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Abstract

The effective use of complex fenestration systems (CFS) in buildings requires a
detailed knowledge of their optical spectral and directional properties.
Bidirectional scattering functions (BSDFs), either in transmission (BTDFs) or
reflection (BRDFs), are used to assess these properties and gather information
vital to CFS design and analysis.

To enable this analysis in a time and budget conscious manner, an innovative
video goniospectrometer, called the Heliodome, has been developed. The
Heliodome relies on filtered digital imaging, mathematical methods, and the use
of a unique semi-transparent hemispheroidal light collection system to investigate
the spectral and angular selectivity of CFS across the visible and near infrared
portions of the solar spectrum.

This thesis seeks to describe the most recent advancements in the development
of the Heliodome-the completion and characterization of the spheroidal mirror
component, the integration of a spectral estimation method, the photometric
calibration of the camera, and the final automation and validation-- enabling the
measurement of both spectral radiometric BSDFs and photometric BSDFs.
The completion of this research should support the advancement of CFS that
improve the use of daylighting in a space, reducing energy consumption and
managing solar gains while improving visual comfort in buildings.

Thesis supervisor: Marilyne Andersen, Assistant Professor of Building
Technology
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1. Introduction

The architectural tradition grew out of an era when daylighting was the only clean
and safe means for illumination. As proves true with many design trends, the
relationship between natural illumination and architectural form was most
intimate when there was no competing lighting technology. In his article
Electrician, Sir Joseph Swan, the developer of the electric lamp, marvels at the
advancements since the days of his youth, when "the rushlight, the tallow dip or
the solitary blaze of the hearth were the common means of indoor lighting" (Swan
1893). However, it wasn't until fifty years later in the 1950s and 60s when the full
momentum of artificial lighting would dominate design movements. Daylighting

would begin to be seen as a heating and cooling liability, with some states even
abandoning minimum illumination requirements in their lighting codes (Heschong

2002a).

The solar-apathetic design trends of forty years ago are a far cry from the
accepted architectural ideal of today. Premiums are paid for well-daylit spaces,
and abundant glazing has become a design status symbol in modern
architecture. Certainly, this switch signifies a rejection of the artificial lighting
rhetoric and a fervent mandate for naturally-lit spaces.

1.1 Daylighting Benefits

Society has extensively profited from the rediscovery of daylight and its
celebration in design. The following section overviews some of the findings on
the benefits of daylight for psychological and physiological health, for addressing
energy and economic concerns, and for architectural expression.



1.1.1 Psychological and Physiological Benefits

Certainly the most intuitive use of light is for vision. It is well known how lighting

conditions can impact our sight, and thus our ability to perform visual tasks. In

fact, through a model of vision performance (Rea and Ouellette 1991), the ability

to perform a certain visual task can be predicted very accurately depending on

target size, target contrast, observer age, and illuminance levels.

The effect of different light spectra on visual task performance has also been

studied extensively. A light's emittance spectrum is known to effect visual

performance when luminance contrasts are low (Eklund 1999), or, more

obviously, in chromacity-dependent tasks (Williams, 1966). Other data suggests

that light spectra that produce small pupil sizes improve retinal image quality for

tasks close to the visual threshold (Boyce et. al 2003b). At the very least, it is

accepted that color temperature alters the average value of preferred illuminance

level on a task plane (Kruithoff 1941).

Because the link between light and vision is so predictable, it is easy to assess

daylight as a means of illumination. As illuminance optimality depends on the

task, in some cases, daylight can enhance performance, while in other tasks it

may diminish performance. Most visual tasks, though, are performed better in

high illumination. While these levels can usually be achieved with artificial

lighting, electrically lit spaces often target the minimum task-based illumination

levels as a result of lighting codes and economics. Thus, inadvertently, daylit

spaces often achieve a higher level of illumination than electrically lit buildings

(Leslie 2003), often aiding in visual performance.

Additionally, one of the characteristics that makes daylight such a tough lighting

competitor is its broad spectral range. The spectral power distribution of daylight

covers the entire visible spectrum, affording better color rendering than most

artificial lighting. In fact, daylight is often used in art galleries and high-end retail



stores for this purpose. This broad spectrum also improves some task

performance, as subjects perform better in fine color discrimination tasks or in

discrimination of low levels of color contrast when they are tested in daylit spaces

(Nickerson 1948, ASTM 1996, Williams 1966, Eklund 1999). However, for most

task applications, adequate color rendering can be achieved in artificially lit

spaces.

However, an increasingly strong link between daylit interiors and health and

productivity, implies that optimal lighting environments cannot solely be

determined by illumination levels. While thoughtful artificial lighting schemes can

achieve high levels of visual performance for certain tasks, several studies have

analyzed the physiological and psychological effects of daylighting on humans.

Though it is difficult to pinpoint daylight as the causational variable in some of
these studies, they imply reasonable doubt in the adequacy of previous building
practices.

Firstly, the difference in the spectral distribution and quality of light between
artificial lighting and daylight can have an important impact on human health.
Poor lighting conditions can cause a number of ailments, including eyestrain,
seasonal affective disorder and sleep disorders. Eyestrain, for example, is
caused by inadequate illuminance levels and excessive contrast, and can lead to
fatigue, lack of concentration, and permanent eye damage (Simonson and
Brozek 1948, Wibom and Carlsson 1987). Because daylight is such an effective
illuminator, the causes of eyestrain are often less common in daylit spaces. Also,
artificial lighting can induce other health problems caused by, sometimes
unperceivable, rapid fluctuations in electric light output (Wilkins 1995), leading to
migraines and seizures.

Other disorders more directly result from the lack of exposure to daylight. SAD,
or seasonal affective disorder, may have detrimental effects on populations that
don't get adequate exposures to high levels of certain spectral portions of



daylight. In a small community in Russia at the 70 degree N latitude, 27% of

3736 studied inhabitants reported problems with depression and sleeping linked

to the dark season, while very few had these same problems in the summer

(Hansen et. al 1998). While SAD is most prevalent in high altitudes, it also

occurs in environments where daylight is available, but under-utilized. In total,
SAD is experienced by about 5% of the population, many whose symptoms could

be tempered through exposure to daylight. (Kasper et. al. 1989, Wehr and

Rosenthal 1989).

Sleep phase disorder and sleep maintenance insomnia can also be lessened by

exposure to high illuminance levels (2500 to 10000 lux) and wide ranges of

spectral distributions (Terman et al 1995). While certain artificial lights and

sunlamps can accomplish these goals, they are often expensive, less visually

appealing, highly energy intensive, and only practical for therapeutic purposes,

not for general illumination. Since sleep problems affect 65% of the population

(National Sleep Foundation 2008), daylighting in buildings can be a convenient

means of health maintenance.

These disorders insinuate that daylight may be more extensively entwined with

human vitality than was previously thought. The existence of a deeper relation

between daylight and human alertness has been bolstered over the last six

years, through examinations of the retinal ganglion cells in the eye and their

connection with the suprachiasmatic nucleus, or circadian pacemaker. This

research linked regular daylight exposure to the body's ability to maintain certain

hormone levels and healthy sleep-wake cycles (Bearson et al. 2002). Lighting

conditions affect the circadian system both through its power to shift the rhythm's

phase (Dijk et. al. 1995), and through the suppression of melatonin (Campbell et

al. 1995), a hormone secreted during sleep. Both of these effects can enhance

alertness (Badia et al. 1991), which in turn increases cognitive performance

(Boyce et al., 1997).



In fact, circadian studies have even incited luminaire companies to design

artificial lighting schemes with dynamic light levels and tints to mimic the sun (van

Bommel 2006). To be effective, artificial lighting must recreate the high

illumination levels (two to three orders of magnitude higher than normal electric

lighting) that are required to suppress melatonin (Ed. Rea 2000) in a tight solar

waveband (440-500nm) linked to inciting alertness(Thapan et al. 2001, Rea et al.

2001, Brainard et al. 2001). However, to limit power consumption, artificial

lighting restricts these high illumination levels to the small effective waveband,

creating a blue tinted illumination that is not attractive or very useful for other
visual tasks.

Additional studies have suggested that the eye was designed to regulate the

circadian rhythm with daylight. Circadian regulation is more affected by light in

the inferior retina, which is the part of the eye that receives skylight (Glickman et

al. 2003). It also requires longer exposure to light for activation (Mcintyre et al.

1989a-b, Rea et al. 2002) and varies in sensitivity to light depending on the time

of day (Jewett et al., 1997). Regulation of the circadian rhythm is one of the

stronger physiological arguments for the consideration of the spectral aspects
daylight.

Daylight has also been connected to human psychological health, especially as a
result of satisfied personal preference. Surveys and studies have repetitively
found that building occupants prefer daylit spaces over their artificially lit
counterparts (Cuttle 1983, Heerwagen and Orians 1986, Veitch 1993), indicating
a strong preference for windows in their office, especially when windows had
access to direct sunlight (Puleo 1991, Collins 1975). Daylighting has been
connected to improved general satisfaction among building occupants
(Heerwagen and Heerwagen 1986), and loosely to positive moods. A small
reduction in negative mood was found for persons spending 20 minutes during
the day in an office with a large window, whereas there was no improvement at
night (Dasgupta 2003). While moods and satisfaction are hard to quantify,



preference is an important metric when it comes to correlating daylight with

psychological wellbeing.

The views that often accompany daylit spaces also influence an occupant's

preferences, and are an important player in psychological health. Workers in

office buildings with no connection to their outside space increased images of
nature on their walls (Heerwagen and Orians 1986). Views of natural landscape
have also been connected to fewer sick calls in prison infirmaries (Moore 1981),
and in combination with daylight, lower recovery times in hospitals (Ulrich 1984).
In fact, a study on the Sacramento Municipal Utility District's customer service
call center found that workers in offices with good views processed calls 6-12%
faster and had 10-25% superior memory recall than workers with no view. These
workers also reported better health conditions and sense of well-being

(Heschong-Mahone Group 2003). Likewise, another study on computer

programmers found that workers with a view spent 15% more time on their

primary tasks, instead of diverting their time elsewhere (Heschong-Mahone

Group 2003).

Perhaps because of these satisfied preferences and health benefits, daylight has

also been correlated to increased productivity. Studies were performed in offices

(Figueiro et al. 2002) and in schools (Heschong-Mahone Group 1999a), both of

which suggested this correlation, though there was insufficient evidence to

determine a clear association between daylighting and student learning (NRC

2007). Nevertheless, the physiological, psychological, and health advantages of

daylight are continuously being unearthed and better understood.

1.1.2. Energy and Economic Benefits

Apart from the human-scale advantages, daylighting can also have a profound

influence over the lighting, cooling, and heating loads in a building. With CO2 on

the rise and a seemingly limitless demand for energy resources, there is a



growing urgency to reduce the excessive energy consumption dominated by the

commercial and residential building sectors. This is an important opportunity, as

electricity consumption in the average home generates twice the carbon dioxide

as the average car (USDOE 2007). Electric lighting directly accounts for 20-25%

of the total electricity consumption in the United States and 37% of the

commercial sector consumption (Ander, 1995). Adding in heating (22% of

building energy consumption) and cooling (11% of total building energy

consumption), the trinity adds up to a staggering 20% of total US energy

consumption (USDOE 2007).

There is great promise that, with new fenestration technologies, daylighting

strategies could temper this consumption. Using daylighting to curb the lighting

loads would affect energy consumption most directly. The Pew Center for

Climate Change estimates potential reductions in annual lighting energy use to

be between 30% and 60% in buildings employing effective daylighting strategies.

Case in point--for the design of the recent New York Times headquarters,

researchers from the Lawrence National Berkeley Lab mocked up planned

offices and recorded lighting loads before and after advanced daylighting

strategies were applied. From this comparison, the researches deduced a

potential reduction in perimeter-zone lighting to be as high as 60-70%, or 10-30%
total building energy (Chen 2004).

Another report asserts that the effective use of well-designed windows could
inhibit solar gains and foster natural ventilation, while reducing the waste heat
output of electric lighting. Together, the lighting and cooling efficiency savings
are estimated to add up to 5% of total annual U.S. energy consumption (Loftness
2004). Depending on climate, fenestration technology, and application, these
savings will vary considerably, but they are large enough to be significant players
in the climate change conversation.



These numbers are hard to verify through actual experimentation due to vast

differences between buildings. However, it is intuitive that, especially in the

lighting arena, daylit spaces would provide great energy savings over artificially lit
spaces. For heating and cooling cutbacks, a window's insulation and heat
redirection properties are most important. An experiment by the Energy Center of

Wisconsin compared eight identical rooms, four with advanced fenestration
technologies and four with standard clear glass glazing to quantify the savings of
high-performance glazings. The lighting and HVAC operating costs were
compared between the rooms, yielding a total 22% savings over summer, fall,
and winter. Of these savings, 32% was from reduced lighting loads, 25% from
reduced cooling load, and 24% from demand charges (mostly due to reduced
cooling requirements in warm months). Heating savings were negligible, as the
high performance systems limited solar gains for all months (ECW 2005).

As an added environmental bonus, building energy demands peak at the same

times when daylight availability is at its max, during sunny afternoons. Since

renewables usually supplement the base electricity infrastructure, shaving off

peak loads would reduce the impact of more carbon intensive sources (Leslie

2003). Also, in the event that dynamic pricing schemes are passed to foster

demand side management, these peak periods would become more expensive,

granting great economic benefits to occupants of daylit buildings.

Apart from energy cost savings, there are a number of studies that identify the

economic benefits of daylighting. While the capital costs of installing windows is

higher than for concrete and brick walls (Boyce et al. 2003a), there are several

economic reasons for investing in daylighting including higher rental values,

lowered health costs for employers, and an increase in retail sales.

While it is hard to draw causational conclusions between daylighting and higher

rental values, interviews with property professionals estimated an approximate
20% reduction in rental value for structures with a noticeable absence of



windows (Boyce et al. 2003a). Daylight is a valued commodity, as evidenced by
the demand for fully glazed facades in office buildings and "light and airy"

residences. Even for owners who do not occupy a building, this preference is an

economic concern, as tenant retention has been loosely tied to daylighting and

air-conditioning performance (BOMAI 1988).

Daylit spaces also might have an effect on retail markets. Both in a bakery

(Boyce et al. 1996) and a chain operating 108 stores (Heschong-Mahone Group

1999b; Heschong et. al, 2002b), daylighting had a small but significant effect in

inciting an increase in sales, as compared to other identical stores that were

artificially lit.

Also, a less intuitive economic concern for employers ties back to the productivity

findings in the previous section. Companies have a vested economic interest in

their employees' physiological and psychological health. Considering one hour of
salary is equivalent to the annual lighting energy cost for that worker (Leslie
2003), the capital costs of daylighting would be highly justified if they were

connected to a more productive space. As "time is money", the effect of
daylighting strategies on improved productivity, increased job satisfaction,
reduced absenteeism, and lack of disruption during power outages could have
important economic implications.

1.1.3 Architectural and Aesthetic Benefits

As mentioned in section 1.1.1, one of the qualities of daylight that most appealing
and hardest to replicate is its broad spectral make-up. This quality emboldens a
space with enhanced color rendering, and is one of the many unquantifiable
reasons daylit spaces are so alluring. In a survey given to office occupants, 79%
preferred the appearance of their office, and 70% preferred the color of people
and furnishings in their office when lit by daylight (Heerwagen and Heerwagen



1986). Again, these preferences, though aesthetic in nature, can have effects on

psychological health and visual comfort in a space.

Architecturally, daylight can be a powerful artistic medium. Unlike most artificial

light, the variations in the spectral make-up of daylight, the seasonal and daily

changes in sun angle, and the illuminance range for different sky conditions can

sculpt forms in dynamic ways, adding intrigue to a space. Frank Lloyd Wright

called daylight "the beautifier of the building", and other celebrated architects

such as Norman Foster and Renzo Piano have built their practices around

employing daylight to enliven their designs. When daylighting schemes are

carefully considered at the start of the design process, the results can be, not

only practical, but also beautiful.

1.2 Daylight Delivery

The catch is that most of these benefits are highly reliant on the effectiveness of

daylight delivery. For example, daylighting is not always a promoter of visual

performance and comfort. Shadowing, glare, and overheating from direct or

diffuse radiation can create a distracting and incommodious working

environment. In fact, in one study with 300 subjects, workers in offices with high

glare potential scored 15-20% lower in three out of five mental function

assessment tests (Heschong-Mahone Group 2003). Other research insists that

glare, when generated by direct sunlight reaching an occupant's eye or bouncing

off of reflective surfaces, can be a serious obstacle to productivity and comfort

(Osterhaus 2004).

Similarly with energy, the ineffective use of daylight can result in solar heat gains,

nullifying the energy savings for lighting and cooling. Energy savings are

dependent on the ability to control light effectively (Johnson et al. 1984). A lack

of attention to daylight delivery can obliterate lighting savings by requiring



permanent blinds, can dampen cooling savings with excessive solar gains, and

can amplify heating loads in the winter through leakiness, lack of glazing

insulation, and inadequate utilization of solar thermal energy.

To realize the benefits of daylighting, the existing installed window stock must be

smarter. A smart fenestration system must use the visible portions of the daylight

spectrum to address lighting needs in specific spaces. For deep rooms,
fenestration systems could redirect visible light to a reflective ceiling, redirecting

usable illumination to the back corners of the space. If the room is organized

around various task planes, the system must redistribute daylight to improve

illuminance levels in those regions of the room.

Simultaneously, windows need to respond to the different seasonal sun angles

appropriately, allowing solar gains in the winter to offset heating energy needs,

while rejecting them in the summer to reduce cooling loads. While all portions of

the solar spectrum contribute to heat gains, humans only use the visible portion

for sight. Thus, fenestration technologies combine angular and spectral

components to target the near-infrared portion of the spectrum--rejecting it in the

summer and admitting it in cool winter months. They also must respond to

properties of the space, directing the admitted solar energy to a thermal mass in
the winter so as to achieve maximal heat benefit.

One can quickly see that the effective use of daylighting is far more complex than
plastering building facades with copious amounts of glass. Even advanced
glazing alone, such as heavily insulated aerogels and argon gas filled glazings,
will not satisfy the range of functions a daylighting scheme demands. Recently
complex fenestration systems (CFS), or systems that angularly and spectrally
modify daylight to assist its appropriate distribution, have become more
prevalent. These systems are designed to fully glean the diverse benefits of
daylighting catalogued in the previous section, while avoiding daylighting



liabilities. In this section, two components of complex fenestration systems will be
discussed, as they are most interesting to the topic of this thesis.

1.2.1 Angular Systems

One of the simplest ways to control the delivery of daylight is to adjust its
direction. Angularly selective fenestration systems are designed to modify the
incident angle (azimuth and altitude) of sunlight in beneficial ways. A simple
example of these systems would be Venetian blinds or diffuse translucent sun
shades. In both of these examples, the incident angle of sunlight is altered to
block glare or control the amount and distribution of daylight as it enters a room.

The challenges of angularly selective systems are similar to those of any new

complex fenestration system-minimizing summer heat gain and maximizing

winter heat gain while still effectively illuminating the space and ensuring visual

comfort. These fenestration systems could greatly reduce the lighting, heating,
and cooling loads of a building. In one study, integrated angular facades were

compared with the existing commercial building stock through DOE2 models that
simulated daylighting and weather conditions throughout the year. The results

concluded that the angular system could save 1.0 quads of electricity through

lighting improvements, 1.10 quads of electricity through heating improvements,

and 0.52 quads in cooling savings for the US commercial building sector

(Arasteh et al. 2006). Along with these energy savings, the integrated angular

facades still maintained views while not jeopardizing the listed benefits

associated with daylight's spectral make-up.

Most existing angular fenestration systems are primarily designed to control

direct sunlight using fins, blinds, louvers, overhangs, or other types of light

rejection and redirection mechanisms. However, few do a good job of actually

controlling contrast within a space, spreading the distribution of light more evenly
throughout a room (Selkowitz and Lee 1998). Silvered blinds, prismatic glazings,



laser cut panels, and holographic coatings have been designed with this purpose

in mind, though most of these products sacrifice views or visible transmittance

and thus do not take advantage of all of the benefits daylight has to offer

(Selkowitz and Lee 1998). Directional light control is described as the new

frontier of fenestration systems, a field "ripe for new technical breakthroughs"

(Selkowitz 1999), and especially in combination with spectral systems, these

innovative systems could be revolutionary in the way buildings use daylight in

space.

1.2.2 Spectral Systems

Spectrally selective glazings are those that selectively modify the spectral power

distribution of solar energy in intentionally beneficial ways. These spectral

materials allow architects to incorporate more glazing area in their designs, as

buildings can stay cooler as an effect of admitting less radiation. In conjunction

with angular systems, spectral materials can have very interesting effects,
controlling heat gain or purposefully selecting parts of the solar spectrum for

each angular element to redistribute appropriately, depending on the seasonal

and daily angle of the sun and the properties of the space.

Spectral fenestration grew out of the postwar era, as glass was tinted to absorb

heat, or later coated with highly reflective particles to reject solar gains.
Reflection of radiation was more efficient, as absorbed radiation continued to

emit heat into a building's interior (USDOE 1998). These fenestration systems,
while innovative at the time, rejected most of the visible light in conjunction with
the solar gains they were combating. However, improvements over the past 25
years, have enabled low cost multi-layer thin film coatings, emerging from
specialty optical applications, to overtake 1/3 of the glazing market (Selkowitz
1999). One such spectrally selective film, low-e coatings, have been developed
with great improvements in daylight transmittance, and glazings with spectral



coatings and applied films are now available that effectively reject NIR portions of
the spectrum, while admitting visible light and keeping daylight color unaltered.

By utilizing multilayer coatings or selective absorbers or reflectors, some low-E
windows have been modified with an exterior silver layer enabling it to reject 50%
of total incident radiation, the portion lying in the NIR and UV portions of the solar
spectrum (Selkowitz and Lee 1998). The coatings are applied using a sputtering
process, where soft metals or chemical combinations are sprayed onto a glass
substrate, which is then insulated in a glass unit or laminated to protect the
longevity of the coating (USDOE 1998). As these coatings have dropped from
$500/m2 to less than $5/ m2, they are great materials for the design of systems
aiming to control solar gains (Selkowitz 1999). In fact, in conjunction with highly
insulated glass units, these windows can now outperform an insulating wall in the

winter (Selkowitz 1999).

Coatings can also be deposited as a thin polymer film that is suspended over the
substrate (USDOE 1998). Compared with the transmittance of its predecessors,

spectrally selective films allow 70% transmittance of daylight, almost twice of the

transmittance of tinted and reflective film glazings. They also maintain an

average around 45% transmittance of solar gains, which is comparable to

reflective films and slightly lower than tinted glass at 64% (Watts 2005).

Some tinting technologies are still used to increase spectral selectivity while

increasing transmittance, specifically green and aqua tinted glass. These colors

are most prevalent because of their ability to absorb NIR and UV portions of the

solar spectrum, while transmitting a broad portion of the spectrum. Usually a

combination of ferrous oxide and ferric iron is used for these tints (Pilkington

2008), compounds which also absorb parts of the red and blue spectral ranges,

transmitting or reflecting slightly green light. The tinted units are most effective

when placed on the exterior of an insulating glass unit, and combined with a low-

E coating to avoid re-radiation of absorbed heat into the space (USDOE 1998).



Still, these tints alter the color rendering capabilities of daylight, and have been

known to incite occasional uneasiness in occupants, making them less desirable

alternatives to other spectrally selective glazing options.

Other new spectrally-selective materials on the market include electrochromic

technologies, touted as the most promising of the new switchable window

technologies (LBL 2008). In electrochromics, multi-layered thin films are

controlled via low voltage signals to change from high transmission to low

transmission, ranging between 5 to 60% in visible transmittance and 10 to 45% in

solar heat gain coefficient (Selkowitz and Lee 1998). These coatings respond to

varying sky conditions, and have the capability of lowering peak electric loads by

20-30% in many commercial buildings (Carmody et al. 2004). Electrochromic

coatings are, thus, very versatile, and can control glare, illuminance levels, heat

gains, and even privacy.

Spectrally selective glazings have many benefits over their tinted counterparts.

Unobstructed views, a clearer connection to the outdoors, and increased glazing

area (from 15-20% to 50% (USDOE 1998)) are some of the aforementioned

benefits. Also, spectrally selective glazings, clear from both the outside and

inside, don't inflict glare and solar loads on adjacent buildings and vegetation

(USDOE 1998). Spectrally selective glazings can also preserve the colors of

fabrics and interior furnishings by limiting UV transmittance (USDOE 1998).

Finally, there are the expected energy and economic benefits. Selective glazings

have a pay back within 4 to 10 years, and thus are a cheap technology to employ

for the respective energy reductions. A study by the DOE in 1998 showed that

an $8 million investment in low-e coating systems in the United States would

allow manufacturers to produce 1.86 million m2 of low e windows each year for

10 years. As a result of the installation of this improved window stock, the US

would conserve 36 M barrels of oil equivalent over the lifetime of the windows (20
years). The same amount of oil would cost $300 million to produce, over ten



years, through means of a conventional oil platform in Santa Barbara. In total

savings, without even considering oil spills, carbon dioxide emittance, and other

environmental and political costs, this was a 97% savings (USDOE 1998). Even

greater savings could be earned today, as glazing technology prices have

decreased and oil prices have increased. Thus, the proliferation of spectrally

selective glazings, especially as a material within angular systems, could be of
escalating importance in the near future.



2. Measuring Bi-Directional and Spectral Distributions

The development and urgent deployment of these complex fenestration systems
requires a thorough investigation of their properties. To facilitate CFS design, it

is important to be able to test and describe the directional and spectral

modifications of a light beam after it has been reflected off or transmitted through

a fenestration sample. The complications of this characterization process

bottleneck the introduction of CFS into new commercial building stock.

2.1 Bidirectional Distribution Functions

Advanced fenestration systems are difficult to characterize because of their

multidirectional distribution properties and complex spectral effects. While most

simple glazings can be characterized using solar heat gain coefficients, U-

factors, and visible transmittance coefficients, these metrics are ineffectual for
angular systems, as their properties no longer vary predictably (Arasteh et al.
2001). As a result, CFS must be described by quite involved functions, whose

parameters should include the incident and emerging (transmitted or reflected)

light direction and spectral power distribution (SPD).

These functions are called bidirectional scattering distribution functions (BSDF),

and they can be measured for samples that reflect light (BRDF) or transmit it

(BTDF). A BSDF measures the distribution of light that results after a beam hits

a fenestration sample in a certain incident direction.

2.1.1 Mathematical description of BSDFs

In photometric terms, BSDFs are defined as the "quotient of the luminance of the

medium by the illuminance on the medium" (CIE 1977), or mathematically:



BSDF(0, ,Or~,, ) = Lsamp (OioiOror) (2.1)
E(0j,,b )

where the symbols used are described as follows:

(0,,;) are the polar coordinates of the incident beam, with 6O as the altitude angle

(o) and 4i as the azimuth angle (o)

(Or,,r) are the polar coordinates of the resulting reflected or transmitted radiation

distribution

Lsampje (Oj,,OrB r)is the luminance emerging from the tested material, defined for

each incident and emerging angle (Cd/m 2-sr)

E(O,,O,)is the illuminance on the sample plane due to the incident beam's flux

(lux), including any angular or spectral modifications of the beam before

it reaches the sample.

Since the beam, in the case of sunlight and sources replicating the sun, is

generally collimated, E (08, !)) is considered constant across the sample section.

As shown in Figure 2.1 (taken from Andersen and Scartezzini 2004a), one

complete BSDF (measured in sr') would characterize the flux distribution for any

chosen angle of incidence after a beam has been reflected off, or in this case,

transmitted through a sample.



Figure 2.1: Bidirectional transmission distribution function of fenestration material
(Andersen and Scartezzini 2004a)

Similarly, these functions can be measured in spectral quantities. A spectral
BSDF would yield a vector for each angle set (instead of a scalar as in a
photometric BSDF), describing the reflectance or transmittance of a sample
measured at wavelength increments of , for the chosen incident and emerging
angle. A spectral BSDF is defined as the quotient of the spectral radiance from a
sample by the spectral irradiance on the sample, mathematically:

BSDF, (9,, , 0,, a, o) = Lesample,A i I ' '  (2.2)
Ee, A ( Oi I ,A )

where the symbols used are described as follows:

(6,, ~) are the polar coordinates of the incident beam, and (0,, 4) are the polar
coordinates of emerging radiation, with 8 referring to altitude angle (o)
and ( to the azimuth angle (o)

a is the polarization state of the incident and emerging radiation



Le,sample,A( 9 ,i,ar, U,,) is the spectral bidirectional radiance emerging from the

sample in each direction(gW/m 2-sr), discretized in X wavelength

increments

e(subscript) denotes a radiometric quantity

Ee,,2(,,~,o) is the spectral irradiance on the sample plane due to the incident

beam's flux (gW/m 2), discretized in X wavelength increments

Spectral radiometric BSDFs describe the distribution of radiance for a beam of

given irradiance and angle of incidence, for any wavelength or polarization state.

Since the sun emits randomly polarized light, the effect of polarization should be

minimal, and thus will be excluded in the final calculation of BSDFs for the

purposes of this thesis. However, a more in depth analysis of the effect of

polarization on actual BSDF measurements will be described in chapter 7.

Spectral radiometric BSDFs would require the ability to measure the spectral

distribution of radiance at each emerging direction and the spectral irradiance for

a given incident direction. Thus, they are most informative in the characterization

of fenestration systems that are simultaneously angular and spectral, as these

systems could modify the spectral power distribution of incident light differently

for different emerging angles. If total radiometric BSDFs were used to

characterize such samples, their distributions may show a change in total

radiance levels among emerging angles, but would provide no information on

whether this effect was caused by the angular components or the spectral

components of the system. Furthermore, total BSDFs would offer no information

about what parts of the spectrum were being modified for each angle, making it

impossible to determine whether the spectral elements of the system were

operating as designed.



Another limitation of using total BSDFs instead of spectral BSDFs is that total

BSDFs are only valid in characterizing a sample for a particular incident

spectrum. For example, if the source spectrum for a BSDF measurement has a

bluish-green spectral power distribution between 400 and 600nm, the results

would not be applicable to an application using sunlight as the source. For total

BSDFs, the relative spectra of the light source used for measurement and the

light source used in actual application must be very similar in order to achieve

meaningful results.

2.1.2 The Use of BSDFs

These functions, once measured, will help foster the increased use of complex

fenestration systems. While BSDFs are used in a broad range of fields, from

computer rendering to texture studies to luminaire characterization, in the field of

daylighting, they are required for systems with angularly selective components.

Knowledge of spectral BSDFs will aid fenestration designers to invent more

efficient and holistically beneficial commercial products and encourage their

integration into usable software for architects and engineers.

Indeed, complex fenestration systems have not yet been incorporated into

modeling software as their directional and spectral properties are largely

undocumented. While available building energy simulation software, like BLAST

and DOE2, have the capability of simulating conventional windows whose optical

properties are well known, they are confined to specular materials, or ones with

essentially no angular scattered radiation component (McCluney 1998). This is

unfortunate, as modeling software has been known to make a significant impact

on the design and increased utilization of fenestration products (Arasteh et al.

2001). Other simulation tools such as DElight, in combination with EnergyPlus,
have the capability of modeling the effects of complex fenestration systems, as

long as the BSDFs for these systems have been pre-measured before being

integrated into the software(Hitchcock and Carroll 2003).



BSDF information could also be useful in early design stage tools and databases.

Because CFS simulations of spatial and time variant indoor lighting conditions

could easily get complicated, and thus expensive, designers need tools to

identify which CFS could be suitable for their specific needs (Andersen 2006a).
The incorporation of CFS information into informative databases, such as
Windows 5 (Versluis et al. 2007) and D-LITE (Urbano and Andersen 2008), that
could plug into early stage daylight simulation tools, such as LightSolve
(Andersen et. al 2008) and its associated rendering engine (Cutler et. al 2008),
would make CFS selection simpler for architects considering their use.

While the usefulness of BSDFs is easy to demonstrate, the major challenge
remains how to measure them. There are different methods for determining the

BSDFs of fenestration systems and no absolute standards to compare the results
of these different methods (Andersen 2006b). The two most promising methods,
ray tracing and direct measurement with a tool called a bi-directional

goniophotometer, differ in their complexity but could be combined to achieve a

very successful assessment method.

Ray-tracing based calculation methods are less expensive and more available

than direct measurement methods. In a ray tracing calculation, the geometry of

the fenestration system is modeled and then illuminated such that a defined grid

of rays passes through the sample to demonstrate its angular properties. The

collection of emerging rays creates a flux map, which can be simulated for

different angles of incidence. For spectral samples, this calculation can be re-

simulated at each wavelength to produce spectral maps (McCluney 1998).

Three of these "virtual" goniophotometers have been developed using three

different ray-tracing softwares, and are described in (Andersen and de Boer

2006a). These virtual methods have been mostly successful in the determination
of BSDFs for systems with repeated, and already known components. However,



their utility is limited for systems using new materials or innovative (but
undocumented) coatings. Because this method is highly sensitive to input details

about angular scattering properties, deficiencies in the input information would
result in great variance in the output results from the model (McCluney 2002).

Thus, the argument becomes circular, as detailed bidirectional information is
needed for each of the elements in a CFS to achieve detailed bidirectional

information about the whole system. When this information is available, ray
tracing models have had great success replicating results achieved through
direct measurement methods (Andersen et. al 2004b). The results have been
shown to be sufficient for complex fenestration system evaluation (Andersen
2005a), and the feasibility of ray tracing characterization promises its success in

provoking a surge in complex fenestration markets and computer modeling

integration.

2.2. Existing Goniophotometers and Goniospectrometers

To use ray tracing models successfully, the preliminary characterization of most

complex materials must first be ascertained experimentally. The experimental

determination of BSDFs is the function of an instrument called a bidirectional

goniophotometer --"gonio" meaning angle, and "photo" meaning light. A
goniophotometer becomes a goniospectrometer when it acquires the ability to
assess the spectral properties of light as well. There have been several
iterations of goniophotometers and goniospectrometers designed specifically for
the analysis of advanced fenestration systems.

Most of these existing goniophotometers are based on a scanning method,
where a detector gathers BSDF information at a series of predetermined points
forming a hemisphere around the reflecting (or transmitting) sample (Andersen
and de Boer 2006a). This technique is both time intensive and discrete, creating
the possibility of missing certain narrow spikes in areas between measurement



points. However, more time efficient approaches have been developed using a

Charge-Coupled Device (CCD) camera as a detector, which records the

distribution of light from all emerging angles at the same time (Andersen et. al

2005b, Ward 1992). These devices correlate pixel values with radiometric (or

luminous) quantities from different solid angles, so the bidirectional distribution of

radiation can be reconstructed in a time efficient manner. The pros and cons of

both methods will be outlined in the following sections.

2.2.1 Scanning Goniophotometers and Goniospectrometers

Scanning goniophotometers all operate under the same principle. A sample is

illuminated by a light source at a chosen incident direction, while a detector

gathers total luminance or total radiance measurements around the sample.

Either the source, the sample, or both can move to accommodate these different

angles of incidence. Generally, the two biggest drawbacks to this type of system

are its time expensive detection process (which escalates when fine resolution

measurements are required) and the discrete nature of its investigation.

Scanning methods have aimed to lower the likelihood of missing specular peaks

or incidents of glare that could occur between detection points by incorporating a

preliminary assessment scan of the sample's radiance distribution for all incident

angles (Apian-Bennewitz 1994b). Unfortunately, this solution only compounds

the time required to assess the BSDF of the sample.

Still, scanning goniophotometers have improved considerably since their

introduction in the late eighties at Lawrence Berkley National Lab (Papamichael

et. al 1988). Notable innovations include the ability to make adaptive refinements

in angular resolution (Apian-Bennewitz 1994a, Apian-Bennewitz and von der

Hardt, 1998), using multiple sensors to cut down on data collection time (Aydinli

1996), and significant mechanical improvements in regards to the movement of

the detector (Apian-Bennewitz, 2006).



Perhaps the most significant innovation, at least in regards to the scope of this

thesis, is the incorporation of the spectral characterization of CFS into scanning

goniophotometry for daylighting applications. Both a scanning

goniospectrometer at Cardiff University (Breitenbach and Rosenfeld 1998) and

one from the consultancy company, pab-opto, have innovated new methods for

analyzing spectral BSDFs (Apian-Bennewitz, 2006). The Cardiff instrument, now

at the Technical University of Denmark (DTU), utilizes two scanning

spectrometers, one with a silicon detector measuring wavelengths between 300
to 1100nm and one indium-gallium arsenide detector (InGaAS) measuring

wavelengths between 900 and 2100nm. The spectrometers are attached to an

off axis parabolic mirror used for light collection, which focuses transmitted or

reflected radiation on the end of the spectrometer's optical fibre bundle. These

optical fibres take measurements at every emerging direction in a hemisphere

around the sample.

The Cardiff goniospectrometer has been used to measure the spatial and

spectral transmittance of window components like holographic optical element

(HOE), which is a type of spectrally selective filmed glazing. For certain angles

of incidence, HOEs split transmitted radiation into two components of varying

spectral distributions--a component scattered 45 degrees forward and a color
image transmitted directly through the element. The results of this measurement

are shown in Figure 2.2 (Breitenbach and Rosenfeld 1999), and demonstrate the
type of data achievable with this new spectral innovation. Figure 2.2a depicts the

total luminous transmittance for the HOE at each emerging angle (a,p) in the

Cardiff coordinate system when illuminated at normal incidence. The angle (a,j)

corresponds to a shifted version of the (Or,r) from Eqn. 2.1, where (a,3)

=(90o,900) refers to the emerging angle of normal specular transmission. The

two different components can be seen in this graph, each associated to a
different spectral power as shown in 2.2b. This example clearly demonstrates
the utility of spectral information, since without the information shown in 2.2b, the



scattered component's color (slightly green) and the colored image's appearance

(yellow) would remain unknown. The two components also should be treated

very differently because of their different NIR spectral properties.
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Figure 2.2 a.) Cardiff goniophotometer total luminous transmittance for emerging angle
(a,p) and normal incidence b.) Cardiff goniophotometer spectral transmittance for forward
scattered and color image portion of transmitted radiation distribution. (source:
Breitenbach and Rosenfeld 1999)

Unlike the Cardiff goniospectrometer, the pab-opto instrument only provides

quasi-spectral BSDF information, or average transmittances and reflectances
across certain wavelength bands for each emerging angle. This new
goniospectrometer uses a variety of light sources and a modular detector
concept that can be adapted to different applications. The choice of detectors
covers radiometric, photometric, infrared, and multi-channel spectral ranges that
together form the quasi-spectral BSDF measurements.

300



While these few existing goniospectrometers already collect spectral information,

the time required to assess a total BSDF is at least four days for the Cardiff

goniospectrometer and is undocumented for the pab-opto goniospectrometer

(Andersen and de Boer 2006a). Currently neither use cameras to measure

reflectance and transmittance spectra, limiting spectral characterization to

instruments with long scanning-based BSDF acquisition.

2.2.2 Video-Projection Goniophotometers

With the advent of inexpensive digital cameras came new ideas about how to

assess BSDFs more efficiently and continuously. Charge-Coupled Device (CCD)

cameras, if used in lieu of traditional detectors, could visualize thousands of

emerging angles simultaneously, capturing the entire distribution of radiance very

quickly. Of equal importance, since images offer continuous pixel coverage,

video-based methods could map the entire hemisphere of emerging directions

continuously, assuring that the results would not miss any important specular

peaks. Additionally, there would be no added time for the collection of finer

resolution data as the finest resolution would be at the pixel level, and course

resolution could be achieved by averaging over groups of pixels.

Three video-based projection goniophotometers and one video-based projection

goniospectrometer exist today, all of which distinguish themselves from other

goniophotometers by through their reliance on a projection principle to avoid

moving the CCD camera from one acquisition point to the next. Two of these

have been designed for research in daylighting and two for research in computer

graphics. The original design, developed by Greg Ward at LBNL for the latter

usage, is diagrammed in Figure 2.3 (Ward 1992). In Ward's goniophotometer,
light is projected onto a target that is positioned near the focal point of a half-

silvered hemisphere. When the target reflects the incident radiation, it is then re-

reflected off the interior surface of the hemisphere into the fish-eye lens of a CCD



camera located on the opposite side of the focal point. The CCD camera is

calibrated to associate pixel locations with sample emerging angles, and a BRDF

for the fenestration system can be reconstructed.

OE

Figure 2.3 original video-goniophotometer
concept designed by Ward

Figure 2.4 EPFL video-goniophotometer

NaJ.-irse This first device was the

inspiration for two other video-

projection based instruments. The

first, a goniophotometer at the

University of Rennes 1 in France

(Deniel 2002), uses a diffusing

cube as the projection surface to

enhance photo-realistic rendering

in computer graphics. The second,

and most recent, is a

goniospectrometer at the

Daylighting Lab at MIT called

"Heliodome", which will be

discussed further in this thesis.

The final device, developed at the

Solar Energy and Building Physics

Laboratory at EPFL in Switzerland

(Andersen et al. 2001, 2005b)

used a triangular diffusing

projection screen to capture

emerging radiation from the

sample, located on the interior of

the light-proof carbon fiber cone

displayed in Figure 2.4. The

s3=M



screen, not being reflective, had the advantage of avoiding inter-reflections. Its

diffuse properties minimized polarization effects that were problematic in the two

previous computer rendering models.

A camera with a wide-angle lens facing this projection screen images the screen

for each of six positions covering the full 2n steridians. Up until the development

of the MIT goniospectrometer, this system was the only fully validated video-

goniophotometer designed for the analysis of CFS, achieving a final relative error
of 10% and empirical validations between 5-8% (Andersen 2006b). It is still the
only instrument of its type for which an extensive set of BSDF data have been
produced (Andersen and de Boer 2006a).

The EPFL goniophotometer measures luminances through a similar calibration

process as the one described in Chapter 6. The basic idea is to modify the

spectral sensitivity of the CCD camera with filters that, when used in

combination, closely resemble the sensitivity of the human eye. Several images
can be taken at different integration times to calibrate the camera's output with
known luminance measurements, taken by a luminance meter (Andersen et. al,
2001). Since the illuminance on the sample is usually known, these luminance
levels for each pixel can be used to calculate a photometric BSDF by spatially
calibrating pixel location to emerging angle.

The introduction of a modified spectral sensitivity to the camera allows it to
measure total luminances independently of the sample's spectral reflectance or
transmittance. However, it is important to restate that the resulting photometric
BSDF, because it is not a spectral BSDF, is only meaningful for applications
where the incident beam has a similar spectral power distribution as the beam
utilized in the measurement process. As a result, fagade materials should be
investigated with a light source with a spectral power distribution similar to that of
sunlight or daylight.



3. Heliodome Design and Development

The mentioned goniophotometers depict the state of the art for the measurement

of BSDFs of complex fenestration systems. While they all bring important

innovations to the area of CFS assessment, each goniophotometer has its

advantages and disadvantages and its usefulness depends on the task at hand.

Certain goniospectrometers give detailed spectral BSDFs, but none can measure

them time-efficiently. Other video-goniophotometers have superior speed,

angular resolution, and can achieve continuous results; however they are unable

to measure spectral or radiometric information. Other goniospectrometers have

expanded their spectral sensitivity range, allowing them to consider NIR range

radiometric distributions in addition to the visible, but they, too, have lengthy data

collection processes.

The novelty of the new MIT Heliodome is its incorporation of the benefits of all of

these goniophotometers into one instrument, resulting in a time-efficient,

continuous measurement process that results in spectral radiometric and total

photometric BSDFs across the visible and NIR spectral ranges.

The Heliodome is automated for both the visualization of sunlight distribution

inside a scale model (a heliodon), and the video-based measurement of BSDFs

of materials (goniospectrometer), however, this thesis will only discuss the latter

function. Since its inception in 2004, much work has been completed on the

Heliodome's mechanical design, lighting components, and camera calibrations,

which is described in (Gayeski and Andersen 2007a) and (Andersen 2005b). Its

design and major components are outlined in this chapter.



3.1 Design Concept and Functioning Principle

As previously mentioned, the Heliodome was modelled after a prototype

designed for computer graphics applications (Ward 1992) using a mirrored

hemisphere as a projection screen which would reflect light emerging from an

object into a CCD camera detector. This design was modified to be applicable

for window samples, accommodating transmission measurements in addition to

reflection measurements. The hemisphere was changed to a hemi-spheroid in

order to create two focal points-one where the camera is positioned and the

other at the position of the fenestration sample.

A HMI collimated light source illuminates the sample which then transmits (or

reflects) the emerging distribution onto the hemi-spheroid. For BRDFs, the beam

must first pass through the semi-transparent surface of the hemispheroid before

reflecting off of the sample, whereas for BTDFs, the beam is directly transmitted

through the sample from the underside of the table. As shown in Figure 3.1, due

to the geometry of the hemi-spheroid, all emerging light will travel from one focal

point, where the material sample is located, to the other focal point, onto the fish-

eye lens of the camera.

When the radiation reaches the camera, the resulting image is spatially

calibrated so that each pixel corresponds to a small area on the hemi-spheroid.

The camera is also calibrated to act as a radiometer (Chapter 5) or photometer

(Chapter 6). Images are taken at different exposure levels and converted to a
High Dynamic Range (HDR) image (Inanici 2006) of the interior of the
hemispheroid. For photometric measurements, this HDR describes luminance
estimates for each pixel location. For radiometric measurements, the HDR
provides radiance estimates from the red, green, and blue channel of the camera
for each pixel. Thus, the HDR image maps the entire emerging distribution of



light for the chosen incident beam angle, and can be converted to a BSDF

through the methods developed in subsequent chapters.

The hemi-spheroid, the material sample, and the camera are attached to a
motorized table with two rotational degrees of freedom, enabling easy

modifications to the chosen incident beam angle. Through the assessment of
BSDFs at all incident beam angles, a complete characterization of the

fenestration system's radiation distribution properties can be determined. This

information can be used to describe how the window system would modify the

angular and spectral properties of incident sunlight for any season, time of day,
sky condition or facade orientation.

Figure 3.1: Heliodome components: The HMI beam reaches the material sample (at one
focal point), from which reflected or transmitted light gets reflected once off of the hemi-
spheroid to the digital camera (at the other focal point).



3.2 Components and Previous Work

The Heliodome is comprised of the components shown in Figure 3.1. A brief

summary of each component is provided in this section.

3.2.1 Rotating Sample holder

As mentioned, the CFS sample is held on a table with two degrees of rotational

freedom, controlled by two separate motors. The first degree of rotation, shown

horizontal in Figure 3.1, defines the altitude angle between the lamp beam and

the sample, 9O. The second, shown vertical in Figure 3.1, rotates the sample 360

degrees in the specified altitudinal plane, and is denoted by h. The sample

holder situates the CFS sample such that a stationary beam, mimicking the sun,

hits the sample at a chosen incidence angle pair (e1,i) .

The sample holder accommodates fenestration samples with a diagonal diameter.

between 100mm-200mm and thickness less than 20mm. A full description of the

table's design is given in (Ljubicic 2005).

3.2.2 Light Source and Filter Wheel

The source used to illuminate CFS samples in the Heliodome is a 400W

dedolight HMI lamp chosen because of its collimation and its relative spectral

emittance, which is similar to that of sunlight (Browne 2006). Figure 3.2 shows

the relative spectral irradiance of the HMI light, measured with an Ocean Optics

USB2000 spectrometer, compared to the ASTM Terrestrial Reference solar
spectral irradiance distribution (ASTM 2008). The light has three adjustment
settings (also listed in Appendix B) that are fixed throughout the data collection
process-the power supply and the lamp output mode are set to "spotlight" to
induce maximal collimation in the beam. The beam diameter is also adaptable
through an aperture that varies the size of the output port of the lamp. The



setting of this aperture greatly affects the illuminance on the sample plane and

the angular spread of the beam. The beam's half angular spread has been

chosen to be 2.40, for reasons listed in section 7.2.

Spectral comparison
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Figure 3.2 HMI spectrum as compared to sunlight

In transmission, the table is turned such that the lamp projects onto the sample
from the underside of the table. Thus, the portion of the incident beam entering
the spheroid is restricted to the size of the sample's diameter. The beam hits the
sample directly, without any modifications for fixed spot size.

In reflection, however, the entire beam is transmitted through the spheroid's
semi-transparent acrylic shell, causing the camera to view parasitic light
reflections from the illuminated area outside of the sample's diameter, as shown
in Figure 3.3a. First, black felt was applied to the sample holder's metal edges to



minimize its specular reflectance, as shown in Figure 3.3.b. However, even with
this correction, the camera still detected diffuse reflection from the beam hitting
outside of the sample area. To ameliorate this problem, in reflection, the beam
has been modified with a black light corset, fixing the beam diameter such that it
only illuminates the sample, correcting most of the parasitic light reflection, as
shown in Figure 3.3c. The remaining parasitic light captured by the camera is
dealt with in section 6.3.2.

Figure 3.3 Black corset applied as a solution to parasitic light problems. 3.3a) image of a
"hole" captured in reflection. b) image of a hole with felt correction applied to edges of
the sample holder c) image of hole with black corset applied to limit beam width to sample
diameter

The HMI lamp is also projected through one of nine Schott filter combinations, as
shown in Figure 3.4, before reaching the sample or hemispheroid. Eight of
these filter combinations are used for radiometric BSDF assessment and one is
used for photometric BSDF assessment, however, the purpose of these filters
will be explained in greater detail in the subsequent chapters. All of the filters are
held in a filter wheel (Koch 2007) shown in figure 3.4, which will be programmed
to cycle through the whole filterset once per incident angle while the camera
captures a series of images at different integration times for each filter.

I

,=



Figure 3.4 HMI dedolight, filter wheel, and sample port

3.2.3 Half Mirrored Hemi-Spheroid

The hemi-spheroid, shown in Figure 3.5, is an acrylic shell coated on the inside

with a thin film of aluminum, such that it is about 40% transmissive over the

whole dome. The final dimensions of the spheroid are the same as the original

design, chosen so that the distance from the sample to the spheroid is always

greater than five times the sample's diameter (Browne 2006). The development

and characterization of the new spheroid is discussed in detail in chapter 4.

Figure 3.5 Aluminum coated acrylic hemispheroid on table



3.2.4 Digital Cameras

Two digital cameras are used in the Heliodome, a Kappa DX20 color CCD
camera sensitive in the 380-950nm spectral range and a Sensors Unlimited

SU320 1.7RT near-infrared camera sensitive in the 900 to 1700nm range. Both

utilize an interchangeable Fujinon high resolution fisheye lens with a 185 degree

opening angle. The spatial and radiometric calibration of the CCD camera is

documented in (Gayeski 2007b), and the calibration of the NIR camera is

discussed in appendix A. A luminance calibration was also performed on the

CCD camera, using a photopic V(A) filter to measure photometric BSDFs,

documented in section 6.2.

3.2.5 Image Acquisition

Two computer control softwares are used to capture the images used to

reconstruct photometric, radiometric, and spectral radiometric BSDFs. The CCD
camera uses Kappa ImageBase Control, with which integration time can be

varied. All other controls for the CCD camera should remain unchanged, as the

camera settings must match their respective values at the time of the radiometric

calibration. The settings were chosen so as to apply the least amount of photo
manipulation to the raw images, and are listed in Appendix B.

The NIR camera is controlled using a National Instruments (IMAQ) interface,
though the control of both cameras will eventually be integrated in the Heliodome
interface, which will also organize the presentation of the final BSDF results. All
image processing will be performed using MatLab®, as described in Chapter 6 of
this thesis.



4. Developing the Hemi-Spheroid

As the hemi-spheroid is the vehicle for radiation traveling from the sample to the

camera, it is most important that the surface and geometry be pristine. The

geometrical accuracy, surface characteristics, and spectral properties of the

spheroid greatly affect the resulting imaging, and thus are critical in the accurate

estimation of spectral BSDFs.

While hemispheroids were developed in previous stages of the Heliodome

project (Browne 2006, Gayeski 2007b), they were unusable due to imperfections

in the manufacturing process. This chapter will describe the accomplishments of
the second iteration of hemi-spheroid development, as well as the spectral

characterization of the final hemi-spheroid.

4.1 Modifications to the Hemi-Spheroid

Due to complications in the manufacturing process, the geometry of these domes

was found to be faulty (Gayeski 2007b). . Thus, the first step in the development

of the new hemispheroid was the identification of imperfections in the geometry,

in order to improve the next manufacture.

In order to investigate these geometrical inaccuracies, the shape of the

hemispheroid was measured, point by point over a 5cm by 5cm grid that

spanned the entire base of the dome. At each grid-point, the perpendicular

distance from the table to the domes interior surface was measured and

recorded. These measured points were plotted and compared against the

targeted geometry, a hemispheroid of major axis 1150mm and minor axis

1122.5mm, as shown in Figure 4.la, with the dotted line outlining the profile of

the theoretical spheroid. The differences between each point on the theoretical

spheroid (purple) and the measured spheroid (grey) are charted in Figure 4.1b.
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Figure 4.1 a) geometry of measured spheroid (grey) compared with theoretical spheroid(dotted line). b) Differences in height (cm) between the theoretical and measured spheroidfor all grid points.

These graphs reveal a 2-3cm discrepancy between the spheroid's theoretical
form and the measured spheroid at the apex, causing the spheroid to redirect
light towards the center of the spheroid, "undershooting" the second focal point.
This phenomenon can be observed in Figure 4.2, where the yellow arrows
indicate the correct redirection of light from the sample port, reflecting off the
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spheroid's interior surface onto the center of the white target, positioned at the
camera port. Instead, the spot can be noted to the right of the focal point,
missing the camera's fisheye.

In addition to this geometrical flaw, due mostly to an inaccurate mold, the surface
quality of the spheroid's acrylic induced a wavy effect on the spheroid's
redirected light. Because the hemispheroids were formed on a mold,
temperature differentials between the hot acrylic and the mold may have caused
contraction patterns during cooling. In order to address both defects, a new hemi-
spheroid was manufactured at Replex Plastics without the mold.

Figure 4.2 Light mis-redirection due to spheroidal curvature inaccuracy

The hemi-spheroid was made of mirror grade extruded acrylic, which was free-
formed in a vacuum cavity at Replex. The acrylic was heated with differing
temperature patterns that altered the dome's shape, while the geometry was



controlled by the pressure differential across the bubble balanced by the tensile
stress in the polymer. When the spheroid was formed, 3" holes were drilled in
two places on the flange to attach the spheroid to the table and define the minor
axis.

Once the forming process was completed, the spheroid was coated with a thin-
film of aluminum. While this coating is needed to redirect light from the sample to
the camera, it is kept very thin in order to allow the transmission of the incident
beam, enabling sample reflectance measurements. The transmittance of the
spheroid can be observed in Figure 4.3, a photo taken of the daylighting lab from
inside the spheroid.

Figure 4.3 Image of daylighting lab through spheroid, demonstrating transmittance

Because acrylic is very sensitive to heat, the dome was coated through a
cathodic arc evaporation physical vapor deposition (PVD) process. In this
process, a target of aluminum is struck with a low voltage, high current arc in a
vacuum, spraying vaporized aluminum at the acrylic shape without damaging it
(Richter et al. 1998). The dome was metalized on the inside, with the target



positioned such that it was approximately centered and equidistant to any point

on the interior of the spheroid. As discussed in section 4.2, this set-up made it

possible to achieve a more uniform coating thickness, and thus a more even

spectral transmittance and reflectance across the spheroid's surface.

In order to achieve a correct geometry, several domes had to be manufactured

and checked for accuracy. In order to accomplish this verification at Replex, four

arcs, defining the profile of the spheroid, were cut from a 3/16" thick

polycarbonate sheet wide enough to span the entire dome. The holes in the

flange were used to properly align the arcs along the major axis, the minor axis,

and at 45 degree increments in between. When each spheroid was formed, the

acrylic geometry was compared against the arcs to see where improvement was

needed. By adjusting the heat pattern in the forming machine, the dome's local

geometric inaccuracies could be adjusted in the region underneath that particular

heater. Thus, the heating pattern was not uniform in the end, but instead was

allowed to vary in order to fine-tune the observed shape of the bubble. With each

dome iteration, the geometry was improved to more closely conform to the shape

defined by the arcs.

Through this free-forming process, the surface quality of the spheroid was

markedly improved. As shown in Figure 4.4, the reflected light beam is much

more clearly imaged in the free-formed spheroid. In fact, when the interior

surface of the spheroid is illuminated with a Labsphere KI-120 tungsten halogen

lamp, the lamps concentric circular flux pattern can be clearly observed. In the

previous spheroid, this same beam reflectance resulted in a muddled post-

reflection image.



a) b)

Figure 4.4 a) reflection of tungsten-halogen lamp off of mold-extruded hemispheroid. b)
reflection of tungsten-halogen lamp off free-formed hemispheroid

The spheroid's geometry was also verified through the process documented in
figure 4.2. In transmission, the Heliodome was tested for a hole, or empty
sample port, as the incident beam altitude and azimuth was varied. For each
incident direction, the beam was reflected off a different portion of the spheroid's

surface and was redirected to the camera port. The spheroid's geometry was
verified for all incident angles, except for altitude-azimuth pairs in the range of

(60-650, 30-45o), (60-65o, 135-1500), and for all angles with altitudes greater than

800, as shown in Figure 4.5.

)5

80

ý5

Figure 4.5 a) angles (60-650, 30-450) and (60-650, 135-1500) identified on a raw image b)
corresponding locations on the spheroid's surface.



The black spots in Figure 4.5a identify these angles of mis-redirection on a raw

image, whereas Figure 4.5b correlates these locations to positions on the

spheroid's surface. The red band in both images also highlights the higher

angles (greater than 80), for which the spheroid is not reliable.

A sample diameter of 10cm was determined to be the limiting size that would still

accurately redirect all incident beams such that their reflected spot completely

covered camera port. This sample size was determined by testing the Heliodome

in reflectance mode for a diffusing sample. The sample diameter was limited by

an opaque aperture, starting at 3cm in diameter and escalating upwards. For

each aperture size, an image was taken with the CCD camera of the diffuse

distribution having reflected off of the hemispheroid. The resulting images

revealed the angles for which the spheroid correctly and incorrectly reflected

radiation to the camera. By increasing the sample size, the number of correct

angles was increased, as shown in Figure 4.6. With a sample diameter equal to

10cm or greater, the radiation distribution from almost all sample emerging

angles was redirected to the camera's fisheye. Thus, the free-formed

hemispheroid was shown to have gained a notable improvement over the

previous hemispheroid, whose limiting sample diameter was greater than 20cm.

Figure 4.6 a) 3cm diffuse sample in reflection, b) 5cm diffuse sample in reflection, c) 10 cm
for diffuse sample in reflection



4.2 Characterization of Spheroidal Spectral Transmission and Reflection

Because all radiation reaching the camera reflects off of the hemispheroid, it is
important to know how the spheroid modifies the spectral power distribution of
the emerging sample radiation. Knowledge of the spheroid's spectral and total
reflectance and transmittance in the 380-1700nm range is thus necessary for an
accurate assessment of the fenestration sample's spectral and total
transmittance or reflectance, the ultimate goal of the Heliodome.

When characterizing the spheroid, it is first important to establish a coordinate
system to describe the position of a point of reflection or transmission on the
spheroid's surface. The position of the spheroid was determined through a
sample-oriented coordinate system, also used in (Gayeski 2007b). This
coordinate system, displayed in Figure 4.7, is based on the movement of the
rotating table, with the CFS sample (Fl) positioned at the origin. As a result, a
beam projected normal to the CFS sample (0i=0), does not reflect off of the apex
of the spheroid, and the cross-sections at each 01 are not symmetric on the
spheroid's surface. For example, as shown in the figure, (Oi,Oi)=(1 00,900) locates
a point lower on the hemispheroid's surface than does (Oi,i)=(10°,270 °).

i =180

Figure 4.7 Spheroidal sample oriented coordinate system



The spectral transmission and reflection coefficients were measured with an
Ocean Optics USB2000 spectrometer in the visible range and an NIR512
spectrometer in the near infrared range. Both spectrometers were calibrated to

measure absolute irradiance (gW/cm 2). The spectrometers' bare fiber optic was

positioned outside of the spheroid facing a tungsten halogen lamp placed inside
the spheroid, as shown in figure 4.8. The beam was projected through the

acrylic, while the spectrometers recorded measurements at every 300 of azimuth

at 6i=600. The spectral transmittance at each point could be calculated by

comparing the spectrum of the tungsten halogen lamp before and after passing
through the spheroid.

spectrometer in
transmission positi(

Figure 4.8 Experimental setup of spheroidal transmission and reflection measurement
procedure

The results of this measurement process are shown in Figure 4.9. As was
observed, the aluminum coating among azimuth angles is very even, resulting in
approximately the same spectral transmittance for each azimuth measurement.
This circumferential uniformity is probably due to the rapid rotation speed used
during metallization. Another positive attribute is the spheroid's stable
transmittance spectrum across the whole visible range. This stability allows
passage to all wavelengths of the incident beam, restricting any major spectral
selectivity to the fenestration sample.
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Figure 4.9 Spheroidal spectral transmittance for Oi=60

Results for the near infrared portion of the spectrum, shown in Figure 4.9, were
similarly uniform for all azimuth angles and similarly constant across the NIR
range.
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Figure 4.10 Spectral NIR transmission in the spheroid for Oj=60
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The spheroidal spectral transmittance was also measured for varying degrees of

altitude between 0i=85 and 0~=5, as shown in Figure 4.11. Because the

circumferential variation was determined to be small, the transmittance along the

major axis (2700 azimuth) was assumed to be representative of the variation

among all azimuth axes. While the total transmittance decreases for higher

altitude angles, the relative spectrum stays approximately the same. Total

transmittance variation was determined to be in the range of 35% (at the flange)

to 50% (at the apex) for the visible spectrum.

NIR measurements along the major axis, displayed in Figure 4.12, confirmed a

similar 15% variance amongst altitude angles-- 45% (at the flange) to 60% (at the

apex). The relative spectrum was also the same for the NIR, independent of total

transmittance discrepancies.

i

Wavelengths (nm)

Figure 4.11 Visible spectral transmittance in the spheroid along the major axis
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Figure 4.12 NIR spheroidal spectral transmittance along the major axis

The spectral reflectance of the spheroid was also measured for varying altitude
and azimuth angles. In this case, the spectrometer's fibre optic and tungsten-
halogen lamp were both positioned inside the spheroid through the sample port,
facing the interior surface. The lamp's beam was reflected off of the spheroid,
and the fibre optic was positioned slightly off normal, to receive the emerging
radiation.

In order to measure the baseline spectral irradiance, the spectrometer had to be
repositioned facing the lamp at a distance approximately equal to the total
distance travelled by the reflected beam. Because the spectrometer was
positioned to the side of the sample port, this total distance was subject to
variation, and the average distance was used, introducing error into the absolute
spectral irradiance measurements. Also because the spectrometer is so
angularly sensitive, absolute irradiance measurements varied for each azimuth
and altitude measurement since, unlike in transmission, the angle of acceptance
could not be held constant. As a result, the visible and NIR spectral reflectance
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measurements, shown in Figure 4.13 and 4.14, will only be used to define the

relative spectrum.
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Figure 4.13 Spectral reflectance for Oj=60 in the visible range
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Figure 4.14 Spectral reflectance for eO=60 in the NIR range
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Additional information was needed to revise the absolute magnitudes of these
reflectance spectra, and scale them appropriately. Because the transmission
measurements were known, an experiment that determined the relationship
between transmittance and reflection was devised. This relationship, once
determined, would use the magnitudes of the spectral transmittance spectra for
each (Oi,(1) to inform the magnitudes of the spectral reflectance spectra for the
same incident angle.

A Labsphere integrating sphere, calibrated to measure total radiant flux for
monochromatic beams, was used to relate transmission and reflection for various
points at different azimuths and altitudes over the entire hemispheroid. First the
radiant flux of a tungsten halogen lamp with a 500nm narrow passband filter was
measured without the spheroid to determine the baseline. Then the tungsten
halogen lamp and filter were placed inside the spheroid, such that the beam was
oriented towards the spheroid's interior surface. The lamp's vent was blocked
with black cloth, and the integrating sphere was zeroed so measurements were
not affected by parasitic light. The beam's orientation was modified to test forty
different positions on the spheroid, ranging in altitude and azimuth. Both a
transmittance measurement and reflectance measurement were taken at each of
these positions, by moving the integrating sphere into and out of the spheroid, as
shown in Figure 4.15.

500nm pass

integrating sphere in
transmission position

e in

emispheroid

halogen lamp
N

Figure 4.15 Experimental set-up relating reflectance and transmission
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After dividing the transmission and reflectance measurements by the baseline

measurement, reflectance and transmittance of 500nm light can be related for

each measured position on the spheroid. The assumption is that as the

thickness of the aluminium coating increases, transmittance will decrease while

reflectance increases, following the theoretical relationship between the two

quantities, well-known from literature. By collecting measurements over the

whole range of aluminium thicknesses, a functional relationship can be defined

between the two quantities.

Figure 4.16 shows this association, an almost linear relationship, deduced from

the experimentally determined individual measurements. This function contains

all of the information needed to revise the magnitudes of the spectral reflectance

measurements shown in Figures 4.13 and 4.14. For each altitude and azimuth,

the transmittance coefficient at 500nm can be located on the curve below, and

the corresponding reflectance at 500nm can be deduced.

25 30 35 40 45
% transmittance

Figure 4.16 Relationship between reflectance and transmission for 500nm light
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To extrapolate this relationship over the surface of the hemispheroid, the
integrating sphere and 500nm filter were again used to measure the radiant flux
at locations along the major and minor axis, verifying the accuracy of the spectral
measurements. By knowing the radiant flux of the beam without the
hemispheroid, the predefined reflectance-transmittance relationship was applied
to each of the measured transmittance points to derive the reflectance and
absorption at each altitude at the two azimuths (sample coordinate system). The
results are shown in Figure 4.17, with most measurements still within the range
of 35-50% transmittance, resulting in a reflectance range of 25-40% for 500nm.

0~

zenith angle

Figure 4.17 Spheroidal reflectance, transmittance, and absorbance of 500nm light acrossthe major and minor axis.



Considering spectral transmittance was measured to be uniform along any given

altitude, the transmittance (and thus reflectance) of the spheroid to 500nm

radiation can be estimated over the entire surface of the spheroid for the given

altitude angles by interpolating between the major and minor axis measurements.

The resulting weights, graphed in Figure 4.18 and 4.19, are used to scale the

relative spectrum to find the spectral transmittance or reflectance for any position

on the entire spheroid. This pspheroid, X(Or,Or) and Tspheroid, (Or ,4r), measured

discretely in X wavelength increments, will be relied on extensively in the spectral

estimation method described in Chapter 5.
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Figure 4.18 Transmittance of spheroid to 500nm radiation at all altitude and azimuth
angles

68

'

'

'''~'''

''''
'''~



0 100
(azimuth degrees) (altitude degrees)

Figure 4.19 Reflectance of spheroid to 500nm radiation at all altitude and azimuth angles
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5. Camera Calibrations

One of the Heliodome's major challenges is the calibration of the CCD and NIR

cameras so that they act like multi-point luminance meters and

spectroradiometers. This chapter describes the conversion of raw images from

the CCD camera to photometric and radiometric HDR images. The calibration of

the NIR camera is discussed in Appendix A.

The CCD camera was radiometrically calibrated in previous stages of the project

(Gayeski 2007b), however, a short review of those results are provided in this

chapter as background for the spectral estimation method explained in chapter 6.

In addition, the methods, experimentation, and results of the complete

photometric calibration of the CCD camera are documented here, to be used in

the calculation of photometric BSDFs.

5.1 Radiometric Calibration Review

A correct radiometric calibration of the digital camera would provide the

necessary link between an image's digital levels for adequately exposed pixels

and a corresponding radiance for that pixel. When these radiances are combined

through HDR imaging, the pixels of the HDR will form a map of the emerging light

distribution from the sample, with each pixel associated to the emerging radiance

in a certain direction. The first step to achieving this map is a correct radiometric

calibration of the cameras.

5.1.1 Spectro-Radiometric Response

To calibrate CCD camera, images were taken of monochromatic beams of

known radiances, which were then correlated with the digital output of the

camera (Gayeski 2007b). The camera's response to monochromatic radiation

was evaluated as a normalized digital level (NDLR,G,B)--a red channel, blue



channel, and green channel value for each pixel. Each NDLR,G,B was associated

with a spectral exposure h(X), the product of the known radiance and integration

time, for the tested monochromatic wavelength X. By varying the radiance or

integration time for any X, it was possible to chart the camera's response to a

range of spectral exposures.

The CCD camera's response to monochromatic radiation was found to be best

expressed through a logistic dose response function:

NDLR,GB = f(5.1)

1+ h(A)/hR3GB )

where a,3,y,8 are experimentally derived constants and h0. 3R,G,B(X) is the spectral

exposure required to yield a normalized digital level of 0.3 (Gayeski 2007b). To

measure the relative response of the camera across different wavelengths, it is

only necessary to compare h0.3R,G,BQ().

5.1.2 Spectral Responsivity

The response of the camera to different wavelengths in different channels is

called the absolute spectral responsivity (ASR) , rR,G,B(,), where

rR,G,B() = h 3G,3 (5.2)

The ASR for the CCD camera has been experimentally determined in (Gayeski

2007b) by inverting the logistic response curve, and measuring radiances and

resulting NDL every 25nm across the visible spectrum. As a result, it is possible

to solve for h0.3R,G,B(X) at each of these wavelengths for each channel. The

resulting absolute spectral responsivities of the red, green, and blue channels are
shown in Figure 5.1.
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Figure 5.1 Absolute Spectral Responsivity of the CCD camera for the visible range
(source: Gayeski 2007b)

For polychromatic radiation, the ASR curves must be weighted by the relative

spectrum of the beam reaching the camera to give a new h0.3R,G,B,beam. Thus, by

knowing the relative spectrum of the beam and the digital output of the camera in

at least one channel, it is possible to predict the total radiance of the beam,

Le,beam,380-945, across the wavelength range where the camera is sensitive.

Equation 5.3 shows this relation :

0.3 /
Lb,380 hG,B,beam x - (5.3)

,beam,380945 int NDLR,G,B a

where tint is the integration time of the camera, and h0.3 R,G,B,beam assumes

knowledge of the relative spectrum.

However, since the Heliodome is primarily designed to characterize the

distribution of radiation through unknown fenestration samples, it is unrealistic to

require that the camera know the relative spectrum of a beam. It is most

important for the camera to measure radiances from unknown spectra, and to

then provide some information about what can be inferred about a sample's



reflection and transmission spectra. The filtering system that leads to the

estimation of these quasi-spectral properties of an unknown sample is

summarized below. In chapter 6, the spectral estimation method will build upon

this information to derive a closer approximation to the reflectance/transmission

spectra of the sample.

5.1.3 Filtering System and Unknown Spectra

The simplest way to avoid the change in ASR due to a varying relative spectrum

is to sample the beam at small wavebands, over which the ASR of the camera

does not vary dramatically. These could be defined such that, even with the most

variant spectra, monochromatic beams, the predicted radiance would differ from

the true radiance by no more than a defined amount.

To define these wavebands, a filterset consisting of eight Schott colored glass

short and long pass filter pairs (shown in Table 5.1 and pictured in Figure 3.4)
were chosen to best isolate the flatter sections of at least one channel's ASR for

each waveband (Gayeski 2007b). By designing the filters so that they only
transmit in each of these wavebands, we can use the digital output from the most
sensitive color channel over the waveband to approximate the radiance in band.

These eight average radiances can be used to reconstruct an approximation of

the spectral power distribution of the light emerging from the sample.

Waveband A, interval (nm) Schott filter combination
380-500 GG400 (1mm), BG39 (1mm), BG25 (2mm)
450-590 GG455 (2mm), BG7 (2mm)
480-590 GG495 (2mm), BG7 (2mm)
500-650 OG530 (2mm), BG42 (2mm)
550-640 OG570 (2mm), BG39 (2mm)
570-690 OG590 (2mm), BG40(2mm)
650-850 BG665 (2mm), KG1(2mm)
800-945 RG830 (2mm)

Table 5.1: Schott filter set chosen to isolate wavebands across the visible spectrum
(source: Gayeski 2007b)



In the resulting step function , each step describes the radiance of the beam in a

particular waveband AXj (with j=1 to 8 corresponding to each of the eight

filtersets), which has been reflected from the corresponding location on the hemi-

spheroid. While the filters are not box-like, the waveband is a close

approximation to the actual filter transmittance, achieving estimations within 10%

of the true radiance in each AXj (Gayeski and Andersen 2007a). The radiance

step curve can be changed into a quasi-spectral step curve, describing a rough
spectral transmittance or reflectance estimation of the sample. Finally the

spectral estimation method is applied in order to obtain finer knowledge of the

spectral aspects of samples, as described in Chapter 6.

5.2 Photometric Calibration

For many samples, especially those involving neutral spectral materials or solely

angular components, a photometric BSDF is all that is needed to understand the

distribution of radiation in a space. This section will describe the photometric

calibration of the CCD camera, enabling the Heliodome to deliver quick

photometric BSDFs.

To achieve this goal, the CCD camera must act, not only act as a radiometer, but

also as a multiple-points luminance meter. An appropriate luminance calibration

of the camera would allow it to perceive light with the same spectral sensitivity as

the human eye. While it would be easy to calculate photometric BSDFs from

radiometric BSDFs, the radiometric analysis is unnecessarily lengthy, capturing

images for eight filterbands and all integration times (280 images in all).

However, if it were possible to modify the camera's spectral sensitivity so that it

more closely emulates the photopic function V(A) (Commission Internationale de

I'Eclairage, 1932), the processing time for photometric measurements would be

eight times faster. The first part of this section describes modifications of the

raw CCD camera's spectral sensitivity that were executed in order to achieve this



goal. The second describes an experimental photometric calibration that enables
the instrument to associate luminances with grayscale pixel values following a
method described in (Andersen et al. 2001).

5.2.1 Determination of Optimal Modified Camera Sensitivity

The CCD camera's spectral sensitivity for the red, green, and blue channel has
been determined in previous stages of the Heliodome project (Gayeski 2007b).
The normalized sum of all three channels is contrasted with the targeted V(X)
photopic function in Figure 5.2. It is immediately obvious that the camera is
much too sensitive in the red and blue parts of the spectrum compared to the
human eye. Furthermore, the equal parts addition of the three curves creates
two peaks-one around 530nm from the green curve and one at 590nm from the
red curve, both cradling the targeted V(X) peak at 555nm.
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Figure 5.2: Total raw spectral sensitivity of CCD camera, as compared with V(X), as foundby adding the R,G,B channel spectral sensitivities.



In order to address these two issues, an optimization was performed, allowing

autonomous scaled adjustments to the red, green, and blue sensitivity curves.

To restrict the impinging signal to the photopic region, an assortment of Schott

long pass and wide band pass colored glass filters were also tested in pairs. By

optimizing the filter pairing, the filters' respective thicknesses, and the R,G,B

scaling parameters simultaneously, it was possible to diminish the excessive

sensitivity in the red and blue regions of the spectrum by eliminating those

regions of radiation in the incident beam.

Two filters were chosen as a result of this optimization-GG495 at 2mm

thickness, and BG40 at 2mm thickness. While other filter pairs were found that

achieved a slightly improved cut-off, these two were chosen because of their

availability due to time constraints. GG495, the long-pass filter, reduces the

sensitivity in the low wavelength range, while BG40, a band-pass filter, gradually

cut out the signal from 560 to 700 nm.

In conjunction with new scaling parameters for the red, green, and blue channel--

.792, .657, and 0 respectively-the corrected response, approximating V(2), is

shown in Figure 6.3. The function fi' (Commission Internationale de I'Eclairage

(1987)) was used to quantify synchronization between V(2) and the new relative

spectral sensitivity S(2), according to Equation 6.7:

f'= 0.0093584 -JIS(A) - V(A) -AA, (6.7)

For the chosen filter combination f' was found to be 17.6%, a great improvement

over the initial f1' of Figure 5.2, 99.7%.
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Figure 5.3: Modified spectral sensitivity of CCD camera for luminance measurements
(black). Modifications due to two cut-off filters, BG40 (magenta) and GG495 (cyan), in
addition to weighing the CCD camera's R,G,B spectral sensitivity curves, (shown in red,
green, and blue). The modified relative spectral sensitivity more closely matches V(A)
(orange)

Due to the disconcerting dip in S(A) around 570nm, a test was performed with
hypothetical spectra to gauge the maximum error expected from this
misalignment. The spectra were designed such that their total luminances were
the same, though they were maximally different from each other. As shown in
Figure 5.4, specl and spec2, peaking and dropping at the aforementioned dip,
are meant to test the limits of the error expected from using S(A) to predict
luminance. Spec3 and spec4 more closely resemble rough spectral power
distributions that would actually be tested in the Heliodome.

The result of these tests suggest an upper limit for error of around 30%, while the
expected error in luminance estimation of less spiky spectral power distributions



will be much lower, around 5-10%. This expected error was adequately low to

still provide a meaningful photometric BSDF, and thus the chosen filters and

channel scaling factors will be used in the final calculation procedure. These

were also applied during the camera's photometric calibration described in the

following section.
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Figure 5.4: Hypothetical spectral power distributions of the same luminance and their
associated errors for total luminance estimation

5.2.2 Luminance calibration

The purpose of the photometric calibration is to correlate grey scale pixel

values (now from 0 to 369.5 due to the adjusted scaling parameters) with

associated luminances for each integration time of the CCD camera. An

experiment was set-up, as shown in Figure 5.5, with the HMI dedolight

illuminating a spectralon reflectance standard, a perfectly diffusing white surface,

through the designed cut-off filter pair, GG495 and BG40. The CCD camera and
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a luminance meter were positioned facing the reflectance standard at similar

angles off the perpendicular. In order to achieve a broad range of luminance

measurements from the reflectance standard, the illumination level of the beam

was adjusted both through the use of spectrally selective filters and alterations of

the power setting of the lamp.

For each illumination setting, yielding luminances in the range of 1.55 Cd/m 2 to

200,000 Cd/m 2, images were taken at all integration times from detection to pixel

saturation. A luminance measurement was also recorded from the luminance

meter and associated to the series of images.

luminancemeter

nce standard

GG495+ BG40 filter combo

dedolight

Figure 5.5: Photometric calibration experimental set-up

When the data was collected, the red, green, and blue digital levels for each pixel
were each averaged over an image area of 460 pixels with consistent illumination
having a standard deviation less than 3.8 digital counts (out of 255). The red and
green channel's digital levels were combined using the scalar weights described
in the previous section to produce grayscale values that could be normalized and
associated with the measured luminance levels. Figure 5.6 and 5.7 show the
normalized grayscale levels for each integration time that correspond to each
measured luminance level, and their respective 10% error bars (to be described
in section 5.2.3).
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Figure 5.7 Photometric calibration of the CCD camera for higher integration times + 10%
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5.2.2 Photometric Validation

The luminance calibration was validated with five spectrally selective fenestration

samples used to alter the HMI's spectral power distribution in different ways.

These five samples consisted of two coated glazings, two applied film glazings,

and one laminated sample. The HMI dedolight was transmitted through each of

these spectrally unknown samples and through the cut-off filter pair to illuminate

the reflectance standard. The HMI lamp settings were also altered for each

sample measurement to achieve multiple luminance values for each sample,

each of which was also measured by a reference Minolta luminance meter.

Overall, 100 different luminance values were captured from the illuminated

standard by the CCD camera. In each of these images, the average red, green,
and blue digital levels from the area of interest were translated into a grayscale

value. Using the grey values and integration times from each image, the
luminance calibration curves could be used to deduce the associated expected

luminance. For each of the 100 images, the luminance estimate was then
compared against the measured luminance from the luminance meter, as
demonstrated in Figure 5.8.

All estimates fell within a 10% error range of actual luminance measurements,
whereas the average error was 4.9%. It was observed that the estimated values
were not predictably above or below measured luminance values, as the actual
luminance values will vary depending on the spectral power distribution, and thus
on the reflectance or transmittance of the unknown sample.
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This calibration enables each pixel in an HDR image to be associated with a

luminance value, the average of the luminances predicted for each integration

time in an image series documenting light detection to pixel saturation. Each

phase necessary to achieve a photometric BSDF from these luminance

estimations will be described in chapter 7.
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6. Spectral Estimation Method

This chapter concentrates on the development of a method to estimate the
reflection and transmission spectra of fenestration system materials based on the
color coordinates from the tri-chromatic CCD camera when viewing the filtered
light impinging on the camera's fisheye lens. This digital output is used to
reconstruct a sample's spectral bidirectional transmittance or reflectance. This
method will improve upon the quasi-spectral reflectance/transmittance step
function developed in (Gayeski 2007b) and described in section 5.1.

6.1 Opportunities for Spectral Estimation

Previously, many glazing technologies and shading systems have been
evaluated solely on their thermal properties, neglecting their effect on the
Correlated Color Temperature (CCT) and color-rendering index (CRI) of
incoming light. Often this neglect leads to lowered visual performance, negative
impact on the environment, and little control over the color appearance of the
space (Chain et. al 2001). Understanding the spectral power distribution (SPD) of
emerging light is integral for control over the color surfaces and visual
satisfaction of the occupants.

Spectral information is also used to control solar gains in spectrally selective
glazings. These glazings are usually designed to allow maximal visible light
transmission, while seasonally controlling NIR transmission to lessen HVAC
loads. Through the application of a minimally emissive coating, spectrally
selective glazings reduce solar heat gains in summer and heat loss in the winter.
The benefits of these selective coatings include increased transparency over
tinted glass, downsizing mechanical heating and cooling systems, and cost
paybacks in 3-10 years (PNNL 1998). However, by combining fenestration light
distribution techniques with spectral modification techniques, systems could be
designed that handle the heat of light differently from the visible component. This



combination has profound implications on thermal comfort and the efficient use of
thermal masses.

Furthermore, though quasi-spectral radiometric measurements provide a general
idea about radiation distribution in a space, a gross approximation to spectral

information is inadequate for multi-layered systems. When fenestration materials
are layered, their reflectance or transmittance spectra cannot be averaged over

large bands, but instead must be multiplied wavelength by wavelength. Thus, an
optimal result requires detailed knowledge of the spectral information of each

layer in an assembly.

6.2 Spectral Estimation Methods

Of the two scanning goniospectrometers described in chapter 2, one only has the

capability of creating quasi-spectral BSDFs, and the other uses spectrometers,

which are expensive in both cost and image-processing time (Nieves et. al 2007).

As an alternative to traditional spectroradiometers, recently, mathematical

methods have been used for the recovery or spectral information from digital

images. These methods aim to estimate the spectral information of a scene from

the red, green, and blue channel pixel levels of a digital image. As a result, they

are especially interesting for video-based goniophotometry, though they have not

been used for this application previously. Many of these methods aim to modify

the standard assumption of low dimensional linear models in order to

appropriately use spectral estimation in a variety of applications, such as

colorimetric image archiving (Imai and Berns 1999) and computer rendering

under changing lighting conditions (Maloney 1986, Connah et. al 2001).

The technique used for most spectral reflectance estimation methods is based on

the principal component analysis of low dimensional linear models. Studies have

shown that this technique is adequate for reconstructions of natural illuminants



and situations with known camera properties (Nieves et. al 2007, Hernandez-

Andres et. al 2004, Romero 1997, Maloney 1986). Spectral estimation in the

Heliodome combines this a priori method with other regularization techniques to

design an appropriate routine for the spectral reflection and transmission

reconstruction of CFS in a goniophotometer.

6.3 Spectral Estimation of Unknown Spectra

To derive the reflection or transmission coefficients of a fenestration sample, the

Heliodome's measurement process must be described mathematically. The two
modes differ only in that, for reflectance measurements, the incident beam must

be initially transmitted through the spheroid before reaching the sample. The
spectral estimation of transmittance spectra can be seen as a specific sub-case

(Tspheroid=l for allX) of the general spectral reflectance estimation method.

Therefore, this section will describe the methodology in reflection mode, starting

with the deliverable -- the series of filtered images taken by the camera.

6.3.1 Deriving camera digital response vector d

As explained in section 5.1, the digital output of the color CCD camera for each

filter, NDLRGB, j, is related to the radiance seen by the camera Lj,.,cam by a logistic

dose response function, f, described in (Gayeski 2007b):

NDLRG,B.J = (IintLe.J..camrR.•,B (6.1)

where j= [1,8], X=[380,945] in 5 nm increments, rR,G,B,, is the CCD camera's
ASR, and tint is the integration time of the image. To isolate the reflection
coefficients of the sample, the expression linking NDL to Lj, x must be further

dissected:



f-I (NDLR,G,B,j)
= RG,B,A * Lej,.cam (6.2)

tint

The dot product, f1( NDLR,G,B,j)/ tint,, can be compiled into a vector of length 24,

called d for each pixel in an image:

d =

f-I (NDLRI )

f- 1 (NDLG 
1)t

f1- (NDLBi)

L I nt

f-1 (NDLB)

/tint

/ t, nt

(6.3)

Everything in d is known from the camera's image and camera settings.

6.3.2 Deriving the spectral modifier matrix

The other side of the expression contains the unknown spectral radiance of the

beam reaching the fisheye, Lj,x,cam. To isolate the reflection coefficients of the

unknown sample, Lj,x,cam is represented as a product of its contributing parts.

Each spectrum can be seen in Figure 6.1, and affect the relative spectrum of the
initial beam in different ways depending on their flatness.

The reflectance and transmittance spectra of the spheroid, accounted for in
chapter 4, vary slightly for each pixel depending on variations in the reflective
coating. The spectral estimation method will therefore be described for a single

pixel corresponding to an arbitrary angle (0ii,,0r,#r).
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Figure 6.1: System spectra as a function of wavelength [nm]: (a) initial HMI spectrum
(MHMI), (b) filter transmittance (rtrter), (c) spheroid transmittance (Tspheroid(0i,Qi), (d) spheroid
reflectance (Pspheroid,(0r,#r)), (e) conglomerate spectrum (CSi(0i,0i,,r,Qr)), (f) hypothetical
unknown sample transmittance or reflectance (r or Psample), (g) hypothetical final spectral
power distribution reaching the camera (Lj,-cam (01,~,er,Qr))

The initial spectral exitance of the beam, M,,,,, is modified as expressed by
equation 6.4:

Lej,,cam(6O,i r, ) = MAf A *HM filterj,A * TspheroidAii). * Psample,A 6i' 'Ir r)

* Pspheroid,A (or r cos( )
(6.4)

where

Tflerj, is the transmission spectrum of filter j

'spheroid,A( i, ) is the transmission spectrum of the spheroid for an incident

altitude and azimuth angle (08i,o)

Pampe1,,2(60,0i,r,,r) is the reflection spectrum of the unknown sample along

emerging direction (Or,r) from a beam of incident angle (0i,o)

spheroid, (r,, r) is the reflection spectrum of the spheroid corresponding to the

angle (Ar,~r)

all recorded in 5 nm wavelength increments. The symbol -* is the scalar

multiplication of the elements in corresponding vector row indices, and cos(60)

accounts for the effect of off normal radiation.

Combining the known components of the spectrum yields:

CS,,, (•ii . or, r,) = MHM,A' 2rfilter,. * ',,spheroid,A i i * Pspheroid,,A or r )* cos( )

(6.5)



where CSj (0,,,0B,,qr)is the conglomerate spectrum for filterset j, or discrete

spectral radiance as viewed by the camera as if there were no sample.
Transforming the dot product, Eqn. 6.2 becomes:

f-' (NDLR,G,BJ) - rR,G,BA [CSJ,(,,,, )PAp(,,(,(, r r),sanple, ( i r,)] (6.6)

tint

The row vectors, rR,G,B,[CSj,(O,,j,O,, ,)], are combined in a matrix N

corresponding with vector d.

N(0i,,4 , r, r) =

rR," CS, a(0,1'J,4,0,

TGAtCS tx (0-4-,*A

rB, CS,, (0,1"J,4,0,,
rs,,Cs,,( i'Or8, Or)T

If p sample is measured at 5nm intervals, the final expression:

Npsample = d (6.8)

is a linear system with 24 equations (8 filters x 3 color channels) and 114
unknown reflection coefficients that can be calculated for each pixel.

The intuitive solution to this matrix expression would be to use the pseudoinverse
of N to solve for Psample:

N+ = (NTN -1 NT

,sample = N+d

(6.9)

(6.10)

If N were a full rank matrix measured in 5nm wavelength increments, requiring
thirty-eight filters, and d were a perfectly calibrated sampling of digital responses

(6.7)



from the camera, the pseudoinverse solution would be a perfect match. However

as the pseudoinverse is highly sensitive to noise and error (Neumaier 1998,
Hardeberg 1999) and a large number of filters would be both cost and time

expensive, alone it is not a practical solution for our application.

Since the system is ill-posed, there are many metamers that satisfy Eqn. 6.8, i.e.

many different spectral power distributions that would still correspond to the

same combination of R, G and B values. Additional information is needed to

weed out these metamers and find the vector that most reasonably estimates a

probable Psample -

6.3.3 Smoothness Constraint

To further constrain the problem, the solution, preg, approximating psample, can be

assumed to be a smooth reflectance curve, a condition similarly used in (Li and

Luo 2001, van Trigt 1990). Severe monochromatic-like peaks are very unlikely to

occur in the reflectance or transmittance spectra of fenestration, so the

assumption of smoothness is not overly restrictive for our purposes. As a result

of this assumption, each consecutive element of the vector preg cannot differ

dramatically from the next. Thus, we use a second difference matrix S, curtailed

to address the boundary conditions:

1 -2 1 0 0 0 -..
0 1 -2 1 0 0
0 0 1 -2 1 0

0 0 0 0 1 -2 1

(6.11)

A smooth choice for preg requires the minimization of the second norm JlSpreg 112.

6.3.4 Regulation Methods
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The problem to be solved is one of balancing these two criteria correctly. Though

there will be expected errors in the radiance estimates, preg must still closely

satisfy the linear system, minimizing JINpreg -dj2. Additionally, solutions with

dramatic perturbations over small wavebands must also be eliminated by
minimizing the side constraint, IISPregll2. A preg is chosen that balances these

two concerns such that preg is reasonably close to the unknown solution Psample.

6.3.4.1 Full Rank Method

This regularized solution, preg, could be found using a variety of regularization

methods. The first possibility is to side-step the ill-conditioning of matrix N. The
condition number of N is 7436, which means that any small error in d could

cause very large errors in preg. Thus, to achieve any sort of accuracy in preg, one

must turn N into a well-conditioned matrix. This could be accomplished by
utilizing the side constraint to construct a full-rank matrix, as in Tikhonov
regularization (Tikhonov 1977):

Npreg -d)S"i s-pn *, (6.12)

Here, p* is an initial guess of the reflectance spectra and the minimization of the

norm is achieved for the best preg. , is a scale used to vary the balance between

smoothness and regulation (Tikhonov and Arsenin 1977).

6.3.4.2 Truncated Singular Value Decomposition

The other option is to construct a well-conditioned rank-deficient matrix Nk that
would reasonably approximate N (Hansen, 1987). With this method, the solution

preg would be the one that best solves the problem:



minl(ýSI subject to mir)(Np,, - d (6.13)

In rank-deficient matrices, the closest rank k approximation to N would be:

k

N, = & V' T= u,ipv, (6.14)
i=1

where U=(ul, u2... uk) and V=(v1 , v2... Vk) are the orthonormal singular vectors of

N and J= diag(0i... ok) are the singular values of N in non-increasing order.

Because the singular values get very small as iapproaches k, taking into account
the first isingular values is the closest approximation for N achieved by a matrix
of rank i. As the singular values decrease, ui and vi become more and more
oscillatory (Hansen 1998). Since the condition number of N is the ratio of the
largest to the smallest singular value, truncating N in this manner would
ameliorate the ill-conditioning problem.

Using this truncated generalized singular value decomposition (TGSVD) (Hansen
1987, Hansen 1988, Hansen 1992a), the method chosen for the Heliodome's

application, the solution is:

112 uTd x. 114

pk d= x( + u,_d x, (6.15)
n=112-k+l On n=113

where pk is the reflectance spectra estimated using the first k singular values of

N, xn is the nth vector of matrix X, and on is the nth singular value from the

generalized singular value decomposition.

While preg is not constrained such that all its coefficients are less than one,
satisfying the linear system requires that energy be conserved, so the system



would only violate this restriction if radiance values implied an almost completely

transmissive or reflective sample.

6.4 Spectral Estimation Results

In order to visually understand the accuracy of pk in predicting Psample (or Tsample),

referenced spectra of applied film, coated, monolithic, and laminated fenestration

materials were used and compared against the TGSVD solution. These

referenced spectra represent the range of transmission and reflection spectra

that the Heliodome might encounter, and were treated as if they were unknown

samples in the instrument's set-up.

6.4.1 Finding d for Referenced Samples

Matrix N was determined, as always, independently from the sample. The vector

d was derived by multiplying the conglomerate spectrum by the hypothetical

sample's reflectance or transmittance spectrum. The resulting spectrum reaching

the camera could be integrated to give a total radiance in each designated

waveband, as described in (Gayeski 2007b). This radiance could then be

converted into an exposure, h(?), by multiplying by an integration time that would

achieve an acceptable NDL from the camera.

The exposure of the camera's detector should be weighed by the camera's

spectral sensitivity, h0.3R,G,B(X), for each channel. The result is a response that is

related to the digital output of the camera through a logistic curve, as shown in

equation 5.1. Thus, the assumed reference sample yields a digital level that
would be produced if the sample were actually being tested.

These normalized digital levels for each channel and each waveband and their
associated integration times, are all that is needed to find the vector d. The
vector d is the main clue to figuring out the unknown reflectance (or



transmittance) spectrum of the sample, and is the only assumption in all of the

spectral estimation method that changes between each sample. Therefore, it is

of utmost importance that the camera calibration be as accurate as possible,
since the response from the camera is the only link between the estimation

method and the true reflectance spectrum.

6.4.2 Comparing Psample, Pk, and Pbox

Figure 6.2 shows a comparison between the pk for large k from the spectral

estimation method and pbox, the reflectance information that can be derived about

a sample using only the radiance step curve. The radiance step curve refers to

the CCD camera's radiance estimate from the most sensitive channel in each

filterband, according to figure 5.1.

The first example shown is a filter transmittance curve, a highly spectrally variant

case to test the limitations of the method. The latter is a transmittance spectrum

of a window coating from the Optics 5 database (Versluis et. al 2007). In both

cases, pk is a marked improvement over Pbox in the accuracy of the estimation to

psample, which will be quantified in the next section.

It is important to note, especially in the first case, that these results are different

than what would be achieved by solely applying a smooth polynomial fit to the

quasi-spectral step curve. Solving for Psample as a system of equations, with

unknown variables at each 5nm increment measurement point allows the method

to take into account finer spectral modifications within filterbands. The method

also allows for multiple inflection points within large filterbands, whereas a polyfit

would not. While it is difficult to asses the degree of accuracy necessary in

estimating Psample for the application of fenestration design, in the case of layered

or laminated systems, it is likely that these a grossly approximate method would

not be adequate.



0.

0.

0.

0.

Wavelength [nm]

400 500 600 700 800 900
Wavelength [nm]

Figure 6.2: Improvement from box, resp. Pbox(), to k, resp. Pk(''-), in approximating ' k,
resp. Psampie(- "-), using spectral estimation: (a) combination of Schott filters
(transmission): GG495 (2 mm) and BG7 (2 mm) (b) V-kool applied film (reflection)

In all of the test runs, the edges of the approximation spectrum (around 400nm
and 900nm) are consistently the most "off'. This is due to the low sensitivity of
the camera in those areas for all color channels, and the exclusion of the
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boundary conditions in the S matrix. Because the estimation is only as good as

the NDLs predicted by each channel, a low sensitivity may yield higher errors in

radiance prediction, and thus, higher errors in spectral estimation as well.

The main limitation of the method occurs when there are rapid oscillations that

occur over less than 5nm wavelength intervals. Because the elements in each

row of M, and the elements in Pk are measured at 5nm wavelengths, and

because of the added smoothness criteria, rapid oscillations are often not

estimated as well using the spectral estimation method. However, severe

monochromatic-like peaks are very unlikely to occur in the reflectance or

transmittance spectra of fenestration. For the purposes of the Heliodome, these

fits are adequate.

6.5 Theoretical Validation of Spectral Estimation

It is vital that the camera calibration be as accurate as possible, since the

response from the camera in all three channels is the link between pk and Psample.

However, due to the limits on radiometric accuracy that non-theoretical filters

impose on the NDL measurements, the spectral estimation method must plan for

error contributions to the vector d.

These errors create a perturbed d, from which reflectance spectra estimated

using the first k singular values of N, pk, must be inferred. Figure 6.3 shows a

comparison of pkfrom d, with the best manually chosen p k from d, the same

vector with added randomly distributed noise. In these hypothetical examples,

when p k is optimally truncated, it converges towards pk. The question is, then,

how to choose k optimally.

It is useful to identify the types of error introduced into the approximated solution.

The first of these errors is associated with the camera's calibration, and can be

written as the difference:



d-d = (6.16)

Where d is the unperturbed vector and where e is a random error vector. The
second is comprised of the errors inherent in the regularization approximation.

A graphical tool called an L-curve (Hansen 1992b, Hansen and O'Leary 1993)
plots the semi-norm of both contributions. With an L-curve, one can find the
minimization point, where p k should be least affected. When plotted on a log-log
scale, these graphs have a characteristic L-shape, where the corner marks the
minimization point. Here, the vertical component (contributions from lS•pI1) meets

the horizontal component (contributions from IN-ik- d- ).
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Figure 6.3: Comparison of an optimally chosen 'k (--), with k (- -) and .sample (- -) for: (a) a
sample of V-kool applied film and (b) a solar guard bronze applied film

As demonstrated in the series of truncations for the coated sample, shown in

Figure 6.4, as k increases and On decreases, the estimation pk begins to fluctuate

noticeably. This is due to the contribution of the perturbation error E for small

singular values. However, when k is too low, the regulation error is high and

|IN pk-dll does not adequately approximate Pk. Thus, the L-curve for this sample,
shown in Figure 6.5, is used to determine the appropriate value for k, in this case

k=1 1, so as to get an optimal pk for the given sample.

When compared with Pbox the truncations achieve significantly closer

approximations to Psample. By averaging the distances, one can calculate the error
reduction of p k over Pbox:

Pbox sample Pk -P sample 2

Pbox - Psampe 12 (6.17)



For the coating sample shown in Figure 6.6, this error was reduced by 94%, for
the chosen p k approximation. Such high error reductions can commonly be
achieved for samples that rapidly vary within a given waveband, as in the 650-
850nm waveband for the given example.

Pk
Psample

x axis for all graphs: Wavelength [nm]

Figure 6.4 Iterations of pkfor k=1 to 18 for a coated sample, in transmission (solar guard
royal blue applied film, 3 mm thick) with k=11 highlighted
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Wavelength [nm]
Figure 6.6 85% improvement of Pk(--'') over Pbox(-) compared to Psample (- '-) for a coated
sample

It is important to note that a metamer of the spectrum resulting from the psample in
figure 6.6 would not be a satisfactory solution. One could imagine a metamer (or
spectral distribution of the same color) whose R, G, and B digital levels in each
filterband were the same as the spectrum in Figure 6.6. However, because the
filterbands are so small, this metamer would almost always be less smooth than
the chosen Pk. It would also not maintain a minimum |IN Pk-dll, since pk iS
measured at 5nm increments. Thus, it is unlikely that a metamer would ever be
estimated over the correct pk in the spectral estimation method.

An error analysis was performed for 48 reflectance and transmittance spectra
chosen from four fenestration categories documented in the Optics 5 database.
In each case, the improvement of p k over Pbox was calculated according to
equation 6.17, along with a smoothness quotient:
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112

Q, = I (Psa, A,n+. + PsaIen-) 2Aam ,, with Psample,1,n E Psample,x (6.18)
n=2

and a flatness quotient:

Qf = min(psa,,,,) - max(psam,,,,I) (6.19)

Smooth spectra were defined as having Qs<0.1 and flat quotients were defined

as having Qf less than 0.1.

By categorizing the samples as described above, it was possible to identify the

types of samples that would benefit most from being analyzed under the spectral

estimation method, or the % improvement over Pbox. While the % improvement

is a good measure of the spectral estimation method's achievements in gaining

information over the previous quasi-spectral method, it is not a measure of

spectral agreement. To quantify the actual fit between p k with Psample,

(independent of the improvement over Pbox), the function f, (CIE (1987)) was

also calculated for each spectral estimation.

The average improvement of p k over Pbox for all 48 spectra was 58%; 51% for

reflectance spectra and 73% improvement for transmittance spectra. For the

same samples, the average f, was 9.4%. Broken up by glazing type, the

average improvements were 69% for the applied films, 75% for coatings, 50% for

monolithic samples, and 37% for laminates. This equated to a f, of 9.8% for

applied films, 8.7% for coatings, 9.1% for monolithic samples, and 16.7% for
laminates.

Greater improvements are mostly due to differences in smoothness and
variance. The tested applied films in particular, such as Solis and Solarguard
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colored films, had less smooth reflectance and transmission spectra, with an
average Qs of 0.6 compared to Qs's around 0.3 for the other three categories. In
fact, when categorizing the samples according to these spectral properties,
fluctuating spectra achieved an average improvement of 68%, compared to only
35% for samples with smooth spectra. Also variant spectra achieved an average
improvement of 70% compared to 32% for samples with flat spectra.

It should be reemphasized that smaller reductions in error are not indications of
poor spectral fits, but instead may indicate that Pbox was initially a closer estimate

to Psample. The f, for smooth samples (6.8%), for example, was actually lower
than for fluctuating samples (15.9%) , though the relative improvement was
greater for fluctuating samples. For example, for the reflectance spectrum shown
in Figure 6.7, the sample yielding the lowest percent error reduction, a dark grey
laminate, was essentially constant.

600 650 700

Wavelength [nm]
750 800 850 900

Figure 6.7 23% error reduction on
(Versalux blue monolithic)

the spectral reflectance of an essentially neutral sample
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6.6 Experimental Validation Using Spectrally Selective Samples

The spectral estimation method was also validated by the use of eight spectrally
selective samples gathered from a variety of fenestration material manufacturers.
The materials were a mixture of applied film samples, coated glasses, and
laminate configurations and were assumed to be generally representative of the
larger body of glazing materials used in complex fenestration systems. Their
transmittance spectra are shown in Figure 6.8.

Wavelength (nm)

Figure 6.8 Transmitted spectra of tested samples (from top left to bottom right):
4C4 (applied film), 5E4 (applied film), 6NCOK (applied film), H8.5 (coated), H8.1(coated),H8.2 (coated), H8.3 (coated) , Vanceva (laminate)

By performing the validation with real samples, actual images from the Kappa
color CCD camera calibrated for the Heliodome could be used. To isolate the
spectral estimation method and examine its soundness apart from the other
components of the Heliodome, this experimental validation was realized without
the spheroid, whose geometry and coating characteristics were still being
improved at that time. Also, since transmitted light can be measured more easily
and accurately than reflected light, these samples were analyzed in transmission
mode only for this validation exercise, but the results are equally applicable to
both modes.
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As shown in Figure 6.9a, a USB2000 spectrometer was used to measure each

sample's spectral transmission coefficients across the 380 to 900nm range. The

emittance spectrum of a tungsten lamp was compared before and after

transmission through the sample. The spectrometer was also used in conjunction

with the filters to find the absolute spectral power distribution (SPD) of the beam

after it has been transmitted through each filter and the unknown sample. The

integral of these SPDs is the true radiance in each waveband.

The sample's now known (measured) transmission spectrum could then be

compared with the spectrum predicted when the camera's digital levels were

used as inputs into the spectral estimation method for a series of images taken at

different exposures in each filterband.

Sample Spectrometer
Tungsten-Halogen lamp

Filter

a.)

D.)

Reflectance
Standard

CCD Camera

Figure 6.9: (a) Experimental set-up to measure the sample's spectral transmission
coefficients, using a spectrometer; (b) Estimation of filterband radiance with digital
camera
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The camera was set-up facing a spectralon coated diffusing reflectance standard

positioned behind the unknown sample, as shown in Figure 6.9b. For each filter,

images were taken of the standard at exposure times ranging from first detection

to pixel saturation. The digital levels registered by the most sensitive "best"

channel were then linked to a total radiance estimate for each filter interval.

When compared with the spectrometer measurements, these estimates were

within 10% of the true spectral radiance. The total radiance estimates for each

filter interval were also directly related to the rough step function, Pbox.

One advantage of the spectral estimation method over this rough step function is

its use of all the registering channels in each filter interval, instead of only the
prescribed "best" channel. This allows the spectral reflectance or transmittance

curve to be further refined by secondary channels yielding reasonably close
radiance estimates in each filterband.

Among the nine tested samples, the spectral estimation method achieved an

average improvement of 54% over the quasi-spectral estimation, pbox. Similarly to

what was observed with hypothetical samples, flat transmission spectra had the
lowest relative improvement at 35.3%, such as for sample H-8.3, a monolithic
clear fenestration material. Also, as shown in Figure 6.10, the smooth, yet

variant, coated sample C4 gains a 71% improvement over Pbox with an fl'of 3%.

Considering the large error component from the camera, the method should

achieve the lowest f, values between p k and Psample for smooth samples. This
error component forces the method to truncate the estimation early, at k=2. With
fewer singular values, the method more easily estimates smooth transmission
and reflection spectra. As most fenestration materials do not have sharp spectral
shifts, this tendency is generally benign.
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Wavelength [nm]

Figure 6.10: 71% error reduction in sample with coating C4

General trends in relative improvement, however, are harder to predict for real

samples, since both Pk and Pbox now contain an error component, unlike the pbox

estimations discussed in section 6.5. As shown in Figure 6.11, even nearly flat
samples can achieve 70% improvements. In this case the improvement is high

because of the inaccuracy of Pbox. The fl estimate for this sample is also still very

good, at 4%. For flat samples, a smooth Pk easily results in grand improvements
if the 10% error contribution from the camera manifests itself in alternating over

and under-predictions for each waveband of Pbox-
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Figure 6.11: 70% error reduction in monolithic sample H-8.2

6.7 Spectral Estimation in Context

The spectral estimation method fits into the larger context of the Heliodome, by
providing the spectral information needed to turn quasi-spectral BSDFs into full
spectral radiometric BSDFs. The spectral estimation result, Psample, is calculated
for each pixel. When each pixel is spatially calibrated to correlate to a sample
emerging angle, it can be mathematically shown that Psampie,x(eiAl,r,Or)

BSDFe,A(i,,i,r , = Le (Oi Oi (6.20)
EeA (Oi ,Ii )
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where L,(Oji,i,Or,4r) is the sample's emerging spectral radiance discretized at 5nm

increments, and Ex (8~,0j) is the irradiance on the sample for each incident angle

(ei,01). Ex (0,1i) and Lx(Oi,0i,Or,Or) can be calculated from aforementioned known

quantities:

Ee,, ( i,,) = MH ,A T spheroid, ( 6 i ) CO s( ) (6.21)

Le,A(i, ,Or,) = MHM,A'. * " Tspheroid, • i,( i ). * Psample,A,(i'•i'or'r) * COS(o) (6.19)

When these two quantities are divided, all that remains is psample,X(8 i,0ir, ir),

which is not actually a reflectance or transmittance at this stage, but a

bidirectional spectral distribution function, measured in units sr'.

Thus, this method completes the spectral radiometric BSDF calculation. Useful

especially for multi-layered CFS design, the spectral characterization of each

component in a fenestration system could clarify the overall spectral reflectance

and transmittance of the system. Since component spectra are multiplied on a

wavelength by wavelength basis, average or non-spectral reflectance and

transmission coefficients would be ill-suited to describe the effectiveness of the

system as a whole.

Additionally, spectral information as it is related to a directional distribution of

solar radiation and visible light is especially relevant in the design of passive

heating and lighting strategies. The combination of directional and spectral

information opens up new options for optimal design tactics, and deserves to

become more readily accessible as complex fenestration systems become

integrated into new simulation software. In hopes of addressing these

informational voids, the spectral estimation method will be integrated into the

Heliodome in its final form, as described in the next chapter.
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7. Estimating BSDFs for Spectrally and Angularly Selective CFS

In order to frame this process from image acquisition to deliverables, the
flowchart shown in Figure 7.1 maps both the spectral radiometric and
photometric BSDF acquisition and processing methods. Section 7.1 will outline
the spectral radiometric BSDF calculation (boxes in dark grey); while section 7.2
outlines the photometric BSDF calculation (boxes in white). Any automation
steps used in both processes are highlighted in light grey.

Each process assumes an uncropped image size of 1380 x 1027 pixels. Images
will be taken in a range of integration times between 3.95e-5 seconds and 3.7
seconds (a total of 35 integration times). Each phase necessary to achieve
BSDF results was automated in Matlab@ to achieve a full automation of the
photometric and spectral radiometric BSDF assessment. While the image
acquisition and final format of the data and interface must still be manipulated for
user-friendliness and ease of integration into existing fenestration databases, the
backbone of the assessment calculation process has been developed and is
described in this chapter.
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Ialculation OT t(Ui)

RGB-) greyscale conversion
for each identified Dixel I+

greyscale-> calibrated
luminance for each identified
pixel and integration time

Form luminance map by
averaging luminances of
corresponding pixels from all
Nim images

I photometric solid

Figure 7.1 Automation flowchart for calculating photometric and spectral radiometric
BSDFs
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7.1 Spectral Radiometric BSDFs

Two deliverables are expected from the spectral radiometric BSDF (sBSDF)
calculation. The first is numerical--a matrix of dimension m x n x 114, describing
the spectral transmittance or reflectance of the sample at each of m x n emerging

direction pairs (Or,4r) for an incident beam at (O6,4i). The second is graphical for

efficient visualization of the results--a 3D spectral radiometric solid,

demonstrating the angular and spectral reflectance or transmittance properties of
the sample. Together, these two deliverables will provide both detailed

numerical information and an intuitive illustration of the sample's distribution
properties.

In the automation of a sBSDF calculation, first the input parameters are selected.

The user defines the incident angle (0i,j), investigation mode (reflection or

transmission), result type (photometric or spectral radiometric), sample diameter

D, and data resolution in emergence (AOr,Ar). The table's motors are arranged

to accommodate image acquisition at these inputs. For spectral radiometric
BSDFs, the CCD camera is used to capture images at all thirty-five integration
times for each of eight filtersets, as shown in Figure 8.1.

The procedures used to extract spectral BSDF data from these images are
executed as follows, as is defined according to the dark grey path in Figure 7.1:

*In all 280 images, predefined consistently deviant pixels are eliminated, or set to
zero. For details describing the identification of these pixels, see section 7.3.1.

*In all images, pixels with a digital level equal to seven or below are set to zero.
A digital level of seven was determined to be the noise to signal threshold, as
also described in section 7.3.1.
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elf reflection mode is selected, known parasitic light locations from the beam's

spheroidal reflection are identified (section 7.3.2).

*For all images, a vignetting correction matrix is then applied for the full image to

correct for light drop off toward the edges of the image. The vignetting correction
matrix was developed in (Gayeski 2007b), and is briefly reviewed in section 7.3.4

eAt this point all of the images' raw data for each filter set has been corrected,

and can be combined into 8 HDR images via the spectroradiometric calibration
described in (Gayeski 2007b). Each HDR image is associated with three
estimations of radiance, one in each of the red, green, and blue channels. Thus
the output at this stage is 24 radiance estimations for each pixel.

*For each of the 1380 x 1028 pixels, the spectrum estimation method will be

applied (Chapter 6). Vector d is arranged from the aforementioned 24 radiance

estimations and matrix N is created from the known spectral properties of the

spheroid, the dedolight, the filtersets, and the ASR of the camera. The

application of this method results in a reflectance or transmittance spectrum for

the sample, pk, at each pixel.

* Each pixel can be correlated to an incident and emerging direction pair, via the

spatial calibration derived in (Gayeski 2007b).

* Depending on the angular resolution of the spatial calibration, the discrete

spectral reflectance or transmittance, Psample,x (Oi, i er, r) or Tsample,x(8i,ir,)r), can be

averaged, element by element, over chosen solid units of angle.

* For each pixel group, the magnitude of the discrete spectral reflectance or

transmittance, Psample,x (Oi,i,Or,•r) or Tsample,x(OiA,Or,Or), will be corrected to account

for concentration and magnification effects of the spheroidal mirror at the position

of reflection (e0,44). These corrections are described in detail in section 7.3.3.
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* The resulting psample,A (0i6i,Or,(r) or Tsample,%(Oi, i,0r,4r) data is accumulated into a

m x n x 114 matrix, with m x n pixel groups, each correlated to a vector Psample,A

(0ii,Or,4r) or Tsample,X(Oi,4i,O r,Or) of length 114, covering the visible spectrum at

5nm increments. This is the first deliverable of the spectral radiometric BSDF

calculation.

* For each pixel group, the spectral reflectance or transmittance can then be

changed into an RGB triplet. Because a sample's color is influenced by the

illumination it receives, the reflectance or transmission alone can not be changed

to an RGB triplet. Instead, the sample is assumed to be illuminated by daylight,

a standard D65 reference illuminant, replicating noon light. The resulting spectral

power distribution is converted to XYZ coordinates (Billmeyer and Saltzman

1981) as shown:

S= )am) (7.1)

Y = -- Y((Ji%)e(2).)apie,(9 ,4,O, /)d2 (7.2)
PA

Z = . ) (r (7.3)

P = ý(A)t(A)dA (7.4)
P'

where x, y, z and are the 20 CIE standard observer functions (Smith and Guild

1931), and £(2) is

the D65 reference illuminant (CIE 1991).

These X, Y, Z tristimulus values are then converted to R, G, B color space based
on CIE chromaticities of the reference primaries. The standard RGB color space
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(sRGB) is used here since it is defined relative to the D65 white point. For

sRGB, the matrix C (CIE 1971) changes XYZ values to RGB values and is

defined as:

3.24071
C = -0.9689

0.0557

-1.5372

1.87599
- 0.2040

-0.4986
0.0415
1.05707

(7.5)

Where

[R G B]=[C]*[X Y Z] (7.6)

The resulting RGB values describe the color of reflected or transmitted daylight

through the fenestration sample. Each pixel group is associated to a color based

on this conversion

*The final spectral radiometric solid, and example of which is depicted in figure

7.2 for a holographic film element, shows the color of reflected or transmitted

light for each angle, as well as the angular distribution of radiance. This graphic

depicts how a sample spectrally modifies and distributes incident light throughout

a space.

15

0

345

3

Figure 7.2 radiometric solid for a holographic film element at incident angle (450, 800)
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7.2 Photometric BSDFs

As mentioned in chapter 5, though the spectral radiometric assessment is much
quicker than existing scanning methods, it still requires the CCD camera to
capture 280 images. As such it is an involved assessment procedure, as is
necessary to achieve valuable detailed spectral information. The Photometric
BSDF assessment provides a faster alternative to quickly characterize the
angular distribution of radiation in a space.

One deliverable is expected from the photometric BSDF calculation-a 3D
photometric solid, graphically demonstrating the luminance distribution of the
sample for intuitive, efficient visualization of the results.

As with the spectral radiometric calculation, first the input parameters are

selected. The user defines the incident angle (0j,•), the investigation mode

(reflection or transmission), sample diameter D, and data resolution (Anr,A(r).
Again, the table's motors are arranged to accommodate image acquisition at
these inputs. For photometric BSDFs, the CCD camera is used to capture
images of the CFS sample at all 35 integration times for only one filterset, that of

the V(A) correction filter.

The automation proceeds as follows:

*In each of the 35 images, predefined consistently deviant pixels are eliminated,
or set to zero.

*In all images, pixels with a digital level equal to seven or below are set to zero.
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*If reflection mode is selected, known parasitic light locations from the beam's

spheroidal reflection are identified.

*For all images, a vignetting correction matrix is then applied for the full image to

correct for light drop off toward the edges of the image.

These first four steps occur in both radiometric and photometric modes.

* Next, for each pixel in all 35 images, the scaled R,G,B values are added to give
a normalized grey value (as described in 5.2.1). For each integration time, a
predefined detection and saturation normalized grey level (.06 and .75
respectively) determines which of the pixels in each of the 35 images will be
evaluated.

Images with integration times and corresponding normalized grey levels in this
range are kept for analysis, while all other images are discarded. Each pixel in
the retained images is associated to a luminance by the luminance calibration
described in section 7.2.2. The luminance values for each pixel are averaged to
achieve an HDR luminance map. The output at this stage is one average
luminance value for each pixel.

* Each pixel can then be correlated to an incident and emerging direction pair,

via the CCD camera's spatial calibration.

* Depending on the angular resolution of the spatial calibration, the luminance

estimations can be averaged over chosen solid units of angle.

* For each pixel group, the magnitude of the luminance will be corrected to

account for concentration and magnification effects of the spheroidal mirror at the

position of reflection (0e,0j) (section 7.3.3).
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* luminance data is accumulated into a m x n matrix, with m x n pixel groups,
each correlated to an average luminance estimation Lcam(Oiqi,,Or,r).

* Lcamera(6,,~A,A,,Ar) is divided by the integral fpspheroid(Oii,A r,Abr)dA to find
2

photopic

Lsample(6gi Al ,A r ,A0r )

* Lsample(.,~.,AO,,AOr) is divided by E(QO,,)

* The final photometric solid shows the angular distribution of luminance
throughout a space for a given incident illumination angle. An example of a
photometric solid resulting from the BRDF assessment of white paper is shown in
figure 7.3.

F -.3
25

2

-I

.15

05

Figure 7.3 Photometric solid of BRDF of white paper at incident angle (00,900)
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7.3 Corrections

Listed in the automation flow chart, Figure 7.1, several light grey boxes describe

corrections made to the raw digital images or the HDR radiance and luminance

estimations. These corrections help to minimize the final global error, by

identifying and rectifying imperfections in the system that predictably influence

the final BSDF assessment.

7.3.1 Noise to Signal Ratio and Deviant Pixels

To determine the noise to signal ratio of the system, an opaque sample was

measured and its digital level associated to "blackness" for each incident angle

and each integration time. Images were taken with the CCD camera at

integration times from 3.95e-5 seconds to 3.7 seconds. Images were taken for

incident angles at 60 degree azimuth intervals and 15 degree altitude intervals in

transmission mode to determine the camera's noise level.

First, these "black" images were used to identify consistently bad pixels. For all

initial beam angles, certain pixels escalated with integration time while most

pixels stayed steady, as shown in Figure 7.4. These 159 bad pixels rising above

the digital level of 9 were set to zero. Considering that the pixels were

reasonably scattered in the image, and that this amount represents around .01%,

the loss of these deviant pixels should not affect the Heliodome's performance.

However, flat fielding tests could be pursued in the future to allow the instrument

to handle slightly off-signaled pixels in a more sophisticated manner.

The maximum digital level observed in the leftover pixels was 9, and the mean

value was 6.85. According to the luminance calibration, this maximum black

value corresponds to a luminance of 0.2 Cdm -2 , a reasonable lower threshold.
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Figure 7.4 Identification of deviant pixels in the CCD camera

The effect of internal reflections in the spheroid was then analyzed in order to
ascertain whether it would affect BSDF assessment in the case of highly
transmissive or reflective samples. New images of a 5cm diameter hole in
transmission were taken at all integration times prior to saturation, and the
resulting digital levels were processed. When the actual illuminated area was
removed from the image, the mean digital level of the leftover pixels when not
corrected for noise was 6.86. This background value corresponds to a
luminance of less than 0.2 Cdm -2 , found for the level of "blackness." Thus, the
effect of inter-reflections could be considered negligible.

Hence, for the radiometric and photometric modes, black digital levels below 9
were set to zero in order to avoid any contribution from noise and internal
reflections. The effect is that the Heliodome can not detect luminance values
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less than 0.2 Cdm 2 , however, considering the scale of measurable luminances

extends to almost 2e10 5 Cdm -2 , this small undetectable range is not noteworthy.

Also, since in reflection a diffusing sample is not even detected until the digital

level is around 21 (NDL=0.06), this maximum black value has no effect on BSDF

measurements.

7.3.2 Parasitic Light

Parasitic light was observed only in reflection mode. For tests with a hole, two

spots appeared in the image, whereas all pixels should not have elevated above

black levels. These two spots were caused by the camera's position directly

facing the dedolight-the larger spot relating to the beam's profile as it hits the

spheroid, and the smaller spot from a reflection of the dedolight source on the

curved mirror. In both cases, as the beam is transmitted through the spheroid's

surface, a small amount of diffuse scattering occurs, some of which reaches the

camera's fisheye lens. Thus, for very high integration times these two spots are

visible in the image.

This effect on the image is very regular and easy to identify,

as shown in Figure 7.5. However, since these two spots

affect different pixels depending on the incident beam and

their position can vary with even slight repositioning of the

lamp, their effects are very difficult to exclude with accuracy.

Because these spots would only have a significant relative

effect on the BSDFs of very dark samples, and because the

correction at this time would be clumsy, their effect has been

disregarded, and will be manually removed where observed.

Figure 7.5 An enlarged image of two parasitic light spots captured by the CCD camera in

reflection mode for an integration time of 900ms

7.3.3 Magnification/ Concentration of Spheroid
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Due to the spheroid's geometry, reflected radiation can be focused or magnified

depending on the incident direction of the beam. Since the beam has a finite

radius and is not actually a point, adjacent collimated rays will be reflected such

that they intersect and then diverge. The degree to which the spheroid alters the

reflected spot "size" depends on the eccentricity, which controls the distance the

beam travels from sample to spheroidal reflectance point, and thus also from the

intersection point to the camera lens (Snail 1987). The spheroid concentrates

the beam's cross section when radiation is reflected into the quadrant of the

camera, and magnifies the beam's cross section when radiation is reflected into

the same quadrant of the sample.

This magnification (concentration) effect greatly impacts the irradiance levels

reaching the camera's fisheye lens for specular beams. Figure 7.6a

demonstrates this effect for an incident beam at -60, 0, and 60 degrees zenith

angles, along the major axis. As can be easily observed, radiation reflected to

the same quadrant as the sample (away from the camera port highlighted with a

lighter circle in the figure) results in a magnified spot covering the port, whereas

radiation reflected into the camera's quadrant results in a concentrated spot. The

resulting irradiance levels reaching the camera's fisheye lens in shown in Figure

7.6b.
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b)

Figure 7.6 a) incident beam at: 60 degrees, 0 degree, -60 degrees respectively-transmitted
through 10cm sample hole to be reflected onto the camera port, shown in green
b) Effect of magnification or concentration of beam on camera port irradiance for and
incident beam at 60 degrees, 0 degree, and -60 degrees altitude.

The longitudinal (major axis) magnification of a beam is predictable and can be

calculated by the following formula (Snail 1987):

major = [257. - (6.7)

where 57.5cm is the length of the spheroid's semi-major axis and s is the

distance between the sample center and the point of reflection on the spheroid.

Because this magnification is only dependent on the distance s, intuitively

B.jor would vary much more dramatically than Bminor, since along the minor axis s

remains constant.

To simulate the magnification effect of specular beams in the Heliodome,

TracePro, a ray-tracing software developed by Lambda Research Corporation,

was used to model an incident beam transmitted through a hole positioned at the

sample port. The model assumed a hole with 5cm radius at one focal point and

a perfectly absorbing circular plane, the size of the camera's fisheye, at the other

focal point. The spheroid was modeled with the same dimensions as the actual

instrument and with 100% interior reflectance. Since this model was only used to
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derive a relative effect of the geometry on camera plane irradiance for different

incident angles, the actual reflectance of the spheroid was not needed. The

incident beam was held stationary in the model, as the spheroid was rotated at

15 degree azimuth increments (from 0 to 360 degrees) and 15 degree altitude

increments (from 0 to 75 degrees) and the resulting average irradiance on the

camera plane was calculated.

Since each angle simulation assumed the same initial beam, the change in

irradiance on the camera plane is solely due to magnification and concentration

of the spot size after reflection off of the spheroid. The results of the simulation

are shown in Figure 7.7, contained by the minor axis at 180 degrees and the

major axis at 0 and 360 degrees.

Spot size effect on camera plane Irradlance for azimuths every 15 degrees

E1
E

(I

Spheroid Azimuth Angle

Figure 7.7 The effect of spheroidal optical properties on the average normalized irradiance
reaching the camera port for different angles of incidence.
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Because this spheroidal effect is consistent, it is correctable. The angles

between the measured pairs have been interpolated, and a correction mask,

shown in Figure 7.8, has been developed using a reverse spatial calibration.

Thus, each correction factor aligns to a pixel associated to the sample emerging

angle for which the factor was calculated. This mask will be applied to the high

dynamic range images for specular beams to correct for magnification and

concentration effects on radiance and luminance estimations before the spatial

calibration is applied.

I

0=270

Figure 7.8 Spheroidal magnification and concentration correction mask to correct for
incident specular rays that have been focused or dispersed after spheroidal reflection.

However, further work must be completed to determine the actual affect of

magnified and concentrated beams on final BSDFs in the Heliodome. Because

the camera reads radiance pixel by pixel, the concentration or magnification

effects could have a less dramatic impact on estimated radiance levels,
depending on the pixel averaging gradient and the number of pixels associated
to the emerging angle.
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The magnification and concentration effects have been shown to be null for

diffuse samples, where the rays are not concentrated or magnified into a larger

or smaller spot on the camera port since the sample's emerging radiation is

scattered in all directions. This case was tested in TracePro, where a perfectly

diffuse sample was placed at one focal point and examined in reflection mode at

0 degrees zenith. The resulting irradiance impinging on the camera port was

compared for the same beam transmitting through a hole at 0 degrees zenith, as

shown in figure 7.9a.

3 2 1 0 -1 -2 -3

..... ...• . . . .• .. ... .. .

·, : :· . .....: ·. 1..~ :/ . ·_ . .• .. .... ...

.. .. 2 .. . . .'L " ."' . . ..:

3 2 1 0
X (millimeters)

-1 -2 -3

3 2 1 0 -1

3 2 1 0
X (millimeters)

Figure 7.9a) TracePro models of a specular sample and diffuse sample tested in
transmission and reflection.
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b) The resulting irradiances on the camera port from the two cases.

Figure 7.9b shows the resulting irradiance on the camera port. In the transmitted

example, all of these rays would be associated to a few pixels and thus, a small

emerging angle. In the reflected case, the rays would be associated to many

angles, yielding much lower radiance values over a large area of pixels.

However, in both cases, the irradiance on the camera port is the same, and thus

no correction matrix is required for diffuse samples.

7.3.4 Image Vignetting

Due to obstructions in the camera's optical system, light fall off occurs at the

edges of an image (Inanici 2006), known as image vignetting. Experiments were

performed with the CCD camera to characterize this light fall off (Gayeski 2007b).

From this characterization, a correction matrix was formed to combat this effect.

This correction matrix enables pixel values in each image to be divided by

correction coefficients corresponding to each zenith angle of emergence. The

result is a corrected raw image, such that radiance and luminance values can be

assessed accurately, without vignetting effects.
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8. Validation

The Heliodome combines several new elements to bring together an innovative
BSDF measurement technique. As such, its validation is vital to the success of
the instrument. While several techniques have been used previously in the
validation of goniophotometric data, the Heliodome will be validated through the

assessment of error at every calibration and processing step, as in (Andersen
2006b, Andersen 2004c). This chapter assesses the errors and uncertainties at
each stage in the measurement of spectral radiometric and photometric BSDFs
and deduces a final error expected for the instrument. Unlike the imperfections
discussed in the previous chapter, the errors accounted for in this chapter can
not be corrected.

8.1 Camera Errors

Using the CCD camera as a multi-point radiometer and luminance meter requires
several calibrations, each of which implies an error component on the final BSDF
data. In the following section, the inaccuracies introduced by the CCD camera
calibrations will be calculated, and later used to deduce the final global error.

8.1.1 Error due to spatial calibration

The correlation between pixel locations and incoming zenith camera angles has
been determined to within 1.25 percent for the CCD with Fujinon fisheye lens,
and 0.5 percent for the NIR camera with Fujinon fisheye lens (Gayeski 2007b).
Though the spatial calibration defining the relationship between a sample's
emergence angles and the camera's incoming angles has been theoretically
calculated to a high degree of accuracy based on ellipsoidal geometry, the
spatial calibration errors due to imperfections in the geometry must still be
measured.
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Now that the final spheroid has been manufactured, this test could be performed

by emitting a collimated laser through a hole in the sample plane, at a known

incident angle. If the spatial calibration is correct, the beam should be detected

on the camera's output image at pre-calculated pixels associated with a certain

incoming angle. The extent to which these pixels align with the actual pixels

detecting the radiation determines the spatial calibration error. If this calibration

were performed for all incident angles, the theoretical spatial calibration could be

tweaked so the error was minimized, though never smaller than 1.25%.

As this correction will be performed in the future, the current assumption will be

that spatial calibration relating sample emerging angles to camera angles can be

modified to not contribute significant additional error to what was already

calculated for the theoretical spheroid. Since, by limiting the sample size to 10cm

in diameter or larger, the Heliodome ensures that the transmitted or reflected

radiation will reach the fisheye camera for almost all incident angles, the

spheroid's geometry is close enough to the theoretical geometry to provide a

spatial estimation that is reasonably close to the results expected from the

corrected spatial calibration for angular samples.

8.1.2 Error due to CCD spectral radiometric calibration

Several factors contribute to the error in CCD spectral radiometric estimation,

including:

* Error introduced by inaccuracies in the absolute spectral responsivity

calibration (ASR) of the camera,

* Errors introduced in the radiance estimation for each filterband because of the

use of filters that cover large 50 tol 00nm filterbands,

* Errors introduced from inaccurate transformations between quasi-spectral and

full spectral estimations.

The first two errors have been assessed in (Gayeski 2007b). In validating the

ASR curves, the average error for estimating total radiance of a visible beam with
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radiation between 380nm and 945nm was found to be 8.9% for the red channel,
4.3% for the green channel, and 5.2% for the blue channel. For the estimation of
radiance in each filterband, a wide variety of fenestration materials and unknown
spectra were tested, most of which sustained errors below 5% in theoretical tests
(Gayeski 2007b). When tested experimentally, most sustained errors below 10%,
however this estimation included both the error from the ASR curves and from
the method of radiance estimation for each filterband.

But, since these quasi-spectral radiance estimations feed into the spectral
estimation method, they are only secondary, and do not directly affect the
accuracy of spectral radiometric BSDF assessment. Instead, it is more
informative to compare the final spectral estimation results compared to the
known reflectance or transmission spectra of a range of fenestration materials.
In chapter 6, the error between the estimated spectra and measured spectra for
48 fenestration materials, averaged to 9.4%. Because the ASR calibration
curves and filtered quasi-spectral radiance estimates were used to derive the
estimated spectra, their respective error contributions should be included in this
final average. As a result, 9.4% will be considered the relative expected error
from the camera's full spectral estimation method and calibration procedure.

8.1.3 Error due to CCD photometric calibration

In section 5.2.1, fi',photopic, the relative error between V(A), the spectral sensitivity

of the human eye, and S(2), the modified spectral sensitivity of the camera, was
found to be 17.6%. However, this relative error feeds into the photometric
calibration, and thus only contributes to the total error of photometric BSDF
measurement as a secondary source.

In fact, as was shown in figure 5.4, the relative error between these two
sensitivities depends heavily on the spectral modifications of the sample to the
incident beam. If the relative spectrum of the modified beam peaked at a point of
stark incongruency between V(A) and S(A), the errors between actual luminance
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and predicted luminance of the beam would be high. Otherwise, the errors would
be much lower.

The photometric error, s, is used to quantify the influence of fl' on the BSDF

assessment (CIE 1987).

N, Nt
S .A)' eas n An V (A, ) . calib( ) n

6photometric n- N NJ (8.1)
1V (A,) . eas ) ( AA, S (A ) calib (n ) nn=1 n-1

where eas, is the spectral radiance of the light source used for BSDF

measurement and calib is the spectral radiance of the light source used for

photometric calibration. While the HMI dedolight was used for both, for spectral

samples ,,mea would have to be weighted by the reflectance or transmittance

coefficients of the sample.

Since each spectral sample would be different, making Fe,, different for each

test, the contribution of fl' to photometric BSDFs can only be conclusively

quantified for the measurement of neutral samples. In this case, the Fmeas, and

Fcalibwould only maximally differ as much as the HMI fluctuates spectrally within

itself. An assessment of the beam's initial qualities (Section 8.2) determined this
fluctuation was less than 1%.

For spectral samples, the photometric calibration was shown to accurately

predict luminances within 10% for all tested samples. This error band includes

any contribution of spectral + photometric error. The average combined error was

found to be closer to 4.9% assessed experimentally for spectral samples. Thus,

the global error analysis will use this average relative error when calculating the

global error for the Heliodome.

130



8.1.4 Point Spread Function

In order for a CCD camera to be used as a radiometer, radiance must be able to

be evaluated on a per pixel basis. It has been shown in the application of land

cover characterization that this type of per-pixel analysis can be prone to

inaccuracies when substantial portions of the signal for one pixel come from

adjacent areas (Huang et al. 2002, Townshend et al. 2000). This means that the

real radiance of a pixel would be also be a function of surrounding pixels, which

could be characterized experimentally. In other systems, the point spread

function (PSF) has been shown to produce as much as a 3.7% difference

between two pixel groups with the same illumination (Hong and Voss 2004).

Because this effect most often occurs in high contrast scenes, it is necessary to

evaluate the PSF for the application of the Heliodome.

Effects of the point-spread function on the radiometric accuracy of a CCD

camera can be measured by taking images of a point source (Hong and Voss

2004). The

tungsten halogen lamp was used to transmit a collimated beam through a small

hole (less than 1 mm in diameter) onto the inner surface of the spheroid and

reflected onto the camera's fish-eye lens. The resulting spot illuminated only a

small pixel area on the image, a cluster of three or four pixels. Images of this

spot were taken at various integration times with digital levels averaging between

40 and 220 digital counts in the green channel.

Assuming the PSF was radially symmetric across the sensor, the spot averages
were then charted against the averages of surrounding pixels at radii from 1 pixel
to 100 pixels away from the center of the spot. The results from the green
channel are shown in Figure 8.1 for exposure times between 400ms and 4.7
seconds. The red and blue channels had a similar reaction as the green
channel, with digital levels dropping below the noise level for radii>2 pixels.
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Because the PSF is so steep, with digital levels dropping dramatically outside of
the spot area, the effect on the radiometric accuracy of the system was deemed
negligible. Neglecting the PSF might cause errors in the estimation of incident
beams filling only the solid angle corresponding to one pixel. However, for the
application of the Heliodome, pixels will be averaged for larger solid units of
angle. Thus, all the photons, even the ones spread to adjacent pixels, would be
included in that average, minimizing the effect on the resulting BSDFs.

=

radius in pixels
Figure 8.1: CCD camera's green channel response to the point spread function using the
tungsten halogen lamp as a point source

8.2 Errors from HMI lamp

For both spectral radiometric and photometric BSDF assessment, an accurate
measurement of the incident illuminance on the sample plane is necessary.
Because the Heliodome set-up treats the HMI beam as a fixed entity, the
illuminance on the sample plane is assumed to be uniform and constant over
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time. There is also a supposition that the dedolight is a perfectly collimated

beam to mimic direct sunlight, while in reality, there is some quantifiable beam

spread. All of these imperfections in the beam have been examined so their

effect on BSDF can be quantified, as a result of the experimental analysis

described in this section.

8.2.1 Sample Illumination Uniformity and Incident Beam Collimation

The collimation of the incident beam strongly affects the resulting BSDFs. An

uncollimated source would result in light reflecting off the sample (or transmitting

through) at more open angles. When the radiation is reflected back to the

second focal point, a larger spot size results. Compared to the expected

radiance from a collimated beam with the same initial flux, the camera would

read a lower radiance for associated pixels. Obviously, lower radiance

estimations will influence the BSDF data, as would the altered light angles hitting

the camera's fish-eye.

In order to assess the beam's collimation, experiments were performed with the

HMI dedolight to determine the angular beam spread. The first objective was to

choose a lamp setting that would be locked in as the default for all fenestration

data collection.

The dedolight can be adjusted in three ways-through a variable knob that spans
a range between flood lamp and spotlight mode, through adjusting the power
level on the power box itself, and by changing the size of the beam with an
adjustable light-blocking aperture.

To determine the appropriate lamp settings, the dedolight was set in spotlight
mode on the highest power setting in order to achieve a base level of collimation.
Then, with the lamp facing the 10cm sample port and centered on the hole, the
distance between the lamp and the sample port, h, was measured and recorded.
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To find the appropriate aperture setting, the aperture size was modified from its
smallest setting, resulting in a 10cm diameter beam at the sample plane
(Dsampleplane), to its largest setting, resulting in a 34cm diameter beam at the
sample plane.

For seven intermittent settings in that range, a luxmeter was used at the sample
plane to measure the variability in illuminance across the sample port. This
illuminance variability was then associated with a beam spread angle, calculated
in Equation (8.2):

eamspread sampleplane lam (8.2)
2h

The results are shown in Figure 8.2. To choose an appropriate lamp setting, the
beam spread angle and illuminance variation over the sample port needed to be
minimized. As shown, the most collimated lamp settings also induced variations
across the sample port of more than 2000 lux. To achieve an illuminance
differential of less than 400 lux across the sample plane for the largest sample
diameter, a beam spread angle of 2. 4 degrees was chosen.
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Figure 8.2: HMI beam variation across sample diameter for different beam spread angles
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The effect of the beam spread on the resulting illuminance on the camera's
fisheye was analyzed using TracePro. The spheroid, lamp, and camera port
were modeled, and a uniform angular beam spread of 2.4 degrees with uniform
circular spatial distribution of rays was assumed. The rays were traced for
azimuths of 0 and 90 degrees with and without the beam spread for a beam with
the same total flux, as shown in Figure 8.3. At 15 degree zenith angle
increments, the illuminance on the camera port was compared for the two beam
conditions.

Figure 8.3: TracePro model at 0 degrees azimuth, 45 degrees zenith angle. Simulation withand without 2.4 degree beam spread

Because the spheroid's concentration and magnification potential is at its
maximum along the major axis and at its minimum along the minor axis, the
errors induced by this simulation should adequately describe the range of spot
size divergence introduced by the beam's angular spread. As shown in Figure
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8.4, the difference in irradiance or illuminance on the camera plane caused by

the beam spread is small and not consistently an over or under estimate.

The maximum difference occurs at the extreme angle, 75 degrees, when the

distance between the point of reflection on the spheroid to the camera port is the

farthest. The spot size is magnified because of this greater distance traveled,

and irradiance levels are at their lowest. Thus, the relative error introduced by

rays hitting the camera plane or missing the camera plane due to their added

angularity, is, at its highest, a 5% relative difference. Overall, the difference

between beam spread irradiance and collimated beam irradiance was much

lower, with an average magnitude of 1.34% for the major axis, and 1.32% for the

minor axis.

-60 -40 -20 0 20
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Figure 8.4: Beam spread effect on camera plane irradiance for
spheroid's major and minor axis
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Due to the mirror's complex conical reflectance properties, the effects of beam

spread on the illuminance or irradiance at the camera port for a beam is not

easily predictable. After reflection off the spheroid, the beam spread angle could

cause rays to be exported out of the camera's fisheye area -- as was the case for

twenty-eight rays in Figure 8.5. However, the beam spread can also redirect

rays that would have been excluded from the camera plane post-reflection back

closer to their original trajectory. Because of this phenomenon, this error cannot
be corrected.

3(- 25 -18 7361 11 04 ) (-3.25.-24.3652.14.2982)

.3 ,- I. . II .U4 L)

Figure 8.5: Ray-tracing of camera port for incident zenith an angle of 60 degrees. a)
without beam spread: 8306 rays b) with beam spread: 8278 rays

8.2.2 HMI Illumination Uniformity over time

The HMI dedolight was also tested for constancy over time. The assumption of a
fixed beam with one spectral exitance (MHMI) measurement for each BSDF
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assessment supposes that the beam will not change in illuminance or spectral

power distribution over the time it takes for a full assessment.

This supposition was first tested by monitoring the HMI lamp's changing

illuminance levels from ignition to stabilization over the period of an hour. The

illuminance levels were measured with a luxmeter held in a stable position

perpendicular to the lamp's beam. The results are shown in Figure 8.6, showing

lamp output stabilization occurring around 5-7 minutes after ignition.

Between the two tests, there was a relative difference between the two

stabilization points of less than 2%. In each test, fluctuations in illuminance level

after reaching stabilization were small, achieving less than a 1% difference

between the lowest and highest illuminance level measured after minute seven.

This difference was verified through five additional trials, in which the lamp was

ignited once, and the illuminance levels across the beam spot were measured

every 20 minutes after stabilization. The average difference between each trial

for each measurement point was 25 lux, a relative difference of 0.3%. These

measurements assure a consistent illuminance level for each assessment period,

and even suggest that a stabilized MHMI might only need to be measured once,

instead of for each assessment trial.

However, over several months, the lamp has been observed to be less stable

spectrally, as shown in Figure 8.7. The four plots show the HMI spectral relative

irradiance distributions, measured over the span of a year. Three of the four

plots have been "smoothed" by averaging measurements over a 1nm boxcar

width. Dramatic changing peaks and even slight shifts in the HMI's spectrum will

significantly affect the radiance estimations and spectral estimation results.

Thus, it is necessary to measure the HMI's filtered spectral exitance before each

assessment period in order to achieve reliable sBSDF results.
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Figure 8.7 HMI lamp spectral relative irradiance changes over time
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In summary, the errors contributed by the HMI lamp are as follows:

eThe incident beam spread of the Heliodome was determined to be 2.4 degrees,

the result of a compromise achieving a more uniform illuminance over the large

sample plane. This beam spread resulted in a relative illuminance difference of

1.3% (8.2.1).

*The illuminance uniformity test measured an 8% relative variation across the

sample area for the chosen 2.4 degree beam spread as described in section

8.2.2.

*The HMI also varied in illuminance over several trials of the same warm-up time.

The beam showed a relative variation of 1.8% between trials at its maximum

illuminance level. Spectrally, the HMI beam showed a less than 1% relative

difference over the assessment period (8.2.3).

8.3 Spheroidal interception

Error is also introduced to the final BSDFs by the spheroid's transportation of

radiation from the sample to the camera's fish-eye lens. While the spheroid's

magnification effects, blind angles, and coating non-uniformities are addressed in

the automation process, neither its specular properties nor its variance in spectral

transmission or reflectance has been taken into account.

8.3.1 Polarization

Due to the mirrored qualities of the spheroid coating, it is expected that that the

incident beam could be mildly polarized after reflecting off of the spheroid. The

polarization of the beam could affect the radiance predicted by the camera if

either:
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1. the camera is more or less sensitive to different angles of polarized light.

2. the polarization of the beam causes less light to reach the camera than if it

were unpolarized.

To measure the degree to which the camera is sensitive to polarized light,

images were taken of a reflectance standard illuminated with a tungsten halogen

lamp passing through a 500nm narrow passband filter, as shown in an image

captured by the CCD camera in Figure 8.8. After reflecting off the standard, the

beam was projected through one Ocean Optics mounted linear glass polarizing

lens, which was rotated to polarize the reflected filtered radiation at 15 degree

angle increments for each image.

Spectralon reflectance
,Atandard

reflected spot from 500nm
-liltered tungsten halogen lamp

-"mounted polarizing lens

Figure 8.8 View of illuminated reflectance standard and polarizing lenses from the CCD
camera, depicting the experimental set-up to determine the CCD camera's sensitivity to
polarization

The reflectance standard was used to guarantee that the initial beam was
unpolarized before passing through the polarizer, so as not to preferentially
efface any polarized radiation from the initial beam. Figure 8.9 shows the
average normalized digital level for the green channel at different angles of
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polarization for various integration times of the camera. Because there is little

change in the perception of the camera for different angles of polarized light, the

camera can be considered insensitive to polarization. Thus, any error introduced

by polarization would be caused by an actual reduction in the amount of light

reaching the camera, due to the spheroid's polarizing surface properties.
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Figure 8.9 CCD camera sensitivity to polarization for different integration times

In order to measure the degree to which the second effect occurs, an experiment

was conducted using a Labsphere integrating sphere calibrated to measure total

radiant flux for monochromatic beams from 375 to 1 100nm at 25 nm increments.

The beam from a tungsten-halogen lamp with a 500nm narrow passband filter

was projected through a mounted linear glass polarizing filter into the integrating

sphere's port, as illustrated in Figure 8.10a. The polarizer was then rotated at 15
degree increments to give a baseline comparison before reflection off the
spheroid. This experiment was also repeated for a diffuse initial beam using one
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layer of translucent white window shading material applied at the beam's exit

port.

500nm
polarize

Integra tig
sphere

nd filter

tungsten halogen lamp

polarization d
polarizer

polarization due to
spheroid and polariz

b)

nispheroid

Figure 8.10 a) baseline measurement for polarized radiation
b) effect of hemispheroid on polarization of reflected radiation

The baseline for varying angles of polarization was then compared to the flux
measured after reflection off the spheroid for the same angles of polarization,
shown in Figure 8.10b. Even with a diffuser, the initial beam was polarized.
Thus, in order to isolate the additional polarization caused by the spheroid,
comparable magnitudes of the pre- and post-spheroidal fluxes for each
polarization angle had to be compared, as in Figure 8.11, discounting any
reduction in flux caused solely by spheroidal reflectance. A reflectance coefficient
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for the spheroid was derived by choosing the polarizer angle that yielded the

minimum quotient of the post-spheroidal reflectance flux over the corresponding

initial beam flux. For the experiment with a diffuse beam, the spheroid's

reflection coefficient was 0.64, and for the polarized beam, 0.69.

The scaled initial flux measurements were compared with the post-reflectance

flux measurements to isolate the spheroid's contribution to polarization. As

shown in Figure 8.11 and Figure 8.12, at a polarizer angle of 160 degrees, the

effect of polarization caused by the spheroid is at its peak. In both the diffuse

and polarized beam case, the additional polarization effect attributable to the

spheroid was 2.1%. This error will be accounted for in the final total error of the

Heliodome, as the spheroid's polarization effect could cause the radiant flux of an

unpolarized source to be slightly lessened after reflection.

.5

x

_=

I-

Polarizer Angle Rotation (degrees)

Figure 8.11: Integrating sphere's response to different angles of polarization before and
after reflection off the spheroid for a polarized beam
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Figure 8.12: Integrating sphere's response to different angles of polarization before andafter reflection off the spheroid for a diffuse beam

8.3.2 Reflectance and Transmission Interpolation

The errors from measurements of the spectral properties of the hemispheroid
have also been measured. Because the table's positioning system is not yet
complete, the spheroid's characterization process was simplified. Spectral
measurements were collected along three axes-- the major axis, the minor axis,
and along the 60 degree altitude--and trends were interpolated over the surface
of the spheroid.

The major assumption that would introduce error in this assessment is that the
spheroid has consistent transmission and reflection along any zenith cross-
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section. In actuality, the spectral measurements along the measured 60 degree

altitude varied by 5.1% maximally, and by an average of .7%.

8.4 Total relative error for BSDF measurement

A summary of the sources of significant error contribution is displayed in Table

8.1.

Error source
Photometric +Spectral Calibration
Spectral Radiometric Calibration
Spatial Calibration
Point Spread Function
Beam Spread
Beam non-uniformity
HMI variance among trials
Spheroidal polarization
Spheroidal spectral characterization

Relative Error
4.9%
9.4%
1.25%
negl.
1.3%

8%
1.8%
2.1%

.7%

Affected Darameter
Lcamera

Le,camera
Le,camera, Lcamera
Le,camera, Lcamera
Le,camera, Lcamera
Ee,sample, Esample
Ee,sample, Esample
Le,camera, Lcamera
Le,camera, Lcamera

Table 8.1 Sources of error contribution in BSDF measurement

The global relative error is calculated in Equation (8.3) where f refers to the

different individually affected parameters, and Nf refers to their number.

2ABT(R)DF Af
e6BT()D = BT(R)DF Nf, lK

(8.3)

This calculation was performed separately for photometric and spectral

radiometric BSDF, as shown in Equation (8.4) and (8.5).

srBT()D
srBT(R)DF =

AsrBT(R)DF

srBT(R)DF

ApBT(R)DF
pBT(R)DF = pBT(R)DF

(8.4)

(8.5)

146



From Table 8.1, the global relative error for photometric BSDFs and spectral

radiometric BSDFs was determined to be:

6srBT(R)DF = 12.8% 6pBT(R)DF
9 .9 %

8.5 Results of Automation

As a validation of this automation procedure, two samples were characterized in

the Heliodome, one in photometric mode and one in radiometric mode. The

results of both tests are displayed and explained in the following section.

8.5.1 Photometric BSDF

For the photometric verification, five layers of diffuse typing paper were compiled

and inserted into the sample port to be analyzed in reflection mode. The sample

was chosen for its predictable angular properties, so that measured BSDFs could

be compared to theoretical expectations for such a sample. Since the sample is

less interesting spectrally, it is a good example of a situation that might be

conducive to photometric BSDF (pBSDF) testing.

Following pBSDF protocol, the HMI was first transmitted through the V(X) filter

and reflection mode corset, and was measured for initial illuminance with a

luxmeter at 2814 lux. The table was adjusted such that the incident beam

impinged on the sample at chosen incident angle (00, 900). The pBSDF analysis

requires the input of transmission or reflection mode and incident angle in order

to account for the effect of the spheroid's transmittance on the incident beam

before reaching the sample plane.
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Images were taken at 38 integration times ranging from 10 microseconds to 3.4

seconds. A range of these images are shown in Figure 8.13, tinted green

because of the V(X) filter. Because the tested sample was diffuse, the lowest

integration time detecting radiation was 7.1 milliseconds, much higher than for

specular samples. The images are named after their integration time in

milliseconds in order to easily identify them during calculation, and are corrected

for vignetting effects and deviant pixels.

Figure 8.13 CCD camera images taken of a diffusing paper sample at integration times of
7.1ms, 14.2ms, 20.1ms, 56.9ms, and 110ms.

Using the photometric calibration to associate a luminance to each pixel,
corresponding pixels from each image in the series are averaged for digital levels

from detection to saturation. A high dynamic range image results, corresponding

each pixel, and thus each emerging angle, to a luminance level. An example of

this HDR image, normalized to the highest luminance level, is shown in Figure

8.14. The two bright spots in the center of the image are the parasitic light spots

seen in reflectance mode, as described in chapter 7. Imperfections in the
spheroidal geometry can also be observed, as dark spots near the edge of the

image denote high altitude angles where the spheroid misdirects radiation.

However, overall the image's uniformity demonstrates that the camera is
detecting radiation that has been dispersed in all directions, as would be
expected for a diffusing sample.
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parasitic reflecti6n-

outline of

spheroid base

Figure 8.14 High Dynamic Range image showing luminance variance

Finally, the spatial calibration is applied, and the luminance values are divided by
the spheroidal reflectance coefficients describing variances in the spheroid's
coating for associated emerging angles. These luminances are then divided by
the initial illuminance (scaled by cos0i, in this case 1) to achieve a photometric
BRDF.

As an end product, the photometric mode delivers a photometric solid (Ashdown
2000, Andersen 2002), an intuitive visualization tool commonly used in its two-
dimensional form for the characterization of luminaries. In the photometric solid,
the BSDF values are given as radial distances on a polar grid, positioned by their
corresponding emerging angles (Or,~,). The photometric solids are rendered in
one color or as a greyscale, with lighter shades indicating higher pBSDF values.

Four photometric solids of the tested diffuse sample are shown in Figure 8.15, at
different view angles. The color scale, depicted in shades of yellow, is
proportional to the BSDF range. Lighter shades portray greater radial distances
from the origin for each emerging angle, exposing the directions in which the
sample is most reflective. Because the paper sample is diffusing, it is expected
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to be similarly reflective in all emerging angles, creating a bulb-like photometric

solid. Indeed, these solids verify the success of the photometric BSDF

calculation in their conformity to the expected results. Additionally, the paper

sample, being symmetric, would be theoretically expected to have a symmetric

BSDF about the axis perpendicular to the sample plane. The photometric solid is

also successful in this regard.

However, the asymmetry of the top view of the photometric solid clearly shows

the limitations of the spheroid's geometry, as the edges bulge at azimuths where

the spheroid is accurate for the highest altitude angles, and wane where the

spheroid misdirects radiation for lower altitudes. As would be expected, for

azimuths from 0 to 180, higher altitudes are visible since the sample is positioned

farthest from this portion of the spheroid. Thus, in sample coordinates, the same

altitude angle hits higher on the spheroidal surface for azimuths from 0 to 180

degrees, than it does for azimuths from 180 to 360 degrees. Since the spheroid

becomes less accurate towards the base, higher spheroidal reflectance yields a

greater probability that the rays will be redirected to the camera port.

However, this effect does not critically affect the results of the hemispheroid. It

only limits the BSDF analysis to altitude angles from 0 to 75 degrees, which are

the most interesting angles for fenestration transmission and reflection anyway.

More important are the spheroidal imperfections that influence angles within the

0 to 75 degree range, such as the two indentations at Or=135 0 and 45 0.

Now that the spheroid is completed, these imperfections can be corrected and

the spheroid can be characterized more continuously using the camera. By

using a 10 cm diameter reflectance standard in the sample position, the

Heliodome can be run in reflection mode to map a correction matrix that would

account for smaller geometrical imperfections or coating abnormalities producing

uneven digital levels in the image. Once this correction is applied, the

photometric BSDFs will be in a usable state. In total, the imaging portion of the
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pBSDF assessment took 20 minutes and the computational portion of the pBSDF
assessment took around 90 seconds. The imaging time, however, should be
improved once the method is fully automated.
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Figure 8.15 Four views of a photometric solid of the pBRDF of diffuse white paper.
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8.5.2 Spectral BSDF results

In addition to photometric BSDFs, the Heliodome's ability to measure spectral

BSDFs was tested using a holographic optical element (HOE) in transmission

mode. Because HOEs dramatically modify incident light both angularly and

spectrally, they make good test materials for the Heliodome's spectral BSDF

assessment.

In spectral BSDF assessment, the HMI is transmitted through each of the eight

filter combinations, and the absolute spectral irradiance is measured with an

Ocean Optics USB2000 visible spectrometer. This measurement should happen

at the beginning of each assessment period to assure the spectral stability of the

HMI source.

Because of the intensity of the lamp, it was impossible to measure the absolute

spectral irradiance at the table plane without saturating the spectrometer.

Instead, the spectrometer was used to measure the relative spectral irradiance of

filtered beam. These relative spectral irradiances were converted to total

illuminance measurements, and compared with luxmeter measurements at the

table plane. The luxmeter measurements were used to scale the spectral

irradiance to ensure correct initial spectral absolute irradiance measurements for

each filtered beam.

The table was adjusted such that the incident beam impinged on the sample at a

chosen incident angle, in this case (450, 1800). The spectral BSDF analysis

(sBSDF) requires the input of transmission or reflection mode and incident angle,

though the spheroid's transmittance was not a factor given the sample was

assessed in reflection mode.

Images were taken at 38 integration times ranging from 10 microseconds to 3.4

seconds for each of the eight filter pairs. An example of a 40.8ms image for each
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filterband is displayed in Figure 8.16, along with the unfiltered transmitted beam
for comparison.

As shown, the specular portion of the beam, imaged as the bright spot at the
head of the spectral tail, is transmitted directly through the HOE and not
significantly modified spectrally or directionally. The HOE image also shows a
spectral tail, corresponding to the portion of transmitted radiation that is
simultaneously spectrally modified and scattered forward in a narrow range of
emerging angles. This tail appears different in each of the filtered images, as
only the spectral portion of the tail corresponding to each filterband is imaged.

Figure 8.16 (from top left to bottom right) HOE transmission image at 40.8ms for: unfiltered
beam, filter I (380-500nm) , filter 2 (450-590nm) , filter 3 (480-590nm), filter 4 (500-650nm) ,
filter 5 (550-640nm), filter 6 (570-690nm) ,filter 7 (650-850nm), filter 8 (800-945nm)

Corresponding pixels from each image in each filtered series were converted to
radiances for digital levels from detection (NDL=0.2) to saturation (NDL=0.8).
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The radiance estimations associated to each pixel were averaged to create eight

HDR radiance maps, describing the emerging radiation through the sample.

The eight HDR images were used to create a digital response vector d

(described in chapter 6) for each pixel. Using Interactive Supercomputing

Corporation's Star-P parallel computing platform, the spectrum estimation

method was applied to any pixel with detectable radiance levels, returning the

sample's transmittance or reflectance spectrum for all meaningful emerging

angles. Using 12 simultaneous processors, this calculation took around 100

seconds. The resulting file, a matrix of dimension 1027 x 1380 x 114, was saved

for later analysis.

A radiometric solid was also produced for clear visualization of the sBSDF

results. The saved file was converted to a 1027 x 1380 x 3 matrix, by calculating

the R, G, and B values associated to the estimated transmittance spectrum at

each pixel (as described in section 7.1). These R,G, and B values were used to

color the radiometric solid such that each BSDF matched the color of light

transmitted at its emerging angle when the fenestration system was illuminated

by sunlight. The transmittance spectrum was also integrated over 400 to 900nm

to get a total radiance estimate for each pixel, which determined the radial

distance of each point on the solid from the origin.

The resulting radiometric solid is shown in Figure 8.17, at different view angles.

Because of limited access to Star-P, this automation process could only be run

once. Thus, the solid is the result of an early iteration of the automation codes,

and does not depict accurate spectral information. The radiometric solid and

color scale, however, are similar to what would be expected from the final version

of the automation process.
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Figure 8.17 Four views of a radiometric solid from the sBTDF analysis of an HOE window
element. Additional close-up view of scattered radiation
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The sBTDF successfully calculates the specular portion of the beam, outlined in
black. This portion is transmitted directly through the HOE without significant

spectral or angular modification, and thus has a much greater magnitude and

neutral color, as shown. The solid also successfully depicts the angles at which

the sample scatters the transmitted radiation. The BTDF of these emerging

angles are depicted in their respective colors close to the sample plane.

Though these graphics illustrate the success of the automation process and

assure the eventual reliability of results, further work must be completed on the

sBSDF calculation before these results are usable. A permanent computing

method must be chosen, so that sBSDFs can be calculated easily and with less

computing power. Also, spatial averaging methods must be completed so that

BSDFs can be represented at any sr' resolution. Additionally, for both the

sBSDF and pBSDF assessment, the results should be extensively tested on

many types of fenestration systems and compared to documented results from

other validated goniophotometers and goniospectrometers.
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9. Conclusion

The inauguration of advanced fenestration systems into the daylighting toolkit
has opened the door for daylighting design strategies that could significantly
lessen energy consumption in buildings while enabling visual comfort and
inherent natural lighting benefits. In order to effectively capitalize on these
benefits, advanced fenestration system's spectral and angular properties must
be better characterized, so they can be correctly integrated into specific fagade
designs.

An innovative video-goniospectrometer, the MIT Heliodome, was designed for
this purpose--to measure the bidirectional angular and spectral properties of
advanced fenestration systems quickly and completely. The Heliodome is novel
in its ability to produce continuous photometric and spectral radiometric BSDFs

across the visible and near infrared spectrum in a time-efficient manner.

9.1 Achievements

The major accomplishments outlined in this thesis pertain to the later stages of
the Heliodome development-specifically the development and characterization
of the final hemi-spheroid, the development of the spectral estimation method for
spectral radiometric BSDF assessment, the calibration of the Heliodome for
photometric BSDF assessment, and the automation and validation of the final
instrument. The Heliodome has been used to calculate a spectral radiometric
BSDF for a Holographic optical element and a photometric BSDF for a diffuse
paper material, demonstrating the usefulness of the instrument and the
deliverables expected from its employment.

One of the major obstacles to the development of the Heliodome was the
production of a geometrically accurate hemi-spheroid for transportation of rays
emerging from the sample to the fisheye lens of the camera. After assessing the
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problems with previous spheroid iterations and relying on a new acrylic forming

method, a workable hemi-spheroid was produced and analyzed. The spectral

transmission and reflection coefficients were measured across the full 380nm-

1700nm visible and NIR spectrum and were interpolated to describe the spectral

properties of all angles on the hemispheroid.

Building on a priori radiometric assessment methods (Gayeski 2007b), a

spectral estimation procedure was also developed to reconstruct an unknown

sample's angular reflectance and transmittance from quasi-spectral radiometric

BSDFs. Known spectral information from each of the Heliodome's components

were used to create an ill-posed system of equations connecting the camera's

color channel output in each filterband in each pixel with the associated unknown

spectral distribution reaching the camera from each emerging sample direction.

Regulation methods and a smoothness constraint were applied to this ill-posed

system to achieve a best "estimate" for the spectral angular properties of the

sample. The method was validated for several real and hypothetical samples,

achieving average improvements of 50% over the Heliodome's previous quasi-

spectral method. As such, this method makes the Heliodome the first video-

goniospectrometer, producing continuous spectral radiometric BSDFs.

Though this information can be produced in a time-efficient manner, a luminance

calibration on the CCD camera made it possible to calculate photometric BSDFs

with a less involved procedure, reducing the acquisition time by more a factor of

eight. The camera's sensitivity curves were altered with cut-off filters and

combined such that their scaled additive result was close to the human photopic

sensitivity. The camera's grey levels were then correlated to luminance values

for each camera integration time, and validated for a variety of spectral samples.

The photometric calibration delivered accurate luminance estimations to within

10% in these validations, with an average error of 4.9%.
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The procedures for the calculation of photometric BSDFs and spectral
radiometric BSDFs were automated in MatLab codes. At each stage, predictable
errors in the system were corrected, such that an accurate final result could be

produced. The final global relative error for photometric BSDFs was 9.9%, and
the global relative error for spectral BSDFs was 12.8%. This automation was
tested through the BSDF assessment of two samples, a HOE for spectral BSDF
assessment and a diffuse paper sample for photometric BSDF assessment. For
both of these samples, the resulting total BSDF for the chosen incident angle
was proved the success of the automation process and demonstrated the
feasibility of achieving accurate and efficient BSDFs from the Heliodome.

The Heliodome was validated through an approach similar to the one used in
(Andersen 2006b). At each stage the error contribution was appraised through a
series of experiments that isolated the potential causes of radiometric,
photometric, and spatial distribution uncertainties. A total relative global error

was calculated based on each parameter's error contribution. This method
predicted a photometric BSDF error of 10% and a spectral radiometric BSDF

error of 13%, indicating that the instrument has the capability of providing reliable
information about the light distribution characteristics of advanced fenestration
systems.

9.2 Outlook

With the completion of this research, the Heliodome has just reached the stage
where it has the ability to produce analyzable results. However, there is still work
to be done on the instrument before it can easily assess the BSDFs of advanced
fenestration materials.

To start, some mechanical elements and processing procedures must be
solidified. Firstly, the accuracy of angular positioning with the table's azimuth
and altitude motors must be improved. Once the table's motors are fully
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functional and validated for their precision, additional validation procedures will

become simpler.

One such procedure is the final validation of the spheroid's spatial calibration. In

this validation, the sample's emerging angular directions should be checked

against pixel locations for accuracy. Since a high degree of angular accuracy is

needed for this validation, it would be best performed with a stationary light

source once the table is accurately able to position itself. This would ensure that

the incident beam angle corresponds exactly to an individual pixel on the output

image.

Additionally, while the spheroid has been characterized for visible and NIR

spectral transmission and reflection, the characterization method relied on

interpolation to simplify the measurement process. Once the table's positioning

system is complete, it would be useful to validate this characterization for a finer

angular grid, as insurance against local imperfections in the coating of the hemi-

spheroid. Knowledge of the spectral characteristics of the dome to a higher

degree of accuracy will directly enable more precise photometric and spectral

radiometric BSDFs.

One easy method of completely characterizing the spectral reflectance of the

dome, would be to apply the spectral estimation method developed in this thesis.

Using a 10cm diameter reflectance standard as the sample, the CCD camera

and filtering system could be used to capture images, as for a spectral

radiometric BSDF assessment. However, since the sample's sBSDF is known,

the spectral estimation method, instead, would solve for Pspheroid at each pixel.

Through the spatial calibration, these Pspheroid estimations could then be

associated to positions on the spheroid surface. Because the relationship

between Pspheroid and T spheroid is known, and because the relative spectrum of

Tspheroid has been measured, this one image could capture all of the information
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needed to characterize the spectral reflectance and transmittance coefficients for

every position on the hemi-spheroid.

To enable the Heliodome to accurately evaluate radiation over the visible and

near infrared spectrum, the NIR camera's calibration must also be validated.

While some work has been done to establish the absolute spectral responsivity

of the camera to polychromatic radiation, this calibration must be validated using

the NIR 512 spectrometer. Furthermore, an application must be designed to

enable remote NIR image capture and control of integration times, as was done

with the Kappa visible CCD camera.

Finally, the image capture process must be automated, such that the filter wheel,
beam shaper, camera, and table can be controlled from a user's interface. This

interface should allow selection of incident angle, assessment mode (reflection or

transmission), result type (pBSDFs or sBSDFs), angular resolution, and spectral

range. It should also organize the results such that they can be easily integrated

into existing databases, such as Windows 5.

At that phase, the true completion of the instrument, several additional

fenestration materials should undergo a complete BSDF assessment. Especially

for materials that have already been characterized with other validated

goniophotometers, a deeper pool of results will allow the Heliodome to be

critically evaluated. Additionally, the Heliodome should be validated through

other more common methods, such as through the use of an Ulbricht sphere

measurement or ray-tracing softwares (Andersen 2006b). Testing the Heliodome

with a large range of fenestration samples will almost certainly illuminate

problematic areas for improvement.

However, even before these tests are performed, there is much that can already
be improved upon to enhance its accuracy, efficiency, and applicability.
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One suggested improvement is an additional characterization of both cameras

using a flat fielding technique. This method utilizes an integrating sphere to flood

the camera's field of vision with equally distributed radiation. As such, small

differences in the response of image pixels could be detected and corrected.

However, if the characterization method of the spheroid, described above, were

enacted, the information gleaned from flat-fielding would already be incorporated

into the reflectance and transmittance coefficients of the spheroid.

Other possible future enhancements include the purchase of additional filters for

quasi-spectral analysis of the NIR spectrum. While the spectral estimation

method would have to be slightly altered to accommodate the change from three

color channels to one channel in the NIR camera, the principles behind the

method could still be applied. Even a few filters in the NIR spectrum may be

useful in the characterization of layered fenestration systems meant to handle

solar gains through spectral selectivity.

9.3 Applications

With the advent of more stringent building codes and a heightened awareness of

energy efficiency in buildings, there is a greater reliance on passive lighting,

heating, and cooling strategies. For energy, comfort, health, aesthetic, and even

artistic means, advanced fenestration systems can be a medium enabling the

graceful use of daylighting in a space.

The use of the Heliodome and the research documented in this thesis to further

the understanding of these systems through complete BSDF characterization will

prompt enhancements in CFS design and facilitate their integration into new and

existing building facades. The fenestration industry is certainly interested in this

kind of characterization, as it will provide them with a rapid less expensive

feedback from window prototypes, detailed information on developed products,

and a means for quantifying goals in new product performance.
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As the industry changes to accommodate these new products, architects must

also become informed about fenestration system performance. Without an

objective representation of the product's function and performance, it will be

difficult to choose which system most effectively addresses their specific design

challenges. While new software databases, such as D-lite are being designed

with a function based categorization system in mind, the database would be

ineffective without correct and complete BSDF data to feed into the foundation of
the database. Even if this data isn't applied directly by designers, its

incorporation into simulation tools will considerably broaden the range of

assessable daylighting strategies.

The goniospectrometer's rapid BSDF assessment could be interesting to a
number of industries. Because our understanding of the physical world is largely
based on the intersection of light and materials, understanding the details of how
radiation is spectrally and angularly modified by objects and material

combinations has applications in a number of fields--ranging from computer
science to material science to mapping terrains and art archiving.

However, the instrument's development is justified by its immediate application
alone-to foster the urgent and informed integration of CFS into our building
stock. Through the invention of a tool that can rapidly characterize a window
system's performance, the design of passive systems that stringently control
visible light and solar gains can be easily advanced. By utilizing these advanced
daylighting systems that can distribute light intelligently in a space, it is possible
to take full advantage of our solar resources, improving our health, our comfort,
and our environment.
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Appendix A. NIR Calibration

The Heliodome uses an Indium-Gallium Arsenide camera in conjunction with the

Kappa CCD camera to measure radiation between 900-1700nm. In order to use

the output of the camera to estimate the radiance of a scene, the NIR camera

must be calibrated in a similar manner as the CCD camera (described in chapter

5). However, unlike in color CCD cameras, there is only one channel to

determine spectral sensitivity. While the radiometric response of the NIR camera

has been determined for monochromatic beams, the camera's absolute spectral

responsivity remains to be validated.

The NIR camera was calibrated for monochromatic beams in a similar manner as

the CCD camera in (Gayeski 2007b). In both the NIR and CCD color camera the

digital output of the camera is directly related to the spectral exposure h(X), which

is dependent on the number of photons exciting the camera's sensor area. The

relation:

DL
NDL,,, = = f(h(2)) (A.1)

(216 1)

links digital level (DL) and normalized digital level (NDL) to spectral exposure of

the NIR camera through a dose response function. This function was

determined experimentally by measuring the response of the camera against

monochromatic beams of known radiances.

A 50W tungsten halogen lamp was used at power levels from 20% to 70% to

vary the intensity of the beam at each wavelength. This source was transmitted

through a monochromator, a shortpass filter cutting out second order peaks, and

a series of lenses focusing the beam to achieve a bright even spot. The

irradiance of the beam exiting the monochromator port was then measured with a

germanium detector that had previously been calibrated.
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As in the CCD camera calibration, ideally this beam would have then been

reflected off a reflectance standard and captured by the camera to correlate pixel

values with radiances. However, due to the low light levels exiting the

monochromator port, it was impossible to achieve high enough NDLs to

characterize the full dose response function accurately when this additional

reflection was included. The results, instead, characterize the lower part of the

dose response curve accurately, but do not provide adequate information to

determine the camera's response at higher radiances as shown in Figure A.1.
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Figure A.1 Lower portion of the NIR logistic digital response curve

In figure A.1, the red line is a projected curve fit, whereas the green and pink dots

are actual measured radiances.

To characterize the response function more completely, the camera was situated
facing the monochromator port directly. The irradiance of the beam, measured
by a germanium detector, was then compared with the pixel digital levels from
the resulting image. The power level of the lamp and integration time of the
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camera were varied in order to capture images with pixel values that would span

the full range of NDLs for each wavelength. These NDLs were then graphed

against the beam's corresponding irradiances recorded by the germanium

detector. This method eliminated the light loss caused by the reflectance

standard, enabling a more certain curve fit shown in Figure A.2.
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Figure A.2 Logistic dose response curve for the NIR camera defined by the relationship

between spectral exposure and normalized digital level.

As with the CCD camera, this relationship was found to be the same for all

wavelengths. That is, given an arbitrarily chosen NDL, for example 0.4, the ratio

of h(X,) to the h(X) corresponding to NDL 0.4, (h0. 4(X)), is the same for any

wavelength. This curve was determined to fit closest to a logistic curve, as

opposed to the Gaussian fit used in preliminary assessments (Gayeski 2007b),

defined by the equation:
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/A ~X

IVLNIR = h(A)/ 0.4 ()

1+NIR

where oa,,y,8 are experimentally derived constants:

a'=.141, 3'=147.09, '=28897.04, 8'=-0.664

Once the digital response function was found for monochromatic beams, the

relative spectral responsivity of the camera was determined. The NIR camera

was positioned facing a reflectance standard illuminated by the same source,
monochromator, filters, and lenses used to characterize the camera's dose

response. For five different lamp power levels, the camera imaged

monochromatic wavelengths at 25nm increments across the 900-1700nm

spectrum, as shown in Figure A.3.
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Figure A.3. Relative sensitivity of the NIR camera
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The relative sensitivity closely matches the results from the manufacturer's

specifications and from the preliminary assessment (Gayeski 2007b), despite the

different chosen methods and dose response fits.

The absolute spectral responsivity of the NIR camera remains to be validated

using the NIR spectrometer. Using monochromatic radiation, the NIR

spectrometer can be used to scale the relative sensitivity curve to its appropriate

magnitude. The NIR camera's dose response function must also be validated for

polychromatic radiation using the spectrometer before it is usable in the

Heliodome set-up.
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Appendix B. Camera and Lamp Settings

The settings on the camera and HMI dedolight greatly influence the results

achieved. Because all of the calibrations and experimentation were completed

with assumed settings, these settings must not be changed during the BSDF

assessment or the results and error analysis will not be valid.

The camera was calibrated with the least amount of photo manipulation,
according to the settings in Table B.1.

Settings
Kappa

High 4095

Low 150

Gain 0

R,G,B 0

Gamma 50

Filters: Sharp 0

Edge 0

Color mode 2

image size 1380 x 1024

B.1 ImageBase Control settings for Kappa CCD camera

The lamp was chosen to have a beam spread of 2.4 degrees and to be set on
spotlight mode in order to induce maximum collimation.
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Appendix C. Nomenclature

Bmajor

BRDF

BSDF

BTDF

dd

DD

Dsampleplane

Damp

e (subscript)

E(O,)

Ee2 (0,oa)

h

Magnification/concentration of irradiance spot hitting CCD
camera fisheye due to spheroidal geometry

Bidirectional Reflection Distribution Function (sr-1 )

Bidirectional Scattering Distribution Function (sr1 )

Bidirectional Transmission Distribution Function (sr1)

discrete conglomerate spectrum (for filterset j) for designated
incident and emerging angles (jiW/m2-sr)

digital response vector (components in units NDL/s

digital response vector with randomly distributed noise

diameter of the fenestration sample (cm)

diameter of beam at sample plane (cm)

diameter of beam at lamp (cm)

denotes a radiometric quantity

total illuminance of incident beam (lux)

spectral irradiance on the sample plane due to the incident
beam's flux between 380nm and 945nm (ýpW/m 2)
380nm and 945nm

individually affected parameter error for global error
assessment

CIE (1987) measure of agreement between two spectra
(percentage)

distance from lamp to sample port
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h0.3R, G,B (A)

h 3C,B,beam

j (subscript)

k (as index)

LejAcakJO(9iJ9

Lsample (iP OP Or, Or

spectral exposure required to yield a normalized digital level
of 0.3 in the CCD camera

total exposure of a polychromatic beam required to yield a
normalized digital level of 0.3 in the CCD camera

filter combination number

truncation parameter (constant)

discretized spectral bidirectional filtered radiance seen by
the camera (gW/m2-sr)

spectral luminance viewed by the camera in discrete
wavelength increments (cd/m^2)

total bidirectional luminance distribution emerging from
sample (cd/mA2)

Le,beam380- 945  total radiance of a polychromatic beam (giW/m'-sr)

Le,sampe' (ji,,~,r,,o,a) spectral bidirectional radiance of emerging from sample

(gW/m2-sr)

Lej A.cam spectral radiance viewed by the camera through filter j in
discrete wavelength increments (jiW/m2-sr)

MHMI, X spectral exitance of the HMI dedolight in discrete wavelength
increments (gW/m 2)

n (index) index identifying element in discretized vector

N radiance matrix (components in units NDL/s) computed for
an arbitrary pixel

N(0j, Oj,Or,,,O) radiance matrix (components in units NDL/s) computable for
every pixel

psuedoinverse of the radiance matrix

number of individually affected parameter errors
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NDLN,, normalized digital level (digital level divided by 216) for the
NIR camera

NDLR,G,B normalized digital level (digital level divided by 28) in the red,
green, or blue channel

NDLR.G,Bj normalized digital level (digital level divided by 28) in the red,
green, or blue channel for filtered radiation from the filterset j

P function used to translate spectra into X,Y,Z coordinates

pBSDF photometric BSDF (cd/m2-sr)

Qf flatness quotient, where spectral flatness is defined as
having a Qf<O.1

Qs smoothness quotient, where spectral smoothness is defined
as having a Qs<O.1

rR.G.B (2) absolute spectral responsivity of CCD camera in the red,
green, and blue channel (NDL/(tJl/m 2-sr))

rR,GB,A discretized absolute spectral responsivity measured for all
three channels in 5nm intervals

S second difference smoothing matrix

s distance between sample and point of reflection on spheroid
(cm)

S(2) modified camera sensitivity for pBSDF measurement

sBSDF spectral radiometric BSDF (jiW/m2-sr)

tint integration time for the camera (ms)

U orthonormal vectors to V from TSGVD of N

V orthonormal vectors to U from TSGVD of N

X vectors resulting from GSVD decomposition

X, Y,Z chromaticity coordinates
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Xn

a,p,y,0

8BT(R)DF

EpBT(R)DF

6 srBT(R)DF

rcalib

Fmeas

ALj

X (subscript)

01

ao

p

pbox

nth vector of matrix X from the generalized singular value
decomposition.

CIE standard 20 observer functions
experimentally derived CCD camera calibration constants

experimentally derived NIR camera calibration constants

standard CIE daylight D65 spectral distribution (tW/m 2)

error added to digital response vector

BSDF global assessment error

photometric BSDF global assessment error

spectral radiometric BSDF global assessment error

spectral radiance of light source used for photometric
calibration

spectral radiance of light source used for pBSDF
measurement

wavelength interval corresponding to filterband j for quasi-
spectral estimation

indicates a spectral distribution of a radiometric quantity
recorded in discrete wavelength increments

incident azimuth angle (radians)

reflected azimuth angle (radians)

polarization state of incident and emerging radiation

estimated spectral reflectance or transmittance with error
component in d

average reflectance or transmittance for each waveband
determined by the camera's filtered radiance predictions
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Pk

Preg

Psample

PsampleA (ij 0i 'or , r)

P spheroid (Oibi,iOrr)

Pspheroid,A (or Or)

filter jA

tspheroid (Oi, i, Or, r)

Tspheroid(Oi,4 i)

Oi

Or

(0)j,A0,A Or Ar

estimated spectral reflectance or transmittance using TSVD,
truncating at k singular values

estimated spectral reflectance or transmittance of the
fenestration sample using regulation methods
measured spectral reflectance or transmittance for the
sample for a single pixel

discretized bidirectional "reflectance" of the sample (the
same as a spectral radiometric BSDF)

bidirectional spectral reflectance of the spheroid for
characterization

spheroidal reflectance for radiation emerging from the
sample (transmission and reflection measurements)

nth singular value from the truncated singular value
decomposition

filterset j discretized spectral transmittance

The singular values vector of N, with the singular values in non-
decreasing order

bidirectional spectral transmittance of the spheroid (for
characterization)

discretized spectral transmittance of the spheroid for an
incident beam (reflectance mode)

Tikhonov regulation parameter

incident altitude angle (radians)

reflected altitude angle (radians)

spatial grouping determined by the angular resolution
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