with a smaller

phase increase which would improve the gain margin as well.

The loop transmission was measured by the scheme shown in Figure 6-15. An

active summer was built to allow for an error signal to be injected into the plant.

The loop from channel 1 to channel 2 then allows for the loop transmission to be

measured via analog signals while maintaining closed-loop control on the system.

Alternatively an error signal could be injected into the error data path within the

FPGA. This would require an additional A/D channel to bring the DSA signal into
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Figure 6-13: Z-axis measured open-loop and closed-loop loop transmission on FPGA
control platform.
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Figure 6-14: Z-axis measured step response and error.
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Figure 6-15: Loop transmission measurement scheme.

the FPGA and also introduce timing issues.

A control scheme based on a parametric amplitude control loop as designed by

Ian MacKenzie [12] was also tested. The goal of the control is to implement a self-

sustaining oscillation that resonates at the first mode of the x-axis with an amplitude

of 25 pm, or a 50 pm range. For self-sustaining oscillation the closed-loop system

poles must lie on the imaginary axis of the s-plane, i.e., the system is arranged to be

marginally stable. The control loop as implemented by Ian MacKenzie on a dSPACE

system is shown in Figure 6-16. The control loop is fairly standard, except a dynamic

gain multiplier can change the system gain and thus move the system poles. A

parallel loop also maintains a zero DC level to minimize power in the actuators. The

bandwidth of these loops must be significantly less than the 1030 Hz frequency of

oscillation so the amplitude control does not fight the resonant oscillation.

These filters and multipliers were converted to discrete-time filters and compiled to
the digital platform FPGA for testing. The DC loop was able to maintain a constant
DC reference. Self-sustaining oscillation was also actuated at 1030 Hz, however the
amplitude measurement system was not fully debugged and thus the overall scheme
was not implemented in full within the time constraints of this thesis. Although
complex in concept, the parametric amplitude control is fairly straight-forward in
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Figure 6-16: Parametric amplitude control loop [12].

terms of control filters and the data path computation complexity.

This chapter presented the characterization of the A/D PCB and the application

of the full digital platform to a motion control application. Full 2.5 MHz sampling

was demonstrated with sub-nanometer and 111.7 dB filtered dynamic range control.

The next chapter discusses overall conclusions and potential future work to improve

the previously discussed designs.
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Chapter 7

Conclusions and Suggestions for

Future Work

This thesis provides a step in enabling high-resolution digital control of precision mo-

tion systems. This included a complimentary pair of dSPACE interoperable analog

interfaces that were revised and characterized so they could be implemented in appli-

cations. The work has also presented a design for a high-resolution, high-speed data

acquisition and real-time control, FPGA-based digital environment. The design in-

cludes a custom A/D PCB design and characterization, as well as high-level software

design with arbitrary controller transfer function implementation.

This chapter summarizes the advantages and disadvantages of each digital plat-

form, as well as the ideal applications. In addition, recommendations for future work

to improve the designs are included.

7.1 Conclusions

dSPACE Interoperable High-Resolution System:

A pair of high-resolution analog-to-digital and digital-to-analog channels were pre-

viously designed in the Precision Motion Control Laboratory by David Otten. These

designs were built and tested as an improvement over dSPACE-provided peripher-
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als. Each channel is located on a modular PCB with individual power decoupling

and digital galvanic isolation. The A/D channel is based on a 800 kSPS converter

and dedicated DSP that oversamples and sums. The DSP transmits the sum to the

dSPACE DS1103 slave DSP and the average is computed. This effectively increases

the A/D resolution from the native 16 bits to 20.1 effective bits, or 15.0 pV RMS

on a 20 V range. The D/A channel implements a 16-bit converter as opposed to the

native 14-bit dSPACE DS1103 converter. These peripherals are interfaced through

a Simulink S-Function and are utilized by the user the same as the native channels.

The trade-off for the increased resolution is a decreased closed-loop sampling rate.

The native dSPACE system can run up to 100 kHz, however the slave DSP utilization

limits the system to an 8 kHz sampling rate.

An asymmetric RMS noise distribution was initially measured across the full input

voltage range. The resolution decreased to approximately 16 bits with a -10 V input.

The disturbance was due to incorrectly referencing the anti-alias capacitors between

the differential input signals into the converter.

Originally the system was designed for 8 A/D channels and 8 D/A channels,

however 2 of the D/A channels were not functional. The digital port used for serially

loading data to the D/A PCBs only has 7 physical pins although there are 8 logic

bits. The breakout PCB was modified to access one additional bit, allowing 7 D/A

channels. To use a full 8 D/A channels, an additional port needs to be used which

requires additional time to clock data onto, thus decreasing the maximum sampling

rate.

The high-resolution system designs of this thesis are utilized in two separate re-

search projects within the Precision Motion Control Laboratory which demonstrate

appropriate applications. The first is a vibration isolation system that utilizes three

A/D and three D/A channels. The closed-loop bandwidth is 30 Hz. The second sys-

tem is a 1-DOF positioner for atomic microscopy, which utilizes three A/D channels

and one D/A channel with a 200 Hz closed-loop bandwidth.
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High-Resolution, High-Speed FPGA System:

An FPGA-based digital platform was designed for high-resolution, high-speed

data acquisition and control. A sigma-delta A/D converter was selected because it

provides the greatest resolution and dynamic range with a sampling rate in excess of

1 MSPS. No commercial PCB options were available at the time of initial design and

thus a circuit was designed to support the selected AD7760 IC A/D converter. The

design was based on an evaluation circuit provided by Analog Devices but significant

changes were made, such as a dedicated microcontroller with custom firmware to

operate the A/D converter, digital galvanic isolation, as well other modifications to

features that were not functional as described in the evaluation circuit. The custom

PCB achieved 109 dB unfiltered SNR at 2.5 MSPS, or 71 ~V RMS on a 20 V range.

I selected a National Instruments FPGA-based digital platform for high-speed

acquisition and control computations. The NI LabVIEW language provides high-

level funimctionality that can be easily and quickly implemented, such as direct memory

access to quickly transfer large amounts of data. The FPGA board was used within

a PXI chassis with a dedicated real-time computer on an NI RTOS. Data acquisition

was demonstrated for two 24-bit A/D channels at 2.5 MSPS over 1 second.

Real-time control was implemented on the FPGA, with the control loop closed by

the high-resolution D/A PCB designed for the dSPACE system. LabVIEW provides

16-bit PID control, however this control scheme is limiting for more advanced linear

control techniques. I designed a LabVIEW virtual instrument to convert an arbitrary

transfer function into embedded FPGA logic representing an IIR filter/controller,

which included several LabVIEW provided subVIs. This design required a detailed

understanding of the LabVIEW implemented quantizers. The analog input and out-

puts are controlled with finite state machines. The D/A hardware is limited to 625

kHz sample rate due to serial latching constraints, and thus the closed-loop sampling

rate is 625 kHz. The control path is processed at 2.5 MHz and downsampled to 625

kHz.

The full digital platform was used to control a flexure-based, electromagnetic
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scanner. The 2-DOF scanner, designed by Ian MacKenzie in the Precision Motion

Control Laboratory, has the x-axis operated at resonance and the z-axis operated in

random access. Experimental results were only collected on the z-axis, although an

initial implementation of the parametric amplitude control for the x-axis is presented.

The z-axis has a range of 10 pm and the sensing capacitive probe has a range of 40 pm.

A z-axis lag, triple-lead controller with 1.5 kHz control closed-loop bandwidth was

designed on the native dSPACE DS1103 system and achieved 5.0 nm RMS control

unfiltered and 3.2 nm RMS control filtered to 30 kHz. A similar controller was

implemented on the FPGA-based system, accommodating for an increased phase loss

due to the sigma-delta propagation delay. The system achieved 0.10 nm RMS control

filtered to the 1.5 kHz closed-loop bandwidth with 2.5 MHz data acquisition and a

625 kHz closed-loop sampling rate, thus demonstrating the increased resolution and

sample rate available with the A/D and FPGA digital environment.

The measured total time delay in the loop is Td + I = 23.2 ps. This introduces a

real-time phase loss of 42 degrees at 5 kHz, and is the limiting factor in the real-time

control implementation. This system is ideally suited for system bandwidths of 1 kHz

or below and requiring high-speed, high-resolution data acquisition.

7.2 Suggestions for Future Work

dSPACE Interoperable High-Resolution System:

The high-resolution dSPACE system is successfully being used in several experi-

ments which demonstrates its functionality. The changes discussed here are expected

to provide only incrementally increased performance. The first recommended change

is to produce a new breakout connector PCB that has wiring included for all 7 chan-

nels. The current temporary solution is a soldered jumper that connects the 7th bit.

A system demanding 7 operational channels has not been required yet so this has not

been a priority.

The next recommended change is to implement a passive low-pass filter on the
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Figure 7-1: High-resolution D/A voltage reference noise and effect of passive low-pass
filtering: the voltage reference noise measured with a Tektronix AM502 differential
amplifier and 1 MHz low-pass filtering (left), the voltage reference noise measured
with the differential amplifier and 30 kHz low-pass filtering (middle), and the voltage
reference after a 4 kHz passive low-pass filter measured with the differential amplifier
and 1 MHz low-pass filtering (right).

D/A voltage reference. This would require a new PCB revision. Currently there is

no filtering between the precision voltage reference and the D/A converter. The char-

acterized D/A PCB only demonstrates 15.1 ENOB and 16 bits can be approached

with this filtering. Figure 7-1 shows the current noise present on the LT1019 pre-

cision reference used in the design and how it can be improved. The inserted filter

decreases RMS noise by over 16 dB and would assist the high-resolution D/A system

to approach 16 effective bits.

The last recommendation is to further investigate the theoretical difference in ref-

erencing the anti-alias capacitor on the A/D analog input. With capacitors located

between the differential signal and ground, an asymmetric noise distribution across

the full input range was measured. The noise was significantly improved by replac-

ing these two capacitors with a single capacitor between the two differential signal

lines. Literature recommends both methods, however the underlying reasons for the

measured difference are not understood.
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High-Resolution, High-Speed FPGA System:

An initial recommendation for this system is to use separate A/D converters for

the data acquisition and control. The sigma-delta converter was selected because

of its superior dynamic range at the 2.5 MHz sampling rate, however the 10.8 ps

propagation delay of the converter severely limits the applicability to controlling high

bandwidth systems.

If individual A/D PCBs are continued into a new revision, signal termination

for the synchronized clocks between channels should be implemented. This would

include an output driver. A single IC can be used to clean up the signal and ensure

synchronization.

Building and debugging the AD7760 PCB circuit proved to be more challenging

and time-consuming than initially expected, however now that an operational PCB

has been demonstrated I recommend continuing to build off the AD7760 circuit as

the data acquisition converter. Instead of single PCBs for each channel though, the

design could be consolidated to incorporate several converters on a single PCB. This

would only require a single microcontroller and decrease the total power regulators

required, as well as simplify peer channel synchronization. Currently, wires need

to be run between separate PCBs to provide a synchronized clocking signal. Mul-

tiple channels on a single PCB also simplifies the digital connector to the FPGA.

A proprietary National Instruments connector could be designed onto the board to

avoid transmitting signals through the NI breakout box. These unguarded lengths

introduce cross-coupling between signals, particularly at high switching frequencies.

Changing the analog input to the AD7760 is another consideration. The current

design uses a single differential amplifier, built into the AD7760 IC, to accommo-

date single-supply attenuation, shifting, and anti-aliasing. The input impedance and

common mode rejection can be improved by using an instrumentation amplifier con-

figuration, however this would require dual supplies and the related voltage regulation.

If continuing with the AD7760 A/D design, the microcontroller may also be ex-

changed for a newer product line. Microchip now offers microcontrollers that operate
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at 80 MHz with a 32-bit data bus compared to the 30 MHz, 16-bit data bus currently

used. This does not affect overall performance though.

An alternative possibility would be to purchase the X3-SDF product from Inno-

vative Integration which has four AD7760 A/D channels with a dedicated FPGA.

The cost is $8,500 and interfacing with the acquired data would require additional

resources to develop, whereas the custom PCB has already been implemented with

National Instruments hardware and software. The primary benefit for the X3-SDF is

multiple channel proven hardware.

If the National Instruments FPGA hardware is used in the further revisions, I

recommend that the next design step be the hardware shown in Figure 7-2. The

specifications defined by the high-speed AFM scanner discussed in Chapter 3 are

no longer essential to meet because the project specifications have been redefined.

Instead, a more universal system could be developed. The primary difference is using

separate A/D converters for data acquisition and control. The AD7760 sigma-delta

converter is best suited for acquisition in light of the inherent propagation delay, and

provides the highest dynamic range available at MHz sampling rates. The control

A/D would be provided with the 18-bit ADS8482 from Texas Instruments which has

a dynamic range of 99 dB at 1 MSPS, compared to 100 dB at 2.5 MSPS for the

AD7760. The true benefit is that the ADS8482 has a synchronous approximation

register (SAR) converter architecture which means that the associated propagation

delay is only the transmission delay. This decreases the time delay due to the digital

control environment by at least 10.8 ps. If 1 MHz data acquisition is adequate for an

application, then just the SAR A/D could be implemented.

Another change to a revised system would be a faster D/A converter. The current

design was used because it was previously available. I would alternatively select the

AD768 from Analog Devices which is parallel input 16-bit converter with a 25 ns

settling time to 16-bit accuracy that can be clocked up to 30 MSPS. The converter

has a current output and would require a high-speed external op-amp so the update

rate is not limited by the op-amp slew rate. The present D/A converter can only be

clocked to output data up to 0.625 MSPS. The true settling time is then determined
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by the external op-amp.

While parallel interfaces with the A/D and D/A converters require more FPGA

digital I/O, the data bus lines can be multiplexed. Up to three closed-loop channels

can share the data bus and maintain a 1 MHz closed-loop control rate. The samples

would not be simultaneous, but would offset from one another by 330 ns.

This described system, with dual A/D converters, would have a data acquisition

rate of 2.5 MHz, closed-loop sampling rate of 1 MHz and an estimated time delay

of 1.2 p~s for 5th-order controller computations compared to 23.2 gps measured in

the current design. Although the dynamic range of the A/D converter is slightly

worse and the output resolution is the same as the implemented design, the system

resolution is expected to improve with this described system because the output has

a faster settling time to 16-bit accuracy. The present D/A converter has a 4 ups

settling time to 16-bit accuracy whereas the recommended D/A converter has a 0.35

Ips settling time to 16-bit accuracy. The hardware would be located on a single PCB

and include dedicated voltage regulation, digital galvanic isolation, and a National

Instruments connector to connect directly into the FPGA.

If the National Instruments hardware is not used in a further revision, I recom-

mend adapting the Thunderstorm architecture designed by Xiaodong Lu [6]. Lu's

system has four simultaneous A/D converters, a 100 MHz 64-bit data bus, three 300

MHz DSPs, and four simultaneous D/A converters. This system was not adapted

for this initial design because the required timeline was too short and the National

Instruments setup provided a quicker, simpler, and more user-friendly implementa-

tion. Lu's system has a 1 MHz closed-loop sample rate and a time latency of 1.4

ps for an overall time delay of 1.9 us. This time allows for four simultaneous A/D

conversions, a 20th-order filter, a cosine computation, a sine computation, a square

root computation, and finally four simultaneous D/A conversions. The 20th-order

filter implemented in LabVIEW FPGA code as described in Section 6.2 would re-

quire a latency of at least 3.5 ps to compute. It is possible to write more efficient

FPGA code that can compute faster, however the code would not be as universal as

the code generator described earlier in Section 5.4.2. The DSP architecture allows
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Figure 7-2: Recommended high-resolution, high-speed data acquisition and control
environment. Separate acquisition and control A/D channels are used for data acqui-
sition and control. The D/A converter is replaced with one capable of a high output
sample rate.
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more flexibility with more complex computations, particularly at increasing speeds,

and simpler coding. The controller design iteration time is also much lower for DSPs

because the FPGA compile time is eliminated, allowing more flexible and efficient de-

velopment and debugging. The Thunderstorm DSPs could also be updated with 600

MHz TigerSHARC processors from Analog Devices which would decrease the loop

latency to approximately 1 ps, providing much higher performance than the strictly

FPGA based system.

The final recommendation is to further investigate the approximately 100 kHz

disturbance measured in the capacitive probe drivers when the AD7760 A/D converter

is running. As discussed in Section 6.2, the disturbance is present even when the

analog signal from the driver to the custom PCB is not connected so even the transfer

mechanism is not completely understood.

This thesis has presented two high-resolution digital systems for increasing avail-

able control precision in mechanical systems. This resolution increase generally comes

with either a decreased sample rate or an increased time latency. An FPGA-based

control system was implemented to improve both resolution and speed and experi-

mental results demonstrated 0.10 nm RMS control filtered to the 1.5 kHz closed-loop

bandwidth over 10 ,pm range with 625 kHz closed-loop sampling rate. However, the

closed-loop bandwidth could be substantially increased by developing a DSP-based

system, such as the Thunderstorm architecture by Xiaodong Lu. In summary, these

designs demonstrate significantly increased digital precision that can be quickly and

easily implemented, thus allowing increased closed-loop performance.
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Appendix A

Schematics
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Appendix B

AD7760 Microcontroller Firmware

C Source Code:

// Source code for AD7760 PCB microcontroller
// Written by Aaron Gawlik 11-13-07
// This includes debugging and testing interfaces

#include <p30f6012A.h> //dsPIC30F6012A microcontroller
#include <uart.h> //Microchip UART RS-232 interface

//received UART global variable data register
unsigned char RXdata;

extern void asmInitFunction(void);
extern void testMIPS(void);

void _ISR _UlRXInterrupt(void); //UART1 receive ISR
void _ISR _INTOInterrupt(void); //interrupt0 ISR
void _ISR _TInterrupt(void); //timerl inerrupt ISR
void runinit(void); //initialization macro
void UARTConfig(void); //UART configuration macro
void debugFcn(void); //macro for debug purposes

int main() {
SRbits.IPL = 4; //set CPU interrupt priority to level 4

//define inputs/outputs
ADCONlbits.ADON = 0; //Allow PORTB to be digital I/O
ADPCFG = OxFFFF;

TRISB = OxFFFF; //data bus (RB) is all inputs
TRISD = OxFFAO; //PIC input(1)/output(0) pins, see design notes
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TRISF = OxFFFF;
TRISG = Ox0000;

//Interrupt input pins
//used for debugging

LATG = Ox0000;
LATGbits.LATG6 = 1; //oscillator on, enable high
LATGbits.LATG7 = 0; //AD7760 votlage regulators on, enable low
LATGbits.LATG8 = 1; //level translators voltage regulator on, enable high
LATGbits.LATG2 = 1; //SYNC sim, high
LATGbits.LATGI5 = 1; //SYNC sim, high

LATDbits.LATD1 =
LATDbits.LATD2 =
LATDbits.LATDO =
LATDbits.LATD3 =
LATDbits.LATD4 =
LATDbits.LATD6 =
//LATD = 0x0049;

UARTConfig();

//setup interrupt on
INTCONIbits.NSTDIS =
IPCObits.INTOIP = 7;
INTCON2bits.INTOEP =
IFSObits.INTOIF = 0;
IECObits.INTOIE = 1;

//AD7760 CS (0)
//AD7760 RD/WR (0)
//analog switch select to FPGA (1)
//AD7760 RESET command (1)
//BRDY (AD7760FE board not initialized) (0)
//CLR (flip-flop, active-low) (1)

INTO
1; //disable nested loops (1)
//set INTO priority to level 7 (7)
1; //edge detect on rising (positive) edge (0)
//clear interrupt flag status bit (0)
//INTO enabled (1)

//Sleep();

//sleep/idle mode and wait to re-initialize on interrupt
while (1) (

}

//
/* INTO ISR */
void ISR _INTOInterrupt(void) {
F,

if(PORTFbits.RF6 == 0) {
LATGbits.LATG1 = -LATGbits.LATG1;
LATDbits.LATD4 = 0; //BRDY
run_init();

//setup interrupt on T1 (check DRDY and set BRDY)
if (0) {

IECObits.T1IE = 1; //enable timerl interrupt
IFSObits.TITF = 0; //clear timerl flag
IPC0bits.T1IP = 5; //interrupt priority
T1CONbits.TCS = 1;
T1CONbits.TSYNC = 0;
TMR1 = 0; //reset timerl
PR1 = OxFFFF; //timerl period, appx 3000/29*256 = 26 ms
T1CONbits.TCKPS = 0x2; //timerl prescaler set to 1:256,
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T1CONbits.TON = 1;

}

IFSObits.INTOIF=0;
//Sleep();

//clear interrupt flag

void _ISR _T1Interrupt(void) {
LATGbits.LATGO = -LATGbits.LATGO;

if (PORTDbits.RD7 == 1) {
LATDbits.LATD4=1; } //BRDY

else {
LATDbits.LATD4=0; } //BRDY

LATDbits.LATD6 = 0; //CLR (flip-flop, active-low)

LATDbits.LATD6 = 1; //CLR (flip-flop, active-low)

IFSObits.T1IF=O;
Sleep();

/* This is UART1 receive ISR */
void _ISR .U1RXInterrupt (void)

{
// Read the receive buffer until

while( DataRdyUART1() ) {
RX.data = ReadUART1();

empty

if (RXdata == 97) { //'a' received, turn
LATGbits.LATG6 = -LATGbits.LATG6; }

else if (RXdata == 98) { //'b' received,
LATGbits.LATG7 = -LATGbits.LATG7; }

else if (RX-data == 99) { //'c' received,
IFSObits.U1RXIF = 0; //clear interrupt
Sleep();

}
else if (RXdata == 100) { //'d' received,

run.init();

}
else if (RXdata == 101) { //'e' received,

testMIPS ();
}
else if (RX.data == 104) { //'h' received,

LATDbits.LATD3 = -LATDbits.LATD3;
}
else if (RX.data == 106) { //'j' received,

LATDbits.LATD1 = -LATDbits.LATD1;
}
else if (RXdata == 108) { //'1' received,

LATGbits.LATG1 = -LATGbits.LATG1;

on oscillator

runinit

enter sleep
flag

mode

run_init

testMIPS

flip RST

flip CS

twiddle Port G

else if (RX.data == 109) { //'m' received, test FPGA port
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PORTBbits.RBO = -PORTBbits.RBO;
}
else if (RXdata == 110) { //'n' received, test FPGA port

PORTBbits.RB1 - -PORTBbits.RB1;

else if (RX_data == 111) { //o' received, test FPGA port
PORTBbits.RB2 = -PORTBbits.RB2;

else if (RXdata == 112) { //'p' received, test FPGA port
PORTBbits.RB3 = -PORTBbits.RB3;

else if (RXdata == 113) { //'q' received, test FPGA port
PORTBbits.RB4 = -PORTBbits.RB4;

else if (RX-data == 114) { //'r' received, test FPGA port
PORTBbits.RB5 - 7PORTBbits.RB5;

else if (RX-data == 115) { //'s' received, test FPGA port
PORTBbits.RB6 = -PORTBbits.RB6;

else if (RX_data == 116) { //'t' received,
PORTBbits.RB7 = mPORTBbits.RB7;

test FPGA port

else if (RXdata == 117) { //'u' received, twiddle Port G
LATB = -LATB;

else if (RXdata == 118) { //'v' received,
PORTBbits.RB8 = -PORTBbits.RB8;

test FPGA port

else if (RXdata == 119) { //'w' received, test FPGA port
PORTBbits.RB9 = -PORTBbits.RB9;

else if (RXdata == 120) { //'x' received,
PORTBbits.RB10 = -PORTBbits.RB10;

test FPGA port

else if (RXdata == 121) { //'y' received, test FPGA port
PORTBbits.RB12 = -PORTBbits.RB12;

else if (RXdata == 122) { //'z' received,
PORTBbits.RB11 = -PORTBbits.RB11;

else if (RXdata == 65) { //'A' received,
PORTBbits.RB13 = -PORTBbits.RB13;

else if (RXdata == 66) { //'B' received,
PORTBbits.RB14 = nPORTBbits.RB14;

else if (RXdata == 67) { //'C' received,
.PORTBbits.RB15 = -PORTBbits.RB15;

else if (RXdata == 68) { //'D' received,
LATG = -LATG;

test FPGA port

test FPGA port

test FPGA port

test FPGA port

twiddle G port

else if (RXdata == 69) { //'E' received, twiddle G port
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LATGbits.LATG8 = -LATGbits.LATG8;
}

}
IFSObits.U1RXIF = 0;

}

/* AD7760 setup procedure */
void runinit(void) {

LATDbits.LATD1 = 1; //AD7760 CS
LATDbits.LATD2 = 1; //AD7760 RD/WR
LATDbits.LATDO = 0; //analog switch select (1 = FPGA)

LATB = Ox0000; //set Port B
TRISB = Ox0000; //data bus (RB) is all outputs

//apply power
//start osc, applying MCLK
//take RESET low for minimum of 1 MCLK
LATDbits.LATD3 = 0; //AD7760 RESET command (0 = reset)

LATDbits.LATD3 = 1; //AD7760 RESET command (0 = reset)
//wait for minimum of 2 MCLK

asmInitFunction();

LATB = 0x0000;
TRISB = OxFFFF; //data bus (RB) is all inputs

//Removed for debuging, put back in when connected to FPGA
//LATD = 0x0019; //return analog switch select to FPGA and enable BRDY
//LATD=OxOO5E; //RD/WR & CS high, select low (PIC maintains control)

LATDbits.LATD6 = 0; //CLR (flip-flop, active-low) (1)
LATDbits.LATD6 = 1; //CLR (flip-flop, active-low) (1)

int n = 0;
for (n=0;n<100;n++) {

if (PORTDbits.RD7 == 1) {
LATDbits.LATD4=1; //BRDY
LATDbits.LATDO=1;
}

}
void UARTConfig(void) {

//Initialize configuration variables
unsigned int baudvalue;
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unsigned int UlMODEvalue; //configl
unsigned int UlSTAvalue; //config2

//Specify baud rate
baudvalue = 194; //defines 9.6kbs at 30Mhz clock

//USE 194 for 9.6kbs at 30MIPS

ConfigIntUART1(UART_RXINTEN & UARTRXINTPR7 & UARTTXINTDIS);
//(recieve interrupt enable, priority 7, transmit interrupt disable)

UlMODEvalue = UARTEN &
UARTIDLE_STOP & UART_ALTRXALTTX & UARTEN_WAKE

& UARTDISLOOPBACK & UARTDISABAUD
& UART_NO-PAR_8BIT & UART_1STOPBIT;

//(enable,
// stop in idle mode, communication through alternate pins,enable on start,
// disable loopback, disable autobaud,
// no parity 8-bit, 1 stopbit)

U1STAvalue = UART_TX.PIN.NORMAL & UART_TXENABLE
& UART_INT_RX_CHAR & UARTADRDETECT_DIS
& UART_RX-OVERRUN-_CLEAR;

// (Interrupt on transfer of every character to TSR, UART TX pin operates normally,
// Transmit enable, Interrupt on every char received, address detect disable,
// Rx buffer Over run status bit clear)

//Open the UART
OpenUART1(UlMODEvalue, UlSTAvalue, baudvalue);

}
Assembly Source Code:

; file: asmfun.s

.global _asmInitFunction ;setup AD7760 function

.global _testMIPS ;sample AD7760 function

asmInitFunction:

mov #0x0020, w2 ;register 1 address (0x0001)
mov #0x0006, w3 ;register 1 data (0x0006 -> 0x0018)
mov #0x0010, w4 ;register 2 address (0x0002)
mov #0x0010, w5 ;register 2 data (0x0002)

;modified values for wrong xlator pinout
;mov #0x0080, w2 ;register 1 address
;mov #0x4018, w3 ;register 1 data, with 4x decimation
;mov #0x0040, w4 ;register 2 address
;mov #0x0040, w5 ;register 2 data

;write sequence 1

202



mov #0x0006, wl ;take CS low for 4 ICLK
mov wl, OxO2D6
nop
mov #OxOOOE, wl ;take CS low for 4 ICLK
mov wl, OxO2D6
nop
nop
mov w4, Ox02C8 ;write reg 2 address to port B
mov #OxO00C, wl ;take CS low for 4 ICLK
mov wl, OxO2D6
nop ;1
nop ;2
nop ;3

nop ;4

nop ;5

nop ;6

mov #OxOOOE, wl ;take CS high for 4 ICLK
mov wl, OxO2D6
nop ;1

nop ;2

nop ;3

nop ;4

nop ;5

nop ;6

mov w5, Ox02C8 ;write reg 2 data to port B
mov #OxO00C, wl ;take CS low for 4 ICLK
mov wl, OxO2D6
nop ;1

nop ;2

nop ;3

nop ;4

nop ;5

nop ;6

mov #OxOOOE, wl ;take CS high for 4 ICLK
mov wl, OxO2D6
nop ;1

nop ;2

nop ;3

nop ;4

nop ;5

nop ;6

;write sequence 2
mov w2, Ox02C8 ;write reg 1 address to port B
mov #OxO00C, wl ;take CS low for 4 ICLK
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mov wl, OxO2D6
nop ;1
nop ;2
nop ;3
nop ;4
nop ;5
nop ;6

mov #OxOOOE, wl ;take CS high for 4 ICLK
mov wl, OxO2D6

nop ;1
nop ;2
nop ;3
nop ;4
nop ;5
nop ;6
mov w3, Ox02C8 ;write reg 1 data to port B

mov #OxO00C, wi ;take CS low for 4 ICLK
mov wl, OxO2D6
nop ;1
nop ;2
nop ;3
nop ;4
nop ;5
nop ;6
mov #OxOOOE, wl ;take CS high for 4 ICLK
mov wl, OxO2D6
nop ;1
nop ;2
nop ;3
nop ;4
nop ;5
nop ;6

clr wl
clr w2
clr w3
clr w4
clr w5

return

_testMIPS: ;Function to test MIPS - twiddles cs bit, demonstrates 29.6 MIPS
mov #0x0018, w5 ;cs low and rd/wr low
mov #OxOO1E, w6 ;cs high and rd/wr high
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mov w6, OxO2D6 ;cs high and rd/wr high
mov w5, OxO2D6 ;cs low and rd/wr low
mov w6, OxO2D6 ;cs high and rd/wr high
mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high

mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high

mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high
mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high
mov w5, OxO2D6 ;cs low and rd/wr low
mov w6, OxO2D6 ;cs high and rd/wr high

mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high

mov w5, OxO2D6 ;cs low and rd/wr low

mov w6, OxO2D6 ;cs high and rd/wr high

mov w5, OxO2D6 ;cs low and rd/wr low
mov w6, OxO2D6 ;cs high and rd/wr high
mov w5, OxO2D6 ;cs low and rd/wr low
return
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Appendix C

LabVIEW FPGA Code

C.1 A/D Acquisition State Machine

W0 Em aI

207

Sta Ptsl
I~eeOKRfl~

rq*5.fe"P1r. DIIE

S*LowerRD

r--&--- I m i

F rlF
·

I-- - I

- --

|



208

*Ra6KS

~a Ih~i ~ Luxt Satel
CwS 2 a

...t.. .s.

%owerRtol -1

..... ........... ...... ........ ~ ..... ......~....... ............ .......~...~............. ..... ~..~..

IU DEBU2Stat1

· , J~ RD~WR4 LOaerCS I--I

WII

------ -----



'RdseCS"

...... .... ... ... ....

HEI -ste

209

~ ·······-- --·-- ---- ·-- ---- - ... ...... . .......... ... ... .. ....................···· ····· ···· ·· ···· ····- · ···· ····-· ····-·- ···· ····- ·

ED- t~ RO/WR2l

*m5B Pat Tksl
fidw to cmtwkpa*Týdý

I~ ~` --- --·



I- 

-. cueretup"

Start DMA 2

2500000

2500001

210





C.2 D/A Output State Machine
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C.3 Filter/Controller FPGA Code

C.3.1 Matlab Transfer Function Output rn-file

function [] = buildiir(G,fs)
% G is the transfer function of the controller
% fs is the digital sampling frequency [Hz]

Ts=1/fs;
z=zpk('z',Ts); %define discrete-time ZPK variable with sample time T
%create discrete transfer function with tustin bilinear approximation
Gz=c2d (G, T, 'tustin');
% plot continuous and discrete-time transfer functions
figure
bode (G, Gz)
legend('G(s)','G(z)');
% extract ZPK coefficients for text output file to LabVIEW
[z p k]=zpkdata(Gz);
z=cell2mat(z);
p=cell2mat(p);
% open output file
[fid, message] = fopen('filterload.txt', 'wt');
% check to make sure output file opened correctly
if (fid == -1)

display('error opening text file');
display(message);

else
% output number of poles and number fo zeros
fprintf(fid, '%3d %3d\n', length(p), length(z));
% output list of zeros with real and imaginary components
for n=l:length(z)

fprintf(fid, '%20.30f + %20.30f\n', real(z(n)),imag(z(n)));
end
fprintf(fid, '\n');
% output list of poles with real and imaginary components
for n=l:length(p)

fprintf(fid, '%20.30f + %20.30f\n', real(p(n)),imag(p(n)));
end
fprintf(fid, '\n');
% output gain K
fprintf(fid, '%20.30f\n', k);
status=fclose(fid); % close output file
if(status == 0)

display('File built successfully');
else

display('File close unsuccessful');
end

end
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C.3.2 LabVIEW Generator Code

Front Panel Tabs
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Source Code VI

U

218



LabVIEW Transfer Function Input VI

file path (use dialog) ----- Gain
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Read from Text Fie text
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C.3.3 LabVIEW Generated Filter Code

IIR Filter Front Panel and Icon

x ]DirecI
LIMR111 Y

Toplevel IIR Filter Block Diagram LabVIEW Code

IIR Filter Multiplier Block LabVIEW Code
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IIR Filter Control Block LabVIEW Code
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C.3.4 Example of LabVIEW FPGA Control Implementation:

Lag, Triple-Lead
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