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Abstract

The internally and externally cooled annular fuel is a new type of fuel for PWRs that
enables an increase in core power density by 50% within the same or better safety
margins as the traditional solid fuel. Each annular fuel assembly of the same side
dimensions as the solid fuel has 160 annular fuel rods arranged in a 13x13 array. Even
at the much higher power density, the fuel exhibits substantially lower temperatures
and a MDNBR margin comparable to that of the traditional solid fuel at nominal
(100%) power. The major motivation for such an up-rate is reduction of electricity
generation cost. Indeed, the capital cost per kWh(e) of the construction is smaller
than the standard construction of a new reactor with solid fuel.

Elaborating on previous work, we study the economic payoff of such an up-rate
of an existing PWR given the expected cost of equipment and also cost of money
using different assumptions. Especially, the fate of the already bought solid fuel is
investigated. It is demonstrated that the highest return on investment is obtained by
gradually loading annular fuel in the reactor core such that right before shutting the
reactor down for the up-rate construction, two batches in the core are of annular fuel.

This option implies running a core with a mixture of both annular fuel and solid
fuel assemblies. In order to prove the technical feasibility of such an option, the
thermal-hydraulics of this mixed core is investigated and the Minimum Departure
From Nucleate Boiling is found to be either unaffected or even improved by using a
mixed core. Consequently, a neutronic model is developped to verify and validate the
neutronic feasibility of the transition from solid fuel to annular fuel.

The overall conclusion of this work is that annular fuel is a very promising option
for existing reactors to increase by 50% their power, because it enables such an up-
rate at very attractive return on investement. We show that, by a smart management
of the transition, a return on investment of about 22 to 27 % can be achieved.

Thesis Supervisor: Mujid S. Kazimi
Title: Professor of Nuclear and Mechanical Engineering
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Chapter 1

Introduction

Nuclear energy is on the edge of a so-called renaissance due to a combination of

economic and environmental factors. In a CO2 constrained world, nuclear energy

is likely to play an important, if not central, role in providing economic, reliable,

carbon-free and safe energy.

They are two major challenges to this renaissance. The first one is economic

competitiveness with other technologies. In order to expand, nuclear power needs

to be less expensive than other alternatives. The other challenge is disposal of the

waste. Even though technical solutions exist to the issue of waste, because of political

concerns and economic unatractiveness of these solutions, a fuel that produces as little

waste as possible using the existing LWR technology is very much desirable.

The general idea of the annular fuel, developed at the Center for Advanced Nuclear

Energy Systems (CANES) at MIT, is to try to mitigate these two issues with a new

type of fuel that enables a higher power density in the core and produces less waste

per unit of generated energy.

Through a U.S. DOE funded Nuclear Energy Research Initiative (NERI) program,

a comprehensive study [9] of the annular fuel was performed. The major results,

summarized in the next sections showed that by using annular fuel, a PWR power

density could be increased by 50 % within the same safety margins, and that the

burn-up of the fuel can be increased substantially.

Taking this analysis one step further the objective of this work is to evaluate the



attractiveness of using a high power density fuel in an existing reactor and establish

the feasibility of a transition from solid to annular core. We demonstrated that

by gradually transitioning from solid to annular core, substantial rate of returns on

the up-rate project can be reached. We also proved that such a transition core is

technically feasible, both on a thermal-hydraulic and on a neutronic basis.

1.1 Annular fuel description and performance

1.1.1 Fuel description

The annular fuel is a new type of fuel that is both internally and externally cooled (see

Figure 1-1). It is composed of U0 2 so existing data can be used readily. Because of its

geometry, the annular fuel shows significant performance improvement compared to

the solid fuel. It has a reduced thermal conduction path thickness that improves the

margin from peak fuel temperature to melting, and it has an increased heat transfer

surface area which improves the margin for Departure from Nucleate Boiling Ratio

(DNBR).

~... ouiani

Fuel

Cladding
SGap

Figure 1-1: Schematic of solid and internally and externally cooled annular fuel (not

to scale)

While staying within the same safety margins as the solid fuel, annular fuel enables

the core to run at an estimated 150 % power for the same cycle length if the flow rate

is increased proportionnaly.

To reach this target the design that was defined in Ref. [91 is a 13x13 assembly

with a mean enrichment of 8.5 %. The actual size of the assembly remains the same.



The dimensions of the fuel are given in Table 1.1.

Table 1.1: Dimensions (in cm) of annular fuel and reference solid fuel (from Ref. [9])

; i,o=inner, outter ; i, o=inside, outside

1.1.2 Fuel performance

The 6 major objectives of the previous investigation were the following:

* Identify the best fuel assembly arrangement for PWRs to achieve maximum

uprating, while still using U0 2 fuel, by assessing the thermal-hydraulic limiting

parameters like DNBR.

* Perform a safety analyses for several types of accidents to assure that the fuel

at higher power can meet the required safety limits.

* Evaluate the neutronic fuel design to achieve high reactivity-limited burn-up

and a refueling cycle comparable to existing PWR.

* Select and assess the fabrication processes to produce annular fuel elements

within the required product characteristics.

* Evaluate the materials and mechanical performance of the proposed fuel under

irradiation.

* Estimate the economic costs and benefits of using annular fuel in a PWR.

The findings to date can be summarized as follows:



1. Thermal-hydraulic assessment An optimum search in square lattice design

of the annular fuel was performed using a VIPRE-01 whole core model. Based on

DNBR considerations, the most promising designs were found to be either a 12x12

lattice or a 13x13 lattice. In particular the 13x13 design allows for a 50% uprate in

power if the flow rate is also increased by 50%.

Key features of the design are that (i) even at 150% power the maximum temper-

ature of the fuel is about 1300 o C lower than that of solid fuel as illustrated in Figure

1-2; (ii) the pressure drop of annular fuel assembly at 100% power and flow rate is

very close (within a few percents) to the pressure drop of the solid fuel assembly at

100% flow rate.

2400
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0 1

- Solid fuel rod 17x17, q=45kW/m
-- Atmular fuel rod 13x13, q'=74kW/m

Annular fuel rod 13x13. q'=l lIkW/m

3 4 5
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Figure 1-2: Comparison of
fuel (from Ref. [9])

hot-spot radial temperatures profiles for solid and annular

2. Safety analysis Four accidents of annular fueled PWRs were evaluated and

compared to the reference solid fueled PWR: Loss-Of-Coolant Accident (LOCA),

Loss Of Flow Accident (LOFA), Main Steam Line Break (MSLB) and Rod Ejection

Assumptions:
-Hot spot linear powers
-Same core peaking of 2.5
-Same core power for
45kW/m and 74kW/m cases
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Accident(REA) [9].

The accidents were evaluated using RELAP3D/ATHENA and VIPRE-01 and

showed satisfactory performance of the annular fuel at 150% nominal power.

3. Neutronic analysis Starting from the design that was selected by the thermal-

hydraulic optimization, the major challenge of the neutronic analysis was to design

the core, and develop a fuel management scheme able to achieve an 18 months cycle

at 50% over power. The target criteria were sustaining an 18 months cycle with 90%

capacity factor, keeping the boric acid concentration below 1750 ppm, keeping radial

pin power peaking below 1.65, and keeping a hot spot factor of 2.5 or less.

The core was desigend using the CASMO/TABLES/SIMULATE package. The

150% power annular fuel was designed for 3 batches. Each batches are composed of

72 reload assemblies: 24 assemblies have an enrichment of 8.1 wt% and 48 assemblies

have an enrichment of 9.0 wt%. In order to stay below 1750 ppm of boric acid, the

Gd poisoning needed to be increased substantially.

The general layout of the core is summarized in Figure 1-3. The assembly is

labeled as follow: the first digit (0,1 or 2) stands for fresh, once-burned, twice-burned

; H or L means High enrichment or Low enrichment ; the next two digits indicate

the total number of poisonned rods ; the last two digits indicate the Gd content of

the poisonned rods. For instance 2L2410 is a twice-burned, low enrichment assembly

with 24 poisonned rods at 10 wt% Gd content.

4. Fuel fabrication A key issue for a new fuel was the assessment of the feasibility

and cost of its industrial fabrication. Therefore, a lot of attention was devoted to

the demonstration of the feasibility of a fabrication process. Among several existing

manufacturing technologies, two most promising processes were selected for further

investigation: the sintered ring pellet and the VIPAC technology.

Near prototypical annular fuel rods were fabricated using these two processes. It

appeared that the VIPAC technology could not reach satisfactory density, whereas the

sintered ring pellet method proved to reach sufficiently high density and high tolerance
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Figure 1-3: Assembly power distribution at EOC for the annular fuel, 150% power

core (from Ref [9]).



requirements in pellets pressed at the Westinghouse Columbia plant. The latter

process was therefore pursued and another set of annular fuel rods was manufactured

(see Figure 1-4) this time at an Argentian facility.

Figure 1-4: Sintered pellets manufactured at Westinghouse (from Ref [9]).

The conclusion of the fabrication tests is that annular fuel elements can be man-

ufactured by existing commercial processes to reach required specifications using the

sintered ring pellet technique. Furthermore, this technique yields a reasonable cost

of fabrication cost (see Ref. [9]).

5. Materials and mechanical performance First of all the thermo-mechanical

performance of the sintered pellets fuel was assesed using a modified version of

FRAPCON-3 (FRAPCON-ANNULAR). The total fission gas release was calculated

to be relatively low (less than 6%) for both sintered and VIPAC condition. Even

though both the inner and outer cladding experience larger strains than solid fuel

cladding because of the larger initial diameter, the strains remain within the regula-

tory margins of 1%.



In order to assess the behavior of the annular fuel under new conditions (low

temperature, different geometry) two sample VIbrationally PACked (VIPAC) annular

fuel were irradiated in the MITR.

The major concern for VIPAC fuel is the fission gas release. A post irradiation

examination (PIE) of the VIPAC fuel samples was conducted in August 2005, and

showed lower than expected fission gas release at the burnup level of 7MWd/kg.

Unfortunately, funding did not permit longer irradiation. The fission gas release

was found to be of the order of 0.5%, and even though this number is subject to

uncertainties, the overall FGR must lie within a few percents.

6. Economic assessment The use of annular fuel will be considered only if it

proves to be economically advantageous compared to solid fuel. A detailed cost-

benefit analysis was needed to examine if annular fuel is an economically viable fuel.

Westinghouse was responsible for this study. A two step analysis was performed.

First, the manufacturing costs of annular fuel were evaluated. Since the manufactur-

ing process of the annular fuel is very similar to the one used for solid fuel, and since

the total volume of U02 required is almost the same, the total cost of manufacturing

annular fuel is expected to be only sligthly higher than that of solid fuel. The only

additional costs are due to: capital costs of adding furnaces (the overall density of

the fuel is smaller so more furnaces are required), capital costs for additional welding

stations, marginal costs due to increased zirconium usage. Overall, the cost of manu-

facturing annular fuel was estimated to be $5.02/MWh(e) versus $5.00/MWh(e) for

solid fuel.

The second step was to evaluate the effect of using annular fuel in an uprated

PWR. Several options were considered for the type of plant and the Return On

Equity (ROE) of these options are summarized in Table 1.2.

The case of up-rating an existing nuclear reactor will be discussed in greater details

in the next chapter, and the effects of conservative assumptions involved in the early

analysis will be examined.



Table 1.2: Summary of evaluated options and corresponding ROE (from Ref. [9]).

Plant type Fuel type ROE
1,717 MW(e) Generation III PWR Annular 11.3%
1,717 MW(e) Generation III PWR Solid 10.8%
1,117 MW(e) Generation III PWR Annular 7.3%
1,117 MW(e) Generation III PWR Solid 6.9%

600 MW(e) uprate to a Generation II PWR Annular 6.3%

1.2 Motivation and Methodology

As of May 2007, 436 reactors operate worldwide. In the U.S. only, 103 nuclear reactors

are in operation, providing 20 % of the electricity. Most of the cost of a nuclear power

plant is capital cost: indeed building a reactor is an important investment but has a

very low operating cost (including fuel cost).

Starting from these facts, a very intersting question arises: Is it both economically

worthwhile and technically feasible to up-rate an existing reactor to use annular fuel?

Indeed, annular fuel allows with relatively small capital investment, an increase by

50% of the power of an existing reactor. But the reactor will need to be shut down

for a period of time to add new equipment.

In Ref. [4] a detailed cost analysis was performed to obtain a good evaluation

of the cost involved. A simple transition to annular fuel was also investigated. The

objective of the present work is to elaborate on this question, and look into more

sophisticated ways of transitioning from solid to annular fuel through a mixed core

composed of annular and solid assemblies to yield an economically more attractive

solution. The question of whether this mixed core is technically feasible is then

adressed and the demonstration of the feasibility of transitioning from an all solid

core to an annular core at the nominal refueling rate is established.

Following this scope the present report is organised around three main tasks. First

(Chapter 2), different cases of up rate transition are defined and evaluated from an

economic point of view, and the most promising case is identified. Then (Chapter

3) the transition core with mixed solid and annular assemblies is evaluated in terms



of thermal-hydraulic performance. Finally (Chapter 4), the feasibility of the fuel

management scheme within given constraints is established using a neutronic solver.



Chapter 2

Economic Assessment

Before getting into the technical challenge of using a mixed core, it is important to

assess the economics of such an upgrade in an existing plant. Three main options will

be studied, these options represent the three different ways of up-rating a Generation

II PWR operating at 1200 MW(e) to 1800 MW(e).

2.1 The different options

The Base Case is the up-grade that was assessed in Ref. [9]. At year 0 the reactor

is shutdown a one year construction period starts and money is invested. The con-

struction is assumed to be undertaken co-incident with a scheduled 3 months steam

generator replacement. The investment cost obviously takes into account the fact

that the steam generator was to be replaced, and that the plant would have had to

shut down for 3 months. Right after the construction, the 'old' solid core is removed,

and a fresh core of annular fuel is charged in the reactor vessel.

Option 1 follows the same process (investment at year 0) except that the 'old'

solid core is gradually replaced by an annular core. This means that at year 1 after

all the components necessary to accomodate the uprate are replaced, the reactor will

operate with 1/3 of annular fuel and 2/3 of solid fuel; at year 2.5 it will operate

with 2/3 of annular fuel and 1/3 of solid fuel; and from year 4 on it will operate

with annular fuel only. Essentially here no fuel is thrown away, but the fuel is rather



gradually replaced. This means that the up-rate in power is also gradual at 16.7%

first, than 33.3% and eventually 50%.

Option 2 proceeds the other way around, but with the objective being still to avoid

early replacement of the unburnt fuel. From year 0 to year 3, at every refueling of the

reactor a batch of solid assemblies is discharged and a batch of annular assemblies is

charged. This means that just at the end of year 3, the only remaining batch of solid

assemblies is to be discharged. During this transition period, no up-rate is possible

(plant runs at 100% power). At year 3 the investment is made, and the construction

runs until year 4 when the plant is loaded with an annular core and can run at 150%

power.

A summary of the three options is given in Table 2.1

Table 2.1: Schedule of the different options

Time (months) Base-case Case 1 Case 2
0 Construction period, Construction period, 1/3 annular, 2/3 solid
6 core disposed remaining core kept
12 at 100% power

18 3/3 annular, at 150% 1/3 annular, 2/3 solid
24 power at 117% power 2/3 annular, 1/3 solid
30 at 100% power
36 3/3 annular, at 150% 2/3 annular, 1/3 solid Construction period,
42 power at 133% power remaining core kept

48
54 3/3 annular, at 150% 3/3 annular, at 150% 3/3 annular, at 150%

60 power power power

2.2 The Internal Rate of Return Method

The method that is used here to assess the economic attractiveness of the different

options is the so-called "Internal Rate of Return" or IRR [31(note that this rate is

referred to as a Return On Equity in Ref. [4]).

The definition of the IRR (r) of a given financial flux Fj where j represents the



period of the flux, and N is the total number of periods during which the project

operates, is the following:

S= 0 (2.1)
j=1 (1 + r)J

This rate is usually one of the tools used to assess the economic attractiveness of

a given project.

For our case the most adequate time-scale is 6 months. Indeed the plant will be

under construction for 12 months, and we considered an 18-month length refueling

cycle, so the largest common divider is 6. Thus, in equation 2.1, 2j represents year j,

and 2j + 1 represents year j and a half. This means that the r obtained is a rate over

a six month period. As such a rate does not make lot of sense in terms of economic

comparison, it is more convenient to convert it into an annual rate. To do this, simply

assume that a bank will pay you an interest rate i6m every 6 months. After one year,

the interest received is (1 + i6m) * (1 i 6m) = (1 + i 6m) 2. Let us now compute the

equivalent rate received over one year iiy: the interest received simply amounts to

(1 + i1,). Equating the two interests we obtain:

(1 + i6m) 2 = (1 ily) (2.2)

And therefore:

iy = (1 + i 6m) 2 - 1 (2.3)

Note that if i6m is small enough we get that ily = 2ism.

Consequently, an annual IRR is given by Equation 2.4

rly = (1 + r6m) 2 - 1 (2.4)

Difference between Internal Rate of Return and Return On Equity In

Ref. [4], the Return On Equity (ROE) of the project is computed and used to assess

the project. This value differs from the IRR in the sense that it accounts for the



discount rate. Essentially, the financial fluxes at each periods are discounted using

the assumed discount rate, and the ROE is the rate at which the discounted cash

flows should be discounted to obtain 0. Let us call r* the ROE, and d the discount

rate (needs to be specified). If the cash flow at period j is Fj then, over N periods,

the ROE satisfies equation 2.5, where -__-- is the discounted cash flow over period j.(l+d)j

N 3F
(l +d)j 0 (2.5)

j=1 (1 + r*)j

For a given set of cash flows Fj with j = {1, 2,..., N}, we therefore see that

(1 + d)(1 + ROE) = (1 + IRR). If IRR, ROE and d are small enough compared to

1, then we have that:

IRR e.% ROE + d (2.6)

What equation 2.6 tells us is that the ROE is what one can expect to earn on top

of the discount rate. Therefore, a ROE of 0% would mean that the investment will

earn a rate of return equals to the discount rate.

2.3 Evaluation of Options

2.3.1 Assumed Costs and Economic Conditions

The economic parameter used and their values are listed in Table 2.2

Although most of the costs come from Ref. [4] and Ref. [9], some important

figures appear to need some discussion.

Cost of the lost fuel: To compute this cost, one can consider a 3 batchs core

with a refueling period of 18 months. The first figure to obtain is the cost of a fresh

batch. At steady-state, a nuclear reactor consumes one batch of fuel every 18 months.

Knowing the electricity production during 18 months, and the price of fuel, one can

easily compute the net price of a batch of fresh fuel per unit energy. The cost of

the solid fuel per kWhr(e) indicated in Table 2.2 is 0.005 $/kWhr(e). The energy,



Table 2.2: Parameters used in the calculations (from Ref. [4] and [9])

Description
Total initial power
Increase in power
Discount rate
Inflation rate for electricity price
Inflation rate for Fuel and O&M Costs
Capacity factor
Former total capital cost
Cost of Marginal Power Increase
Lost Power Supply during classic 3 months maintenance
Replacement Cost of standard Steam Generators
Total Capital Cost (w. steam generator cost, w/o 3 months
lost power supply)
Total Capital Cost (w/o steam generator cost, w/o 3
months lost power supply)
Cost of solid fuel batch
Construction time for power upgrade
Economic life-time (for capital cost recovery)
Retail Price for Produced Power
O&M Costs (BOP only)
Annular Fuel Cost
Solid Fuel Cost

Value
1200 MW(e)
600 MW(e)

11% /yr
1% /yr
2% /yr

95%
$1,090,200,000
$1,817 /kW(e)
$124,830,000
$150,000,000
$940,200,000

$815,370,000

$74,898,000
1 year

20 years
$0.050 /kWhr(e)
$0.005 /kWhr(e)

$0.00502 /kWhr(e)
$0.005 /kWhr(e)



in kWhr(e), generated per batch is approximatly equal to 1200 MW(e) x 4.5year x

365 days x 24 hr x 95% • 15, 000 GWhr(e). Therefore the product of these two

figure is a good estimation of the price of a fresh batch of solid fuel, and one get for

one fresh batch approximetly 0.005$/kWhr(e) x 15, 000GWhr(e) $75, 000, 000.

The remaining estimation is to determine what is the value of the remaining core

after a full cycle, or what is the money lost if the remaining core would be disposed

of during a refuelling.

A good estimation is provided by Equation 2.7 [5], where n is the number of

batches in the cycle, and P the price of a fresh batch.

n-1-- P (2.7)
2

For a three batch core, equation 2.7 yields simply P.

Therefore, the price of the lost fuel, in case the remaining core is disposed of, is

approximetly 75 M$.

Cost of Lost Power Supply during classic 3 months reconstruction: This is

simply the price of electricity times the energy that would have been produced during

3 months.

Replacement Cost of standard Steam Generators: This figure is an estima-

tion of the cost of a routine steam generator replacement (not including the lost

production).

2.3.2 Results

An Excel Spreadsheet model was developped to compute the IRR of the project under

the three different cases. Appendix A displays the details of the model, and shows

the details of the calculations. The time step used is 6 months, in order to define

accurately the schedule of the different cases. Two different options were considered.

The first one is to assume that the construction of the up-rate equipment is done

during a steam generator replacement (therefore the cost of the replacement of the



Steam Generator shall not incur financial costs for the project). This option is referred

to as w/o SG: without the SG cost. The second option is simply that we do not deduce

the cost of the SG replacement from the capital cost of the project. This is referred

to as w SG.

Table 2.3 is a summary of the results for the three different cases of the IRR of

the project.

Table 2.3: Internal Rate of Return for different options

Option IRR w/o SG IRR w SG
Base case 24.6% 20.7%
Case 1 20.8% 17.6%
Case 2 27.4% 22.5%

As explained earlier, the IRR differs from the ROE in that the IRR does not take

the discount rate into account. The ROE of the project are given in Table 2.4 below.

2.3.3 Comments

It is interesting to note that Case 2 can boost the IRR by around 3 points simply by

delaying the investment and "preparing" the core gradually for use of annular fuel.

By managing the uprating of an existing plant, it is therefore possible to reach an IRR

higher than 20%, which might make it an economically viable investment for utilities.

This encouraging result is a strong incentive to pursue the technical assessment of

such an option.

Table 2.4: Return On Equity for different options

ROE w/o SG
12.3%
8.8%

14.8%

ROE w SG
8.7%
5.9%

10.4%

Option
Base Case
Case 1
Case 2

Ii
Option

I



On the other hand, it is clear that investigating Option 1 is probably not worth-

while. The cost of the wasted fuel is far too small compared to the loss of potential

production.

One can also note that the inputs to the model are relatively conservative. Given

the recent increase in the price of uranium, the price of fuel used in this assessment

(around $5/MWh(e)) might underestimate the actual cost of the fuel.

To illustrate this last point, a sensitivity analysis on the price of the fuel was

performed. The result is presented in Figure 2-1.

Figure 2-1: Evolution of IRR for Base Case, Case 1 and Case 2 with the fuel cost

For a broad range of fuel prices (ranging from $0.001/kWh(e) to $0.01/kWh(e)),

Case 2 is still the most competitive option. In addition, given the fact that Option

1 and Option 2 "save" some fuel, the IRRs of these options are less sensitive to an

increase in the fuel price. Therefore, we have strong reasons to believe that even if

Uranium price increases Option 2 will remain the most competitive option.

25.0%

23.0%

M 21.0%

19.0%

17.0%
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

$/KWhre -- Case 2 w SG
-u- Base w SG

Case 1 w SG



2.4 Results in a Stochastic Environment

Even though the assessment above clearly identified a best option compared to the

others, one could argue that one key assumption of the previous work, namely that

inputs are known with certainty, is questionnable. To answer this legitimate question

an analysis in uncertain environment was performed.

2.4.1 Methodology

The same model as for the deterministic analysis was used (namely an IRR calcu-

lation) in an Excel spread-sheet. Different input parameters (the "drving factors")

were allowed to have normal distribution, thus taking random values at each calcu-

lation step. This distribution was created using the function RANDO in Excel. This

function returns a real number between 0 and 1 with a uniform distribution 1. The

target value V was allowed to vary between a lower bound value Vmin and an upper

bound value Vma, (see equation 2.8).

V = V,,m + (Vmax - Vmin) * RAND() (2.8)

From this on, a Monte-Carlo method is used to assess the response of the model

to the stochastic input. Using the function TABLE of Excel, the model is run 2000

times, and the outputs are stored in a separate Spreadsheet. The outputs are easy

to handle, and the most efficient way to analyse them is to sort them from minimum

value to maximum value and order them in 20 different bins ranging between this two

extreme values.

With the results, it is very easy to plot both the empirical probability distribu-

tion of the IRR and the probability density function as well. These curves will give

information on both the mean IRR in stochastic environment and also the standard

deviation of IRR.

The methodology is adapted from Ref. [11].

'Because of the Central Limit Theorem, the distribution type does not affect the results, so any
kind of a distribution could be picked.



2.4.2 Uncertain Driving factors

The uncertainty about three main driving factors was investigated: the inflation of

the cost of fuel, the inflation of the price of electricity sold and the capital cost.

The assumptions on the variations of these parameters are summarized in Table 2.5.

The choice of the three particular factors may seem over restrictive, but they can

by themselves already cover a lot of the uncertainties carried by the project. For

instance, even if then total duration of the construction period was not considered it

can be argued that an increase in the construction period can be more or less reflected

in an increase in the capital cost. Similarly, the Operation and Maintenance costs

are assumed to behave as planned but in fact their fluctuation can be embeded in the

variation of the fuel cost.

Table 2.5: Mean and range of studied driving factors

Driving factor Mean value Normally distributed btw.
Fuel cost inflation 2% 1-3%

Price of electricity inflation 1% 0-2%
Capital cost $ 815,370,000 (-10%)-(+30%)

2.4.3 Results and discussion

The resulting effects of introducing uncertainties in the model will be that the mean

value will be changed, and also that the possible outcomes will be spread around the

mean.

The following Tables represent the results of the different assessments. Tables 2.6,

2.7 through 2.11 give an idea of the mean of the IRR, but also of the spread around

this mean.

The first thing to be noted is that even when allowing for uncertainties, case

2 remains the most promising one. The second observation is that the impact of

uncertainties is small compared to the perturbation applied.

In order to have a more visual representation of the results, the variation in IRR



Table 2.6: Stochastics results for Base Case with Steam Generator cost

Fuel price inflation (50%)
Elec price inflation (50%)

Capital cost (10%)

P=95% P=75% P=50% P=25% P=5%
20.76% 20.72% 20.68% 20.64% 20.59%
20.82% 20.73% 20.67% 20.61% 20.53%
22.92% 20.75% 18.63% 16.71% 15.29%

Table 2.7: Stochastics results for Case 1 with Steam Generator cost

Probability that IRR is smaller than cell value
P=95% P=75% P=50% P=25% P=5%

Fuel price inflation (50%) 17.64% 17.59% 17.56% 17.53% 17.49%
Elec price inflation (50%) 17.70% 17.62% 17.56% 17.51% 17.42%

Capital cost (10%) 19.30% 17.47% 15.65% 14.18% 13.00%

Table 2.8: Stochastics results for Case 2 with Steam Generator cost

Fuel price inflation (50%)
Elec price inflation (50%)

Capital cost (10%)

Probability that IRR is smaller than cell value
P=95% P=75% P=50% P=25% P=5%
22.79% 22.69% 22.54% 22.41% 22.29%
23.10% 22.86% 22.56% 22.22% 21.94%
25.17% 22.76% 19.78% 17.47% 16.02%

Table 2.9: Stochastics results for Base Case without Steam Generator cost

Probability that IRR is smaller than cell value
P=95% P=75% P=50% P=25% P=5%

Fuel price inflation (50%) 24.79% 24.74% 24.70% 24.66% 24.61%
Elec price inflation (50%) 26.68% 26.46% 26.29% 26.10% 25.84%

Capital cost (10%) 27.67% 24.70% 21.82% 19.29% 17.65%

Table 2.10: Stochastics results for Case 1 without Steam Generator cost

Fuel price inflation (50%)
Elec price inflation (50%)

Capital cost (10%)

P=95% P=75% P=50% P=25% P=5%
20.90% 20.85% 20.82% 20.79% 20.74%
20.95% 20.84% 20.76% 20.69% 20.58%
23.11% 20.82% 18.41% 16.31% 15.01%

Probability that IRR is smaller than cell value

[Probability that IRR is smaller than cell value



Table 2.11: Stochastics results for Case 2 without Steam Generator cost

Fuel price inflation (50%)
Elec price inflation (50%)

Capital cost (10%)

P=95% P=75% P=50% P=25% P=5%
27.56% 27.52% 27.49% 27.46% 27.42%
31.55% 30.95% 30.24% 29.52% 28.87%
31.14% 27.38% 23.62% 20.81% 18.86%

Figure 2-2: Effect of uncertainties for Base Case w. Steam Generator cost (1=Fuel
price inflation, 2=Electricity price inflation, 3=Capital Cost)

are plotted on a tornado graph. This graph compares the effect of the different driving

factors studied on the IRR.

In Figures 2-2 through 2-7 each histogram is centered at zero. The left side

represents the maximum negative deviation of IRR with probability 75%. The right

side represents the maximum positive deviation of IRR with probability 25%. In a

sense, the tornado graph represent the risk of the project to specific factors.

In addition, (1) represents fuel inflation factor, (2) represents Electricity price

inflation factor, (3) represents the capital cost factor.

From these graphs we conclude that the uncertainties effect of the fuel cost and

Probability that IRR is smaller than cell value

Tornado graph Base Case w SG
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Tornado graph Case 1 w SG
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Figure 2-3: Effect of uncertainties for Case 1 w. Steam Generator cost (1=Fuel price

inflation, 2=Electricity price inflation, 3=Capital Cost)

Tornado graph Case w SG
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Figure 2-4: Effect of uncertainties for Case 2 w. Steam Generator cost (1=Fuel price

inflation, 2=Electricity price inflation, 3=Capital Cost)
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Tornado graph ase Case wo SG

Figure 2-5: Effect of uncertainties for Base Case w/o Steam Generator cost (1=Fuel
price inflation, 2=Electricity price inflation, 3=Capital Cost)

Tomado graph Case 1 wo SG
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Figure 2-6: Effect of uncertainties for Case 1 w/o Steam Generator cost (1=Fuel price
inflation, 2=Electricity price inflation, 3=Capital Cost)

.00%-3.00% -2.00% -1.00% 0.00% 1.00% 2.00% 3.00%

IRR



Tornado graph Case 2 wo SG
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Figure 2-7: Effect of uncertainties for Case 2 w/o Steam Generator cost (1=Fuel price
inflation, 2=Electricity price inflation, 3=Capital Cost)

the price of electricity do not have a very large impact on the economic attractiveness

of the project. The capital cost has the largest impact. In addition, the effects of

uncertainties are more pronounced for Case 2.

2.5 Conclusion

The economic assessment was performed as a two step process. First a deterministic

analysis was done. We concluded that Case 2, the case in which the investement

is postponed until the core is ready to be uprated, is with comfortable margins the

most attractive with a mean IRR of 27.4% if the cost of the Steam Generator can be

deduced or 22.5% if not.

Following this outcome, uncertainties were introduced. We showed that the effects

of uncertainties are moderate. Uncertainties in the capital cost have the largest

influence on the IRR of the project. Nevertheless the main conclusion is that even

when introducing uncertainties, with a large probability (over 95%) Case 2 is still the



most attractive one.

As a general conclusion in the following chapters, we will focus primarily on Case

2 for further investigations. Case 2 presents obviously the best economic asset. Let's

also keep in mind that Case 2 is a more subtle, and therefore complicated, option

than the Base Case where the remaining core is simply disposed of. This implies that

a technical assessment of the feasibility of such an option is not trivial and remains

an open-question at this point.

The thermal-hydraulic feasibility of this transition core will be assessed in the

next chapter, followed by the neutronic feasibility.



Chapter 3

Thermal-hydraulic Assessment

In order to assess the technical feasability of using a core composed partly of annular

fuel and partly of solid fuel assemblies in a PWR, it is necessary to assess the thermal-

hydraulic behavior of such a core. The particular features we need to investigate are

whether the flow distribution through the core will still provide acceptable MDNBR

value and the total pressure drop.

The thermal-hydraulic simulations were performed using VIPRE-01 code (Ref.

[12]).

The analysis is made in two steps: (1)first create a simple model composed of two

eigths of a solid assembly and an annular assembly, respectively. This simple model

is used to acquire insight into the behavior of the two fuel types put next to one

another. (2) secondly, the whole core is modeled to account for mixing effects and

the core-wide flow distribution. The insights obtained from the simple model guided

the development of the whole-core model.

The first simple model is referred to as "Mixed assembly model", whereas the full

core model is referred to as "Mixed core model".



3.1 Descritpion of VIPRE code, and input data

3.1.1 VIPRE-01 code application to annular fuel

The assessment was done using VIPRE-01 (Versatile Internals and Component Pro-

gram for Reactors; EPRI) code [12]. This thermal-hydraulic code has been used in

a previous study to model a whole annular core [9] and is widely used by nuclear

reactor utilities. The code has also been certified by the NRC.

Initially the code was developed for solid fuel, but wisely enough the code included

a large margin for user inferred geometry and inputs. When dealing with solid fuel, an

option allows the user to define the fuel rod as a "rod". But it is also possible to model

a "hollow cylinder" composed of different materials. Therefore it is actually very

simple to model an annular rod by first creating the annular rod material (composed

of 5 layers: inside cladding, inside gap, fuel, outside gap and outside cladding), and

then creating a hollow rod. This rod is internally cooled by an inside channel, and

externally cooled by four adjacent external channels. This pattern is summarized in

Figure 3-1.

It is also important to note that VIPRE-01 inputs have to be specified in British

units.

3.1.2 Parameters and correlations used

Geometry of the fuels

The two kinds of fuel assemblies we are intersted in are the typical solid fuel rod of

the Westinghouse 17x17 design and an annular fuel rod in a 13x13 assembly [9].

Table 3.1 summarizes the geometrical parameters of both the 13x13 annular fuel

assembly, and the solid 17x17 fuel assembly.

Parameters of the reactor

For our modelling the parameters of a typical Westinghouse 4-loop PWR were used

based on [6]. We recall the different parameters in Table 3.2
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Figure 3-1: Cross-section of an annular fuel pin with hydraulic channels



Table 3.1: Geomerty of the annular fuel assembly

Annular fuel assembly

Solid fuel assembly

Array size
Assembly pitch
Pin pitch
Rod inner dia.
Inner clad outer dia.
Fuel inner dia.
Fuel outer dia.
Outer clad inner dia.
Rod outer dia.
Guide tube dia.
Outer channel area
Inner channel area
Heated perim. out.
Heated perim. in.
Equivalent dia. out.
Equivalent dia. in.
Array size
Assembly pitch
Pin Pitch
Fuel outer dia.
Clad inner dia.
Clad outer dia.
Guide outer dia.
Coolant channel area
Heated perim.
Equivalent dia.

13x13
8.465 in
0.650 in
0.340 in
0.385 in
0.390 in
0.555 in
0.560 in
0.605 in
0.605 in
0.135 in2

0.091 in2

1.901 in
1.068 in
0.284 in
0.340 in
17x17
8.465 in
0.497 in
0.325 in
0.330 in
0.375 in
0.482 in
0.137 in 2

1.178 in
0.465 in

21.5 cm
1.651 cm
0.864 cm
0.978 cm
0.991 cm
1.410 cm
1.422 cm
1.537 cm
1.537 cm
0.871 cm 2

0.587 cm 2

4.829 cm
2.713 cm
0.721 cm
0.864 cm

21.5 cm
1.262 cm
0.826 cm
0.838 cm
0.953 cm
1.224 cm
0.884 cm 2

2.992 cm
1.181 cm

-------

and the solid fuel assembly



Table 3.2: Major parameters for a typical 4-loop PWR using solid fuel (from [6])

Parameters for a 4-loop PWR
1. Plant
Number of primary loops
Reactor thermal power (MWth)
Total plant thermal efficiency (%)
Plant electrical output (MWe)
Power generated directly in coolant (%)
Power generated in fuel (%)
2. Core
Core barrel inside diameter / outside diameter (m)
Rated power density (kW/L)
Core voume (m 3 )
Effective core flow area (m 2)
Active heat transfer surface area (m2)
Average heat flux (kW/m 2)
Design axial enthalpy rise peaking factor (Fah)
Allowable core total peaking factor (FQ)
3. Primary coolant
System pressure (MPa)
Core inlet temperature (oC)
Average temperature rise in reactor (oC)
Total core flow rate (Mg/s)
Effective core flow rate for heat removal (Mg/s)
Average core inlet mass flux (kg/m 2s)
4. Fuel rods
Total number
Fuel density (% of theoretical)
Cladding material
Active fuel height (m)
5. Fuel assemblies
Number of assemblies
Number of heated rods per assembly
Number of grids per assembly
Fuel assembly effective flow area (m 2)
Location of first spacer grid above beginning of heated length (m)
Grid spacing (m)
Grid-type
Number of control rod thimbles per assembly
Number of instrument tubes
6. Rod cluster control assemblies
Neutron absorbing material
Cladding material
Cladding thickness (mm)
Number of cluster Full/Part length
Number of absorber rods per cluster 47

3.76/3.87
104.5
32.6

4.747
5546.3
598.8
1.65
2.5

15.5
292.7
33.4
18.63
17.7

3,729

50,952
94

Zircaloy-4
3.66

193
264
7

0.02458
0.3048
0.508

L-type
24
1

Ag-In-Cd
Type 304 SS

0.46
53/8
24

4
3411
34

1150
2.6

97.4



Based on Table 3.2, the parameters used for the models are given in Table 3.4.

Table 3.4: Inputs used for the mixed assembly and the full core models

Operating pressure 2248.1 psi
Inlet temperature 562.4 OF*
Flow rate (1/8 whole core) 4877.31 lb/s**
Flow rate (1/4 assembly) 50.42 lb/s**
Assembly peaking factor 1.587
Over-power margin (transient) 18 %
*: Table 3.2 value increased by 2 'C
**: Table 3.2 value decreased by 5 % to account for bypass

Correlations employed

Before giving an exhaustive list of correlations used in the VIPRE-01 models, two

main features have to be discussed more in details: the turbulent mixing coefficient

3, and the resistance to lateral flow. These two parameters have an appreciable effect

on the thermal-hydraulic behavior of the system.

First, let us discuss the turbulent model adopted. The way of defining the cross

flow w' (in lb/sec - ft) resulting of an axial flow G (in lb/sec - ft 2 ) over a gap of

length s (in ft) is given by Equation 3.1.

w' = PsG (3.1)

The effect of turbulent mixing is a better mixing of the enthalpy, which leads

to a reduction in magnitude of enthalpy differences among channels and thus in-

creased MDNBR. Larger turbulent mixing coefficient i.e. larger Q will lead to a

larger MDNBR. According to [13], a mixing coefficient of 0.076 for a rod bundle with

small mixing vanes has been observed. Nevertheless, given the fact that annular chan-

nels have smaller gap width, it has been assumed that 3 = 0.0. This means that no

mixing is allowed and this assumption will yield a conservative MDNBR. NRC also

states that a zero mixing should be assumed unless experiments could demonstrate a

stricly positive value.



Secondly, the resistance to lateral flow is the key parameter determining the pres-

sure drop across channels AP,,,os which drives cross flow. Ap,,,o is defined in 3.2.

APcross = KG WWV (3.2)
2s2

KG is the lateral resistance coefficient, w is the cross flow, v' the specific volume

for momentum, and s is the gap width. A good value for KG is 0.5, but as stated

later KG was taken to be a maximum of a laminar term and a turbulent term. The

turbulent term was taken as the more conservative between the annular and the solid

fuel using correlations from [1]. In addition, it was showed by a sensitivity analysis

that this parameter had no impact at all on the MDNBR.

Axial power distribution: The axial power distribution was assumed to be a

chopped cosine with peak to average of 1.55.

Water properties function: the water properties function used is the EPRI water

properties function, which is applied to compute all fluid properties. No tables are

needed for this correlation.

Void correlation: The EPRI correlation was used for the subcooled void. We used

the Zuber-Findlay void drift correlation with coefficients developed for the EPRI void

model; finally the Columbia/EPRI correlation was used for the two-phase friction

multiplier.

Heat transfer correlation: The Dittus-Boelter correlation was used for the single-

phase flow, whereas the Thom correlation was used for subcooled and saturated nu-

cleate boiling

DNB analysis for inner channel: The W-3S correlation was used which does

not have any grid mixing factor.



DNB analysis for outer channel: The W3-L correlation was used with a grid

mixing factor of 0.043, a grid spacing factor of 0.066 and a grid factor leading coeffi-

cient of 0.986.

Turbulent mixing model: As discussed above, we conservatively choose 3 = 0.0.

Turbulent momentum factor: FTM=0.0, which means that the turbulent cross

flow can only mix enthalpy (and not momentum). Again this value is conservative.

Axial friction factor: The correlation is of the form

fax = Max(0.316Re-0 25; 64.0Re- 1°0 ) (3.3)

The first term represents the turbulent case, the second term the laminar one.

Lateral drag correlation: This correlation is also defined as the maximum of

a laminar term and a turbulent term. KG = Max(Kt1rb; Klam), with Kturb =

3.098Re-0 2 and Klam = 0.5 (from Ref. [12]).

Form loss coefficients: The inlet form loss is assumed to be 0.4. The outlet form

loss is 1.0. A form loss of 0.6 was assumed for the mixing vanes grids (this grids are

only seen by outside channels).

The correlations are summarized in Table 3.5.

3.2 Mixed Assembly model

3.2.1 Overall presentation of the model

The basic idea of this first model is to simulate the thermal-hydraulic behavior of two

assemblies of respectively solid and annular fuel. The overall picture of the model is

given by Figure 3-2 which represents two eigths of assemblies joined together.



Table 3.5: Correlations used in the VIPRE-01 models

Axial power distribution
Water properties function
Void correlation for sub-
cooled void
Void drift correlation
Two-phase friction multi-
plier
Heat transfer correlation
(single phase)
Heat transfer correlation

(subcooled and saturated
nucleate boiling)
DNB analysis
channel
DNB analysis
channel

for inner

for outer

Turbulent mixing model
Turbulent momentum fac-
tor
Axial friction factor
Lateral drag correlation
Form loss coefficients

Chopped cosine with peak to average of 1.55
EPRI water properties function
EPRI correlation

Zuber-Findlay correlation, coefficients from EPRI
Columbia/EPRI correlation

Dittus-Boelter correlation

Thom correlation

W-3S, grid mixing factor of 0.0

W3-L, grid mixing factor of 0.043, grid spacing
factor 0.066, grid factor leading coefficient 0.986
3=0
FTM = 0

fax = Max(0.316Re-0.25; 64.0Re- 10 )
KG = Max(3.098Re-0 2; 0.5)
inlet: 0.4, outlet 1.0, mixing vanes grids 0.6

In order to provide a reference "solid" case to compare our results with, a sim-

ilar model of two eights of solid assemblies joined together was set up. The overall

representation of the solid assemblies model is given on Figure 3-3.

3.2.2 Power Distribution and detailed model description

Parameters

At this stage of the study, the neutronic analysis had not been performed yet because

it seemed more important to first evaluate the thermal-hydraulic part of the problem

before assessing the neutronic of the core. Therefore, the power distribution adopted

is, for the solid part the standard Westinghouse "hot assembly" distribution (see

Figure 3.2.2), and for the annular part the power distribution obtained in the case of

Correlation or valueParameter



Solid fuel
(17x17)

Figure 3-2: Schematic of one fourth of the mixed assembly model

Figure 3-3: Schematic of one eigth of the solid assembly model
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a full annular core [9], and reproduced on Figure 3-5.

Note that Figure 3-5 factors are not normalized to 1.000 but to the assigned peak-

ing factor of 1.587, whereas in Figure 3.2.2 the intra-assembly factors are normalized

to 1.000.

The principal parameters of the models are summarized in Table 3.6. The average

assembly power per rod qM is a weighted average of the power per rod in the annular

assembly, and in the solid assembly.

SqA(132 - 9) + qs(17 2 - 25) (3.4)
132 - 9 + 172- 25

Where qA and qs are the power per rod in the annular assembly and the solid as-
Tonm oQth __ 3411 MW(th)

sembly respectively. So we have qA Total number of rod in annular core - 193*(13*13-9)

110.5 kW/rod. Similarly, qs = 66.9 kW/rod.

Given the different number of rods in the annular assembly (132 - 9) versus solid

assembly (172 - 25), it is clear that the peaking factor assigned to each rod in the input

file has to reflect this difference. In order to get a good representation, each 1/8th

of assembly was treated seperatly. The peaking factor were normalized to 1.000 and

then the annular rods where weighted with nA = =NAN 1.325 and the solid rods

with ns -= NA+Ns 0.803, where NA is the number of annular rods in an assembly,

and Ns the number of solid rods in an assembly.

Table 3.6: Parameters in the Mix-assembly model

Model size 2*1/8th of assembly
Operating pressure 2248.1 psi (15.5 MPa)
Inlet Temp.* 558.9 F (294.7 C)
Mass flux** 50.421 lb/s (22.87 kg/s)
Average power per rodt 156.2 kW/rod
Peaking factor 1.587
Additional power margin 18%

* 2 C higher than operating Temp.
** 5% lower than total flow to account for bypass

t 18% overpower

The input file for VIPRE-01 is given in Appendix B.
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Figure 3-4: Westinghouse power distribution for hot solid assembly
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Figure 3-5: Power distribution for hot annular assembly (fron [9])
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Channel numbering

Figure 3.2.2 and 3.2.2 show the numbering of the channels and the rods for the mixed

assembly model, and the solid assembly model.

Methodology

The methodology employed was a two step method. The idea is to make our simple

model as close to the real "hot" assembly as possible. The first step consists of a run

at average core power (plus 18% overpower) and VIPRE-01 solves for the core-average

pressure drop. This gives a good approximation for what the core pressure drop will

be. The second step is a run at hot assembly power with the assigned pressure drop

from step one calculation.

Adopting this methodology yields more conservative results than directly simu-

lating an unconstrained pressure drop at hot power because the pressure drop at core

average power is expected to be smaller than the pressure drop at hot power, and

there was no opportunity for having this feedback in the two-step approach.

3.2.3 Results

Pressure drop at 100% power

For a 100% power, which correponds in the solid case to Psolid = 66.9 kW/rod and

in the mixed case to PMi, = 83.4kW/rod we obtain the following results:

* For solid assembly model: APsolid = 17.89 psi (0.123 MPa)

* For mixed assembly model: APMix = 18.00 psi (0.124 MPa)

The larger pressure drop for the mixed assembly than for the solid assembly is

consistent with the fact that the annular assembly has a smaller equivalent diameter

than the solid assembly and thus sligthly larger AP. Nevertheless, the difference in

pressure drops is very small (less than 1%) and this is due to the fact that in the

design of the annular assembly, an assembly geometry yielding comparable pressure



Rod number XX

Channel number YY

Solid rod

Annular rod

Figure 3-6: Channels and rods numbering for Mixed assembly model.



Figure 3-7: Channels and rods numbering for Mixed assembly model.
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drops (with slightly larger AP in annular fuel assemblies) with the solid assembly

was developed [9].

MDNBR at "hot" power

As explained above, the code was then run with the fixed AP found at 100%. It is

intersting to note that the MDNBR was reached in both the Solid assembly model

and the Mixed assembly model in the same channel, located in the solid part, and

which corresponds to the solid hot channel.

* For solid assembly model: MDNBRs0 oid = 1.309

* For mixed assembly model outer channels: MDNBRMi, out = 1.320

* For mixed assembly model inner channels: MDNBRMiX In = 1.828

These results show that the annular fuel part not only has a large DNBR, but it

also has a positive effect on the MDNBR which occurs in solid rods.

The explanation of this phenomenon is to be found in what mostly drives the

DNB. The peaking factors of the rods surrounding a channel are very important, but

we were cautious enough in our normalization to assign the same power per rod in

the Mixed assembly model as in the Solid assembly model. The mass flux is also

important: the higher the mass flow, the higher DNBR is.

It turns out that the mass flow rate in the Mixed model is different than in the Solid

model. To illustrate this, we have plotted in Figures 3-8 and 3-9 the axial evolution of

the mass flow rate for the mixed assembly model, and for the solid assembly model.

Note: the hot channel is channel 14 for both models.

Figure 3-9 shows the classic picture expected in case of solid fuel: the mass flow

rate in the hot channel has overall decreased from the inlet to the outlet. On the

other hand Figure 3-8 is much more intriguing at first sight: we can see that in the

hot channel (and in the solid channels in general) the channel tends to first gain some

mass flux, before eventually gradually loosing some. Overall, the hot channel has

almost the same mass velocity at the inlet and at the oulet.



Figure 3-8: Mass velocity in different channels (S: Solid channel, A: Annular outter
channel, Tr: transition channel) for mixed assembly model
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Figure 3-9: Mass velocity in different channels for the solid assembly model
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Figure 3-10 compares the two mass velocities in the hot channel.

Figure 3-10: Comparison of mass velocities in the hot channel of the Solid model v.s.
the mixed model

It is also of interest for us to locate more precisely the occurrence of MDNBR.

Figure 3-11 shows that MDNBR is reached around axial nodes 108.1-115.3 inches.

Looking at this particular zone in Figure 3-10 we can see that the mass velocity in

the mixed assembly model is higher than the solid assembly model. This is the main

reason why MDNBR is slightly better in the mixed assembly model.

But why does the mass velocity has this value in the mixed assembly model? An

answer to this question is suggested by looking at Figure 3-8. We can clearly see

three different trends on this graph:

* Solid channels: mass velocity increases and then decreases. Overall there is a

gain or stability of mass flow rate.

* Transition channels (at the interface solid/annular): mass flow rate remains

mostly constant.
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Figure 3-11: DNBR in the hot channel for the mixed assembly model

* Annular channels: mass velocity decreases and then increases. Overall there is

loss of mass flow rate.

What is lost in some channels must be gained in others: annular channels loose

some mass velocity to the benefit of the solid channels.

In order to understand this behavior, we have to ask ourselves what is driving

the mass flux? Part of the answer is the equilibrium quality. Figure 3-12 shows the

axial evolution of the equilibrium quality in different channels for the mixed assembly

model. The main conclusion of this graphic is that the annular channels have a higher

equilibrium quality than the solid channels. Therefore, the fluid boils earlier in the

annular channels increasing earlier the hydraulic resistance and forcing the mass flow

to decrease.

Another very intersting conclusion of this model is that the inside channels (which

were the channels where DNB occured for a full annular core) have an MDNBR well

above 1.300. This is important because previous work (Ref. [9]) showed that the

limiting channels in annular assemblies at 150% power are the inner channels. At

r_-



100% power, annular fuel channels have a large MDNBR margin and can therefore

easily loose some flow in the favor of solid fuel channels where the MDNBR occurs.
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Figure 3-12: Equilibrium quality in different channels (S: Standard, A: Annular, Tr:
transition) for the mixed assembly model



3.3 Mixed core model

Having investigated the simple case of a mix assembly, we will simulate the whole

core.

3.3.1 Overall presentation of the model

We have modeled 1/8th of the core. Focusing on a three batch reactor, we have

modeled a transition core containing one third of annular assemblies and two thirds

of solid assemblies. This is conservative since in case of two third annular and one

third solid fuel, even more flow will be diverted to the solid fuel assemblies which are

limiting with respect to MDNBR. The general layout of the assemblies is given in

Figure 3-13.

We also developed a very similar solid core model to be able to compare our results

to a referene case. The general layout of this model is given in Figure 3-14.

3.3.2 Power Peaking and Model Numbering for Full Core

Model

Parameters

The power distribution used in Ref. [9] was used for both the mixed core and the

solid core. The distribution is reproduced in Figure 3-15. It is important to note

that the hot channel corresponds to a solid assembly. This is a conservative way of

modeling the core: we have just seen that the annular rods, kept at 100%, have a

larger MDNBR. Therefore, placing the annular assemblies in the hot regions would

increase the overall MDNBR. In addition, Figure 3-15 is a conservative power peaking

used typically for licensing. Moreover, the hottest channels are all confined in the

center of the core to minimize the benefits of mixing from "cold" adjacent assemblies.

The major values of the model are given in Table 3.7.

As done in the mixed assembly case, particular attention is paid to define properly

the normalization factors. As explained earlier the fact that annular assemblies are
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Figure 3-13: General layout of the mixed core model

Table 3.7: Parameters in the Mix-core model

Model size 1/8th of core
Number of solid assemblies 16 + 1
Number of annular assemblies 8
Operating pressure 2248.1 psi (15.5 MPa)
Inlet Temp.* 558.9 F (294.7 C)
Mass flux** 4877.3 lb/s (2212.3 kg/s)
Average power per rod 77.0 kW/rod
Additional overpower 18%

* 2 C higher than operating Temp.
** 5% lower than total flow to account for bypass

"

Annular 
assembly
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Figure 3-14: General layout of the solid core model

I \

I I 7

--



Figure 3-15: Power distribution used in the full core models
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13x13, and solid 17x17 changes the number of rods per assembly. Therefore, the

peaking factors of individual rods must reflect this difference. We can define nA and

ns, respectively as the geometry factors for annular and solid rods.

8NA + (16 + 1/8)Ns
A (8 + 16 + 1/8)NA

S8NA + (16 + 1/8)Ns 0.87 (3.6)
(8 + 16 + 1/8)Ns

The average core power is a weigthed average of the core-average power of an

annular rod at 100% power and the core-average power of a solid rod at 100%.

8 NAPA + (16 + 1/8)NsPsPMix core = 8NA + (16 + 1/8)NsPs 77.0kW/rod (3.7)
8NA + (16 + 1/8)Ns

We give also in Figure 3-16 and 3-17 the channels and rods numbering of the

Mixed Core model.

The input file for VIPRE-01 is given in Appendix B.

Methodology

The methodology that was used here is based on a single run only. The code will

compute at each node the pressure drop so that this pressure is uniform across the

core but the pressure drop is not pre-determined.

3.3.3 Results

Pressure drop

The calculated pressure drops for both the mixed core and the solid core reference

are as follows:

* For solid core model: APSolid core = 18.27psi

* For annular core model: APMiz core = 18.30psi



Figure 3-16: Overall Channels and Rods numbering for the Mixed Core model.
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Figure 3-17: Hot Region Channels and Rods numbering for the Mixed Core model.
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The results show that the pressure drops are very similar. This result can be

explained by the fact that the annular assemblies were primarily designed such as

their pressure drop was close to the reference solid core pressure drop. We also have

approximetly one third of annular assemblies only, and mostly in cold regions.

A very important conclusion is that the pressure drop of the mixed core is almost

the same as the reference case (different by less than 0.2%). This makes this mixed

core technically feasible from the pressure drop point of view, i.e. there is

no need to change the reactor coolant pumps during the transition period

of Case 2.

MDNBR

The calculated values of the MDNBR were as follows:

* MDNBR for solid core model: MDNBRsoIid co = 1.575

* MDNBR inner channels for annular core model: MDNBRix coe in. = 1.732

* MDNBR outer channels for annular core model: MDNBRMiX o out. = 1.576

For the outer channels, it is important to note that the MDNBR occurs on the

same rod and in the same channel for both the mixed core and the solid core.

The major results here are, first and foremost that the MDNBR for the mix

core is well above 1.300 ; Secondly the effect of annular assemblies next to hot

solid assemblies in the whole core is negligible ; and third the whole core DNB results

are better for the outer channels and solid channels but worse for the inner channels

compared with the mixed assembly model. The reason for this is that in a whole-

core model, hot assemblies communicate with cold assemblies and due to much larger

power peaking than in the mixed assembly model more flow is diverted from the cold

assemblies to the hot assemblies at the inlet meaning that the inlet flow rate is much

higher in the hot assembly of the whole-core than in the hot assembly of the assembly

model. Given the fact that MDNBR occurs in the upper part of the assembly, the

additional flow will benefit MDNBR. This analysis only applies to solid channels or



outer annular channels. Inner channels are connected with the rest of the core only at

the upper and lower plenum. Therefore, they do not benefit from this phenomenon.

On the contrary, their mass flow rate is lower in the case of mixed assembly core

resulting in lower MDNBR.

The fact that MDNBRslod MDNBRMix seems at first sight in controversy

with the results of the assembly model, which suggested that coolant flow was driven

from annular channels to solid channels, thus benefiting the MDNBR. In the case of

a whole core the situation is not as trivial: flow from annular assemblies have the

choice between going in a hot solid part, or a cold solid part. Some flow will therefore

obviously be deviated from the cold solid parts of the core, and the positive effect we

used to have will be diluted.

Another important factor is that in a whole core model a large part of the core

has negative equilibrium quality. This means that hot channels will lose mass flux

along the axial direction. This feature can be illustrated by ploting the mass velocity

in the hot channel for the whole core model and for the assembly model. This is done

in Figure 3-18.

It is seen that the mass velocity for the full core is significantly higher at the

inlet, but reaches the same level at the oulet compared with the mixed assembly

which remains mostly constant. This result is very consistent with the fact that now

the hot channels are connected to cold channels, and some flow is diverted from hot

channels to cold channels. This feature also explains the increase in pressure drop

from the assembly model to the core model. Indeed, in order to compensate for the

loss in the hot channel, a larger pressure drop has to be reached so that enough flow

is pushed through at the assembly inlet.

This general trend of hot regions loosing mass velocity whereas cold regions gaining

mass velocity is illustrated in Figure 3-19.

3.3.4 Conclusions

The conclusions of the thermal-hydraulic assessment of the transition core are very

encouraging. We have found that both the pressure drop and the MDNBR of a



Figure 3-18: Mass velocity in the hot channel in the full core model and in the mixed
assembly model
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Figure 3-19: Mass velocity of different regions in the full core model
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mixed core are not impacted by using a mixed core. The reader should also bear in

mind that a very conservative fuel layout has been chosen. One could think of using

the good thermal-hydraulic behavior of the annular fuel by actually placing annular

assemblies in the hottest regions and leaving solid assemblies in the cold regions of

the core. This kind of "fuel management" could greatly improve the MDNBR.

3.4 Sensitivity to power distributions

Now that we have establihed that, given the power distribution assumed, the thermal-

hydraulic performance of the core is well within the margins, we will evaluate the effect

of perturbating the power distribution.

In order to achieve an increase of 50% in power after the core has been up-rated,

higher than solid fuel enrichment will be needed. Therefore, more power might be

produced in the annular part than we expect (put differently, peaking may be higher

in the annular assemblies).

A deviation from the distribution given in Figure 3-15 was studied. Let us define

a parameter a as the deviation from the reference factor. The peaking of annular

assemblies will be multiplied by a and the peaking of the solid assemblies reduced to

keep a normalized power distribution. For instance, a = 1.05 means that the peaking

power in all annular assemblies will be increased by 5%.

Figure 3.4 shows the evolution of the MDNBR with the parameter a for both

the solid channels, the outer annular channels, and the inner annular channels. The

analysis was also performed at 5% higher flow rate (such an increase is feasible with

existing pumps).

Let us keep in mind that the MDNBR is reached in the outer channels of solid

fuel rather than in the annular fuel, and therefore an increase in the share of power

in the annular part will result in an increase in the DNBR of the solid channels

(upward sloping curve). Conversely, increasing the share of power produced in annular

assemblies will decrease the DNBR in the inner channels (downward sloping curve).

The inner channels are much more sensitive to a change in peaking factors. These
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channels have connections with the rest of the channels only at the upper and lower

plenum, so they can't benefit of any mixing feedback the way other channels can.

Therefore, an increase in the power fraction in annular assemblies will first increase

MDNBR (positive effect on solid channels) and at some point start reducing MDNBR

because of the negative effect on the inner channels.

In conclusion, at 100% flow rate, it is possible to increase the power fraction in

annular assemblies by about 3%. If the flow rate is increased by 5%, this figure goes

to 8%.

3.5 Conclusions

Three main results were reached. The first one is that, because the initial design of

annular fuel was performed such that the pressure drop of annular assemblies is close

to the one of solid fuel, the overall pressure drop of a mixed core is very similar to

the pressure drop of a standard solid core.

The second conclusion is that, even when assuming very conservative fuel man-

agement (i. e. using solid fuel in hot regions), MDNBR in the mixed core is very close

to the reference case, and annular fuel helps to some extent to have a larger MDNBR.

The third and final conclusion is that the peaking can be increased by about 8% in

the annular assemblies while still maintaining the same MDNBR, given the neutronic

designer probably enough room to design the core.

The crucial question of the thermal-hydraulic feasibility of this innovative mixed

core has been adressed. We will look more carefully at the neutronic aspect of the

design in the next chapter.



Chapter 4

Reactor Physics Assessment

In order to complete the feasibility evaluation of a transition core from solid fuel to

annular fuel, the neutronic behavior of the core during the transition needs to be

assessed. The analysis was performed using the commercial neutronic solver package

CASMO-4, TABLES3 and SIMULATE3 developped by Studsvik inc. (see Ref. [8],

[10] and [2])

After describing the code and the adjustments that are required to use the package

with the annular fuel we will detail the method that was used and the parameters

that were assumed. The core was simulated with various poisoning patterns.

4.1 The CASMO-TABLES-SIMULATE package

4.1.1 Description of the codes

The Studsvik Core Management System (CMS) includes CASMO-4, TABLES-3 and

SIMULATE-3. The CMS is a licensing-level computer suite that is used by more than

200 nuclear reactors out of the 441 existing commercial reactors. The codes package

is capable of simulating steady-state LWR core operations. We will detail briefly the

particularity of each code.

CASMO-4 is a lattice physics code. It is a multi-group two-dimensional transport

theory solver, entirely written in Fortran 77. CASMO-4 can perform burn-up cal-



culations of LWR assemblies or pin cells of "standard" geometry (i.e. either square

lattice or hexagonal lattice) composed of solid fuel. A major concerned raised and

addressed in Ref. [9] is that CASMO does not have the capability to model directly

an annular fuel rod. We will discuss in greater details the issue that this limita-

tion raises, and the solution developped to fix it. CASMO-4 gives as an output the

cross-sections of a given assembly for different temperatures, boric acid concentration,

burnup, moderator temperature, history variables .etc.

TABLES-3 plays the role of the interface between SIMULATE-3 and CASMO-4.

Taking the outputs given by several CASMO-4 runs, TABLES-3 tabulates them into

a binary-format library that can then be read by SIMULATE-3.

SIMULATE-3 is an advanced three-dimensional, two-group, nodal code for LWR

steady-state analysis. It perfoms a coupled thermal-hydraulic/neutronics calculation

and iterate until obtaining the core power distribution. SIMULATE-3 represents the

core by dividing it into several regions (called nodes). The parameters inside each

node are the homogenized parameters obtain via the lattice physics code CASMO-4.

Then the code solves the three-dimensional transport equation by first integrating over

the two transverse directions and then solving the one-dimensional equation. Note

that SIMULATE-3 does not, strictly speaking, need to know the specific geometry

of the fuel. Therefore, using annular fuel assemblies should not change the results of

SIMULATE-3 if the CASMO-4 calculations already accounts for this type of geometry.

The advantages of using the CMS is that this code is being used extensively in the

industry, the results will have credibility. In addition the computational time required

to simulate an entire core during several cycles is small compared to probabilistic codes

like MCNP.

4.1.2 CASMO-4 adjustments for annular fuel

In order to have a full understanding of the adjustments that were required for the

CASMO-4 inputs we will recall the work reported in Ref. [9].

Xu et al. performed a benchmark calculation between CASMO-4 and MCNP-4C

and showed that CASMO-4 will generally over-predict the eigen value of the transport



equation. The reason for this over-estimation lies in the fact that CASMO-4 is not

capable of modeling a hollow shape with internal water, whereas MCNP-4C can.

Indeed due to the water presence inside the annular fuel, the shelf-shielding effect is

reduced and U-238 resonance captures are effective on both the outter and the inner

surface of the fuel. Because a hollow geometry cannot be specified in CASMO-4, the

resonance integral of U-238 is computed only on the outter surface and is therfore

underestimated.

MIT being not granted the right of access to the source code of CASMO-4, this

feature could not be fixed in the source code. Instead, Xu et al. fixed the prob-

lem by virtually increasing the concentration of U-238. By benchmarking the re-

sults of CASMO-4 runs against an MCODE-1.0 simulation, it was demonstrated that

CASMO-4 would match MCODE-1.0 with small deviation if the U-238 content

of poison-free fuel is virtually increased by 20%, and the U-238 content of

poisoned fuel is virtually increased by 30%.

4.2 General method and parameters

4.2.1 Modeling requirements

As our reference case, we will use a standard 4-loop Westinghouse PWR with an

18-months cycle length, and a three batch loading pattern of solid 17x17 fuel with

4.5% enrichment. We take the total power to be 3411 MWth.

What is needed for assessment of the transition from a 3 solid-batches core to a

3 annular-batches core through 2 intermediary steps, is to ascertain that appropriate

reactivity exist for the entire cycle, within acceptable peaking factors.

SIMUALATE-3 makes it possible to simualate the core for several cycles. Thus in

each of our input, we will first run SIMULATE-3 for nine cycles recharging each time

reference solid fuel in order to reach at the end of cycle 9 the equilibirum core that

is expected to be found in an operating reactor ready to be uprated to annular fuel.

Then, at cycle 10, cycle 11 and cycle 12 annular-batches are introduced so that at the



begining of cycle 12, the core is fully composed of annular fuel. At this point both

the core power, and the total flow rate are increased by 50%. We run 2 additional

cycles to validate the results in the up-rated core. Table 4.1 summarizes the loading

process.

Table 4.1: Summary of loading process for neutronic analysis

4.2.2 Objectives and constraints

The main core design goals in this work are: (i) to sustain an 18-months cycle length

even during transition and after, (ii) to maintain peak critical boron concentration

below 1750 ppm, and (iii) to maintain power peaking during cycles such that the hot

channel factor FAh < 1.65 and the hot spot factor Fq < 2.5.

Important note: At this point, we need to make an important note. The peak-

ing factors that we considered as being our design targets are based on rod peaking.

Remembering the little mathematical gymnastic that was required in the thermal-

hydraulic to accomodate the peakings while accounting for the difference in the num-

ber of rods of annular assemblies versus solid assemblies we directly conclude that the

criterion of the hot channel factor, or hot spot factor are irrelevant for the transition

cycles (cycle 10 and 11). Indeed, the peaking factors in the annular parts will be very

high compared to the values for in the solid rods. To some extent a "cold" annular

rod could have a higher peaking than a "hot" solid rod simplpy because they are

13 * 13 - 9 = 160 rods in an annular assembly, and 17 * 17 - 25 = 264 rods in a solid

assembly and the larger annular rod generates more power. Instead, a node averaged

peaking (as explained later) will make more sense and will not be affected by this

Cycle num. Fuel-type loaded Power and Flow rate level
1 to 9 Solid 100%

10 Annular 100%
11 Annular 100%

12 to 14 Annular 150%



difference.

4.2.3 Three-step method

In order to meet the targets assigned, a general three steps method can be used.

* First, determine the enrichment required to sustain the cycle length desired

* Secondly, determine the total amount of poison that needs to be added

* Finally, adapt the poisoning patern and the loading partern to reduce peaking

Note that determining the enrichment that is required is not too difficult but the

next two steps are much more delicate and need a lot of trial-and-error processes. But

we remind the reader that the main purpose of this work is not to perfectly determine

the exact design of a transition core, but rather to give a general picture and prove

that a satisfactory core design can be achieved.

4.2.4 Enrichment

Determining the approriate enrichment is probably the most straightforward question

to work on. We are focusing on a three batch core, meaning that the first annular

batch loaded at the begining of cycle 10 will be burned at 100% power for two cycles,

and at 150% for one cycle. Similarly, the second annular batch loaded at the begining

of cycle 11 will be burnt for one cycle at 100%, and for two cycles at 150%. The solid

fuel that is loaded in core to run at 100% power has a 4.50 w.t.% enrichment. The

annular fuel loaded for operation at 150% needs to have an enrichment of 8.5 w.t.%.

In order to accomodate the 50% overpower during three cycles, the annular fuel needs

an extra 4.00 w.t.% ; therefore, in order to keep an 18-month cycle length all along

the transition, the first batch of annular fuel (loaded at cycle 10) will need one third

of 4% more enrichment, and the second batch (loaded at cycle 11) will need two thirds

of 4% more enrichment.



Once the required mean enrichment is determined the batch consisting of 72 as-

semblies, is split into 24 assemblies with a low enrichment, and 48 assemblies with

high enrichment.

Table 4.2 summarizes the enrichment choice that was selected for the rest of the

study.

Table 4.2: Detail of the enrichment chosen for the transition cycles

Cycle 09 Cycle 10 Cycle 11 Cycle 12
Low enr. 4.40% 5.60% 6.90% 8.10%
High enr. 4.80% 6.20% 7.60% 9.00%

4.2.5 Poisoning pattern and loading pattern

For this study, the only poison that was considered is gadolinium oxide (Gd203). An-

other very popular poison is a thin layer of boron coating applied on the fuel surface:

the so-called Integrated Fuel Burnable Absorber (IFBA) developed by Westinghouse.

But the use of IFBA was not considered because the manufacturing of externally and

internally coated annular fuel rods with the IFBA process seemed complex, and not

readily available.

In order to create CASMO-4 input data for different types of assemblies, we will

need to compute the weight content in U, Gd, O of our fuel. The details involved in

this calculation are given in Appendix C.

Two different parameters can be changed when speaking of the poisoning pattern:

the poison content (weight percent of Gd203 content) but also the number of poisoned

rods. In Ref. [9], different arangements of poisoned rods were established and showed

good results. So, in order to decrease the number of free variables that we can play

with, we intentionally limited ourselves to using the poisoning patterns established

in [9]. We reproduce these patterns in Figure 4-1.

In addition, it is important to get a good representation of the effect of poisoning

on the neutron flux and on the eigenvalues. In other word we seek to answer the



16 Burnable Poison Pin Layout

24 Burnable Poison Pin Layout

32 Burnable Poison Pin Layout

0 Poison-free fuel rod

O Poisoned fuel rod

O Guide tube

28 Burnable Poison Pin Layout

40 Bumable Poison Pin Layout

Figure 4-1: Assembly fuel pin layouts for the annular fuel (from [9])



questions: what will the effect of increasing the number of poisoned rods be on k,?

What will be the effect of increasing the poison weight content?

To answer these two questions, we simulated using CASMO-4 for four annular

assemblies with different poisoning content and patern, with enrichment of 6.20 w.t.

%: XF620 is the poison free assembly, XF62012G10 has 12 poisoned rods with 10%

w.t. poison content, XF62016G10 has 16 poisoned rods with 10% w.t. poison content,

and XF62012G80 has 12 poisoned rods with 8% w.t. poison content. Figure 4-2 shows

the evolution of k. as a function of the burnup for the four different assemblies. What

Figure 4-2 shows is that adding more poison rods with the same poison content will

increase the poisoning effect (i.e. k, decreases) but will not significantly affect the

length of time during which the poison is active. On the other hand, increasing the

poison content while maintaining the number of poisoned rods constant will keep the

poisoning effect unchanged, but it will increase the length of time during which the

poison is active.

1.4

1.3

1.2

0 10 20 30 40

MWDIkg
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Figure 4-2: Comparative
poison content

effect of increased number of poisoned rods and increased

Table 4.3 summarizes the discussion above:

- XF6j20
-r-XF62012G 10
-tXF6j2016GIO
SXF6j2012GBO
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Table 4.3: Effect of the number of poisoned rods and the amount of poison on the
level of poisoning and the total duration of poisoning.

Effect on: Initial poisoning Duration
More Gd in mass -- T

More Gd rods T

4.2.6 Data processing and analysis

As explained earlier, several runs of CASMO-4 were done in order to obtain a library of

cross-sections for annular assemblies with different enrichment and different poisoning

patterns and poison content.

The data obtained from the simulations do not have to be processed. Instead

TABLES-3 will generate a large database with all the CASMO-4 outputs.

What we are after is the hot channel factor FAh and the hot spot factor F,.

SIMULATE computes a value for FAh, but given the note made in 4.2.1, it is clear

that this value does not have a real meaning for the transition cycles (cycle 10 and

11). Instead it is better to use the pin peaking factor, which is a major factor in

determining FAh since a channel is surrounded by different rods.

Therefore, we have to process and interpret the output from SIMULATE-3. In

order to be able to compute the core maximum pin peaking factor, we will use the

outputs from the code which give us the maximum pin peaking in every assembly.

Keeping in mind the important note that we made earlier in Section 4.2.1, the pin

peaking given by SIMULATE can not be used as is. Instead, we need to developp

some sort of pin peaking renormalization that compensate for the fact that annular

assemblies have less rods (and thus larger power per rod) than solid assemblies.

For cycle 10 (1 annular batch, 2 solid batches) In order to be able to compare

the peaking factors with one another, we should renormalize the pin peaking values.

Let us call nA the number of annular rods in an annular assembly, and ns the number

of solid rods in a solid assembly. The question we have to answer is: what would be

the peaking of the solid/annular rod we consider would this solid/annular rod be



within an homogeneous core (i.e. solid/annular core)? For an annular rod we would

have to multiply its peaking factor by the total number of rods in an annular core,

and divide by the total number of rods in our core. Equation 4.1 gives explicitely this

coefficient that we call f10.

10 (8 + 16 + 1/8)nA
r 8nA + (16 + 1/8)ns

Applying the same reasoning to a solid rod we obtain the factor fj 0 given in

Equation 4.2.

10 (8 + 16 + 1/8)ns 1149 (4.2)
8nA + (16 + 1/8)ns

For cycle 11 (2 annular batches, 1 solid batch) Following the same approach,

we get the renormalization factor fAl in Equation 4.3 and fsl in Equation 4.4.

11  (8 + 16 + 1/8)nA

8ns + (16 + 1/8)nA

fl =1 (8 + 16 + 1/8)ns

8ns + (16 + 1/8)nA

MatLab data processing In order to obtain correct peaking factors (correct in

the sense that they can be compared to the licensing criterion given in Section 4.2.1)

the output from SIMULATE needs to be processed.

Using MatLab, a routine that opens the output file has been created. We browse

it to locate the first depletion step of cycle 10. Then, at each depletion step the map

of the assembly-wise pin peaking is extracted and this map is renormalized using the

coefficients f~O, fs0, f2l or ff~. The maximum renormalized pin peaking is sorted

along with the depletion and the routine processes to the next depletion step.

Eventually we obtain two vectors for each cycle. One contains the depletion steps,

the other contains the maximum renormalized pin peaking.

The main source code is given in Appendix D.



4.3 Simulation results

First a poison free core was simulated. Given the results of the poison free core

simulation, a trial and error process was applied to obtain a core that respects the

criterion given in Section 4.2.1 and that we summarize below:

* Sustain 18 months cycles

* Keep Boric acid concentration below 1750 ppm

* Keep FAh below 1.65

* Keep Fq below 2.5

Keep in mind that these criteria are stated for an homogeneous core, and that we

will need to "renormalize" the peaking factors to use the criterion.

4.3.1 Poison free results

Because the enrichment is so high, the poison free fuel requires abundant use of boron.

SIMULATE has an embedded error check that abort the simulation if the boron

concentration becomes higher than 3000 ppm. This upper limit is reached at the

begining of cycle 11. In order to deactivate this option we used the flag 'ERR.CHK'

that disables this feature.

Figure 4-3 shows the evolution of the maximum pin peaking in the core with the

burn-up. The absolute values of the peaking factors are not really representative since

they correspond to an hypothetic poison free core. But, what is important to note is

that cycle 11 (which displays the largest range of enrichment) has the largest peaking

factors. This means that this cycle will need more poisoning than the other cycles, if

we are to decrease its peaking.

Another important figure is the distribution of the peaking values at the Begining

Of Life (BOL) of the batch for cycle 10 and cycle 11. Because the fuel is unpoisoned,

the peaking will be higher at the BOL and gradually decrease. Figure 4-4 and Figure
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Figure 4-3: Maximum pin peaking for an unpoisoned core for cycle 10, 11 and 12

4-5 show the pin peaking for the BOL of Cycle 10 and Cycle 11 respectively. The

Red, Blue and Grey colors represent, fresh, once-burned and twice-burned assemblies.

4.3.2 Poisoned results

Equiped with this preliminary look at an unpoisoned core, we tried to curb the

peaking in the hottest spots using burnable poison. The two parameters that can be

affected are the number of poisoned rods per assembly and the amount of poison in

the poisoned rods. In order to keep things simple we constrained ourselves to use, for

cycle 10 the assembly arrangement established for XF fuel (full annular core at 100%

power) in Ref. [9], and for cycle 11 the assembly arrangement established for XU fuel

(full annular core at 100%) in Ref. [9].

After a series of trial and error SIMULATE-3 runs, we were able to reach a core

configuration in which all criteria that we were aiming at were satisfied within rea-

sonable margins.



Figure 4-4: Core Map of assembly maximum pin peaking for BOL of cycle 10 (bold
are annular assemblies) for unpoisoned core

Figure 4-5: Core Map of assembly maximum pin peaking for BOL of cycle 11 (bold
are annular assemblies) for unpoisoned core



Boron Concentration Figure 4-6 gives the evolution of the total boron concen-

tration in the core as a function of the burn-up. Note that this concentration remains

well below the 1750 ppm limit that was set.
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Figure 4-6: Boron concentration in the core

Cycle Length Assuming a capacity factor of 90% we want our core to operate for

18 * 0.90 - 16 months and 6 days. The effective full power days achieved at every

cycle are the following:

* Cycle 9: 15 months and 29 days

* Cycle 10: 16 months and 17 days

* Cycle 11: 19 months

* Cycle 12: 14 months and 24 days

* Cycle 13: 15 months and 24 days

* Cycle 14: 15 months and 27 days

0



* Average cycle length: 16 months and 10 days

The average cycle length, is very close to the target value. All in all, it is clear that

because cycle 10 and mostly cycle 11 have larger than necessary enrichments, their

cycle length will increase. But this enrichment increase will be needed to operate the

first up-rated core at 150% power. A conclusion that can be drawn is that, leaving

aside the transition cycles (10 through 12), we can reach again an equilibrium in a

very small number of cycles (two at most).

Peaking factors Using a MatLab algorithm to process SIMULATE's output, we

can obtain the renormalized maximum pin peaking factors. Figure 4-7 gives these

peaking values for the transition cycles as well as for the reference case from Ref. [9].

Figure 4-8 gives the core-wise maximum pin peakings for cycle 12, 13 and 14 and also

for the reference case.
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Figure 4-7: Core-wise pin peaking factors for transition cycles (10, 11 and 12) and
reference case from Ref. [9].
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Figure 4-8: Core-wise pin peaking factors for uprated cycles (12, 13 and 14) and

reference case from Ref. [9].

For all cycles, the peaking is below 1.65. The maximum peaking encountered arise

for a very short period of time during the BOL of cycle 11 reaching an acceptable

value of 1.61.

Core maps for cycle 10, 11 and 12 Given that the peaking values are the most

important at the BOL for all cycles, we will give the core maps at the BOL for cycles

10, 11 and 12 in Figures 4-9 through 4-11. Each cell represents an assembly. The

color of the cell refers to the number of cycles any given assembly has been burned

for (Red=Fresh, Blue=Once-burned, Grey=Twice-burned). The first line is the fuel

identification (for instance 2L1670 means a twice burned fuel, with low enrichment,

that has 16 poison rods with 7.0 % w.t. of Gd). The second line is the assembly power

peaking. The third line is the assembly burnup. The last line is the renormalized

assembly-wide pin peaking.
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Figure 4-9: Core Map of assembly maximum pin peaking for BOL of cycle 10 (bold

are annular assemblies) for poisoned core
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Figure 4-10: Core Map of assembly maximum pin peaking for BOL of cycle 11 (bold

are annular assemblies) for poisoned core
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Figure 4-11: Core Map of assembly maximum pin peaking for BOL of cycle 12 for

poisoned core
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4.4 Conclusions

The neutronic investigation of the transition core has shown that a core composed

of annular fuel assemblies and solid fuel assemblies meets the licensing criteria and

allows, on average, an 18-month cycle.

It should be noted that the purpose of the present work is not to design an

ecomically optimized transition core, but rather to prove that a transition core is

feasible. Would a transition from solid assemblies to annular assemblies be industrially

considered, an economically optimized design shall be sought after.



Chapter 5

Summary, Conclusions And

Recommendations For Future

Investigations

5.1 Summary of conclusions

A transition from solid fuel to annular fuel in a PWR has been shown to be both

economically attractive and technically feasible. The major results reached in this

study are as follows.

Economic Valuation Using the Internal Rate of Return method, we showed that

by first replacing the solid fuel by annular fuel before up-rating the plant, the invest-

ment will yield very high IRR. More specifically, if the up-rating of the plant coincides

with a scheduled Steam-Generator replacement, the project yields an IRR of 27.4%.

If this is not the case (i.e. the Steam Generator was not planned to be changed), a

comfortably high IRR of 22.5% is reached.

Thermal-Hydraulic assessment The preferred approach is to gradually replace

the solid fuel assemblies by annular fuel assemblies. The major question raised by

such a configuration is whether or not the core is thermal-hydraulicly feasible. In



other words, is the MDNBR sufficiently high. Having a solid 17x17 assembly next

to an annular 13x13 assembly has never been studied before, so before modeling the

entire core, we studied a simple 2 assemblies model where a hot eighth of a solid

assembly was placed next to a hot eighth of an annular assembly. We showed that

because the annular assembly has slightly larger pressure drop, some flow is diverted

from the annular part to the solid part, and even though the difference in MDNBR

between a solid assembly only or a mixed situation are small, this effect benefits the

MDNBR of the mixed assemblies.

Equiped with this understanding, we modeled a whole core and found that both

the pressure drop for a mixed core and the MDNBR are slightly higher than the

reference core of solid fuel assemblies.

The main conclusion is that the envisaged transition is thermal-hydraulically fea-

sible and even slightly improves the margins to limiting criteria.

Neutronic assessment The final stage of our assessment was to demonstrate that

a transition fuel management can actually be designed to meet the following criteria:

(i) to sustain an 18-months cycle length during transition and after, (ii) to maintain

peak critical boron concentration below 1750 ppm, and (iii) to maintain power peak-

ing during cycles such that the hot channel factor FAh < 1.65 and the hot spot factor

F< 2.5.
After several iterations, a core satisfying all criteria was reached with sufficient

margins. It was also shown that the new annular core would also be well within the

criteria after the 50% over power uprate.

5.2 Recommandations for future investigations

The first and most important piece of work needed is to modify CASMO-4 source

code so that the code can handle annular fuel without having to virtually increase

the U-238 content. Basically, the code needs to take into account the effect of higher

neutron flux reaching the rod inner surface.



Should the industry consider the transition from solid to annular fuel, another

recommandation would be to optimize the transition core design. As explained in

Chapter 4, the purpose of the neutronic study was more to demonstrate the feasi-

bility of a mixed core rather than reach an optimized design. On the other hand,

an optimized design will yield a smaller cycle cost and will therefore enhance the

economic attractiveness of the project. It will therefore be also possible to refine

the economic assessment by taking into account the exact enrichment needs and the

expected cycle lengths.

This study entirely focused on normal operation conditions. Another important

track not yet explored is to perform a safety analysis of a mixed core of solid and

annular fuel assemblies.
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Appendix A

Economic Analysis: Calculation

Details

A.1 Detailed modeling

The model is developed using EXCEL spreadsheets. Table A.1 gives the figures of

interest for the model.

Depending on the case (Base Case, Case 1 or Case 2) the Total Capital Post will

be: for Base Case the former capital cost minus the lost power supply during 3 months

minus the Replacement Cost of Steam Generator ; for Case 1 and Case 2 the former

capital cost minus the lost power supply during 3 months minus the Replacement

Cost of Steam Generator minus the Cost of lost fuel.

Tables A.2, A.3 and A.4 present the details of the model for each case. In every

case, it was assumed that the costs and prices are constant over one period and are

equal to their value at the begining of the period. For instance, if the period spans

from month 6 to month 12, we will assume that the cost of the fuel is the price

at the begining of the period e.g. Inital price x (1 + Inflation Rate)0 5 . Also

note that because we use annual inflation rate, the inflation over 6 months will be

(1 + Inflation Rate). 5 , or 1 + Inflation Rate if the inflation is small compared to 1.

Even if the project profitability was assesed using the IRR method, two other al-

ternative methods are detailed in the calculation: Benefit Cost Ratio and Net Present
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Table A. 1: Parameters for economic model
Description Value
Total initial power 1200 MW(e)
Increase in power 600 MW(e)
Discount rate 11% /yr
Inflation rate for electricity price 1% /yr
Inflation rate for Fuel and O&M Costs 2% /yr
Capacity factor 95%
Former total capital cost $1,090,200,000
Cost of Marginal Power Increase $1,817 /kW(e)
Lost Power Supply during classic 3 months maintenance $124,830,000
Replacement Cost of standard Steam Generators $150,000,000
Total Capital Cost (w. steam generator cost, w/o 3 months $940,200,000
lost power supply)
Total Capital Cost (w/o steam generator cost, w/o 3 $815,370,000
months lost power supply)
Cost of solid fuel batch $74,898,000
Construction time for power upgrade 1 year
Economic life-time (for capital cost recovery) 20 years
Retail Price for Produced Power $0.050 /kWhr(e)
O&M Costs (BOP only) $0.005 /kWhr(e)
Annular Fuel Cost $0.00502 /kWhr(e)
Solid Fuel Cost $0.005 /kWhr(e)
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Value. These methods have the drawback of needing a discount rate. For our up-rate

project, where the capital cost plays a crucial role in determing the profitability, the

ranking of the options is very sensitive to the choice of the discount rate (which is in

itself very difficult to evaluate).

Benefit Cost Ratio: the Benefit Cost Ratio (or BC) is the ratio of the total

discounted incomes (benefits) over the total discounted costs for the total life-time of

the plant.

Net Present Value: the Net Present Value (NPV) is the sum, over the economic

life-time of the project, of the discounted profits (incomes minus costs).

Table A.2: Detailed modeling of Base Case
Time (m.) Marginal Costs Marginal Income Net Profit

6 Total Capital Cost 0 Income-Cost
12 Total Capital Cost 0 Income-Cost2
18 600 MW(e) x 600 MW(e) x

(O&M Cost + Fuel Cost) x (Electricity price) x
Capacity factor x 6 months x Capacity factor x 6 months x
(1 + Inflation rate)l 1.5-0 5 (1 + Inflation rate)15-0 5
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Table A.3: Detailed modeling of Case 1
Time (m.) Marginal Costs Marginal Income Net Profit

6 Total Capital Cost 0 Income-Cost
12 Total Capital Cost 0 Income-Cost2

30 x1 600 MW(e) x x 600 MW(e) x
(O&M Cost + Fuel Cost) x (Electricity price) x
Capacity factor x 18 months x Capacity factor x 18 months x
(1 + Inflation rate) 2.5 -0 5  (1 + Inflation rate)2.5 -0 .5

48 2 x 600 MW(e) x x2 600 MW(e) x
(O&M Cost + Fuel Cost) x (Electricity price) x
Capacity factor x 18 months x Capacity factor x 18 months x
(1 + Inflation rate)4-0 5  (1 + Inflation rate)4-0° 5

66 x × 600 MW(e) x 3 x 600 MW(e) x3 3
(O&M Cost + Fuel Cost) x (Electricity price) x
Capacity factor x 18 months x Capacity factor x 18 months x
(1 + Inflation rate)5 5- .5  (1 + Inflation rate)5 5- .5

A.2 Calculations details

EXCEL models for the different cases were developed. Tables A.5, A.6 and A.7 give

the detailed calculations for the Base Case, Case 1 and Case 2, respectively. The

period length is 6 months, and at each period the cost and incomes are computed

It is then easy to compute the BC ratio and the cash flow at this period (income

minus cost). We also give the NPV at this period and the IRR for 6 months and its

corresponding value for 1 year.
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Table A.4: Detailed modeling of Case 2
Time (m.) Marginal Costs Marginal Income Net Profit

18 x 600 MW(e) x 0 Income-Cost
(A Fuel Cost) x
Capacity factor x 18 months x
(1 + Inflation rate)1.5-0 5

36 2 x 600 MW(e) x 0
(A Fuel Cos) x
Capacity factor x 18 months x
(1 + Inflation rate)3-0°5

42 Total Capital Cost 0 ...

48 Total Capital Cost 02
66 x600 MW(e) x 600 MW(e) x ...

(O&M Cost + Fuel Cost) x (Electricity price) x
Capacity factor x 18 months x Capacity factor x 18 months x
(1 + Inflation rate) 5 -0 .5  (1 + Inflation rate)5 5-0.5

84 ...
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Table A.5: Base Case economic valuation

Year Costs Income BC Ratio Fj NPV IRR 6m IRR ly
0.5 $488,926,500 $0 0.00% -$488,926,500
1 $488,926,500 $0 0.00% -$488,926,500 -$952,994,997

1.5 $25,516,251 $126,078,300 12.57% $100,562,049 -$862,398,556 -82.5% -96.9%
2 $25,770,150 $126,707,123 24.56% $100,936,973 -$776,087,623 -54.6% -79.4%

2.5 $26,026,576 $127,339,083 36.03% $101,312,507 -$693,860,119 -36.4% -59.5%
3 $26,285,553 $127,974,195 46.98% $101,688,642 -$615,523,469 -24.5% -43.0%

3.5 $26,547,107 $128,612,474 57.46% $102,065,367 -$540,894,152 -16.4% -30.2%
4 $26,811,264 $129,253,937 67.50% $102,442,673 -$469,797,284 -10.8% -20.4%

4.5 $27,078,049 $129,898,599 77.10% $102,820,549 -$402,066,203 -6.6% -12.8%
5 $27,347,489 $130,546,476 86.31% $103,198,987 -$337,542,092 -3.5% -6.9%

5.5 $27,619,610 $131,197,585 95.13% $103,577,974 -$276,073,606 -1.1% -2.2%
6 $27,894,439 $131,851,941 103.59% $103,957,502 -$217,516,521 0.7% 1.5%

6.5 $28,172,003 $132,509,560 111.71% $104,337,558 -$161,733,401 2.2% 4.5%
7 $28,452,328 $133,170,460 119.50% $104,718,132 -$108,593,282 3.4% 7.0%

7.5 $28,735,443 $133,834,656 126.98% $105,099,213 -$57,971,362 4.4% 9.0%
8 $29,021,374 $134,502,165 134.16% $105,480,790 -$9,748,716 5.2% 10.7%

8.5 $29,310,151 $135,173,003 141.07% $105,862,851 $36,187,980 5.9% 12.1%
9 $29,601,802 $135,847,186 147.70% $106,245,384 $79,946,714 6.4% 13.3%

9.5 $29,896,354 $136,524,733 154.08% $106,628,378 $121,630,389 6.9% 14.3%
10 $30,193,838 $137,205,658 160.22% $107,011,820 $161,337,057 7.3% 15.2%

10.5 $30,494,282 $137,889,980 166.12% $107,395,698 $199,160,155 7.7% 15.9%
11 $30,797,715 $138,577,715 171.80% $107,780,000 $235,188,715 8.0% 16.5%

11.5 $31,104,167 $139,268,880 177.26% $108,164,713 $269,507,574 8.2% 17.1%
12 $31,413,669 $139,963,492 182.52% $108,549,823 $302,197,569 8.4% 17.6%

12.5 $31,726,250 $140,661,569 187.59% $108,935,318 $333,335,730 8.6% 18.0%
13 $32,041,942 $141,363,127 192.47% $109,321,184 $362,995,454 8.8% 18.4%

13.5 $32,360,776 $142,068,184 197.17% $109,707,409 $391,246,675 8.9% 18.7%
14 $32,682,781 $142,776,758 201.69% $110,093,977 $418,156,034 9.1% 19.0%

14.5 $33,007,991 $143,488,866 206.05% $110,480,875 $443,787,025 9.2% 19.2%
15 $33,336,437 $144,204,526 210.26% $110,868,089 $468,200,150 9.3% 19.4%

15.5 $33,668,151 $144,923,755 214.30% $111,255,604 $491,453,055 9.4% 19.6%
16 $34,003,166 $145,646,571 218.21% $111,643,405 $513,600,666 9.5% 19.8%

16.5 $34,341,514 $146,372,992 221.97% $112,031,478 $534,695,320 9.5% 20.0%
17 $34,683,229 $147,103,037 225.59% $112,419,808 $554,786,882 9.6% 20.1%

17.5 $35,028,344 $147,836,722 229.09% $112,808,378 $573,922,862 9.6% 20.2%
18 $35,376,893 $148,574,067 232.46% $113,197,174 $592,148,530 9.7% 20.3%

18.5 $35,728,911 $149,315,089 235.71% $113,586,178 $609,507,017 9.7% 20.4%
19 $36,084,431 $150,059,808 238.84% $113,975,376 $626,039,418 9.8% 20.5%

19.5 $36,443,489 $150,808,240 241.86% $114,364,751 $641,784,887 9.8% 20.6%
20 $36,806,120 $151,560,406 244.77% $114,754,286 $656,780,728 9.9% 20.7%

Note: BC=Benefit Cost ; NPV=Net Present Value ; IRR=Internal Rate of Return
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Table A.6: Case 1 economic valuation

Year Costs Income BC Ratio Fj NPV IRR 6m IRR ly
0.5 $451,477,500 $0 0.00% -$451,477,500
1 $451,477,500 $0 0.00% -$451,477,500 -$880,000,979

1.5 $8,505,417 $42,026,100 4.61% $33,520,683 -$849,802,165 -93.1% -99.5%
2 $8,590,050 $42,235,708 9.16% $33,645,658 -$821,031,854 -72.7% -92.6%

2.5 $8,675,525 $42,446,361 13.64% $33,770,836 -$793,622,687 -56.1% -80.7%
3 $17,523,702 $85,316,130 22.41% $67,792,428 -$741,398,253 -37.8% -61.3%

3.5 $17,698,071 $85,741,649 30.89% $68,043,578 -$691,645,375 -27.4% -47.3%
4 $17,874,176 $86,169,291 39.10% $68,295,115 -$644,247,463 -20.4% -36.6%

4.5 $27,078,049 $129,898,599 50.93% $102,820,549 -$576,516,382 -13.5% -25.1%
5 $27,347,489 $130,546,476 62.18% $103,198,987 -$511,992,271 -8.9% -17.0%

5.5 $27,619,610 $131,197,585 72.90% $103,577,974 -$450,523,785 -5.6% -10.9%
6 $27,894,439 $131,851,941 83.12% $103,957,502 -$391,966,700 -3.1% -6.1%

6.5 $28,172,003 $132,509,560 92.86% $104,337,558 -$336,183,581 -1.2% -2.4%
7 $28,452,328 $133,170,460 102.15% $104,718,132 -$283,043,461 0.3% 0.7%

7.5 $28,735,443 $133,834,656 111.03% $105,099,213 -$232,421,541 1.6% 3.2%
8 $29,021,374 $134,502,165 119.51% $105,480,790 -$184,198,895 2.6% 5.2%

8.5 $29,310,151 $135,173,003 127.61% $105,862,851 -$138,262,199 3.4% 6.9%
9 $29,601,802 $135,847,186 135.37% $106,245,384 -$94,503,465 4.1% 8.4%

9.5 $29,896,354 $136,524,733 142.78% $106,628,378 -$52,819,791 4.7% 9.6%
10 $30,193,838 $137,205,658 149.89% $107,011,820 -$13,113,122 5.2% 10.7%

10.5 $30,494,282 $137,889,980 156.69% $107,395,698 $24,709,976 5.6% 11.6%
11 $30,797,715 $138,577,715 163.20% $107,780,000 $60,738,536 6.0% 12.4%

11.5 $31,104,167 $139,268,880 169.44% $108,164,713 $95,057,395 6.3% 13.0%
12 $31,413,669 $139,963,492 175.43% $108,549,823 $127,747,390 6.6% 13.6%

12.5 $31,726,250 $140,661,569 181.17% $108,935,318 $158,885,551 6.8% 14.2%
13 $32,041,942 $141,363,127 186.68% $109,321,184 $188,545,274 7.1% 14.6%

13.5 $32,360,776 $142,068,184 191.96% $109,707,409 $216,796,496 7.2% 15.0%
14 $32,682,781 $142,776,758 197.04% $110,093,977 $243,705,855 7.4% 15.4%

14.5 $33,007,991 $143,488,866 201.91% $110,480,875 $269,336,846 7.6% 15.7%
15 $33,336,437 $144,204,526 206.58% $110,868,089 $293,749,971 7.7% 16.0%

15.5 $33,668,151 $144,923,755 211.08% $111,255,604 $317,002,875 7.8% 16.2%
16 $34,003,166 $145,646,571 215.39% $111,643,405 $339,150,487 7.9% 16.4%

16.5 $34,341,514 $146,372,992 219.54% $112,031,478 $360,245,141 8.0% 16.6%
17 $34,683,229 $147,103,037 223.52% $112,419,808 $380,336,703 8.1% 16.8%

17.5 $35,028,344 $147,836,722 227.35% $112,808,378 $399,472,683 8.2% 17.0%
18 $35,376,893 $148,574,067 231.03% $113,197,174 $417,698,351 8.2% 17.1%

18.5 $35,728,911 $149,315,089 234.57% $113,586,178 $435,056,838 8.3% 17.2%
19 $36,084,431 $150,059,808 237.97% $113,975,376 $451,589,239 8.3% 17.4%

19.5 $36,443,489 $150,808,240 241.24% $114,364,751 $467,334,708 8.4% 17.5%
20 $36,806,120 $151,560,406 244.39% $114,754,286 $482,330,549 8.4% 17.6%

Note: BC=Benefit Cost ; NPV=Net Present Value ; IRR=Internal Rate of Return
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Table A.7: Case 2 economic valuation

Year Costs Income BC Ratio Fj NPV IRR 6m IRR ly
0.5 $16,644 $0 0.00% -$16,644
1 $16,810 $0 0.00% -$16,810 -$32,599

1.5 $16,977 $0 0.00% -$16,977 -$47,893
2 $34,292 $0 0.00% -$34,292 -$77,216

2.5 $34,633 $0 0.00% -$34,633 -$105,325
3 $34,977 $0 0.00% -$34,977 -$132,270

3.5 $451,477,500 $0 0.00% -$451,477,500 -$330,248,727
4 $451,477,500 $0 0.00% -$451,477,500 -$643,581,401

4.5 $27,078,049 $129,898,599 13.96% $102,820,549 -$575,850,321 -80.9% -96.3%
5 $27,347,489 $130,546,476 27.20% $103,198,987 -$511,326,210 -52.2% -77.2%

5.5 $27,619,610 $131,197,585 39.75% $103,577,974 -$449,857,724 -33.9% -56.3%
6 $27,894,439 $131,851,941 51.68% $103,957,502 -$391,300,639 -22.1% -39.3%

6.5 $28,172,003 $132,509,560 63.00% $104,337,558 -$335,517,519 -14.2% -26.3%
7 $28,452,328 $133,170,460 73.78% $104,718,132 -$282,377,400 -8.6% -16.5%

7.5 $28,735,443 $133,834,656 84.03% $105,099,213 -$231,755,480 -4.6% -9.0%
8 $29,021,374 $134,502,165 93.80% $105,480,790 -$183,532,834 -1.6% -3.1%

8.5 $29,310,151 $135,173,003 103.11% $105,862,851 -$137,596,138 0.7% 1.4%
9 $29,601,802 $135,847,186 111.99% $106,245,384 -$93,837,404 2.5% 5.1%

9.5 $29,896,354 $136,524,733 120.46% $106,628,378 -$52,153,729 3.9% 8.0%
10 $30,193,838 $137,205,658 128.55% $107,011,820 -$12,447,061 5.0% 10.3%

10.5 $30,494,282 $137,889,980 136.28% $107,395,698 $25,376,037 6.0% 12.3%
11 $30,797,715 $138,577,715 143.66% $107,780,000 $61,404,597 6.7% 13.9%

11.5 $31,104,167 $139,268,880 150.73% $108,164,713 $95,723,456 7.3% 15.2%
12 $31,413,669 $139,963,492 157.49% $108,549,823 $128,413,451 7.9% 16.3%

12.5 $31,726,250 $140,661,569 163.96% $108,935,318 $159,551,612 8.3% 17.3%
13 $32,041,942 $141,363,127 170.15% $109,321,184 $189,211,336 8.7% 18.1%

13.5 $32,360,776 $142,068,184 176.08% $109,707,409 $217,462,557 9.0% 18.8%
14 $32,682,781 $142,776,758 181.77% $110,093,977 $244,371,916 9.3% 19.4%

14.5 $33,007,991 $143,488,866 187.22% $110,480,875 $270,002,907 9.5% 19.9%
15 $33,336,437 $144,204,526 192.44% $110,868,089 $294,416,032 9.7% 20.3%

15.5 $33,668,151 $144,923,755 197.46% $111,255,604 $317,668,937 9.9% 20.7%
16 $34,003,166 $145,646,571 202.26% $111,643,405 $339,816,548 10.0% 21.0%

16.5 $34,341,514 $146,372,992 206.88% $112,031,478 $360,911,202 10.1% 21.3%
17 $34,683,229 $147,103,037 211.30% $112,419,808 $381,002,764 10.3% 21.6%

17.5 $35,028,344 $147,836,722 215.55% $112,808,378 $400,138,744 10.4% 21.8%
18 $35,376,893 $148,574,067 219.63% $113,197,174 $418,364,412 10.4% 22.0%

18.5 $35,728,911 $149,315,089 223.55% $113,586,178 $435,722,899 10.5% 22.1%
19 $36,084,431 $150,059,808 227.31% $113,975,376 $452,255,300 10.6% 22.3%

19.5 $36,443,489 $150,808,240 230.93% $114,364,751 $468,000,769 10.6% 22.4%
20 $36,806,120 $151,560,406 234.40% $114,754,286 $482,996,610 10.7% 22.5%

Note: BC=Benefit Cost ; NPV=Net Present Value ; IRR=Internal Rate of Return
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Appendix B

VIPRE-01 Inputs

B.1 Mixed assembly model input
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* 1/4 Mix assembly (1/8 annular & 1/8 solid) *

***********************************************************************

1,0,0 *vipre. 1
1/4 Mix assembly (1/8 annular & 1/8 solid) *vipre.2
******************************************* * **************************

geom,89,89,20,0,0,0 *normal input geometry *geom.1
144.0945,0.0,0.5 *geom.2
1, 0.0594, 0.6309, 0.4416, 1, 2, 0.1224, 0.4144 , .,
2, 0.1369, 1.1777, 1.1777, 2, 3, 0.1224, 0.4144, 4, 0.1224, 0.4972,,,
3, 0.0684, 0.5889, 0.5889, 1, 5, 0.1224, 0.4144, ,,,
4, 0.1189, 1.2619, 0.8833, 2, 5, 0.1224, 0.4972, 7, 0.0688, 0.4972,,,
5, 0.1369, 1.1777, 1.1777, 2, 6, 0.1224, 0.4144, 8, 0.1224, 0.4972, ,,
6, 0.0594, 0.6309, 0.4416, 1, 9, 0.0688, 0.4144, ,,,
7, 0.1189, 1.2619, 0.8833, 2, 8, 0.1224, 0.4972, 11, 0.1224, 0.4972,,,
8, 0.1369, 1.1777, 1.1777, 2, 9, 0.1224, 0.4972, 12, 0.1224, 0.4972,,,
9, 0.1189, 1.2619, 0.8833, 2, 10, 0.0688, 0.4144, 13, 0.1224, 0.4972,,,
10, 0.0594, 0.6309, 0.4416, 1, 14, 0.1224, 0.4144 , ,,,,,
11, 0.1369, 1.1777, 1.1777, 2, 12, 0.1224, 0.4972, 16, 0.1224, 0.4972,,,
12, 0.1369, 1.1777, 1.1777, 2, 13, 0.1224, 0.4972, 17, 0.1224, 0.4972,,,
13, 0.1369, 1.1777, 1.1777, 2, 14, 0.1224, 0.4972, 18, 0.1224, 0.4972,,,
14, 0.1369, 1.1777, 1.1777, 2, 15, 0.1224, 0.4144, 19, 0.1224, 0.4972,,,
15, 0.0594, 0.6309, 0.4416, 1, 20, 0.0688, 0.4144,,,,,,
16, 0.1189, 1.2619, 0.8833, 2, 17, 0.1224, 0.4972, 22, 0.0688, 0.4972,,,
17, 0.1369, 1.1777, 1.1777, 2, 18, 0.1224, 0.4972, 23, 0.1224, 0.4972,,,
18, 0.1189, 1.2619, 0.8833, 2, 19, 0.0688, 0.4972, 24, 0.0688, 0.4972,,,
19, 0.1189, 1.2619, 0.8833, 2, 20, 0.1224, 0.4972, 25, 0.0688, 0.4972,,,
20, 0.1189, 1.2619, 0.8833, 2, 21, 0.0688, 0.4144, 26, 0.1224, 0.4972,,,
21, 0.0594, 0.6309, 0.4416, 1, 27, 0.1224, 0.4144, ,,,
22, 0.1189, 1.2619, 0.8833, 2, 23, 0.1224, 0.4972, 29, 0.1224, 0.4972,,,
23, 0.1369, 1.1777, 1.1777, 2, 24, 0.1224, 0.4972, 30, 0.1224, 0.4972,,,
24, 0.1189, 1.2619, 0.8833, 2, 25, 0.0688, 0.4972, 31, 0.1224, 0.4972,,,
25, 0.1189, 1.2619, 0.8833, 2, 26, 0.1224, 0.4972, 32, 0.1224, 0.4972,,,
26, 0.1369, 1.1777, 1.1777, 2, 27, 0.1224, 0.4972, 33, 0.1224, 0.4972,,,
27, 0.1369, 1.1777, 1.1777, 2, 28, 0.1224, 0.4972, 34, 0.1224, 0.4972,,,
28, 0.0684, 0.5889, 0.5889, 1, 35, 0.1224, 0.4144, ,,,
29, 0.1369, 1.1777, 1.1777, 2, 30, 0.1224, 0.4972, 37, 0.1224, 0.3758,,,
30, 0.1369, 1.1777, 1.1777, 2, 31, 0.1224, 0.4972, 38, 0.1224, 0.3758,,,
31,0.1369, 1.1777, 1.1777, 3, 32, 0.1224, 0.4972, 38, 0.1181, 0.3758,?
39, 0.004 , 0.376

32, 0.1369, 1.1777, 1.1777, 2, 33, 0.1224, 0.4972, 39, 0.1224, 0.3758,,,
33, 0.1369, 1.1777, 1.1777, 2, 34, 0.1224, 0.4972, 40, 0.1224, 0.3758,,,
34, 0.1369, 1.1777, 1.1777, 2, 35, 0.1224, 0.4972, 41, 0.1224, 0.3758, ,,
35, 0.1369, 1.1777, 1.1777, 3, 36, 0.1224, 0.4144, 41, 0.0791, 0 .3758,?
42, 0.043, 0.376

36, 0.0684, 0.5889, 0.5889, 1, 42, 0.1224, 0.2929, ,,,
37, 0.1573, 1.7178, 1.7178, 2, 38, 0.1755, 0.6500, 43, 0.0450, 0.6183, ,
38, 0.1798, 1.6551, 1.6551, 2, 39, 0.2841, 0.6500, 44, 0.0450, 0.6183,,,
39, 0.1620, 1.7944, 1.7944, 2, 40, 0.1008, 0.6500, 45, 0.0450, 0.6183,,,
40, 0.1552, 1.7007, 1.7007, 2, 41,0.1352, 0.6500, 46, 0.0450, 0.6183,,,
41, 0.1747, 1.7114, 1.7114, 2, 42, 0.2841, 0.8667, 47, 0.0450, 0.6183,,,
42, 0.2124, 2.2184, 2.2184, 2, 48, 0.0450, 0.5100, ,,,
43, 0.1350, 1.9007, 1.9007, 2, 44, 0.0450, 0.6500, 49, 0.0450, 0.6500,,,
44, 0.1350, 1.9007, 1.9007, 2, 45, 0.0450, 0.6500, 50, 0.0450, 0.6500,,,
45, 0.1350, 1.9007, 1.9007, 2, 46, 0.0450, 0.6500, 51, 0.0450, 0.6500,,,
46, 0.1350, 1.9007, 1.9007, 2, 47, 0.0450, 0.6500, 52, 0.0450, 0.6500,,,
47, 0.1350, 1.9007, 1.9007, 2, 48, 0.0450, 0.5417, 53, 0.0450, 0.5417,,,
48, 0.0675, 0.9503, 0.9503, 1 .........
49, 0.1350, 1.9007, 1.9007, 2, 50, 0.0450, 0.6500, 54, 0.0450, 0.6500,,,
50, 0.1350, 1.9007, 1.4255, 2, 51, 0.0450, 0.6500, 55, 0.0450, 0.6500,,,
51, 0.1350, 1.9007, 1.4255, 2, 52, 0.0450, 0.6500, 56, 0.0450, 0.6500, ,,
52. 0.1350, 1.9007, 1.9007, 2, 53, 0.0450, 0.5417, 57, 0.0450, 0.5417,,,
53, 0.0675, 0.9503, 0.9503, 1 .........,
54, 0.1350, 1.9007, 1.9007, 2, 55, 0.0450, 0.6500, 58, 0.0450, 0.6500,,,
55, 0.1350, 1.9007, 1.4255, 2, 56, 0.0450, 0.6500, 59, 0.0450, 0.6500, ,,
56, 0.1350, 1.9007, 1.4255, 2, 57, 0.0450, 0.5417, 60, 0.0450, 0.5417, ,,
57, 0.0675, 0.9503, 0.9503
58, 0.1350, 1.9007, 1.9007, 2, 59, 0.0450, 0.6500, 61, 0.0450, 0.6500,,,
59, 0.1350, 1.9007, 1.9007, 2, 60, 0.0450, 0.5417, 62, 0.0450, 0.5417,,,



60, 0.0675, 0.9503, 0.9503
61, 0.1350, 1.9007, 1.9007, 2, 62, 0.0450, 0.5417, 63, 0.0450, 0.5417, ,,
62, 0.0675, 0.9503, 0.9503
63, 0.0675, 0.9503, 0.7127
64, 0.0454, 0.5339, 0.5339
65, 0.0907, 1.0678, 1.0678
66, 0.0907, 1.0678, 1.0678
67, 0.0907, 1.0678, 1.0678
68, 0.0907, 1.0678, 1.0678
69, 0.0907, 1.0678, 1.0678
70, 0.0454, 0.5339, 0.5339
71, 0.0454, 0.5339, 0.5339
72, 0.0907, 1.0678, 1.0678
73, 0.0907, 1.0678, 1.0678
74, 0.0907, 1.0678, 1.0678
75, 0.0907, 1.0678, 1.0678
76, 0.0454, 0.5339, 0.5339
77, 0.0454, 0.5339, 0.5339
78, 0.0907, 1.0678, 1.0678
79, 0.0907, 1.0678, 1.0678
80, 0.0454, 0.5339, 0.5339
81, 0.0454, 0.5339, 0.5339
82, 0.0907, 1.0678, 1.0678
83, 0.0907, 1.0678, 1.0678
84, 0.0454, 0.5339, 0.5339
85, 0.0454, 0.5339, 0.5339
86, 0.0907, 1.0678, 1.0678
87, 0.0454, 0.5339, 0.5339
88, 0.0454, 0.5339, 0.5339
89, 0.0454, 0.5339, 0.5339 *geom.4

prop,0,0,2,1 *internal EPRI functions *prop.

rods,1,99,1,3,4,0,0,0,0,0,0 *3 geometry types, w/ cond rod *rods.1
0.0,0.0,0,0 *rods.2
-1 *rods.3
1.55 *chopped cosine with peak to average = 1.55 *rods.5
******rods geometry inputs*********

1, 2, 0.825, 1, 1, 0.250, 2, 0.250
2, 2, 0.803, 1, 1, 0.125, 2, 0.250, 3, 0.125
3, 2, 0.825, 1, 2, 0.250, 4, 0.250
4, 2, 0.799, 1, 2, 0.250, 3, 0.250, 4, 0.250, 5, 0.250
5, 2, 0.804, 1, 3, 0.125, 5, 0.250, 6, 0.125
6, 2, 0.826, 1, 4, 0.250, 5, 0.250, 7, 0.250, 8, 0.250
7, 2, 0.829, 1, 5, 0.250, 6, 0.250, 8, 0.250, 9, 0.250
8, 2, 0.823, 1, 7, 0.250, 11,0.250
9, 2, 0.805, 1, 7, 0.250, 8, 0.250, 11, 0.250, 12, 0.250
10, 2, 0.805, 1, 8, 0.250, 9, 0.250, 12, 0.250, 13, 0.250
11, 2, 0.837, 1, 9, 0.250, 10, 0.250, 13, 0.250, 14, 0.250
12, 2, 0.825, 1, 10, 0.125, 14, 0.250, 15, 0.125
13, 2, 0.829, 1, 11,0.250, 16, 0.250
14, 2, 0.805, 1, 11, 0.250, 12, 0.250, 16, 0.250, 17, 0.250
15, 2, 0.808, 1, 12, 0.250, 13, 0.250, 17, 0.250, 18, 0.250
16, 2, 0.837, 1, 13, 0.250, 14, 0.250, 18, 0.250, 19, 0.250
17, 2, 0.841, 1, 14, 0.250, 15, 0.250, 19, 0.250, 20, 0.250
18, 2, 0.822, 1, 16, 0.250, 17, 0.250, 22, 0.250, 23, 0.250
19, 2, 0.825, 1, 17, 0.250, 18, 0.250, 23, 0.250, 24, 0.250
20, 2, 0.832, 1, 19, 0.250, 20, 0.250, 25, 0.250, 26, 0.250
21, 2, 0.813, 1, 20, 0.250, 21, 0.250, 26, 0.250, 27, 0.250
22, 2, 0.781, 1, 21, 0.125, 27, 0.250, 28, 0.125
23, 2, 0.813, 1, 22, 0.250, 29, 0.250
24, 2, 0.793, 1, 22, 0.250, 23, 0.250, 29, 0.250, 30, 0.250
25, 2, 0.797, 1, 23, 0.250, 24, 0.250, 30, 0.250, 31, 0.250
26, 2, 0.813, 1, 24, 0.250, 25, 0.250, 31, 0.250, 32, 0.250
27, 2, 0.789, 1, 25, 0.250, 26, 0.250, 32, 0.250, 33, 0.250
28, 2, 0.778, 1, 26, 0.250, 27, 0.250, 33, 0.250, 34, 0.250
29, 2, 0.763, 1, 27, 0.250, 28, 0.250, 34, 0.250, 35, 0.250
30, 2, 0.752, 1, 28, 0.125, 35, 0.250, 36, 0.125
31, 2, 0.790, 1, 29, 0.250, 37, 0.250
32, 2, 0.787, 1, 29, 0.250, 30, 0.250, 37, 0.402, 38, 0.098



33, 2, 0.786, 1, 30, 0.250, 31, 0.250, 38, 0.500
34, 2, 0.788, 1, 31, 0.250, 32, 0.250, 39, 0.500
35, 2, 0.785, 1, 32, 0.250, 33, 0.250, 39, 0.217, 40, 0.283
36, 2, 0.775, 1, 33, 0.250, 34, 0.250, 40, 0.354, 41, 0.146
37, 2, 0.765, 1, 34, 0.250, 35, 0.250, 41, 0.500
38, 2, 0.764, 1, 35, 0.250, 36, 0.250, 42, 0.500
39, 2, 0.776, 1, 36, 0.125, 42, 0.375
40, 1, 1.299, 1, 37, 0.250, 43, 0.250
-40, 1, 1.299, 1, 64, 0.500
41, 1, 1.308, 1, 37, 0.250, 38, 0.250, 43, 0.250, 44, 0.250
-41, 1, 1.308, 1, 65, 1.000
42, 1, 1.315, 1, 38, 0.250, 39, 0.250, 44, 0.250, 45, 0.250
-42, 1, 1.315, 1, 66, 1.000
43, 1, 1.312, 1, 39, 0.250, 40, 0.250, 45, 0.250, 46, 0.250
-43, 1, 1.312, 1, 67, 1.000
44, 1, 1.299, 1, 40, 0.250, 41, 0.250, 46, 0.250, 47, 0.250
-44, 1, 1.299, 1, 68, 1.000
45, 1, 1.290, 1, 41, 0.250, 42, 0.250, 47, 0.250, 48, 0.250
-45, 1, 1.290, 1, 69, 1.000
46, 1, 1.313, 1,42, 0.375, 48, 0.125
-46, 1, 1.313, 1, 70, 0.500
47, 1, 1.286, 1,43, 0.250, 49, 0.250
-47, 1, 1.286, 1, 71, 0.500
48, 1, 1.321, 1, 43, 0.250, 44, 0.250, 49, 0.250, 50, 0.250
-48, 1, 1.321, 1, 72, 1.000
49, 1, 1.389, 1, 44, 0.250, 45, 0.250, 50, 0.250, 51, 0.250
-49, 1, 1.389, 1, 73, 1.000
50, 1, 1.321, 1, 45, 0.250, 46, 0.250, 51, 0.250, 52, 0.250
-50, 1, 1.321, 1, 74, 1.000
51, 1, 1.278, 1,46, 0.250. 47, 0.250, 52, 0.250, 53, 0.250
-51, 1, 1.278, 1, 75, 1.000
52, 1, 1.267, 1, 47, 0.250, 48, 0.125, 53, 0.125
-52, 1, 1.267, 1, 76, 0.500
53, 1, 1.301, 1, 49, 0.250, 54, 0.250
-53, 1, 1.301, 1, 77, 0.500
54, 1, 1.387, 1, 49, 0.250, 50, 0.250, 54, 0.250, 55, 0.250
-54, 1, 1.387, 1, 78, 1.000
55, 1, 1.394, 1, 51, 0.250, 52, 0.250, 56, 0.250, 57, 0.250
-55, 1, 1.394, 1, 79, 1.000
56, 1, 1.299, 1, 52, 0.250, 53, 0.125, 57, 0.125
-56, 1, 1.299, 1, 80, 0.500
57, 1, 1.290, 1, 54, 0.250, 58, 0.250
-57, 1, 1.290, 1, 81, 0.500
58, 1, 1.326, 1, 54, 0.250, 55, 0.250, 58, 0.250, 59, 0.250
-58, 1, 1.326, 1, 82, 1.000
59, 1, 1.408, 1, 55, 0.250, 56, 0.250, 59, 0.250, 60, 0.250
-59, 1, 1.408, 1,83, 1.000
60, 1, 1.383, 1, 56, 0.250, 57, 0.125, 60, 0.125
-60, 1, 1.383, 1, 84, 0.500
61, 1, 1.290, 1, 58, 0.250, 61, 0.250
-61, 1, 1.290, 1, 85, 0.500
62, 1, 1.301, 1, 58, 0.250, 59, 0.250, 61, 0.250, 62, 0.250
-62, 1, 1.301, 1, 86, 1.000
63, 1, 1.317, 1, 59, 0.250, 60, 0.125, 62, 0.125
-63, 1, 1.317, 1,87, 0.500
64, 1, 1.385, 1, 61, 0.250, 63, 0.250
-64, 1, 1.385, 1,88, 0.500
65, 1, 1.322, 1, 61, 0.250, 62, 0.125, 63, 0.125
-65, 1, 1.322, 1, 89, 0.500
66, 3, 0.000, 1, 1, 0.125
67, 3, 0.000, 1,4, 0.250, 7. 0.250
68, 3, 0.000, 1, 6, 0.125, 9, 0.250, 10, 0.125
69, 3, 0.000, 1, 15, 0.125, 20, 0.250, 21, 0.125
70, 3, 0.000, 1, 16, 0.250, 22, 0.250
71, 3, 0.000, 1, 18, 0.250, 19, 0.250, 24, 0.250, 25, 0.250
72, 3, 0.000, 1, 50, 0.250, 51, 0.250, 55, 0.250, 56, 0.250
73, 3, 0.000, 1, 63, 0.125
0 *rods.9
2,nucl,0.37488,0.325,8,0.0,0.0225 *rods.62
0,0,0,0,0,1000.0,0.95,0.0 *rods.63



1,tube,0.605,0.339882,5 *rods.68
2,1,0.0224921,0.0,? *inner cladding *rods.69
2,2,0.0024488,0.0,? *inner gap *rods.69
8,3,0.0826772,1.0,? *fuel ring *rods.69
2,4,0.0024409,0.0 *outer gap *rods.69
2,1,0.0225000,0.0 *outer cladding *rods.69
3, dumy, 0.4820,0.0,0 *rods.68
1,17,409.0,clad *rods.70
0.0,0.0671,7.3304509,?
25,0.0671,7.3304509
50,0.0671,7.33045093,?
65,0.0671,7.33045093
80.33,0.0671,7.33045093,?
260.33,0.07212,8.11585329
692.33,0.07904,9.80167423,?
1502.33,0.08955,13.2923001
1507.73,0.11988,13.3211893,?
1543.73,0.14089,13.5166505
1579.73,0.14686,13.717249,?
1615.73,0.1717,13.9231981
1651.73,0.1949,14.1347101,?
1687.73,0.18388,14.3519980
1723.73,0.1478,14.5752746,?
1759.73,0.112,14.804753
1786.73,0.085,14.9810589
*2240.33,0.085,18.5665964
2,1,0.025,igap *rods.70
1,1.240834,0.2156263 *Cp=5195J/kg-K *gap=6000 *rods.71
3,22,650.617,FUO2 *rods.70
86,0.05677357,4.73275874,?
176,0.06078589,4.29917259
266,0.06366347,3.93877428,?
356,0.06581210,3.63454049
446,0.06747631,3.37435643,?
536,0.06880819,3.1493668
626,0.06990545,2.95294976,?
716,0.07083283,2.78005572
806,0.07163441,2.62676801,?
896,0.07234099,2.49000319
986,0.07297458,2.36730189,?
1076,0.07355124,2.25667975
1166,0.07408294,2.1565193,?
1256,0.07457886,2.06549023
1346,0.07504628,1.98248979,?
1436,0.07549123,1.90659753
1526,0.0759191,1.83704065,?
1616,0.07633503,1.77316713
1706,0.0767443,1.7144247,?
1796,0.07715268,1.66034425
1886,0.07756663,1.61052668,?
1976,0.07799351,1.5646323 *rods.71
4,1,0.025,ogap *rods.70
1,1.240834,0.2149314 *Cp=5195J/kg-K *gap=6000 *rods.71
******oper ********************************************************************
oper, 1,1,0,1,0,0,0 *oper.1
18.00,1.3,0.0,0.005,0 *oper.2
0 *oper.3
2248.1,562.46,50.421,156.2,0.0 *oper.5
0 *no forcing functions *oper. 12

corr,2,2,0 *corr.1
epri,epri,epri,none *corr.2
0.2 *corr.3
ditb,thsp,thsp,w-31,cond,g5.7 *correlation for boiling curve *corr.6
w-3s,w-31 *dnb analysis by w-31 *corr.9
0.0 *w-3s input data *corr.10
0.042,0.066,0.986 *w-31 input data *corr.11

drag,1.1,4 *drag.1
0.316,-0.25,0.0,64.0,-1.0,0.0 *axial friction correlation *drag.2



0.3749,0.4972 *rod diameter,Pitch *drag.7
*7.333,-0.2,0.0,7.333,-0.2,0.0
3.098,-0.2,0.0,0.0,0.0,0.5 * lateral drag correlation for Standard *drag.8
*0.5,0.496 *pitch=0.496,kij=0.51/p *drag.5
********************************************************************************

grid,0,3 *grid.1
0.6,0.4,1.0 *grid.2
63,9 *grid.4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 *grid.5
0.0,2,12.0079,1,32.0079,1,52.0079,1,?
72.0079,1,92.0079,1,112.0079,1,132.0079,1,
144.0945,3 *grid loc. *grid.6
26,2
64, 65, 66,67, 68, 69, 70, 71, 72, 73,74, 75, 76, 77, 78, 79
80, 81, 82, 83, 84, 85, 86, 87, 88, 89
0.0,2,144.0945,3
0

cont *computational control - see page 2-214 *cont. 1
0.0,0,150,50,3,1, *iterative solution *cont.2
0.0,0.0,0.0,0.0,0.0,0.9,1.5,1.0 *cont.3
*0,0,0,1,2,0,1,1,0,0,0,1,0,0 *cont.6
5,0,0,0,0,0,01,1,0,0,0,1,0,0 *cont.6
1000.0,0.0,0.0,0.0,0.0,0.0 *cont.7
endd

*end of data input
0
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* Full core (8 annulars, 16+1/8 solids)
*

1,0,0 *vipre.1
Full core (8 annulars, 16+1/8 solids) *vipre.2
***************************************** ** **************************

geom,133,133,20,0,0,0 *normal input geometry
144.0945,0.0,0.5
1,0.0594,0.6309,0.4416,1,2,0.122362205,0.41437
2,0.1369,1.1777,1.1777,2,3,0.122362205,0.41437,4,0.12236,0.49724
3,0.0684,0.5889,0.5889,1,5,0.122362205,0.41437
4,0.1189,1.2619,0.8833,2,5,0.122362205,0.497244,7,0.0688,0.49724
5,0.1369,1.1777,1.1777,2,6,0.122362205,0.41437,8,0.12236,0.49724
6,0.0594,0.6309,0.4416,1,9,0.068799213,0.41437
7,0.1189,1.2619,0.8833,2,8,0.122362205,0.497244,11,0.12236,0.49724
8,0.1369,1.1777,1.1777,2,9,0.122362205,0.497244,12,0.12236,0.49724
9,0.1189,1.2619,0.8833,2,10,0.068799213,0.41437,13,0.12236,0.49724
10,0.0594,0.6309,0.4416,1,14,0.122362205,0.41437
11,0.1369,1.1777,1.1777,2,12,0.122362205,0.497244,16,0.12236,0.49724
12,0.1369,1.1777,1.1777,2,13,0.122362205,0.497244,17,0.12236,0.49724
13,0.1369,1.1777,1.1777,2,14,0.122362205,0.497244,18,0.12236,0.49724
14,0.1369,1.1777,1.1777,2,15,0.122362205,0.41437,19,0.12236,0.49724
15,0.0594,0.6309,0.4416,1,20,0.068799213,0.41437
16,0.1189,1.2619,0.8833,2,17,0.122362205,0.497244,22,0.0688,0.49724
17,0.1369,1.1777,1.1777,2,18,0.122362205,0.497244,23,0.12236,0.49724
18,0.1189,1.2619,0.8833,2,19,0.068799213,0.497244,24,0.0688,0.49724
19,0.1189,1.2619,0.8833,2,20,0.122362205,0.497244,25,0.0688,0.49724
20,0.1189,1.2619,0.8833,2,21,0.068799213,0.41437,26,0.12236,0.49724
21,0.0594,0.6309,0.4416,1,27,0.122362205,0.41437
22,0.1189,1.2619,0.8833,2,23,0.122362205,0.497244,29,0.
23,0.1369,1.1777,1.1777,2,24,0.122362205,0.497244,30,0.
24,0.1189,1.2619,0.8833,2,25,0.068799213,0.497244,31,0.
25,0.1189,1.2619,0.8833,2,26,0.122362205,0.497244,32,0.
26,0.1369,1.1777,1.1777,2,27,0.122362205,0.497244,33,0.
27,0.1369,1.1777,1.1777,2,28,0.122362205,0.497244,34,0.
28,0.0684,0.5889,0.5889,1,35,0.122i
29,0.1369,1.1777,1.1777,2,30,0.122
30,0.1369,1.1777,1.1777,2,31,0.122
31,0.1369,1.1777,1.1777,3,32,0.122C
39,0.004 ,0.376
32,0.1369,1.1777,1.1777,2,33,0.122:
33,0.1369,1.1777,1.1777,2,34,0.122
34,0.1369,1.1777,1.1777,2,35,0.122
35,0.1369,1.1777,1.1777,3,36,0.122
42,0.043,0.376
36,0.0684,0.5889,0.5889,1,42,0.122
37,0.1573,1.7178,1.7178,2,38,0.175
38,0.1798,1.6551,1.6551,2,39,0.284
39,0.1620,1.7944,1.7944,2,40,0.101
40,0.1552,1.7007,1.7007,2,41,0.135
41,0.1747,1.7114,1.7114,2,42,0.284
42,0.2124,2.2184,2.2184,2,48,0.045
43,0.1350,1.9007,1.9007,2,44,0.045
44,0.1350,1.9007,1.9007,2,45,0.045
45,0.1350,1.9007,1.9007,2,46,0.045
46,0.1350,1.9007,1.9007,2,47,0.045
47,0.1350,1.9007,1.9007,2,48,0.045
48,0.0675,0.9503,0.9503,1,54,0.064
49,0.1350,1.9007,1.9007,2,50,0.045
50,0.1350,1.9007,1.4255,2,51,0.045
51,0.1350,1.9007,1.4255,2,52,0.045
52,0.1350,1.9007,1.9007,2,53,0.045

362205,0.41437
362205,0.497244,37,0.
362205,0.497244,38,0.
362205,0.497244,38,0.

362205,(
362205,(
362205,(
362205,(

,0.293
,0.650
,0.650
,0.650
,0.650
,0.867
,0.510
,0.650
,0.650
,0.650
,0.650
,0.542
,0.700
,0.650
,0.650
,0.650
,0.542

*geom.1
*geom.2

12236,0.49724
12236,0.49724
12236,0.49724
12236,0.49724
12236,0.49724
12236,0.49724

122,0.376
122,0.376
118,0.376

).497244,39,0.122,0.376
).497244,40,0.122,0.376
).497244,41,0.122,0.376
).41437,41,0.079,0.376,?

,43,0.045
,44,0.045
,45,0.045
,46,0.045
,47,0.045
,54,0.042
,49,0.045
,50,0.045
,51,0.045
,52,0.045
,53,0.045

,55,0.045
,56,0.045
,57,0.045
,58,0.045
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,0.618
,0.618
,0.618
,0.618
,0.618
,0.470
,0.650
,0.650
,0.650
,0.650
,0.542

,0.650
,0.650
,0.650
,0.542
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53,0.0675,0.9503,0.9503,1,54,0.064 ,1.159
54,2.8832,40.1515,38.0132,6,58,0.064 ,1.619 ,61,0.064 ,2.079 ,?
63,0.064 ,2.538
64,0.064 ,2.998,65,0.672785,2.821522,66,0.672785,3.526903
55,0.1350,1.9007,1.9007,2,56,0.045 ,0.650 ,59,0.045 ,0.650
56,0.1350,1.9007,1.4255,2,57,0.045 ,0.650 ,60,0.045 ,0.650
57,0.1350,1.9007,1.4255,2,58,0.045 ,0.542 ,61,0.045 ,0.542
58,0.0675,0.9503,0.9503,
59,0.1350,1.9007,1.9007,2,60,0.045 ,0.650 ,62,0.045 ,0.650
60,0.1350,1.9007,1.9007,2,61,0.045 ,0.542 ,63,0.045 ,0.542
61,0.0675,0.9503,0.9503,
62,0.1350,1.9007,1.9007,2,63,0.045 ,0.542 ,64,0.045 ,0.542
63,0.0675,0.9503,0.9503,
64,0.0675,0.9503,0.7127,
65,4.7434,43.5971,38.8650,1,67,0.6728,3.5269
66,5.7664,80.3030,76.0265,2,67,0.6728,5.6430,68,0.6728,6.3484
67,14.2303,130.7912,116.5949,1,69,2.091574803,6.3484
68,18.9738,174.3883,155.4599,2,69,2.0916,6.3484,71,0.6728,8.4646
69,37.9475,348.7765,310.9197,2,70,1.345570866,7.0538,?
72,2.09157,8.4646
70,11.5328,160.6059,152.0530,1,73,1.345570866,7.053806
71,11.5328,160.6059,152.0530,2,72,1.3456,6.3484,75,0.2998,8.4646
72,37.9475,348.7765,310.9197,2,73,2.0916,8.4646,76,2.0916,8.4646
73,37.9475,348.7765,310.9197,2,74,1.345570866,7.053806,?
77,2.09157,8.46457
74,11.5328,160.6059,152.0530,1,78,0.599566929,7.053806
75,11.5328,160.6059,152.0530,2,76,1.3456,6.3484,80,0.6728,8.4646
76,37.9475,348.7765,310.9197,2,77,2.091574803,8.4646,?
81,1.34557,8.4646
77,37.9475,348.7765,310.9197,2,78,1.345570866,8.464567,?
82,2.09157,8.46457
78,23.0656,321.2119,304.1059,2,79,1.345570866,7.053806,?
83,1.34557,8.46457
79,18.9738,174.3883,155.4599,1,84,1.345570866,7.053806
80,18.9738,174.3883,155.4599,2,81,1.3456,6.3484,?
86,1.0458,8.4646
81,23.0656,321.2119,304.1059,2,82,1.3456,8.464567,?
87,0.5996,8.46457
82,37.9475,348.7765,310.9197,2,83,2.091574803,8.464567,?
88,2.09157,8.46457
83,37.9475,348.7765,310.9197,2,84,1.3456,8.464567,?
89,2.09157,8.46457
84,23.0656,321.2119,304.1059,2,85,1.345570866,7.053806,?
90,0.59957,8.46457
85,18.9738,174.3883,155.4599,1,91,2.091574803,7.053806
86,18.9738,174.3883,155.4599,2,87,1.3456,6.3484,?
92,0.6728,8.4646
87,23.0656,321.2119,304.1059,2,88,1.345570866,8.4646,?
93,1.34557,8.4646
88,37.9475,348.7765,310.9197,2,89,2.091574803,8.464567,?
94,2.09157,8.46457
89,37.9475,348.7765,310.9197,2,90,1.345570866,8.464567,?
95,2.0916,8.46457
90,23.0656,321.2119,304.1059,1,91,1.3456,8.464567
91,37.9475,348.7765,310.9197,
92,11.5328,160.6059,152.0530,1,93,1.345570866,6.348425
93,37.9475,348.7765,310.9197,1,94,2.0916,8.4646
94,37.9475,348.7765,310.9197,1,95,2.091574803,8.4646
95,37.9475,348.7765,310.9197,
96,0.0454,0.5339,0.5339,
97,0.0907,1.0678,1.0678,
98,0.0907,1.0678,1.0678,
99,0.0907,1.0678,1.0678,
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100,0.0907,1.0678,1.0678,
101,0.0907,1.0678,1.0678,
102,0.0907,1.0678,1.0678,
103,0.0454,0.5339,0.5339,
104,0.0907,1.0678,1.0678,
105,0.0907,1.0678,1.0678,
106,0.0907,1.0678,1.0678,
107,0.0907,1.0678,1.0678,
108,0.0907,1.0678,1.0678,
109,0.0454,0.5339,0.5339,
110,0.0907,1.0678,1.0678,
111,0.0907,1.0678,1.0678,
112,0.0907,1.0678,1.0678,
113,0.0454,0.5339,0.5339,
114,0.0907,1.0678,1.0678,
115,0.0907,1.0678,1.0678,
116,0.0907,1.0678,1.0678,
117,0.0454,0.5339,0.5339,
118,0.0907,1.0678,1.0678,
119,0.0907,1.0678,1.0678,
120,0.0454,0.5339,0.5339,
121,0.0907,1.0678,1.0678,
122,1.5424,18.1521,18.1521,
123,3.6292,42.7108,42.7108,
124,7.2583,85.4216,85.4216,
125,7.2583,85.4216,85.4216,
126,7.2583,85.4216,85.4216,
127,7.2583,85.4216,85.4216,
128,14.5166,170.8431,170.8431,
129,14.5166,170.8431,170.8431,
130,14.5166,170.8431,170.8431,
131,14.5166,170.8431,170.8431,
132,14.5166,170.8431,170.8431,
133,7.2583,85.4216,85.4216, *geom.4
****************************************

prop,0,0,2,1 *internal EPRI functions *prop.1

rods,1,143,1,3,4,0,0,0,0,0,0 *3 geometry types, w/ cond rod
*rods.1
0.0,0.0,0,0 *rods.2
-1 *rods.3
1.55 *chopped cosine with peak to average = 1.55 *rods.5
******rods geometry inputs*********

1, 2, 1.417, 1, 1, 0.250, 2, 0.250,
2, 2, 1.380, 1, 1, 0.125, 2, 0.250, 3, 0.125,
3, 2, 1.418, 1, 2, 0.250, 4, 0.250,
4, 2, 1.373, 1, 2, 0.250, 3, 0.250, 4, 0.250, 5, 0.250
5, 2, 1.381, 1, 3, 0.125, 5, 0.250, 6, 0.125,
6, 2, 1.420, 1, 4, 0.250, 5, 0.250, 7, 0.250, 8, 0.250
7, 2, 1.425, 1, 5, 0.250, 6, 0.250, 8, 0.250, 9, 0.250
8, 2, 1.414, 1, 7, 0.250, 11, 0.250,
9, 2, 1.384, 1, 7, 0.250, 8, 0.250, 11, 0.250, 12, 0.250
10, 2, 1.384, 1, 8, 0.250, 9, 0.250, 12, 0.250, 13, 0.250
11, 2, 1.438, 1, 9, 0.250, 10, 0.250, 13, 0.250, 14, 0.250
12, 2, 1.417, 1, 10, 0.125, 14, 0.250, 15, 0.125,
13, 2, 1.425, 1, 11, 0.250, 16, 0.250,
14, 2, 1.382, 1, 11, 0.250, 12, 0.250, 16, 0.250, 17, 0.250
15, 2, 1.388, 1, 12, 0.250, 13, 0.250, 17, 0.250, 18, 0.250
16, 2, 1.438, 1, 13, 0.250, 14, 0.250, 18, 0.250, 19, 0.250
17, 2, 1.445, 1, 14, 0.250, 15, 0.250, 19, 0.250, 20, 0.250
18, 2, 1.413, 1, 16, 0.250, 17, 0.250, 22, 0.250, 23, 0.250
19, 2, 1.417, 1, 17, 0.250, 18, 0.250, 23, 0.250, 24, 0.250
20, 2, 1.429, 1, 19, 0.250, 20, 0.250, 25, 0.250, 26, 0.250

Page 3



full_corel
21, 2, 1.398, 1, 20, 0.250, 21, 0.250, 26, 0.250, 27, 0.250
22, 2, 1.342, 1, 21, 0.125, 27, 0.250, 28, 0.125,
23, 2, 1.398, 1, 22, 0.250, 29, 0.250,
24, 2, 1.363, 1, 22, 0.250, 23, 0.250, 29, 0.250, 30, 0.250
25, 2, 1.369, 1, 23, 0.250, 24, 0.250, 30, 0.250, 31, 0.250
26, 2, 1.396, 1, 24, 0.250, 25, 0.250, 31, 0.250, 32, 0.250
27, 2, 1.356, 1, 25, 0.250, 26, 0.250, 32, 0.250, 33, 0.250
28, 2, 1.337, 1, 26, 0.250, 27, 0.250, 33, 0.250, 34, 0.250
29, 2, 1.311, 1, 27, 0.250, 28, 0.250, 34, 0.250, 35, 0.250
30, 2, 1.293, 1, 28, 0.125, 35, 0.250, 36, 0.125,
31, 2, 1.358, 1, 29, 0.250, 37, 0.250,
32, 2, 1.352, 1, 29, 0.250, 30, 0.250, 37, 0.402, 38, 0.098
33, 2, 1.351, 1, 30, 0.250, 31, 0.250, 38, 0.500,
34, 2, 1.353, 1, 31, 0.250, 32, 0.250, 39, 0.500,
35, 2, 1.348, 1, 32, 0.250, 33, 0.250, 39, 0.217, 40, 0.283
36, 2, 1.331, 1, 33, 0.250, 34, 0.250, 40, 0.354, 41, 0.146
37, 2, 1.315, 1, 34, 0.250, 35, 0.250, 41, 0.500,
38, 2, 1.313, 1, 35, 0.250, 36, 0.250, 42, 0.500,
39, 2, 1.333, 1, 36, 0.125, 42, 0.375,
40, 1, 2.232, 1, 37, 0.250, 43, 0.250
-40, 1, 2.232, 1, 96, 0.500
41, 1, 2.247, 1, 37, 0.250, 38, 0.250, 43, 0.250, 44, 0.250
-41, 1, 2.247, 1, 97, 1.000
42, 1, 2.260, 1, 38, 0.250, 39, 0.250, 44, 0.250, 45, 0.250
-42, 1, 2.260, 1, 98, 1.000
43, 1, 2.254, 1, 39, 0.250, 40, 0.250, 45, 0.250, 46, 0.250
-43, 1, 2.254, 1, 99, 1.000
44, 1, 2.232, 1, 40, 0.250, 41, 0.250, 46, 0.250, 47, 0.250
-44, 1, 2.232, 1, 100, 1.000
45, 1, 2.217, 1, 41, 0.250, 42, 0.250, 47, 0.250, 48, 0.250
-45, 1, 2.217, 1, 101, 1.000
46, 1, 2.255, 1, 42, 0.375, 48, 0.125, 54, 0.500,
-46, 1, 2.255, 1, 102, 1.000
47, 1, 2.209, 1, 43, 0.250, 49, 0.250,
-47, 1, 2.209, 1, 103, 0.500
48, 1, 2.270, 1, 43, 0.250, 44, 0.250, 49, 0.250, 50, 0.250
-48, 1, 2.270, 1, 104, 1.000
49, 1, 2.386, 1, 44, 0.250, 45, 0.250, 50, 0.250, 51, 0.250
-49, 1, 2.386, 1, 105, 1.000
50, 1, 2.270, 1, 45, 0.250, 46, 0.250, 51, 0.250, 52, 0.250
-50, 1, 2.270, 1, 106, 1.000
51, 1, 2.197, 1, 46, 0.250, 47, 0.250, 52, 0.250, 53, 0.250
-51, 1, 2.197, 1, 107, 1.000
52, 1, 2.176, 1, 47, 0.250, 48, 0.125, 53, 0.125, 54, 0.500
-52, 1, 2.176, 1, 108, 1.000
53, 1, 2.235, 1, 49, 0.250, 55, 0.250,
-53, 1, 2.235, 1, 109, 0.500
54, 1, 2.383, 1, 49, 0.250, 50, 0.250, 55, 0.250, 56, 0.250
-54, 1, 2.383, 1, 110, 1.000
55, 1, 2.395, 1, 51, 0.250, 52, 0.250, 57, 0.250, 58, 0.250
-55, 1, 2.395, 1, 111, 1.000
56, 1, 2.231, 1, 52, 0.250, 53, 0.125, 58, 0.125, 54, 0.500
-56, 1, 2.231, 1, 112, 1.000
57, 1, 1.587, 1, 54, 17.000, 54
-57, 1, 1.587, 1, 122, 17.000
58, 1, 2.217, 1, 55, 0.250, 59, 0.250,
-58, 1, 2.217, 1, 113, 0.500
59, 1, 2.278, 1, 55, 0.250, 56, 0.250, 59, 0.250, 60, 0.250
-59, 1, 2.278, 1, 114, 1.000
60, 1, 2.419, 1, 56, 0.250, 57, 0.250, 60, 0.250, 61, 0.250
-60, 1, 2.419, 1, 115, 1.000
61, 1, 2.376, 1, 57, 0.250, 58, 0.125, 61, 0.125, 54, 0.500
-61, 1, 2.376, 1, 116, 1.000
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62, 1, 2.217, 1, 59, 0.250, 62, 0.250,
-62, 1, 2.217, 1, 117, 0.500
63, 1, 2.235, 1, 59, 0.250, 60, 0.250, 62, 0.250, 63, 0.250
-63, 1, 2.235, 1, 118, 1.000
64, 1, 2.263, 1, 60, 0.250, 61, 0.125, 63, 0.125, 54, 0.500
-64, 1, 2.263, 1, 119, 1.000
65, 1, 2.379, 1, 62, 0.250, 64, 0.250,
-65, 1, 2.379, 1, 120, 0.500
66, 1, 2.271, 1, 62, 0.250, 63, 0.125, 64, 0.125, 54, 0.500
-66, 1, 2.271, 1, 121, 1.000
67, 2, 1.380, 1, 65, 33.000
68, 1, 2.276, 1, 66, 40.000
-68, 1, 2.276, 1, 123, 40.000
69, 2, 1.380, 1, 67, 99.000
70, 2, 1.201, 1, 68, 132.000
71, 2, 1.096, 1, 69, 264.000
72, 1, 1.759, 1, 70, 80.000
-72, 1, 1.759, 1, 124, 80.000
73, 1, 1.350, 1, 71, 80.000
-73, 1, 1.350, 1, 125, 80.000
74, 2, 0.818, 1, 72, 264.000
75, 2, 0.818, 1, 73, 264.000
76, 1, 1.350, 1, 74, 80.000
-76, 1, 1.350, 1, 126, 80.000
77, 1, 1.350, 1, 75, 80.000
-77, 1, 1.350, 1, 127, 80.000
78, 2, 0.818, 1, 76, 264.000
79, 2, 0.818, 1, 77, 264.000
80, 1, 1.350, 1, 78, 160.000
-80, 1, 1.350, 1, 128, 160.000
81, 2, 0.818, 1, 79, 132.000
82, 2, 0.819, 1, 80, 132.000
83, 1, 1.351, 1, 81, 160.000
-83, 1, 1.351, 1, 129, 160.000
84, 2, 0.819, 1, 82, 264.000
85, 2, 0.819, 1, 83, 264.000
86, 1, 1.351, 1, 84, 160.000
-86, 1, 1.351, 1, 130, 160.000
87, 2, 0.819, 1, 85, 132.000
88, 2, 0.819, 1, 86, 132.000
89, 1, 1.351, 1, 87, 160.000
-89, 1, 1.351, 1, 131, 160.000
90, 2, 0.819, 1, 88, 264.000
91, 2, 0.819, 1, 89, 264.000
92, 1, 1.351, 1, 90, 160.000
-92, 1, 1.351, 1, 132, 160.000
93, 2, 0.819, 1, 91, 264.000
94, 1, 1.351, 1, 92, 80.000
-94, 1, 1.351, 1, 133, 80.000
95, 2, 0.819, 1, 93, 264.000
96, 2, 0.819, 1, 94, 264.000
97, 2, 0.819, 1, 95, 264.000
98, 3, 0.000, 1, 1, 0.125
99, 3, 0.000, 1, 4, 0.250, 7, 0.250,
100, 3, 0.000, 1, 6, 0.125, 9, 0.250, 10, 0.125,
101, 3, 0.000, 1, 15, 0.125, 20, 0.250, 21, 0.125,
102, 3, 0.000, 1, 16, 0.250, 22, 0.250,
103, 3, 0.000, 1, 18, 0.250, 19, 0.250, 24, 0.250, 25, 0.250
104, 3, 0.000, 1, 50, 0.250, 51, 0.250, 56, 0.250, 57, 0.250
105, 3, 0.000, 1, 64, 0.125
0 *rods.9
2,nucl,0.37488,0.325,8,0.0,0.0225
*rods.62
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0,0,0,0,0,1000.0,0.95,0.0
*rods.63
1 ,tube,0.605,0.339882,5
*rods.68
2,1,0.0224921,0.0,? *inner cladding
*rods.69
2,2,0.0024488,0.0,? *inner gap
*rods.69
8,3,0.0826772,1.0,? *fuel ring
*rods.69
2,4,0.0024409,0.0 *outer gap
*rods. 69
2,1,0.0225000,0.0 *outer cladding
*rods.69
3, dumy, 0.4820,0.0,0
*rods.68
1,17,409.0,clad *rods.70
0.0,0.0671,7.3304509,?
25,0.0671,7.3304509
50,0.0671,7.33045093,?
65,0.0671,7.33045093
80.33,0.0671,7.33045093,?
260.33,0.07212,8.11585329
692.33,0.07904,9.80167423,?
1502.33,0.08955,13.2923001
1507.73,0.11988,13.3211893,?
1543.73,0.14089,13.5166505
1579.73,0.14686,13.717249,?
1615.73,0.1717,13.9231981
1651.73,0.1949,14.1347101,?
1687.73,0.18388,14.3519980
1723.73,0.1478,14.5752746,?
1759.73,0.112,14.804753
1786.73,0.085,14.9810589
*2240.33,0.085,18.5665964
2,1,0.025,igap *rods.70
1,1.240834,0.2156263 *Cp=5195J/kg-K *gap=6000 *rods.71
3,22,650.617,FU02 *rods.70
86,0.05677357,4.73275874,?
176,0.06078589,4.29917259
266,0.06366347,3.93877428,?
356,0.06581210,3.63454049
446,0.06747631,3.37435643,?
536,0.06880819,3.1493668
626,0.06990545,2.95294976,?
716,0.07083283,2.78005572
806,0.07163441,2.62676801,?
896,0.07234099,2.49000319
986,0.07297458,2.36730189,?
1076,0.07355124,2.25667975
1166,0.07408294,2.1565193,?
1256,0.07457886,2.06549023
1346,0.07504628,1.98248979,?
1436,0.07549123,1.90659753
1526,0.0759191,1.83704065,?
1616,0.07633503,1.77316713
1706,0.0767443,1.7144247,?
1796,0.07715268,1.66034425
1886,0.07756663,1.61052668,?
1976,0.07799351,1.5646323 *rods.71
4,1,0.025,ogap *rods.70
1,1.240834,0.2149314 *Cp=5195J/kg-K *gap=6000 *rods.71******oper input******************* ** ******************************************
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oper,1,1,0,1,0,1,0,0,0
full corel

*oper.1
-1.0,1.3,0.0,0.005,0 *oper.2
0 *oper.3
2248.1,562.46,4877.3,90.87,0.0 *oper.5
0 *no forcing functions *oper.12

*************************** *******************************************************

corr,2,2,0
epri,epri,epri,none
0.2

*corr.1
*corr.2

*corr.3
ditb,thsp,thsp,w-31,cond,g5.7 *correlation for boiling curve *corr.6
w-3s,w-31 *dnb analysis by w-31 *corr.9
0.0 *w-3s input data
*corr.10
0.042,0.066,0.986 *w-31 input data
*corr.11
************************************************************************************

drag,1,1,4 *drag.1
0.316,-0.25,0.0,64.0,-1.0,0.0 *axial friction correlation *drag.2
0.3749,0.4972 *rod diameter,Pitch *drag.7
*7.333,-0.2,0.0,7.333,-0.2,0.0
3.098,-0.2,0.0,0.0,0.0,0.5 * lateral drag correlation for Standard *drag.8
*0.5,0.496 *pitch=0.496,kij=0.51/p *drag.5

grid,0,3
0.6,0.4,1.0
95,9
1, 2, 3, 4, 5,
17, 18, 19, 20,
33, 34, 35, 36,
49, 50, 51, 52,
65, 66, 67, 68,
81, 82, 83, 84,
0.0,2,12.0079,1

6, 7
21,
37,
53,
69,
85,
,32.

, 8,

22,
38,
54,
70,
86,

0079

9,
23,
39,
55,
71,
87,

10,
24,
40,
56,
72,
88,

11,
25,
41,
57,
73,
89,

12,
26,
42,
58,
74,
90,

1,52.0079,1,?

13,
27,
43,
59,
75,
91,

14,
28,
44,
60,
76,
92,

15, 16
29, 3(
45, 41
61, 6;
77, 71
93, 9,

6,
6,
2,
8,
4,

31,
47,
63,
79,
95

72.0079,1,92.0079,1,112.0079,1,132.0079,1,
144.0945,3 *grid loc.
38,2
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
128, 129, 130, 131, 132, 133
0.0,2,144.0945,3
0

cont *computational control - see page 2-214
0.0,0,150,50,3,1, *iterative solution
*cont.2
0.0,0.0,0.0,0.0,0.0,0.9,1.5,1.0
*0,0,0,1,2,0,1,1,0,0,0,1,0,0
5,0,0,0,0,0,1,1,0,0,0,1,0,0
1000.0,0.0,0.0,0.0,0.0,0.0
endd
*end of data input
0
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127

*cont.1

*cont.3
*cont.6

*cont.6
*cont.7



Appendix C

Gd Content Calculation

In order to define a fuel pin composition with enrichment X and Gd 203 content of G

(X and G are weight fraction) for use in CASMO-4, we need to compute the content

in the different isotopes of U, Gd and 0.

We are after the atomic concentration (i.e. number of atoms per cm3 ).

Mixture density First of all we have to compute the actual density of the fuel.

The initial concentration of U0 2 will be altered by two phenomena following the

introduction of Gd203. One is the fact that poison will take the place of U0 2 and

modify the overall density. The second one comes from the fact that Gd203 can form

phases with U0 2, and therefore its density (in solution) can vary from 7.4 g/cm3 to

8.3 g/cm3 . The only effect that we will consider is the first one. The variation of

Gd203 density will be disregarded since we will deal with enrichment in a relatively

close range, and we will choose PGd203 = 7.64 g/cm3 .

Let us apply the conservation of volume (which holds since we disregarded the

eventual formation of phases) to a gram of mixture with Gd20 3 weight content of G.

Its total volume is 1 . The volume of Gd203 is lg*G and the volume of U0 2 isPmixture PGd2 0 3

Plg(1-G) Writing the conservation of volume we obtain Equation C.1. Rearranging

Equation C.1 gives Equation C.2.

1 G 1-G1 - G + 1- (C.1)
Pmixture PGd203 PU02

123



1
Pmixture -- G I1-G (C.2)

PGd2 0 3  PUO 2

We take for Puo2 = 10.4g/cm3 and PGd203 = 7.64g/cm3 . The density of U0 2 is

taken to be 95% of theoretical density.

Atomic concentration of U and Gd isotopes and of O The calculation of the

different atomic concentrations complies with the CASMO-4 procedure (see Ref. [8]).

It is assumed that the weight fraction of U in U0 2 is 0.8815 and the weigth fraction

of Gd in Gd20 3 is 0.8676.

Following are the equations that give, as a function of G and X the atomic concen-

trations of U-234, U-235, U-238, Gd-152, Gd-154, Gd-155, Gd-156, Gd-157, Gd-158,

Gd-160 and 0-16. For the sake of simplicity, the atomic concentration of an element

Y-n, will simply be written as Yn (for instance, U235 refers to the atomic concentra-

tion of U-235).

Equation C.3 gives the molecular weight (in g/mol) of U0 2 with X % in weight

of U-235.

Muo 2 = X * 235.0439 + (1 - X) * 238.0508 + 2 * 15.9994 (C.3)

Equation C.4 gives the molecular weigth (in g/mol) of U with X % in weight of

U-235.

Mu = X * 235.0439 + (1 - X) * 238.0508 (C.4)

The Avogadro constant NA • 6.022E + 23 mol - 1 is the number of individual

atom or molecule in a given mole of matter. Following we can write that the atomic

concentration U0 2 is given by Equation C.5.

U0 2  puo2 * NA (C.5)

Muo2
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X * (1 - G) * pmixture,, M
U235= * *NA (C.6)

Muo, MU-325

Equation C.6 is the atomic concentration of U-235 in the fuel. The first term
(X*(1-G)*Pmtue) is the number of moles of U-235 in the fuel per unit volume. The

second term ( Mu_) corrects the difference in mass between average U and U-235.
MU-325

By enventually multiplying by NA, we get the number of atoms of U-235 per unit

volume, which is what we are after.

U234 = U235 * 0.008 * MU- 2 3 5  
(C.7)

MU-234

Equation C.7 gives the atomic concentration of U-234. It is stated in Ref. [8] that,

in mass, 0.8% of U-235 is U-234. This means that in terms of atomic concentration,

they are 0.008 *+ M- 35 atoms of U-234 for one atom of U-235.MU-23- 4

U238 = (U0 2 - U235 - U234) * (1 - G) * Pmixture * 1.3 (C.8)
PU02

Equation C.8 gives the atomic concentration of U-238. Note that the total con-

centration of U-238 is artificially increased by 30% in order to compensante for the

fact that CASMO-4 cannot directly simulate hollow rods.

NA
Gd = 2 * G * pmixture * (C.9)

MGd203

Equation C.9 only gives the atomic concentration of all Gd isotopes. In order to

obtain the atomic concentration of all isotopes, we will use the natural occurence of

Gd isotopes found in Ref. [7]. The distribution is summurized in Table C.1.

Table C.1: Natural atomic occurence of Gd isotopes (from Ref. [7])

Gd total Gd152 Gd154 Gd155 Gd156 Gd157 Gd158 Gdl60
100% 0.21% 2.15% 14.73% 20.47% 15.67% 24.87% 21.90%

Eventually, it is easy to compute the atomic concentration of oxygen: indeed O
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comes from either U0 2 or Gd203. 0 is given in Equation C.1O.

O = 2* U0 2 + 3 * Gd (C.1O)
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Appendix D

MatLab Code For Data Processing

Main code

function Retrieve(infile)

fid=fopen(infile,'r');

go=true;

ExpolO=[];

Expoll=[];

PeaklO=[];

Peakll=[]-;

islO=false;

is11=false;

Mfull=zeros(8,9);

M=zeros(8,8);
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tline=fgetl(fid);

while (go)

if (islO)

if strncmp(tline,' CYCLE EXPOSURE AT END OF THIS STEP =',length('

CYCLE EXPOSURE AT END OF THIS STEP ='))

Expol0=[Expo10;fscanf(fid, '%e',5)];

elseif ( strcmp(tline, ' PIN.EDT 2PIN - PEAK IPIN POWER: ASSEMBLY

2D'))

:.extrac. t the duita

tline=fgetl(fid);

tline=fgetl(fid);

tline=fgetl(fid);

Mfull(1,:)=fscanf(fid, '%e'',9)';

tline=fgetl(fid);

Mfull(2,:)=fscanf(fid,'%4-.',9)';

tline=fgetl(fid);

Mfull(3,:)=fscanf(fid,'% cl,9)';

tline=fgetl(fid);

Mfull(4,1:8)=fscanf(fid,'"i(,9)';

tline=fgetl(fid);

Mfull(5,1:8)=fscanf(fid,' ;',8)';

tline=fgetl(fid);
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Mfull(6,1:8)=fscanf(fid,':e',8)';

tline=fgetl(fid);

Mfull(7,1:7)=fscanf(fid,'%e',7)';

tline=fgetl(fid);

Mfull(8,1:5)=fscanf(fid,'%e',5)';

tline=fgetl(fid);

M=Mfull;

M(:,1)=];

Peakl0= [Peakl0;PeakinglO0(M)];

end

elseif (isl 1)

if strncmp(tline,' CYCLE EXPOSURE AT END OF THIS STEP =',length('

CYCLE EXPOSURE AT END OF THIS STEP ='))

ExpoExp [Expoll;fscanf(fid,'%&e',5)];

elseif ( strcmp(tline, ' PIN.EDT 2PIN - PEAK PIN POWER: ASSEMBLY

2D') )

( tN-! F F-OI t It ie

tline=fgetl(fid);

tline=fgetl(fid);

tline=fgetl(fid);

Mfull(1,:)=fscanf(fid,'%e ',9)';

tline=fgetl(fid);
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Mfull (2,:)=fscanf(fid,'. ,9)';

tline=fgetl(fid);

Mfull(3,:)= fscanf(fid, ". ,9)';

tline=fgetl(fid);

Mfull(4,1:8)=fscanf(fid,',: ,9)';

tline=fgetl(fid);

Mfull(5,1:8)=fscanf(fid,' :',8)';

tline=fgetl(fid);

Mfull(6,1:8)=fscanf(fid, ': ,8) ';

tline= fgetl(fid);

Mfull(7,1:7)= fscanf(fid, 7:; :: ,7)';

tline=fgetl(fid);

Mfull(8,1:5)=fscanf(fid, '·',5)';

tline=fgetl(fid);

M=Mfull;

M(:, 1)= [];

Peak11= [Peak11;Peaking 1I(M)];
end

end

if ( strncmp(tline, ' CASE 1 STEP 0 CYCLE 10XF', length(" CASE 1 STEP 0
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CYCLE 10XF')) )

isl0=true;

isl1=false;

tline=fgetl(fid);

elseif ( strncmp(tline, ' CASE 1 STEP 0 CYCLE IXF', length(' CASE 1 STEP

0 CYCLE 11XF')) )

isl0=false;

isll=true;

tline=fgetl(fid);

elseif ( strcmp(tline,' P W R, S U M M A R Y O F S T E A D Y - S T A T E S I

MU L A TE - 3 VERSIO N M.I. T.') )

go=FALSE;

else

tline=fgetl(fid);

end

end

plot(ExpolO,Peak10);

plot(Expoll,Peakl 11);

PeakinglO subroutine

function Peak10=PeakinglO(M)

PeakinglO=M;

Annular10=[0,1,0,11,0,0;
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1,0,1,0,1,0,1,0;

0,1,0,1,0,0,1,0;

1,0,1,0,0,0,1,0;

0,1,0,0,0,1,0,0;

1,0,0,0,1,1,0,0;

0,1,1,1,0,0,0,0;

o,o,o,o,o,o,o,o];

alO= ((16+1/8)* (17*17-25)+8* (13*13-9))/ ((16+8+1/8)* (13* 13-9));

s10=((16+1/8)* (17*17-25)+8*(13*13-9))/((16+8+1/8)* (17*17-25))

n=8;

m=8;

for i=l:n;

for j=l1:m;

if (Annular10(i,j)==1)

PeakinglO(i,j)=M(i,j)/alO;

else

PeakinglO(i,j)=M(i,j)/s10;

end

end

end

PeaklO=max(max(PeakinglO)');
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Peaking11 subroutine

function Peakl l=Peakingl (M)

Peakingll=M;

Annularll=[0,1,1,1,0,1,1,0;

1,0,1,0,1,1,1,1;

1,1,0,1,0,1,1,1;

0,1,0,1,1,1,1,0;

1,1,1,1,1,1,0,0;

1,1,1,1,1,0,0,0;

0,1,1,0,0,0,0,0];

al l=((8)*(17*17-25)+(16+1/8)*(13*13-9))/((16+8+1/8)*(13*13-9));

s11=((8)*(17*17-25)+(16+1/8)*(13"*13-9))/((16+8+1/8)*(17*17-25));

n=8;

m=8;

for i=l1:n;

for j= l:m;

if (Annularll(i,j)==l)

Peaking11(i,j)=M(i,j)/all;

else

Peaking1 l(i,j)=M(i,j)/s1 1;

end

end

end
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Peakl 1=max (max(Peaking 11)');
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