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Abstract

We investigate the robustness with respect to the introduction of nonconformality

of five properties of strongly coupled plasmas that have been calculated in K =

4 supersymmetric Yang-Mills (SYM) theory at nonzero temperature, motivated by

the goal of understanding phenomena in relativistic heavy ion collisions. (The five

properties are the jet quenching parameter, the velocity dependence of screening,

and the drag and transverse and longitudinal momentum diffusion coefficients for

a heavy quark pulled through the plasma.) We do so using a toy model in which

nonconformality is introduced via a one-parameter deformation of the AdS black hole

dual to the hot KV = 4 SYM plasma. For values of this parameter which correspond to

a degree of nonconformality comparable to that seen in lattice calculations of QCD

thermodynamics at temperatures a few times that of the crossover to quark-gluon

plasma, we find that the jet quenching parameter is affected by the nonconformality

at the 30% level or less, the screening length is affected at the 20% level or less, but

the drag and diffusion coefficients for a slowly moving heavy quark can be modified

by as much as 80%. However, we show that all but one of the five properties that we

investigate become completely insensitive to the nonconformality in the high velocity

limit v --+ 1. The exception is the jet quenching parameter, which is unique among

the quantities that we investigate in being "infrared sensitive" even at v = 1, where

it is defined. That is, it is the only high-velocity observable that we investigate which

is sensitive to properties of the medium at infrared energy scales proportional to T,

namely the scales where the quark-gluon plasma of QCD can be strongly coupled.

The other four quantities all probe only scales that are larger than T by a factor that

diverges as v --+ 1, namely scales where the KA = 4 SYM plasma can be strongly

coupled but the quark-gluon plasma of QCD is not.
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Chapter 1

Introduction and Summary

The AdS/CFT correspondence [1] has provided an important tool for understanding

the dynamics of many and varied strongly coupled gauge theories. By now, it has

been applied at nonzero temperature to gauge theory plasmas in theories that are

conformal, or not; theories that are confining at zero temperature, or not; theories

with varying degrees of supersymmetry; theories which at weak coupling contain

both fundamentals and adjoints, or only adjoints; to plasmas with zero or nonzero

chemical potentials; to plasmas that are static or expanding. In terms that are

qualitative enough to apply to all these examples, the correspondence states that

a (3+1)-dimensional gauge theory plasma at some temperature T is equivalent to a

(particular) string theory in a (particular) curved higher-dimensional spacetime which

includes a black hole horizon with Hawking temperature T. In the limit in which N,

the number of colors in the gauge theory, and A - g2N,, the 't Hooft coupling of the

gauge theory, are both taken to infinity, the equivalent (dual) gravity description of

the strongly coupled gauge theory plasma becomes classical. This means that, in the

regime of large N, and strong coupling, calculations of various dynamical properties

of strongly coupled gauge theory plasmas (that are difficult to calculate in the gauge

theory per se) become equivalent to tractable calculations in a classical spacetime

background. We shall specify five examples of such calculations below. The original

calculations that I describe in this thesis were done in collaboration with H, Liu and

K. Rajagopal and have been presented in Ref. [2].



The simplest, most symmetric, example of a gauge theory whose dual gravity

description is the original example discussed by Maldacena: N = 4 supersymmetric

Yang-Mills theory (SYM), which at nonzero temperature is dual to Type IIB string

theory a (9 + 1)-dimensional spacetime given by (4 + 1)-dimensional Anti-de Sitter

(AdS) space, with the five remaining compact dimensions forming an S5 . The metric

for the AdS black hole can be written as

r2  2 R2 dr2
ds2 4r dt2 + d X X+ +4

= - 1 - dt2 + dx + dx + d + •  1(1.1)

where R is the AdS curvature, where z = R2 /r, and where the black hole horizon

is at r = ro = rR2T, meaning z = zo = . In some respects, the gauge theory

can be thought of as living at the (3 + 1)-dimensional "boundary" z = 0. However,

it is important to remember that the equivalence between the gauge theory and its

gravity description is holographic, in that all of the physics at varying values of z in the

gravity description is encoded in the gauge theory, with the fifth-dimension-position z

in the spacetime (1.1) corresponding to length scale in the (3 + 1)-dimensional gauge

theory [1,3].

Although many (in fact infinitely many) other examples of gauge theories with

dual gravity descriptions are known, such a description has not yet been found for

SU(Ne) gauge theory (with or without quarks in the fundamental representation).

And, furthermore, all known theories with gravity duals differ from QCD in important

respects. Taking NV = 4 SYM as an example, at weak coupling it has more (32 -

1) x [(2 + 6) + (2 -2 . 2)] = 120 adjoint degrees of freedom, where 3 is the number

of colors, and 6 is the number of scalar fields plus 2 gluons gives 8 bosons, and

8 is the number of fermions (2 for spins, 2 for particle/antiparticle, 2 for flavors),

multiplied by the statistical mechanics prefactor 1. In comparison, QCD has (32 -1).2

adjoint degrees of freedom, where 3 is the number of colors and 2 accounts for the

helicities, and (3. 3 .2- 2) fundamental degrees of freedom, where 3 3 2 -2 is the8\ IL/LIU~L~ICr ~1~U V L~LII VI~ VU1



number of quark states: the first 3 is the number of colors, and the second accounts

for u, d, and s quarks, and the two 2's account for spin and particle-antiparticle,

respectively. Af = 4 SYM has more adjoint degrees of freedom than QCD, it has

no fundamental degrees of freedom, and it is conformal. And, at zero temperature

NA = 4 SYM is supersymmetric and does not feature either confinement or chiral

symmetry breaking. However, the plasmas of the two theories, namely Af = 4 SYM

at T > 0 and QCD at T above Tc - 170 MeV, are more similar than their vacua.

Neither plasma confines or breaks chiral symmetry, and neither is supersymmetric

since T = 0 breaks supersymmetry. The successful comparison of data from heavy ion

collisions at RHIC (on azimuthally asymmetric collective flow) with ideal (zero shear

viscosity ij) hydrodynamics indicates that, somewhat above Tc, the QCD plasma is a

strongly coupled liquid [4]. Strongly coupled liquids may not have any well-defined

quasiparticles, so the differences between the quasiparticles of the two theories at weak

coupling need not be important, at least for judiciously chosen ratios of observables

(r/s). And, lattice calculations [5-8] indicate that above - 2Tc, the thermodynamics

of the QCD plasma becomes approximately scale invariant. More generally speaking,

it is often the case that macroscopic phenomena in a sufficiently excited many-body

system are common across large universality classes of theories that differ in many

(microscopic) respects. This raises the exciting possibility that one may be able to

gain insights into the thermodynamics and dynamics of the strongly coupled plasma

of QCD using calculations in other gauge theories whose gravity duals are currently

known.

Many authors have developed the strategy of calculating dynamical properties of

gauge theory plasmas (that are of interest because they can be related to phenomena

in heavy ion collision experiments) by calculating them in Af = 4 SYM and other

theories with gravity duals. Turning the qualitative insights obtained in this way

into semiquantitative inferences for QCD (or even for QCD at large N,) requires

understanding what observables are universal across what classes of strongly coupled

plasmas or, if not that, understanding how observables change as the strongly coupled

NA = 4 SYM plasma is deformed in various ways that make it more QCD-like. At



present, the quantity for which the evidence of a universality of this sort is strongest

is rl/s, the ratio of the shear viscosity to the entropy density: in the large Nc and

strong coupling limit, it is given by 1/41r for any gauge theory with a dual gravity

description [9-11]. The discovery that in an infinite class of conformal gauge theories

the jet quenching parameter q, that we shall discuss below, is given by vrAT3 times a

pure number that is proportional to \i-/Nc suggests a second quantity with a degree

of universality [12], but one that at at present is only known to apply to conformal

theories.

It is clearly critical to extend AdS/CFT calculations of dynamical properties of

gauge theory plasmas to nonconformal theories. Unfortunately, the known examples

of nonconformal gauge theories with gravity duals are rather complicated at nonzero

temperature, see for example Refs. [13, 14], making it hard to extract insights from

them without extensive, probably numerical, study. Here we will take a pragmatic

approach, using a simple toy model, similar to that introduced at zero temperature

in Ref. [15] and at nonzero temperature in Refs. [16,17] and in the form that we shall

use by Kajantie, Tahkokallio and Yee [18], in which (1.1) is deformed into the string

frame metric

S2 2  2 2 2 z4

29 R4  r 2  + rr2 2 1.2)
= e20 C dt2 +- d d + d (1.2)R2 4 R2 r2

Here, the dimensionful quantity c defines a one-parameter nonconformal deformation

of the AdS black hole. Certainly our investigations should also be repeated for other

examples of such deformations. The advantage of using the specific form (1.2) is

its tractability together with the fact that the authors of Ref. [18] have estimated

that choosing c - 0.127 GeV2 makes the thermodynamics of this toy model most

similar to QCD thermodynamics, determined by lattice calculations. Specifically,

they introduce a second toy model for QCD below Tc, choose its parameters to give a

reasonable meson spectrum in vacuum, and then find that c = 0.127 GeV2 puts the



transition between their low and high temperature models - whose construction is

their purpose - at Tc = 170 MeV, as in QCD.

We shall determine how five dynamical observables, previously calculated at c = 0,

depend on c. Since in the absence of c the only dimensionful quantity in the otherwise

conformal theory is T, the magnitude of the nonconformal effects that we compute

must be controlled by the dimensionless ratio c/T 2 . We shall plot our results for

values of this parameter that lie within the range 0 < c/T 2 < 4, which corresponds to

allowing a c as large as 0.36 GeV2 at T = 300 MeV. Note that the metric (1.2) does not

correspond to a solution to supergravity equations of motion, and note furthermore

that the form of the metric for the five compact dimensions is unspecified. These

ambiguities are what make the model a model: with c = 0, it is impossible to say

what, if any, gauge theory the metric (1.2) is dual to. This makes it impossible to give

a rigorous determination of its entropy density s, as the authors of Ref. [18] explain,

or to determine its weak coupling degrees of freedom. So, we shall not use this model

to test how other observables depend on these quantities. Our sole purpose is to

explore the effects of the introduction of nonconformality.

Although it is not possible to give a rigorous argument for the entropy density s

corresponding to the metric (1.2), given that the metric is not known to be a solution

to supergravity equations of motion, the authors of Ref. [18] have conjectured that s

is given by

s =exp . (1.3)
2 2r2 T2

We can use this expression to estimate the range of values of c that compare reasonably

to QCD thermodynamics, as follows. We take this expression and obtain the energy

density E by numerically integrating de/dT = Tds/dT, the pressure P = Ts - E, and

then (e - 3P)/e which is a measure of nonconformality. We then fit the results for

this quantity in the toy model we are using to the lattice calculations of this quantity

in QCD from Ref. [6]. In doing this we have taken numerical results for - from the

left panel of Fig. 1-1 and for - from the right panel of Fig. 1-1. We find that the

fitting requires c varying from c x 0.18 GeV 2 at T = 300 MeV to c a 0.11 GeV2 at
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Figure 1-1: Left panel: Figure 8 from Ref. [6]; the high temperature part of ( - 3p)/T 4

calculated on lattices with temporal extent N, = 4, 6, and 8. Right panel: The
left plot of Figure 9 from Ref. [6]; energy density and three times the pressure as
function of the temperature obtained from calculations on lattices with temporal
extent N, = 4, 6, and 8.

T = 700 MeV, and c - 0.13 GeV2 does reasonably well over this entire temperature

range. This gives us further confidence that when we plot our results over the range

0 < c/T 2 < 4 we are turning on a degree of nonconformality that encompasses and

exceeds that observed in QCD thermodynamics at T = 300 MeV. At this temperature,

the range 0.11 GeV 2 < c < 0.18 GeV 2 corresponds to 1.2 < c/T 2 < 2.0. Keep in

mind that although c is the fixed parameter in the model, it will enter all of our

results through the dimensionless parameter c/T 2 . So, when we plot our results over

0 < c/T 2 < 4, we can think of the higher (lower) values of c/T 2 as corresponding to

lower (higher) temperatures.

We shall calculate five quantities that have previously been argued to be of interest

because, in QCD, they are related to phenomena in heavy ion collision experiments.

We begin in Section 2 by calculating the jet quenching parameter 4, as in Refs. [12,

19, 20]. This property of the strongly coupled plasma enters into the description of

how a parton moving through this plasma with energy E loses energy by radiating

gluons [21-23]. Gluon radiation is the dominant energy loss mechanism in the limit

where E > kT > T, with kT being the typical transverse momentum of the radiated

100 200 300 400 500 600 700

0.8 1.0 1.2 1.4 1.6 1.8 nA nA n A 1 19 14 1



gluons, and upon assuming that the coupling a,(kT) is small [21-25], namely the gluon

radiation is a weakly coupled process while the plasma itself is strongly interacting.

That is, we assume that QCD can be considered weakly coupled at the scale kT, even

though its quark-gluon plasma (at scales - T) is strongly coupled. In Section 3, we

shall calculate three observables that describe the motion of a heavy enough quark

(mass M) moving through the strongly coupled plasma with a low enough velocity

v, where the criterion that must be satisfied by M and v is [12,26,27]

M > V . (1.4)
(1 - v2)1/4

This low velocity criterion guarantees that the string world sheet is time-like, describ-

ing the drag force on a quark moving in the plasma and its momentum fluctuations.

Exceeding this velocity limit gives us a different picture, a space-like world sheet

describing jet quenching. In the dual gravity theory, this criterion corresponds to

requiring that the velocity of the quark not exceed the local speed of light at the po-

sition in z where quarks of mass M are located. When (1.4) is satisfied, the moving

quark is described in the dual gravity theory as trailing a string that drags behind

the moving quark [28,29], meaning that the quark feels a drag force and diffuses.

The three parameters that we calculate are the drag coefficient P (introduced and

calculated at c = 0 in [28,29]) and the diffusion constants rT and KL for its transverse

and longitudinal motion (introduced and calculated at c = 0 in [26, 27, 30]). The

effects of the nonconformal deformation of the AdS black hole metric on both y and 4

have been calculated previously in Ref. [17]. Finally, in Section 4 we determine how c

affects the velocity dependence of the screening length L, defined by the potential be-

tween a quark-antiquark pair with mass M moving through the plasma with velocity

v [12,31-33], again satisfying (1.4) which in this case corresponds to the requirement

that L, be greater than the Compton wavelength of an individual quark [12]. We

shall show that, for 0 < c/T 2 < 4, the effects of c on the jet quenching parameter and

on the screening length are modest. For example, q increases by about 14% (28%)

for c/T 2 = 2 (c/T 2 = 4) while the screening length increases by about 9% (20%).



This indicates that these quantities are robust against introduction of nonconformal-

ity to a degree larger than that indicated by lattice study of QCD thermodynamics.

The drag coefficient and the two momentum diffusion constants for a heavy slowly

moving quark are somewhat less robust, increasing by about 34% (80%) for c/T 2 = 2

(c/T 2 = 4). Of course, our conclusions are only quantititave within one toy model.

Other examples in which nonconformality is introduced should also be studied.

The metric (1.2) has the feature that it becomes the metric (1.1) of an AdS black

hole near z = 0, but near the horizon it is modified by the dimensionful parameter

c. This allows us to address a further issue, that is both qualitative and important.

QCD, being asymptotically free, is weakly coupled in the ultraviolet and strongly

coupled in the infrared, while KN = 4 SYM is strongly coupled in all scales. The

plasma in a strongly coupled conformal theory like NA = 4 SYM is strongly coupled

in the ultraviolet as well as the infrared and at scales of order T. This means that

the only properties of the plasma in a strongly coupled conformal gauge theory that

may yield insight into the strongly coupled plasma of QCD are those properties which

are determined by the physics at scales of order T, not by the ultraviolet physics. In

other words, a quantity that probes the ultraviolet physics in K = 4 SYM does not

give us significant insight to the thermal plasma of QCD. But it is impossible to use

calculations done within Kn = 4 SYM to determine which quantities are "infrared

sensitive" in this sense, precisely because the theory is conformal: the parameter zo

specifies the location of the horizon and the value of the temperature T = 1/(7rzo),

namely the gauge theory physics at scales - T, and at the same time specifies the

form of the metric (1.1) at small z, namely the gauge theory physics in the ultraviolet.

So, seeing z0o and hence T occurring in the calculated results for q^, ,u, KT, L and L,

in KV = 4 SYM does not allow us to determine whether any of these quantities are

infrared sensitive. In order to make such a determination, we must modify the theory

in the infrared, i.e. in the vicinity of z = zo, in a way that leaves it unmodified at

z --+ 0, and determine which quantities are modified and which not. Note that in a

gauge theory whose gravity dual is given asymptotically (i.e. at z -- 0) by the AdS

black hole metric (1.1), the parameter zo that occurs in the asymptotic metric will,



in the generic case, not be related to the temperature in any simple way. Absent

conformality, there is no longer any reason for the true temperature T, defined by the

metric at the horizon, to to be related in any simple way to the parameter zo defined

by the AdS black hole metric at infinity. Our toy model is not generic enough to

manifest this effect - the temperature remains 1/(rzo) even when c 0 0- but we

can nevertheless use the dependence on c/T 2 to diagnose infrared sensitivity.

We find that q is infrared sensitive - as noted above it changes by 28% for

c/T 2 = 4. The other four quantities that we study are all infrared sensitive at low

velocity. However, if we take v - 1 and M --+ oo while maintaining the criterion

(1.4) - for example by taking M -- oo first - we find that p, JT, K-L and L, all

become infrared insensitive. That is, they become independent of c/T 2 in this limit,

meaning that they cannot see a modification of the gauge theory at scales - T. In

this v - 1 limit, they are determined entirely by the ultraviolet physics in the gauge

theory, making it unlikely that their calculation in A/ = 4 SYM in this v -- 1 limit

can be used to draw quantitative lessons for QCD. The jet quenching parameter, on

the other hand, is defined at v _ 1 and is infrared sensitive. This is consistent with its

role in jet quenching calculations as the parameter through which the physics of the

strongly coupled plasma at scales of order the temperature enters into the calculation

of how partons moving through this plasma lose energy in the high parton energy

limit.

At a qualitative level, our results for the infrared sensitivity of all five observables

can be guessed by examining how they are computed in the strongly coupled Kf = 4

SYM theory. The jet-quenching parameter q is extracted from the short-transverse-

distance behavior of the thermal expectation value of a light-like Wilson loop that is

long in light-like extent but short in transverse extent. In the dual gravity descrip-

tion, this expectation value can be calculated by finding the extremal configuration

of a string connecting a quark-anti-quark pair moving at the speed of light. The

extremal string configuration touches the horizon [19]. In the short transverse dis-

tance limit, after subtracting the self-energy of each quark, one is left with mostly the

contribution of the part of the extremal string worldsheet that is near the horizon.



It is therefore reasonable that, upon calculation, we find that q is infrared sensitive,

as is also expected given the role that it plays in the theory of jet quenching. In

contrast, a heavy quark moving through the hot plasma with velocity v, satisfying

(1.4), is described by the trailing string worldsheet first analyzed in Refs. [28, 29]

which has a "worldsheet horizon" on it located at z = zo(1 - v2)1/ 4 as described in

Refs. [26, 27]. The quantities u, rT and KL are determined by the string worldsheet

outside the worldsheet horizon, namely in the region 0 < z < zo(1 - v2)1/ 4. (p is

determined by the momentum flow along the string worldsheet outside the worldsheet

horizon; the diffusion constants rT and KL are determined from two-point functions

describing the fluctuations of the worldsheet coordinates outside the worldsheet hori-

zon.) So, if we take the v --+ 1 limit (while increasing M so as to maintain (1.4))

we expect these quantities to become completely infrared insensitive, sensitive only

to the ultraviolet physics. Our explicit calculation confirms this expectation. The

argument for the screening length is similar. As v - 1 (while maintaining (1.4))

the velocity dependent screening length shrinks, L,(v) , L,(0)(1 - v2) 1/ 4 [12,31-33],

and the string worldsheet bounded by the quark-antiquark pair - which determines

the potential and hence L, - only explores the (4 + 1)-dimensional spacetime in the

region 0 < z < zo(1 - v2)1/ 4. We therefore also expect, and find, that L, is infrared

insensitive in the v --+ 1 limit. It is worth noting, however, that for charmonium

(or bottomonium) mesons with velocities (y ~5 3) corresponding to the transverse

momenta with which they are produced in RHIC (or LHC) collisions, L, remains

infrared sensitive, probing the strongly coupled medium at scales not far above T.

And, the velocity-dependence of the screening length is described reasonably well by

L,(v) - L,(O)(1 - v2) 1/ 4 at all velocities, large or small, up to corrections that we

shall evaluate.

So, the five quantities that we investigate are robust to varying degrees, in the

sense that if we turn on nonconformality parametrized by a value of c/T 2 that is about

twice as large as that which best approximates QCD thermodynamics at T = 300 MeV

within the model of Ref. [18], the jet quenching parameter increases by about 30%

and at low velocities the screening length increases by about 20% while the heavy



quark drag and momentum diffusion coefficients increase by about 80%. If we then

take the limit v -+ 1 while increasing the quark mass M so as to maintain (1.4),

we find that the drag and diffusion coefficients and the screening length all become

completely insensitive to the nonconformal modification of the physics at scales - T

that we have introduced. In this limit, these quantities all become infrared insensitive.

This makes it likely that the calculation of these quantities in a conformal theory like

VN = 4 SYM can only be used to learn about the strongly coupled plasma of QCD

at a broadly qualitative level. In contrast, the jet quenching parameter q is defined

at v - 1 and is infrared sensitive, probing the properties of the plasma at scales of

order the temperature where it is strongly coupled in both QCD and AN = 4 SYM.





Chapter 2

Jet Quenching Parameter

The jet quenching parameter q is the property of the plasma that enters into the

description of how a parton moving through this plasma with energy E loses energy

by radiating gluons with typical transverse momentum kT in the limit where E >

kT > T and upon assuming that a,(kT) is small enough that QCD can be considered

weakly coupled at this scale, even though its quark-gluon plasma (at scales - T)

is strongly coupled [21-25]. To the degree that these assumptions are valid, parton

energy loss is dominated by gluon radiation. In experiments at RHIC, the jets studied

correspond to partons with E at most a few tens of GeV [4]. At the LHC, although

the quark-gluon plasma being studied is likely to be at most a factor of two hotter

than that at RHIC, the jets whose quenching will be studied will have energies of a

few hundreds of GeV [34], putting the assumptions upon which the definition and

extraction of the jet quenching parameter is based on more quantitative footing.

If the quark-gluon plasma were weakly coupled, q would be proportional to Y2/A,

where p is the inverse of the Debye screening length and A is a suitably defined mean

free path for weakly coupled quasiparticles [21]. Up to a logarithm, in a weakly cou-

pled quark-gluon plasma oc g4N,2T 3 [21,35]. Wiedemann observed that, still for

a weakly coupled plasma, q can instead be extracted from the small-L behavior of

a rectangular adjoint Wilson loop whose long sides, of length L-, are light-like and

whose short sides, of length L, are transverse to the light-cone [23]. L- corresponds

to the extent of the medium through which the radiated gluon travels and 1/L cor-



responds to the transverse momentum of the radiated gluon. Wiedemann and two

of us suggested that this definition can be generalized to a strongly coupled plasma,

and calculated q for the strongly coupled VN = 4 SYM plasma [19]. In this chapter,

we repeat this calculation of q for the metric (1.2) of Ref. [18], deformed to introduce

nonconformality.

2.1 Calculation

In the large N, limit, the expectation value of the adjoint Wilson loop is the square

of that in the fundamental representation. If we in addition take the large A limit

and use the AdS/CFT correspondence, the expectation value of the Wilson loop in

the fundamental representation can be computed as [36, 37]

(W(C)) = e"s ' , SI = S(C) - 2So , (2.1)

where S(C) is the Nambu-Goto action for the extremal worldsheet bounded at z = 0

by the Wilson loop contour C and So is the Nambu-Goto action for an individual

quark. For a rectangular Wilson loop extending a distance L- along the x- light-like

direction and a distance L along a transverse direction, in the regime L- > 1/T > L

the expectation value of the Wilson loop in the fundamental representation takes the

form [12,19]

(W(C)) -= e-,_L-L2 , (2.2)

which defines the relation between the jet quenching parameter q and the Wilson

loop. Let us consider a more general non-conformal metric of the form

ds 2 = g(r) [-(1 - f(r))dt 2 + d( 2] + •r dr2 , (2.3)
which includes both (1.1) and (1.2) as special casesr)

which includes both (1.1) and (1.2) as special cases.



The metric (1.2) corresponds to

r 2 
29 R

4

g(r)= 220=-T
4

f(r)= (2.4)
r
r2 4 29 R4

h(r) = 1 - 4 e 207
R2 H4

and we shall assume that R is related to A by R2/a' = V. 1

Buchel demonstrated in [20] that in the generic spacetime metric given by (2.3),

the extremal string worldsheet connecting a light-like quark-antiquark pair always

touches the horizon, as had been demonstrated in Ref. [19] for the AdS black hole

(1.1). And, furthermore, Buchel showed that upon evaluating the Wilson loop the

jet quenching parameter q is given in terms of the string tension 1/(2ira') and the

functions appearing in the generic metric (2.3) by

q 1 dr (25)

q + (i= fgs h)' (2.5)

where ro is the coordinate of the black hole horizon.

Here we give a derivation of this formula. In order to do that, we switch to light

cone coordinates xz = (t + xl), the metric is then written as

dS2 = - g(r)(2 - f(r))dx+dx- + 2g(r)f(r)[(dx+ )2 + (dx-) 2]
2

+ g(r)(dx + dx) + (r)dr . (2.6)

For the dipole world sheet, parametrize the surface with 7 = x- and a = x 2.

Since it is assumed that L- > L, the shape of the surface is then - independent:

x( -(7, a) = #x(o). The Wilson loop lies at constant x3 and constant x + . With this

1Since the metric (1.2) reduces to the AdS black hole metric (1.1) at small z - in the ultraviolet
in the field theory - the relation between R and A is R 2 /a' = v/ in the ultraviolet. If we knew
to what field theory the deformed metric (1.2) is dual, i.e. if we knew what the action was whose
supergravity equations of motion were solved by (1.2), we can presume that A would run in some way.
As (1.2) is just a toy model that we are using to introduce nonconformality, we cannot determine
how A runs. So, we shall use R2/a' - v throughout.



setup, the induced metric on the world sheet h3 is diagonal, and the Nambu-Goto

action

SNG = 1 I

S poe _ L- 2
N 2,ýf2- '

drda V-dethap

dda fg2  + 1
2\ gh

where r' = 8,r, with the boundary condition r ( L) = 0o. Noticing that the world

sheet is symmetric about a = 0, we rewrite (2.8) as

Sdipole =L- d dig2 + 1f
0 (gh"I)i

(2.9)

and the Lagrangian £ is the integrand. The corresponding Hamiltonian is conserved:

-E =

Tr'
fg

-(T +

f-2 +1
f (g2

f g2

L
(2.10)

which leads to the equation of motion for r:

r'2 = gh 2 -1) (2.11)

We are only interested in the nontrivial solution which represents a string hanging

from one quark to the other down to the black hole. The string turning point is where

r' = 0, which in our case is r = r0 . Hence,

L da= " dr

2 0 ro r
J0 dr

F gh( _ 1)

In order for L to be small, E has to be small. Therefore, we expand (2.12) to leading

order in E:
S= E dr + O (E3)

(2.7)

(2.8)

(2.12)

(2.13)



which gives
LE = 2 0L dr + O(L3 ) .

2fo fg3h

Now the action is

L-Sdipole L-
N G -- /Z; OL!Y

L-

N'' N //2 7r oa

L-
·\2·ia'Ný2_7ra/

L-
X//-27T O'

I dr

f" fg2dr
ro E gh(fg2 - 1)

JCo fg2dr
f vgh(fg2 - E 2)

where we have used (2.10) to eliminate C in favor of E. (2.15) can be expanded in

powers of E and then, using Eq. 2.14, in powers of L:

•dipole L
NNG V/-2O7L-

L-

V/ ,1 O'

(ISc,
Sdr +

dr +

J· f dr + (E3)

(fro'

Next, we compute the self energy term.

dr

fgh J + O(L3 ) . (2.16)

It has been argued in Ref. [12] and

Ref. [19] that the self energy that must be subtracted is given by the straight string

solution. Parametrize the string with 7 = x- and a = r. The total action for two

strings is therefore

SONG 2L- "2r

L-" f= da , V
vý_ra f'roh

(2.17)

The jet quenching parameter 4 is related to the interaction between the quark and

(2.14)

L

0
Lda

(2.15)



antiquark

I =•dipole_ o= L-LL2 (f dr= sNipe - NG 8 /2a' + O(L) (2.18)

via (2.2). Hence, we obtain

1 dr
q1- 1  dr (2.19)

We find that in the metric (1.2) the jet quenching parameter is given by

29 R4 -1
R 4  e 20 rC

ff Jro r4

( 29c -1

/NAX2T 3 dx 4 )0 T x (2.20)

where we have used ro = 7rR 2T. The integral in (2.20) can be evaluated analytically,

and the result involves modified Bessel functions of the first kind [17]. With c = 0,

it is given by •FF( / 5)/F(!) which yields 4 for K = 4 SYM theory [19]. The result

(2.20) was obtained previously in Ref. [17].

From (2.20) we see that 4 cc A"No meaning that, with c # 0 as with c = 0, the

jet quenching parameter is not proportional to the entropy density or to the number

density of scatterers or quasiparticles as at weak coupling [19], consistent with the

absence of any quasiparticle description of the strongly coupled plasma. Within the

formalism of Ref. [38], this qualitative conclusion can be phrased as the statement

that multiple gluon correlations are just as important as two gluon correlations in the

plasma of strongly coupled M = 4 SYM. And, it is further highlighted by the result

that the ratios of the jet quenching parameters of different strongly coupled conformal

theories are given by the ratios of the square roots of their entropy densities [12].

In Fig. 2-1, we plot the dimensionless quantity 4/(v/T 3 ) against the dimen-

sionless quantity c/T 2 , through which nonconformality enters the calculation. The
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Figure 2-1: The dependence of the jet quenching parameter on the nonconformality

in the metric (1.2). We plot q/(VAXT 3) versus c/T 2.

dependence on c/T 2 is almost linear over the range of c/T 2 that is of interest, and a

increases only by about 28% even for the large value c/T 2 = 4.

2.2 Robustness and Infrared Sensitivity

Recall from Chapter 1 that the authors of the model (1.2) find that c = 0.127 GeV2

best reproduces certain aspects of QCD thermodynamics known from lattice calcu-

lations [18]. And, recall that we found that the range 0.11 GeV 2 < c < 0.18 GeV2

yielded a degree of nonconformality, parameterized by (e - 3P)/E, as in lattice QCD

calculations. By plotting q for values of c/T 2 up to 4, at T = 300 MeV we are allowing

for values of c at least twice as large as is favored by QCD thermodynamics. We see

from Fig. 2-1 that even over this wide range of c/T 2 , the jet quenching parameter is at

most increased by less than 30%. If we take c = 0.13 GeV 2 , the increase in 4 is - 10%

at T = 300 MeV and - 23% at T = 200 MeV. We see first of all that the KN = 4

SYM result is robust: upon varying the degree of nonconformality c/T 2 across a wide



range, we find only a small increase in q. Second of all, the fact that q increases as

we turn on c/T 2 is interesting. Among conformal theories, if we reduce the number

of degrees of freedom (with fermions weighted by a 7/8 as in the entropy density) by

a factor of 47.5/120, i.e. as if going from K = 4 SYM with N, = 3 to QCD, 4 is

reduced by a factor of V47.5/120 - 0.63 [12]. We now see that this decrease may

be partially compensated by an increase in 4 attributable to the nonconformality of

QCD. Our result that q increases with increasing nonconformality has of course only

been obtained in a particular toy model; further investigation in other examples of

nonconformal plasmas is called for. One result that corroborates the sign of the ef-

fect of nonconformality on q is the determination that introducing nonzero R-charge

chemical potential(s) in K = 4 SYM, which introduces nonconformality, increases

4 [39]. (See also Ref. [40].) There is one nonconformal strongly coupled plasma in a

(3+1)-dimensional gauge theory other than h/ = 4 SYM for which 4 is known: in the

cascading gauge theory of Refs. [13,41], 4/(•XT 3 ) decreases with decreasing temper-

ature, which corresponds to simultaneously decreasing number of degrees of freedom

and increasing nonconformality [20]. Further exploring (and separating) the effects

of varying numbers of degrees of freedom and varying degrees of nonconformality on

4 requires calculating this quantity for other nonconformal strongly coupled plasmas,

for example that in Kn = 2* SYM [14]. Certainly at present the indications are that

all these effects only modify q at the few tens of percent level, a robustness that is

supported by the present investigation of the effects of nonconformality alone in a

toy model. If further study continues to support the idea that in going from KN = 4

SYM to QCD the jet quenching parameter decreases by a factor V47.5/120 , 0.63

by virtue of the decrease in degrees of freedom and increases by a few tens of percent

by virtue of the nonconformality of the QCD plasma at the temperatures of about

(1.5 - 2)T, - 300MeV explored at RHIC, then the observation [19] that q of K = 4

SYM theory at T = 300 MeV is in the same ballpark as the range for the time-

averaged q extracted in comparison with RHIC data [42] will grow in importance.2

2Note also that in going from RHIC to the LHC the dominant change in q will come from its T3

dependence. If we neglect any smaller changes due to decreases in VX and the degree of noncon-
formality, we predict that in going from RHIC to the LHC the increase in 4 should be proportional



Our results confirm that q is an infrared sensitive quantity. That is, when we

introduce c/T 2 # 0, modifying the AdS black hole metric at scales of order T but

leaving it unmodified in the ultraviolet, we find that 4 is affected by this modification.

This is consistent with the interpretation of q as the parameter through which the

physics of the strongly coupled medium at scales of order the temperature enters into

the calculation of radiative parton energy loss and/or jet quenching. The infrared

sensitivity of q comes about in its computation because in the gravity dual q is

described by a string that extends all the way from the ultraviolet regime to the black

hole horizon, probing the gauge theory at all scales down to of order the temperature.3

to the increase in multiplicity at mid-rapidity [43]. That is, we predict that the time-averaged q
extracted in comparison with LHC data should be greater than that extracted in comparison with
RHIC data by the factor (dNLHC/drl)/(dNRHIC/drl) [43].

3In addition to the string worldsheet that determines q, the light-like Wilson loop also bounds
an extremal world sheet that explores the field theory only on scales comparable to, and to the
ultraviolet of, the Compton wavelength of the test quark whose mass is taken to infinity in defining
the Wilson loop [12,19, 44-46]. When written in terms of the parameter zo, the action of this string
is identical for any metric that becomes the AdS metric (1.1) asymptotically in the ultraviolet [46],
meaning that it is infrared insensitive [12]. As we discussed in Chapter 1, in any theory that is
described by a generic metric that becomes the AdS metric (1.1) with parameter zo in the ultraviolet,
any quantity that is specified in terms of zo rather than by the temperature (which is determined by
the metric near the horizon and is in general not related to the ultraviolet parameter zo in any simple
way) is infrared insensitive. Thus, the explicit calculations of Ref. [46] demonstrate quantitatively
that this string solution only probes physics at and beyond the ultraviolet cutoff and is completely
insensitive to physics of the strongly coupled plasma at scales of order the temperature.





Chapter 3

Heavy quark drag and diffusion

3.1 Formulation

The relativistic generalization of the Langevin equations for a heavy quark moving

through some thermal medium (see for example Refs. [30,47]) can be written as

dpLdPL - (PL)PL + L(t) , (3.1)
dt

= - (t) , (3.2)
dt

where PL and pT are the longitudinal and transverse momentum of the quark, respec-

tively. (We have simplified the notation by dropping the spatial indices on transverse

quantities.) Henceforth, we shall denote PL by p. (L and rT are random fluctuating

forces in the longitudinal and transverse directions, which satisfy

(ýL(t)L(tL ')) = L (p)J(t - t') , (3.3)

((T(t)(T(t')) = T(p)6(t-- t') . (3.4)

KL(p) and two times rT(p) describe how much longitudinal and transverse momentum

squared is transferred to the quark per unit time. Note that at zero velocity, rL(0) =

KIT(O) whereas for p > 0 one expects that nL(p) $ I4T(P). Also, upon assuming

that the momentum fluctuations of the particle are in equilibrium with the thermal



medium, as appropriate at zero velocity, a fluctuation-dissipation theorem relates p(O)

to 'L (O) via the Einstein relation

(0) = ( (3.5)
2MT

where M is the static mass of the quark. The relation (3.5) is not expected to hold

for p > 0.

To compute the various quantities p(p), rTT(p) and KL(p) in the metric (1.2), we

use the following procedure developed in Refs. [26,27, 30]:

1. Find a classical solution to the Nambu-Goto action (2.7), which describes a

trailing string moving with constant velocity [28,29] in the metric (1.2). Here,

h is the metric induced on the string worldsheet.

2. The drag force is given by the momentum flux on the worldsheet of the trailing

string along the radial direction, i.e. [28,29]

dp_ 6SNG (3.6)
dt 690 xi trailing string

Here a is the radial coordinate r. As we will see below, the right-hand side of

(3.6) is a conserved quantity on the worldsheet and can be evaluated anywhere

on the worldsheet.

3. Denote the retarded propagators for (L and 'T as G ( ) and G(T) respectively.

Then, the procedure for determining rIL and rT developed in Ref. [26,27] can

be cast as

KT,L = - lim 2 Ts GRL)(w) , (3.7)
w--O W

where T,, denotes the temperature on the worldsheet. As we will see, the in-

duced metric on the trailing worldsheet has a horizon, meaning that the world-

sheet metric can be considered a (1 + 1)-dimensional black hole. T,, is the

Hawking temperature for this worldsheet black hole. Note that at nonzero ve-

locity T,, in general differs from the temperature T of the plasma itself. At



zero velocity, the worldsheet horizon coincides with that of the spacetime, while

at finite velocity the worldsheet horizon moves closer to the boundary and the

corresponding T,, decreases. The reason that one should use the worldsheet

temperature rather the spacetime temperature in this computation is that the

fluctuations &T (and WL) in the transverse (and longitudinal) directions of the

trajectory of the quark moving through the gauge theory plasma arise in the

dual gravity description from the fluctuations of the string worldsheet around

the trailing string solution [26, 27]. It is as if the force fluctuations that the

quark in the boundary gauge theory feels are due to the fluctuations of the

string worldsheet to which it is attached.

4. The retarded propagators G "T) can be found following the general prescription

given in [48]. One first solves the linearized equation of motion for the world-

sheet fluctuations with the boundary conditions that they are infalling at the

worldsheet horizon and go to unity at the ultraviolet boundary. The retarded

propagator is then given by the action evaluated on this solution (ignoring pos-

sible boundary terms at the horizon).

3.2 Finding the Trailing String and Calculating

the Drag

Consider a quark propagating in the x1 direction with velocity v. In this section we

shall follow the analysis of Refs. [28, 29] to obtain the corresponding trailing string

solution and determine the drag force.

We parametrize the world sheet with t and r and use the ansatz

x'(t, r) = vt + ((r) (3.8)



for a late-time steady-state solution. The Nambu-Goto action (2.7) is then

1
SNG- 2 J dtdrL (3.9)

with L given by

29 R4

(3.10)
H4 _ r4  v 2r4

R4 4 _ 4 ,

where prime denotes differentiation with respect to r. The canonical momentum

/__ _ _ 29 R
4

r( e T 20  (3.11)

is conserved, meaning that

=R4 -

r4 _ ro4

r4 -r - v 2 r 4

(3.12)
29 R

4  
2

(r4 r)elT - R4h

The integration constant lrC can be fixed by the following argument: both the numer-

ator and the denominator of the fraction under the square root in (3.12) are positive

at r = oo and negative at r = ro; since (3.12) is real, both must change sign at the

same r; this is only the case if

2 29c R4

7rC = r 204
R 2

1 2O2 o
(3.13)

The drag force (3.6) is then

dpl_ _r

dt 21rao
FrvT2 29c 1v;2

= 1 - v2 e 207r2T2

2J-v

(3.14)

where we have used R 4 = /\a'2 and ro = irR 2T in the last step. The result (3.14) can



also be expressed in terms of the momentum pl and mass M of the external quark:

dpl VAXrT 2 29cV-2 Pl-=e 2 - (3.15)
dt 2 M (

as obtained previously in Ref. [17]. We see that turning on c increases the drag force,

but the effect of the nonconformality becomes weaker at larger v. In fact, for v -+ 1

the drag force is independent of c, meaning that in this limit the drag force becomes

an infrared insensitive observable. The effects of the nonconformality are largest in

the v --+ 0 limit: at low velocities, the drag force is increased by a factor of 1.34 (1.80)

for c/T 2 = 2 (c/T 2 = 4). (As was also the case for q, the sign of the effect of non-

conformality on the drag force is corroborated by the determination that introducing

nonzero R-charge chemical potential(s) in KV = 4 SYM, which introduces noncon-

formality, increases the drag force [49].) Finally, notice that when c is nonzero the

drag force is not proportional to the momentum. In other words, the drag coefficient

p(pI) - - dp now depends on the velocity and hence on the momentum pl.

3.3 Worldsheet Fluctuations

The trailing string solution of Section 3.2 has x2 = x 3 = 0 and so after we change

coordinates from r to z = R2/r it is specified by giving the dependence of x1 on t

and z. Using (3.8) and (3.12), this can be written as

dx1

= v (3.16)

and

dx' 22v 29c( •/- :i 2)
-- e 207r

2
T

2

d2 1 - 24 (3.17)

where we have introduced 2 - z/zo.

Following Ref. [27], we now consider small fluctuations around the trailing string



solution, which we denote here by Ax, namely

x2 = 652(t, z) 2 X3 = Jx3(t, z) .

We expand the Nambu-Goto action (2.7) to quadratic order in 6x' to obtain

R2

SNG = SG + 2-7ral Sdtdz g'3a,8xa1ax' + Iagr ..JX OX
i=2,3

where SNG is the unperturbed action for the trailing string solution. The quantities

G; and G`3 are given by

GTP = fTV -- hha, (3.20)

where hp is the induced worldsheet metric whose components we can evaluate using

(3.16) and (3.17), obtaining

2 29c 1='j'2
R2 v=2 e 207T2 A

h= = - (1- v2) 4 B '

(3.21)

(3.22)

and
29c v2(1-22)v4 4 +[1 (1 2]-e lO2T +

2V/1 -V[1 - (1 - v2) 4]2 B
R2 29c •ji 

2
e 20 r2T2 (3.23)

where we have introduced

i -= = fz/zo = VzrT ,

with y - 1//1T-v 2 and defined

(3.24)

A-1-24 ,(

(3.18)

(3.19)

(3.25)

xx = x + Jx'(t, z),



B - 1 - 2 4 1 - ( - e lo7r2 v2 , (3.26)

and where the prefactors in (3.20) are given by

29 c f 2
e 20 r

2
T

2

fT = (3.27)

B
fL =- f T  (3.28)

(1- v2) A

We now make a change of worldsheet coordinates that diagonalizes the worldsheet

metric hp. This will simplify the calculation since, as is clear from (3.20), diago-

nalizing hp will also automatically diagonalize gT and GL. For convenience, we first

change coordinates from z to 2. Then, we define a new coordinate

t= t + g() (3.29)

where g(i) satisfies

29 c 1- £2
2g v

2 
2 20 

22 T
2

v e 20 : V (3.30)
- -(1 - v2 [1 - ( - v2) ý4]•A.0

which ensures that hji vanishes. In the new (2, t) worldsheet coordinate system, the

induced worldsheet metric h.ý becomes

SR2A 29c rl7-2i2
S- e 202T2 (3.31)

R 2 29c -ViTh2

hj = 2B e 20or2T (3.32)

We now see that hg vanishes and hj diverges at i = 1. This demonstrates that the

induced metric on the (1+l1)-dimensional worldsheet has an event horizon at 2 = 1,

corresponding to z = zo/Vf7 = 1/(TrTfV) and r = roF/5 = R 27rTv/-y. Note that the

worldsheet horizon moves toward the ultraviolet as v - 1 and y - o00. The 2 < 1

region of the worldsheet is outside, and to the ultraviolet of, the worldsheet horizon.



The 2 > 1 region is inside, and to the infrared. Classically, no signal from the interior

of the worldsheet horizon can propagate along the worldsheet to the exterior. The

Hawking temperature T,, of the worldsheet black hole is obtained as follows.

First we perform a change of coordinates, such that in the new coordinate system

the worldsheet metric outside and in the vicinity of the horizon and takes the form

ds2 = -b 2p2di2 +dp 2 for some constant b and new radial coordinate p near the horizon,

where the horizon is at p = 0. Then, since our t is already the background time t

(up to the addition of g(2) in Eq. 3.29), namely Oi/Ot = 1, it is a standard argument

that in order to avoid having a conical singularity at p = 0 in the Euclidean version

of this metric, bt must be a periodic with period 27r. We then identify the period of

t, namely 27r/b, as 1/T,,.

In our case,

ds2  2(1 29c v222
e 20rT2 dr2

R 2  •2
1 29c~E2

+ ) e 20r2T2 dz2 . (3.33)
2 + - -1 + e 10 T7 V 4

We want

d1 29 c•/-- 2 12
dp = e 41rT d2 (3.34)

1 1+ -1+e 1o0 rT V2  44

near 2 = 1. Upon writing 2 = 1 - A, (3.34) can be expanded as

dp e40rT 1
d = - . (3.35)
di 4- 29c 2V-V "

y 5x 2T 2

Noting that p = 0 at 1 = 1, we can integrate Eq. 3.35 to obtain

29cl•/1--v
2
'

e 407w
2

T
2  

V-

p=• • (3.36)
1 29CV2f''

VF1 20-2T
2



Using (3.36), we write the worldsheet metric (3.33) near horizon as

ds2  29cv2 1 v
R= -4 (1 2 - 20cv 2 T2  pd2 dp2 . (3.37)
R2 20/-2T2

Hence, b = 2 1 - 2_ 2 /, and

• 29cv2x /i7-Z

Tworldsheet = (3.38)

To restore units, we relate Tworldsheet to T, which is (3.38) at v = 0. (When v = 0,

the worldsheet blackhole reduces to the background blackhole.) Therefore, we have

1 - 29c•2JI--

Tworldsheet = T . (3.39)

The diffusion in momentum space of the moving heavy quark, governed by the

diffusion constants IT and KL, is described in the dual gravity theory by the fluctua-

tions of the worldsheet outside the worldsheet horizon due to the worldsheet Hawking

radiation with temperature T,,. With T,, in hand, we turn now to the calculation

of the diffusion constants (3.7).

3.4 Calculation of Kr

We now calculate the two point function for the transverse fluctuations, starting from

the quantity 9 T defined in (3.19) and given explicitly in Eqs. (3.20)-(3.26) and (3.31)

and (3.32). It turns out that it is convenient to define u =- 2 as the radial coordinate

in the calculations of KT and KL. We write the transverse fluctuations part of the

action as

SkG= 2a/ dt du [ gl (0t6) 2 g2(6y) 2 ] , (3.40)



where 6y here can be either 6Z2 or 6x3 and where

(3.41)

(3.42)g2 -- e 202T
T V (1 - v2)4

and where it is understood that we have rewritten A from (3.25) and B from (3.26)

in terms of u, obtaining

A= 1 - u 2

B = 1 - (1 -
29c(I- u) /iV2

- e 10 r
2

T
2

The equation of motion for the transverse fluctuations by is given by

d5y + 90,2 j6y + 9 26y = 0 . (3.45)
g2 92

After a Fourier transformation

6y(t, u) = j e-iweY(u) , (3.46)

the equation of motion (3.45) becomes

92Y, + 2Y 2 0 Y, = 0. (3.47)
92 g2

To examine the behavior of the solution near the worldsheet horizon u = 1, we expand

the coefficients in (3.47) near u = 1 and obtain

1
o• Y, + 47a , +u-1 Y =0, (3.48)

8(u - 1)2 (2 29c2 i-Y-V
(u (2 10 7r

2
T

2
)

whose solution is

Y, = (1- u) 29c 5T 2

v2] U2
U.

(3.43)

(3.44)

(3.49)

91 - 2 , ý
1 29 c u l'--7

2

2) 32 3 e 207r2 T
2

4 u (1 - u2) (1 - v2) -



For the solution with the "plus" sign, the phase increases as one goes to smaller value

of u, i.e. "outward" from the worldsheet horizon, toward the ultraviolet, meaning

that this corresponds to an outgoing solution, which is to be discarded in our case.

We only need the infalling solution. Therefore, we can write our solution Y, as

S= (1 - u2 2 4- F(w, u) , (3.50)

where F(w, u) is regular at the horizon. We now substitute (3.50) into (3.47) and

obtain an ordinary differential equation for F that takes the form

X F + VaF + ~F = 0 , (3.51)

where X and V are functions of u and w (that depend on v and T) whose leading

behavior at small w is given explicitly in Appendix A.

In order to determine rT, we only need to find the solution F to (3.51) to first

order in w. We show in Appendix A that to zeroth order in w the only solutions that

are regular at the horizon at u = 1 are F =constant. We normalize Y, so that Y, - 1

at u -- 0, and this determines that we choose F = 1 to zeroth order in w. To first

order in w the solution then takes the form

F = 1 + wZ + O(w2) , (3.52)

and in Appendix A we show that the function Z has the properties that it goes to a

constant at the horizon u = 1 and that

i N29c- 3
Z 3 ___ e 20 U 2+ + ' ' (3.53)

as u - 0. Upon normalizing Y, at u -+ 0 as we have done, the retarded propagator



that appears in (3.7) is given by [48]

GT(w) - 2 R 2(rT)g2  (u)Y(u)

(3.54)
-= VArT2g 2 wuZ(u) o + O(w2 ) , (3.55)

where we have used i,Y, = 0 + O,F(w, u) near u = 0, and g2 is given in (3.42). Using

(3.53) and the fact that g2 = + O(Vu) in the u --+ 0 limit, we find that

with the propagator (3.55) and the world sheet temperature (3.39) the transverse

momentum diffusion constant (3.7) is given by

KT = aT \/7rT (3.56)

where

29cv2VJ -
aT = e 207r1• 20- 2T2  (3.57)

When c = 0, aT = 1 and our result reduces to the known result for AN = 4 SYM,

derived in Refs. [26,27]. From our result, we see that turning on c/T 2 increases rT by

a factor aT, which we have plotted in Fig. 3-1 as a function of v for several values of

c/T 2 . Comparing oT at v = 0 from (3.57) to our result (3.15) for the drag coefficient

evaluated at v = 0, we see that at v = 0 the Einstein relation (3.5) is valid with c f 0.

This can be seen as a consistency check on the model.

We see from Fig. 3-1 that the effect of c/T 2 = 4 (c/T 2 = 2) on NT at low velocity

is significant, increasing it by a factor of 1.80 (1.34). This suggests that the noncon-

formality in QCD could increase the diffusion constant WT, which has been related to

charm quark energy loss and azimuthal anisotropy in Refs. [47,50], by a significant

factor relative to estimates based upon the KV = 4 SYM result. By comparing Fig. 3-1

to Fig. 2-1, we also see that at low velocities IrT is less robust with respect to the

introduction of nonconformality than 4: the effects of c/T2 on KT at low velocity are

more than a factor of two larger than its effects on 4. However, we also see that



1.8

1.6

1 1.4

1.2

1

0.2 0.4 0.6 0.8 1
V

Figure 3-1: The modification of arT due to nonconformality is given by aT in (3.57),

which we plot here versus v at four values of c/T 2 .

aT -- 1 for v -+ 1: at high velocities, IT does not sense the nonconformality at all.

This infrared insensitivity in the high velocity regime can be understood immediately

once we recall that the worldsheet horizon is at z = zo(1- v 2) 1/4 , and rT only depends

on the portion of the string worldsheet that is outside the horizon, namely between

the ultraviolet boundary at z = 0 and z = zo(1-v 2)1/4 . At high velocity, zo(1 -v 2 ) 1/4

itself moves closer and closer toward the boundary, i.e. farther and farther into the

ultraviolet, meaning that KT only probes ultraviolet physics where c is not important.

3.5 Calculation of KL

The calculation of 'IL is analogous to that of nT. Again, we start from the quantity

~L defined in (3.19) and perform the same manipulations. The relevant action for

longitudinal fluctuation takes the same form as (3.40), with gl and g2 replaced by

1 29 cu7-- B
91 = ,~ 20 2 T2 -, (3.58)

4 u (1 - ) 1 -U2) (I)a4

s
4 ·C

~I· · I· ~r ~~~,,~~



1 - u 2  29 cu 1-2 (B
g2 )5 2 2 T2 (3.59)

V2)4 A

The solution again takes the form (3.50), with F satisfying (3.51), but with different

expressions for the functions X and V, given in Appendix A.2. The expansion (3.52)

still holds, but now Z(u) can only be obtained numerically. Again, as described in

Appendix A, the solution for Z is determined uniquely by requring that Z be regular

at u = 1 and that Z -- 0, so that Y, 1, as u -+ 0. We find that KL is given by

1 29CV2V41Z--T
2

K = 2y- iwT 3  - cv 2 1 ( (3.60)
207T2 2

Near u = 0, g2 can be expanded as g2 - 15 + O( -), which reduces (3.60) to
(1_V2) V4

KL a= CL2 V/1A-FT , (3.61)

where

aL= 2 1- 29cv2  17 (3.62)
20F2T2 u-

depends on v and c/T 2. We have checked analytically that aL = 1 for c = 0,

meaning that our result reduces to that for , = 4 SYM from Refs. [26, 27] when the

nonconformality is turned off. That is, caL is the factor by which KL is modified when

we introduce nonconformality via nonzero c/T 2 . At nonzero c/T 2, we compute Z(u)

and hence aL numerically. In Fig. 3-2 we plot caL versus v at four values of c/T 2.

The factor aL is comparable to but somewhat less than its counterpart aT for the

transverse momentum diffusion constant KT, plotted in Fig. 3-1. As v -- 0, atL and

aT become equal because there is no difference between (diffusion in) longitudinal

and transverse momentum when v = 0. The effects of c/T 2 on KL at small velocity

are more than twice as large as its effects on q, but KL becomes completely unaffected

by c/T 2, namely infrared insensitive, as v -+ 1. We also see that there is a range of

velocities near 1 for which a• < 1.
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Figure 3-2: The modification of KL due to nonconformality is given by aL in (3.62),

which we plot here versus v at four values of c/T 2.

3.6 Robustness and Infrared Sensitivity

The effects of the nonconformality we have introduced on all three of the quantities

that we have computed that describe the drag and diffusion of a heavy quark moving

through the plasma are comparable at low velocities. For c/T 2 = 1, 2, 4, the noncon-

formality serves to increase all three quantities that we have computed, by factors of

1.16, 1.34, 1.80 at v = 0. So, particularly at lower temperatures where c/T 2 is larger,

the tendency for the drag and diffusion coefficients to increase with nonconformality

should be included in making estimates of these quantities for the QCD plasma. We

also showed that the energy loss on a heavy quark moving through the plasma with

v -€ 0 is not described by a velocity-independent drag coefficient. If we define the

drag coefficent -d then this quantity depends significantly on the velocity of the
p dt

quark.

All three quantities that we have computed in this chapter become completely

infrared insensitive for v -* 1. The MN = 4 SYM results for p, IrT and KL are

conventionally quoted in terms of the temperature T, but their infrared insensitivity



for v -+ 1 demonstrates that in this regime they should really be quoted in terms of

z0 , with zo understood as a parameter that specifies the ultraviolet behavior of the

metric. In a generic metric that is given asymptotically in the ultraviolet (z -+ O0) by

the AdS black hole metric (1.1), zo is not related in any simple way to the temperature

T, which is determined by the metric in the vicinity of the horizon. And, in the v -+ 1

regime, p, 'T and Li are determined by zo not by T. The reason for the infrared

insensitivity of all three quantities is the same. The drag and diffusion of the quark

is described by that segment of the attached string worldsheet that is outside the

worldsheet event horizon at z = zo(1- v2) . As v approaches 1, this worldsheet event

horizon moves to smaller and smaller z, meaning that the segment of the worldsheet

that is outside its event horizon, namely at z < zo(1 - v2), explores the metric only

at smaller and smaller z, meaning that it describes the physics of the more and more

ultraviolet sector of the gauge theory. Because the metric that we are using is given

asymptotically at small z by the AdS black hole metric (1.1), independent of c, the

drag and diffusion of the quark become completely insensitive to c/T 2 for v --* 1.

That is, they become infrared insensitive, probing the gauge theory only at more and

more ultraviolet scales. We saw in Chapter 2 that, in contrast, the jet quenching

parameter q, which is defined at v = 1, is infrared sensitive.



Chapter 4

Quark-Antiquark Potential and

Screening Length

One of the early, classic, computations done using the AdS/CFT correspondence

was the computation of the potential between a static quark and antiquark sepa-

rated by a distance L in XA = 4 SYM theory, first at zero temperature where the

potential is Coulomb-like, proportional to V7A/L [36], and then at nonzero tempera-

ture [37], where, to order VA/ in the strong coupling expansion, the screened potential

is Coulomb-like for L < L,(T) and fiat for L > L,(T) (up to order Ao contributions

that fall exponentially with L [51]). The screening length turns out to be L, = 0.24/T.

When L < L,(T), the potential is determined to order v/N at strong coupling by the

area of a string worldsheet bounded by the worldlines of the quark and antiquark,

with the worldsheet "hanging" into the AdS black hole spacetime (1.1), "suspended"

from the test quark and antiquark that are located at the ultraviolet boundary at

z = 0.

In Refs. [12,31], the analysis of screening was extended to the case of a quark-

antiquark pair moving through the plasma with velocity v. In that context, it proved

convenient to define a slightly different screening length L,, which is the L beyond

which no connected extremal string world sheet hanging between the quark and anti-

quark can be found. At v = 0, L, = 0.28/T [37]. At nonzero v, up to small corrections

45



that have been computed [12,31],

L"eso"(v, T) 2- L,(0, T)(1 - v 2) 1/4 OC 1(1 - V2)1/ 4 . (4.1)

This result, also obtained in [32,33] and further explored in [52-54], has proved robust

in the sense that it applies in various strongly coupled plasmas other than Kv = 4

SYM [52-54], including some which are made nonconformal via the introduction of

R-charge chemical potentials. The robustness of the result (4.1) has been tested in

a second sense by analyzing the potential and screening length defined by a configu-

ration consisting of Nc external quarks arranged in a circle of radius L, a "baryon",

moving through the strongly coupled plasma [55]. In order to obtain a baryon-like

configuration, the N, strings hanging down into the AdS black hole spacetime must

end on a D5-brane [56]. Even with this qualitatively new ingredient, a screening

length once again emerges naturally, and obeys (4.1) for "baryons" moving through

the plasma [55]. The velocity dependence of the screening length (4.1) suggests that in

a theory containing dynamical heavy quarks and meson bound states (which KV = 4

SYM does not) the dissociation temperature Tdiss(v), defined as the temperature

above which mesons with a given velocity do not exist, should scale with velocity

as [31]
Tdiss(V) - Tdiss(v = 0)(1 - v2 ) 1/4 , (4.2)

since Tdis5 (v) should be the temperature at which the screening length Lmeon(v) is

comparable to the size of the meson bound state. (Note: the size of the bound meson

can be thought of as the scale of the ground state quantum mechanical wave function

in the quark-antiquark attractive potential. This size does not change much as the

temperature increases, while the screening length, above which the nuclei potential

becomes flat, goes - (1 - v2) 1 /4 . When the sreening length is comparable to the

meson size, no bound state will exist, and the correponding temperature is TdiSs . )

The scaling (4.2) indicates that slower mesons can exist up to higher temperatures

than faster ones, a result which has observable consequences for charmonium (bot-

tomonium) production as a function of transverse momentum in heavy ion collisions



at RHIC (LHC) [12,31]. This result has proved robust in a third sense, in that (4.2)

has also been obtained by direct analysis of the dispersion relations of actual mesons

in the plasma [57,58], introduced by adding heavy quarks described in the gravity

dual by a D7-brane whose fluctuations are the mesons [57-59]. These mesons have

a limiting velocity whose temperature dependence is equivalent to (4.2), up to few

percent corrections that have been computed [58].

In this chapter, we shall return to the velocity-dependent screening length defined

by a quark-antiquark pair moving through the plasma and test the robustness of (4.1)

in yet one more way by repeating the calculation of L,(v, T) from Refs. [12,31] in the

metric (1.2) that incorporates the nonconformal deformation whose consequences we

are exploring throughout the present paper.

4.1 Calculating the Potential

Consider an external quark-antiquark dipole moving with velocity v = tanh r/, where

77 is the rapidity of the dipole, along the -x 3 direction. We choose the quark and

antiquark to be separated by a distance L, oriented in the x, direction. It proves

convenient to boost into a frame in which the dipole is at rest in a moving medium

- it feels a "hot wind" - via a Lorentz transformation (t, x3 ) -+ (t', XZ):

dt = dt' cosh r - dx' sinh r7 (4.3)

dx3 = -dt' sinh 7 + dx' cosh 7 . (4.4)



In the dipole rest frame, the spacetime metric describing the nonconformal hot wind

is obtained by applying the Lorentz transformation to the metric (1.2), obtaining

2 2 29CZ4 dt,2ds2 = 20 sinh2 - 1 - cosh2  d

+ cosh2 - 1 - sinh 2 71 dx2

4  dz 2

- 2 - sinh 77 cosh qLdt'dx' + dx1 + dzx + . (4.5)

To evaluate the potential between a static quark and antiquark in this background

we first need to evaluate the action of a rectangular time-like Wilson loop whose long

sides, of length T, are aligned with the t' axis and whose short sides, of length L,

are oriented in the xl direction. We then need to subtract the action of a separated

quark and antiquark, each trailing a string described as in Section 3.2.

To evaluate the Nambu-Goto action of the string worldsheet bounded by the

rectangular Wilson loop that describes the moving dipole, we parametrize the string

worldsheet by T = t' and a = xl E [- L, J]. The spacetime coordinates of the

worldsheet are then given by (-r, a, 0, , z(a)), and its Nambu-Goto action (2.7) is

2 29cz
2  4 2Sdipole R d [ e 20 - sinh2 + 1 - cosh2 1 z , (4.6)NG 2r' J= 2 T 7 ++1- -4

2 Z/O

where we have denoted 9,z by z'. We must extremize this action in order to determine

z(a), subject to the boundary conditions z(- L ) = 0. Note that z(a) is symmetric

about a = 0, which is where z(a) reaches its maximum value which we shall denote

z,. Note also that the integration over [- , 0] is the same as [0, L1]. With a change

of variables, the action (4.6) can be expressed as an integral over z:

S -ole - 2 T dzC (4.7)"'NG 7ra o



with the Lagrangian

z4
T40 )

cosh2 7] +/ 1-24 (4.8)

Since the Lagrangian has no explicit dependence on a, the corresponding Hamiltonian

Zz'

29cz
2

e 20

z 2

- sinh 2 / + (1
(4.9)41 -+ z' 2

ZT

is "conserved", by which we mean that it is independent of z. In particular,

29cz
2

(z) = (z) =
H(Z) = H(z,1 = 2Z*

- sinh2 7 + (1 - 0 cOsh 2 r,
Z0 ) 7

where in the evaluation of 1-(z,) we have used the fact that z' = 0 at z = z,. We can

now rearrange (4.9) and (4.10) to obtain an expression for z', namely

z4) q(z) (4.11)

where the + (-) sign applies for -L/2 < a < 0 (for 0 < a < L/2) and where we

have defined
29cz

2

2- 4 4
q(z) e o z 2

204 - Z4 COsh2 77
(4.12)

Upon substituting (4.11) into (4.7), we find

Sodiple 
.- f z*

ir~ 0
(4.13)

q(z*)

where we have used R2/&' = VA.

The action (4.13) is written in terms of z,., the turning point of the string world-

(4.10)

- (1CO_

- 1) ,

29cz2
Se 20z2

= z2 -Sih

zI = + (1

z2 Z 4)
z 1- 1



sheet, rather than in terms of L, the separation between the quark and antiquark. L

and z. are related by

L * dz
2 = z/

= z* dz(4.14)

We will express our results in terms of L

The action (4.13) contains not only the potential between the quark-antiquark

pair but also the (infinite) masses of the quark and antiquark considered separately

in the moving medium. We must therefore subtract the (infinite) action 2SNG Of two

independent quarks, namely

E(L)T = Sdiole 2SOG , (4.15)

in order to extract the potential E(L). The string configuration corresponding to a

single quark at rest in the moving medium is obtained from the trailing string solution

described in our analysis of heavy quark drag in Section 3.2 by substituting (3.12) and

(3.13) into (3.9) and (3.10), changing variables from r to z, and boosting to the frame

in which the quark is at rest and the plasma is moving. Equivalently, re-deriving the

action in the coordinate system used in this chapter, as done in Appendix B, gives

S z2 29 c z2 2
NG 27r dz (22z2 ( - 4) 29cz02 (4.16)

N e to (Z 4 
- 0 4 ) + elocosh Z

4 sinh2 rl7

Finally, the quark-antiquark potential E(L) is obtained by substituting (4.16) and

(4.13) into (4.15) and using (4.14) to relate z. to L. We have checked that for c = 0

these expressions all reduce to those in Ref. [12].

In order to make a plot of E(L), we use (4.13) and (4.14) to evaluate E and L at

a series of values of the parameter z., performing the integrals numerically. Then, in

Fig. 4-1 we plot E/(-/AT) versus LirT for four values of the nonconformality c/T 2 ,
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Figure 4-1: The potential E(L) between a quark and antiquark moving through the

plasma with rapidity r1 = 1, for four different values of the nonconformality c/T 2 .

We plot E/(V/AT) versus LwrT. Each curve has two branches that meet at a cusp at

L = Ls, with the lower branch being the potential of interest. For each curve, the

maximum possible L at which a string worldsheet connecting the quark and antiquark

can be found occurs at the cusp, L = Ls.

for a quark-antiquark pair moving with rapidity 17 = 1. Each curve has two branches

that meet at a cusp, with the cusp occurring at L = Ls, the largest value of L at

which a string worldsheet connecting the quark and antiquark can be found. The

lower branch is the potential of interest. The upper branch describes unstable string

configurations [60]. Two branches arise because L(z,) in (4.14) is not monotonic:

every value of L < Ls is obtained at two different values of z,. For L > Ls, E/x/N

vanishes. We therefore identify L, as the screening length. At low velocities this

introduces a small imprecision since E(L,) is just positive and the screening length

should then be identified as the L at which the lower branch crosses E = 0. This can

be seen in Fig. 4-2, which shows the E(L) relation for different values of rapidity rq.

The plot is made at the preferred value of c and T = 300MeV. As the 17 goes up, the

curves drop very fast: when r7 = 0, the maximum of E exceeds 0, while for large r's

~ , ~ ~rr , -.

/) /,
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Figure 4-2: The quark-antiquark potential E(L) at c = 0.127GeV 2 and T = 300MeV

for four different values of the rapidity r of the quark-antiquark pair moving through

the plasma. Again, we plot E/(VXAT) versus LrT, and the lower branch of each curve

is the potential of interest.

the maximum value of E goes down quite steeply. But the small LT behavior of E

is independent of rq.

4.2 Robustness and Infrared Sensitivity of the Screen-

ing Length

In Fig. 4-3, we illustrate the velocity dependence of the screening length Ls for

four values of the nonconformality c/T 2. We have plotted LsrT coshq; to the

degree that the curves are flat, we can conclude that the velocity dependence is

LrT cx 1/ /cosh7 = (1 - v 2)1/ 4 as in (4.1). We see from the figure that this is the

leading velocity dependence at large 17, as can also be demonstrated analytically [12].

And, we see that this leading dependence describes the velocity dependence to within

corrections of order 20% all the way down to v = 0. These conclusions hold for c # 0
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Figure 4-3: LwrTvcosh r versus rapidity r at four values of c/T 2 .

as for c = 0, although the corrections at small velocity grow somewhat, meaning that

we have successfully tested the robustness of the velocity scaling (4.1) against the

introduction of nonconformality via c/T 2.

If we now look at the effects of c/T 2 on the value of Ls, not just on its leading

velocity dependence, we see that turning on the nonconformality parameter results in

a modest increase in L,. The effect is greatest at v = 0, but even there L, increases by

only about 20% for c/T 2 = 4. This means that, among the five observables that we

have analyzed and within the model we have employed, Ls is the most robust against

the introduction of nonconformality. At large velocities, Ls becomes completely c-

independent, meaning that at large velocities it is infrared insensitive. This can be

understood as follows. In order for the right-hand side of (4.10) to be real, the turning

point of the string worldsheet z., and thus the entire worldsheet, must lie somewhere

within 0 < z < z 0/ cosh7 = zo(1-v 2) 1/4 . This means that in the high velocity limit,

the string worldsheet only probes the the small-z, ultraviolet, region of the metric

where the effects of c are not felt. To put it more simply, since as v - 1 the screening

length shrinks, LsrT oc (1- v2)1/4, the quark-antiquark dipole becomes sensitive only



to more and more ultraviolet physics of the plasma.

The authors of Ref. [52] have shown that in the cascading gauge theory of Refs. [13,

41] Ls is affected by the introduction of nonconformality even at large velocity. This

does not contradict our conclusion that Ls becomes infrared insensitive at high veloc-

ity because this theory includes nonconformality at all scales, not just in the infrared.1

Furthermore, the meson dispersion relations analyzed in Refs. [57, 58] indicate that

the size of the largest stable mesons moving through the plasma with a given velocity

shrinks with increasing velocity in the same way that L, shrinks,2 indicating that if

the meson dispersion relations were to be studied in a nonconformal model like the

one that we have analyzed, they too would become infrared insensitive for mesons

moving with high velocity.

We have seen that in addition to being the leading velocity dependence of L, for

v -- 1, the expression L7rT oc (1 - v 2)1/4 provides a reasonable description at all

velocities. This velocity dependence can have consequences for the pT-dependence

of charmonium (bottomonium) production in heavy ion collisions at RHIC (LHC),

as it suggests that if temperatures close to but below that at which a particular

quarkonium species dissociates at rest are achieved, the production of this species

would drop for pT above some threshold [12, 31]. This is because the dissociation

temperature Tdiss, (1 - v2)1/ 4 decreases as the quarkonium momentum PT increases,

and at the point at which it goes below the RHIC(LHC) temperature, the bound state

dissociates (above some momentum). This fact is apparent from Figure 3 of [31]. In

1Our results may provide a counterexample to a conjecture made in Refs. [52, 54]. Upon writing
L, oc (1 - v 2)p, these authors suggested the relationship ( P -p) oc ( - v2), where v, is the velocity
of sound. We find p = , but V2 is almost certainly not - with c 5 0. Firm conclusions cannot be
drawn, however, since, as explained in Ref. [18] and Chapter 1, we cannot compute thermodynamic
quantities like vs reliably in the model we are employing because the deformed metric (1.2) is not a
solution to supergravity equations of motion.

2 The mesons are described by fluctuations of a D7-brane. Stable mesons moving through the
plasma with a given velocity v can be found for a range of quark masses M extending upward from
some minimum possible M/T. The fluctuations corresponding to stable mesons with the smallest
possible M/T for a given v turn out to be well localized in z at the value of z corresponding to
the point where the D7-brane gets closest to the black hole. According to the standard holographic
relationship between position in z and scale in the gauge theory, the location in z of this "tip" of the
D7-brane therefore corresponds to the size in the gauge theory of the largest stable mesons with a
given propagation velocity v. The results of Ref. [57,58] show that this size decreases with increasing
velocity proportional to (1 - v 2)1/4 , just like the screening length L, .



this context, the quarkonium velocities that are relevant will not be particularly close

to v --+ 1, meaning that L, in the relevant regime will not be infrared insensitive.





Chapter 5

Outlook

We have found that the drag and momentum diffusion constants that describe a heavy

quark moving through the strongly coupled plasma and the screening length for a

quark-antiquark pair moving through the plasma all become infrared insensitive as

v -* 1. Although we used a particular toy model to diagnose this fact, in each case we

can understand it as a consequence of intrinsic attributes of the quantity in question,

meaning that the conclusion of infrared insensitivity at high velocity transcends the

particular model. In the case of the screening length, at high velocity it becomes

small which means that in the v -- 1 limit it only probes the ultraviolet physics of

the plasma. (In the regime of velocities accessible to quarkonium mesons produced

in heavy ion collisions, the screening length retains some infrared sensitivity.) In

the case of the drag and momentum diffusion constants, at high velocity they are

determined in their dual gravity description by the shape and fluctuations of that

portion of their trailing string worldsheet that is outside, namely to the ultraviolet

of, a worldsheet horizon that itself moves farther and farther into the ultraviolet as

the quark velocity increases. In the limit of high velocity, all four of these quantities

are only sensitive to the short distance physics of the plasma, namely to physics in a

regime where the An = 4 SYM plasma is strongly coupled but the quark-gluon plasma

in QCD is not. The jet quenching parameter, on the other hand, is infrared sensitive

even though it is defined at v = 1. Again, this arises from an intrinsic attribute of

the quantity in question, in this case the fact that in its dual gravity description the



jet quenching parameter is defined by a string worldsheet that extends all the way

from the ultraviolet boundary of the metric at z = 0 to the black hole horizon and

thus probes physics of the plasma at all scales down to of order the temperature.

Our investigation of their infrared sensitivity provides a new illustration of the

qualitative distinction between the momentum diffusion constants 'T and KL on the

one hand and the jet quenching parameter q on the other, which arise when two

noncommuting limits are taken in opposite orders [12,61]. We have already noted

that 'KT and KL are only well-defined at v - 1 if we take this limit while satisfying

the criterion (1.4), for example by taking the M -- +o limit first. If the M - oo

limit is taken before the v --+ 1 limit (more generally, if (1.4) is satisfied), the quark

trajectories for which ~T and KL are defined are always timelike, even as v -+ 1. On

the other hand, I is determined by a strictly light-like Wilson loop. (The light-like

Wilson lines should be thought of as describing trajectories of the gluons radiated

from the hard parton that is losing energy as it traverses the medium.) We can

introduce a quark mass M as an ultraviolet regulator in the definition of the Wilson

loop. Then, in order to define a light-like Wilson loop in the gauge theory we must

first take v -+ 1, and only then take the regulator M - oo, since if we took the limits

in the opposite order the Wilson loop would not be light-like. Our investigations

show that q, defined via the light-like Wilson loop, is infrared sensitive: it probes

the properties of the strongly coupled plasma at all scales down to those of order the

temperature. In contrast, if one tries to push rT and /'L to v -+ 1 while satisfying

(1.4) one obtains observables that are only sensitive to the ultraviolet physics of the

plasma, where KN = 4 SYM is unlikely to be a good guide to QCD.

It would be a significant advance to find other ratios of observables that are

(even close to) as universal as rl/s, which is the same for all gauge theories with

dual gravity descriptions in the strong coupling and large-N, limit. Finding infrared

sensitive observables is a prerequisite, since no infrared insensitive observable can

be universal. Both 7r and s are infrared sensitive quantities; their ratio turns out

to be universal. Our results suggest two further infrared sensitive observables: the

jet quenching parameter 4, defined at v = 1, and the v = 0 drag coefficient and



momentum diffusion constant, which are related by (3.5). It is an open question

whether there are ratios involving either of these observables that are universal.

If we take as a benchmark value c/T 2 = 4, which corresponds to about twice

the level of nonconformality indicated by lattice QCD calculations of the conformal

anomaly e - 3P at T - 300 MeV, we find that turning on this level of nonconformality

in the model spacetime (1.2) that we have analyzed increases the jet quenching pa-

rameter by about 30%, increases the quark-antiquark screening length by about 20%

at low velocity, and increases the heavy quark drag, transverse momentum diffusion,

and longitudinal momentum diffusion all by about 80%, again at low velocity. The

effects of nonconformality on the latter four quantities all vanish at high velocities,

as discussed above. The possibility of a significant enhancement in the transverse

momentum diffusion constant at low velocity introduced by turning on a degree of

nonconformality comparable to that in QCD thermodynamics should be taken into

account in future comparisons to charm quark energy loss and azimuthal anisotropy as

in Refs. [47,50]. Note also that the drag coefficient is no longer a velocity-independent

constant when nonconformality is turned on, decreasing by almost a factor of two as

v is increased from near zero to near one with c/T 2 = 4. The fact that the slowing

of a moving heavy quark is no longer governed simply by dp/dt oc -p in a strongly

coupled but nonconformal plasma probably generalizes beyond the toy model context

within which we have discerned it.

Our evaluation of the robustness of the five quantities we have computed against

the introduction of nonconformality can serve as a partial and qualitative guide to

estimating how these quantities change in going from Ar = 4 SYM to QCD. A more

complete understanding requires studying the effects of changing the number of de-

grees of freedom in addition to introducing nonconformality. And, our results for

robustness are only quantitatively valid within the model in which we have obtained

them, making it important to perform analyses like ours in other contexts in which

nonconformality can be turned on. Both these lines of thought serve as strong moti-

vation for carrying out a study like the one in this paper for the plasma of strongly

coupled At = 2* gauge theory [14].
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Appendix A

Some Technical Details in the

Calculation of the i's

A.1 Technical Details Needed in the Calculation

of 1KT

In Section 3.4, we calculate the transverse momentum diffusion constant KT by deter-

mining the two point function for the transverse fluctuations of the worldsheet of the

trailing string. The equation of motion for the Fourier transform of the transverse

fluctuations, Y,, is given in (3.47), and solutions with the correct behavior (3.50) near

the horizon u = 1 are then specified by the ordinary differential equation (3.51) for

F(w, u), defined in (3.50). The differential equation (3.51) contains two functions X

and V that we did not specify in Section 3.4. To lowest order in w, these functions

are given by

and

X = Xw + O(w2),

V = Vo + O(w) ,

(A.1)

(A.2)



where

X=-

20ir (1 - u2) 2

i v' - -40 •r2 2 -

4 7r2 _ 29cv2 V
5 T 2

207r2 (1 - u2)

T 2 [_-2 2 + e
29 c (1-u)ý10o T (1 -V

U2 (10 7r2T22 (1- 3u 2) v 2

U2 (1 - V2))

- e 10 ir2T2 (29cu(1 - 2)(-- 21 -2))

- 10 r2T2(1 + u2(2 - v2) - 3 u 4(1 - v2)))

20 7r2T 2 u (1 - U2) ( - U2V2 + e
2 U 2 6

29 c (1-u1-2
10•r2 T:

x 10 7r2T 2u 2
(132) V2 _ 21- 1-V2

(1-3 10 ir2
T

2

x [29 cu(1 - u2) (1- u2(1

- 10 7r2T2 (1 + u2(2 - v2) - 3 U4 (1 - v2))] (A.4)

In this Appendix, we shall solve the equation (3.51) for F, first to zeroth order in w

and then to first order.

To zeroth order in w, (3.51) reads

VoOF + OuF = . (A.5)

We can solve this equation upon noticing that near u = 1, Vo can be expanded in

powers of (1 - u) and takes on the simple form

1
-Vo u + 0(1).

1-u
(A.6)

This means that the only solutions to (A.5) that are regular at u = 1 are constant

and

Vo= -

(A.3)

(1 - U2 (1 - V2)))



solutions, with O,F = 0. Normalizing Y, such that Y, -- 1 in the u -+ 0 limit

corresponds to choosing the constant solution F = 1. This normalization is required

if one is to preserve the standard AdS/CFT relationship between the fluctuations of

the string worldsheet in the bulk, Sy, and operators and sources in the gauge theory

on the boundary at u = 0. In particular, it is required in order for the retarded

propagator GR to be given by (3.55). The same normalization is also used in the

calculation of KL.

Now, working to first order in w and knowing that F = 1 to zeroth order, we write

F as

F = 1 +wZ, (A.7)

a form that we used in (3.52). The first order terms in the differential equation (3.51)

then become

, + vooUZ + aZ = o . (A.8)

We now define

(A.9)

and obtain a first order differential equation for W(u) given by

S+ Vow + OW = 0 , (A.10)

where X 1 and Vo are given by (A.3) and (A.4). Note that since X 1 is imaginary the

equation (A.10) for W has real coefficients. The differential equation (A.10) can be



solved analytically, yielding

(1 - u2) 20ir2 - 29ev 2

ac 2 9 (1 U2 V2)

must be regular at the worldsheet horizon u = 1. To determine C, we expand (A.11)

about u = 1, which yields

V •(  (C + 1•-rTW= ( + ,(1) (A.12)
471.2 - 29cv2 VV U - 1

The coefficient of the 1/(u - 1) term in (A.12) must vanish, which determines that

C = - . With C determined, (A.11) constitutes a fully explicit expression for W,

which according to (A.9) should then be integrated to give Z. The further integration

constant in Z is fixed by the requirement that Y, -+ 1, meaning that Z - 0, for

u -+ 0. In our calculation of KT, we do not need the entire function Z. According

to (3.55), all we need is the leading term in Z (or W) at u -m+ 0. From (A.11) we
29c491--72

determine that W --+ sIheulT Ken oc be in the u -+ 0 limit, and upon integrating

to determine Z in this regime we obtain (3.53).



A.2 Technical Details Needed in the Calculation

of KL

The technical details needed in the calculation of KL are completely analogous to those

described in Appendix A.1, including in particular the logic of how the boundary

conditions are satisfied. The only difference is in the functions X1 and V0, which in

the longitudinal case are given by

X = - ri( -40 7r2U 2 - 20 -7r2(1 - u2)
20 -(1 - U2) 2 472 29c v--5 T 2

S[10 2U2T2(5 3T2
T2 (U2V2 +" io- 10 (1- @2 L

- 58 CU3v2(1 - U2 ) V1- v

S29 c(y-u91-v2 2
2- e (-" 1T2 (29 Cu( 1 - u2)I V2(1 U2 (1 _V2))

and

+ 307r2 u4T 2 (1 - 2 ) -10r 2 T 2 (1 + 2 (2 - 2)) )

1
V0 = -

(A.13)

2(l - 2) u + e29c(1-•p 1- 2 2(1- 2)))20 7r2 u(1 - U -uv + e 1 o21 - V2

x 2U2v2 (5r2T2(5 - 3u 2) - 29 cu(1 - u2)V1v 2)

e-e 29-cu-2 [29cu(1 - u2 )1 V2 (1- u 2(1 - v 2 ))

- 10 7r2T2(l + u2(2- 5v2) -3u4 - 2))] } (A.14)

.W,





Appendix B

A different derivation of the action

for drag string solution

In this appendix, we compute the action for a single quark dragging a string through

the thermal medium in the coordinate system in which the quark is at rest. This string

extends from the quark at r = oo to the AdS black hole horizon. SOG corresponds

to the action for one such string.

Since xl = 0 for a single string, we choose a different a parametrization: a = z,

and we keep 7 = t'. The string world sheet is then written as X = (7, , 0, x' (a), a).

The Nambu-Goto action (2.7) for one string, computed in same way as before, is

S eR2  zo e 20 z sinh2  (B.1)
NG = dz 1 - + co sh 2 7 Z (B.1)

2ra' o z2 Z4 d 1- •

Because the Lagrangian

29cz
2  4

e 20 ( z_\( + cosh2 77 - s (B.2)z2  4 a ]d ±4cosh 2  1-4
0T4



has no explicit x' dependence, the canonical momentum

P=

29cz
2  

Z4 ) dX13
e 20 

(B.3)
z 14\ 2 sinh2 7

is conserved, i.e. independent of z, by the Euler-Lagrange equation. (B.3) gives

p2z4 (cosh2 -

d Z14) -P2z4]

p 2z4  1 - cosh 2 r
29cz 2  I 4 2 4 'Zo (B.4)

e 1 - 2 P( 2 02z

Since the left-hand side of (B.4) is positive definite, so must the right hand side.

The first factor is always positive. Both the numerator and denominator of the

second factor are positive when z -+ 0, and both are negative when z - zo. So

the reality condition on x3 requires that both of them change sign at the same z.

This requirement sets the value of P. Clearly, the numerator changes sign at z =

zo/./c6shF7. Hence, the denominator must vanish at the same point, which leads to

p 2  cosh2 r - 1
S29cz02

z04e 10cosh 1

sinh 2 r/ 29cz
- e 1ocosh i (B.5)

zo

Substituting (B.5) and (B.4) into (B.1) and using 2SG- = VdragT for the two quarks,

we obtain Eq. (4.16).
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