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ABSTRACT

Combating the threat of nuclear smuggling through shipping ports and border
crossings has been recognized as a national priority in defending the US against nuclear
terrorism. In light of the SAFE Port act of 2006, the Domestic Nuclear Detection Office
(DNDO) has been charged with the responsibility of providing the Customs and Border
Protection Agency (CBP) with the capability to conduct 100% radiological screening of
all containers entering the country. In an attempt to meet this mandate, the DNDO has
conducted a typical government acquisition procedure to develop and acquire radiation
portal monitors (RPMs) capable of passive gamma-ray spectroscopy that would allow
100% radiological screening without detrimental affects on the stream of commerce
through the terminals. However, the Cost-Benefit Analysis (CBA) supporting the DNDO
decision-making process has been criticised and has delayed the program significantly.

We propose an Analytic-Deliberative Process (ADP) as an alternative to CBA for
this application. We conduct a case study with four DNDO stakeholders using the ADP
proposed by the National Research Council in the context of environmental remediation
and adapted by the MIT group and compare the results to those derived from DNDO's
CBA. The process involves value modeling using an objectives hierarchy and the
analytic hierarchy process. Value functions are derived and expected outcomes for the
decision options are elicited from the stakeholders. The process results in a preference
ranking of the decision options in order of value to each stakeholder. The analytical
results are then used to structure a deliberation in which the four stakeholders use both
the analytical results and any pertinent information outside the analysis to form a
consensus.

The final decision of both the CBA and ADP models show good agreement and
demonstrate the validity of both methods. However, the ADP format is better at
explicitly capturing and quantifying subjective influences affecting the final decision.
This facilitates discussion and leads to faster consensus building.
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1. INTRODUCTION

The Domestic Nuclear Detection Office (DNDO) is a jointly-staffed national

office established to develop a global nuclear detection architecture, to acquire and

support the deployment of domestic detection systems, and to detect and report attempts

to import or transport a nuclear device or fissile or radiological material intended for

illicit use. One critical DNDO objective is to provide effective systems for radiological

screening at America's shipping ports and border crossings which it currently does with

simple plastic scintillators. Although these systems succeed in providing a high

sensitivity to radiation they have been considered inadequate because of their negative

impact on the flow of commerce due to high false positive (nuisance alarm) rates and a

poor ability to identify illicit radiological materials in cargo with naturally occurring

radiation (NORM).

In September of 2005, DNDO sought to remedy this deficiency by initiating a

solicitation process for new detection systems that use passive gamma-ray spectroscopy

to replace the outdated systems. In attempting to decide between different system

designs and deployment options, DNDO has performed a cost-benefit analysis (CBA)

that includes value judgments on the relative importance of the goals of the program such

as minimizing cost, maximizing detection capability, and minimizing the impact on

stream of commerce among others.

The results of the CBA have been questioned (Aloise, 2007) because several

critical inputs to the analysis are very difficult to quantify in terms of dollars and require

broad assumptions. Previous work by Bier (Bier, 2005) and Keeney (Keeney, 2007)



describe the difficulties in quantifying the probability and location of a possible terrorist

attack and suggest a game theory based approach to find a solution. Smith and Hallstrom

(Smith and Hallstrom, 2004) have proposed a benefit-cost model for the Department of

Homeland Security policies that advocates using stated and revealed preferences to

estimate the consequences of terrorist attacks. Pat&-Comell and Guikema advocate using

approaches similar to the above references for quantifying the full spectrum of terrorism

risks and prioritizing countermeasures. (Pat&-Cornell and Guikema, 2002).

The uncertainties associated with these dollar figures must be necessarily large,

especially when considering the possibility of a nuclear device detonation. Additional

complications arise from the input of stakeholders. The Custom and Border Protection

Agency (CBP), the end user, holds significant influence over the final DNDO decision.

Political influences will undoubtedly play some role as well. Although agencies such as

DNDO strive to make these types of decisions as objectively as possible, subjective

evaluations are unavoidable both in the decision maker's preferences to establish disaster

consequence levels within the rigorous analysis, and in eliciting the opinions of

stakeholders outside the analysis.

The objective of this paper is to propose the use of the analytic-deliberative

process (ADP) as an alternative to CBA for selecting and deploying radiation portal

monitors (RPM's) at shipping ports and border crossings. This process has been

proposed by the National Research Council (National Research Council, 1996) in the

context of environmental decision making. It has been applied by the MIT group to a

number of situations (Weil and Apostolakis, 2001) including terrorism (Koonce and

Apostolakis, 2008). Our approach is similar to the systems approach for prioritizing



terrorism countermeasures suggested Pat&-Cornell and Guikema (Pate-Cornell and

Guikema, 2002) but is tailored to the specific application of DNDO's RPM acquisition

decision and explicitly treats the subjective influences outside of a systems analysis that

inevitably affect these kinds of decisions. The ADP may streamline the decision making

process by providing an explicit method by which stakeholders use analytical tools to

shape their deliberation by explicitly and separately analyzing their subjective values and

objective system performance data resulting in a better understanding of their differences.

The ADP provides the stakeholders with insights that may be helpful in reaching a

consensus. We also report on an actual deliberation held by DNDO decision makers

using this process and compare the results to that of a CBA based deliberation held

earlier for the same decision.

Section 2 discusses an overview of the ADP and how it is implemented in this

problem. Section 3 describes the case study, decision options considered by DNDO, and

addresses their strengths and weaknesses. Section 4 discusses the results of the analysis

and the insights it provided. Section 5 describes the actual deliberation and provides the

final results. Section 6 summarizes our conclusions. Appendix A provides a technical

and practical comparison of the two main types of radiation detectors used in forming the

decision options. Appendix B discusses the influences of Naturally Occurring

Radioactive Material (NORM) on the performance of RPMs. Appendix D provides a

background on how CBA is used today in public policy decision making and Appendix E

provides a brief comparison of the strengths and weakness of CBA and traditional

Decision Analysis (DA) techniques for public policy decision making.



2. METHODOLOGY - THE ANALYTIC/DELIBERATIVE
PROCESS

The ADP methodology (National Research Council, 1996) consists of two major parts:

1. "Analysis refers to ways of building understanding by systematically applying
specific theories and methods that have been developed within communities
of expertise, such as those of the natural science, social science, engineering,
decision science, logic, mathematics and law."

2. "Deliberation is any formal or informal process for communication and
collective consideration of issues."

In our work, ADP is conducted in five steps and is illustrated in Figure 1 (details

will be provided later). The first step captures all the objectives of stakeholders by

constructing an objectives hierarchy or value tree. The objectives hierarchy used by

DNDO in this project consists of the tiers labeled goal, impact categories, and objectives

in Figure 1. In this step, the objectives are also weighted by importance to the

achievement of the overall goal from the perspective of the decision maker. In addition,

value functions are developed for each objective. The second step of the ADP involves

formulating a complete set of feasible decision options that the decision makers will

consider. In the third step of the ADP, the analyst analyzes the decision options to

determine how well they achieve each objective and ranks the decision options from best

to worst based on the decision maker's priorities. The fourth step of the ADP is the

deliberation. During the deliberation, all stakeholders involved in the decision-making

process meet to review the analytical results and consider both the objective and

subjective influences that have led to the final rankings. Influences on the decision

problem that were not appropriate for the formal analysis are typically discussed in this

step. The stakeholders then use the insights from the analysis to build a consensus that



may or may not agree with the results of the analysis. The fifth step of the ADP is to

track, update, and adjust the decision as necessary through the implementation stage.

Since new information and insights may continue to be revealed after the decision is

made, it is important for both the stakeholders and the analyst to remain vigilant through

the implementation phase.
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2.1 Defining the Objectives

2.1.1 Building an Objectives Hierarchy

Building an objectives hierarchy allows the decision makers to focus on what they

are trying to achieve. The objectives structure places broad, fundamental objectives at

the top of the tree and illustrates how achieving each sub-objective contributes to

achieving the overall goal. The objectives hierarchy used by DNDO in this project is

shown as the middle portion of Figure 1. The procedure begins by working with the

stakeholders to define what the overall goal is that they are trying to achieve. In this

case: Maximize the Benefits ofDetector Deployment. With the overall goal in mind, the

stakeholders then define the categories of fundamental objectives that need to be satisfied

in order to achieve the overall goal. These are the impact categories in Fig. 1. In this

case study, three impact categories were defined: Impact on Stakeholders, Impact on

Cost, and Impact on National Security. Fundamental objectives are then defined that

explain what we are trying to achieve in each impact category. These fundamental

objectives are a set of objectives that are complete, as few as possible, and not redundant

(Clemen, 1996, 533-534). They are also quantifiable, as explained in the next section.

2.1.2 Developing Constructed Scales

A critical step in defining the objectives is to develop a set of constructed scales

by which to measure how well the decision options meet these objectives. The

capabilities of the systems can be mapped onto the constructed scales for which we can

derive a value function. The constructed scales are generally, but not always, represented

by a set of discrete levels chosen by the stakeholders to help them differentiate between



the impacts of the different decision options. For example, for the objective Ability to

detect Special Nuclear Materials (SNM) the false negative rate (probability of SNM

slipping through) describes how well a decision option might meet this objective. A

constructed scale for this objective might look like that in Table 1. The scale is bounded

by worst and best cases for conceivable false negative rates. It includes four levels

chosen by the stakeholders to indicate different capability levels that have different

values to them. The mapping of the performance measure false negative rate to the

constructed scale is displayed adjacent to each level.

Table 1: A Constructed Scale

Deliberation between the stakeholders on what the objectives hierarchy should be

is critical to ensuring that the analysis provides meaningful results. A consensus among

stakeholders on the objectives hierarchy and constructed scales would be desirable before

moving forward. However, if this is not achievable, separate analyses would be carried

out for the stakeholders postponing the attempt at consensus to the final deliberation

(Apostolakis and Pickett, 1998).

Ability to detect SNM

Level Expected False Negative Rate

Excellent <2%

Good 2-10%

Fair 10-20%

Bad >20%



2.1.3 Weighting the Objectives

Once the objectives are completely defined with their constructed scales,

stakeholder preferences for the objectives are captured using relative weights. These

weights can be developed using a number of methods (Clemen, 1996; Keeney, 2007). In

our work, we have determined that the stakeholders find the Analytical Hierarchy Process

(AHP) (Saaty, 2006) easy to use. The AHP requires each stakeholder to make a series of

pair-wise comparisons between objectives and indicate which of the pair is more

important and by how much. Table 2 is adapted from Saaty and displays the numerical

scale typically used make these comparisons. Table 3 provides the results of one such set

of comparisons conducted during the case study. Notice that the responses are inputs to a

positive reciprocal matrix whose dominant eigen vector is used to derive the weights of

the objectives for each stakeholder. For example, this decision maker has indicated that

Cost ofFalse Positives is moderately more important than the Cost of Implementation.

Thus, the analyst has inserted the value of 3 in matrix element (1,2) and its reciprocal 1/3

in matrix element (2,1). This process is repeated until all the pair-wise comparisons are

completed and all the matrix elements are populated. The pair-wise comparisons are

conducted between objectives within the same impact category and the stakeholders

compare them specifically in terms of their relative importance to optimizing their parent

impact category, in this example Cost. The impact categories themselves are also

compared in the same fashion to establish their relative importance to maximizing the

overall goal, in this example Maximizing the Benefits ofDetector Deployment.



Table 2: Integer Scale Used to Conduct Pair-Wise Comparisons, From Saaty, 2006

Intensity of Definition Explanation
Importance

1 Equal Importance Two activities contribute equally
to the objective

2 Weak

3 Moderate Importance Experience and judgment slightly
favor one activity over another

4 Moderate Plus

5 Strong Importance Experience and judgment srongly
favor one activity over another

6 Strong Plus

7 Very Strong Importance An activity is favored very
strongly over another; its

dominance is demonstrated in
practice

8 Very, very Strong

9 Extreme Importance The evidence favoring one
activity over another is of the

highest possible order of
affirmation

Table 3: Sample weighting from the Analytical Hierarchy Process
Cost

False Implementation Life Cycle and Weights
Positives Maintenance

False Positives 1 3 '/ 0.218
Implementation 1/3 1 1/6 0.091
Life Cycle and 4 6 1 0.691
Maintenance
Inconsistency .052

The concept of using value tradeoffs and modeling to set Department of

Homeland Security priorities has been advocated by Keeney (Keeney, 2007) for strategic

planning. The AHP method offers a tremendous counterpart for operational decisions

such as the selection of an overall detector deployment plan because it is robust enough

to effectively encompass both broad strategic goals and specific tactical goals through its

use of an objectives hierarchy. The AHP also provides a mechanism to check and ensure

the stakeholders answer relatively consistently through the use of a consistency ratio.



The MIT group asks each stakeholder to individually complete the AHP. This allows for

the quantification of each person's preferences which can then be discussed during

deliberation.

2.1.4 Developing Value Functions

The next step in developing the objectives hierarchy structure is to develop a

simple value rating scheme for the levels of the constructed scales. The stakeholders

must establish the relative worth of the different levels of each constructed scale, and in

the case where there are uncertainties associated with the decision outcomes, those

relative worths must be evaluated with utility theory. Several techniques for developing

these functions with utility theory are readily available in the literature (Keeney and

Raiffa, 1976; Clemen, 1996; Hughes 1986). In our case study, there are no significant

uncertainties associated with the performance capabilities of the decision options (at least

in the unclassified version of the information provided to us by DNDO) and we use a

simpler subjective rating technique derived from Clemen's ratio technique (Clemen,

1996, pp. 544-545) to assist the stakeholders in creating value functions. In using this

technique, the analyst used a 1 to 9 scale similar to the scale used in weighting the

objectives (see Figure 1) and asked the stakeholders to identify how much value was

added by improving a system's expected outcome by one level on each constructed scale.

The stakeholders always started with a worst case scenario and incrementally assessed

the increases in value until the best case scenario was achieved for each objective. An

example of a value function computed for our case study is shown in Table 4 below.



Table 4: Sample Value Function

Ability to Detect SNM
Level Unweighted Value Function Weighted Value Function
Poor 0.0000 0.0000

Average 0.1430 0.0915
Good 0.7140 0.4567

Excellent 1.0000 0.6396

Notice that in Table 4 the unweighted value function is between unity for the best

possible outcome and zero for the worst possible outcome just as with a utility function.

The stakeholder is then prompted to provide input to establish the relative worth of the

middle levels on this normalized scale. The unweighted value function is multiplied by

the priority ranking (relative weight) for its objective, in this case Ability to Detect SNM,

to determine the weighted value function. This particular example shows an aversion to

any score less than good for Ability to Detect SNM.

2.2 Formulating the Decision Options

The second step is to generate the decision options that will be considered. The

decision options should be broad enough to cover all realistic alternatives, should be

screened for feasibility and ability to meet any absolute requirements (Screening

Criteria), and should be specific to the given problem. The total number of decision

options should, however, be kept to a reasonable level that does not unnecessarily burden

the analysis. The correct number of decision options to consider for each problem will be

unique and specific to that problem and the analytical approach should be flexible enough

to quickly incorporate additional decision options later in the process if new information

or insights warrant it.



In this case study, the decision options consist of different combinations of

detector systems and different deployment options.

2.3 Analyzing and Ranking the Decision Options

The third step in the ADP is to analyze and rank the decision options. The

expected performances of the each decision option are predicted for each performance

measure using whichever modeling, prototype testing, or simulation technique is most

appropriate. In our case study, DNDO had already performed a robust set of testing and

modeling on the decision options; these were unavailable to us because of their sensitive

nature. As an alternative to using actual test data we elicited the expert opinion of our

stakeholders who had access to the test results. This method allowed the stakeholders to

categorize the performances of the different decision options without revealing sensitive

data to unclassified sources. The result was four independent sets of expert opinion,

derived from the same data, which indicated four slightly different interpretations of their

test results.

A Performance Index (PI) is then calculated for each of the decision options. The

performance index for the jth decision option, PIj, is defined as the sum of values vi,

associated with the jth decision option's values calculated for the ith objective. In

equation 1, N refers to the total number of objectives defined for the specific decision

problem. This PI calculation is valid for an additive ordinal utility or value function such

as ours that meets the criteria of mutual preferential independence as defined by Clemen

(Clemen, 1996, 579-580).



P1I = v, (1)
i=1

The performance index is used to rank the decision options for each stakeholder

individually. The decision option rankings for each stakeholder along with an analysis of

major contributing factors to the ranking are presented to each stakeholder to objectively

communicate what each stakeholder prefers and why. Additionally, a sensitivity analysis

should accompany the rankings. The sensitivity analysis addresses whether changes in

the stakeholder's preferences could affect the final rankings. If the results are revealed to

be sensitive to a particular preference, the stakeholder is asked to review their choices to

insure that they accurately reflect their preferences.

2.4 The Deliberation

The fourth step in the ADP, the deliberation, allows the stakeholders to review the

results of the analysis, discuss their similarities and differences, and work towards a

consensus. The analysis is not intended to result in a final decision. Instead, it is

designed to facilitate the deliberation by providing each stakeholder with a thorough

understanding of how their preferences affect the decision. The effectiveness of ADP in

facilitating deliberation has been demonstrated by the MIT group (Koonce, Apostolakis,

and Cook, 2008; Apostolakis and Lemon, 2005; Apostolakis and Pickett, 1998) and

primarily stems from its ability to allow the stakeholders to understand each other's

points of view. The analysis can clearly separate critical points of agreement and

disagreement from those that are unimportant which focuses the deliberation on areas

critical to reaching a well informed consensus. The end product of the deliberation



should be a final decision, although this is not always the result of the initial deliberation.

It is common for the stakeholders to view the results of the analysis, gain additional

insight into the problem, and ask to revise their preferences accordingly. This may result

in an additional deliberation session before the final decision is made. The form of the

final decision is not limited to the set of initial decision options. In a previous case study

(Apostolakis and Pickett, 1998), as well as this case study, the final decision was a hybrid

of different initial decision options that best suited the values of the group.

2.5 Track, Update and Adjust Through Implementation

The ADP method does not stop when the group reaches a consensus. The fifth

step of the ADP is to track, update, and adjust the decision as necessary through the

implementation stage. As implementation of a decision begins uncertainties in outcomes

will diminish which may affect which option is preferred. For example, if DNDO selects

and installs a primary detection system in part of a phased implementation plan only to

find it does not perform as well as expected, they may wish to reconsider large scale

implementation before proceeding. If this possibility is anticipated and planned for, then

the ADP can easily become part of a multistage decision model. The ability to anticipate

for and make adjustments in the final decision is situational dependant, but as in this case

study, it can often be planed for as part of the final decision.



3. THE CASE STUDY

The Safe Port Act of 2006 (Congressional bill H.R. 4954) requires the

government to conduct radiological screening of all cargo entering the United States.

With 27x106 twenty-foot equivalent units (TEUs)' of cargo passing through shipping

ports and 8.7x106 loaded truck containers crossing our borders in 2006 (US Dept of

Trans. Maritime Administration, 2007) achieving 100% inspection is clearly impossible

without serious impacts on trade. The DNDO's initial action to meet this mandate was to

procure and deploy radiation portal monitors equipped with Poly-vinyl Toluene (PVT)

scintilators at the US's major shipping ports and border crossings for radiological

screening. These RPMs provide a high sensitivity to radiation but cannot identify the

isotope present in any but the most ideal situations (Stomswold et al, 2003). To provide

isotope identification, the DNDO and CBP established a primary/secondary inspection

system where containers identified as having a radiation signature are diverted to a

secondary inspection area where CBP agents use hand-held radio-isotope identifier

devices (RIlDs) (Oxford, 2007) to identify the source of the radiation. Although

ultimately effective in conducting radiological screening, the lack of spectroscopic

capability for primary inspections leads to an abundance of lengthy secondary

inspections, the vast majority of which simply identify NORM in the cargo and are

categorized at nuisance alarms(Oxford, 2007; CBP News Release, 2008).

One TEU represents the cargo capacity of a standard shipping container 20 feet long and 8 feet wide. The
height of a TEU can range from 4.25 feet to 9.5 feet.



3.1 System Requirements

To provide a better chance of SNM detection and cut down on nuisance alarms,

the DNDO solicited for industry to develop radiation portal monitors capable of passive

gamma ray spectroscopy in 2005 to replace the current systems. The new systems

designed for this purpose were required to fit the current inspection architecture and

provide the 100% radiological screening required by law. In addition, they should not

have lower sensitivity to radiation. Systems meeting these initial constraints were then

judged on their expected false positive and false negative rates, implementation and

maintenance costs, ruggedness, impact on terminal operations, and other criteria. In

2006, DNDO conducted an initial prototype testing and conducted an initial CBA

according to government acquisition rules and procedures (Oxford, 2007).

3.2 The Decision Options

Currently three prototypes remain in competition, two based on sodium-iodide

(Nal) scintillators and a third that uses high-purity germanium (HPGe) semi-conductors

as an absorption medium. These represent two fundamentally different sets of detection

and cost expectations (Knoll, 2000; Ely, Siciliano, and Kouzes,2004). The decision

options in our case study are based on generalized capabilities of Nal and HPGe detectors

and are not vendor specific.

The Oxford reference (Oxford, 2007) lists the decision options considered by

DNDO during the initial CBA. Since then, the decision options have continued to evolve

as additional and better cost estimates and prototype testing are completed. The



stakeholders participating in this research agreed to the decision options listed in Table 5

as representative of actual decision options currently being considered in their CBA.

Table 5: Decision Options2

Option Name Explanation
A No Uses current PVT detectors for primary inspection and

Change hand-held radio-isotope identifier devices (RIIDs) for
secondary inspections

B PVT-NaI Uses current PVT detectors for primary inspection and
replaces RIIDS with Nal based system for secondary
inspections

C NaI-HPGe Replaces current PVT detectors with Nal detectors for
primary inspections and uses high resolution HPGe
detectors for secondary inspections

D Hybrid Small throughput ports use PVT detectors and large
throughput ports use Nal detectors for primary
inspections. All ports use HPGe detectors for secondary
inspections

E Nal-Nal Replaces current PVT detectors with Nal detectors for
primary inspections and uses Nal detectors with a longer
dwell time for secondary inspections

None of the decision options considered by DNDO used HPGe detectors in a

primary inspection mode. Although the initial CBA did consider this possibility, DNDO

later determined that the resolving time required for HPGe to complete an inspection was

too long for it to be used in this way. DNDO concluded that the longer resolving time

required by HPGe would backlog cargo flow through the port to the point of making this

option unfeasible (Ely, Siciliano, and Kouzes, 2004).

2Acronyms: PVT: Poly-vinyl Toluene scintillator detector, Nal: Sodium-Iodide scintillator detector, HPGe:
High Purity Germanium semi-conductor detector, RIIDs: Radio-Isotope Identification Devices



3.3 The Need for Decision Analysis

The CBA completed by DNDO has come under debate by the Government

Accountability Office (GAO)( Aloise 2006; Aloise, 2007) and other agencies have been

asked to provide additional decision analysis support for the project including the

Defense Threat Reduction Agency (DTRA) and the National Academy of Science

(Senate Press Release, 2007). DNDO also agreed to work with the MIT group and

analyze the problem using the ADP. Specifically, four stakeholders directly involved in

DNDO decision making regarding this project agreed to meet with the researcher and

complete the ADP.

3.4 The Stakeholders

The primary stakeholders consisted of an Assistant Director, a Principal Deputy

Assistant Director, and a Program Manager directly involved in the acquisition process

and a Deputy Assistant Director involved in transformation research and development for

DNDO and intimately interested in the project. A Deputy Director from CBP was also

consulted to gain insight into CBP priorities for the project and preferences. A workshop

was held with the group to agree upon an objectives hierarchy as a group. Then the

researcher individually met with each stakeholder to complete their objective preferences,

value functions, and assessments of decision option outcomes. The group then came

back together to deliberate on the results of the analysis and reach a decision.



4. RESULTS

4.1 The Objectives Hierarchy

The first workshop with the DNDO stakeholders resulted in the formation of the

objectives hierarchy displayed in Figure 1. The overall goal of Maximizing Detector

Deployment was divided into three attributes requiring optimization and six independent

objectives that would impact the optimization of those attributes.

While deliberating on the formation of the Objectives Hierarchy the Stakeholder

Impact category brought about a large discussion on how to define this impact on

DNDO's decision making. The input of the CBP Agency was clearly influential. As a

sister branch of the Department of Homeland Security (DHS) and the end user of the

system, all DNDO stakeholders agreed that the level of approval from CBP would be

important to their decision. One stakeholder went as far as to say that no system could

move forward if CBP didn't approve of it. Further analysis and discussion indicated that

the influence of other stakeholders such as the shipping industry and terminal operators

all directly influenced the opinions of CBP. Thus, the majority of stakeholders agreed

that CBP input was representative of all external stakeholders relevant to their decision

model. Stakeholder D disagreed with this grouping scheme and was adamant that the

influence of the terminal operators, those that run commercial operations at the ports,

should be considered separately. Therefore, an additional objective of optimizing

Terminal Operator Input was added in this stakeholder's objectives hierarchy.



4.2 The Constructed Scales

The DNDO stakeholders agreed that the objectives listed in Table 6 fully

described what the agency was attempting to achieve by investing in new, passive

spectroscopic RPMs. The constructed scales and performance measures in Table 6 were

also agreed to in the first workshop with the exception that most scales were initially

defined with only three levels. Through the course of the analysis, it became clear that

four levels were necessary to properly differentiate the expected outcomes of the decision

options.

The constructed scales involving measurable costs, false negative and false

positive rates were given specific, measurable ranges in the analysis but the actual use of

the scales by the stakeholders varied somewhat. This indicated that the true criteria

distinguishing between different levels on the constructed scale was slightly flexible and

lead to different assessments of system capabilities



Table 6: Constructed Scales and Performance Measures
Objective Level Constructed Scale Performance Measure
CBP Input 4 Approval Level of CBP Approval for the

3 OK-Ambivlant diecision option
2 Minor Objections
1 Major Objections

Terminal Operator (TO) Input 4 Approval Level of TO Approval for the diecision
3 OK-Ambiviant option
2 Minor Objections
1 Major Objections

Cost of False Positives 4 Excellent Expected False Positive (Nuisance Alarm)
3 Good Rate for containers with Naturally Occuring
2 Fair Radiation (NORM)
1 Poor

Implementation Costs 4 Low Expected cost in dollars per system to
3 Medium purchase
2 Medium-High
1 High

Maintenance and Lifecycle 4 Low Expected annual maintainance and
(M&LC) Costs 3 Medium replacement costs per system

2 Medium-High
1 High

Ability to Detect Radiological 4 Excellent Expected false negative rate for containers
Dispersion Device (RDD) Materials 3 Good with bare or lightly shielded RDD Materials.

2 Fair
1 Poor

Ability to Detect Special 4 Excellent Expected false negative rate for containers
Nuclear Materials (SNM) 3 Good with bare or lightly shielded SNM

2 Fair
1 Poor

4.3 The Weights of the Objectives

Once the stakeholders reached a consensus on the objectives hierarchy and

constructed scales the analyst elicited weights for the objectives from each stakeholder

using the AHP. Figure 2 shows the weights assigned to the objectives by each

stakeholder.
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Figure 2: Objective Weights by Stakeholder

The Ability to Detect SNM clearly dominates all other objectives for each

stakeholder. This is not unexpected as DNDO reports a similar finding from their Cost-

Benefit Analysis. The consequences of a possible nuclear terrorist explosion, though

difficult to quantify, are orders of magnitude higher than any other possible consequence.

Therefore, DNDO will always choose the decision option that performs best for this

objective and only consider the others in the event of tie.

The relative importance of the other objectives varied among the stakeholders.

However, all stakeholders ranked Implementation Costs last. The typical justification for

marginalizing implementation costs was that the majority of the implementation costs are



derived from the cost of installation which is approximately a constant across the

decision options. Although there are very obvious differences in purchase costs, the

importance of these differences is diminished by the installation costs. Some

stakeholders were surprised to discover that the Cost of False Positives also received a

low weight from all stakeholders despite the fact that it was a driving factor to initiate the

program. Further discussion revealed that the Cost of False Positives was not completely

independent from CBP Input. A discussion with a CBP deputy director revealed that the

opinions of CBP depended on several factors including the effect on stream of commerce,

inputs from commercial shippers and terminal operators, and manpower required to run

the inspection stations among others. Of these factors, both the stream of commerce and

manpower requirement are affected directly by the nuisance alarm rate. Nuisance alarms

require secondary inspections which slow down the stream of commerce and require

additional CBP personnel to perform.

4.4 The Value Functions

Unweighted value functions for the each objective were elicited from each

stakeholder using a variant of the ratio technique described by Clemen (Clemen, 1996).

In using this technique, the analyst used a I to 9 scale similar to the scale used in

weighting the objectives and asked the stakeholders to identify how much value was

added by improving a system's capability by one level on each constructed scale. The

stakeholders always started with a worst case scenario and incrementally assessed the

increases in value until the best case scenario was achieved for each objective. The

results of this exercise are displayed in Figure 3 below.
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Figure 3: Value Functions for Each Stakeholder

The value functions displayed in Figure 3. are discrete. The values to the

stakeholder of each level of the constructed scale are represented by the discrete points in

Figure 3. The dotted lines connecting the points are for communication purposes only.

The results indicate that stakeholders A, B and D generally had an aversion to any

score less than optimal in each category. Only stakeholder C scored the second best level

on a constructed scale above 0.5 in most cases. Further analysis indicated that

stakeholder C's perspective on the project varied from that of the other three in that he

viewed the most important function of the RPM was as a deterrent while the others

viewed it as the actual capability to detect SNM and RDDs. This resulted in stakeholder

C's value functions becoming much more linear. The objective in which the different

Implementation Costs
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philosophies were most prevalent was the Cost of False Positives. Here, most

stakeholders believed there was no value in a system that did not at least perform "Good"

at minimizing this cost whereas stakeholder C's value function still remained linear.

4.5 The Expected Outcomes

The expected impacts of each decision option were elicited from each stakeholder

separately. DNDO has invested significant resources into analyzing and testing the

capabilities of the prototypes they are considering and has accumulated a wealth of

information regarding their capabilities. Because of the sensitive nature of the data,

DNDO did not feel comfortable releasing their specific test results to open sources.

However, all four stakeholders were very familiar with the data and could make more

general assessments of the expected outcomes using our constructed scales. Their

assessments, presented in Table 7, varied despite the fact that each stakeholder had access

to the same reports and test results and were sensitive to the stakeholder's interpretation

of the data available. For example, the primary attribute for the objective Minimize the

Cost of False Positives was the expected false positive rate, but the capability of the

system to cope with false positives once they occurred was also considered. When

additional criteria such as this one were substantial enough to affect the expected

outcome for a decision option, the result was discussed among the stakeholders during

deliberation. The resulting distribution of expected outcomes among the stakeholders

acted as a form of sensitivity analysis for the group as a whole. Additionally, a

sensitivity analysis for each stakeholder's results was presented during the deliberation.



Table 7: Expected Outcomes for the Decision Options

Expected Outcomes for the Decision Options
Decision Option A (No Chanae)

Stakeholder A Stakeholder B Stakeholder C Stakeholder D
CBP Input Minor Objections Minor Objections Major Objections Major Objections
False Positives Poor Poor Poor Poor
Implementation Costs Low Low Low Low
Maintenance/Life Cycle Low Low Low Low
RDD Detection Good Excellent Poor Poor
SNM Detection Poor Poor Poor Poor

Decision Option B (PVT-Nal)
Stakeholder A Stakeholder B Stakeholder C Stakeholder D

CBP Input Approval Minor Objections Minor Objections OK-Ambivalent
False Positives Good Excellent Poor Fair
Implementation Costs Medium Medium Medium Medium
Maintenance/Life Cycle Medium Medium Medium Medium-High
RDD Detection Excellent Excellent Fair Good
SNM Detection Good Good Poor Poor

Decision Option C (Nal-HPGe)
Stakeholder A Stakeholder B Stakeholder C Stakeholder D

CBP Input Major Objections Major Objections Major Objections Minor Objections
False Positives Excellent Excellent Fair Excellent
Implementation Costs High High High High
Maintenance/Life Cycle High High High High
ROD Detection Excellent Excellent Good Excellent
SNM Detection Excellent Excellent Good Excellent

Decision Option D (Hybrid)
Stakeholder A Stakeholder B Stakeholder C Stakeholder D

CBP Input Minor Objections Approval Approval OK-Ambivalent
False Positives Good Good Good Fair
Implementation Costs Medium Medium Medium Medium-High
Maintenance/Life Cycle Medium Medium Medium Medium
RDD Detection Excellent Excellent Good Good
SNM Detection Good Excellent Good Good

Decision Option E (Nal-Nal)
Stakeholder A Stakeholder B Stakeholder C Stakeholder D

CBP Input Approval Approval Ok-Ambivilant Minor Objections
False Positives Excellent Excellent Excellent Good
Implementation Costs Medium-High Medium-High Medium-High Medium-High
Maintenance/Life Cycle Medium-High Medium-High Medium-High Medium
RDD Detection Excellent Excellent Excellent Good
SNM Detection Excellent Excellent Excellent Good



4.6 The Performance Index

The PI's of the decision options were calculated using equation 1 and in essence

summed the values of the decision option's abilities to meet the objectives from the

perspective of each stakeholder. The calculation of P1 uses an additive value function.

Clemen states that this type of function is valid under conditions of mutual preferential

independence. "An attribute Y is said to be preferentially independent of X if preferences

for specific outcomes of Y do not depend on the level of attribute X." (Clemen, 1996, p.

579) The attributes of this decision problem meet this criterion and therefore an additive

utility function is valid. For example, lower maintenance costs will always be preferable

regardless of the level of CBP approval. The P1 results from our case study are displayed

in Figure 4 and Table 8.
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Figure 4: Performance Indices of the Decision Options for each stakeholder

The P1 results did not show a clearly preferred option for all stakeholders.

Stakeholders A and C preferred Nal-Nal while stakeholder B preferred Hybrid and

stakeholder D Nal-HPGe. The P1 results did indicate that the No Change and PVT-Nal

options were clearly not preferred and should be eliminated from further consideration.

For the remaining three options, the preferred decision options clearly demonstrated

sensitivity to the Ability to Detect SNM for all stakeholders. Stakeholders A and B both

rated two decision options excellent in this category and in both cases their answers were

sensitive to CBP Input and Maintenance and Life Cycle Costs with Stakeholder A

judging Nal-Nal superior in achieving these objectives and Stakeholder B judging the

Hybrid superior. Stakeholder D's preference for the NaI-HPGe option was unique and

based on a difference of opinion in the Nal-HPGe's expected outcome for Ability to
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Detect SNM. These opinion differences were the focus of the deliberation in which the

final decision was made.



Table 8: Performance Index Calculations

Performance Index for the Decision Options
Stakeholder A

Decision Option
Objective A B C D E
Ability to Detect SNM 0.0000 0.3198 0.6396 0.3198 0.6396
Ability to Detect RDD 0.0533 0.0914 0.0914 0.0914 0.0914
Terminal Operator Input 0.0000 0.0000 0.0000 0.0000 0.0000
CBP Input 0.0180 0.0810 0.0000 0.0180 0.0810
Cost of False Positives 0.0000 0.0158 0.0528 0.0158 0.0528
Implementation Costs 0.0254 0.0145 0.0000 0.0145 0.0073
Maintenance and Life Cycle Costs 0.1098 0.0487 0.0000 0.0487 0.0244
Total 0.2065 0.5712 0.7838 0.5082 0.8965

Stakeholder B
Decision Option

Objective A B C D E
Ability to Detect SNM 0.0000 0.2747 0.6867 0.6867 0.6867
Ability to Detect RDD 0.0763 0.0763 0.0763 0.0763 0.0763
Terminal Operator Input 0.0000 0.0000 0.0000 0.0000 0.0000
CBP Input 0.0517 0.0517 0.0000 0.1760 0.1760
Cost of False Positives 0.0000 0.0000 0.0133 0.0048 0.0133
Implementation Costs 0.0056 0.0031 0.0000 0.0031 0.0011
Maintenance and Life Cycle Costs 0.0422 0.0232 0.0000 0.0232 0.0084
Total 0.1758 0.4290 0.7763 0.9701 0.9618

Stakeholder C
Decision Option

Objective A B C D E
Ability to Detect SNM 0.0000 0.0000 0.4854 0.4854 0.6472
Ability to Detect RDD 0.0000 0.0308 0.0616 0.0616 0.0808
Terminal Operator Input 0.0000 0.0654 0.0000 0.0654 0.0654
CBP Input 0.0000 0.0218 0.0000 0.0545 0.0354
Cost of False Positives 0.0000 0.0000 0.0126 0.0251 0.0377
Implementation Costs 0.0035 0.0024 0.0000 0.0024 0.0012
Maintenance and Life Cycle Costs 0.0128 0.0090 0.0000 0.0090 0.0043
Total 0.0163 0.1294 0.5596 0.7034 0.8720

Stakeholder D
Decision Option

Objective A B C D E
Ability to Detect SNM 0.0000 0.0000 0.6396 0.4567 0.4567
Ability to Detect RDD 0.0000 0.0457 0.0914 0.0457 0.0457
Terminal Operator Input 0.0000 0.0000 0.0000 0.0000 0.0000
CBP Input 0.0000 0.0607 0.0304 0.0607 0.0304
Cost of False Positives 0.0000 0.0198 0.0528 0.0000 0.0198
Implementation Costs 0.0254 0.0178 0.0000 0.0076 0.0076
Maintenance and Life Cycle Costs 0.1098 0.0300 0.0000 0.0549 0.0549
Total 0.1352 0.1740 0.8142 0.6256 0.6151



4.7 The Deliberation.

During the deliberation, the results for each stakeholder were presented to the

group for discussion. The stakeholders were in good agreement on the priorities of the

objectives which allowed the deliberation to focus on their major differences, namely the

expected outcomes for the Ability to Detect SNM and CBP Input objectives. Five major

points of discussion shaped the deliberation.

A critical discussion during the deliberation involved resolving the reasons why

stakeholder D rated the Nal-HPGe option higher in Ability to Detect SNM and CBP Input

than the other stakeholders. The discussion revealed a misunderstanding of the

operational constraints for secondary inspections. Stakeholder D assumed a longer dwell

time for the secondary inspections than the other stakeholders. This longer time would

allow the HPGe detectors to outperform the Nal counterparts. Through the course of

deliberation, stakeholder D was convinced by the other stakeholders that the shorter

dwell time was more realistic, and that CBP would prefer Nal detectors to HPGe and

therefore revised his preferences.

A strong discussion during deliberation also focused on the characteristics of the

Hybrid Option. Several of the stakeholders questioned stakeholder C's judgment on how

well the Hybrid option would perform. It became clear quickly that stakeholder C had

misunderstood what combination of detector systems encompassed the hybrid option and

therefore misjudged it. Stakeholder C agreed to revise his expected outcomes after the

misunderstanding was resolved, a change that raised his PI significantly for the hybrid



option. Stakeholder C's top choice remained the Nal-Nal option, but the hybrid moved

into second place.

All the stakeholders were surprised to find the lack of importance of

implementation costs in the final decision. They had recently spent much time and

resources to confirm what those costs would be to support their CBA analysis. These

costs were still being debated with other governmental agencies and had become a major

focus of their efforts. The stakeholders agreed that if the ADP was the primary decision

methodology used for this decision those resources could have been diverted to more

important valuable research and saw this as an advantage of the ADP.

Part of the deliberation also involved stakeholder C discussing why he felt it was

important to separate the Stakeholder Impact category into CBP Input and Terminal

Operator Input instead of grouping both influences under CBP Input as the other

stakeholders had. Stakeholder C stated that the interests of the terminal operator were

strictly business related and directly proportional to throughput. He also observed an

aversion to changes in operations and a mistrust of new technology among this

stakeholder group. The CBP stakeholders, however, were concerned more with the

complexity of the system, the ease of use, and the expected manning requirements for the

systems. Stakeholder C did acknowledge the arguments of the other stakeholders that

CBP's opinions were influenced by the Terminal Operator opinions as well, but did not

think it was a strong enough influence to lump the groups together. In the end, the

analysis showed that this dispute had little impact on the final ranking of the decision

options and the stakeholders agreed to move on.



Finally, the variance of understanding of CBP preferences among the stakeholders

was unexpected. A discussion of each stakeholder's perception of CBP's input was

fruitful in clearing additional misunderstandings, primarily stakeholder D's expectation

of CBP approving the Nal-HPGe option. Through the discussion it became clear that

stakeholder D had not seen the latest position paper from CBP about this program in

which the CBP priorities had been updated. After reviewing the new information

stakeholder D agreed to revise his responses. Furthermore, the DNDO stakeholders

requested that the researcher work with the CBP deputy director responsible for advising

DNDO and quantify his input using the ADP as well.

During the deliberation, discussions of other concerns outside the scope of the

analysis such as public perceptions of the program as well as the uncertainties in expected

outcomes helped to shape the final decision. The stakeholder participation in the ADP

helped them to realize that they were not as sure of the expected outcomes as they

initially believed themselves to be. In light of this, the group decided to proceed

cautiously on a course of action in which they would initially use decision option B,

PVT-Nal, to gather additional data from actual field use of the new systems. If the field

reports indicated that the Nal systems performed as expected, then the decision would be

switched to Hybrid in which Nal systems would be used for primary inspections at major

ports. Finally, if the Nal systems performed as expected in a primary function, then

DNDO would consider switching to Nal-Nal for all ports and border crossings.

DNDO's final Cost-Benefit Analysis (CBA) is due for a final decision during the

summer of 2008. Their preliminary CBA analysis and discussions have good agreement



with the results from the ADP model and the organization is currently leaning towards

the final decision of this research.



5. CONCLUSION

This paper presented a case study illustrating the use of the Analytic-Deliberative

Process for the selection of radiation portal monitors for shipping ports and border

crossings. Although the final decision option preferences are similar, the ADP holds an

advantage over CBA for these types of decisions in that it quantifies explicitly and

separately both objective and subjective influences that affect the decision. The use of an

Objectives Hierarchy and the Analytic Hierarchy Process provides a rigorous approach to

value modeling that can be implemented and adjusted quickly by executives with

minimal technical assistance.

Additionally, the value functions serve the same purpose of CBA's equivalent

dollar scales, but can add explicitly the additional information of how important those

dollars are to the decision maker. It is clear that attempts to quantify the impact of

nuclear terrorism and stakeholder inputs in terms of dollars can be abstract, subjective,

and uncertain. Quantities such as attack frequency, consequences, and the impact of

countermeasures are clear examples of uncertain and subjective variables that must be

combined to give a dollar estimate of the savings in dollars due to increased safety from

nuclear terrorism. Much more certainty can be associated with quantifying these

outcomes in terms of their value or utility to the decision maker.

Perhaps the greatest strength of the ADP revealed by this research was the

effectiveness of the deliberation following the completion of the analysis. Five major

points of disagreement among the stakeholders were easily identified and discussed.



Four of the disagreements were the results of misunderstandings between the

stakeholders about facts regarding the case study. The deliberation allowed these

misunderstandings to be identified quickly and remedied, which led to good agreement

between stakeholders who disagreed initially.

The stakeholders did not resolve the final disagreement regarding the influence of

terminal operators, but were content to disagree since sensitivity studies indicated their

differences had a minimal impact on the final decision. Similarly, sensitivity studies also

indicated that the final decision was insensitive to implementation costs; an area in which

they had recently focused much of their resources to resolve a debate over these costs

with other governmental agencies. This last case highlights an important strength of the

ADP in that it can focus the deliberation and further research on areas that truly impact

the decision and prevent the wasting of time and resources eliminating uncertainties that

are not actually critical to resolve.

One critique of the use of an ADP type decision methodology for public policy

making is that it relies on the values of the leaders of the responsible agencies instead of

the values of the nation at large. It is true that these two value sets do not necessarily

agree. However, the leaders elected and appointed to these positions are selected for their

wisdom and great insights into the respective areas. A common issue with CBA use in

public policy is that the public's risk perception is often not in good agreement with the

actual risk severity. Nor, does it truly represent the values of the entire society but rather

a portion of society whose preferences are assumed to represent the greater population. It

is fair to say that the leaders of the organizations called to make these public policy

decisions have a deeper understanding of these issues than the general public and are



charged with the public trust to make value judgments on their behalf. Thus, the

arguments supporting the ADP as a legitimate decision methodology for government

agencies appear much stronger than those against.

In matters of governmental spending on national security initiatives, subjective

influences abound. The difficulties in quantifying these influences with CBA leave them

either external to the analysis or hidden within the assumptions. Consensus building can

be challenging in these cases which seems to be evident in the case ofDNDO's selection

of RPM technologies. Therefore, the ADP may be useful to these agencies to better

assist in consensus building and moving decisions forward in a timely manner.
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APPENDIX A: A COMPARISON OF NAI AND HPGE
DETECTORS FOR USE IN RADIATION PORTAL
MONITORS

The chief technical metrics of judging between detectors are resolution,

efficiency, and performance with changing environmental considerations. Detectors used

for radiation spectroscopy produce a response function from the incident radiation that

can graphically be interpreted as a probably density function for the energy level of the

incident radiation. Using this interpretation the resolution is defined as the ratio of the

full width of the response function measured at half of the maximum peak value

(FWHM) to peak height Ho. (Knoll, 2000)

F WHM
Re solution = (A. 1)

H0

HPGe detectors have energy resolutions a factor of 30 better than Nal detectors,

with resolutions of <1% and 5-10%, respectively (Knoll, 2000). One reason why the Nal

resolution is lower is because its energy resolution is affected by its intrinsic crystal

resolution (related to light output), the performance of the photomultiplier tube (PMT),

and photocathode. The HPGe detector's resolution, however, is a simple function of the

solid state semiconductor material. HPGe's superior resolution gives it a markedly better

ability to separate overlapping peaks, detect peaks in the presence of strong background

noise, and to make precise calculations of gamma ray energies, thus making it

advantageous in situations with masking by Naturally Occurring Radioactive Materials

(NORM) or shielding by a high Z substance is likely. For a more in depth discussion on

the effect of NORM see appendix B.



The efficiency of a detector is primarily determined by the density of the material

and its atomic number or Z value. Because all gammas must be slowed for detection, a

detector's efficiency is proportional to the medium's stopping power (Phillips, Nagel, and

Coffey, 2005). Nal detectors have a greater gamma absorption capability than HPGe

detectors because their Z value is nearly three times that of HPGe (81 as opposed to 32)

and therefore have a greater stopping power. Thus, the Nal detector has a higher

efficiency overall when comparing detectors of equal size. Finally, although HPGe

generally outperforms Nal, HPGe detectors do not detect a majority of the incident

gammas at lower energies. Overall, the HPGe detector's peak efficiency is lower than

that of a Nal detector of equal size, but with its superior energy resolution and isotopic

identification capability it still outperforms a Nal detector. Additionally, the minimum

detectable activity (MDA) of source material will be lower for the HPGe detector which

makes it more reliable for identifying trace signatures.

For real-world applications the technical advantages of these systems must be

balanced out with various practical considerations. The most technically sophisticated

system is not the best choice unless it is also cost effective, manufacturable, and robust,

among other practical factors. These practical concerns are often dominant in

determining the radiation system of choice.

Nal detectors have many practical advantages over HPGe detectors. When we

look at both detector systems in terms of cost, the Nal detectors are the clear winner. The

direct costs of Nal detectors are about half that of a comparable HPGe detector. When

we look at the size of the two detection systems in the context of maneuverability and

maintenance, HPGe initially appears to be the clear choice since it is approximately six



times smaller than an equivalent Nal system. However, an HPGe detector system

requires an external cooling system in order to operate. This fact will not only increase

the size of the HPGe system, but also drive the system cost up even more. Additionally,

the cooling systems required for HPGe systems are often sensitive to failure and can

decrease the overall reliability of the detection system. Additionally, the durability of the

HPGe systems is uncertain while the Nal systems have been successfully employed in

field conditions for many years. Therefore, the decision makers must be willing to accept

some risk in durability if they select the HPGe systems of Nal.

Another practical issue concerns the amount of time needed in order to do a scan.

Nal systems can perform a scan relatively quickly (seconds) while the HPGe system

requires a longer scan time (minutes) in order to maintain the same level of sensitivity.

Thus, from a practical perspective, Nal radiation detection systems appear advantageous

over HPGe systems (Ely, Siciliano, and Kouzes, 2004).

Thus, the decision facing DNDO to choose between Nal and HPGe detectors is

clearly complex and will have an immense impact on National Security. Technical

considerations seem to favor HPGe detectors, while practical considerations favor Nal

detectors and stakeholder considerations fall somewhere in between. All relevant factors

should be considered and the best choice for this particular application should be selected

using a methodology that allows for objective analysis as well as decision maker

deliberations. ADP provides such a methodology and may very useful in ensuring the

best possible course of action is selected.



APPENDIX B: THE IMPACT OF NATURALLY
OCCURRING RADIOACTIVE MATERIALS (NORM) ON
DETECTING SPECIAL NUCLEAR MATERIALS AT PORTS
AND BORDER CROSSINGS

Countries around the world are deploying radiation detection instruments to

interdict the illegal shipment of radioactive material crossing international borders. Of

particular concern is the shipment of Special Nuclear Materials (SNM) including various

isotopes of plutonium (238Pu, 239pU, 240Pu and 241Pu) and enriched uranium (235U) which

could be used to fashion a nuclear weapon. To detect the presence of these materials at

border crossings most countries rely on RPMs to detect the presence of gamma radiation.

Radionuclides emit gamma radiation at distinct energy levels which can act as a

radiological fingerprint. However, complications can occur in isotope identification if

NORM is present. The significance of this complication involves both the frequency in

which we encounter NORM in screening cargo at borders and how effectively it can

mask SNM.

A quick review of literature reveals that radioactive materials in cargo are fairly

common. Typical products containing NORM include those listed in table 9. This table

is adopted from Kouzes (Kouzes, et al., 2003) and outlines the materials that most

frequently cause alarms at border crossings:



Table 9: Radioactive Materials Causing Alarms at US Border Crossirngs from Kouzes. 2003

Radioactive Materials Causing Alarms at US Border Crossings
Material % of Alarms

Kitty Litter 34%
Medical Isotopes 16%

Abrasives 8%
Refractory Material 8%

Scouring Pads 6%
Mica 5%

Potassium/Potash 5%
Granite Slabs 4%

Toilet bowls & tile 4%
Trucks/cars 2%

Additional alarms can occur when passengers are present who have undergone

medical treatments involving radioactive isotopes. Kouzes estimates that 1 out of every

2600 Americans carry enough radioactivity from medical treatments to set off typical

border crossing radiological alarms.

The effect of NORM on properly identifying SNM sources depends on the type of

NORM present and the suspected type of SNM. Most NORM sources originate from

four radioisotopes: 40K, 226Ra, 238U, and 232Th. Of these, the most problematic appears to

be 226Ra. This isotope emits gamma radiation at 186.2 kev which is close enough to the

235U radiation peak at 185.7 kev to confuse most detectors without very high resolution.

This is a serious complication since the 235 U peak is weak and provides the only

radioactive signature for this isotope. Plutonium is much more radioactive and generally

found with several different radioisotopes present. This provides a more distinctive

gamma signature which cannot be masked by NORM. Table 10 provides a snapshot of

important gamma peaks for plutonium and how NORM radiation peaks would fit into a

plutonium spectrum.
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Table 10: Plutonium Gamma Spectroscopy Useful Peaks and NORM From Hsue et. al, 1980

Hence, NORM certainly plays a significant role in assessing the capabilities of a

radiation portal monitor's ability to interdict the smuggling of SNM. NORM in cargo

appears frequently and must be planned for. Gamma ray spectroscopy techniques can

provide an excellent fingerprint for radio-nuclides such as plutonium when NORM is

present but may provide unclear results when attempting to identify HEU because of

possible masking. Thus, excellent resolution and a well thought out inspection plan are

critical to providing protection from SNM smuggling.

Plutonium Gamma Spectroscopy Useful Peaks and NORM
Region Useful Peaks Source Norm Peaks Source
40-60 43.48 PU-238

45.23 PU-240
51.63 PU-239 49.5 U-238
59.54 AM-241 63.8 TH-232

90-105 98.78 PU-239 89.5 TC-99
98.95 AM-241
99.68 PU-238
102.97 AM-241
103.68 PU-241
104.24 PU-240

120-450 125.29 AM-241 113.5 U-238
129.9 PU-239

148.57 PU-241 140.8 TH-232
152.68 PU-238
160.28 PU-240
164.8 PU-241

203.54 PU-239 186.2 Ra-226
208 PU-241

332.35 PU-241
335.4 AM-241

345.01 PU-239
370.93 PU-241
375.04 PU-239
413.71 PU-239

450-800 642.48 PU-240
662.42 AM-241
721.99 AM-241
766.4 PU-238 1460 K-40

o



APPENDIX C. A DISCUSSION OF THE USE OF COST-
BENEFIT ANALYSIS FOR PUBLIC POLICY MAKING

C. 1 Historical Background

The first formal thoughts regarding the use of a Cost-Benefit type analysis for

public policy decision making are usually attributed to Vilfredo Pareto from whom we

get the concept of the Pareto Optimum (Pareto, 1896). The Pareto Optimum is a

common-sense notion that considers a policy change an improvement if at least some

people are made better off and no one is made worse off. Its common-sense appeal

appears to make it a good criterion for public policy making; however, its standard is

impossible to obtain in most real-world situations. In virtually all public policy

decisions, someone winds up worse off in order for others to benefit. Thus, most Cost-

Benefit Analyses (CBA) today use a revision to Pareto's original work put forth by

Nicholas Kaldor and John Hicks in 1939 (Layard, 1972). This revision accepts a policy

change if the total gains and total losses of the winners and losers are such that the

winners could theoretically compensate the losers and still come out ahead. This is

known as the Kaldor-Hicks criterion and is generally used as the foundational criterion

for modern day CBA. Since then, CBA has grown into an entire field of study in itself.

CBA has long been used by businesses to analyze potential investments and

formally became a part of public policy decision making in 1981. That year President

Reagan signed executive order 12291 which mandated "No actions by federal agencies

should be taken unless they result in a positive net value to society." This overarching,

mandate forced the federal government to fully embrace CBA methods but quickly



became overly arduous to the agencies required to conduct these analyses. To alleviate

this bureaucratic burden, President Clinton signed executive order 12866 in 1993 which

required a regulatory analysis to be prepared for all "significant regulatory actions".

Significant regulatory actions identified in the order were defined as: having an annual

effect on the economy exceeding $100 million, adversely affecting jobs, the environment

or public health and safety, seriously interfering with another agency's action, or raising

novel legal or policy issues outside legal mandates and Presidential priorities. ( US EPA,

2000) Thus, the case study at hand clearly meets both the public health and safety and

monetary requirements and is subject to a CBA before the a final decision can be made.

C.2 Decision Metrics

To conduct a CBA, the federal government attempts to quantify all the costs and

benefits associated with a proposed policy change. Once these are quantified, there are

several decision criteria that exist for determining the best option including Net Present

Worth, Benefit-Cost Ratio, and Internal Rate of Return (IRR). The Office of

Management and Budget recommended in 1992 that all federal agencies use the Net

Present Worth method and this has since become the standard federal approach (OMB,

1992).

In calculating the net present worth of decision alternatives both current and

future costs and benefits must be considered simultaneously. To accomplish this,

monetary values in the future are adjusted for inflation to yield a net present value.

Similarly, the future public benefits (such as the use of a park to be built 10 years from

now) are adjusted to their present value through a social discount rate. The moral

implications of social discounting have been debated



at length. Shrader-Frechette argues that social discounting is dangerous as it

overburdens future generations (Shrader-Frechette, 2000) while Belzer argues strongly in

favor social discounting as generations have always given and taken from each other

(Belzer, 2000). Nonetheless, both inflation and social discounting are generally used

today in federally performed CBAs.

C.3 Quantifying Costs

The costs of a decision include actual, physical costs of a decision as well as the

indirect costs of negative social impacts among others. The costs of a policy decision can

be generally classified into five subcategories: Real-resource compliance costs,

Government regulatory costs, social welfare costs, transitional costs and indirect costs

(US EPA, 2000).

Real-resource compliance costs include purchase, installation, operation and

maintenance of equipment, changes in production or processing capabilities, and the cost

of time spent on paperwork. In our case study the real-resource costs would include the

purchase price and installation of the detector systems, the manpower costs to the

Customs and Border Protection Agency (CBP) to operate the systems, and their

associated maintenance costs among others.

Government regulatory costs include things such as the cost of administration,

monitoring, and enforcement of regulations. For our case study, these would include the

cost of DNDO oversight into the operation of the new detector systems as well as system

training for CBP personnel.

Social welfare costs generally refer to losses in consumer and producer surplus

due to a rise in price or decrease in output of a good or service. The slowdown in stream



of commerce in our case study would fall into this category and is a major concern to the

decision makers. As false positives slow down commerce processing through the ports,

fewer goods can enter the country and their associated prices will increase.

Transitional costs are temporary costs associated with implementing the new

policy. For our case study costs such as implementation and reconfiguring the ports to

support the new detector systems could be classified as transitional costs.

Indirect costs include effects new policies may have on markets and society that

are not be associated directly with the new policy and can be difficult to measure. These

costs may include things such as changes in market structure, (i.e., companies leaving a

market due to increased regulation), product quality, (focus diverted from product quality

to regulation compliance), or discouraged investment (regulated activity may not be as

attractive to investors). One example of an indirect cost in our case study is a high false-

positive rate resulting in fewer companies shipping goods to the US because of the hassle

of getting their cargo through the ports.

C.4 Quantifying Benefits

The benefits of a policy decision are analyzed by attempting to quantify the

Willingness-to-Pay (WTP) and Willingness-to-Accept (WTA) of the public for the

different benefits associated with the potential policy change. For example, a CBA

conducted by the Department of Transportation may want to assess how much the public

is willing to pay in vehicle prices for additional safety features in new automobiles. They

may also want to assess how much additional risk of accidents the public is willing to

accept to raise the speed limit on a certain stretch of road. Three different types of

methods have been developed to quantify benefits in this way, each of which is used in



different circumstances in practice. In order of preference the three methods are revealed

preferences, stated preferences, and benefit transfer (Stavins, 2006).

Revealed preference methods use people's observed behavior to infer their WTP

or WTA for public goods and services. For example, analysts can use revealed

preferences to estimate the value of quality school systems and living environments by

observing differences in housing prices for the same size and quality of house in different

neighborhoods. Similarly, analysts can estimate the value of safety by comparing the

salaries of similar jobs performed under different conditions. For example, contractors

working in Iraq are paid a premium by the US government due to added hazards of their

working environment. Revealed preference methods are generally considered the most

accurate. However, the use of this technique depends on the situation and is not always

appropriate. In particular, assessing the benefits of the non-use of an asset can be

difficult to conduct revealed preferences. Examples would include the value of

preserving National Parks for future generations or the National Oil Strategic Reserve.

Stated preference methods usually involved administering a highly structured

survey to consumers/citizens to determine the value they place on a good or service.

These surveys are subject to the biases of the interviewees and can be very time

consuming and expensive when properly done. Nonetheless, for situations in which

revealed preference methods are not available these methods are sometimes used.

Benefit transfer methods are considered the least accurate but are more commonly

used because they are relatively cheap and fast. The essence of this technique is to find

examples of quantified benefit values from other situations and attempt to apply them

current decision problem. An example of this type of method is assessing the increase in



commerce in one city after an infrastructure improvement project and assuming it will be

similar in another city after a similar project is completed. These approximations can be

reasonable when the baseline and degree of change between projects are similar, the basic

commodities are essentially equivalent, and the affected populations are similar. In our

case study a benefit transfer method is necessary to estimate the value of lives saved by

purchasing the advanced detection systems and this represents the biggest weakness in

the use of CBA techniques for these types of analyses as argued by French (French,

Bedford and Atherton, 2005)

C.5 The Value of a Statistical Life (VSL)

The value of a statistical life (VSL) is the term used by analysts to discuss the

question of how much value people assess to reductions in the risk of mortality. VSL

calculations do not represent the value of life in ethical terms, technical, or economic

terms. Rather, it is simply a convention used to express people's stated or revealed

marginal valuation for a small change in risk. As an example, the Environmental

Protection Agency (EPA) typically uses a VSL of around $6 million in their calculations.

This number does not mean an individual would pay $6 million to avoid certain death or

accept certain death for $6 million. Instead, it means that a population of several

thousand people would be willing to pay $6 million together to prevent the certain death

of one of them chosen at random. VSL estimates have a large variance and must be

subject to large sensitivity studies. Table 11 below is a list of VSL estimates adopted by

the EPA as policy relevant in 2000. From these estimates the EPA has derived a VSL

probability distribution as Weibull with a mean of $5.8 million in 1997 dollars (US EPA,

2000).



Table 11:VSL estimates considered policy-relevant.
From Guidelines for Preparing Economic Analyses, US EPA, 2000.

VSL Studies adopted by EPA as policy-relevent
(Mean values in 1997 dollars)

Study Method Value of Statistical Life
Kneisner and Leeth (1991 - U.S.) Labor Market $0.7 million
Smith and Gilbert (1984) Labor Market $0.8 million
Dillingham (1985) Labor Market $1.1 million
Butler (1983) Labor Market $1.3 million
Miller and Guria (1991) Contingent Valuation $1.5 million
Moore and Viscusi (1988) Labor Market $3.0 million
Viscusi, Magat and Huber (1991) Contingent Valuation $3.3 million
Marin and Psacharopoulos (1982) Labor Market $3.4 million
Gegax et al. (1985) Contingent Valuation $4.0 million
Kneisner and Leeth (1991 - Australia) Labor Market $4.0 million
Gerking, de Haan and Schulze (1988) Contingent Valuation $4.1 million
Cousineau, Lecroix and Girard (1988) Labor Market $4.4 million
Jones-Lee (1989) Contingent Valuation $4.6 million
Dillingham (1985) Labor Market $4.7 million
Viscusi (1978, 1979) Labor Market $5.0 million
R.S. Smith (1976) Labor Market $5.6 million
V.K. Smith (1976) Labor Market $5.7 million
Olson (1981) Labor Market $6.3 million
Viscusi (1981) Labor Market $7.9 million
R.S. Smith (1974) Labor Market $8.7 million
Moore and Viscusi (1988) Labor Market $8.8 million
Kneisner and Leeth (1991 - Japan) Labor Market $9.2 million
Herzog and Schlottman (1987) Labor Market $11.0 million
Leigh and Folsom (1984) Labor Market $11.7 million
Leigh (1987) Labor Market $12.6 million
Garen (1988) Labor Market $16.3 million
Derived from EPA (1997) and Viscusi (1992).

To calculate the benefits in this case study due to the decrease in expected loss of

life, an equation such as equation 3 must be used.

MCS = A, x F x VSL (C.1)



where MCS is the Mortality Cost Savings, 2, is the reduction in the expected number of

nuclear terrorism events due the implementation of the decision, F is the expected

number of fatalities for a single nuclear terrorism event, and VSL is the value of a

statistical life. Although it is possible to create estimates of each of these parameters,

their uncertainties are unavoidably extreme. This makes the assessment of MCS highly

dependent on the assumptions made in estimating its parameters and thus subjective in

nature. This unavoidable subjectivity is the biggest problem in using CBA for this case

study as it is somewhat hidden in these assumptions. Conversely, the ADP makes the

subjectivity of its analysis explicit and more straightforward for discussion.

C.6 A Comparison of Cost-Benefit Analysis and Decision
Analysis

French et al. present a good critique and comparison of CBA and DA and argue

that DA is more appropriate for making safety decisions in the French nuclear power

industry (French, Bedford and Atherton, 2005). The differences in these two theories as

presented by French are summarized below.

As described earlier in this text DA is an explicitly subjective decision

methodology while CBA attempts to be explicitly objective. DA methods involve value

tradeoffs to determine priorities from the perspective of a specific decision maker. CBA

attempts to model the values of society as a whole. While the intentions of CBA in this

respect are laudable subjectivity inevitably finds it way into the analysis in the form of

how the analyst chooses to model societal values. Since CBA is market based, large

variances in perceived costs and benefits can abound from different market scenarios for

the same good. Clearly different demographics of the US have different aversions to risk,



and value everything from natural resources to houses to security differently. How the

analyst captures these values can greatly influence the decision.

One perceived advantage of CBA is that it forces consistency in value tradeoffs

from decision to decision. Since the analyst in theory does not choose the value

preferences that are used in the analysis they remain constant for each new decision that

arises. DA gives the decision maker the flexibility to re-evaluate his or her value

tradeoffs for each new situation which may be perceived as a problem when making

decisions on behalf of the public. The consistency advantage of CBA over DA is

mitigated in two ways: first French argues that databanks and records of value tradeoffs

can be stored and used as a start point for sensitivity studies in future decision problems,

second some degree of changing values should be expected from problem to problem. A

classic example of this is the different levels of risk the public is willing to accept when

traveling by aircraft as opposed to traveling by car. The public has always demanded

much higher safety standards for airline travel than automobile travel even though the

airlines have been shown to be much safer (US DOT, 2002).

CBA and DA also differ in their treatment of costs and benefits that are actualized

through time. Since CBA is tied to market valuations of costs and benefits it forces the

analyst to treat future costs and benefits using an inflation/discount rate or not at all.

Other Ad Hoc techniques have been attempted to adjust these figures but none are

theoretically justified. Since DA ties costs and benefits to their value to the decision

maker it provides more flexibility in the treatment of costs and benefits through time. For

Example, French describes one of several techniques used in discounted utility theory

(DUT) known as hyperbolic discounting which can model the devaluation of future



utility much slower than an equivalent discount rate but still accounts for a decision

maker that is timing averse.

Finally, when multiple stakeholders are involved DA can formally incorporate a

deliberation phase (as it does in our version) in which consensus building can occur.

Since CBA theoretically encompasses everyone's values a priori there is no deliberation

phase. In reality debate almost always follows these analyses. However, this debate

must be framed as a critique of analytical techniques as opposed to a discussion over

what the priorities should be for the project. Since the values underlying the decision are

debated indirectly this can be a long and slow process as evidenced by this case study.



APPENDIX D. ANALYTIC HIERARCHY PROCESS AND
VALUE FUNCTION QUESTIONNAIRES AND RESULT
SUMMARIES FOR THE FOUR STAKEHOLDERS.

The following pages contain samples of the questionnaires given to each

stakeholder to elicit his values and preferences. The resulting objective weights are

calculated using Saaty's relative comparison technique outlined in reference 19 and the

value functions were calculated using a variant of Clemen's ratio technique (Clemen,

1996).



The Analytic Hierarchy Process Pair Wise Comparison Worksheet
for DNDO's Passive Spectroscopic Portal Monitor Procurement

Decision

This worksheet is designed to assist the decision maker in assigning logical
weights to the decision criteria he or she is using to decide between prototypes for
spectroscopic portal monitor systems.

Instructions: For each pair of criteria presented please circle the pair you feel is more
important to the achieving the specific objective indicated above the pair. Then circle
the number which best describes how much more important you judge that criteria to be.

Use the following chart to interpret what the numbers represent:[1]

Intensity of Definition Explanation
Importance

1 Equal Importance Two activities contribute equally
to the objective

2 Weak

3 Moderate Importance Experience and judgment slightly
favor one activity over another

4 Moderate Plus

5 Strong Importance Experience and judgment srongly
favor one activity over another

6 Strong Plus
7 Very Strong Importance An activity is favored very

strongly over another; its
dominance is demonstrated in

practice
8 Very, very Strong
9 Extreme Importance The evidence favoring one

activity over another is of the
highest possible order of

affirmation

Note: The scale is intended for the decision maker to make evaluations using the odd
numbers and bold levels. The even numbers are intended for use when a compromise
must be reached between multiple parties completing the exercise.



Objective: Maximize Benefits of Detector Deployment

Criteria: Stakeholder Impact vs. Cost Impact

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Criteria: Stakeholder Impact vs. National Security Impact

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Criteria: Cost Impact vs. National Security Impact

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Comments:



Obiective: Minimize Cost

Criteria: Cost of False Positives vs. Implementation Costs

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Criteria: Cost of False Positives vs. Maintenance and Life Cycle Costs

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Criteria: Implementation Costs vs. Maintenance and Life Cycle Costs

Intensity of Importance:

1 2 3 4 5 6 7 8 9

Objective: Maximize National Security

Comments:

Criteria: Capability to Detect RDD Materials vs. Capability to Detect SNM

1 2 3 4 5 6 7 8 9



Ouantification of Value Functions associated with
Constructed Scales

In this section we will quantify the value functions for each constructed scale
agreed upon by the decision maker. The Method for computing the scales is a
combination of the Ratio Method as discussed in Clemen.[2] and the pair wise
comparison methodology used by Saaty in the Analytic Hierarchy Process[l].

Instructions: For each pair of values from the constructed scale, please circle the number
which represents how important it would be to have a system that achieves the higher
level of objective fulfillment.

Intensity of Definition Explanation
Importance

1 Equal Importance Two activities contribute equally
to the objective

2 Weak

3 Moderate Importance Experience and judgment slightly
favor one objective fulfillment

level over another
4 Moderate Plus

5 Strong Importance Experience and judgment
strongly favor one objective
fulfillment level over another

6 Strong Plus

7 Very Strong Importance One objective fulfillment level is
favored very strongly over
another; its dominance is
demonstrated in practice

8 Very, very Strong

9 Extreme Importance The evidence favoring one
objective fulfillment level over

another is of the highest possible
order of affirmation

Note: Again the even numbers are intended for use when compromises are needed
between decision makers.



Objective: CBP Input

Constructed Scale:

Major Objections: CBP anticipates significant complications integrating the alternative.
CBP considers this alternative no better than the current system or possibly worse.

Minor Objections: CBP would clearly prefer a different alternative than the one chosen
but can implement it with minor complications

Ambivalence: CBP finds this alternative acceptable, but it would prefer a different one.

Approval: CBP recommends and approves of the chosen alternative

Criteria: Comments

Major Objections vs. Minor Objections

1 2 3 4 5 6 7 8 9

Minor Objections vs. Ambivalence

1 2 3 4 5 6 7 8 9

Ambivalence vs. Approval

1 2 3 4 5 6 7 8 9



Objective: Minimize Cost of False Positives

Constructed Scale:
Poor: Defined as a False Positive (Nuisance Alarm) Rate of>75% for containers w/
NORM

Fair: Defined as a False Positive (Nuisance Alarm) Rate of 25-75% for container w/
NORM

Good: Defined as a False Positive Rate of 5-25% for containers w/ NORM

Excellent: Defined as a False Positive Rate of <5% for containers w/ NORM

Criteria: Comments:

Poor vs. Fair

1 2 3 4 5 6 7 8 9

Fair vs. Good

1 2 3 4 5 6 7 8 9

Good vs. Excellent

1 2 3 4 5 6 7 8 9

Objective: Minimize Implementation Costs

Constructed Scale:
High: Defined as cost per system >$500,000

Medium: Defined as cost per system $100,000-$500,000

Low: Defined as cost per system <$100,000

Critera:

High vs. Medium

1 2 3 4 5 6 7 8

Medium vs. Low

1 2 3 4 5 6 7 8

Comments



Objective: Minimize Maintenance and Life Cycle (M&LC) Costs

Constructed Scale:
High M&LC: Defined as cost per system >$80,000

Medium M&LC: Defined as cost per system $20,000-$80,000

Low M&LC: Defined as cost per system <$20,000

Criteria:

High M&LC vs. Medium M&LC

1 2 3 4 5 6 7 8 9

Medium M&LC vs. Low M&LC

1 2 3 4 5 6 7 8 9

Comments



Objective: Maximize Capability to detect Radiological Dispersion Device (RDD)
Materials

Constructed Scale:
Poor RDD Detection: Defined as false negative rate >20% for design basis scenarios

Average RDD Detection: Defined as false negative rate 5-20% for design basis
scenarios

Good RDD Detection: Defined as false negatives 2-5% for design basis scenarios

Excellent RDD Detection: Defined as false negatives 2-5% for design basis scenarios

Criteria: Comments:

Poor RDD Detection vs. Medium RDD Detection

1 2 3 4 5 6 7 8 9

Medium RDD Detection vs. Good RDD Detection

1 2 3 4 5 6 7 8 9

Good RDD Detection vs. Excellent RDD Detection

1 2 3 4 5 6 7 8 9



Objective: Maximize Capability to detect Special Nuclear Materials (SNM)

Constructed Scale:
Poor SNM Detection: Defined as false negative rate >20% for design basis scenarios

Average SNM Detection: Defined as false negative rate 5-20% for design basis
scenarios

Good SNM Detection: Defined as false negatives 2-5% for design basis scenarios

Excellent SNM Detection: Defined as false negatives <2% for design basis scenarios

Criteria:

Poor SNM Detection vs. Medium SNM Detection

1 2 3 4 5 6 7

Medium SNM Detection vs. Good SNM Detection

1 2 3 4 5 6 7

Good SNM Detection vs. Excellent SNM Detection

1 2 3 4 5 6 7

Comments:

8 9

8 9

8 9



D. I Summary of Results from Questionnaires

Summary of Analytical Hierarchy Process Results for Stakeholder A
Impact Categories

Stakeholders Cost National Security Weights
Stakeholders 1 1/3 1/7 0.081
Cost 3 1 1/5 0.188
National Security 7 5 1 0.731
Inconsistency= .062

Cost
False Positives Implementation Life Cycle and Maintenance Weights

False Positives 1 3 1/3 0.281
Implementation 1/3 1 1/3 0.135
Life Cycle and Maintenance 3 3 1 0.584
Inconsistency= .13

National Security
Ability to Detect RDD Ability to Detect SNM Weights

Ability to Detect RDD 1 1/7 0.125
Ability to Detect SNM 7 1 0.875
Inconsistency= 0

Objectives Weight
Ability to Detect SNM 0.63963
Cost of Life Cycle and Maintenance 0.10979
Ability to Detect RDD 0.09138
CBP Input 0.08100
Cost of False Positives 0.05283
Cost of Implementation 0.02538



Summary of Analytical Hierarchy Process Results for Stakeholder B
Attributes

Stakeholders Cost National Security Weights
Stakeholders 1 4 1/6 0.176
Cost 1/4 1 1/9 0.061
National Security 6 9 1 0.763
Inconsistency= .104

Cost
False Positives Implementation Life Cycle and Maintenance Weights

False Positives 1 3 1/4 0.218
Implementation 1/3 1 1/6 0.091
Life Cycle and Maintenance 4 6 1 0.691
Inconsistency .052

National Security
Ability to Detect RDD Ability to Detect SNM Weights

Ability to Detect RDD 1 1/9 0
Ability to Detect SNM 9 1 8/9
Inconsistency= 0

Objectives Performance Index
Ability to Detect SNM 0.68670
CBP Input 0.17600
Ability to Detect RDD 0.07630
Cost of Life Cycle and Maintenance 0.04215
Cost of False Positives 0.01330
Cost of Implementation 0.00555



Summary of Analytical Hierarchy Process Results for Stakeholder C
Attributes

Stakeholders Cost National Security Weights
Stakeholders 1 7 1/7 0.197
Cost 1/7 1 1/8 0.051
National Security 7 8 1 0.752
Inconsistency= .362

Cost
False Positives Implementation Life Cycle and Maintenance Weights

False Positives 1 7 5 0.701
Implementation 1/7 1 1/7 0.059
Life Cycle and Maintenance 1/5 7 1 0.240
Inconsistency .283

National Security
Ability to Detect RDD Ability to Detect SNM Weights

Ability to Detect RDD 1 1/8 0.111
Ability to Detect SNM 8 1 0.889
Inconsistency= 0

Stakeholder Impact
Ability to Detect RDD Ability to Detect SNM Weights

CBP Input 1 1/7 0.125
Terminal Operator Input 7 1 0.875
Inconsistency= 0

Objectives Performance Index
Ability to Detect SNM 0.6685
Terminal Operator Input 0.1724
Ability to Detect RDD 0.0835
Cost of False Positives 0.0358
CBP Input 0.0246
Cost of Life Cycle and Maintenance 0.0122
Cost of Implementation 0.0030



Summary of Analytical Hierarchy Process Results for Stakeholder D
Impact Categories

Stakeholders Cost National Security Weights
Stakeholders 1 1/3 1/7 0.081
Cost 3 1 1/5 0.188
National Security 7 5 1 0.731
Inconsistency= .062

Cost
False Positives Implementation Life Cycle and Maintenance Weights

False Positives 1 3 1/3 0.281
Implementation 1/3 1 1/3 0.135
Life Cycle and Maintenance 3 3 1 0.584
Inconsistency= .13

National Security
Ability to Detect RDD Ability to Detect SNM Weights

Ability to Detect RDD 1 1/7 0.125
Ability to Detect SNM 7 1 0.875
Inconsistency= 0

Objectives Weight
Ability to Detect SNM 0.63963
Cost of Life Cycle and Maintenance 0.10979
Ability to Detect RDD 0.09138
CBP Input 0.08100
Cost of False Positives 0.05283
Cost of Implementation 0.02538



Summary of Unweighed
CBP Input

Level Value
Major Objections 0.000
Minor Objections 0.222

Ambivalence 0.611
Approval 1.000

Cost of False Positives
Level Value
Poor 0.000
Fair 0.000

Good 0.300
Excellent 1.000

Ability to Detect RDD
Level Value
Poor 0.000

Average 0.167
Good 0.583

Excellent 1.000

Value Function Results for Stakeholder A
Life Cycle and Maintenance Costs

Level Value
High 0.000

Medium-High 0.222
Medium 0.444

Low 1.000

Implementation Costs
Level Value
High 0.000

Medium-High 0.286
Medium 0.572

Low 1.000

Ability to Detect SNM
Level Value
Poor 0.000

Average 0.143
Good 0.500

Excellent 1.000



Value Function Results for Stakeholder B
CBP Input

Level Value
Major Objections 0.000
Minor Objections 0.294

Ambivalence 0.471
Approval 1.000

Cost of False Positives
Level Value
Poor 0.000
Fair 0.000

Good 0.364
Excellent 1.000

Ability to Detect RDD
Level Value
Poor 0.000

Average 0.200
Good 0.400

Excellent 1.000

Level Value
High 0.000

Medium-High 0.200
Medium 0.550

Low 1.000

Implementation Costs
Level Value
High 0.000

Medium-High 0.200
Medium 0.550

Low 1.000

Ability to Detect SNM
Level Value
Poor 0.000

Average 0.200
Good 0.400

Excellent 1.000

Life Cycle and Maintenance Costs
ISummary of Unweighted



Summary of Unweighted Value Function Results for Stakeholder C
CBP Input

Level Value
Major Objections 0.000
Minor Objections 0.400

Ambivalence 0.650
Approval 1.000

Cost of False Positives
Level Value
Poor 0.000
Fair 0.333

Good 0.667
Excellent 1.000

Ability to Detect RDD
Level Value
Poor 0.000

Average 0.381
Good 0.762

Excellent 1.000

Terminal Operator Input
Level Value

Major Objections 0.000
Minor Objections 0.400

Ambivalence 0.650
Approval 1.000

Life Cycle and Maintenance Costs
Level Value
High 0.000

Medium 0.471
Low 1.000

Implementation Costs
Level Value
High 0.000

Medium 0.471
Low 1.000

Ability to Detect SNM
Level Value
Poor 0.000

Average 0.400
Good 0.750

Excellent 1.000



Summary of Unweighted Value Function Results for Stakeholder D
CBP Input

Level Value
Major Objections 0.000
Minor Objections 0.375

Ambivalence 0.750
Approval 1.000

Cost of False Positives
Level Value
Poor 0.000
Fair 0.000

Good 0.375
Excellent 1.000

Ability to Detect RDD
Level Value
Poor 0.000

Average 0.083
Good 0.500

Excellent 1.000

Life Cycle and Maintenance Costs
Level Value
High 0.000

Medium-High 0.273
Medium 0.500

Low 1.000

Implementation Costs
Level Value
High 0.000

Medium-High 0.300
Medium 0.700

Low 1.000

Ability to Detect SNM
Level Value
Poor 0.000

Average 0.143
Good 0.714

Excellent 1.000


