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Abstract

We numerically and analytically investigate the linear complex mode frequencies

of model micro-reconnecting plasma modes which have transverse wavelengths of the

order of the electron skin depth c/ape. This model mode, which can have finite wave-

length parallel to the magnetic field, is found in the limit of a straight and uniform

magnetic field in the presence of temperature gradients. The theory of the related

micro-reconnecting modes has been previously developed in view of explaining the ob-

servation of macroscopic instabilities which are not predicted by the drift tearing mode

theory [2]. These micro-reconnecting modes are radially localized by magnetic shear

and lead to the formation of microscopic magnetic islands. We derive the model dis-

persion equation, which closely follows the derivation of the micro-reconnecting mode

dispersion equation [1], under relevant conditions using the drift kinetic approxima-

tion. We also consider the dispersion relation in the fluid limit [1]. We examine the

solutions of the resulting dispersion relations and confirm the driving effect of the

electron temperature gradient, and the stabilizing effect of a density gradient.
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Chapter 1

Introduction

1.1 Background

Currently, approximately 79 percent of the energy used on our planet is generated

by burning fossil fuels which release environmentally harmful compounds into our

atmosphere [3]. If we were to burn a teaspoon of liquid hydrogen in the presence

of oxygen, we would produce water and 40.9kJ of energy. If the same teaspoon of

hydrogen underwent fusion, we would produce helium, neutrons, and 1.97 x 10kJ

of energy. This incredible abundance of energy available through the fusion process,

along with its clean byproducts have made fusion energy a very appealing alternative

technology. Experts are currently working to design a way to control a fusion reaction

and harness the resulting energy.

Present day laboratory plasma experiments relevant to controlled fusion generally

have plasma temperatures as high as 15keV, which would melt any material container

we could use. Typically the plasma is contained at low density, and when making



contact with the high density material container, it loses large fractions of its energy

as it melts the container. An apparent solution to this problem is to use magnetic

fields to confine the plasma, as we approach the necessary temperature and density

conditions for fusion to occur. One such confinement configuration is the tokamak,

an axisymmetric torus with magnetic field lines which wind around the torus with a

strong component parallel to the toroidal axis and a weak component which circles

the poloidal plane. These field lines result from a toroidal field component which is

generated externally by coils, and a poloidal field which is generated by the currents

in the plasma.

This magnetic field configuration is able to overcome the loss of plasma confine-

ment due to particle drifts, which arise from the gradients and curvature of the mag-

netic field and the electric field. However, we still struggle with plasma confinement

because of instabilities like those resulting from magnetic reconnection. Magnetic

reconnection is a phenomenon in which the magnetic field lines in a plasma magnetic

field configuration break apart and reconnect in a way that can facilitate energy and

particle transport. Further efforts to design a controlled magnetically confined fu-

sion device rely on a strong theoretical understanding of these magnetic reconnection

events, and the relevant plasma modes.

1.2 Motivation

Magnetic reconnection and the associated magnetic island structures have been con-

sistently observed in well confined, high temperature plasmas [4]. Existing models of

magnetic reconnection such as the drift-tearing mode which explain such instabilities



in lower temperature regimes do not predict instabilities in these conditions. This is

due to the stabilizing effect of electron Landau damping in the collisionless case, and

to the parallel thermal conductivity in the weakly collisional case. These reconnection

events and the associated structures can be explained with micro-reconnecting mode

theory. In the theory, the micro-reconnecting modes are radially localized about the

reference surface where kl - k. -B/B _ 0. In the presence of magnetic shear, these

modes lead to the formation of microscopic magnetic islands with transverse scale

length c/lwp. These islands are created by an electromagnetic instability driven pri-

marily by the electron temperature gradient. The microscopic islands increase the

ratio of transverse to longitudinal thermal conductivity considerably over its classical

value. It is this increase which alters the stability criterion of the drift tearing modes

and permits the meso-scale magnetic reconnection, which is ultimately driven by the

current density gradient [2].

We investigate the model micro-reconnecting modes, which are derived without

the presence of magnetic shear and with k1l $ 0. Modes of this type may be ob-

served experimentally and this analysis serves as a foundation for further theoretical

investigation of the micro-reconnecting modes.

In this thesis we investigate the stability of these model micro-reconnecting modes.

In Chapter 2 we detail the relevant derivation of the dispersion equation. Then in

Chapter 3 we analyze the solutions of the mode frequencies under various conditions.

We make some concluding remarks about our results and future projects in Chapter

4.



Chapter 2

Model Micro-Reconnecting Modes

2.1 Dispersion Relation Derivation

In attempting to understand these model micro-reconnecting plasma modes, we will

examine the solutions of the relevant mode dispersion relation under various con-

ditions. We proceed by reproducing the dispersion relation derivation previously

obtained by Bruno Coppi [1] for the related micro-reconnecting modes. The contents

of this chapter closely follow these notes, though we make simplifying approxima-

tions in our derivation which distinguish our resulting mode from the similar micro-

reconnecting modes. In the micro-reconnecting mode theory, the magnetic shear is

introduced through the equilibrium magnetic field

x

B = Bo(ez + L-ey) (2.1)

such that x corresponds to the radial distance from some reference rational surface.

The y and z coordinates correspond to the angular displacement in the poloidal

plane, and along the toroidal axis, respectively. This coordinate system, along with



the expected magnetic field lines in the tokamak are shown in Figure 2.1. From the

Figure 2.1: The magnetic field lines in the Tokamak configuration are shown on the

left. The coordinate system is depicted on the right

MHD equation of motion in equilibrium conditions,

1
Vp _-J xB.cC

and the relation V x B = rJ, our equilibrium magnetic field given in Eq. (2.1)

must be balanced by an equilibrium pressure that depends on x. It also follows that

the equilibrium temperature and density are independent of y and z. In the present

analysis we neglect magnetic shear by considering x/L 8 <K 1 and thus B _ Boez,

though we maintain that the equilibrium density and temperature depend on x. To

derive the dispersion relation we utilize the drift kinetic approximation which averages

out the gyrating motion of the charged particles. We consider the motion of the

guiding centers of the particles which can be approximated to first order as the E x B



drift velocity

cExB
vc B 2

We begin with the linear phase space density equation for electrons which is given as

Oe B B BB e+ V -{[1 V] fe} = -V - -B-BvB + gc fe} + Ell (2.2)
B Bme

where fe, fe are the equilibrium and perturbed phase space density respectively, and

Ell is the perturbed parallel component of the electric field. We use potentials to

represent perturbed electromagnetic fields E = -V - A, B3 = V x A. Then

the perturbed guiding center velocity is

c[V] + 9A] xB
Vg c - B2B 2

We can reduce this equation with the simplifying approximation

SB B B B
.A All~ - B = VAII x +A 11V x• B VAII x - (2.3)

where the curl of the equilibrium magnetic field unit vector vanishes in our case where

the field lines are virtually straight. We have also neglected B/1 so that we may rewrite

the pertubed guiding center velocity as

cVD xB
Vgc - B 2

Returning to Eq. (2.2) we see that the guiding center velocity appears as

cV4 x B cVl x B cVb x B c 4 8fe
B2  B2  }f+ B2  Vf- (2.4)

Where the E•x B motion is approximately incompressible, and we have used the fact

that the equilibrium only depends on x. We continue by taking advantage of the



fact that V - B _ 0 and the relations given in Eq.

simplification

-V. {[Bvp BB- - vi Ife}
B2

d fe
- ex--

dx B
B=-vl[VA, x -]B

where again we discard the contribution of y and z in the dot product because the

equilibrium only depends on x. With Eq. (2.4) and Eq. (2.5) we can rewrite Eq.

(2.2)
Ofe VB
at B

v, 0Ai ODfe
B Oy Ox

c O Ofe
B ay Ox

Now we introduce the following Fourier-Laplace representations.

S ikxxikyy+ikzz-iwtfe fe et xx+•k +' -

= eikxx+ ikyy + ikzz- iwt

All= All eikxx+ikyy+ikzz-iwt

where the tilde represents a perturbed quantity. Combining these expressions with

Eq. (2.6) we have

(w - ki v) fe (v AB - c) Oe
Ox

where in the present we define kl _ k -B/B _ kz. Then we consider an equilibrium

Maxwelian distribution,

fe = n(x) me M - meve/2T(x)
2FTe (X)

with which we can further reduce Eq. (2.7)

kY 1 dn(w - k v l) fe -_ (vI All -_c)( d-
B n dx

1 dTe
+

2Te dx
2T

+ V1)fe

e - mev(
+-(k me - - A ll)(Me fe)Me c Te

~ -V {[VAi x B Vl fe
BII aAly Ofe
B ay ax

(2.5)

(2.6)
me

me

w Df
-A ) e
c aByme(ki-

m7e

(2.7)

(2.3) to impose the following

(2.8)



To close the system of equations self consistently we need to find the perturbed elec-

tromagnetic fields in terms of the perturbed distribution function. We accomplish this

by using the linear phase space density equation to calculate the perturbed parallel

current and perturbed charge density. Then we impose the quasineutrality condition

and Ampere's law as follows

0 -4re[hii - 27r J vidv±dvll fe]

V2Al = -47re 2-r v±dvdvllvllIfe
c

We take the ion response to be adiabatic (k±pi > 1), and we take k ,k, > k2 so that

these expressions take the form

e4"
0 - -4?re[-- n - 27 vx Lddv lfe]  (2.9)

(-kx - k) All- = 2r f v±dvidv11 Vllfe (2.10)
C

To take advantage of the quasineutrality condition and Ampere's law we solve Eq.

(2.8) for fe and integrate over v-, where we integrate over the same range of v1 for

Eq. (2.9) and Eq. (2.10). We find that

O 1 1 1 dn 1 dTe me•v dTe
27r v±dv±e - k1 [vllAl- - cI]- -e + V InFe

w - klvl B ndx 2Te dx 2Te2 W I

1 e w- meVllS(kllý - -All) nFe
w - kllVll me c e

Where Fe = fo' vdvife. Now to simplify the expression above, we introduce the

following diamagnetic frequencies,

ckyTe 1 dTe ckyTe 1 dnO.)Te -- w)e  _
eB Te dx eB n dx

so that

00 e e U)e VT2 mTe WIW*e -*T nFT•- [-VI-I nF
27r vidvife = ynFe + e W2 +W Te - - Fe

o Te Te w - klIvl c



Combining this result with Eq. (2.10), we find that

4re 2 f dv
cTe 1-00

*e - •*Te + *TeV 2 - W I

w - k 9

If we introduce the following definitions d 2  C2 , and e = 4 e2 /e, and

Vte - 2TV/me, we can rewrite this equation as

2 2 2mec
[dk + d~k]A2T = Te -

2/V2 _1j
W*e + W*Te(VlI V - ) -e [All•A

dvlj w - klivil c All Vj 1Jle (2.11)

Manipulating Eq. (2.9) in the same way we arrive at

0 " + -[1 + ] j + dvll
T fo 00

2V2 _ 1)W*e + W*Te(VI/Ve - ) -2 [[VII
w - kllvll c - 4]Fe (2.12)

We proceed by introducing Q, defined as

00 d u 2 ( *Te + T(U 2 - 1/2) - )
2 2V2 20oo -- k11 vte2

where u Vil/V1t• •C. Then by utilizing the fact that the integral of an odd power of u

over -oo < u < oc is zero, we can reduce Eq. (2.12) to give a relation between 4$

and All

vtekll •,/2cw2

Tel/T + we1W + k vt2e*/2w3 Al

Combining this result with Eq. (2.11) we arrive at the following result

3(w[1+ Ti ,e 1k 2c e*(d k +d k Ti *e2 + dTxy)Aii _ W Te w

where ce -- 2T/me. Then by carefully adding zero to the argument of the integral

in Q,, we can simplify the integrals we need to compute in searching for the solutions

of the resulting expression. We find that

, = ,*Te(1 + Foo) - (w -W*e)(1+ GO)

[k2 + k,]A 1

(2.13)

S I,.•. ,,

02

V. /7-



where

1 00 2 (U 2 - 1/2))Fo  _ - du2u2e-  -- )0 = -f o A2 _ 2
1 00 u 2

Go - dru2-u 2 -
G 7-o fj00 A2 _ 2)

Rearranging the terms we find [1]

k 2

2 + 2k2 [AT +2 + 2k2 (AT - 2A)G 0

- V- -l o

S 3 + D[1-
2A

+ F0) - aD-2 (1 + F° )2A2

k2T
+ aA2T

SW*Te k2

D k IVte22k2
IkllVte 2 + 2k2 '

w
A k-Vte k2 -= (kx + ky)d 2 W*e Ti

Te- Te

The details of these final steps are outlined in Appendix A.

2.2 Fluid Limit

We also wish to investigate these model micro-reconnecting modes in the fluid limit,

where w/kllvte» > 1. In this case we can make the following expansion

-2 k v?2 2
W-k 11 ,etU,

+ WU

Refering back to our definition of Q, we have

du e - 22u 2[W*, + W*Te(U 2 -_ 1/2) - w](1 + 2u2)

In our analysis we introduce the parameter = kv2/w 2 «< 1 and we assume the

following orderings w*e/W*Te . W/W*Te - e. In these conditions Q, ~ W*Te, and from

K2

- a [P -

2 +2k2
2A2
P-(

where

(2.14)

1 00
f T,. 1V- -oo

2A
) - aTr] (1 + GO)



Eq. (2.13) we find the following result for the model micro-reconnecting modes in the

fluid limit.

(w[1 + Ti w*e
TeW'

1k2 k2e)(d~k 2 2 Ti we+ 2•l ,se *T + dek) W*Te[I + Te,

After rearranging the terms we have

2wU3

k1 ceW*Te [1

and introducing the following definitions

- ( 22 2 )1/3,
wwk ce re

A_ T.( 2
Te k ce eWTe

k0 2
k= (d kx + d2 k2 )( Csce )1/3

22*Te

we arrive at our desired dispersion relation [1]

A 1CO3(1+ ) + 1 -O 2(1 A
+-)- . (2.15)

which is cubic in the complex mode frequency. There are two real parameters, k2

which is related to the temperature gradient, and A which is related to the effect of

a density gradient.

Ti we+ 1 2w 2

+ + 1 _ •1Te w de2k2 + T2kkce
Ti w+ TzTe



Chapter 3

Numerical Analysis and Results

Now we wish to investigate the model micro-reconnecting modes by analyzing the

solutions of the dispersion relations derived in Chapter 2.

3.1 The Fluid Limit

We begin by analyzing the solutions of Eq. (2.15), which was derived in the fluid

limit.

(
co(A + A) + 1 ~ 0(O + A) (3.1)

where we recall
2 T-3 2,T

)1/3 As e( 2 )1/3 k3 = (d 2k + dk2 )()k/3 )
Co Wk 2C2 W*Te Te k 2C2 W*Te o (d 2w.T2

11 IseW Tek see e T 2w

In producing our solution curves we take A real and hold it constant and find the

solutions of C, which corresponds to the scaled micro-reconnecting mode frequency, for

various values of k0 . We find that i is purely real as long as k0 remains below a critical

value ker. The imaginary part of D reaches its maximum value as k0 goes to infinity,

12



but reaches nearly peak value at around k0 - 2 for values of A < 5. A plot of this is

shown in Figure 3.1, along with a plot of C in the complex plane for 2 > k0 > kit

and several values of A. As expected from a cubic equation, the complex solutions

come in pairs, and in addition to unstable roots we find damped modes. It would

appear from this figure that as we increase A which can be interpreted as a density

gradient parameter, that the mode frequencies diminish. We took k0 = 2 and found

C for A ranging from 0 to 10 as shown in Figure 3.2, and confirmed the suppressing

effect of A. We also wish to uncover a relation between A and the associated critical

value of k0 at which the solutions 3 become complex. We expect this transition to

occur when the first derivative of Eq. (3.1) with respect to 3 is zero. Differentiating

Eq.(3.1) with respect to C we have

3- A 20 1
-2 A + 2  0( 1 - A) (3.2)3-k 3 k0

If we define Co - A and substitute Eq. (3.2) into Eq. (3.1) it becomes first order

in W.
2A 22) A (33)

(Uk2 9 9koCo + 1 (3.3)

Now we use the solution of Eq. (3.2), which we find from the quadratic formula

1 1 A
w = C +~~ 2 3k (3.4)

3 9 3kO

to eliminate D from Eq. (3.3). We simplify the resulting expression to find the

following relation between A and the critical values of ko

4A 3k8 + 27kg + 6A 2 kg6 - A 4 k4 - 6Ak4 - 2A 3k2 - 4ko - A 2 = 0 (3.5)

We examined Eq. (3.1) numerically to find a plot of critical values of ko versus A

which agreed with our analytical prediction above as shown in Figure 3.3.

13
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Figure 3.3: The bold dashed line is our analytical prediction given in Eq. (3.5), and

the fine line is our numerical confirmation

3.2 The Drift-Kinetic Approximation

Now we will analyze the solutions of our dispersion relation derived with the drift-

kinetic approximation given in Eq. (2.14). We begin this analysis by considering the

case where T = TT = 1, and / >  1. In these conditions we may neglect

the contribution of the density gradient which appears in the variable a through the

frequency w,*e. The resulting equation is

3 2A 2 k 2 2A3
A3 + D[1- 2A k2  2A)G (3.6)-- ](1+ F°) = [A + (A )GO] (36)

were we recall

D W*Te k2 A k2 d k2 + d 2 k2

IkllIVte2 + 2k2 ' Ik llvte e' x  e y

16



d1 2 - 1/2))
Fo >- j du2u2e-u2(( A2  _

o F00 A2 _ U2
1 2 u2e ( )Go= a d2 -u2Go -roo duue A2U _ 2

The solutions to Eq. (3.6) give A, which corresponds to the scaled model micro-

reconnecting mode frequency, for a given choice of k and D, which we take to be

real. Our desired solution curves show A in the complex plane for a given value of

D and several values of k. Our solutions involve k in a range such that D, defined

above, can be approximated as independent of k. We expect the integrals Foo and Go

to introduce an imaginary component to Eq. (3.6) for any nonzero choice of A due

to the residue from the pole. We define A - ARe + iy and separate Foo and Go into

their real and imaginary components so that Fo = FOR + iFoo, and Go = GoR + iG8°.

Then we can separate Eq. (3.6) into its real component:

(Ae - 3ARe~72) + D[(1 + FooRe)(1- 2(ARe 2 4 AR+ Fooml
Re Re± k2om

ARek 2  ( 1 2(A2~ - Y2) o 4AReY
-(2 + 2k2)( + GoRe(1 + GOm  k2

/yk2  2(A e - Y}2) 4ARe'Y
+( ) ) (GoIm( R- G  e ) = 0 (3.7)

And its imaginary component:

2(A 2(Ae 2} 2 ) G (4AR+ )(3ARe7- 7 + D[(1 V 2(2kqboom (1 +OR,)]
-(2 + ) ( 1 +  G °ne(1 - +2  ) + G o I m  )-

-(2 +±2k2)( ORe(1 I

ARek 2  2(Ae 2- 2) 4AR,7
(2 22k2)(GoIm( 1 -  k 2  )-GORe k 2 ) = 0 (3.8)

To find our desired solution curves, we add the absolute values of the left hand sides

of Eq. (3.7) and Eq. (3.8) and search for values of k, D, and A which minimize this

17
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Figure 3.4: A in the complex plane for k from approximately 3 to 100 and D =

11, 19,39,64. The bold line shows the solutions of the simplified cubic A3 + D(1 -

2A 2/k 2) = 0

sum. We find these minima by holding D and ARe/7 constant, and sweep over a

large range of values of k and JAI, looking for the specific combination closest to a

zero. Then by succesive iterations of decreasing the sweep range, and increasing the

sweep resolution, we find the desired solution point. Then we adjust the ratio ARe/7Y

slightly, and repeat the process for the same value of D. Through this method, we

find the solution curves shown in Figure 3.4. We find that for each value of D, as

k --+ 00c, Im[A]/Re[A] approaches some limiting value. Plots of k versus Im[A]/Re[A]

are shown in Figure 3.5 for various values of D.
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Figure 3.5: Im[A]/Re[A] for D = 11, 19, 39, 64 as k -+ 00

3.2.1 Theoretical Analysis

We notice in Figure 3.4 that for lower values of D, A bends toward the origin as it

approaches the real axis. We examine this behavior first by considering the residues

of the integrals. In the Fo integral, if you consider the factor of 1/(A2 - p2), where

AARe+iEC , E< 1. Then

A2 _ ý2 _ A e + 2icARe - ý2

If we define T - (ARe - ) , I Q e, then

(2 = q2 - 2Apeq + Ane _ A e - 2ARe

In [AZ] /Re [A]



and so

A2 _ 2 - A2e _ 2 + 2icARe

R Ae (Axe R 2AReI) + 2icARe
e2 _j_ 

2

= 2ARe(iE + ) = 2ARe
-ic + X

Thus 1/(A2-_ 2) ,- (t- ic)/(2ARe( 2 + 0 2)). Now we take advantage of the fact that

the factor of e -_ 2 in the Foo integral sufficiently suppresses the argument of the Foo

integral, except when - AR-e. In that region, the pole will overtake the exponential

factor, and we may approximate the value of the entire integral as coming entirely

from this region surrounding the pole. Then we may rewrite the integral as such

1 f 2 2Re 2 - 1/2FOO - A,( A 2 Re(ARe-12F°= •J. -d ±- •2Ai2( - iE)
S-0 -oo Re 2ARe(E 2 + p 2)

Where the first negative comes from the d( = -dO relation. Considering the imagi-

nary component
1 Too 1/__

Fom - sA ee-e e dO 1/com -oo 1 + 12/62

Then converting to the variable = IF/c and noting that d' = edb , we find the

imaginary residue

1 f? 1Fom ~ a5ee-a2e d 5 -a e-A2e (3.9)

The factor of 7r enters from the arctan integral. Because the real component was

of similar magnitude, but opposite sign we say that the real residue goes as FORe

5 -A 2

- -ARee-Re*. We now wish to examine the behavior of the solutions of Eq. (3.6)

when A becomes complex. From our result in Eq. (3.9) we see that the terms involving

Foo and Go will always have an imaginary contribution due to the residue, though this



contribution is small for ARe close to zero, or large. Now we begin with a purely real,

first order representation of Eq (3.6)

D 2A2

1 + (1 -- ) = 0 (3.10)

We then treat the following terms as a complex perturbation

k2
Foo + (2+2k2 )A2  (3.11)(2 + 2k2)A2

Then if we expand Eq. (3.10) with respect to a solution point A0, we can equate the

second order terms to the perturbation above as follows [1]

112 D (A 2  1 16 D 1 (3.12)
(JA)2 16£ F(o + (3.12)

2 A' 2A 3 k 2  2A2

We found a solution near the real axis with D = 20, k _ 3.1, Fo o 1.4 + ic, c <K 1.

Plugging these values into our above relation gives us 5A = 1.24 + .175i - 8.020 for

A near the real axis. This supports our observed bending of the solutions near the

real axis.
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Conclusions

We confirm the driving effect of an electron temperature gradient and the stabilizing

effect of a density gradient in these model micro-reconnecting modes. Experiments

that can reproduce the conditions of the micro-reconnecting modes can search for

these modes with transverse wavelengths of the order of c/wpe, though the intro-

duction of magnetic shear and the spatial dependence of these modes may alter our

theoretical predictions. If these modes are observed, we predict their suppression in

the presence of a density gradient.

In future projects we can introduce the effects of magnetic shear, and the spatial

dependence of the mode. With this we can get a clearer image of these micro recon-

necting modes, and see if the instabilities predicted by the model persist for localized

modes. If the instability does persist, as expected, then the resulting microscopic

islands may reduce the ratio of parallel to transverse thermal conductivity which

would then be capable of producing macroscopic reconnected magnetic surfaces in

the plasma as predicted by the micro-reconnecting mode theory. Further analysis of



these modes may offer more insight into the present dilemma between drift tearing

mode theory and high temperature plasma experimental results.



Chapter 5

Appendix A

We begin with Eq. (2.13)

(w[1 +Ti e
1kj ceQ*)(dk + dk)A1 Qw2QA 1 l[i +T
2 Te

and the definition of Q,.

Io du2u 2e - 2
(

-00

W*, + ,*Te(U 2 - 1/2) - w
29 9 )

Now we manipulate our expression for Q,.

A2  u2 ( W*e + W*Te(U 2 - 1/2) - a
-V/7-oo dA 2 - u2

where A w/|kll Vte. Now we separate the different components of the integral QD,

and carefully add zero to both components

, Te A2 _ du2u2e (U2 2 -1/2) - (u 2 ( 2 - j1/2

V/ -oo A2
.4.. - (7/,2(712 - 1 /9\/A 2 ~

- U
2

(W - *e) A2  00 du2u 2e
2  2  2 2

(-07 1 - u2/A 2 ± u2 /A 2

-(•- •oo7 2•• • a _ 2

w2

Q /7-

(5.1)

(5.2)

VA 2 U

W - KIIIý



Now if we carry A2 through the integral, we can change the argument of the integrals

as follows

We know that f_ e-u 2du = d .

S0 du2u2e-2 ((U 2
-00

(u2(2 - 1/2))
A1/2) + 2 u2

u
2

A2 u2)

Then from integration by parts, we find that

U2•o -ueU2d U2 -U2(Uf% 2u -e2 du = ff 2u2-2(u2 - 1/2)du = vr. Thus we have

1 2_ (u22 2• - 1/2))
, = W*Te + W*Te - I du2u2 e A2 -u 2

1 _o u2

-(w - we) - (w - We) -1 du2u2 e-u2 - 2)

We now define2 2

We now define

1 00 du2u u2( (U - 1/2))
-00oo A2 -

00 2du2u2 e- u2

-oo00 A2 2

so that

, = W*Te(1 + F° ) - (w - w*e)(1 + G° )

Refering back to some initial definitions

Ti
Cse T e

we rewrite Eq. (5.3)

[w •(1 + *e) + k 2v e(W*Te(1 + F)) - k2 W - We)(1
W 2 11t2 11 e + Go)](-k 2)

~-2 * Te (1 +FO + +W2 _1 + *e] I (W(+ B

1

O. = wie

-(w - w*e) du2u2e- 2 (1
'0-o 10

(5.3)

1Go = 1

2 (k 2 + k )d 2

.... 0



Then dividing through by |k•jv' we find

[A3(1 + TW * ) +7 W*Te (1 + Fo)
W 2 kIll Vte

_ (A )(1 + Go)]k2
2 ( klt

A21 + *eTe ( + F) - A2 1 + *](A
wL kjI |vte W

W*e )(1+ G)
kl vte

Now we introduce the new variables

W*Te W*e

|kl vte

and introduce a factor of 2/k 2 to rewrite our expression as

2A 3(1 + T) + Tr(1 + Foo) - T(A - a)(1 + GO)

a(1 ) - 2A 2

k2
+r(A -ao)(1 + GO)

Rearranging yields

3(2 + 2k 2 2A2

A ---T-) + ýT[1 - ý](1 +
2A3

[TA + (7A - -k2 )G] - a[T

2A
Fo) - c -r-2-(1i

2A2

- (1- )-

+ Fo) + 2AA2T

2A
k2-r] (1 + G° )

Defining D = rTk 2/(2 + 2k2) we arrive at

2A 2  2A1
A3 + D[1 - - ](1 + Foo) - aD-ý(k2T k2

V2 2A3  k2 2A2

- [A t + (At - -) G O] - a [ - -(1 -2 + 2k2 k2 0 2 + 2k2 k2

k2
+ Foo) + aA2r k

T + G(
2A

T) - - ar](1 + GO) (5.4)k20

2A 2

[1
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