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Abstract

The elastic and viscoelastic stress-strain behavior of cytoskeletal networks, important to
many cellular functions, is modeled via a microstructurally-informed continuum
mechanics approach. The force-extension behavior of the individual filaments is captured
with a new analytical expression of the MacKintosh worm-like chain relationship for
semiflexible filaments. The filament expression is used in the Arruda-Boyce eight-chain
network model to capture the 3D stress-strain behavior, quantifying the effects of
isotropic network prestress and tracking microstructural stretch and orientation states
during large deformations. The network model captures the initial stiffness of the
network as well as the nonlinear strain stiffening observed at large stresses in shear
rheological data of bundled/unbundled in vitro F-actin networks.

The cytoskeletal network model has also been extended to include the internal energy-
based mechanical contributions at the filament and network levels from torsional cross-
link deformations as well as from direct axial stretching of filaments. This enhanced
model effectively captures the stress-strain behavior of F-actin networks cross-linked
with two different types of actin binding proteins (filamin and streptavidin). The
enhanced model is also used to evaluate the influence of the cross-links' torsional
stiffness on the entropic bending configuration space of the cytoskeletal filaments.

The 3D constitutive network model provides a framework for capturing time-dependent
spatial diffusion of cytosol within a porous, viscohyperelastic filament network. The
poroelastic behavior is coupled with the hyperelastic network behavior through a 3D
biphasic theory that includes network swelling effects for finite deformations. The
mechanical response of the cytoskeletal network due to the localized swelling is captured
by employing multiplicative decomposition of mechanical and swelling stretches.
Nonlinear shear viscoelasticity is also included to create a 3D poroviscohyperelastic
network model capable of capturing the time-dependent response of cytoskeletal
networks on short and long time scales. The model captures the nonlinear time-
dependent behavior of in vitro actin-filamin and actin-avidin networks observed in shear
rheological experiments. The constitutive models are evaluated in a finite element model
with a cellular geometry (including membrane and nucleus submodels) and the ability to
spatially vary network properties throughout the cell.
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CHAPTER 1 INTRODUCTION

1.1 Cell mechanics and role of cytoskeleton

Many important biological cellular functions in multicellular organisms rely on

the micromechanics of the cell and its cytoskeleton. Microstructural cellular features

govern the cell's mechanical behavior primarily via three main components: the plasma

membrane, nucleus, and internal cytoskeleton (see Figure 1-1) (Boal, 2002). The

semipermeable plasma membrane, composed of a lipid bilayer and transmembrane and

surface proteins, provides a protective barrier for the cell while simultaneously

facilitating interactions with its external environment (Lodish et al., 2004). The cell

nucleus is enclosed by a double membrane and filled with chromatin-rich nucleoplasm

and a nucleolus. Nuclei can dominate the mechanical response for cells such as inactive

B lymphocytes (B cells) in which their nuclear volume consumes a large fraction of the

cell, and they are often modeled as a viscoelastic solid (Guilak et al., 2000).

Membrane---

Nucleus -

Cytoskeletal
- - , Filaments

"WE. J

Figure 1-1. Cellular structures: plasma membrane, nucleus, and cytoskeletal filaments (adapted from
(Cummings, 2001)).
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The membrane works in concert with the dynamic cytoskeletal microstructure to perform

a crucial role in many of the regulating cellular functions including cell division,

adhesion, spreading, migration, contraction (Stamenovic and Wang, 2000; Boal, 2002;

Lim et al., 2006), and other mechanotransductive effects which influence many

biochemical processes such as gene expression (Maniotis et al., 1997; Guilak et al.,

2000).

The membrane and cytoskeleton can play an equally important role in many

abnormal cellular actions that lead to disease. Environmental influences and genetic

mutations leading to disruption or dysfunction in cytoskeletal proteins have been linked

to heart failure (Hein et al., 2000; Lemler et al., 2000) and neurodegenerative diseases

such as Alzheimer's disease (Lee, 1995; McMurray, 2000; Nigel J Cairns, 2004).

Chemomechanical pathways can lead to microstructural alterations in the cytoskeleton

resulting in less cell deformability and a decrease in cell mobility for diseased states such

as malaria and gastrointestinal cancer (Suresh et al., 2005). Increases in cell stiffness

have also been linked to complications in diabetes mellitus (Perrault et al., 2004). Some

therapeutic treatments can alter the cytoskeleton, thereby causing additional

complications. For example, an increased stiffness is observed in leukemia cells after

exposure to chemotherapy, leading to leukostasis; while a combination of chemotherapy

and cytoskeletal inhibitors led to apoptosis (cell death) of leukemia cells without the

complications of decreased deformability (Rosenbluth et al., 2006).

The cytoskeleton is composed of three protein filament networks: actin

microfilaments (AF), intermediate filaments (IF), and microtubules (MT).

Microrheological studies have been conducted on all three cytoskeletal filament



networks. These studies have quantified the detailed mechanical behaviors (e.g. force-

deformation, shear moduli vs frequency, or shear moduli vs concentration) of the

cytoskeletal filaments for both in vitro (Isambert and Maggs, 1996; Shin et al., 2004; Liu

et al., 2006) and in vivo (Schliwa, 1986; Elson, 1988; Lyass et al., 1988; Portet et al.,

2004; Daniels et al., 2006) environments. The rheology of in vitro single filament

networks (Janmey et al., 1991; Tseng et al., 2002b; Gardel et al., 2006b) has also been

examined, as well as the rheology of multiple filament networks (Schliwa et al., 1982;

Leung et al., 1999; Karakesisoglou et al., 2000) with and without cross-linking proteins.

The constitutive behavior of the cytoskeletal filaments can be integrated into structure-

based micromechanical models of the entire cell to predict the mechanical response of the

combined network in the cytoplasm. When combined with membrane and nucleus

structural models, the composite cellular microstructure is amenable to detailed

mechanical modeling.

Three-dimensional (3D) cytoskeletal network models, especially when integrated

with cellular models containing membrane and nucleus components, have utility for a

wide variety of applications. The integrated model can be used to understand

mechanotransductive effects during cancer tumor growth (Paszek and Weaver, 2004;

Thamilselvan et al., 2004), cardiac cell remodeling/heart failure (Hoshijima, 2006),

angiogenesis (Li et al., 2005c), and stretch-activated ion channels (Itano et al., 2003).

The model could be used for directing multiple types of tissue engineering experiments

(e.g. controlling growth of budding/branching of embryonic lungs via cytoskeletal

tension) (Ingber, 2005). Models of cellular manipulation are also useful for blood cell



separation processes (Li et al., 2005a) and for BioMEMS applications such as

deformation on cell culture scaffolds (O'Brien et al., 2004).

The focus of this doctoral research has been the development of a

microstructurally-motivated model of the 3D biomechanical response of cross-linked

cytoskeletal networks during elastic and viscoelastic deformations, with a specific

emphasis on actin networks. This thesis is composed of seven chapters. The remainder

of the first chapter will give some background on the morphology, properties, and

network behavior of the three cytoskeletal filaments (AF, IF, MT). The second chapter

will focus on approaches for modeling the behavior of single cytoskeletal filaments

including entropic unbending and internal energy-based axial stretching. These two

behaviors are combined in an extensible model that employs a new analytical

approximation for entropic unbending of semiflexible filaments. The third chapter

addresses cytoskeletal network behavior through a brief review of other modeling

approaches, and a detailed derivation and validation of a network model that incorporates

the extensible filament model with the Arruda-Boyce eight-chain network model. The

model also includes bundling, swelling and prestress effects. Chapter four examines the

mechanical contribution of network cross-links (through torsional potentials) and the

cross-links' influence on the entropic configuration space. The fifth chapter adds the

effects of nonlinear interfilament shear viscoelasticity to the network model and

compares the model with rheological experimental data of actin networks. The nonlinear

viscoelastic cytoskeletal model is also incorporated within a larger finite element model

of the cell that includes a neo-Hookean nucleus and an orthotropic, linear elastic

membrane. Chapter six shows the mechanical effect of cytosolic fluid flowing through



the cytoskeletal network via a poroelastic network model demonstrated in confined

compression, unconfined compression, and compression of a cell with a membrane and

nucleus. Finally, the seventh chapter presents a summary and a number of future

enhancements for the model and their applications.

1.2 Cytoskeletal filament networks

1.2.1 Morphology & filament properties

1.2.1.1 Actin filaments

Actin is one of the most abundant proteins in the human body and can reach

concentrations over 100IpM in eukaryotic cells (Higgs, 2001), with cortical actin

concentrations in lamellae averaging 300pM(Hartwig and Shevlin, 1986). Actin plays a

crucial role in many cellular processes including migration, contraction, cell division, and

it has accordingly been of key interest since it was first observed by Straub in 1942

(Straub, 1942).

The morphology of in vivo actin networks varies depending on the location within

the cell. Figure 1-2 shows three different locations within the cell for cross-linked and

bundled actin networks. The different types of bundled and cross-linked network
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Figure 1-2. Actin network morphologies throughout the cell (Alberts, 1996)

morphologies are necessary for normal cellular functions (structural stability, motility,

mechanotransduction, etc.). These different morphologies for F-actin are readily seen in

the micrographs of Figure 1-3.



Figure 1-3. The endothelial cytoskeleton in increasing magnification, clockwise. A, Fluorescently labeled
endothelial cell cytoskeletons with nuclei stained blue, F-actin stained red, and microtubules stained green.
The "striped" actin appearance throughout the cells is due to the bundling of F-actin into stress fibers which
are differentiable at optical resolution, panel width 200 pm. B, Higher magnification reveals that the cells
actually contain a pervasive network of actin filaments that fills the space between stress fibers
(arrowheads), staining a diffuse red in fluorescent imaging, panel width 20 Lm. C, D, Increasing
magnification of the network showing it to be a dense, porous, evenly-distributed web of individual
filaments. The pore size of the network is approximately 100 nm, (A, image courtesy of Molecular Probes.
B-D, images courtesy of John Hartwig. All four panels are taken from different cells; inset boxes are placed
solely for scale). Hartemink, C.A., Ph.D. Thesis, MIT (2005).

The actin cytoskeleton employs its polymerization and structural capabilities in

support of cell motility and migration. Actin cytoskeletal filaments actively rearrange

their microstructure in response to mechanical as well as chemical stimuli. Globular actin

N~u

F-actin
a nd Ni. undo

Figure 1-4. F-actin polymerization and polarity, bar=l0nm (Lodish et al., 2004)



monomers (G-actin) polymerize into polar, helical strands of filamentous actin (F-actin)

as seen in Figure 1-4. Aided by actin binding proteins (ABPs) to regulate filament length

and geometries, in vivo actin polymerization can achieve incredible speed and flexibility,

with polymerization of micrometer-thick layers of densely packed filaments in seconds

(Higgs, 2001). During the creation of migratory protrusions, the actin cytoskeleton is

dynamically remodeled via polymerization, and this reorganization leads to the force

necessary for cell migration (Pollard and Borisy, 2003). The cylindrical-like protrusions,

or pseudopods, extend into the 3D extracellular matrix (ECM) via a

polymerization/depolymerization cycle, or "treadmilling," at the inner surface of the

membrane. These protrusions are generated from the dense, porous sections of the actin

network (see Figure 1-3) in conjunction with localized cytosolic swelling and

poroviscoelastic effects (Herant and Dembo, 2006). The importance of actin

microstructures is emphasized through the fact that regulating or inhibiting actin

polymerization decreases cell motility. Mechanical deformation of neutrophils flowing in

pulmonary capillaries, for example, can cause cytoskeletal disruption, pseudopod

projections, and a resulting decrease in overall cell shear modulus of more than 60%

(Yap and Kamm, 2005). An increased understanding of the mechanics of the actin

cytoskeleton during the cellular protrusions and contractions can therefore augment

understanding of critical immunological responses (i.e. extravasation, migration) as well

as actin polymerization regulation therapies for treating cancer (Zigmond, 2004; Quinlan

et al., 2005; Walker and Olson, 2005).



The morphology of the actin filament is two long-pitch right handed helices as shown

in Figure 1-5. The crystal structure of the globular actin monomer is also shown in

Figure 1-5. The radius of gyration of the F-actin helix has been shown to be 10 nm

(Egelman and Padron, 1984) or greater (depending on osmotic pressures, etc.)(Grazi,

1997; Oda et al., 1998), equivalent to a homogeneous rod with a diameter of 7.1 nm

(Egelman and Padron, 1984).

A

Figure 1-5. (A) Crystal structure of monomeric G-actin and (B) structural surface representation F-actin
with 13 monomers (Images courtesy of Thomas Splettstoesser with the open source molecular visualization
tool PyMol, based on the atomic models of (A) Kabsch, et al. (Kabsch et al., 1990) and (B) Holmes, et al.(Holmes et al., 1990))

F-actin can have in vitro contour lengths of up to 20 pm (Gittes et al., 1993). In vivo

measurements of contour lengths of F-actin filaments, however, range from 0.1-1 pm in

the actin cortex (Hartwig and Shevlin, 1986; Podolski and Steck, 1990; Medalia et al.,

2002) as shown in Figure 1-6.



Figure 1-6. Electron micrograph of the actin cortex of a macrophage cytoskeleton, labeled with myosin
subfragment 1. Bar, 0.1 pm (top right corner). (Hartwig and Shevlin, 1986)

The persistence length of a filament is a representative length beyond which the

filament's curvature is uncorrelated due to thermal fluctuations, and will be defined in

more detail in Chapter 2. The persistence length of F-actin has been obtained from many

experimental techniques involving both native and fluorescently labeled actin filaments

(Boal, 2002), generally within the range of 3-18 gim (Janmey, 2000; Wagner et al., 2007).

The principle techniques include dynamic light scattering, microscopic observation of

thermal fluctuations, and microscopic observation of driven oscillation of labeled actin

filaments. Dynamic light scattering has a broad range of results with the most recent

converging on lp-16gtm (Janmey et al., 1994; Boal, 2002). Direct microscopic

observation of the thermal fluctuations of fluorescently labeled actin filaments yield

persistence length values of 18±1 ptm when stabilized by phalloidin (Gittes et al., 1993;

Isambert et al., 1995) and 9±0.5 ipm when not stabilized (Isambert et al., 1995). Direct

microscopic observation of hydrodynamically driven filaments have provided more

flexible values at 7.4±0.2 pm (Riveline et al., 1997; Wiggins et al., 1998). Steinmetz, et



al. measured the persistence length of F-actin using conventional transmission electron

microscopy (CTEM), while taking into account that the adsorption of the filaments onto

the carbon support film would force the filament from a 3D configuration into a 2D

environment and thereby leading to artificially stiff filaments (Steinmetz et al., 1997a).

They found that the persistence lengths varied from lp-3tm for native filaments to

lp,-6Lm for filaments fluorescently labeled with phalloidin (Steinmetz et al., 1997a;

Steinmetz et al., 1997b). Kas, et al. (Kas et al., 1994) and Takebayashi, et al.

(Takebayashi et al., 1977) also measured a persistence length of lp,-4pm. And F-actin

persistence lengths have been found as low as lp-0.1-0.5gtm by Piekenbrock and

Sackmann (Piekenbrock and Sackmann, 1992), although the results were obtained with

F-actin that wasn't purified as much as in other experiments. It should also be noted that

eukaryotic cells express three classes of actin isoforms (a, 0, y), each with different

functions and properties: a-actin (in muscle cells) is associated with contractile/muscle

cells; y-actin exists in nonmuscle stress fibers; and p-actin is present at the leading edge

of filopodia and lamellipodia (Lodish et al., 2004). And while some isoforms are easier to

extract (i.e. a-actin from skeletal muscle), other isoforms (i.e. p-actin) are much more

plentiful in cells and are more flexible (Allen et al., 1996; Steinmetz et al., 2000).

1.2.1.2 Intermediate filaments

Intermediate filaments (IF), composed of a large heterogeneous family of proteins,

extend across the cell and are important to the cell architecture as well as nuclear/ cellular

stability (Portet et al., 2004). IF form a cage-like structure around the nucleus and can be

modulated to meet the changing needs of cells such as mechanical support,



cytoarchitecture, cell migration, and signal modulation for cell growth/death through

dynamic interactions with non-structural proteins (Coulombe and Wong, 2004).
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Figure 1-7. Intermediate Figure 1-8. Electron micrograph of in vitro
filament substructures vimentin IF. Bar = 100nm. (Mucke et al., 2004)
(Campbell et al., 1999)

They are assembled from a 45 nm long coiled-coil dimer as the elementary building

block (i.e. in stranded-rope fashion shown in Figure 1-7 with an overall diameter of 10

nm) (Hermnann and Aebi, 2004). In vivo contour lengths of intermediate filaments have

been observed to range from 10-20 gim (Fudge et al., 2003). In general, vimentin IF

(Figure 1-8) contribute about 20% of cytoskeleton stiffness in endothelial cells and

fibroblasts as measured with magnetic twisting cytometry (Wang and Stamenovic, 2000).

Persistence lengths for intermediate filaments such as vimentin can vary from 0.3-3 gim

depending on the measurement technique. Similar values are seen for desmin IF (0.1-1

jpm) when measured by light scattering (Hohenadl et al., 1999). The higher value of lp

for vimentin, 3 ipm (Inagaki et al., 1989), represents an upper bound since it was obtained

via electron micrograph (EM) and the forces associated with adsorption to the EM grid
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can cause significant nonthermal bending (Howard, 2001). Lower values, ranging from

0.3-1 pLm (Mucke et al., 2004), were measured by adsorbing the IF to mica and glass,

then measuring the contours with an AFM. Mucke, et al. note that the lowest values are

likely due to the constraints of the adsorption process on the glass/mica substrates, thus

yielding a persistence length of -1 gim for vimentin in a dilute solution. The lower

persistence length of IF compared to that of F-actin filaments is caused by the presence of

flexible linker regions within the coiled-coil dimer and also due to axial slipping between

dimers within the filaments (Mucke et al., 2004). This structure, while still highly

resistant to elongation, is much less resistant to bending and torsional stresses (Howard,

2001). The coiled-coil dimer structure enables the IF to have a Young's modulus on the

order of E-6 MPa (calculated from persistence length and diameter measurements) and a

high tensile strength of approximately 180 MPa for keratin-like IF (Fudge et al., 2003).

1.2.1.3 Microtubules

Microtubules are polar, tube-like structures with an outer diameter of 25 nm, an inner

diameter of -15 nm, and are typically composed of 13 protofilaments consisting of

multiple heterodimer subunits (see Figure 1-9) (Amos and Baker, 1979; Bordas et al.,

1983).
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Figure 1-9. Microtubule composition (Alberts, (Brangwynne et al., 2006)
2002)

In vivo contour lengths for MT (see Figure 1-10) generally range from 1-10 gm, while in

axons their length can vary from 50-100 plm (Bray, 2001). Microtubules provide the

pathways for intracellular transport of vesicles and organelles in addition to helping to

define the cellular structure in conjunction with other filaments. Microtubules are of

primary structural importance during mitosis (i.e. composing the mitotic spindle) and for

dynamic cellular structures such as cilia and flagella. Microtubules extend radially from

the centrosome with higher concentration patterns near the nucleus (Alieva and Vorobev,

1992; Lodish et al., 2004). Microtubules also interact with other cytoskeletal filaments

through cross-linking proteins such as plakins at cellular junctions (Karakesisoglou et al.,

2000), and microtubule actin cross-linking factor (MACF) (Leung et al., 1999).

Mechanical properties (flexural rigidity, persistence length, etc.) are measured via a

variety of empirical methods for bending and buckling of individual microtubules:
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buckling force measurement using optical traps (Kurachi et al., 1995; Tran et al., 1995) or

within vesicles (Kuchnir Fygenson et al., 1997), bending response via AFM (Vinckier et

al., 1996; Kis et al., 2002), analysis of post-bending relaxation (Felgner et al., 1996;

Felgner et al., 1997), image analysis of bending from hydrodynamic flow (Venier et al.,

1994; Kurz and Williams, 1995), and thermally induced vibrations or shape fluctuations

(Mizushima-Sugano et al., 1983; Gittes et al., 1993; Venier et al., 1994; Kurz and

Williams, 1995; Mickey and Howard, 1995; Janson and Dogterom, 2004). These

methods are illustrated in Figure 1-11.

F P P F

Budding force Relxation

F F p F p F

P11

P Pt = to

Hydrodynamic flow Thermal luctuation

Figure 1-11. Primary experimental methods to measure mechanical properties of individual microtubules.
P is the loading force, F is the response from the microtubule. (Kikumoto et al., 2006)

In vitro values for persistence length of MT composed from highly purified tubulin

have ranged from 1 mm (Gittes et al., 1993; Venier et al., 1994) via thermal fluctuation

imaging to 8 mm (Kurz and Williams, 1995) using the hydrodynamic flow method at

physiologic temperatures and pH levels. Typical values for Young's modulus range

between 1 MPa, measured with an AFM and calculated via the Hertz formula (Vinckier
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et al., 1996), and 7 GPa from buckling experiments with optical traps (Kurachi et al.,

1995) assuming a tube-like MT cross-section. They are often modeled as homogeneous

and isotropic, but experimental evidence suggests anisotropic behavior with stronger

longitudinal bonds between heterodimers than the transverse, inter-protofilament bonds

(Kis et al., 2002; Pampaloni et al., 2005). "Bending" occurs by sliding between filaments

(governed by shear modulus) in addition to stretching of protofilaments (governed by

Young's modulus). When measured with the same method (e.g. AFM deflection), the

shear modulus (upper limit of 1.4 MPa) is two orders of magnitude lower than the

Young's modulus (-100 MPa), giving rise to a length-dependent flexural rigidity of MT

(Kis et al., 2002). Short MT are flexible due to a low value of the shear modulus while

longer MT become more rigid as the Young's modulus dominates the mechanical

behavior (Kasas et al., 2004). The length-dependence can be seen in persistence length

measurements for MT with increasing contour lengths (see Figure 1-12) measured

through a single-particle tracking method combined with a fluctuation analysis

(Pampaloni et al., 2006).
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Figure 1-12. The persistence lengths of MT as a function of their contour lengths (Pampaloni et al., 2006)



Some recent work, however, has added to the debate by extending the isotropic,

homogeneous models to include protofilament corrugations in order to explain the linear

elastic response of microtubules (Schaap et al., 2006).

In vitro studies suggest that MT can only withstand small compressive loads -1 pN

(Deguchi et al., 2005; Dogterom et al., 2005). It has recently been shown, however, that

highly curved in vivo MT influence cell shape by resisting large-scale compressive forces

(-100 pN) exerted by the surrounding contractile cytoskeleton, and that their buckling

wavelength is reduced significantly because of mechanical coupling to the surrounding

elastic cytoskeleton (Brangwynne et al., 2006). Brangwynne, et al. compressively loaded

initially straight MTs (that has polymerized out to the cell boundary) with a microneedle

and then imaged over time to capture the sinusoidal shapes and compared them to thin

plastic rods (0.1mm diameter) compressed in aqueous solutions (exhibiting classic long-

wavelength Euler buckling) and in gelatin (exhibiting short-wavelength buckling with

repeatable, local disruptions in the gelatin near the buckled region) (Brangwynne et al.,

2006).

1.2.2 Cross-linked network behavior

1.2.2.1 Actin filaments

In vitro rheological experiments on reconstituted actin gel-like networks have been

conducted with varying levels of actin and cross-link concentrations (Janmey et al., 1988;

MacKintosh et al., 1995; Gisler and Weitz, 1999; Shin et al., 2004; Storm et al., 2005;

Gardel et al., 2006b). Reconstituted actin gels under physiological conditions exhibit in



vitro shear moduli that are low, -0.1-1 Pa (Hinner et al., 1998; Gardel et al., 2004a;

Gardel et al., 2006b), compared to in vivo values, -100-1000s Pa (Fabry et al., 2001;

Wang et al., 2002a; Alcaraz et al., 2003). Much of the variation, even for gels at the

same concentration, can be attributed to differences in gel preparation, polymerization,

and storage in addition to the measurement method chosen (Xu et al., 1998a). Many of

the measurement techniques are indirect, either conducted from outside the cell or by

physically altering the structure of the cytoskeleton to measure its properties. And local

microrheological measurements have been found to yield different results for in vitro

actin gels depending on the method chosen (e.g. the number of sampling points) (Shin et

al., 2004). Variation is also seen for different cell types (Zahalak et al., 1990; Bausch et

al., 1999; Sato et al., 2000). In vitro network prestress appears to increase the shear

modulus to typical values found in the in vivo networks, which is a reasonable

assumption for adherent cells and cells in a 3D extracellular matrix (Gardel et al., 2004a).

While the empirically obtained dynamic modulus values vary considerably, a power-law

description for modulus behavior is often used (Fabry et al., 2001; Koenderink et al.,

2006). Microrheological test data exhibiting this power-law relationship are

conventionally presented through plots showing the dynamic shear moduli as a function

of frequency. Figure 1-13 demonstrates this behavior, for a 1 mg/ml solution of F-actin

with and without cross-linking, obtained via an optical microrheology technique based on

laser-interferometric detection of thermal fluctuations of embedded probe particles

(Koenderink et al., 2006). Note the plateau region for the storage modulus (G')
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Figure 1-13. (a) Storage modulus G'(o) and (b) Loss modulus G"(co) of F-actin filaments. Solid lines:
theory with G*(o) - o3/4 [adapted from (Koenderink et al., 2006)]

at low frequencies in Figure 1-13a. For semi-dilute solutions without cross-links, this

plateau region can be attributed to polymer entanglements, with G' again decreasing at

lower frequencies according to a power law relationship (not shown in Figure 1-13). For

semi-dilute solutions with cross-links, however, the G' plateau modulus shown in Figure

1-13a extends indefinitely to low frequencies (Gittes and MacKintosh, 1998). Whether

through entanglements behaving like a network of temporarily fixed cross-links or

through a truly cross-linked network, the plateau region for G' at intermediate

frequencies suitably corresponds to time scales of importance within the biological cells

(Boal, 2002).

For low frequency, the shear modulus is often shown as a function of the shear strain.

Figure 1-14 shows this relationship for F-actin/filamin-a (FLNa) (2 mg/ml), and a

number of cross-linked biopolymer networks, at 10 rad/s measured in a strain-controlled

rheometer which applies a sinusoidally varying strain with controllable maximal strain
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amplitude and computes the elastic storage moduli from the amplitude and phase shift of

the resulting stress (Storm et al., 2005).
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Figure 1-14. Dynamic shear storage moduli as a function of shear strain (Storm et al., 2005)

The influence of cross-links in actin networks is often examined by tuning the degree

of filament cross-linking and bundling by varying the concentration of cross-links (ccL)

for a fixed actin concentration (CA), or R = ccL / CA. Using the cross-linker scruin, Gardel,

et al. determined that actin-scruin gels exhibited elastic network behavior for values of

R>0.03, with a viscous, fluid-like response for R<0.03 (Gardel et al., 2004a).

R Actin Concentration, cA (pM)

Figure 1-15. Elastic shear modulus of actin-scruin networks as a function of(A) ratio of ccL / CA and (B)
actin concentration; R = 0.03(m), 0.13(A), and 0.3 (e). (adapted from (Gardel et al., 2004a))
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The results in Figure 1-15, obtained by polymerizing the cross-linked networks in

situ within a stress-controlled rheometer, show Go decreasing weakly for R < 0.03

(Figure 1-15A). The elastic shear modulus increases with concentration according to the

power-law relationship of Go" CA5S 2 (Figure 1-15B), with a stiffer response for increasing

values of R, possibly due to bundling of filaments (Gardel et al., 2004a).

At high strains (e.g. y > 0.4 for FLNa-F-actin), however, nonlinear effects dominate

the stress-strain response, and the (secant) shear modulus (G = a / y) used in the linear

elastic regime is less useful than a differential (tangent) shear modulus (K = do / dy)

evaluated at a fixed stress (Gardel et al., 2006b). This concept is illustrated in Figure 1-

16 (inset) for a network in which G"<<G'.

CL
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wl

Applied Prestress, a (Pa)

Figure 1-16. Differential elastic modulus, K', as a function of applied shear prestress, o., for actin-scruin
networks: R=0.03 and CA= 29.4 pIM (A), 21.4 pM (*), 11.9 jtM (a), 8.33 pM (*) (Gardel et al., 2004a).
Inset: schematic showing implications of the nonlinear stress-strain relationship for networks in which
G«<<G' (Gardel et al., 2006b)



To obtain linear measurements in the nonlinear elastic regime, rheological

experiments employ a superposed oscillatory stress for a constant applied prestress (a0)

to determine the dynamic differential elastic modulus K'(ao)= (8aa/8V as shown in

Figure 1-16 for four different concentrations of actin (Gardel et al., 2004a). For small

prestress, K' is nearly constant, corresponding to a linear network response while

increasing prestress leads to elastic stiffening (from the nonlinear force-deflection

behavior of individual filaments) which is consistent with an entropic model for the

elasticity of actin networks (Gardel et al., 2004a; MacKintosh, 2006).

1.2.2.2 Intermediate filaments

The in vitro shear storage modulus of 2 mg/ml vimentin IF networks was found to

be 3.2 Pa using a torsion pendulum viscoelastometer [corrected value from (Janmey et

al., 1991)]. The storage modulus G'(o,y) (considered to be the differential modulus

G'(o,y) = G(y) + y dG/dy for short times (Janmey et al., 1983)) was also measured for the

same 2 mg/ml vimentin networks as a function of shear strain and concentration (Figure

1-17).



Shear Strain, y
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 1-17. Dynamic shear storage modulus of vimentin IF as a function of shear strain y (c = 2mg/ml),
and as a function of vimentin concentration (low initial strain) [adapted from (Janmey et al., 1991)]

The vimentin IF networks exhibit strain hardening at larger strains, a feature

predicted to be characteristic of polymer networks where the elastic response results from

bending of the filaments (Doi and Kuzuu, 1980). The static stress-strain response of

vimentin in a torsion rheometer also exhibits the strain hardening behavior (Figure 1-18).

0.1 0.2 0.3 0.4 0.5 0.6

Shear Strain, y
0.7 0.8 0.9

Figure 1-18. Shear stress-strain response of vimentin (2 mg/ml) [adapted from (Janmey et al., 1991)]
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Vimentin also exhibits some unusual viscoelastic properties not shared by actin or

tubulin. Vimentin is less rigid (lower shear moduli) at low strain but hardens at high

strains and resists breakage, suggesting it maintains cell integrity (Janmey et al., 1991).

The differences between F-actin and vimentin are optimal for the formation of a

composite material with a range of properties that cannot be achieved by either polymer

alone (Janmey et al., 1991). In addition to interacting with F-actin, vimentin can also

interact with microtubules via plectin cross-linking protein bridges as shown in Figure 1-

19.

Figure 1-19. Electron micrograph of a fibroblast after dissolution of actin filaments revealing
microtubules (orange), IFs assembled from vimentin (green), plectin (red), and gold particles marking
plectin (yellow). Gold particles are 10 nm in diameter. [(Fuchs and Cleveland, 1998) adapted from
(Svitkina et al., 1996)]

1.2.2.3 Microtubules

The in vitro shear storage modulus of 2 mg/ml MT networks, stabilized with 2 jpg/ml

taxol, was found to be 3.4 Pa using a torsion pendulum viscoelastometer [corrected value
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from (Janmey et al., 1991)]. The storage modulus G'(co,y) was also measured for the

same 2 mg/ml MT networks as a function of shear strain and concentration (Figure 1-

20).

Shear Strain, y
0 0.1 0.2 0.3 0.4 0.5
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Microtubule Concentration (mg/ml)

Figure 1-20. Dynamic shear storage modulus of microtubules as a function of shear strain y (c = 2mg/ml),
and as a function of microtubule concentration (low initial strain) [adapted from (Janmey et al., 1991)]

As would be expected from a very stiff, pipe-like structure, the MT do not exhibit

strain hardening at larger strains, unlike F-actin and vimentin networks. The slope of the

static stress-strain response (Figure 1-21) of a MT network (2 mg/ml) in a torsion

rheometer also exhibits the relatively constant (secant) shear modulus of -1 Pa, within a

factor of 2-3 of storage modulus value at high frequency.
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Figure 1-21. Shear stress-strain response of microtubules (2 mg/ml) [adapted from (Janmey et al., 1991)]

Although there has been considerable experimental evaluation of the cytoskeletal

networks, microstructurally-based mechanical models of the networks are less plentiful.

The next two chapters will review the previous modeling work in addition to detailing the

framework for a new micromechanical model of an isotropic cytoskeletal network. The

fundamental component of that framework, modeling the mechanical response of the

filament, is addressed next in Chapter 2.

--- ~--



CHAPTER 2 FILAMENT MODEL

This chapter focuses on modeling approaches for single cytoskeletal filaments.

The three filament stiffness regimes are delineated: flexible, stiff, and semiflexible. Next

follows a description of entropic models and their applications while introducing a new

analytical approximation for entropic unbending of semiflexible filaments. An internal

energy stretching relationship is introduced and combined with the entropic unbending

approximation to form an extensible filament model for semiflexible filaments. The

chapter concludes with an examination of pretension in filaments.

2.1 Filament energy and stiffness regimes

According to the first law of thermodynamics, the net change in the internal energy

(d&) of a body is the sum of the heat absorbed (dQ) by the body and the work done (dDW)

on the body, with negligible changes in kinetic energy.

dE = dQ + dW (2.1)

The work done on the body is solely a function of the applied stresses (neglecting body

forces), allowing Eq (2.1) to be given as

d& = dQ+I(S:dE), (2.2)

where S is the symmetric 2nd Piola-Kirchoff stress tensor and E is the Green-Lagrange

strain tensor defined by

E1 (C-I)= (FFI), (2.3)
2 2



where C=FTF is the right Cauchy-Green strain tensor, I is the identity tensor, and F is the

deformation gradient, F=8x/aX where x is the position vector of a material point in the

current configuration and X is the original position. Additionally, the second law of

thermodynamics relates the change in heat added to the body, for a reversible process,

solely to the temperature (T) and change in entropy per unit mass (dS).

dQ = TdS (2.4)

It is important to recognize that this equation applies to elastic deformations because they

are reversible processes. Equations (2.2) and (2.4) can be combined to give,

d& = TdS +I(S: dE). (2.5)
P

The Helmholtz free energy, A, for any system (and the incremental change in A) are

defined as

A =-TS, (2.6)

dA = d&- TdS - SdT. (2.7)

Assuming typical loading conditions and a constant temperature, Equation (2.7) becomes

(dA) = (d)T - T(dS)T. (2.8)

This can now be combined with Equation (2.5) to give

- (S: dE)= (dA) )= (dS) - T(dS) , (2.9)

or, given in terms of unit volume (i.e. pS, pA, pS), the work done on the body from

applied stresses (in the absence of body forces), can be given as

[S : dE] = [d(pA)]t = [d(p&)] - T[d(pS)],. (2.10)

The strain energy density per unit volume (W) is defined through the integral



w(E)= : dE. (2.11)

Using this definition of W for materials with negligible changes in internal energy (e.g.

elastomers and other rubbery elastic materials), we assume that dp6=0, and Equation

(2.10) becomes

(W)•, = -T[d(pS)]b, (2.12)

or solving for stress we have

S=(8 W S (2.13)
TE )TA 

E T,

For the case of biopolymers, the entropy for each macromolecular filament can be given

by

S = k,ln(f) (2.14)

where kg is Boltzmann's constant and C is the number of available configurations. The

number of configurations of a filament with total contour length, L,, can be expressed in

terms of a filament-specific probability density (per unit volume), p(r), where r is the

end-to-end distance of the chain. For the case of a freely jointed chain, to be discussed in

Section 2.2, 2= p(r)dVand p(r) is the Gaussian distribution function.

However, if the entropy change during deformation of a material is infinitely

small (e.g. metals, ceramics, or fully extended biopolymer filaments), then the isentropic

assumption (dS-=0) causes Equations (2.10) and (2.11) to become

(W)T = [S: dEb = [d(p). (2.15)

Thus, in this case the isothermal work applied to deform these materials is converted to a

change in internal energy (d&) without affecting the conformation of the filament or



structure of material (e.g. stretching of interatomic bonds from bending, torsion, or axial

extension).

U

du ds 0

a;I-

Figure 2-1. Geometric quantities for biopolymer filaments.

Entropic effects, enthalpic effects (based on changes in internal energy), or

sometimes a combination of the two will control a filament's elastic behavior depending

on its stiffness regime. The stiffness regimes are based on the relative magnitudes of the

persistence length, lp, and contour length of the filament. The persistence length, is

defined in terms of the distance (dsf) along the length of the filament (see Figure 2-1)

beyond which the filament's curvature is uncorrelated due to thermal fluctuations. The

tangent vector at any point along the filament's contour length is given by

(sf ) = OF(sf)/8sf , (2.16)

where F(sf) is the radius vector to the point on the curve from the curve's end point

(Yamakawa, 1976; Kroy and Frey, 1996). The average correlation between tangent

vectors decays according the following relationship for three dimensions (Landau and

Lifshitz, 1951),

7(s,) T) = (cosO(sf) - eO ) = eli = efI'.P. (2.17)

I10401040
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where E = Young's modulus and I = area moment of inertia. The persistence length is

therefore defined in its more familiar form as ,p = id(kBT), where ic = El = bending

stiffness of the filament.

Biopolymer filaments are traditionally considered to be flexible if their

persistence length is much less than their contour length (lp<<Le) and stiff if the opposite

is true (lp>>Lc). The intermediate regime of semiflexible filaments, in which 4,-Lc,

describes the behavior of many biological macromolecules including F-actin

(MacKintosh et al., 1995).

Due to a high bending stiffness, the number of filament configurations available

(and entropy contribution) to stiff filaments is very small, and internal energy dominates

their response. Internal energy-based filament deformations such as axial extension,

torsion, and bending increase the internal energy of the stiff filament by straining

interatomic bonds without causing a significant change in entropy. Bertoldi and Boyce

modeled the behavior of mussel byssus using an internal energy-based filament model

that captures the straightening out of bends in byssus molecular chains using an elastica-

type solution followed by axial stretching of the chains and subsequent force-induced

unfolding of the modular domains (Bertoldi and Boyce, 2007b). An internal energy-

based elastica approximation has also been used to capture the elasticity of other soft

tissue fibrils (Garikipati et al., 2008) and fibrous networks of collagen fascicles (Castro et

al., 2008a). The mechanical response of flexible polymers, to be discussed in the next

section, is entropic in origin, with an initial end-to-end distance r=O to maximize the

entropy difference and minimize its energy state. Semiflexible filaments, however,

behave more like continuously flexible filaments, often called a worm-like chain (WLC),



rather than the traditional freely jointed chains of rigid rods (Boal, 2002). Except for

large extensions (r/L•-l), the mechanical response of a semiflexible filament is based on

entropic unbending. As a semiflexible filament is unbent, the change in entropy comes

from sampling fewer configurations of bent filaments, which will be covered in the next

section.

2.2 Inextensible Entropic Models

The force-extension response of biopolymers is usually characterized by a linear

region followed by a nonlinear region of increasing tangent stiffness as the filament's

extensional limit is reached (Fernandez et al., 2006; Kasza et al., 2007). Entropic models

have been successful in capturing the majority of both regions of the force-extension

response for many biopolymers.

2.2.1 Freely jointed chain model

Flexible polymers, with high molecular weight polymers with long contour lengths,

often behave like freely jointed chains (FJC) (Kuhn and Griin, 1942; Treloar, 1958) made

of many discrete rigid rods, and therefore many possible configurations. Figure 2-2

shows a schematic of a FJC which is subject to the assumptions that all bond angles, 0,

and rotational angles, j are equally probable, no restriction on bond rotations, and no



z

Figure 2-2. Freely Jointed Chain

excluded volume effects. The total contour length (Lc) consists of "N" statistical segment

lengths (Kuhn length) ""', or L,=NI. To develop a quantitative evaluation of the

probability of chain configurations, we can employ an appropriate probability, p(r)dV,

that the free end of the chain is found within a small volume element (dV=dx dy dz), with

the fixed end at the origin as illustrated in Figure 2-2. The Gaussian error function

provides a good model for this probability, for r<<Lc,

p(x, y, z)dxdydz 1 exp(- b2(2 +y2 +z2)xdydz (2.18)

where

b = 12 (2.19)
&2N1

The Gaussian distribution, often referred to as a random walk profile, can be given in

terms of the radial distance from the origin of the "walk",

p(r) 3/2exp 3r2) (2.20)
2) x 2N12



which is valid for approximately r < Nl/3 (Boyce and Arruda, In preparation).

Substituting the Gaussian probability function into Equation (2.14), we obtain the change

in entropy per unit volume for the FJC,

S = kBln(p(r)dV)= k In3N 32  +1 ln(dV)}. (2.21)[ 2 -2NI2 )

The entropy per unit volume for an undeformed single molecule is then given by

3r 2

S = -k B N +c, (2.22)
2N1

where the arbitrary constant, c, will cancel out when the change in entropy (AS) is

evaluated:

AS = -k 3r 2 = k 3 (2 +y2 + z2). (2.23)
2NI2 2NI2

The isothermal work done to extend a single biopolymer filament can be found (in terms

of the change in entropy per unit volume, AS) from Equation (2.12), still assuming no

change in internal energy or polymer volume,

(W)T, = f 4,indr = -T(AS) , (2.24)

or, rewritten using the Gaussian statistical distribution, we can calculate the force

required to extend the FJC according to

fAS 3kT
fGc = -T -= -- k r (2.25),FJC &r NP

At deformations where the macromolecular end-to-end length approaches the contour

length, non-Gaussian effects must be addressed (typically for r/Le _ 0.4) (Boyce and

Arruda, 2000). The non-Gaussian behavior is captured through the use of Langevin

chain statistics which describe the limited extensibility of polymer chains during the



elastic extension as derived by Kuhn and Grun (Kuhn and Grin, 1942). The

corresponding non-Gaussian extensional force is given by

k T
fNG,FJC = P (2.26)

where / = .'(r/NI) is the inverse Langevin function and 2(3) is the Langevin function

defined by 2(f) = coth(,8)- 1/I .

2.2.2 Worm-like chain model

The worm-like chain (WLC) model, a more appropriate representation of the axial

extension of semiflexible filaments, is derived from the Kratky-Porod expression (Kratky

and Porod, 1949) for total energy of bending deformation due to thermal fluctuations:

Lc

EK-P (aT(s,)/asf,) ds, (2.27)
0

where the tangent vector, 7, arc length, sf and contour length are shown in Figure 2-3

for a WLC. The WLC is a continuous chain that can be interpolated to any amount of

au(x,t)
I .- -

0 du ds, x

dx

r o (A4L)F.o=

LC

Figure 2-3. WLC filament schematic [adapted from (MacKintosh, 2006)]
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stiffness or flexibility between the two extremes of a FJC and a rigid rod (Yamakawa,

1976). With a force (/) applied along the x-axis (Figure 2-3), the total energy of a

stretched WLC becomes (Fixman and Kovac, 1973; Yamakawa, 1976)

E kc = kBT [((s )/a s ) - f cos -(s 1) ds, (2.28)

with L>>lp assumed. Using the rigid constraint of I7(sf,) = 1 (Yamakawa, 1976; Kroy

and Frey, 1996; Spakowitz and Wang, 2005), we can express the tangent vector

fluctuations in the x-direction are quadratic in terms of the lateral tangent vectors,

tL =[ty,tz], or tx =1- /2+ O(TL4); and to quadratic order a-7/s, = L /Oas, (Marko

and Siggia, 1995), which yields a Gaussian approximation for the energy function (Kovac

and Crabb, 1982),

Wc =kT J tLO - L ds:,-kT f LB . (2.29)

Using the Fourier transform for the lateral tangent vector to decouple the energy into

normal modes yields (Marko and Siggia, 1995),

LC

T (q)- -eiL (sf)dsf , (2.30)
0

EWLC = kBT [lq2 + f dq- f L . (2.31)2 0 2;r

Unlike biological and synthetic filaments with limited configurational space whose

elasticity is governed by changes in internal energy (Castro et al., 2008a; Garikipati et al.,

2008), semiflexible filaments' entropic fluctuations within their configurational space is
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driven by thermal energy. The principle of equipartition of energy (Waterston, 1846;

Boltzmann, 1871; Boltzmann, 1876) states that, once the system reaches thermal

equilibrium, molecules equally share their averaged energy among the independent

degrees of freedom of their motion. For a system in which the system's energy (Eys)

varies quadratically with a parameter (4), ESys=c C2 (where c is a constant), the average

energy is (Howard, 2001),

(E), = E,, ()p()d = E, () exp[- E, ()/k 8TIT

fE,(ý)exp[-E,, (ý)/kT1k c 2 Cxp -cI2/kTPý
- -. C (2.32)

Jexp[- E,,, ()/k,Tý fexp[- c~2/kk,TT

=-kBT
2

Applying the equipartition of energy to the wormlike chain, we find that

(i) = j•L dq= 2 ~ 1 dq 1 (2.33)0 2x 0 2I(1,q2 +f) JIp
where the factor of 2 has been included to capture both lateral components of T, (Marko

and Siggia, 1995), and the extension of the WLC can now be given to quadratic order as

(Marko and Siggia, 1995),

- = t = 1 = 1 (2.34)
Lc  2 21j5 f

Solving in terms of the force yields,

kT r
fw U 161, i (2.35)



which captures the WLC behavior in the inextensible limit for which r/Lc -f-" 2. As the

filament is stretched close to its contour length, the amplitude of the undulations

decreases and the tangent vector fluctuates minimally about the x-axis (Kovac and Crabb,

1982). This decrease in thermal undulation amplitude results in a corresponding decrease

in available filament conformations to sample, leading to an increase in the axial stiffness

of the flexible filament.

The WLC model has been effective at describing the entropic elasticity of a

number of single molecules when Lc > lp, including DNA at low to moderate strains

(Bustamante et al., 1994), single RNA molecules (Liphardt et al., 2001), and titin (Rief et

al., 1997). Although its full force-extension relationship requires numerical evaluation of

the path integral, interpolation approximations have been successfully used to simplify

calculations. For example, the popular interpolation approximation from Marko and

Siggia (Marko and Siggia, 1995) is

k,T r + 1 1(.
fc,-s = 4(1- . (2.36)

This approximation was created to encompass the small-force and high-force regimes,

but it diverges from the exact WLC path integral solution in the cross-over region as seen

in Figure 2-4.
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Figure 2-4. Comparison of WLC, FJC, and linear models for dsDNA data (Bustamante et al., 2000)

Figure 2-4 also demonstrates that the WLC provides a superior fit, for biopolymers such

as dsDNA, compared to the FJC or a linear relationship (note that linear results are not

straight due to the semi-log plot format). One should consider, however, that the Marko-

Siggia approximation requires an end-to-end distance of zero for no applied force

(rF=c--0), and is only defined for L>>l, (Marko and Siggia, 1995). The Marko-Siggia

approximation also exhibits the non-intuitive behavior of requiring a decreasing

extensional force with increasing filament bending stiffness with other quantities fixed

(Figure 2-5).
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Figure 2-5. Normalized force-extension plot of WLC approximation for increasing persistence length, 1,

While these issues are not of concern with biopolymers such as dsDNA or titin (both with

L>>1Ip), they become more significant for networks of semiflexible filaments.

Subsequent molecular theories (e.g. (MacKintosh et al., 1995)) have addressed the

semiflexible regime for L, - 4, with energy functionals and force-deflection relationships

that are still entropic in origin but allow for rF=o>O as would be encountered in a

cytoskeletal network. Still following the Kratky-Porod formulation, the MacKintosh

model is derived in the following pages for bending deformations due to thermal

fluctuations (MacKintosh et al., 1995; MacKintosh, 2006). The MacKintosh model

describes a filament at a finite temperature, with transverse thermal fluctuations that

result in a contraction, (AL)F=o in Figure 2-3, causing the end-to-end distance, r, at an

axial force, F, of zero to be less than the filament contour length, rF=o = Le - (AL)F=o.

Letting the x-axis define the average orientation of the filament and u define one of the

two transverse displacements, the incremental change along a filament segment (dsf) is



ds_, - d_2+ di =2 -d +du/ )2 . (2.37)

The projected length for small transverse displacements, du, is the contour length to

leading quadratic order:

L = Jdsf = dx •1+ (du/d) 2 . (2.38)

Newton's iteration for calculating a square root %Jf is given by

4 i= xk+. = 1/2(xk +nlxk). (2.39)

with xo=l and which converges quadratically in the limit of limk-xk. Taking the second

term of the iteration (xi), the change in length (AL) takes the form:

AL=L -r = J 1+(du/dx) 2dx- dr - 1/2 f (du/dx) d x. (2.40)

The total energy associated with applying an extensional force to the filament is

Eot L 2U = 2+ F d. (2.41)

The change in length and energy expression can be simplified by representing u(x) as a

Fourier series with pinned boundary conditions.

u = uq sin(qx) with q = wavenumber = n;r/L. (2.42)
q

ETotrl = 4 - (Kq 4+ Fq2)u . (2.43)
4 q

AL =1/2 uq2 COS2 (qx = u q2 . (2.44)
qq q

The ensemble average contraction length is amended by inserting a factor of two to

include the contributions of both (orthogonal) transverse degrees of freedom of a filament

in 3D fluctuation.



(AL)= 4q 2[2U 2 (2.45)
4

In solving for the average transverse displacement <uq>, we apply the principle of

equipartition of energy to this case, as was done earlier for the general WLC,

kTOI C + Fq u ). (2.46)

2 4

Solving for the average transverse displacement for the cases of F#O,

u 2) ~ 2kT (2.47)

Based on the equilibrium amplitudes, the contraction (for small transverse fluctuations) is

found by converting the wave number back from Fourier space and combining Equation

(2.45) and Equation (2.47).

(AL) = L1 - r = )  (2.48)

where the dimensionless force b = FL ,/KI 2 (MacKintosh, 2006). The contraction

length at the zero force condition is

kT L , 1 L2(AL)=o = L,- r=o = 2 1 (2.49)

where the Riemann zeta function, "l/n2 = r2/6, is used to solve for the series. The

value of r at the zero force condition can then be shown to be

rF=O = Lc 1 ., 1 (2.50)61P



We simplify the series relation of Equation (2.48) through the use of the earlier defined

Langevin function. The series for the average contractions converges to the following

expression:

(AL) = L - r = L=2 r1coth~ - V[ (2.51)

where aJi = L -f~ .

Since the functional dependence ofF on r is of more interest than r as a function ofF,

Cohen's Pad6 approximation for the inverse Langevin equation (Cohen, 1991),

(x)=x-X + O(x6) (2.52)
1-x

is used to create a more useful force-extension relationship,

F -kT Ir )1 L/l -6(1 -rlL (2.53)

which reduces to Equation, (2.49) for the zero force condition. The

corresponding strain energy function is

w [4(B -l -_ [ln(L - 2lL +21Pr)-ln(r-L)]-c (2.54)

where c is a constant equal to the initial strain energy of the filament.

This approximation is valid for (1-0.3Le/l,)<r/L <1 ; noting that

rFO/L =1-0.167Ljl/,, this approximation covers the range of filament extension of

relevance for the semiflexible (l,-L) network. In order to maintain a positive extension,

r/LŽ>O, the approximation is therefore subject to the following limit for tensile loads: Lc <

6.0 l,. Densely cross-linked networks can accommodate much lower ratios of L,/p, with



a reasonable lower limit of L=l1/10 1, giving a limit of 0.98 < r/LA < 1. For the case of

L4= l,, the extension range is 0.83 < r/LA < 1. The approximation is also valid, to a lesser

extent, for negative (compressive) forces by increasing the range of values for r/Le via the

following relation: (1-0.3Llp) < r/Le < 1, so that the extension limit becomes 0.7 < r/Lc <

1 for Lc= lp. The corresponding practical upper limit is then L < 3.3 1, (again, to ensure 0

< r/LA < 1). A lower limit value of L=l/1O 1, yields an extension limit of 0.97 < r/LA < 1.

Note that since all of the in vitro networks evaluated in the paper were densely cross-

linked (Lc<lp), none of these limits precluded the use of the approximation. It is also

unlikely that in vivo actin networks would exist with contour lengths 3-6 times greater

than the filament persistence length. The Padd approximation-based force-extension

expression, Equation (2.53), compares very favorably with the exact numerical

expression, Equation (2.48), with the average error for each of the four cases in Figure 2-

6a (1, =3, 5, 7.5, 10p m) equal to 0.4%, 0.8%, 1.2%, and 1.5%, respectively.

Figure 2-6a shows the single filament response of the MacKintosh model using

characteristic properties of F-actin filaments from a densely cross-linked network (1,=3-

101im, L=11im). The end-to-end distance at zero force, rF=o, depends strongly on the

combination of persistence length 1, and contour length Lc. Here, keeping L4 constant and

varying 1, from 3-10pm, we see the effect of 1, on rF=o in the different starting points of

Figure 2-6a where rF=o is smaller for smaller 1,. This then results in the increased initial

chain stiffness with increase in 1, as shown in Figure 2-6a. Note that a densely cross-

linked network (,l>Lc) operates in this highly nonlinear regime of the force-extension
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Figure 2-6. (a) The effect of persistence length on filament force-extension behavior as computed using
MacKintosh model (fixing contour length to L=1.02m); (b) the effect of pretension on filament force-
stretch behavior as computed using MacKintosh model (for case of L4=1.02jpm; 4p=3pm). Both figures
show exact results as well as results using the proposed approximation, Equation (2.53), illustrating the
accuracy of the approximation.

curve (i.e. r/L>0.94 in Figure 2-6a). Figure 2-6b shows the effect of a different initial

end-to-end distance, ro, on the filament force-stretch (2.=r/ ro) behavior. Here, taking the

case of 1p=3pm and L=Il.0pm which has a zero force length of rF=o=0.962Pm, we

compare the behavior when ro=rF=o=0.962tpm to that when ro=0.976gim. The

ro=0.976gm case begins with an initial tensile force on the filaments (i.e. chain

pretension) of Fo=-0.07pN. The pretension results in the observed increase in initial

stiffness and decrease in limiting stretch as shown in Figure 2-6b. Conversely, a

precompression condition will shift the curve to the right, resulting in a lower value on

the ordinate axis, a reduced initial stiffness, and an increased limiting stretch.

The previous MacKintosh WLC derivation describes the limiting case of a filament

with pinned-pinned boundary conditions. The other limiting case for a filament would be

clamped-clamped boundary conditions. The expressions for length change (2.40) and

energy (2.41) can therefore be simplified by representing u(x) as a Fourier series with



clamped boundary conditions. In the clamped-clamped configuration, the length of the

filament subject to significant thermal bending is reduced to LJ2.

u = Iuq sin(qx) with q = wavenumber = 2nr/L, . (2.55)
q

Eoa 4=q + Fq2)u . (2.56)

AL = 1/2 fu'q2 COS2 (qx2 = Lc2.uq2 (2.57)
q q

The ensemble average contraction length is amended by inserting a factor of two to

include the contributions of both (orthogonal) transverse degrees of freedom of a filament

in 3D fluctuation.

(AL))= -q 2 [u (2.58)8 q

In solving for the average transverse displacement <uq>, we apply the principle of

equipartition of energy to this case, as was done earlier for the general WLC and the

pinned-pinned case,

kBT L (•• + Fq2 u). (2.59)
2 8 q

Solving for the average transverse displacement for the cases of F#O,

q 2L( 2 4ksT (2.60)
) q2L q2 +F)

Based on the equilibrium amplitudes, the contraction (for small transverse fluctuations) is

found by converting the wave number back from Fourier space.

(AL)= L-r= E (2.61)
41,' 'T2 n2+



where the dimensionless force for the clamped filament is 0 = FL /4K; 2 
. The

contraction length at the zero force condition is

kT L2 1 L2
(AL),=O = Lc -rF=o = B4k 2 241= (2.62)

where the Riemann zeta function, X1/n 2 = r2/6, is again used to solve for the series.
n

The value of r at the zero force condition for a clamped-clamped filament can then be

shown to be

rF=O = L 1 - , (2.63)

which, as expected, give a larger value of rF=o than the pinned-pinned case. We can

again simplify the series relation of Equation (2.61) through the use of the earlier defined

Langevin function. The series for the average contractions converges to the following

expression:

L a' coth •ac 1 V -L -T
(AL)=L -r= 4 2 Wcoth()-1J (2.64)

where 40-c =Lce1 4-

Since the functional dependence of F on r is of more interest than r as a function of F,

Cohen's Pad6 approximation for the inverse Langevin equation (Cohen, 1991),

2-1( 3-X23x2

S x +O(x6) (2.65)
1-x

is used again to create a more useful force-extension relationship for the clamped-

clamped filament,



F ,= - (2.66)

which reduces to Equation (2.63) for the zero force condition. The stiffer behavior of the

WLC filament with clamped-clamped boundary conditions is shown in Figure 2-7.

5-
----- Pinned-pinned WLC

4-
", % - Clamped-clamped WLC

C3 -

S2-
LL. P=3pm

L,=lpm ... -

0 .

0.94 0.96 0.98 1.00
r/Le

Figure 2-7. Force-extension behavior of WLC filaments subject to pinned-pinned or clamped-clamped
boundary conditions (L=1Ipm; 1=33pm)

An analytical extension-force relationship has also been recently obtained from

the WLC energy functional, Equation (2.28), for a semiflexible filament with both

pinned-pinned and clamped-clamped end conditions (Hori et al., 2007). Hori, et al.

employ the small fluctuation approximation to create a Gaussian path integral for the

energy function, which can in turn be given in terms of a Green's function that gives the

probability of the end-to-end distance, similar to previous treatments (Yamakawa, 1976;

Spakowitz and Wang, 2005). In their "fluctuating rod" model of semiflexible filaments,

Hori, et al. give the analytical extension- force relationship for the case of pinned-pinned

boundaries as



r d-l -1 K, cosh(KfL)- sinh(KfLC) (2.67)

L- 2 2KfLcl, sinh(Kf L)

where d is the number of dimensions and K Lc = LJc JF (Hori et al., 2007). Note that

this relationship gives the same response as the MacKintosh WLC, with Lc 1• = Xr

and with Equation (2.67) (for d=-3) equivalent to our analytical expression of the

MacKintosh WLC (Equation (2.51)). Indeed, both expressions reduce to

rr__o/L = 1-L,/61, for the zero force condition. Hori, et al. also provide an analytical

extension-force expression for a semiflexible filament with clamped ends (Hori et al.,

2007),

r _d-I K Lc cosh(rK,L)- sinh(KfL,)

L=1 2 2KfLIP, sinh(Kf,L,)
(d - 1XKL cosh(KfLc)- 3sinh(KfL•)+ 2KLe) (2.68)

2KfL3, + 2rf3L EI, sinh(f Lj)-4KcLclp, sinh(KrLe)

Although Equation (2.68) is not defined for F=0, Hori, et al. expanded it in the limit of

small forces (fyLcl) to yield the following approximation for the clamped case (d = 3)

(Hori et al., 2007),

3
r I LC 11FIp L3L-- +25 Fl , (2.69)

1L 30 1, )25200k,T 1

which approaches rF=ofLe =1-L (301,), a larger value than the pinned case and very

close to the value given in Equation (2.63) for the clamped MacKintosh WLC at the zero

force limit.



2.3 Internal energy axial stretching model

Filament extensibility, for actin cytoskeletal filaments in particular, has been

observed using multiple experimental techniques including optical traps (Dupuis et al.,

1997; Adami et al., 1999), x-ray diffraction (Huxley et al., 1994; Wakabayashi et al.,

1994; Bordas et al., 1999), light-scattering methods (Higuchi et al., 1995), or

measurement of thermal fluctuations (Oosawa, 1977; Oosawa et al., 1977; Oosawa, 1980;

Yanagida et al., 1984; Gittes et al., 1993; Ott et al., 1993; Kas et al., 1994; Kas et al.,

1996). Due to their inextensible formulation, the previous entropic models diverge from a

filament's true force-extension behavior as the filament approaches its extensional limit.

Thus for extensions where the filament end-to-end distance approaches the contour

length, the entropic-based force-deflection relationships for the flexible and semiflexible

filaments have been expanded to include an additional term for the internal energy axial

stretch contribution (Odijk, 1995; Smith et al., 1996; Wang et al., 1997; Storm et al.,

2005). The model presented here will account for the internal energy contribution due to

the stretching of inter-atomic bonds along the macromolecular backbone. The total

extended length, LT, for a straight filament is the sum of the initial contour length, L,, and

the additional extension in length due to axial stretching, L,. Assuming small strain, linear

elastic stretching, the force-extension and strain energy expressions are simply

f" = EA(LT -L)= K- (L,) (2.70)LC LC

WS= K (L, L) = K ' V (2.71)
2L 2L,

where A=cross-sectional area, K,=EA=linear stretching modulus with units of force. An

attempt has been made in some previous studies (Grosberg and Khokhlov, 1994; Odijk,
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1995; Storm et al., 2005) to define the linear stretching modulus in terms of the

persistence length and filament radius, rf, using the definitions: Ip=EI/kBT, K,=EA,

I=(rr/)/4, and A= rf2,

K = 4kBT (2.72)
r2rf

While semiflexible filaments may be helical in nature (i.e. F-actin, vimentin), their cross-

section is often taken to be equivalent to a homogeneous circular rod (e.g.

AAF=;r (3.5nm)2=38nm2). The noncircular cross-sectional area of an actin filament,

however, has been estimated to be A=25nm 2 based on its atomic model (Holmes et al.,

1990; Kabsch et al., 1990), assuming that the area within the average contour of the

filament cross-section is filled in homogeneously (Kojima et al., 1994). While this

definition of stretching modulus relies on the assumption of a circular cross-section, we

recognize that the area moment of inertia could be given more generally as I= ,A2 (where

4 is a filament-specific shape factor). This definition of stretching modulus also seeks to

link the entropically-based bending stiffness, and therefore persistence length and thermal

energy, with the internal energy-based axial stretching stiffness. The actin filament's

helical structure and bonding that govern the bending stiffness is quite different from

those which govern the axial stretching stiffness, while the relation given in Equation

(2.72) assumes the same governing structural interaction. The resulting force and stretch

behavior in bending and axial stretching will therefore differ significantly, and this

difference is exemplified through an underprediction from Equation (2.72) when

compared with empirically deduced values, as will be examined in Section 2.4.3 for

comparisons with experimental data.



The next section will introduce an extensible WLC model that is not based on the

Marko-Siggia approximation, and will thus be able to capture the extensible nature of

filaments for Lc<l, (i.e. as found in densely cross-linked cytoskeletal networks). An

overview of the single filament enthalpic (internal energy-based) and entropic models

mentioned in the past three sections is included in Table 2-1.

Table 2-1 Single filament force-extension models

2.4 Extensible model

This section introduces an extensible filament model that combines the

MacKintosh entropic unbending model developed in Section 2.2 with the internal energy

axial stretching model of Section 2.3. First we address two approaches to the kinematics

FilamentModel <r> Force-Extension Mechanisms
Type

Stiff Internal energy
Rod Lc<<- Lc F = (EAL) dr stretching of bonds

Bent Rod Stiff 2E1 r;(a-ao) Internal energy
Lc<</ rF, =P° 44 (r;y T-(r +4 _2 unbending

FJC Freelyjointed F = (kbT/IP 1(r/Le)

rigid 0 Entropic
links £ (x)= coth(x)- /x

WLC ( r 1 1'Bending FkbT
L>>p 0 + 4(1-r/L 4Entropic

Bending rF (r-ro)- where = F  EntropicL-I N + AN



of the extensible filaments. The total fiber stretch is defined as Xf=r/ro as shown in Figure

2-8.

Figure 2-8. Extensible filament schematic including entropic unbending and internal energy stretching

2.4.1 Kinematics: multiplicative decomposition

The fiber stretch can be multiplicatively decomposed into stretches from entropic

unbending (1"f) and internal energy axial extension (4Zf) following a multiplicative

decomposition (Krbner, 1959; Lee, 1969; Bertoldi and Boyce, 2007b)(see Figure 2-9).

A, = Xf Z. (2.73)

Initial deformation of the filament will be accommodated by the entropic unbending

stretch. As the filament approaches its extensibility limit (r/Le-+1), the fiber stiffens

significantly, and the imposed end-to-end length must also be accommodated by axial

internal energy stretching (see Figure 2-10). The additional extended length, Ls, beyond

the filament's contour length, Le, due to axial stretching is

L, = L4(V -1 ) . (2.74)
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Figure 2-9. Multiplicative decomposition of Xf into entropic unbending and internal energy stretching
components. Adapted from (Bertoldi and Boyce, 2007b).

The relative stretch contributions of the unbending and stretching as a function of end-to-

end distance can be seen in Figure 2-10, using the following filament properties: 1p=3 m,

K=1.24x10-26Nm2, Le=l pm, K,=4OnN. There is no stretch contribution from internal

energy axial extension below r/Lc=0.98, as the entropic unbending dominates the
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Figure 2-10.Stretch contributions from entropic unbending and internal energy stretching
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filament's behavior. As r/L--*l, however, the stretch contribution from entropic

unbending diminishes and the internal energy axial stretching begins to increase. The

axial stretch finally exceeds the stretch from unbending at r/L=1.03.

The force-stretch and strain energy expressions due to unbending are

f kT 1 YLc/1, -6(1-fro/L (2.75)
1, 4(_ro /L ý L,/1, - 2(- fro fL4)

w" = 4(- /L ) -, [n(L2 - 21Le + 212fro )- ln(2ro - L )]- c] (2.76)

where c is a constant equal to the initial strain energy of the filament. The resulting

force-stretch and strain energy expressions for the internal energy axial stretching

are

f = EA - (, - 1)  (2.77)

w2L· = (2 -1 (2.78)

where A=cross-sectional area, K,=EA=linear stretching modulus. Fiber force equilibrium

requires that

f = f" = f'. (2.79)

Note that the stretches for entropic unbending and internal energy stretching are functions

of

S(2.28)



which allows the force in the filament to be calculated by recursively solving for ",f and

Xf, using Eqs. (2.73), (2.75), (2.77), and (2.79) via the bisection method. The extensible

filament force is plotted as a function of r/Le in Figure 2-11 and compared to the

inextensible entropic unbending model. Consistent with Figure 2-10, the inextensible

and extensible models begin to diverge as the stretch from internal energy axial extension

begins to increase as r/L---l. For the given the filament properties 1=3p~m, Lc=l Im,

there is less than 3% difference between the inextensible and extensible models for

extensions below r/Lc=0.99. For extensions beyond r/Lc=l, the extensible model takes

the slope of K/L,. The strain energy of the unbending and stretching components is

shown in Figure 2-12, with the internal energy stretching component dominating for

r/Lc>l, as expected.

300
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50

0
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Figure 2-11. Force comparison of inextensible entropic unbending model and extensible model with
stretch decomposition of entropic unbending and internal energy axial stretching
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Figure 2-12. Strain energy contributions from entropic unbending and internal energy axial stretching

The extensible model's response for varying persistence lengths, but all other variables

held constant, is included in Figure 2-13. The inextensible model's response for l,=3pm
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Figure 2-13. Force comparison of inextensible entropic unbending model and extensible model with
varying persistence lengths

is also included for reference. The stretching modulus is held constant (K,=40nN) for

each extensible case. The impact of increasing 1, is seen in two regions of Figure 2-13.

In the first region (r/L<l1.), the force response is initially lower for higher values of 1, due

to an increase in rF=o which reduces the unbending strain energy (for r/L, < rF=o/Lc), but

the response is stiffened as it extends into the extensible regime. Around r/L=l .01, the

extensible curves then crossover and enter the second region in which larger values of 1,

give a stiffer response (see inset of Figure 2-13). This crossover occurs in the region of

actin filament rupture (-200-500pN), depending on the amount of axial twisting due to

thermal forces and/or mechanical loading as shown in the experimental data in Figure 2-

14 (Tsuda et al., 1996).
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Figure 2-14. Tensile strength of actin filament as a function of rotational angle. (a) Schematic of
experimental procedure using microneedles. On is the rotational angle of the actin filament undergoing the
rotation under no tension, and ON is the angle of the filament rotated by the needle. (b) Average tensile
strengths of single actin filaments (LC=10±2pm). Temperature = 252 0*C. Bars = SD for 20-150 filaments.
(c) Distribution of thermal rotational angles (ON=0_). (d-h) Histograms of tensile strength of single actin
filaments twisted by 00 (d), 45* (e), 90* (f), 1800 (g), and 360* (h). Figures and experimental data from
(Tsuda et al., 1996).

2.4.2 Kinematics: additive decomposition

An additive decomposition approach to the kinematics takes the unbending and stretching

deformations as springs in series. The extension due to stretching is 6, (or 4f ro), the

•J



unbending extension is 4 (or "fj ro,), and the total extension is 6r=4+4=r-ro. The

stretching force-extension relationships is

Kf S = K 1 8 S (2.80)

The unbending extension can therefore be solved as

r =r- f Ks (2.81)

Employing Eqs. (2.75), (2.81), and (2.79), the force-extension expression can now be

given as

f = f = (2.82)

The results of using the multiplicative and additive decompositions are shown in Figure

2-15 using the following filament properties: l,=3pm, L1=pm, K,=40nN. The results of

the two methods are in agreement within 3% or less for r/Lc<l. The percent difference

between the two methods increases for r/Lh>1, with a difference of -4% at r/Le=1.01.
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Figure 2-15.Comparison of kinematics methods in extensible model: additive and multiplicative
decompositions

2.4.3 Comparison with F-actin stretching experiments

The extensible filament model is now used to compare to empirical data from F-

actin stretching experiments conducted with nano-scale SiN3 cantilevers and low

pretension (Liu and Pollack, 2002). The experimental setup is shown in Figure 2-16.

Liu and Pollack found best fit values of K, =35.5±3.5nN and lp=8.3pm for actin filaments

with contour lengths of LC= 19.1pm, as shown in Figure 2-17, with the curve fit using

Odijk's extensible WLC approximation (Odijk, 1995; Liu and Pollack, 2002). This value

for K, is approximately three times greater than what would be predicted using Equation

(2.72), for rf =3.5nm, an underestimation described in Section 2.3 based on the

assumption of a cylindrical cross-sectional area and linking filament structure and

bonding that governs the entropically-based bending stiffness with the structural

interactions governing the internal energy-based axial stretching stiffness. Odijk's
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Figure 2-16. Experimental setup for F-actin stretching with micro-scale SiN 3 cantilevers. Insetfluorescence image shows a captured actin filament between two cantilevers (cantilever width-4pAm).Adapted from (Liu and Pollack, 2002).
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Figure 2-17. Experimental data using micro-scale cantilevers to stretch actin filaments
(L=l19.128gm). Best fits with extensible WLC models.(Liu and Pollack, 2002)
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extensible WLC model is valid for the case of small elongations beyond the contour

length ( Ir-LlI<<r) and weak undulations (Odijk, 1995),

1/2
r 21T +f , (2.83)

L 2 fl K,

which is not defined for f-0, and the first two terms provide the asymptotic response

from Marko and Siggia's WLC approximation in Equation (2.36), while the third term

provides for linear elastic stretching (Liu and Pollack, 2002). They were unable to fit the

data with the extensible WLC approximation by Wang, et al. (Wang et al., 1997), which

adds an extra term for axial stretching following the additive decomposition described

earlier,

fl r 1 fS= r+ (2.84)
kBT LC 4(1-r/Le + flK,)2  4 Ks

The experimental data in Figure 2-17 was taken with filaments that only had contour

lengths greater than their persistence lengths, in order to utilize the Marko-Siggia WLC

approximation. The extensible filament model developed in this section based on the

MacKintosh WLC expression is also plotted in Figure 2-17 with the same values of

,=8.3Lpm and L=19.128.pm as used in the Odijk model fit, but with a stretching modulus

of Ks =56nN. While this demonstrates that the Odijk extensible model produces a stiffer

response within the axial stretching regime (r/L?>1), both models capture the extensible

behavior of the actin filament using reasonable values for the stretching modulus. For

example, the best fit values of K, for both models are within 30% of values measured

from similar experiments using microneedles (glass rods with 300 nm diameters) and

high pretension that found a stretching modulus of K,=43.7±4.6nN for actin filaments

with contour lengths of LC=lm (Kojima et al., 1994).
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It should also be noted that the Odijk WLC model, which becomes the limit of the

Marko-Siggia WLC approximation for r/L,-1, exhibits similar behavior of decreasing

stiffness for increasing persistence length (or bending stiffhess), even in the extensible

regime (see Figure 2-18), unlike the MacKintosh extensible model which exhibits a

crossover once in the extensible region as shown in Figure 2-13.
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Figure 2-18.Force-extension plot of Odijk's extensible WLC approximation for increasing persistence

length, 1, (L,=19.1 m, K,=34.5nN)
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CHAPTER 3 Network Model

3.1 Previous cell models and experimental techniques

There are an increasing number of experimental techniques using various

bioassays to probe the mechanical response of cells. Several of these techniques are listed

in Figure 3-1 along with a few examples of material models used to simulate the cellular

mechanical response within the specific bioassay. The first three bioassays listed, atomic

force microscope (AFM) indentation, cytoindentation, and magnetic twisting cytometry

(MTC) are used to probe subcellular regions; shear flow and cell contraction via substrate

deformation (SD) or microfabricated post array detector (mPAD) are used to measure

adherence, deformation, and motility characteristics; and microplate

compressors/stretchers (OS), micropipette aspiration (MA), and optical tweezers (OT) or

magnetic tweezers (MT) are used to evaluate whole cell deformations (Suresh, 2007).

The force scales and deformation length scales associated with these different

biomechanical assays are listed in Figure 3-2 along with relevant cellular and subcellular

processes and components. While these are relevant to the whole cellular response, other

experimental techniques are used to explore the rheology of cytoskeletal systems (see

Section 3.4).



Experimaze MN aleut model References

u m nuaa s. Liearelasica (Costa and Yin, 1999; Obashi et al., 2002; Ng et al., 2007)

Noalihear elasc (Costa and Yin, 1999; McElfresh et al., 2002)

1Iacar elastic (Shin and Athanasiou, 1999)
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Liear elastic (Chanas and Horton, 2002; Mijailovich et al., 2002)

Noimear elastic (Ohayon et al., 2004)

Mawel viscoelatic (Karcher et al., 2003)
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Liear elastic (Chnras and Horton, 2002; Cao et al., 2007; Ferko et al., 2007)

Nolitearer asck (Jadhav et al., 2005)
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Poehsdiec (Basijens et al., 2005)
Porovisacelstic (Basijens et al., 2005; Trickey et al., 2006)

Noalisear elasti (Dso et al., 2003; Mills et al., 2004; Suresh et al., 2005)

Modified Maxwell (Mills et al., 2004)
viscoolastic

Figure 3-1. Biomechanical continuum models for whole cell deformation in common experimentaltechniques (adapted from (Vaziri et al., 2007)).
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Figure 3-2. (a) Force scale and (b) deformation length scale associated with different biomechanical
assays (Suresh, 2007)

There have been many approaches to modeling cells and their cytoskeletons.

These methods can generally be grouped into four categories: cortical shell-liquid core

and solid core continuum models, discrete member models, enthalpic cellular solid

models, and biopolymer models.

Most of the material models listed in Figure 3-1 represent recent examples of the

cortical shell-liquid core and solid core continuum models. Simple cortical shell-viscous

fluid models have been used to simulate the response of entire cells during micropipette

aspiration (Yeung and Evans, 1989; Tran-Son-Tay et al., 1998). A cortical shell along

with hyperelastic neo-Hookean properties, describing the cytoplasm and nucleus, have

been used to model lymphocytes deformed in cell poking experiments (Zahalak et al.,



1990). The red blood cell (RBC) membrane and cortical spectrin network have been

modeled using hyperelastic models based on the first and second order terms of the first

invariant of the Finger tensor (a 2-parameter Yeoh model (Yeoh, 1990)) to effectively

predict RBC deformations from optical tweezers (Dao et al., 2003; Mills et al., 2004).

Constitutive models of the stress-strain behavior for spectrin networks which capture the

network stretch and chain force-extension behavior have also been developed (Arslan and

Boyce, 2006; Arslan et al., 2008). Both the membrane/cortex and the cytoplasm/nucleus

have been modeled as linear viscoelastic materials to predict the response of cell

micromanipulation by magnetocytometry (Karcher et al., 2003) as well as cell recovery

after expulsion from a micropipette (Chien et al., 1987; Tran-Son-Tay et al., 1991). The

cytoplasm can alternatively be described by a poroelastic model in which the

cytoskeleton is a porous, actively contractile, elastic network infiltrated with interstitial

cytosolic fluid (Charras et al., 2005). The poroelastic components require the addition of

a spatial diffusion term to the governing differential equation for viscoelastic behavior as

originally presented by Biot for soil consolidation (Biot, 1941; Biot, 1956a; Biot, 1956b).

Other biphasic poroviscoelastic models have been developed to model soft biological

tissue, as pioneered by Mow for tissues (Mow et al., 1980) and recently applied to

chondrocyte cells (Baaijens et al., 2005; Trickey et al., 2006). The poroelastic model,

unlike viscoelastic models, accounts for spatio-temporally localized variations in

hydrostatic pressure, and it is especially useful in simulating blebbing cells and other

cases in which hydrostatic pressure can be used to power local cellular shape change

(Charras et al., 2005). These models, however, do not account for either the



microstructural features of the cytoskeleton, their mechanobiological contribution, or

their microstructural rearrangement.

The second type of cytoskeletal model is based on the interaction between

discrete members (e.g. filaments) in a network. Many discrete member models assign

discrete filaments randomly within a 2D (Head et al., 2003a; Head et al., 2003b; Wilhelm

and Frey, 2003; Onck et al., 2005) or 3D (Huisman et al., 2007) network, allowing

intersection points to become cross-links until a critical amount of network connectivity

(or percolation threshold) is reached. When implemented in 3D, however, the analyst

must include attractive force fields to initiate filament movement and create crosslinks

between nearby filaments, that are not in contact, in order to create realistic network

topologies (Huisman et al., 2007). The discrete filaments are modeled either as straight

rods (i.e. pre-thermal undulations), or with a slightly curvature to simulate the geometry

after thermal undulations. In either case, neither changes in filament curvature from

thermal energy nor the entropic contribution to filament elasticity are considered. The

percolation-based models identify the influence of node connectivity on the amount of

non-affine behavior witnessed in biopolymer networks (Head et al., 2003a). Their models

deformed in an affinme behavior when dominated by filament stretching with no filament

rotation, and they observed non-affime behavior with considerable filament rotation when

filament bending dominated relative to axial filament stretching (Onck et al., 2005;

Huisman et al., 2007). The observation that, in bending-dominated regimes, reorientation

can play a much larger role than stretching in accommodating macroscopic deformation

has also been seen in biopolymer models (Palmer and Boyce, 2008).
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Tensegrity models also make use of discrete members by describing the actin

microfilaments as the tensile elements and the microtubules as elements under

compression (Ingber, 1993). The tensegrity approach is based on the principles of

compression and tension elements in equilibrium as originally described by Buckminster

Fuller (Fuller, 1975). Traction force microscopy experiments have been conducted to

evaluate the tensegrity-related behavior of cells to explain combined cytoskeletal

response during adhesion (Wang et al., 2001). Tensegrity principles allow for the scaling

of shear modulus with solid fraction to the first power (G -~ ) (Stamenovic and Ingber,

2002). Although tensegrity networks have been defined as networks comprised of

continuous tension and local compression in which local mechanical inputs produce

distributed cytoskeletal responses (Ingber, 1993; Ingber, 1997; Pourati et al., 1998a),

critical experiments have shown highly localized cytoskeletal responses to forces rather

than integrated, spatially broad responses (Heidemann et al., 1999). Tensegrity models

omit the influence of thermal fluctuations on elasticity, and also do not lend themselves

to modeling polymerization of just one filament network that may occur in pseudopod

growth.

A third approach to cytoskeletal modeling is the enthalpic cellular solid model

originally. developed by Gibson and Ashby (Gibson and Ashby, 1988) and extended to

actin networks by Satcher and Dewey (Satcher and Dewey, 1996). It describes the

cytoskeletal network using a cubical frame with an overall network modulus based on

solid fraction and bending of the cell edges. If the relative solid fraction is very small,

then the structural elastic modulus proportional to either ýs or s2 depending on whether

enthalpic stretching or enthalpic bending and twisting of the edges, respectively, are
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major modes of accommodating the imposed deformation (Warren and Kraynik, 1997).

As with tensegrity networks, however, the cellular solid models do not account for the

influence of thermal fluctuations on cytoskeletal elasticity (Kamm, 2006). They also do

not account for nonaffine motion or the ability of networks to accommodate deformation

through rotation of filaments.

The fourth class of cytoskeletal models extends polymer theory to biological

macromolecules to create biopolymer network models. Some of the background details of

biopolymer filament models from Chapter 2 are summarized here within the context of

biopolymer network models. Polymers are traditionally categorized as flexible (,l<<L,),

rigid (,>>LJ), or semiflexible (l~-L). The worm-like chain model is a more appropriate

representation of continuously flexible filaments rather than the traditional polymer

theory of freely jointed chains of rigid rods. The entropically-based WLC model is

derived from the total energy from sampling fewer configurations of unbent filaments as

a filament, or network, is deformed. The WLC model has been effective at describing the

entropic elasticity of very flexible biopolymers (L, >> l,) including DNA at low to

moderate strains (Bustamante et al., 1994). Other single filament behaviors, such as the

"saw-tooth" pattern from the force-extension behavior of single biomacromolecules with

folded domains, have also been modeled successfully with the WLC model for a variety

of biological materials (Rief et al., 1997; Qi et al., 2006). The cortical spectrin

cytoskeletal network of the red blood cell, has a well-defined triangulated geometry

which has been successfully modeled based on a freely jointed chain (FJC) model

(Arslan and Boyce, 2006; Arslan et al., 2008) as well as the WLC model (Li et al., 2005a;

Dao et al., 2006; Li et al., 2007). Although its force-extension relationship requires
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numerical evaluation of the path integral, interpolation formulas have been successfully

used to simplify calculations in the small and large-force regimes (e.g. Marko and Siggia

(Marko and Siggia, 1995)). The chain flexibility assumption (L, >> lp) is considered for

single, flexible polymers with random walk statistics such that the initial end-to-end

distance, ro, is zero. While useful for analyzing single filaments, the WLC model must

use a nonzero value of ro for analyzing dense, cross-linked networks. While WLC and

FJC-based models have been evaluated with nonzero ro for spectrin networks with Lc >>

1, (Qi et al., 2006), they have not been applied to denser, stiffer cross-linked networks in

which the effective contour lengths are lower than their persistence lengths (L4< lp).

Subsequent molecular theories (e.g. MacKintosh, et al. (MacKintosh et al., 1995))

have addressed the semiflexible regime for L4 ~ 1, with similar energy functionals and

force-deflection relationships that are still entropic in origin. At high strains, additional

theories have expanded the force-deflection response of the semiflexible filaments to

include terms for the enthalpic stretch contributions (once thermal fluctuations from

bending are pulled out) in addition to the entropic elasticity due to thermal fluctuations

(Storm et al., 2005).

The biopolymer network models calculate the bulk elastic properties of

cytoskeletal networks by integrating the force-deflection behavior of individual elastic

cytoskeletal filaments within network geometry models (MacKintosh et al., 1995;

Isambert and Maggs, 1996; Storm et al., 2005). This also provides a framework for

determining the impact of cross-linking proteins on the behavior of cytoskeletal filament

networks. Empirically observed shear moduli for F-actin networks with permanent cross-
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links (but the same concentration of F-actin) have been observed to vary over two orders

of magnitude by varying the cross-link density (Gardel et al., 2004a).

In order to determine the bulk elastic network properties including cross-link

effects, biopolymer models often employ a 3D volume averaged framework of the 1D

filament force-extension response which is aligned in the primary load direction (see

Figure 3-3) (MacKintosh et al., 1995; Isambert and Maggs, 1996). These models often

assume affine network deformation, and can further be constructed to account for varying

degrees of cross-link densities. For example, the amount of force required to extend a

single F-actin filament a distance, 6, has been defined for the low force, linear regime by

linearizing MacKintosh's equation from Chapter 2 about rF=o (Isambert and Maggs,

1996):

kT1I Kif k 6 • 5Zc -- 6 (3.1)
LIe LIe

where 8= filament extension. Volume averaging is achieved starting with a given a

mesh size of 4 for a cubical volume which gives (1/4' chains per unit area. In shear, the

chain extension (b) is approximated by (y lcL) where y is the shear strain and lcL is the

end-to-end chain distance between cross-links (see Figure 3-3). For small transverse

fluctuations, lcL=Lc. Thus, the shear stress is approximated as (Kamm, 2006):

F Klp
F'- A (3.2)ý13 L Y
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Figure 3-3. Single filament subjected to a shearing force [adapted from (MacKintosh, 2006)]

where the shear modulus is then defined as

G /P (3.3)

Since the solid volume fraction is defined for a filament of diameter (a) as based on a

4a2  a2
s 3 - (3.4)

Since the solid volume fraction is defined for a filament of diameter (a) as based on a

mesh size of 4, the volume-averaged network shear modulus scales linearly with solid

fraction for low cross-link density (G - is). For the limit of maximum cross-link density

(i.e. cL -> 4) the shear modulus is related to the solid fraction as G - s5/2 . Biopolymer

network models have shown promise for predicting the behavior of cross-linked filament

networks. As an example, Figure 3-4 shows the theoretical predictions (based on both

enthalpic stretching and entropic unbending contributions) for fibrin protofilament

networks of varying concentration (Storm et al., 2005).
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Figure 3-4. Experimental data for fibrin protofilaments (dots) at various concentrations, and
corresponding theoretical curves (solid lines). Best-fit values were determined for A-D as follows: A, c =
0.5 mg/ml (l,= 0.39mm), K, = 67 pN; B, c = 1.0 mg/ml (l,= 0.27mm), K, = 58 pN; C, c = 2.0 mg/ml (l,=
0.19mm), K, = 73 pN; D, c = 4.5 mg/ml (l,= 0.12mm), K, = 110 pN (Storm et al., 2005)

Network models which essentially evaluate the volume averaged force extension

of a single filament aligned with a primary load direction, however, do not properly

account for how a network deforms to accommodate macroscopic deformations. Volume

averaged networks based on the lD models are limited by highly strained chains in

primary load direction (Figure 3-5A), with the shear strain accommodated by extensive

chain stretching and minor rotation of the chains.

(A) Volume averaged single chain network (B) Multiple chain network

Figure 3-5. Chain stretch and rotation for ID-based models in (A) volume averaged single chain network
and (B) multiple chain networks
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Real networks accommodate the macroscopic deformation with network

constituent chains undergoing both rotation and stretch. Indeed, much of the imposed

deformation will be accommodated by chain rotation with a small amount of chain

stretch. For comparison purposes, the deformation of the network depicted in Figure 3-

5A is contrasted to an alternative simple network shown in Figure 3-5B. For the network

of Figure 3-5B, the imposed shear strain is primarily accommodated by the rotation of

the constituent chains with relatively little chain stretch, especially as compared to the

network deformation of Figure 3-5A. Hence, more realistic cytoskeletal network models

must address the network's ability to accommodate deformation by both rotation and

stretching (where the minimum energy configuration that satisfies compatibility and

equilibrium will be found by the network).

There have been many chain network models developed within the field of rubber

elasticity over the past 65 years. Four models of note for chain networks (3-chain

network, 4-chain network, full network, and 8-chain network) are briefly summarized

here. Also see the review of rubber elasticity constitutive models by Boyce and Arruda

(Boyce and Arruda, 2000). The 3-chain network model by Wang and Guth (Wang and

Guth, 1952) is shown in Figure 3-6. The

Figure 3-6. Geometry for 3-chain network model
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3-chain model was created due to the inadequacy of Gaussian models to explain the well

known stress-stretch behavior of rubber-like polymers at moderate and large strains

(Wang and Guth, 1952). And while the Gaussian model is effective for uniaxial

predictions at small strains, it is not able to accurately predict the corresponding shear

and biaxial behavior.

To derive an expression for free energy Wang and Guth first obtained a statistical

distribution function for the length of representative chains employing the inverse

Langevin function (Wang and Guth, 1952). They then aligned these representative

chains with the unit vectors of a cubic coordinate system defined by the directions of

principle stretch (Wang and Guth, 1952).

Although the 3-chain model does not completely explain experimentally observed

behavior, it does capture the main features of the stress-stretch response of rubber-like

elasticity better than Gaussian treatments. The most significant reason that the model

fails to predict the response accurately is the oversimplification of the network. The 3-

chain model is limited to the response of a single chain during uniaxial deformation and

therefore does not include any of the cooperative effects of other models.

The 4-chain model by Flory and Rehner (Flory and Rehner, 1943) accounts for

the complex, and generally random, three dimensional network structure formed by the

introduction of occasional cross-linkages between very long polymers. The four chains

are cross-linked at a junction (point J) whose most probable location is at the center of the

tetrahedral unit cell, point O in Figure 3-7. These cross-linkages are not fixed in space,
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so they can move and diffuse within the confines of the tetrahedron. The end points of

the chains attached to these cross-links define the four corners of an irregular tetrahedron

Figure 3-7. Geometry for 4-chain (tetrahedral) network model (adapted from (Treloar, 1958))

and, in turn, the center of neighboring tetrahedrons. Flory and Rehner make the

following assumptions and approximations for a network comprised of these tetrahedrons

(Flory and Rehner, 1943):

1. The actual random network of chains can be replaced by one in which

each chain is the same contour length, forming an average cell.

2. The properties of the entire network can be computed based on those of

the average cell.

3. The restraints imposed by the network on a given cross-linkage can be

approximated by fixing the nearest neighbor cross-linkages at their most

probable location.

4. The distribution function is applied to chains prior to vulcanization, fixing

the lengths of chains and locations of the cross-links in the virgin material.

There cannot be affine motion of the center point since it would not satisfy force

equilibrium. The outer nodes can move affinely, but the cells are not mutually exclusive

and numerous tetrahedrons could partially occupy the same space. Also note that though
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the cells can occupy the same space, each cell's volume is preserved due to

incompressibility (Flory and Rehner, 1943).

The strain energy density functions are defined by the changes in entropy. It is

assumed that the changes in entropy associated with displacements in directions

perpendicular and parallel to tetrahedron faces are representative of a general

deformation. Note that without the affine assumption the strain energy density for an

entire macroscopic material must be calculated iteratively. Thus there is no constitutive

law that can be easily derived and written in the form of a strain energy density function.

The first full network model by Treloar and Riding (Treloar and Riding, 1979)

was derived and tested for biaxial extension along fixed axes under plane stress

conditions, and later extended to a general formulation by Wu and van der Geissen (Wu

and van der Giessen, 1993). The full network model does not assume a representative

formation of the molecular chains within a network, but instead allows for all possible

formations by assigning a probability distribution for any single cell to have its chains

oriented in any direction. A central concept employed in the derivation of the full

network model is the orientation distribution of individual molecules within the network.

This Chain Orientation Distribution Function (CODF) is governed by balance equations

and assumes the chains of all orientations deform affinely with the deformation of the

continuum (Wu and van der Giessen, 1993). The affine assumption combined with the

evaluation of chains in all directions causes the model's response to be overly influenced

by the response of the chain oriented in the direction of the applied deformation. The

concept of the CODF is used to derive a continuum model for rubber elasticity by

summing the contribution of each chain to the free energy of individual chains to
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determine total free energy over all chain orientations (Wu and van der Giessen, 1993).

Depending on the chosen chain model, solving the integral for the free energy of the

network has no closed form solution and requires numerical integration, which makes it

less feasible for inclusion with finite element analysis software.

3.2 8-chain Network Model

Here, a constitutive model is proposed for the stress-strain behavior of the

cytoskeletal AF network. The force-extension behavior of the AF will be taken to follow

a MacKintosh-type model. The AF network will be modeled as an effective 8-chain

network to capture the molecular network structure.

A network structure can be described by four basic topological features (see

Figure 3-8): (1) a distribution in the initial distance between network junctions which is

called the junction-to-junction distance or initial filament length, ro; (2) a distribution in

the fully extended length (i.e. contour length) of a filament between network junctions,

L,; (3) the network connectivity (functionality of network junctions); and (4) the

orientation distribution of the filaments. In order to simplify the mathematical description

of the network structure, these basic features of the network are represented in terms of

average or idealized quantities: (1) an average initial filament length; (2) an average

filament contour length; (3) an idealized network connectivity; and (4) the average

orientation of the filaments. A further simplification takes the case of an initially isotropic

network (no preferred orientation in the initial state).
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(a) Random actin network (b) Irregular chain network (c) Volume averaged network

Figure 3-8. Random F-actin network and corresponding idealized eight-chain network model. The stereo
micrograph of actin cortex reproduced from The Journal of Cell Biology, 1983, 96:1400-1413. Copyright
1983 The Rockefeller University Press (Niederman et al., 1983; Hartwig, 2004); bar in (a-b), 100 nm)

The orientation of a filament can be defined by the angle between a reference axis

and the junction-to-junction vector connecting the ends of the filament. For an initially

isotropic network, filaments are randomly oriented in space. Thus, the average filament

angle can be obtained by taking the volume average of all possible orientations and is

given by ()= I da d, cos-'[cosacosf]cosa, = 57.3 where a• and are the

azimuthal and polar angles, respectively, in the spherical coordinate system (see

Bergstrom and Boyce (Bergstrom and Boyce, 2001) for the analogous case of molecular

orientation in polymeric networks). An alternative average can be obtained using

Hermann's orientation function and gives 54.70. Therefore, an idealized network

topology should capture an initial average filament orientation close to that of 54o-57*.

The network features used in this model are represented in terms of average or idealized

quantities to simplify the mathematical description. Distributions of model parameters
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have been successfully incorporated within an 8-chain network model in, for example,

Qi, et al. (Qi et al., 2006) who examine a distribution of initial contour lengths for

different chains when examining protein unfolding. Qi, et al. found that the first protein

unfolding event for distributed networks occurred at significantly lower values of stress

and stretch when compared to the uniform network (Qi et al., 2006). They also noted that

the stress-stretch curve of the distributed network exhibits a smoother character with

smaller peak values and smaller force drops during unfolding compared to the uniform

network. The approach of using distributions for network features is reserved for future

work.

An idealized network structure that has been found to capture this initial

orientation in an average sense is the eight-chain network model of Arruda-Boyce which

was originally proposed to capture three-dimensional aspects of macromolecular network

structure and its evolution with deformation in elastomeric (Arruda and Boyce, 1993b)

and glassy thermoplastic (Arruda and Boyce, 1993a) materials. A combined WLC/8-

chain model has also been extended to anisotropic biopolymer networks such as the

collagen network in skin tissue by Bischoff, et al. (Bischoff et al., 2002b) and Kuhl, et al.

(Kuhl et al., 2005), and an isotropic 8-chain network model of unfolding modular chains

developed by Qi, et al. (Qi et al., 2006). Bertoldi and Boyce extended both of these

models to capture the behavior of mussel byssus via an anisotropic 8-chain network

model with a filament model that captures the straightening out of bends in byssus

molecular chains using an elastica-type solution followed by axial stretching of the chains

and subsequent force-induced unfolding of the modular domains (Bertoldi and Boyce,

2007a). Here, the 8-chain network approach is applied to densely cross-linked and
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bundled cytoskeletal networks in which Le<I. The eight-chain network considers an

averaged or idealized structure of eight chains located along the diagonals of a cubic unit

cell and connected by a centrally located junction (see Figure 3-9). For the isotropic

network, the cell is taken to be aligned with and to deform with the macroscopic principal

stretches. Therefore, taking

(a) Undeformed (b) Uniaxial tension in 2-direction (c) Uniaxial compression in 3-
direction (or equibiaxial
tension in 1, 2-directions)

Figure 3-9. Eight-chain network model geometry and deformation (adapted from (Arruda and Boyce,
1993b))

the normal to any face of the cell as the reference axis, the average initial chain

orientation of this network is simply the initial orientation of the eight chains or 54.70,

capturing the average orientation for a randomly oriented network. Since the cell

deforms with the principal stretch state Xi (where i represents the three principal

directions), the stretch on any chain in this network, A, is the root-mean square of the

principal stretches and is always tensile for isochoric deformations,

Ac = r/ro = + + ~)/3 = 13, where 11=X1
2+X22+h3

2 is the first invariant of the

left or right Cauchy-Green tensor. In this thesis, chains and filaments are synonymous,

so the chain stretch (A,) and filament stretch (Af) are equivalent. The initial end-to-end
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distance is related to the network's actin concentration (CAF) and filament properties (Lc,

lp). The chains are also found to rotate towards the maximum principal stretch

direction(s). For example, in the case of uniaxial tension, the chains extend and rotate

towards the tensile axis (Figure 3-9b); in the case of uniaxial compression (or equibiaxial

tension), the chains extend and rotate away from the compression axis (Figure 3-9c). For

the cases of uniaxial tension and uniaxial compression, the principal axes remain fixed

throughout the deformation, and thus the chains in the unit cell rotate and stretch in an

affine manner.

The "non-affine" mapping of macroscopic deformation to network chain deformation is

more apparent when examining the case of simple shear (see Figure 3-10). The

macroscopic basis is denoted as [xyz] while the principal basis is shown as [123]. In the

undeformed state, the principal basis is undefined and could be oriented in any direction

(see Figure 3-10a). Upon application of simple shear, the principal axes of stretch are

identified and will rotate with deformation and, furthermore, the chains will undergo

additional rotation relative to the maximum principal stretch direction (01 - Figure 3-

10b).

z

Figure 3-10. Simple shear deformation of eight-chain network model
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Note that during simple shear deformation the principal stretch direction does not stay

coincident with the diagonal of the unit cell. For example, if the unit cell was originally

oriented along the 450 diagonal, at tan(y)=0, an affine motion would require the unit cell

Undeformed Affine Deformation Non-affine Deformation
(unit cell aligned (unit cell aligned with

with diagonal) 1' principal direction)

Figure 3-11. 2D illustration of affine and non-affine simple shear deformation

to remain oriented along the diagonal throughout the deformation (shown in 2D for

clarity in Figure 3-11). The eight-chain network model allows the unit cell to rotate with

the maximum principal direction, which does not stay coincident with the diagonal

throughout the simple shear deformation (Figure 3-11).

This network representation is seen to accommodate the imposed shear by both

non-affine rotation and non-affine stretching of the constituent chains, effectively

sampling the non-affine nature of the network behavior in a simple but effective manner.

The physical counterpart would be to view the rotated unit cell as a method of sampling

the rotation and stretching of chains (in eight directions with respect to the maximum

principal direction) such that the overall non-affine network response is captured in an

averaged sense. The eight-chain network model formulation captures the basic features

that Chandran, et al. (Chandran and Barocas, 2006) and Onck, et al. (Onck et al., 2005)
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observe in their many membered discrete network modeling approaches, in particular, the

significant reorientation of filaments that accommodates macroscopic deformation.

Due to the ability of the eight-chain network to effectively mimic the initial state

of a randomly oriented network and to also capture the evolution in chain stretch and

orientation with different deformation states, this simplified network topology will be

utilized to represent the cytoskeletal network.

3.2.1 Stress-strain behavior

The three-dimensional stress-stretch behavior of the AF network can be

determined using the eight-chain network topology and its evolution with stretch together

with a representation of the axial force-stretch behavior of an AF where the initial length

of the filament is the initial junction-to-junction distance, ro, and the limiting length is

essentially the contour length, Lc, of the filament. Cytoskeletal filaments, especially AF,

are observed to have only a slight curvature between junction points (Figure 3-8a). The

force-extension relations govern the filament's response during axial stretching by

displacing the two junction points and thus increasing the junction-to-junction distance

from ro to r. The force-stretch behavior will consist of an initially linear elastic region;

followed by a strain stiffening region as the junction-to-junction distance r approaches

the filament contour length L, (see Figure 2-5a). The limiting filament stretch is

therefore defined as %L=LIro.

The work done by each chain can be found by integrating the filament force-

extension expression [Equation (2.26)]: AW, = ff dr, and is equal to the filament strain

energy. The strain energy density of the network, W, is simply the product of the
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filament density, n (number of filaments per unit volume), multiplied by the strain energy

of a single filament, wf, in the eight-filament network: W = nwf since all filaments in the

8-chain network experience the same stretch. The expression for the strain energy

density of the eight-filament cytoskeletal network model is

W= nk8,T L, -_, [In(L - 21,L + 21,r)- n(r - L,)- c (3.5)

where c is a constant equal to the initial strain energy density from the filaments. Since

r = ,ro = rOfi7, the strain energy density expression is a function of I.

The actin cytoskeleton is embedded in a nearly incompressible fluid (cytosol) and

hence is taken to deform at constant volume. Note that this network model will be

incorporated into a poroelastic framework in Chapter 6 to capture fluid flow and,

consequently, swelling/deswelling effects on the mechanical behavior. The Cauchy stress

is found by differentiating the strain energy density:

T=2 B-p*I= -p(L) Bp*I, (3.6)
T=2 , 31, A 4(1- Aro/cY Lc /1,6 -2(1 -rjo/Lc )

where B=FFT is the left Cauchy-Green tensor (Finger tensor), A = ,4r(B/37 , F is the

deformation gradient, F=8x/8X where x is the position vector of a material point in the

current configuration and X is the original position. Also in Equation (3.6), I is the

identity tensor and p* is the additional pressure required due to the incompressibility

constraint and obtained by satisfying equilibrium.
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Alternatively, the effects of compressibility can be included in the constitutive

relationship by adding a term to the strain energy function to account for the additional

entropic contribution due to volume change as well as adding a term for the bulk

response.

= nk 41T LC ln(L - 21Le + 21pr)- ln(r - Lc)]- cWCoMP lL4(1--r/LC) p - +2 l -Lc

kBT- I_ 1I1 In J (3.7)1, L4(1-ro/L.) (1- ro/L XLc/1 -2(1-ro/Lo)) 3
+ K•(J-l)I

2

where KB is the bulk modulus. The compressible Cauchy stress can then be found as

2 8W awT - B+ IJ ai, CJ
I I Lcl1, -6(l- Acro/L)B

The Cauchy shear stress-strain relationship becomes

l-u,,= - j tanB. (3.9)

, C (1-r IL Lt -(1 ) *3.10)

The constitutive model presented here is a function of the material properties n, lp,

Lc, and ro. The filament density, n (filaments/m3), is defined as n = pL ILc. The actin
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length density, pL (pm/m3), is defined as pL =(CAF MAM )PAF where CAF is the

experimental actin monomer concentration, pAF (Da/pm) is the linear actin density and

MAM (Da/monomer) is the molecular mass of each actin monomer. Both PAF and MAM are

actin material properties, defined a priori. As defined earlier, the zero force junction-to-

junction distance rF=o is a function of L, 1,, where a network initial junction-to-junction

distance ro slightly larger than rF=o indicates a prestress in the network due to in vitro or

in vivo environmental conditions (Zhu et al., 2000; Wang et al., 2002a; Kasza et al.,

2007). Here, the percent increase (a) of ro beyond rF=o is defined as ro = rF=o (1 +a). In

principle, ro and L, are measurable from micrographs and 1, is measurable from single

molecule bending, however they are operationally fit from empirical stress-strain data for

each network.

3.2.2 Implementation in finite element analysis

The constitutive model is incorporated as a user-defined material within the

ABAQUS finite element software (Simulia Dassault Syst6mes, Providence, RI, USA).

The ABAQUS user subroutine UMAT is used to define a material's mechanical behavior,

and requires the calculation of the 4th order Jacobian tensor (C) and 2 nd order Cauchy

(true) stress (T) at the end of each increment. C is taken to be an approximate value and

need not be exact for convergence of the finite element model. The generalized

derivation for the Jacobian tensor is given here following the approach given by Wilson

(Wilson, 2005). The derivation of the Jacobian for the inextensible 8-chain MacKintosh

network model follows the generalized derivation, while the Cauchy stress tensor was
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given in Equation(3.6). The Jacobian (C) is defined through the variation in Kirchoff

stress as

6(J T)= JC: D (3.11)

where J=det(F) and D is the rate of stretch, defined as the symmetric part of the velocity

gradient (L):

D = Sym(L)= 1 (L+L) (3.12)
2

-V Bi
L = v = SFF-'.

The left hand side of Equation (3.11), 6(J T), can be equivalently taken to be

6(J T)= T&+J =T +J :F+ = (TA: 6F

Substituting Equation (3.13) into Equation (3.14) gives

6(J T)= A:(LF)= ART :(FTL)= (ARTFT):L!.

If (ARTFT) is right symmetric, Equation (3.15) can be given as

6(J T)= (A RTFT): D .

(3.13)

(3.14)

(3.15)

(3.16)

Note that if (ARTF T) is not right symmetric, there will be a small error in C. This should

not, however, inhibit convergence of the finite element model since C is only taken as an

approximate value from the UMAT subroutine. The 4th order Jacobian tensor from

Equation (3.11) can therefore be shown as

C=1 (ARTFT)= T 1 + (T J 8r1 T T (3.17)

where dJ/SF is defined as
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-= det(F) = T. (3.18)
bF 6F

Thus, given a material-specific expression for the Cauchy stress (T), the Jacobian (C) can

be determined by solving for the derivative 6bT/oF.

The Jacobian may now be specialized to the constitutive model for the

inextensible 8-chain MacKintosh network model. In order to simplify the expressions,

the following abbreviations are used within Equation (3.8),

I I L -6(1- A /Lc4- / YL) (3.19)Ac 4(1- c/lLe / Lc1, -2(1-ac/lLc))_

q I(Y1 Lc/l, -6(1-ro/L) (3.20)

noting that g is a material-dependent constant and ý'is a function of A. The expression for

the Cauchy stress for a compressible material is now given by

T nrkT B -gl)+ K (J 1)I (3.21)
3J'

The Jacobian (C) is now found by solving for the derivative bT/6F,

bT nrokBT -l1F 1 dB3 1( I (3.22)
-(= 3(BIB- l)+- J'" + I B +Ks 1 (3.22)bF 3SJl J2 bF2 M)f + &

where the terms within Equation (3.22) are defined as

= 2(I'FrT = 2(IsFRT = 2(I F)RT  (3.23)

I 4si +2 j (3.24)
Or = 2 (3.24)
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bF A

ro 21,ro
2Lo(1- ro0/L) •Y L( - ro IL XL -21,(1-Aro0 /L)

1 ro 1
(1-Aro/lLcy(Le -21,(1-Aroo/Lo)) 4nJ- cro/L)

+1-A
- 2E(i-2CIoJ/Lo XLC -2l(1-2•ro/L ))

(3.25)

S= = 2F = F .  (3.26)
6F I, 8F 6•, 32.

3.3 Isotropically prestressed Networks

Isotropic prestress (i.e. in the absence of an applied deformation) occurs in both in

vitro or in vivo networks due to a variety of environmental conditions and is an important

component in the cell stiffening response (Hubmayr et al., 1996; Cai et al., 1998; Pourati

et al., 1998b; Zhu et al., 2000; Wang et al., 2001; Wang et al., 2002a; Kasza et al., 2007).

Prestress in spectrin networks within red blood cells has been captured via continuum

models and shown to increase the initial elastic modulus of the network and significantly

decrease the stress and stretch levels required for subdomain unfolding (Arslan and

Boyce, 2006; Arslan et al., 2008). In vitro or in vivo actin networks could experience the

isotropic prestress from sources including osmotic/swelling pressures, external tractions

due an adherent cell membrane's interactions with the ECM (or the in vitro gel's

interactions with the substrate), and/or internal myosin-generated contractile forces.

Stiffening of actin networks from myosin contractile tension has been attributed to the

tension in the actin filaments and not the crosslinks (Mizuno et al., 2007). The proposed

8-chain MacKintosh network model can account for filament pretension and network
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isotropic prestress, and hence can be used to parametrically explore the effect of isotropic

prestress on the stress-strain behavior. The actin network isotropic prestress is accounted

for directly through a percent increase (a) in rto beyond rf=o. Figure 3-12 demonstrates the

effect of an increase in network isotropic prestress on the overall network shear stress-

strain behavior. The results show that increasing isotropic prestress results in an increase

in the initial shear modulus of the network and a decrease in the network extensibility (as

seen in the dramatic increase in tangent modulus (slope) of the stress-strain curve

occurring at smaller strains when isotropic prestress is increased).

0.01

0.0 0.1 0.2 0.3 0.4

Shear Strain, tan(y)

0.010 0.100

Shear Stress, r [Pa]

Figure 3-12. Effect of network isotropic prestress on the network shear stress-shear strain behavior (a) and
the network tangent modulus-shear stress behavior (b), with the initial isotropic prestress (co) based on ro =
rF=o (l+ a)

3.4 Rheological experimental techniques

Although many variations exist to explore the rheology of cytoskeletal systems,

the experimental techniques usually fall into one of two categories: bulk rheology or
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microrheology. For microrhology, the mean squared displacements (MSD) of

microscopic probe particles embedded within a cell are tracked via laser or optical

tracking techniques while their displacement is either actively driven by external forces

or passively driven by local thermal energy (i.e. Brownian motion) (Brau et al., 2007).

Then a generalized Langevin equation of motion for a microsphere in a viscoelastic

medium (Xu et al., 1998b) is used to transform the MSD into elastic and viscous moduli

(Tseng et al., 2002a). Alternately, a viscoelastic memory function can be calculated

using equipartition and a Laplace transformation, and then solving for the shear modulus

with the generalized Stokes law (Mason et al., 1997; Janmey and Schmidt, 2006). Figure

3-13

Figure 3-13. Phase contrast (top) and immunofluorescence (bottom) micrographs of 100nm fluorescent
nanoparticles in Swiss 3T3 fibroblasts before (left) and after (right) shear flow. The inset is a magnified
view of focal adhesions at the ends of actin stress fibers. Bar, 20pm. Adapted from (Lee et al., 2006).
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shows an example of multiple particle tracking to monitor the local changes in cell

stiffness in a cell subjected to a shearing flow (Lee et al., 2006). The 100nm nanoparticles

are enlarged and colored in the micrograph to show regions of the cytoskeletal networks

(actin=green, vinculin-=red) that were structurally altered to stiffen their response (blue)

or regions retained their original level of elasticity (red) (Lee et al., 2006).

Active microrheology techniques generally employ one- or two-particle methods.

Large discrepancies can occur between macroscopic viscoelastic moduli and moduli

found by one-particle microrheology if any characteristic length scales (mesh size,

persistence length) in the cytoskeletal network exceed the size of the particle size (i.e.

application of the generalized Stokes law is not valid) (Janmey and Schmidt, 2006).

Two-particle microrheology was developed (Crocker et al., 2000; Levine and Lubensky,

2000) to avoid these problems by cross-correlating the displacements of two particles

separated at a given distance which then becomes the relevant length scale (i.e. influence

of particle size/shape is reduced), see Figure 3-14 (Janmey and Schmidt, 2006).

X2

Laser 1 Laser 2

Figure 3-14. Sketch of 1-particle and 2-particle microrheology using lasers for trapping, displacing,
detecting. (Janmey and Schmidt, 2006)
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Bulk rheometers are usually categorized as rotational ("stress-strain") rheometers,

capillary rheometer, and extensional rheometer, with the rotational rheometers most

commonly used to explore bulk behavior of reconstituted cytoskeletal networks. The

rotational rheometers use different experimental geometries (cone and plate, parallel

plates, or annular cylinders) to shear a material by applying an oscillatory force or

displacement in order to measure the elastic (in-phase) or viscous (out-of-phase)

response. The "cone and plate" and "parallel plate" rotational (torsional) rheometers hold

one plate fixed while applying a torque to the other plate/cone (Figure 3-15). Both are

useful for measuring gels with viscosities greater than 10mPa-s. The cone and plate

Normal Normal
Force Force

11 ftn
4)

To To

Cone and Plate Parallel Plate

Figure 3-15. Torsional rheometer geometries

rheometer provides a uniform radial strain field due to its geometry. Many models of

both torsional rheometers, however, use a load cell in the vertical direction to measure the

normal force exerted by the material, often a positive force due to the Poynting effect

(Poynting, 1909) although negative normal forces have been observed in some complex

127



fluids at high flow rates (Lin-Gibson et al., 2004; Montesi et al., 2004) and some

semiflexible polymer gels (Janmey et al., 2007).

Small deformation

Shear Strain, y

Figure 3-16. Linear and nonlinear rheology with stress stiffening from cross-linked gels (adapted from
(Kasza et al., 2007))

The shear stress-strain behavior, like the force-extension response, of semiflexible

biopolymers is characterized by a linear region followed by a nonlinear region of

increasing tangent stiffness as the filament's extensional limit is reached (Fernandez et

al., 2006; Kasza et al., 2007). The linear response occurs for small deformations, and

small oscillatory stresses or strains (white double-headed arrow in Figure 3-16) can be

used to measure the elastic shear (storage) modulus, G', and the viscous shear (loss)

modulus, G". The differential change in shear stress-strain in the nonlinear region is

characterized as a tangent shear modulus, K=dx/dy, instead of a secant shear modulus,

G=r/y (Figure 3-16). Thus, at larger strains an initial stress or strain is applied to the
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material to place it in the nonlinear regime, followed by the oscillatory stress or strain to

measure the differential elastic (K') and viscous (K") response.

3.5 8-chain/MacKintosh Network Model Results

3.5.1 Experimental data used for comparison

The rheology of actin networks has been quantified in several studies (Janmey et

al., 1991; Janmey et al., 1994; Isambert and Maggs, 1996; Gardel et al., 2004a; Gardel et

al., 2004b). The model will be compared to the Gardel, et al. data (Gardel et al., 2004a),

introduced in Chapter 1, which systematically varied the actin concentration, CAF, while

holding R = cCL CAF constant (where ccL is the cross-link concentration). This data

measured the shear rheology of F-actin cross-linked with scruin cross-linking proteins,

and observed a network response for R>0.03 in which the elastic behavior dominated the

viscous behavior for the frequencies of interest (see Figure 3-17).

to
10 I'L

10V 101 100
f(Hz)

Figure 3-17. Storage modulus (G') and loss modulus (G") over a range of frequencies for reconstituted
actin-scruin networks (adapted from (Gardel et al., 2004a))
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3.5.2 Representative low concentration case

The model was evaluated by first fitting the model to the data with the lowest

actin concentration found to exhibit entangled network behavior, CAF = 8gtM and R=0.03.

The contour length was calculated following the relation presented by Gardel, et al.

(Gardel et al., 2004a) and the empirically derived exponent (0.2) given by Shin, et al.

(Shin et al., 2004) for actin-scruin networks,

LC = R •.2dAc , (3.27)
2 rCAF.4

with dAc,,=7nm, R=0.03, and CAF=81jM, resulting in L= 1.1 m. The chain density is

determined to be n=l.2e19 filaments/m3 based on the values ofLc =1.1;m, CAF= 8= M,

pAp= 16 MDa/pm, and MAM =42 kDa/monomer. The values of 1, and a are chosen to best

fit the model to the 81tM experimental data, noting that the value of ro associated with a

will be nearly equal to Lc based on the observed network topology of nearly straight

filaments between junctions. The best fit of 1,=3jpm agrees with observed values of

1,-3 lm for F-actin with L-~1-3j m (Steinmetz et al., 1997a).

The shear stress-strain results are shown in Figure 3-18a, with the tangent

modulus-shear stress results shown in Figure 3-18b. The network modeling parameters

are n=1.2e19 filaments/m3, l,=3.01Om, Lc=1.lm, and ro=1.0pm. The network model

captures the experimental data through the entire range of shear strain using physically

realistic material properties. The network model also fits well with the experimental

tangent modulus-shear stress behavior, including the low stress region of relatively stress-

independent modulus and the nonlinear increase in tangent modulus at higher levels of

shear stress.
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Figure 3-18. (a) Shear stress and normal stress difference (NI-N 2) vs. shear strain and (b) Tangent shear
modulus vs. shear stress for in vitro F-actin networks (CAF = 8pM, R=0.03). (experimental data adapted
from (Gardel et al., 2004a))

The network model could alternatively use the WLC filament model with

clamped-clamped boundary conditions (developed in Chapter 2) instead of the WLC

model with pinned-pinned boundary conditions. The shear stress-shear strain behavior of

both models is shown in Figure 3-19a, with the tangent modulus-shear stress results

shown in Figure 3-19b. The network parameters for both models are n=1.2e19

filaments/m3 , p-,=3.Opm, L=1.1ltm, and ao0=O.7Pa. While the network model with the

pinned WLC filaments captures the experimental data through the entire range of shear

strain using physically realistic material properties, the network with the clamped WLC

filaments quickly diverges due to its inherently stiffer response and would require an

unrealistically small persistence length to fit the experimental data.
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Figure 3-19. (a) Shear stress vs. shear strain and (b) Tangent shear modulus vs. shear stress for in vitro F-
actin networks (CA = 8PM, R=0.03) using WLC filament model with pinned-pinned or clamped-clamped
boundary conditions. Experimental data adapted from (Gardel et al., 2004a).

The AF network model also enables tracking of the evolution in filament

orientation and stretch with macroscopic deformation. The average orientation of a

filament is expressed as the azimuthal angle with respect to the direction of maximum

principal stretch (Of), together with the direction of the maximum principal stretch

defined by its angle (01) with respect to the direction of imposed shear (see inset of

Figure 3-20). The filament orientation evolution shows that the shear strain is

accommodated by significant filament rotation and a small amount of filament stretch.

The eight-filament network gives a filament stretch of Xt=l1.0004 for a shear strain of

tan(y)=0.05 and Xf=l.01 for tan(y)=0.25. In contrast, an affine network with a dominating

diagonal filament (e.g. Figure 3-5a) subjected to shear strains of tan(y)-0.05 and 0.25

requires much larger filament stretches of Xh= 1.03 and 1.15, respectively.

132

ne '"""

W I



I'
II

IL
II

0 0.05 0.1 0.15 0.2 0.25 0.3

Shear Stain - tan(y)

Figure 3-20. F-actin filament molecular orientation evolution

Figure 3-18a also shows the normal stress difference, Ni-N 2 (where NI=Tll-T 22,

N2=T22-T33) as a function of shear strain during the simple shear deformation. The

normal stress difference is found to be negligible at small strains and to monotonically

increase as a positive value, as expected, for an initially isotropic network based on the

first invariant of strain. Gardel, et al. did not present results for the normal stress

difference for their networks. However, recent work by Janmey, et al. (Janmey et al.,

2007) has observed a negative normal stress difference during finite shear of much higher

concentration, cross-linked actin networks. This suggests a possible initial anisotropy in

the Janmey network configuration which could be modeled using an anisotropic

formulation of the 8-chain network (e.g., Bischoff, et al. (Bischoff et al., 2002a)), or,

alternatively suggests a cross-linking condition that favors direct axial stretching of the

filament over filament rotation; this effect could be captured in future expansions of the

strain energy function by including torsional potential contributions of the cross-linking

junctions and the enthalpic contributions from direct axial stretching of the chains.
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3.5.3 Effects of increasing actin concentration

Gardel, et al., have further explored the effects of varying actin concentration and

cross-link concentration on the shear theology of the network. Figure 3-21a shows the

tangent modulus-stress behavior for four levels of cAF at fixed R=0.03. Note in Figure 3-

21a that the tangent shear modulus for the CAF=2 1 pM case is constant up to a shear stress

of r=0.5Pa, while the trend of nonlinear strain stiffening observed in the other three

concentrations suggests that the 21 IM network should begin strain stiffening at

approximately r=0.2Pa. The shear stress-strain data were obtained by taking a curve fit

of the raw tangent modulus-stress data to calculate the shear stress-strain behavior. The

experimental data in Figure 3-21b show the resulting shear stress-strain behavior for

varying cAF at fixed R=0.03.

The focus is now turned to explore the ability of the proposed model to capture

the effect of actin concentration on the stress-strain behavior by attributing the observed

effects to changes in network structure (n, ro, etc.). Next, the model's ability to capture

network isotropic prestress and bundling effects by parametrically changing ro and lp,

respectively, is evaluated. This evaluation begins by determining l,, Lc, and a (due to

isotropic prestress) for the lowest concentration case (8pM) as shown previously. The

persistence length is then held constant (indicating a "no bundling" assumption), while

the contour length is taken to scale with concentration (Lc~cAF,/) following Equation

(3.27). The percent increase (a) in ro beyond rF=o due to isotropic prestress for each

concentration is then adjusted to provide a fit to the experimental results as shown in

Figure 3-21. Table 3-1 contains the network parameters used for each concentration

case, with the initial isotropic prestress (ao) based on ro = rF=o (l+a). Note also that a
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decreases monotonically with CAF =8, 12, 29LtM (ignoring the anomalous 21tpM data)

approximately following the relationship a=6.2(cAF)I' .
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Figure 3-21. (a) Tangent shear modulus-shear stress theory and experimental data, (b) shear stress-shear
strain theory and experimental curve fit data ofactin networks with varying actin concentration (CAF=8, 12,
21, 29gM, R=0.03), (experimental data adapted from (Gardel et al., 2004a))

CONCENTRATION 1, n LC rF-o ro a
[pm] [m7]  [Im] [Am) [Am] [%] [Pa]

8 jtM 3.0 1.2e19 1.07 1.00 1.03 2.7 0.66
12 piM 3.0 2.le19 0.89 0.85 0.87 2.1 1.1
21 pM 3.0 5.1e19 0.67 0.64 0.65 1.2 2.4
29 tiM 3.0 8.2e19 0.57 0.55 0.56 1.4 8.6

Table 3-1. Network parameters for different actin concentrations

The stress-strain results correlate well with both the 12pM and 291pM data as shown in

Figure 3-2 l1b. The model also captures the experimental behavior for the entire range of

applied shear stress as shown in the originally published log-log plot of tangent modulus

vs. shear stress shown in Figure 3-21a. The good agreement between the model result

and the data also indicates that there is relatively little bundling in these cases, and that

the increasing stiffness with increasing cAF is due to the change in network topology. The
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good agreement in the high stress region, where strain stiffening occurs, is a benefit of

using a network model that accounts for the non-affine deformation of a network,

accommodating macroscopic deformation by rotation of filaments and a small amount of

filament stretch.

Note that the network model results for the 21 LM case in Figure 3-21 exhibits the

transition to nonlinear strain stiffening behavior by r=0.2Pa, consistent with the empirical

trend exhibited by the other concentrations. The network model results for the 21 pM case

also exhibit good agreement with the experimental tangent modulus-shear stress data in

Figure 3-21a in both the low and high stress regions. The 21 pM shear stress-strain

predictions of Figure 9b are in good agreement with the data up to a strain of 0.10, but

exhibit a much stiffer behavior at larger strains. This is likely a direct result of the

ambiguity of the 21 glM tangent modulus data in the transition region which is key to

reconstructing the stress-strain curves.

3.5.4 Parametric evaluation of bundling effects

The network will also become stiffer with increasing persistence length. Filament

bundling increases the persistence length of the "effective" bundled filament. At large

values of R (R=1), the actin network behavior is dominated by thick bundles in contrast to

almost no bundling observed at R=0.03 (Gardel et al., 2004a). Here, the ability of the

proposed model to capture the stiffening effects of bundling is explored.

The bending stiffness of the bundle, and hence lp, can be determined from the

number of filaments per bundle (m). Filament bundles might be unbonded, partially

bonded along the length, or fully bonded along the entire axial length of the filaments.
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Next is an examination of the two limiting cases of "unbonded bundles" and fully

"bonded bundles". The stiffness of unbonded bundles will scale linearly with the number

of filaments in the bundle. The stiffness of bonded bundles will scale by the ratio of the

effective moments of inertia of the bonded geometry with that of the single filament; this

scaling is determined by estimating the effective bonded bundle radius (Rfy).

(a) Bonded bundle (b) Unbonded bundle

Figure 3-22. Filament bundling geometry with (a) bonded bundles and (b) unbonded bundles

For bundles with two adjacent filaments (m=2), the stiffness is simply twice the stiffness

of an individual filament. For bundles with m_>3, the unbonded bundle stiffness will

simply scale linearly with m. For bonded bundles with m>3, the increase in Rf, which

leads to an increase in stiffness from bundling, is illustrated in Figure 3-22a (where r, is

the radius of a single fiber) and the effective radius required for an equivalent cross-

sectional area is R, =f r,. Since the area moment of inertia of a solid cylinder

is I = (K R,)/4, the ratio of increasing effective stiffness for bonded bundled filaments

can be calculated as follows (with E as Young's modulus):

S (EI)=-= (R) =m . (3.28)
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The results for scaling the persistence length of a single actin filament to obtain the

effective persistence length, lp,., of a bonded bundle of m filaments are given in Figure 3-

23. Table 3-2 contains the network parameters used for each case in Figure 3-23. Each

actin network was taken to have a isotropic prestress set by assuming a=1%, but with the

persistence length increasing for increasing numbers of bundled filaments. The contour

length was calculated using Equation (3.27) with dAc,-n=7nm and CAF=7pLM, resulting in

Lc=2.04pm.
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Figure 3-23. (a) Shear stress-shear strain response and (b) tangent shear modulus-shear stress response of
bundled F-actin networks with varying persistence length (R=0.5, CAF=71M) (experimental data from
(Gardel et al., 2004a))

mbondd munbomnd lpm rFO r a R CA LC n
[#/bundle] [#/bundle] [gm] [gjm] [gim] [%] [jIM] [pm] [m"]

1 1 3 1.81 1.83 1 0.5 7 2.04 5.4e18
2 2 6 1.92 1.94 1 0.5 7 2.04 5.4e18
-- 3 9 1.96 1.98 1 0.5 7 2.04 5.4e18
3 9 27 2.01 2.03 1 0.5 7 2.04 5.4e18

Table 3-2. Network parameters for different amounts of filament bundling

The case of I=6pm represents a bundle of two filaments while the case of

1p=3 2x3=27tpm represents a bonded bundle of three filaments. The smallest stable
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filament bonded bundle is assumed to consist of three filaments, and this case also

exhibits excellent agreement with the experimental shear stress-strain data (Figure 3-23a)

as well as the tangent shear modulus-stress data of Gardel, et al. (Figure 3-23b).

Alternatively, if the model assumes linear scaling of bending stiffness due to

unbonded bundles (Figure 3-22b), then the same case (R=0.5, cAF=7gM) with three

filaments would exhibit reduced stiffness as shown by the l1=9gm curve in Figure 3-23a.

Of course, the unbonded, bundled case matches the R=0.5 data equally as well if nine

filaments are bundled instead of three (lp=9x3=27gm). This unbonded bundle of nine

filaments would have an average diameter (DB-30-40nm depending on spacing between

filaments) on the order of the actin-scruin bundle diameters observed by Shin, et al. (Shin

et al., 2004) via confocal microscopy (DB-20-65nm for R=I, with DB~-Ro 3). This would

suggest that bundled actin fibers in the Gardel networks are only minimally bonded to

each other for the case of cAF=7IM, R=0.5.

3.5.5 Network stress-strain with linear filament force-extension

Here the network behavior obtained considering the constituent filaments to

follow a linear force-extension behavior is compared with that obtained when the chains

exhibit the nonlinear force-extension behavior as represented earlier with the MacKintosh

model. This comparison will help highlight the source of nonlinearity in the network

stress-strain behavior arising from the evolution in structure geometry due to chain

rotation from that arising due to the nonlinearity of the filament behavior.

The force-extension relationship for the linear model is shown below, where k1,, is

the linear stiffness of the filament.
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FL,.e = kR68 = k,, (r- ro) = kr o (A -1) (3.29)

Figure 3-24 compares the force--end-to-end distance and force-stretch behaviors of the

MacKintosh and linear models using F-actin network properties (see Table 3-3 in the

next section

a

IL

b '"

1.5

i1.0
IL

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.000 1.005 1.010 1.015 1.020 1.025

r [pm] .,=ýrro

Figure 3-24. (a) Force vs. end-to-end distance and (b) force vs. chain stretch behavior of F-actin filaments
using the linear and MacKintosh models

for values and discussion), with ro labeled for each model. Note in Figure 3-24b that

MacKintosh response (with ro> rF=o) leads to an automatic chain pretension at r=ro (Q-=1).

The expressions for the strain energy density of the eight-filament cytoskeletal

network models based on the linear and MacKintosh model are

U,,,, = nk,, - ro - c

(3.30)

U = 4T . LC ,[in(L2,n - 21,L, + 21,r)- In(r - Lc) c

U P 4l, L4- r/LjI
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where c is a constant equal to the initial strain energy of the filament. Following the

derivation of the Cauchy stress-strain relationship developed earlier for the MacKintosh

model, the corresponding Cauchy shear stress-strain relationships for the three single

filament models become

Linvar = tan

(3.31)

nT r) 1 Lc/l, -6(1- r/Lc) tan
T31P Ac 4(1- r/LcY'Lc1 - 2(1-_rLe)

3.5.5.1 Comparison with representative low concentration case

The models were evaluated by comparing to the data with the lowest actin

concentration (cAF = 8ttM and R=0.03) shown to exhibit network behavior (Gardel et al.,

2004a). The parameters in Table 3-3 are used in the MacKintosh and linear network

models.

MACKINTOSH LINEAR

n (filaments/m3) 1.2e19 1.2e19
Stiffness term 1,=3.0pm ki1-=40pN/m

L (jim) 1.07 1.07
ro (Lm) 1.03 1.03

rF=o (JLm) 1.00 1.03

Table 3-3. Network parameters and material properties MacKintosh, Linear models

The stiffness-related term (4, or k1,) and r. (via a) are chosen to best fit the models to the

81LM experimental data. The shear stress-strain results are shown in Figure 3-25a, with

the tangent modulus-shear stress results shown in Figure 3-25b. If the linear stiffness is

related to actin filament geometry as k. = AEIL = (AEI)/(LI)= (161PkT)/(dL) with

dAF=7nm; then 1p=0.03gm for the best overall fit shown in Figure 3-25a. This persistence
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length value is two orders of magnitude lower than experimentally observed F-actin

values (l,,-3-17pm).

0.6
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0.0

ZMUM
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*aC
5 1.
Cr
'U
I-

u.1
0.0 0.1 0.2 0.3 0.01 0.10 1.00

Shear Strain Shear Stress [Pa]

Figure 3-25. (a) Shear stress-strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks (CAF = 8pM, R=0.03). Experimental data from (Gardel et al., 2004a).

Note that the network with linear filaments exhibits a nonlinear network shear

stress-shear strain behavior in Figure 3-25a due to the filament rotation effects (Arslan

and Boyce, 2006). The linear model, however, captures neither the shear stress-strain nor

the tangent modulus-stress behavior of the actin network, emphasizing the importance of

using a nonlinear force-extension relationship for single F-actin filaments. The tangent

modulus-stress response of the MacKintosh model, when used in an 8-chain network,

closely matches the predictions given by Gardel, et al. (Gardel et al., 2004a), with a good

fit at low stresses as well as in the strain stiffening region at higher stresses (Figure 3-

25b). The 8-chain MacKintosh network model, because of its superior performance

when compared to experimental data, was chosen for comparison with actin networks at

varying concentrations.
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3.5.6 Network model performance with varying persistence length

The network model's ability to fit experimental data over a range of persistence

lengths is addressed in this section. There is a range of published values and testing

methods for persistence lengths of in vitro actin filaments (lp-3-17pm). The model's

behavior is compared for lp=3, 10, 17ptm (cA=8.33ptM, R=0.03) by only varying L, to

obtain a best fit to the initial shear modulus (see Figure 3-26).

0.5.5 --- Expermentrt

S- - Model (Ip= 3pm, Lc=1.0pm)
---- Model (Ip=10pm, Lc=2.8pm)

........ Model (Ip=17pm, Lc=4.3pm)
S0.3

0.2
'-. 0.2H .1

100.
8

- 10.0-

"o

o
a

.- 6
7, C

0.104 0
I-

0.0 , , 0.1

o Expemert b
1 -4 -

* Model (p1Opm
..Model 

(lp=17pm

: ------ Model Ip=17p

0.0 0.1 0.2 0.3 0.01 0.10 1.00

Shear Strain Shear Stress [Pal

Figure 3-26. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks over the range of published persistence lengths lp=3, 10, 17gm (cAF = 8gM, R=0.03), vary L, for
best fit. Experimental data from (Gardel et al., 2004a).

In order to obtain a best fit to the data, an increase in the persistence length to

1OpLm or 17 im requires the contour length to be increased to L,=2.8, 4.3 Im, respectively;

both of which are beyond experimentally observed values (i.e. L,~- Ipm). Note that while

the fit appears good in the tangent modulus-shear stress plot (with log-log axes) in Figure

3-26b, the shear stress-strain plot in Figure 3-26a reveals divergent behavior in the

nonlinear strain stiffening region for larger persistence lengths. A better overall fit can be

obtained by varying a as well as Le as seen in Figure 3-27.
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Figure 3-27. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks over the range of published persistence lengths p,=3, 10, 17pm (cA = 8pM, R=0.03), vary Le and
a for best fit. Experimental data from (Gardel et al., 2004a).

Decreasing a while holding the contour lengths constant (from Figure 3-26) gives

a better fit in the strain stiffening region at the expense of a poorer fit to the initial shear

modulus. The model's performance with higher persistence lengths, however, still does

not achieve as good of a fit to the 8.33ptM data as with the I, =3pm. The persistence

length has a significant effect on the transition to the strain stiffening region as the bends

in the filaments are straightened out, which enables a better fit of the more compliant

actin-scruin filaments with the lower value of Ip. Since the best fit was obtained with i,

=3pm and a realistic contour length of L=l.Opm, these values were used for earlier

comparisons.
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3.6 Extensible 8-chain Network Model

The strain energy functions for entropic unbending and enthalpic stretching of a

compressible material are given within the extensible model framework as

W~°~ = 4(1-/ L4-- I[n(L_ - 21,Lc + 21,r)- ln(r - L)]- c

nkT 1 rInJ (3.32)
1, 4(1-ro/L)2  (1-ro/LcXL/l_ -2(1-ro/L))J 3 J

+ B (J-1)2
2

w'= -"r02 - + 0J I. (3.33)

Note that the right hand side of Equation (3.32) is equivalent to that of Equation (3.7).

The Cauchy stress for a compressible, extensible 8-chain MacKintosh network model is

based on either of the strain energy density functions given in Equation (3.32) or

Equation (3.33) due to force equilibrium between entropic unbending and enthalpic

stretching. Choosing the enthalpic stretching strain energy density, and recalling that

f=8w/6r, gives the Cauchy stress as

2 8W 8W
T =2WB+W I
J ai, aJ
2 n~w Br .W 

1= 2 n& . B + - I = 2 (nf )(ro B + -w (3.34)J aBr ai, l ) J JV 6Af aJ
-n K ( P -*+K-(J-1)I

3AfJ Lc

145



3.6.1 Implementation in finite element analysis

The Jacobian may now be specialized to the constitutive model for the extensible

8-chain MacKintosh network model. As before, the Jacobian (C) is found by solving for

the derivative MR/6F,

(, -1) ' B+ (A-)-' B
r nr2K, J & A 6F + Jl- = 9 + Ku-I (3.35)

6F 3Le + IaB+ (4 - 1)% 6I F

JL , F M JA, F

where the terms within Equation (3.35) are defined earlier except for

- -- F= F. (3.36)
6F SA, 8F Xf 32, 32 A

3.6.2 Evaluation of extensible network model behavior

The relative stretch contributions of the unbending and stretching in an extensible

network subjected to simple shear deformation can be seen in Figure 3-28, using

K,=4OnN (used for other parametric comparisons in Chapter 2), and the following

filament properties, 1=3.Ojpm, L4=1.07pm, that provided a best fit with the experimental

data from Gardel, et al. (Gardel et al., 2004a).
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Figure 3-28. Stretch contributions from entropic unbending and enthalpic stretching in a network
subjected to simple shear deformation

Note that the stretching energy does not contribute much to the overall filament stretch

until a network shear strain of approximately tan(y)-0.4, larger than the shear strain at

failure for the actin-scruin networks by Gardel, et al,. As before, the force in the filament,

and now the shear stress in the network, can be calculated by recursively solving for 2f

and Af. The extensible network's shear stress-strain and shear stress-filament extension

behaviors are shown in Figure 3-29 and compared to the inextensible entropic unbending

model. Consistent with force comparisons, the inextensible and extensible models

diverge as the average filament extension approaches the inextensible limit. At the

inextensible limit (r/Lc=l) the inextensible model asymptotes to larger stress values as

r/Lc--+1, while beyond the limit the extensible model converges to a slope of K,/Lc,
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Figure 3-29. (a) Shear stress-strain and (b) shear stress-filament extension comparison of inextensible
model and extensible model

The extensible model's response for varying persistence lengths (with a constant

K,=40nN) is included in Figure 3-30. The inextensible model's response for 1,=3pm is

also included for reference. As expected, the initial stiffness increases for both shear and

normal behavior with larger values of 1,.
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Figure 3-30. (a) Shear stress-shear strain and (b) Normal stress-shear strain comparison of inextensible
model and extensible model with varying persistence lengths

149



3.7 Equilibrium swelling of cytoskeletal networks

Equilibrium swelling of elastomeric networks has been studied extensively within

the rubber elasticity field (Flory and Rehner, 1943; Treloar, 1944; Flory, 1953; Treloar,

1975), and recently reviewed by Boyce and Arruda (Boyce and Arruda, 2001). A

resurgence of interest in the thermodynamics and mechanics of swelling has been driven

by investigations on the swelling of hydrogels (Horkay and McKenna, 1996; Dolbow et

al., 2004; Dolbow et al., 2005; Hong et al., 2008), active polymers (Therkelsen, 2005),

osmotic swelling of biological cells and tissues (Gu et al., 1997; Wilson et al., 2005b;

Ateshian et al., 2006; Haider et al., 2006), and swelling as a contributor to cellular

motility in lamellipodia (Oster et al., 1982; Oster and Odell, 1984; Oster and Perelson,

1985; Oster and Perelson., 1987) and amoeboid pseudopods (Dembo and Harlow, 1986;

Zhu and Skalak, 1988; Herant et al., 2003; Herant and Dembo, 2006). This section will

address the statistical mechanics model for equilibrium swelling following the approach

of Boyce and Arruda (Boyce and Arruda, 2001) and Therkelsen (Therkelsen, 2005). This

equilibrium model will be coupled with a kinetic law while addressing poroelastic

behavior in networks. The poroviscoelastic and swelling models will establish the

framework to capture part of the cytoplasm's dynamic response during migrational

processes such as extension and translocation as well as during other amoeboid processes

such as blebbing.
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3.7.1 Kinematics of equilibrium swelling

Swelling in networks incorporates an internal balance of network tensile stress

and osmotic/swelling pressure from an influx of solvent molecules. This balance of

internal stress and isotropic pressure results in zero macroscopic stress for a traction-free

network. The mechanical response of the cytoskeletal network due to the resultant

localized swelling of the cytoplasm will be captured using a constitutive model

employing multiplicative decomposition of mechanical and swelling stretches (see Figure

3-31).

Deformed
onfiguration

Reference
Configuration

Figure 3-31. Swelling decomposition [adapted from (Therkelsen, 2005)]

In Figure 3-31, the principal values of total stretch (Ai) are defined as

A, = Ai' Aw (3.37)

where 27' are principal values of the mechanical stretch and A,w is the isotropic swelling

stretch. The deformation gradient (F) can be multiplicatively decomposed into

mechanical and swelling gradients,

F=FmAsw (3.38)
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where the swelling stretch tensor is Asw=A, I and F' is the mechanical deformation

gradient (Boyce and Arruda, 2001; Therkelsen, 2005). The swelling, mechanical, and

total volume ratios are defined, respectively, as

VOJ,, = V" = A'3(3.39)

J. = V = det(F")= A•"'An (3.40)

VW

JT = V = det(F)= AA 2A3 = XA = J,j,.. (3.41)
V0

The volume fraction of the polymer with respect to the dry state can then be defined

1 1
P = =(3.42)

xSW JS

or, alternatively, as A•w=(v-)"3. The mechanical left Cauchy-Green strain tensor is

B" = FmF"m . (3.43)

The mechanical left Cauchy-Green tensor can be related to the total left Cauchy-Green

tensor by

B" = F"FT = FA-F' (FA,'= FA- -F T

= FA- FT = F~(I = 1 wFFT (3.44)

= #%2B = v B

The total and mechanical stretch invariants are then given by

I, = trace(B) = A + A + A , (3.45)

= (B - ace(B2 = AA + AA + , (3.46)

I, = det(B)= A2J A ,2 (3.47)
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and

Ih' = trace(Bm)= ' + m2  + 42, (3.48)

Ifi = V((treB'-trace(BM)2 2 m2 +2 m2 + q2, (3.49)

I" = det(B")= = 2 m2 2" 2 , (3.50)

3.7.2 Thermodynamics, constitutive equations for equilibrium swelling

Swelling phenomena on a microscopic scale are governed by the statistical

thermodynamics of the constituents. For swelling of polymer networks, the driving force

for the swelling is the entropy of mixing, where entropy is maximized through the

creation of a uniform mixture (Therkelsen, 2005). If the two mixing constituents are gas

particles, the total entropy change from an unmixed state to a completely mixed state is

given by the entropy of mixing (Flory, 1953),

ASm = -k,(n , In v, + n2 lnv2), (3.51)

where v=ni/(nl+n2) is the number fraction of the it constituent (or volume fraction if the

constituents are the same size). Unlike mixing gases, a polymer gel is constrained from

freely interchanging particles during mixing. Using Flory's assumption of long chain

molecules composed of "x" segments that are equal in size to the solvent molecules

(Flory, 1969), we can consider the polymer-solvent mixture to be equivalent to the

mixture of ideal gases. An increase in intermolecular forces between the polymer chains

accompanies the influx of solvent molecules. In equilibrium, the increase in entropy

from mixing is equal to the entropy lost from polymer chain stretch, thereby preventing

further fluid intake (Therkelsen, 2005). Thus, the osmotic pressure of the solvent is

153



balanced by the tension within the stretching chains. The total change in entropy for the

system is the sum of the entropy change from mixing (ASk) and the configurational

entropy lost from chain stretching during swelling (A' )

AS'toa = AS', + ASJ, (3.52)

where the prime on AS' denotes that the entropy change is per unit unswollen volume.

The mixing entropy, per unit reference volume (V2), is then

ASM = -k(n , lnv, +n2 V2 ) (3.53)
V2

where nl and vl are the number and volume fraction of solute molecules and n2 and v2 are

the number and volume fraction of polymer segments (assuming each chain segment is

equal in size to a solvent molecule). Assuming that the chain segments occupy the same

volume as the unmixed solvent, there must be an equal number of solute molecules per

unit reference volume (n,/V2) as there are chain segments per unit reference volume

(n2/V2), which leads to the reduced form of the mixing entropy per unit unswollen

volume,

ASm' = -kBxN ((J -- )ln(l - v,)+ In vP), (3.54)

where v1=l-v,, n2/V2=xNc and nl/V2=xN,(J-l) with x=number of solute sized chain

segments, and Ný=number of chain molecules per unit reference volume (Therkelsen,

2005).

Assuming that the swelling process has occurred slowly enough to reach an

equilibrium state, the next step is to apply a mechanical stretch to the swollen polymer.

The entropy change due to mechanical stretching from the swollen state (but with respect

to the unswollen state) is given by
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A S' = AS',, - AS'.total sw' (3.55)

For the inextensible network model, AS,,, is given by

, (3.56)

and AS' is found by replacing the total stretch (kA) with the swelling stretch (kw),

AS' =
SW . (3.57)

-C

The change in entropy due to mechanical stretching from the swollen state (per unit

swollen volume) is calculated as

AS= AS' V = AS'v, S. (3.58)

The elastic stress of the polymer network must balance the osmotic pressure in the

absence of surface tractions or body forces. Thus, there is no contribution to the strain

energy density from volume change due to swelling (Therkelsen, 2005). The strain

energy per unit swollen volume for a compressible network can therefore be given as
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v= vnkT

LC l,[ln(L -_21PL, + 21pAro)-ln(Aro -Lc)]-

4( Acro
LC

L 1, [n(LVc - 21,L + 2PAr o)- In( ro - Lc)1-

ro{ I 1 1
3 4(1-ro/L Y (-ro/LXLc/1 -2(1-ro/L)))

(3.59)

noting that In(JT) - ln(Jw) = In(Jm). The network stress represents the network tension

balanced by the osmotic pressure from swelling, combined with a mechanical

deformation. The Cauchy stress is given by

T 2 W B+ aw

JT I, aJT

SP-6(1-ACrL B (3.60)
nrAkT 4(1-A-ro/Ly Lc,-2(1-Acro/LC)
=_ _ - + KB(Jm - 1)I

3•swJTTp ( 1  YL/1 - 6(-ro/L )I
II

4(1- OrLj (Lc11 J l-2(1-rolLj)

The compressible Cauchy stress for the extensible network model may similarly be given

as

T = =63 K _ I4 + KB(J _ 1)I.3T = 3-AJ r L, (3.61)

3.7.3 Implementation in finite element analysis

The constitutive model is incorporated in the ABAQUS finite element software

(Simulia Dassault Syst~mes, Providence, RI, USA) using the previously defined user
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subroutine (UMAT), which defines a material's mechanical behavior through the 4th order

Jacobian tensor (C) and 2 nd order Cauchy (true) stress (T) at the end of each increment.

The user may wish to calculate the constitutive equations in terms of the mechanical

deformation gradient (Fm). The total deformation gradient (F), however, is input into the

UMAT subroutine, and may be transformed to Fm using the multiplicative swelling

decomposition developed earlier,

Fm-=F(Asw)"',,  (3.62)

(Asw)-'=(1/A2,) I. (3.63)

The compressible Cauchy stress for the extensible network model can be given in terms

of Fm, sw , and Jm=det(Fm),

nr2 K + KJ 
I

= n K. - ,B+K(J -1l (3.64)

= nro K AS , mr- 1 + KB Q.J-i 1)

3f m 4J. Lc

The 4h order Jacobian tensor (C) is calculated as defined in Sections 3.2 and 3.6, while

recognizing that the volume ratio and filament stretch are replaced with their swelling

counterparts: J--JT, Xr--Ac. The Jacobian (C) is found for the inextensible model by

S=nrOkBT T-l)+ ( B + I (3.65)
MF 3AswJ,1, J•• bF J " +6F JT 6F X sF

where the terms within Equation (3.65) are defined in Section 3.2. The Jacobian (C)

is found for the extensible model using
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sf nr2K, JT &F K &I- J+ T I (3.66)
S3ML, 1 54B (4•-1)B I . 6F

+ B+
JA 2 f &F JJA 6

where the terms within Equation(3.66) are defined in Section 3.6.

3.7.4 Swelling of actin networks in a spherical geometry

The 3D cytoskeletal network model with equilibrium swelling is now included

within a spherical finite element model. The spherical model is first evaluated by

observing the swelling experienced in the absence of viscoelastic or poroelastic effects.

The spherical structure is evaluated with uniform properties throughout the volume (i.e. a

61pm diameter sphere composed only of an actin gel with a concentration of cA =

170pM). The axisymmetric model is fixed at its center and is not subject to external

tractions or body forces, allowing stress-free swelling to occur in the radial direction.

Figure 3-32 shows the boundary conditions for uniform, spherical actin gel as well as the

radial displacement from a swelling stretch of Aw= 1.1.

158



Figure 3-32. (a) Undeformed axisymmetric mesh and (b) Radial expansion in a swelled sphere (Xsw=
1.1) held fixed at its center. 6pm diameter sphere consists of an actin network (cl]=170pM, Lc=0.9pm,
lp=3pm, ct=l.l%).

After the first step of swelling, the spherical actin gel is now subjected to a second

step in which the cell is compressed between two plates. The final vertical distance

between the two plates is equal to the original, unswelled, diameter of the actin sphere.

The increasing reaction forces on the plates for increasing swelling stretch ratios of

Asw=1.02, 1.03, 1.04, and 1.05 are shown in Figure 3-33a. Figure 3-33b also shows the

contour plot of normal strain in the vertical, 2-direction after the sphere is compressed

back to its original diameter. The corresponding normal stresses in the 2-direction for the

four swelling cases are shown in the contour plots of Figure 3-34. Note that while the

spatial distribution of stresses is essentially equivalent for all four swelling cases, the
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Figure 3-33. (a) Reaction forces on plates compressing a swelled sphere (Xsw= 1.02, 1.03, 1.04, 1.05).
The 6ugm diameter sphere consists of an actin network (cAF= 17 0I M, Le=0.9gm, 14=3pm, c=1 .1%).
(b) Contour plot of normal strain in 2-direction.
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Figure 3-34. Contour plots of normal stress in 2-direction from plates compressing a swelled sphere:
(a) ksw=1.02, (b) sw=l1.03, (c) Xsw=1.04, (d) asw=1.05. The 6Am diameter sphere consists of an actin
network (CAF=l70IM, Lc=0.9Am, lp=3gm, a=1.1%). Stress units are Pascals.
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magnitude of the compressive normal stresses varies significantly. For example, the

maximum compressive stress for %sw=1.02 (a22=-12Pa in Figure 3-34a) is more than an

order of magnitude smaller than the maximum compressive stress for Xsw=1.05 (a22=

-142Pa in Figure 3-34d).

The same simulation is now conducted with a swollen, spherical neo-Hookean

solid compressed between two plates. The final vertical distance between the two plates

is once again equal to the original, unswelled, diameter of the neo-Hookean sphere. The

constant shear modulus for the nearly incompressible neo-Hookean material was chosen

to match the initial shear modulus of the actin gel (G=13.5Pa). Of course, the neo-

Hookean solid does not exhibit the nonlinear strain stiffening behavior exhibited by the

actin gel, and the resulting reaction forces on the plates for the neo-Hookean solid

decrease with increasing swelling stretch ratios as shown in Figure 3-35a. Figure 3-35b

also shows the contour plot of normal strain in the vertical, 2-direction after the sphere is

compressed back to its original diameter. The corresponding normal stresses in the 2-

direction for the four swelling cases are shown in the contour plots of Figure 3-36. The

spatial distributions of stresses are very similar for all four swelling cases, and the

magnitude of the compressive normal stresses, like the reaction forces, is much lower

than those for the actin gel and do not exhibit a large difference across the range of

swelling stretches. The maximum compressive stress for Xsw= 1.02 (o22=-4.2Pa in Figure

3-36a), for example, is only 40% less than the maximum compressive stress for

Xsw=1.05 (o22=-6.8Pa in Figure 3-36d).
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Figure 3-35. (a) Reaction forces on plates compressing a swelled sphere (Xsw= 1.02, 1.03, 1.04, 1.05).
The 6pm diameter sphere consists of a nearly incompressible neo-Hookean solid (G=13.5Pa). (b) Contour
plot of normal strain in 2-direction.
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Figure 3-36. Contour plots of normal stress in 2-direction from plates compressing a swelled sphere:
(a) Xsw=1.02, (b) 5sw=1.03, (c) Xsw=1.04, (d) Xsw=1.05. The 6gm diameter sphere consists of a nearly
incompressible neo-Hookean solid (G=13.5Pa). Stress units are Pascals.
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Although the previous swelling simulation of actin networks was not intended as

an example of cell propulsion, it is interesting to note that swelling of cortical actin

networks (CAF= 100-200IM) can produce forces of the same order of magnitude as the

viscous drag forces which oppose cellular motion [e.g.ffoi20 pN for Listeria at a velocity

of 100 nm/s (Mogilner and Oster, 1996), which is also roughly equivalent to actin

polymerization velocity (Theriot et al., 1992)]. This suggests that localized swelling of

actin networks is capable of providing the forces required to contribute to cellular

processes involved with cell motility. The network swelling model will be coupled with

the poroelastic network model in Chapter 6 in order to begin to evaluate their combined

contribution to cellular motility.
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CHAPTER 4 Influence of network cross-

links

4.1 Cross-link types, roles, and geometries

The different types of cross-linking proteins were introduced in Chapter I as the

mechanical link to enable naturally occurring bundled and cross-linked network

morphologies that are necessary for normal cellular functions (structural stability,

mechanotransduction, etc.) as well as providing the ability to actively rearrange the

cytoskeletal microstructure in response to mechanical stimuli. Intra-network cross-links

(e.g. actin binding proteins/ABPs) and inter-network cross-linking proteins (e.g. MACF)

bind to the network filaments at different angles and with varying stiffness depending on

their structural role. For example, fimbin is a monomer that binds actin in a tight parallel

bundle (14 nm diameter), while a-actinin is a dimer that binds actin looser than fimbrin

(Lodish et al., 2004). Spectrin is a tetramer that binds actin in a loose parallel

arrangement in the cortex; and filamin-a (FLNa) is a dimer that crosslinks actin filaments

at almost right angles to each other (Lodish et al., 2004). Table 4-1 contains a sampling

of the structural binding proteins of actin and some key properties.
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Name

AM /LI1 1tII A I -111I ellIDlMlI L KIJH M...

urnd 4 m lCkClar mVmm J4 IL&UI U5IIa U vy &Y IIJJus&"

Fimbrin 14 nm rod 20 kDa Tight bundles in cells

perpendicular fashion;Scruin 10 nm rod 120 kDa Tight bundles scruin cross-links by
binding to each other,
not multiple F-actin

Titin 1000 nm rod 3000 kDa Muscle sarcomeres Largest known protein

Table 4-1. Structural binding proteins of actin and their properties (Hartemink, 2005)

Figure 4-1 shows the different actin network morphologies possible with different ABP

(FLNa, a-actinin) under identical preparation conditions. Although the geometrical (and

some mechanical properties) of the cross-linking proteins are generally known, their

impact on the coupled response of filament networks under different loading conditions is

not as well understood. Recent work by Bathe, et al. has evaluated the stretching,

bending, and inter-filament shearing of actin bundles through simulation of the ABP

using internal energy-based linear elastic springs (Bathe et al., 2008). Exploring and

quantifying these effects is a key component in understanding the overall cytoskeletal
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Figure 4-1. (A) Orthogonal actin network polymerized in presence of FLNa (B) Identically prepared
actin network/bundles except polymerized with a-actinin. Bars, 100 nm. (Stossel et al., 2001)

behavior. The work in this chapter focuses on role of cross-linking proteins in isotropic

actin networks. The effects of bundling proteins were addressed in Chapter 3 for actin-

scruin networks.

This section will expand the constitutive model for cytoskeletal networks through

torsional potentials to include the strain energy for compliant intra-network cross-links

(e.g. ABPs such as FLNa and avidin). Filamin, the most common ABP within actin

networks, is critical to cellular functions such as motility and membrane morphology

(Cunningham et al., 1992; Cunningham, 1995) as well as human embryo development

(Fox et al., 1998). A schematic of an actin-FLNa network is shown in Figure 4-2a. The

(a) Actin network with (b) FLNa
FLNa cross-links Structure

Figure 4-2. Schematics of (a) actin network with FLNa cross-links (adapted from (Lodish, 2000)), (b)FLNa structure (adapted from (Gardel et al., 2006b)).
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schematic is intended to convey the 3D nature of the network since the FLNa cross-links

maintain a relatively constant chain angle, c,, of 720. The structure of FLNa is shown in

Figure 4-2b, with two arm-like subunits of length 80 nm and 3-5nm diameter (Hartwig

and Stossel, 1981). Each subunit of the V-shaped dimer is interrupted by irregularities in

the primary sequence of Ig repeats: between repeats 15/16 midway along the subunit and

23/24 at the vertex of the dimer (Gardel et al., 2006b). These gaps are considered to

serve as hinges between the rod-like components of the subunits (Gorlin et al., 1990).

Streptavidin (or avidin) and biotin form a stiff, commonly used cross-link. The

interaction between avidin and biotin exhibits the highest known affinity between a

protein and a ligand (Bayer et al., 1975). The structure of the avidin-biotin composite

cross-link is shown in Figure 4-3.

Figure 4-3. Schematics of avidin-biotin cross-link structure (Theoretical Biophysics Group, 2007).

Cross-linking proteins play a large role in modulating the geometry, elasticity,

and durability of actin networks. Considerable in vitro rheological experiments with

reconstituted actin gel-like networks have been conducted with varying levels of actin

and cross-link concentrations (Janmey et al., 1988; MacKintosh et al., 1995; Gisler and
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Weitz, 1999; Shin et al., 2004; Storm et al., 2005; Gardel et al., 2006b). Empirically

observed shear moduli for F-actin networks with permanent cross-links (but the same

concentration of F-actin) have been observed to vary over two orders of magnitude by

varying the cross-link density (Gardel et al., 2004a). Examples of the rheological

behavior of FLNa and avidin within actin networks is shown in Figure 4-4 and Figure 4-

5, respectively.

102

100

10-I

f(Hz)

Figure 4-4. Storage (G', closed symbols) and loss (G", open symbols) moduli of 12AM actin-FLNa.
R is varied from 1/2000 (squares), 1/1000 (triangles), 1/500 (diamonds), and 1/100 (circles). Inset: G' at
0.01 Hz as a function of R (Gardel et al., 2006a).

Frmquency, Hz

Figure 4-5. Frequency dependence of the complex modulus and phase shift for 15 AM actin-avidin
networks with 2% biotinylated actin alone (o), 0.03 pM avidin (n), 0.1 pM avidin (o), or 0.3 pM avidin
(*) (Wachsstock et al., 1994).
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Figure 4-4 demonstrates that the viscoelastic behavior of actin-FLN networks is highly

dependent on the frequency and value of R. For example, the elastic and viscous

response is essentially equivalent for R=1/2000, especially at higher frequencies; while

the elastic response dominates the viscous response for R=1/1000 at lower frequencies.

For Figure 4-5, the magnitude of the complex modulus, G*, is IG = 4G 2+G"2 and the

phase lag, 8, between the elastic and viscous response is given by tan(b)-G"/G'. Thus,

the elastic response dominates the behavior of actin-avidin networks for different values

of R.

This framework for cross-link torsion assumes that the cross-links remain

completely bonded to the chains during deformation. Once cross-links such as filamin

detatch from the chain they can accommodate further deformation through unbending

and unfolding of Ig domains. Below the force threshold for unfolding, the extension of

unbonded filamin cross-links can be modeled as entropic unbending, behaving as a

wormlike chain (DiDonna and Levine, 2006). Above the force threshold for unfolding,

Ig domains are ruptured and unfolded as shown in the sawtooth pattern in Figure 4-6a.

The Ig domain unfolding has been modeled using the worm-like chain approximation

(Marko and Siggia, 1995) (see example in Figure 4-6b), with L=l150nm, lp=13.8nm for

folded filamin and L=lO0nm, p=0.33nm for the unfolded filamin domains (Furuike et al.,

2001; Hartemink, 2005; Ferrer et al., 2008). At larger extensions, however, enthalpic

stretching of the cross-link will occur prior to rupture.
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Figure 4-6. (a) A force-extension curve of Filamin A molecule in aqueous solution measured by
AFM at room temperature. Filamin A was stretched at a pulling speed of 0.37 jpm/s. (b) The fit between the
WLC model and the sawtooth pattern of the force-extension curve where the force gradually increased after
the abrupt decrease in force. Filamin A was stretched at a pulling speed of 0.37 jpm/s (Furuike et al., 2001).

4.2 Cross-link stiffness and torsion properties

The cross-link torsional stiffness has been calculated for some ABPs, including

FLN and Arp2/3. The torsional stiffness is based on the standard deviation of junction

angle between subunits. Based on the work by Hartemink (Hartemink, 2005) that

showed the FLN subunits to be bonded along their entire length to the actin filaments, the

FLN junction angle is also taken to be the previously defined chain angle, 0c, between

actin filaments. From the equipartition theorem, the thermal energy, k8T, is related to the
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cross-link torsional stiffness, kcL, and the variance of the junction (or chain) angle, and

can be rewritten as

k( (4.1)

Hartemink measured the average chain angle of filamin molecules bound to single actin

filaments in a dilute solution and found <Oc,F•>=7 1.81+l5.50 (Hartemink, 2005). This

gives a torsional stiffness of

_ kT (1.38e-23J/KX300K) pN- nmkcL -O2 ) (0.27rad)2  rad2 (4.2)

Blanchoin, et al. performed a similar high speed imaging experiment with Arp2/3 cross-

links in a 4gM actin solution (see) (Blanchoin et al., 2000). The mean angle for bovine

Arp2/3 complex was found to be <OArp2/3> = 770 ± (130), yielding a torsional stiffness of

kcL,Arp/3=76pN-nm/rad2.

Figure 4-7. Thermal fluctuations of branched actin filaments formed from 4pM muscle actin and15nM Arp2/3 complex. Every frame illustrates the stiffness of the branch point relative to the flexibility ofthe filament. Branch length=2pm. (Blanchoin et al., 2000)
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4.3 Cross-link torsional potential model

A torsional potential is shown schematically in Figure 4-8 within the context of

the 8-chain network. The junctions within the 8-chain network are taken as pinned

connections (see Chapter 3), with torsional resistance about the junction governed by the

mechanical properties of the cross-link. The limiting case of a filament with clamped

boundary conditions, equivalent to an infinite torsional stiffness, is included in Section

4.4 for the discussion on the effects of cross-link stiffness on the filament entropic

configuration space. The FLN cross-link torsional stiffness was measured by thermal

fluctuations, indicating their importance for FLN molecules bound to single actin

filaments in a dilute solution. Since both of the FLN subunits completely bond to actin

filaments in a network structure, however, we will assume a limited entropic

configurational space, with their elasticity governed by changes in internal energy, and

use the measured torsional stiffness as an initial estimate for the enthalpic torsional

stiffness. Further evaluation of entropically-based torsional elasticity in cross-links is left

to future work. Proceeding with the internal energy-based torsional elasticity, the cross-

links exert a torque due to enthalpic unbending which is measured by the network chain
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Figure 4-8. Schematics of torsion potential to simulate cross-link stiffness in 8-chain unit cell.

angle (Oc). The initial focus of this model is below the force threshold required to detatch

the cross-link subunits from the chain. Within this regime, the cross-link imparts some

structural stiffness to the network chain while deforming solely through enthalpic torsion

at its hinge. Note that the 8-chain framework provides the forces exerted by the chains at

the cross-link junctions. Given the average debonding and/or failure forces for a cross-

link, the model can be adjusted to allow for junction stretching and/or failure. For a

completely bonded cross-link, however, the torque due to a change in chain angle from

an initial angle (0o) is

tCL = -kcL (Oc - o) (4.3)

where the initial chain angle is defined for an 8-chain unit cell (with sides of initial

length ao) as 0o=54.70 and the chain angle, 0c, is defined in terms of the principal

stretches,
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=- A os(2AJ = COS o/ = COS
=cO r A= ro

=COS I = COS-1

2(ao/2)
(I13k3(a o /72/)

(4.4)

The strain energy density function can now be given as

WcL = nc ftcLd9 = ncL -k(Oc - 0 Pc 2 Oc -20.o• o•~%a-s 8)o, o,
(4.5)

where nCL is the cross-link density within the network. Note that the strain energy

density expression can be written as a function of the principal stretches.

-2

CWc=•4 , A2 )=nA kCL cosi -0o  (4.6)
2 +A +A

The principal stresses are given by

J8,2, a!
nC - kCL(Oc+ -0-)a

J 82,

(no sum on i), (4.7)

and the derivatives of the chain angle with respect to the principal stretches are

8cos' 1 ý2++

aoo
all
N2~

8 cos'-

82,
(4.8)

a84 1 - (4.9)
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a cos{

a (4.10)

The principal stress tensor is given as

3

T' = T (e, @e , ) (4.11)

The Cauchy stress is computed through a simple transformation from principal space (T')

to the current space (T)

T = QTpQT (4.12)

where Q is a proper orthogonal rotation tensor and has the following property

QTQ=I . (4.13)

The three columns of the rotation tensor Q are composed of the three eigenvectors from

the spectral decomposition of the left Cauchy-Green tensor (B), since the eigenvectors

for stress and strain are equivalent for isotropic materials.

3

B = - (k, @9 ,) (4.14)

where ii is the eigenvector in the current configuration. The derivative of a principal

stretch with respect to B will be important in determining the Jacobian, and is shown

below (Holzapfel, 2000).

3

dB = 2,A•dA,(n, 0 ,)+ (di, (+Al i, + , dAi) (4.15)

Since i-, constitute an orthonormal basis (i~, . ii = 8), the change of a vector with

constant length is always orthogonal to the vector (ii, .dii = 0). Therefore, pre- and

post-multiplying Equation (4.15) by if, yields
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ii, dBii, = 2A,dA,

Using the identity u -Av = A: (u 0 v), Equation (4.16) becomes

dB: (ii, 0 ,) = 2A,d2,

This can be rewritten recognizing that dB = (aB/a, )dA2

I I: (i n,)12A a2, )

(i= 1,2,3) (4.16)

(i=1,2,3). (4.17)

(i=1,2,3), (4.18)

or, equivalently,

From Equation (4.19) we can determine the relation for the

stretch with respect to B.

c:i = ni O niaB

(i=-1,2,3). (4.19)

derivative of a principal

(i=1,2,3). (4.20)

4.3.1 Implementation in finite element analysis

Since the stress is given in principal space, the Jacobian is also computed in

principal space (C"), then rotated into the current space by the following relation

C = QQCPQT QT. (4.21)

The principal Jacobian (CP) is found by solving for the derivative 6P/36FP , which has

three components along its diagonal
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where the terms within Eqs. (3.35), (4.23), and (4.24) are defined earlier except for

FP = QTFQ

aJ -r
-l = JFP-'

aF"

S= 2F
8FP

BP = (2I'FP R

B= iP' ® -P (i=1,2,3)
aBP 1
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= ncL kcL (4.23)

= ncLkL (4.24)

(4.25)

(4.26)

(4.27)
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(4.29)
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kai. Ilr··

(4.30)

(4.31)

4.3.2 Parametric evaluation of cross-link torsion model

The contribution of the shear and normal stress difference from the cross-links are

shown in Figure 4-9, using filamin properties with kcL=56pN-nm, ncL=1.2e20m"3 for a

network under simple shear. Figure 4-9 also shows the relative impact of doubling or

halving the torsional stiffness of the cross-link. The contribution of the cross-link torsion

to network elasticity of an actin network is shown in Figure 4-10. Figure 4-10a contains

the separate shear stress-shear strain responses for the filamin cross-links (kcL=56pN-nm)

and an extensible actin network (1,=3 m, L=1igm, CAF= 2 0OLM, a=1.1%) in addition to

0.50

0.40

0.30

0.20

0.10

0.00
0.0 0.1 0.2

Shear Strain, tan(y)
0.3

Figure 4-9. Shear stress and normal stress contributions from cross-link torsion
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their combined response. It also shows the combined response of the actin network with

cross-links that are five times stiffer (kcL=280pN-nm), representing the effect of using a

more rigid actin binding protein.

2.0

1.5

1.0

0.5

0.0
0.0 0.1 0.2 0.3

Shear Strain

0.1 0.2

Figure 4-10.
stress difference

Shear Strain
Cross-link torsion contribution to network elasticity: (a) Shear stress and (b) normal
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4.3.3 Comparison with experimental data of actin-FLNa networks

The rheology of actin networks has been quantified with several different actin

binding proteins as cross-links, including scruin (Janmey et al., 1991; Janmey et al.,

1994; Isambert and Maggs, 1996; Gardel et al., 2004a; Gardel et al., 2004b), filamin

(Gardel et al., 2006b; Lee and Kamm, 2008), and streptavidin-biotin (Wachsstock et al.,

1994; Lee and Kamm, 2008), among others. The model will be compared to unpublished

data by Lee and Kamm (Lee and Kamm, 2008), who evaluated the rheology of F-actin

networks with FLNa and streptavidin cross-links. Filamin cross-links are very compliant,

contributing relatively little to the initial response of the network, but contributing more

to the nonlinear strain stiffening of the networks. The biotin/streptavidin cross-links

create an irreversible bond with a dissociation equilibrium constant near that of a

covalent bond (Wachsstock et al., 1994). This behavior, along with their relative ease of

use when compared with scruin, makes them a preferred cross-link substitute for scruin.

The first comparison was with actin-FLNa networks at actin concentrations of

CAF=20LM, R=CCL/CAF=0.02, and ~o=0.05Hz (where ccL is the cross-link concentration).

At this frequency and R value, they found G' to be approximately 2-4 times greater than
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Figure 4-11. Experimental storage modulus (G') and loss modulus (G") of actin-FLNa networks (cAF
=20jM, R=0.02, and ro=0.05Hz) (Lee and Kamm, 2008)

G" for shear strains up to tan(y)--0.5 (Figure 4-11). So while the network behavior is

primarily elastic, the viscous response is not negligible. Accordingly, this viscoelastic

behavior of this network will also be taken into account models developed in Chapter 5

(Viscoelastic network model). The modeling results, considering hyperelastic

contributions only, are shown in Figure 4-12, with the modeling parameters in Table 3-1.

The actin concentration, chain density, and contour length were based on experimental

conditions or observations, while the persistence length used in the actin-scruin networks

is also used here. The isotropic network prestress was fit to the data by adjusting the

percent increase in ro (a=1.1%), which was approximately equal to the value (a=1.2%)

used for the 21 pM actin-scruin data in Chapter 3. There is excellent agreement between

the model and the data for shear strains less than 35%, which corresponds to a shear
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Figure 4-12. Shear stress-shear strain comparison of extensible network model with cross-link torsion
with experimental data of actin-FLNa networks (CAF =20pM, R=0.02, and ar=0.05Hz) (Lee and Kamm,
2008)

p1 nA L r rF- a o kcL
cA [jIm] [m'3] [Rtm] [Ipm] [Ipm] [%] [Pa] [pN-nm]

20 tM 3.0 3.2e19 0.9 0.85 0.86 1.1 0.6 56
Table 4-2. Network parameters for actin-FLNa model

stress of roughly 3Pa. The significance of the divergence becomes more apparent after

examining the differential (tangent) shear modulus in Figure 4-13. The experimental

actin-FLNa network leaves the strain stiffening regime at a shear stress of approximately

r-2-3Pa, as seen by the change in slope of the tangent
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Figure 4-13. Tangent shear modulus-shear stress comparison of extensible network model with cross-
link torsion with experimental data of actin-FLNa networks (CAP =209tM, R=0.02, and Co=0.05Hz) (Lee and
Kamm, 2008)

modulus in Figure 4-13. At this point, the actin filaments have undergone end-to-end

extension primarily via entropic unbending (qu ~ 1.02) and a very small magnitude of

enthalpic stretching (2d - 1.0002), but the network is beginning to fail likely due to cross-

link deformation. The FLNa cross-links continue to deform through unbending and/or

stretching until a shear stress of approximately -10OPa at which point the cross-links (and

network) fail. Two regimes of cross-link behavior emerge based on the network

response. The first regime (=<3Pa) consists of standard strain stiffening network

behavior, which is accurately captured using an extensible network model and cross-links

in torsion. The network model gives us insight into the second regime (3Pa<T<l0Pa) by

showing that while the network elasticity is deteriorating, the actin filaments are not at

their extensible limit, which suggests that the FLNa cross-links are deforming (via
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entropic unbending, enthalpic stretching, and/or Ig domain unfolding). This is confirmed

by the experimental data in Figure 4-13 with the rapid decrease in strain stiffening after

r<3Pa, followed by network failure.

4.3.4 Comparison with experimental data of actin-avidin networks

The second comparison considers actin-streptavidin networks at CAF =20g1M,

R=0.01, and ar=0.05Hz. At this frequency and R value, G' was approximately 10 times

greater than G" for shear strains up to tan(y)=0.2 and stresses up to r=lPa (Figure 4-14).

A comparison between the theory and the experimental data is only examined within the

linear regime since the experiment produced constant values of G', G" until the network

detached from the rheometer plates at a shear strain of tan(y)-0.2 (r-lPa).

1u

I-' 1

0.1

0.01

00 01

0.01 0.1 1 10

Shear Stress [ Pa ]
Figure 4-14. Experimental storage modulus (G') and loss modulus (G") as a function of of shear
stress (r) for actin-avidin networks (CAP =20jM, R=0.01, and ma=0.05Hz) (Lee and Kamm, 2008)

Unlike the actin-FLNa network, the elastic response of the actin-avidin network

dominates the viscous response. The modeling results are shown in Figure 4-15, with the

modeling parameters in Table 4-3. All actin modeling parameters (cAF, nAF, Lc, lp, a)
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were kept fixed to the values used for the actin-FLNa network comparison (with 1, and

a approximately equal to the values used for the 21 pM actin data from Gardel, et al.

(Gardel et al., 2004a) in Chapter 3). Since avidin is a much stiffer cross-link, but of

unknown torsional stiffness, the torsional stiffness was fit to the data using a value of

kcL=560pN-nm.

IP nAF L, rF=o ro a co kcL
cAF [rm] [mi- ] [pm] [pm] [pm] [%] [Pa] [pN-nm]

20 pM 3.0 3.2e19 0.9 0.85 0.86 1.1 0.6 560

Table 4-3. Network parameters for actin-avidin model
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Figure 4-15. Shear stress-shear strain comparison of extensible network model with cross-link torsion
with experimental data of actin-FLNa networks (CAF =20pM, R=0.01, and ar=0.05Hz) (Lee and Kamm,
2008)
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Figure 4-16. Tangent shear modulus-shear stress comparison of extensible network model with cross-
link torsion with experimental data of actin-avidin networks (cAF =20pM, R=0.01, and wo=0.05Hz) (Lee and
Kamm, 2008)

There is excellent agreement between the model and the data for shear strains in the

linear regime (before strain stiffening), measured before the plate slipped in the torsional

rheometer. There is also good agreement between the model and the data in linear region

of the differential (tangent) shear modulus in Figure 4-16. While the comparison within

the nonlinear strain stiffening regime awaits future experimental data, the model seem to

fit the initial response of the actin-avidin networks using the same actin parameters

except for an increase in the cross-link torsional stiffness.
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4.4 Evaluation of cross-link coupling with entropic

configuration space

The torsional stiffness of cross-links does more, however, than just contribute to

the strain energy of the network. By resisting the rotation of filaments about their cross-

linked junctions, the cross-link has an influence on the entropic bending configuration

space of the filaments. The hypothesis is that increasing cross-link torsional stiffness

(kcL) reduces the number of bending configurations available to an actin filament, thereby

leading to a stiffer mechanical response by the filament. This hypothesis is examined

with two simulations: a finite element beam model and a hybrid of the extensible filament

model. The first simulation uses a finite element beam model of actin filament with

torsional springs on ends representing the FLNa cross-link (see Figure 4-17 with model

parameters in Table 4-4).

Ac

Figure 4-17.

,FL

*CL,FLN

Shematic of finite element model of actin filament cross-linked by FLNa
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dAF Ip.AF EIAF L, ro lp.CL EIcL kCL
[nm] [jim] [Nmt] [nm] [im] [im] [Nm• ] [pN-nm]

7 3 1.2e-26 1000 936 20 8.3e-29 0
7 3 1.2e-26 1000 936 20 8.3e-29 56
7 3 1.2e-26 1000 936 20 8.3e-29 112
7 3 1.2e-26 1000 936 20 8.3e-29 280
7 3 1.2e-26 1000 936 20 8.3e-29 560

Table 4-4. Network parameters for finite element actin-FLN model with varying filament stiffness

The actin filament and torsional springs are given an initial, relaxed position with

an angle of 360 (0,/2) between the filament and the axis of extension. The F-actin beam

is then extended to r/L-=l while tracking the change in angle and beam shape. This

simulation is evaluated within the parametric space of increasing torsional stiffness by

factors of 2, 5, and 10 to give the following cases kcL=O, 56, 112, 280, 560 pN-nm.

Figure 4-18 shows the force-extension results for increasing torsional stiffness, including

the stiffest response from the limiting case of a filament with clamped ends which

represents an infinite torsional stiffness, kcL--ao. Figure 4-19 shows the associated

changes in curvature with increasing torsional stiffness at extensions from undeformed to

r/Le=l. The results of the first model show that increasing kcL leads to stiffer bending

response of actin filament and a smaller beam mid-section that is available for sampling

entropic unbending (in the extensible model). With a shorter length of filament in the

middle of the beam, there are fewer available entropic
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Force-extension response of actin-FLN finite element model

Undeformed

Deformed (kT,,=0)

Deformed (kT,FLN)
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Deformed (2*kTRN)
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Figure 4-19.
torsional stiffness

Curvature evolution with extension of actin-FLN finite element model for varying
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bending configurations which leads to an increase in the overall axial stiffness of the

filament (i.e. stiffness relating axial forces to end-to-end displacement). The results from

the first simulation support the hypothesis qualitatively, but the second simulation will

require some quantitative results to determine the impact of the cross-links on the overall

axial stiffness of the filament. Therefore, Figure 4-20 gives the chain angle evolution as

a function of extension for increasing torsional stiffness. The limiting case of a filament

with clamped boundary conditions (kcL---*o) maintains a constant angle during extension,

while a filament with pinned boundary conditions (kcL=O), but with the same initial

curvature and flexural rigidity, will see a steady decrease in chain angle followed by a

rapid decrease in angle as r/L,--+1 as shown in Figure 4-20.

35

30

25

20

15

10

5

0
0.93

- k=560 pN-nm

- k=280 pN-nm

-k=112 pN-nm

-k=56 pN-nm

-k=O pN-nm

0.94 0.95 0.96 0.97

Extension, r/Lc

0.98 0.99 1.00

Figure 4-20.
torsional stiffness

Chain angle evolution with extension of actin-FLN finite element model for varying
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As the torsional stiffness increases, this initial decrease in chain angle becomes more

moderate and persists to larger extensions (Figure 4-20). Although the beam bending in

the finite element model is enthalpic, it gives insight into the coupling between the

torsional resistance and the reduced entropic unbending configuration space. The second

simulation will connect the chain angle with this reduced entropic unbending

configuration space.

The second simulation is a hybrid extensible filament model with rigid ends and a

middle section that deforms elastically via entropic unbending and enthalpic stretching.

The model geometry for the second simulation must be recalculated for each increment in

extension since a change to the entropic configuration space is realized through changes

to ro, and to a lesser extent L,. The kinematical framework for the hybrid model is based

on separating the filament into three regions: the two ends and the center section (Figure

2-3).

Lc

R, Ro

Figure 4-21. Geometry for hybrid model with three sections: two ends and center

The total extension for the filament, R, and the total stretch, XT, are given as

R = 2xe +r (4.32)

R R 2xe + r
= 2 (4.33)Ro 2x; + ro
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The center section is composed of an extensible filament, with the same multiplicative

decomposition of stretch into the entropic unbending and enthalpic extension stretches:

c =-r = •2 (4.34)
ro

where ro and r are now defined as

ro = Ro - 2x o = Ro - 2Lo cos(09) (4.35)

r = R -2xe = R - 2L cos(0e). (4.36)

The end sections are only subject to enthalpic stretching and rotation. The kinematics

may be simplified by assuming that the end sections are straightened out and/or are rigid.

One could alternatively note that the enthalpic stretch from the center section will be

much larger than the enthalpic stretch for the end section (2 >> 2e ) leading to the

recognition that X2 =L, /L 1 may be neglected without introducing much error.

Therefore, Le=Leo, and the end stretch is given by the following multiplicative

decomposition between end stretch from enthalpic extension, X, and end stretch from a

rotation of the chain angle, . ,

x e s- • XX X (4.37)
xo

where

L cos(0) cos(9e)
Lo cos(00) (4.38)

The initial conditions are given at R=Ro, 0eo=0Co=360. And since the sections are in

series, the force equilibrium gives

f T = fe = fc (4.39)
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We begin to parametrically evaluate the behavior of the hybrid model by retaining the

assumption that the contour lengths of the rigid ends remain constant. We also choose

the chain angle evolution from the first simulation associated with a five fold increase in

torsion stiffness (kcL=280). A close look at Figure 4-19, however, shows that the rigid

ends can have different lengths. Figure 4-22 shows the force-extension behavior for the

hybrid model with different rigid end lengths that remain constant throughout the

deformation. Increasing the rigid end length decreases the contour length available to the

center section, leading to a decrease in available configurations and an increase in axial

filament stiffness.

5

4

00-8

0
0.94

Figure 4-22.

0.95 0.96 0.97 0.98 0.99

Extension, rMLc

Force-extension of hybrid model with constant rigid end length

1.00
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Figure 4-23. Force-extension of hybrid model with varying rigid end length

Figure 4-23 shows the force-extension behavior for the hybrid model with two

constant rigid end lengths and a third case in which the rigid end length decreases

proportionally to the decreasing chain angle, following the trends seen in Figure 4-19.

The decrease in rigid end length mitigates some of the strain stiffening effects at higher

extensions as the variable end length curve crosses over between the Le=20nm and

Le=Onm cases.

In concert, the two simulations demonstrate the coupling between cross-links and

the entropic unbending response of the extensible filament. The influence of this

coupling is greater for cross-links with larger torsional stiffnesses. The influence is

mitigated somewhat by the observed decrease in lengths of the rigid ends (which serves

to increase the entropic unbending configuration space).
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CHAPTER 5 Viscoelastic network model

5.1 Previous viscoelastic modeling work

The importance of understanding the viscoelastic behavior of cells is evident by

observing the significant difference in viscoelastic properties between healthy and

diseased cells. For example, a decrease in cell modulus and apparent viscosity has been

linked with transformations of cells into chondrosarcomas, providing insight into how the

viscoelastic properties reflect the metastatic potential and invasiveness of these cells

(Darling et al., 2007). Cytoskeletal filament networks can exhibit significant viscoelastic

effects independent of fluid flow, as summarized in Chapter 1 for AF, IF, and MT. There

have been multiple viscoelastic continuum modeling approaches for the time-dependent

response of cells and/or their cytoskeletal networks.

5.1.1 Maxwell model

In addition to the cortical shell-liquid/solid core models referenced in Chapter 3,

linear Maxwell viscoelastic models have been used to predict the response of the

membrane/cortex during deformation by microcantilevers (Hwang and Waugh, 1997),

micropipette aspiration (Evans, 1989; Zhelev et al., 1994), falling ball viscosimetry

(Dimova et al., 1999), optical traps (Dao et al., 2003; Mills et al., 2004). The

cytoskeleton has similarly been modeled as a linear Maxwell viscoelastic solid during

deformations from laser tracking microscopy (Yamada et al., 2000), magnetocytometry

(Karcher et al., 2003), AFM (Wu et al., 1998; Darling et al., 2006), and micropipette
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aspiration (Schmid-Schonbein et al., 1981; Theret et al., 1988). The Maxwell leg within

a rheological model is depicted in Figure 5-1, consisting

E, G

(a)
Time, t

Figure 5-1. (a) Maxwell viscoelastic rheological model and (b) corresponding stress relaxation responsefrom constant strain input (inset).

of a linear elastic spring characterized by either it's Young's modulus (E) or shear

modulus (G), and a viscous dashpot characterized by its viscosity (q). For a constant

strain input, so, the Maxwell model captures the viscoelastic stress relaxation response (to

a final stress of zero) from an initial stress of ao for t > to, as illustrated in Figure 5-1 and

given by

amxwl = ao exp( c(t - tE J. (5.1)

where a is the stress, and t is time. Based on Equation (5.1), the characteristic relaxation

time is given by tr= il/E.
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5.1.2 Kelvin-voigt model

The Maxwell model is often combined with the Kelvin-Voigt model (Figure 5-2)

which captures the creep response of materials subjected to a constant stress.

E, G

Time, t

Figure 5-2. (a) Kelvin-Voigt viscoelastic rheological model and (b) corresponding creep response fromconstant stress input (inset).

For a constant input stress, ao, the Kelvin-Voigt model captures the viscoelastic creep

response for t > to, as illustrated in Figure 5-2b and given by

6 KV = 6 0 Oxp- (t- to . (5.2)

The initial response is dominated by the dashpot, with the initial slope (co/l) in Figure 5-

2b solely a function of the initial stress and the dashpot's viscosity. After the dashpot

begins to strain, compatibility constraints dictate that the spring strains an equal amount,

and stress gets transferred to the spring. Finally, at long times the spring dominates the

response and gives the equilibrium strain (ao/E) based on its linear constitutive law.
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Maxwell models are widely used as elements in rheological models to simulate

cytoskeletal behavior, including recent magnetocytometry experiments on NIH 3T3

fibroblasts (Karcher et al., 2003). Karcher, et al. simulated the vertical displacement of

the magnetic bead into a fibroblast cell monolayer using Maxwell (and also Voigt)

viscoelastic properties within a finite element model (Karcher et al., 2003). They found

for a time constant of 1 sec, the best fit Maxwell shear modulus was approximately

600Pa, while the best fit Voigt shear modulus was about 100Pa, with the Maxwell model

slightly more consistent with experimental observations as shown in Figure 5-3 (Karcher

et al., 2003).

i

IiII=

Figure 5-3. Vertical displacement of magnetic bead center as a function of time for three cytoskeletal
shear moduli (G=0.4, 0.6, 1.OkPa) using a Maxwell model. Experimental data performed on NIH 3T3
fibroblasts. (Karcher et al., 2003)

5.1.3 Standard linear solid model

The Maxwell model in parallel with a spring element forms a standard linear solid

model (SLS) shown in Figure 5-4, which is therefore able to capture both the stress
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relaxation and creep responses of a material.

relaxation

E2, G2

)7

(a)
to

Time, t

Figure 5-4. Standard linear solid rheological model, and (b) corresponding stress relaxation response from
constant strain input (inset).

response for the SLS model (Figure 5-4) subjected to a constant strain, so is

crt)= E + E2 exp 2 t eoh(t), (5.3)

where h(t) is the Heaviside step function defined as

h(t) = 1 0
t<0.t < o
t 0 (5.4)

The relaxation modulus is identified as

(5.5)
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rl(



Thus, the initial, short-term glassy relaxation modulus (Eg) and long-term, equilibrium

relaxation modulus (Ere), and relaxation time constant (tr) are found to be

E,,(t)= E, (t=O+)= E, +E 2  (5.6)

Ere(t)= Er,(t -oo)= E ,  (5.7)

t =q (5.8)
E2

Additional dashpots have also been added to the SLS model to capture the

additional creep response of cells probed via magnetic bead microrheology. Figure 5-5

K1

V~~1A nJLAAn.

SLS -
D ___

K

ni

a ko
C t

2000

o
0 2 4

Time (s)

oo-

600o

400-

0-

b •m d 0. 0. 1. 1: 2.0
T*me (s)

Figure 5-5. (a) Rheological model consisting of a SLS model in series with an extra dashpot (D), (b)
Creep response and relaxation curve for theological model with three response regions (I-III), (c)
Experimental force input and displacement response with corresponding response regions (I-III), (d) Curve
fit for creep data for F= 1.lnN on a cell probed via magnetic bead microrheology. Adapted from (Bausch et
al., 1998).
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shows the rheological model and experimental data for a 4.5-pm bead bound to the

membrane of a 3T3 fibroblast through a presumed fibronectin-integrin linkage (Bausch et

al., 1998). They experimentally observed three regimes of creep response (Figure 5-5c).

The SLS model, however, was only capable of explaining the behavior in regions I and II

(Figure 5-5b). The total rheological model therefore consists of a SLS model in series

with an extra dashpot (Figure 5-5a) to capture the end slope observed in region III, as

demonstrated through the curve fit in Figure 5-5d. There is considerable variability in

the viscoelastic response between cells of the same cell type, with viscoelastic parameters

differing by up to an order of magnitude, while noting that that the values obtained for

each individual cell differ by much less (Bausch et al., 1998).

The basic SLS model, however, has been used to capture the viscoelastic behavior

of many biomaterials, including the stress-relaxation response for superficial and deep

articular chondrocytes. The test consisted of rapid indentation via an AFM of the cell

using closed-loop control to hold the displacement constant, followed by a 60 second

stress relaxation phase as shown in Figure 5-6 (Darling et al., 2006). The cantilever

compressed the cell until a force of 2.5 nN was reached, then the AFM's displacement

was held to observe the stress-relaxation of the cell, indenting the cell approximately 1.3-
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Figure 5-6. (a) Closed-loop control during stress-relaxation tests ofan articular chondrocyte using a
spherical AFM probe tip, (b) corresponding AFM probe displacement input and stress relaxation response
ofchondrocytes, and (c) example data sets shown with elastic and viscoelastic curve fits. Adapted from
(Darling et aI., 2006).

2.1 J.lm (Darling et aI., 2006). Note that the schematic of the AFM probe tip in Figure 5-

6a is not to scale since the probe tip diameter was 5J.1m and the cell diameters ranged

from 7-15J.lm (Darling et aI., 2006). The elastic modulus of the deep chondrocytes cells

was calculated from the initial indentation (Eelastic =610±340Pa ) and after relaxation

(Eequil =240±130Pa) using a modified Hertz equation (Harding and Sneddon, 1945),

(5.9)

where F is the applied force via the AFM cantilever, E is Young's modulus, r is the

relative radius (r=(l/rtip + l/rce/lr 1
, v is the Poisson ratio, and ~ is the vertical indentation

distance (Darling et aI., 2006). Both types of cells exhibited stress relaxation behavior

that was captured with a SLS model, reaching an equilibrium reaction force in

approximately 30 s (Darling et aI., 2006). The viscoelastic moduli for deep chondrocytes
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(E,=290±140Pa, Ere=170±90Pa, t,5.2±3.5 sec) found by fitting the relaxation data,

agreed with the indentation-derived elastic moduli within 50% for initial values and 30%

for equilibrium values (Darling et al., 2006). Significant differences in mechanical

properties were observed between the two types of chondrocytes, with measured values

for the superficial cells exceeding those of the middle/deep cells by 90% on average

(Darling et al., 2006).

The time-dependent shear stress-strain response of a linear viscoelastic material

subject to an arbitrary strain history may be defined in terms of the shear relaxation

modulus, G(t-t'), and the strain history using the superposition principle of linear

viscoelasticity,

r(t - t') G(t - ) dt' (5.10)

where dy/dt' is the rate of shear strain. Note that the shear relaxation modulus can be

related to the axial relaxation modulus Er(t) and Poisson ratio v(t). The frequency

dependence of the elastic response, rather than the time dependence, is often used to

measure the viscoelastic behavior. Thus we introduce an oscillating shear strain and

shear strain rate of

yr()= ro sin (t)
dy(t) wy 0cos (Wt) (5.11)

dt

where o is the frequency in radians/sec, yo is the initial amplitude and y(t-0)=O for

convenience. Substituting Eqs (5.11) into (5.10) and employing a new integration

variable, t"=t-t' and the trigonometric identity cos(a-p)=sina sino + cosa cosp, yields a

new expression for the shear stress with a frequency dependence,
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r= C asin(ct)dt" o sin(cat)+ c fcos(cot")dt" o cOS(at). (5.12)

This can be simplified with Eqs (5.11) and introducing a frequency-dependent storage

modulus, G'(o), and loss modulus, G"(o),

r = G'(o)y(t)+ G'(w) dy(t) (5.13)
o dt

Note that G'(o) and G"(co) are 900 out of phase. If G"(o)=0, G'(co) becomes a

frequency-dependent version of the elastic shear modulus and elastic energy is stored and

retrieved within the system. Conversely, if G'(())=0, then the viscous response

dominates and G"(o)/o becomes a frequency-dependent dynamic viscosity within

Newton's law for a viscous fluid. The complex shear modulus which incorporates both

the storage and loss moduli, and their phase separation is defined

G" = G'(w)+ iG"(o) (5.14)

G'(w)t(5.15)
where 6 is the phase angle in radians. The storage and loss moduli are then obtained in

terms of the phase angle and amplitudes of the shear stress (to) and shear strain (yo) in

forced oscillation.

G'(c) = cos (5.16)
To

G"(o)= ' sin (5.17)
Yo

The absolute magnitude of the complex shear modulus is then given by
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IG' - = L r + [G#(o). (5.18)Yo
Note that the same approach can be used for axial loading conditions to obtain E', E",

and E*.

5.1.4 Quasilinear viscoelastic model

Another phenomenological viscoelastic model often used to model connective

tissues (e.g., articular cartilage, ligament, tendon) is the quasilinear viscoelastic (QLV)

model developed by Fung (Fung, 1980). The soft tissue is often taken to be

incompressible (Giles et al., 2007). The QLV model is similarly defined through a

convolution integral of the stress relaxation function which is now separated into a time-

dependent reduced relaxation function, E(t), and the time derivative of the instantaneous

elastic stress function, ca, which is a function of the strain,

a(t)= (t - t') d dt ' = fzE(t-t) dtdt' (5.19)
dt' -W dt'

where the reduced relaxation function E(t) is given by

(t)W -A ( 1 (5.20)

and where c is the relaxation index (c>0), Zr is the short relaxation time constant, and r2

is the long relaxation time constant (Fung, 1980). As t--oo, E(oo) reduces to
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(ao)= + cIn '. (5.21)

Note that E(t) is taken to be a scalar here, but could be given as a fourth order tensor in a

more general formulation. The QLV model is therefore linear with respect to the

relaxation response while still including the dependence on large nonlinear deformation.

The nonlinear deformation within the model comes from the elastic tangent stiffness

term, de(e)/de, with ae defined for many soft tissues such as tendon (Woo et al., 1981;

Woo et al., 1993; Hewitt et al., 2001; Sverdlik and Lanir, 2002), cartilage (Woo et al.,

1976; Roth and Mow, 1980; Elliott et al., 2002), ligament (Kwan et al., 1993; Puso and

Weiss, 1998; Weiss and Gardiner, 2001; Abramowitch and Woo, 2004), aortic valves

(Doehring et al., 2004), bladder tissue (Nagatomi et al., 2004), and meniscus (Fithian et

al., 1989; Fithian et al., 1990). The general form is given by

a, = A(exp(BE)-l) (5.22)

where the material-specific constants A and B (A>0, units of Pa; B is unitless) (Sarver et

al., 2003). Approximations for simplifying the process for fitting QLV constants have

been recently proposed (Toms et al., 2002; Abramowitch and Woo, 2004).

The QLV viscoelastic (c, rl, r2) and elastic (A, B) parameters are traditionally fit

to the stress relaxation data after normalizing the data by the peak stress (Kwan et al.,

1993; Yang et al., 2006). This approach (denoted as the "G" method in Figure 5-7a) uses

a single strain step and exhibits a strain-dependence (Sarver et al., 2003). While the QLV

theory is able to fit the data using the standard G-method, a strain-independent approach

developed by Sarver, et al. to evaluate the QLV theory (which also assumes strain-

independent relaxation). The strain-independent normalization (denoted as the "Qn"
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method in Figure 5-7b) also accounts for the relaxation as the load is applied, and is

defined as (Sarver et al., 2003)

0(t) - ao Q' (t)-.i =-= Q( ), (5.23)

where af is the final stress, a, is the peak stress, t, is the peak time, Q is the relaxation

factor, and Q. is the normalized relaxation factor.
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Figure 5-7. Normalized (a,b) and nonnormalized (c,d) stress relaxation of flexor tendon at different strains
using the G-method (a,c) and Q,-method (b,d). Adapted from (Sarver et al., 2003).

Note that the final relaxation stress at t-600sec is not at equilibrium, but Sarver, et al.

project that equilibrium relaxation would occur at t-2000 sec, and their sensitivity

analysis indicated that the additional decrease in stress required to reach equilibrium

would be unlikely to affect the calculated parameters (Sarver et al., 2003). The
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viscoelastic and elastic QLV parameters used to fit the data in Figure 5-7 are shown in

Table 5-1.

Parameter G-method Qa-method

C 0.90± 1.16 2.01±3.22
1i (sec) 1.56±1.07 1.07±0.57
'2 (sec) 1478±634 1159±179
A (MPa) 1.87±2.32 1.65±2.19
B 9.87±0.31 29.3±37.4

Table 5-1 QLV viscoelastic (C, 'r, T2) and elastic (A, B) parameters used to fit stress relaxation data of
flexor tendon at four strain increments using the G-method and the Q.-method. Adapted from (Sarver et
al., 2003).

The viscoelastic parameters (C, rT, r2) were similar for both methods, with smaller

standard deviations for the time constants via the Qn-method. While the methods also

had similar values for A, they differed in their estimation of B, with high standard

deviations in the Qn-method. Sarver, et al. used a sensitivity analysis to note that there is

poor confidence in both methods for estimating B, but that estimating B by fitting to the

nonlinear equilibrium stress-strain function, Equation (5.22), provides a better estimate

by decoupling estimation of elastic and viscoelastic parameters of the QLV model

(Sarver et al., 2003). Their sensitivity analysis also indicated greater confidence in the

two relaxation time constants via the Qn-method (Sarver et al., 2003). While the Qn-

method was seen to be preferable for stress relaxation studies with incremental strains,

the overall validity of the QLV assumption of strain-independent relaxation remains an

open question.

QLV has also been used successfully to model other soft tissues which respond on

different time-scales, such as esophageal tissue which had relaxation time constants of
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approximately z•~3sec -2~90sec for strains of ~-0.4-0.8 with a maximum fitting error of

<4% (Yang et al., 2006). The stress relaxation time constants for the esophageal tissue

did not significantly vary with increasing strain, supporting the QLV assumption of

strain-independent relaxation (Yang et al., 2006).

There has been some recent work which suggests that the QLV model is

insufficient to simulate interrelated creep and stress relaxation in soft biological tissues

such as tendon. Since QLV assumes a separable relation as a product of functions of

time and strain, it does not allow interrelations between creep and relaxation since a

separable form for creep becomes a nonseparable form for relaxation (Lakes and

Vanderby, 1999; Oza et al., 2006). QLV has also been unable to capture low load

regions where creep rate is a strong function of stress level (Provenzano et al., 2001).

Lakes, et al. have utilized modified, nonlinear, superposition instead of QLV to model the

strain-dependent stress-relaxation and creep behavior of ligaments (Provenzano et al.,

2002; Oza et al., 2006). The modified superposition approach allows the relaxation

function to depend on strain, as well as time, through a nonseparable strain-dependent

power law, E(y, t)= A(y) tB(Y), where A(y) represents the initial modulus, E(t=0), and B(y)

characterizes the strain-dependent rate of stress relaxation and can take the form

B(y)=g(y)no, where no is an initial relaxation rate and g(y) accounts for strain-dependent

nonlinearity in the relaxation rate (Provenzano et al., 2002). Thornton, et al. have

showed that the experimental creep response of ligaments is not captured by the time

domain function for creep predicted from the experimental QLV stress relaxation

function (Thornton et al., 1997). They note that Fung (Fung, 1993) also speculated that

creep is more nonlinear than relaxation, and that creep-related microstructural processes
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could be very different from relaxation-related processes, perhaps related to the crimp

pattern in the collagen fiber structure of ligaments (Thornton et al., 1997; Thornton et al.,

2001). Instead, they model fiber creep with the inverse stress relaxation function and use

a microstructural model that include linear variations in crimp pattern to simulate

collagen fiber recruitment to capture the experimental creep behavior of ligaments

(Thornton et al., 2001).

The QLV model has recently been used, however, to describe the experimentally

observed phenomenon in which myocardium and skin tissues exhibit a decrease in

nonlinear stiffness with an increase in loading rate during cyclic, load-controlled tests as

shown in Figure 5-8a (Giles et al., 2007). This is counter-intuitive based on the increased

stiffness that accompanies increased loading rates in cyclic, strain-controlled experiments

(Haut and Little, 1972; Demer and Yin, 1983; Pioletti et al., 1999; Pioletti and

Rakotomanana, 2000). Giles, et al. found that this behavior is not restricted to cyclic

load-controlled experiments and is based on the nonlinear effects and creep behavior

30
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Figure 5-8. (a) Fully preconditioned stress -stretch response for uniaxial tension of porcine skin andmyocardium with varying stretch or load rates (cyclic deformation periods of t=5, 50, 500 sec), and (b)
elastic tangent stiffness (da,/dL ) at the start of each loading cycle as a function of cycle number with thesame deformation periods. Adapted from (Giles et al., 2007).
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within the context of cyclic load controlled deformations during preconditioning of

tissues (Giles et al., 2007). Substantial creep occurs during preconditioning, with

subsequent loading cycles beginning at larger prestretches, and therefore well into the

nonlinear regime of the elastic stress response (Giles et al., 2007). Figure 5-8b shows the

elastic tangent stiffness term, doe(e)/dA, as a function of the number of uniaxial load

cycles for the same deformation periods shown in Figure 5-8a, (t=5, 50, 500sec), with

increasing period (slower loading rate) leading to an increase in material creep and

therefore a stiffer response (Giles et al., 2007).

The QLV theory has also been used to model the frequency-dependent response

of soft tissues under oscillatory loading conditions. The complex shear modulus may be

applied to the QLV model to yield frequency-dependent storage and loss moduli (Chan

and Titze, 2000),

1+ [In(1 + CO2 )- In(i + °2r2)]

GF'() = 2 (5.24)
1+cln(r 2 ) 

(5.24)

G"(W) = c[tan-'(COr 2 )-tan' (5.1 2]
Gn'((,)/- = (5.25)

+ cl n(rz, /r, )

In general, larger values of the viscoelastic parameter c correspond to a higher damping

ratio across a wide range of frequency (10-3 - 103 Hz), an increase in frequency

sensitivity, and an increase in stress relaxation magnitude and rate (Sauren and Rousseau,

1983). The time constants (rl, r2) define the range of the stress relaxation spectrum and

thus the frequency-insensitive range of the damping curve, with ar governing the fast

viscous phenomenon (high-frequency limit of the damping curve) and r2 governing the

low viscous phenomenon (low-frequency limit of the damping curve) (Sauren and
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Rousseau, 1983; Chan and Titze, 2000). Therefore a reduction in zr or an increase in r2

increases the bandwidth of the damping curve and in turn makes the model more

frequency-insensitive (Chan and Titze, 2000).

Frequency-dependent analyses using the QLV with some modifications have also

been made for plantar soft tissue (Ledoux et al., 2004), lumbar nucleus pulposus (spinal

disk) (latridis et al., 1997). The results of a frequency-dependent analysis of canine vocal

fold mucosa ("vocal chords") using the QLV model are shown in Figure 5-9. Chan used
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Figure 5-9. (a) Storage modulus (G'), (b) loss modulus (G", (c) dynamic viscosity (tr), and (d) damping
ratio (tan(8)) for canine vocal fold mucosa based on the QLV model (o--mean value, +=standard deviation).
Adapted from(Chan, 2004).

212

c

I



a controlled strain torsional rheometer to obtain higher frequency (up to 50 Hz)

measurements compared with previous stress controlled rheometric experiments. The

best fit QLV viscoelastic properties were c=10, rl=0.1msec, and r2=1000sec, with

reasonably accurate descriptions of G' and qj (Figure 5-9a,c) and poor performance for

G" and tan(8) (Figure 5-9b,d) (Chan, 2004). The QLV model could not capture the

gradual increase in G", and the corresponding increase in tan(8), from 1-50Hz with the

greatest error at the relatively higher frequencies (15-50Hz) (Chan, 2004).

5.1.5 Power law model

Absolute values of the complex shear modulus, G%, and relaxation time spectra

have been measured using AFM and then fit to an empirical power-law structural

damping model (Alcaraz et al., 2003; Smith et al., 2005), given as

G'(o)= Go(l + ij F(1- a')cos + iiwp, (5.26)

where i" =tan(a'n/2) is the structural damping coefficient, a' is the power-law exponent,

G, is a scale factor for the storage and loss moduli, p is viscosity, F is the gamma

function, and oo is a scale factor for the frequency. The factor F(1-a')cos(na'/2) is close

to unity for small values of a' (Smith et al., 2005). The structural (or hysteretic) damping

power-law relationship was developed in part by (Weber, 1841; Kohlrausch, 1866;

Crandall, 1970) and applied to biological structures by (Hildebrandt, 1969; Fredberg and

Stamenovic, 1989; Fabry et al., 2001). The power-law model and the spring/dashpot

213



rheological models, however, do not include microstructural details of the cytoskeleton,

their mechanobiological contribution, or the ability to account for their microstructural

rearrangement.

Most viscoelastic cytoskeletal models also assume the cytoplasm to be a

homogeneous, continuous medium that does not include spatial variation within the cell

(Hochmuth and Waugh, 1987; Sato et al., 1990; Schmid-Schonbein et al., 1995; Satcher

and Dewey, 1996; Thoumine and Ott, 1997b; Thoumine and Ott, 1997a). The tensegrity

model has been adapted for viscoelastic behavior (Canadas et al., 2002), and compared

with the viscoelastic response of the cellular solid model to determine the influence of

spatial rearrangement and bending of filaments (Canadas et al., 2003), which emphasized

the coupling between the cellular viscoelastic response and the underlying cytoskeletal

architecture. As seen before with tensegrity models and cellular solid models, however,

they omit the influence of thermal fluctuations on elasticity, do not lend themselves to

modeling polymerization of just one filament network, and also do not account for either

the nonaffine motion or the ability of networks to accommodate deformation through

rotation of filaments. Therefore, we need a cytoskeletal network model that captures the

viscoelastic behavior within a microstructurally-informed framework.

5.2 Linear rheological model

The viscoelastic response is captured in this model by adding a linear viscoelastic

Maxwell leg to the network model to account for intermolecular shear viscosity (see

Figure 5-10), since the Maxwell model has been shown to be somewhat more consistent
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with experimental observations of cytoskeletal contributions to cellular mechanical

behavior (Karcher et al., 2003).

Figure 5-10. Viscoelastic rheological model for cytoskeletal network with intermolecular shear viscosity.

The rheological model shown in Figure 5-10 is the standard linear solid model

commonly used to simulate viscoelastic behavior in cells (Schmid-Schonbein et al., 1981;

Sung et al., 1988; Lipowsky et al., 1991), but adapted here with a nonlinear hyperelastic

leg and a linear viscoelastic Maxwell leg (with q = viscosity and Le = the 4th order elastic

modulus tensor). The hyperelastic leg contains the extensible network model with its

contributions from entropic filament unbending, enthalpic filament stretching, cross-link

torsion, and bulk compressibility.
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5.2.1 Continuum mechanics derivation

The inclusion of the SLS rheological model for intermolecular shear

viscoelasticity within the 3D network framework, for finite deformation, is detailed in

this section. The Cauchy stress in the hyperelastic leg in Figure 5-10 is defined as

THE = TNetwork + Tcm-in,,,k + K, (J -1)I (5.27)

where TNetwork was defined by Eqs. (2.31), (2.33), (2.35), (2.37), (3.34) and Tcro-nk was

defined by Eqs. (4.7)-(4.12). The Cauchy stress in the viscoelastic leg is defined by

TE = (1/J) L' ln(VE) (5.28)

where ln(VE) is the Hencky strain tensor defined by (Anand, 1979)

In(VE) 1 ln[F (Fr 1. (5.29)

Since the legs are in parallel, stress equilibrium requires that the total stress be the sum of

the stress in the two legs.

T = THE + T (5.30)

Conversely, the deformation gradients of the two parallel legs are equivalent.

F = FHE = F (5.31)

The deformation gradient, F, can be multiplicatively decomposed into elastic (F0) and

viscous (F') components following a Krdner-Lee decomposition (Kr6ner, 1959; Lee,

1969) for viscoelastic materials (Boyce et al., 1988; Bergstrom and Boyce, 2000; Qi and

Boyce, 2005; Mulliken and Boyce, 2006) (Figure 2-9).
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Figure 5-11. Multiplicative decomposition of the deformation gradient into viscous and elastic
components

This decomposition can be related in terms of the rheological model in Figure 5-10 as

F = FE= FvE FerFv, (5.32)

which can be rearranged to define the elastic deformation gradient as

Fe = F (F' - , (5.33)

The initial conditions for the viscous deformation gradient and its rate of change are

F' =1, F=0O (t = 0). (5.34)

For times greater than zero, the viscous deformation gradient is updated using a simple

forward Euler integration according to

F, = Fv + F/vAt (t > 0). (5.35)

We now need to find F' at each time step in order to solve for Fv. We start with the

viscous velocity gradient (L) of the relaxed configuration, defined as

L' = vF'F-' = Dv + W', (5.36)

or in the current, loaded configuration,

L" = D" + W" , (5.37)
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where DV is the (symmetric) rate of viscous stretch tensor in the loaded configuration

defined as

D' 2 + , (5.38)
2

and W' is the (skew) rate of viscous spin tensor in the loaded configuration defined as

S= -(v] =o0, (5.39)2
and taken to be zero with no loss in generality (Boyce et al., 1988). The total velocity

gradient can be given in terms of its elastic and viscous components,

L = 'F-'= F"Fe-I + FeFVF-'Fe- 1 = L + FeL'Fe-I
(5.40)

where Le is the elastic velocity gradient in the relaxed configuration and VL is the viscous

velocity gradient in the loaded, current configuration. Here we employ a linear

viscoelastic constitutive relationship to define the rate of stretch in the loaded

configuration, D' , although nonlinear relationships could easily be substituted

(Bergstrom and Boyce, 2000; Qi and Boyce, 2005; Mulliken and Boyce, 2006),

DV = Nv (5.41)

where the magnitude is given by f, the effective shear strain rate, and the direction is

given by the tensor Nv (in the loaded configuration). The viscous direction tensor, NV, is

taken to be in the same direction as the deviatoric Cauchy stress acting on the viscoelastic

component and therefore given by

N T= E TE (5.42)
TVE NF2, r'
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where TE is deviatoric Cauchy stress of the viscoelastic component (in the loaded

configuration),

T = TV- !r(T)=- TV- tr(TV,, + T~,+ TV ,) , (5.43)
3 3

and ~r is the equivalent shear stress,

'TV = T~ -. (5.44)

Finally, the effective shear strain rate, j, is given in terms of the linear viscosity, q,

previously defined in the rheological model,

S= -. (5.45)

Note that in the loaded configuration, the rate of viscous stretch can also be given as

Di = V = FeL'Fe- = FeF'F-IFeI-'. (5.46)

Rearranging this equation to solve for F' yields

F' = Fe-IDvFeFv, (5.47)

which we can simplify using Eqs. (5.32),(5.41)-(5.45) to give

F 1 I Fe-'TF. (5.48)

5.2.2 Comparison with actin-FLNa experimental data

The viscoelastic network model is now compared to the unpublished data by Lee

and Kamm (Lee and Kamm, 2008) introduced in Chapter 4, which evaluated the

rheology of F-actin networks with FLNa and streptavidin cross-links using a Texas
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Instruments AR-2000 torsional rheometer. The AR-2000 software has four options for

reducing the viscoelastic parameters from the data (Texas Instruments: Thermal Analysis

& Rheology, 2008):

1. Maxwell model: 4 spring/dashpot elements

2. Spriggs model: Infinite number of Maxwell elements (each with the same

value of G), with relaxation times related by an inverse power series

3. Oldroyd (Jeffreys) model: Maxwell element and dashpot in parallel

4. Power Law model: G"=ko n , G"=k cot(nt/2) on

The four element Maxwell model was chosen for its accuracy with polymer solutions,

with the storage and loss moduli defined as

G (6)=) "nt,n 2  (5.49)
G -1 i+ )2t2
n=l 1+2 R,n

G (0) ,no (5.50)
n=1 1+ m tR,

where the relaxation times, tR,n (sec), and the viscosities, r7, (Pa-s), are chosen through a

fitting algorithm to best match the data.

The first comparison was with actin-FLNa networks at CAY =20ItM, R=0.02, and

w=0.05Hz. At this frequency and R value, they found G' to be approximately 2-4 times

greater than G" for shear strains up to tan(y)=0.5 (Figure 4-11), thus the viscous response

is not dominated by the elastic response. We use the same network parameters given in

Table 4-2 to define the actin network represented by the hyperelastic leg in the

rheological model. Within the viscoelastic leg, the best fit values for the elastic shear

modulus is G=-l.74Pa (or E=5.2 Pa for v=0.49) and the viscosity is q=8.9 Pa-s.
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Following the experimental procedure, the viscoelastic response was then quantified by

deforming the network with an oscillatory shear strain of tan(y)-=(0.01-0.45) to

determine the storage and loss moduli. An example of the input strain time history, and

the leading stress time history, is shown in Figure 5-12. The resulting storage and loss

shear moduli are shown in Figure 4-11 for increasing network strain.
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Figure 5-12. Simulated time histories of shear strain and shear stress for actin-FLNa networks (cAF
=20AM, R=0.02, and &o=0.05Hz)
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Figure 5-13. Theoretical and experimental storage modulus (G') and loss modulus (G") of actin-FLNa
networks (CAY =20p1M, R=0.02, and ro=0.05Hz) (Lee and Kamm, 2008)

The linear viscoelastic model captures the storage modulus behavior well through the

strain stiffening region, up to tan(y)-0.35 where network behavior was found to

deteriorate, possibly due to cross-link deformations (Figure 4-11). The theoretical linear

viscoelastic response also agrees with the experimentally measured loss modulus for

small shear strains (tan(y)<O.1).

The nonlinear behavior of the loss modulus beyond tan(y)=0.1, however,

illustrates the need for incorporating nonlinear viscoelastic terms within the model. Since

the experimental network gel is experiencing an oscillation of tan(y)=±(0.01-0.45), the

response of the actin network goes well into the nonlinear strain stiffening regime.

Within this range, the highly nonlinear stress from the network dominates the stress

contribution from the linear viscoelastic Maxwell leg (see Figure 5-12b for the shear

stress response to an oscillating shear strain of tan(y)--=+.4). The shear strain

contributions for the three components of the rheological model (8-chain network, linear
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elastic spring, viscous dashpot) can also be seen in the simulated time histories of Figure

5-12a for an oscillating shear strain of tan(y)-=±.4. Note that the strain in the 8-chain

network is equal to the total strain. A quick evaluation of the maxima of the total stress

and total strain in Figure 5-12 reveals that the lack of contribution from the viscoelastic

leg fails to create a significant lag in the shear strain, leading to a small phase angle and

the low values for G" seen in Figure 4-11 at high shear strains.
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Figure 5-14. (a) Simulated time history of an oscillating shear strain (tan(y)=+0.4) for the threecomponents of the rheological model (8-chain network, linear elastic spring, viscous dashpot), with thestrain in the 8-chain network equal to the total strain. (b) Time history for shear stress in linear elasticMaxwell leg, 8-chain network, and total stress.
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5.3 Nonlinear rheological model

The rheological model presented in this section incorporates nonlinear,

microstructurally-motivated elements in the Maxwell leg in order to capture the nonlinear

behavior at large strains. The nonlinear viscoelastic behavior at large strains is due in

part to intermolecular steric interactions and intramolecular network effects (e.g. cross-

link deformation and/or unfolding/refolding of cross-link subdomains). These

interactions increase nonlinearly as the molecular network deforms through significant

chain rotation combined with some chain stretching (see Chapter 3). The hyperelastic

response of the network is therefore modeled by separating the network into the two,

parallel rheological springs (see Figure 5-15). The two hyperelastic network elements

are scaled using a volume fraction approach, following the Bergstr6m-Boyce method

(Bergstrom and Boyce, 2000), where a percentage (vf) of the network remains fixed and

does not relax while the remaining volume fraction of the network (v,=l-vf) relaxes. The

stresses due to cross-links are also included within the relaxing network in the Maxwell

leg, and thus the model considers a corresponding percentage of the cross-links to be

located within the region of the network undergoing relaxation, implicitly including the

viscoelastic response due to intramolecular network effects. The Cauchy stress in the

viscoelastic leg (without including volume fraction scaling) is now defined by
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ALc4(1- ro/L ), Lc/l,-2(1 - ro /Lc) E
-c Lr/1_ - 6(1- ro/Lc)

4(1 - roIL, Lc/l -2(1-r°/Lc) I

40•/c•)L3; ill a0•ci)

+KB(J-1)I

(5.51)

where Be is the left Cauchy-Green strain tensor for the viscoelastic Maxwell leg defined

using the elastic component of the viscoelastic deformation gradient,

BE =F:(F eJE. (5.52)
Since the legs are in parallel, stress equilibrium requires that the total stress be the sum of

the stress in the two legs, in this case with both components functions of the cross-linked

hyperelastic network.

T = vj T + vTv = vfTT, +(1-v/)T, (5.53)

v =l1-v
r f

Figure 5-15. Nonlinear viscoelastic rheological model for cytoskeletal network with the hyperelastic
network response separated into fixed regions with volume fraction vf, and relaxing regions with volume
fraction vr= I -v; the nonlinear viscosity due to molecular relaxation is rq,,.
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The material properties for the hyperelastic network remain the same as those used in

Chapter 4 to capture the actin-FLN experimental data. The effective shear strain rate, ',

is given in terms of a nonlinear viscosity, q,., to capture the network's molecular

relaxation at large strains, adapted from the approach by Adams, et al. (Adams et al.,

2000) and Dupaix and Boyce (Dupaix and Boyce, 2007) for cessation of molecular

relaxation,.

V VIP

~1mr
, (5.54)

where C is a constant, 0 is the average chain angle of the network, O6 is the initial average

chain angle, a is the average chain angle for relaxation cutoff. The nonlinear viscosity is

shown in Figure 5-16 as a function of increasing shear strain using the best fit values

C=0. 15 (Pa-s)"' and a =470 for the actin-FLN networks (cAF= 20O1M, R=0.02) evaluated in

Chapter 4. The viscosity increases significantly from tan(y)>0.1, which represents the

onset of strain stiffening, through tan(y)=0.35, after which the actin-FLN network begins

to undergo strain softening behavior. The average network chain angle, also shown in

Figure 5-16, is based on the network parameters (1p=31tm, L,=0.89rm, a=t-1.08%) used to

capture the actin-FLN hyperelastic behavior in Chapter 4. Note that since the average

network chain angle does not reach a =470 until tan(y)>0.35, the network continues to

relax until the network transitions into the strain softening regime.
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Figure 5-16. Nonlinear viscosity (C=0.15, 0, = 470) and average network chain angle as a function of
shear strain

The stress from the relaxing network (Vr=0.66) in the nonlinear viscoelastic Maxwell leg

is now no longer dominated by the nonlinear stress from the fixed network (r=0.34) as

shown in Figure 5-17b for the shear stress response to an oscillating shear strain of

tan(y)=--0.3. The shear strain contributions for the three components of the rheological

model (hyperelastic spring for fixed cross-linked network, hyperelastic spring for

relaxing cross-linked network , nonlinear dashpot) can also be seen in the simulated time

histories of Figure 5-17a for an oscillating shear strain of tan(y)--0.3. As noted earlier,

the strain in the fixed 8-chain network is equal to the total strain.
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Figure 5-17. (a) Nonlinear viscoelastic elements included in the simulated time history of an
oscillating shear strain (tan(y)=±0.3) for the three components of the rheological model (Fixed hyperelastic
network spring, Relaxing hyperelastic network spring, nonlinear dashpot), with the strain in the 8-chain
network equal to the total strain. (b) Time history for shear stress in relaxing 8-chain network, fixed 8-chain
network, and total stress.

The phase lag between the strain input and stress response can also be seen qualitatively

in Figure 5-17, but is shown explicitly in Figure 5-18. The linear viscoelastic model

declines significantly beyond tan(y)=0.1, corresponding to the decrease in G" seen in

Figure 4-11, while the nonlinear viscoelastic model gives a constant phase angle across

the strain range with a larger discrepancy for smaller strains.
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Figure 5-18. Phase angle for linear viscoelastic model, nonlinear viscoelastic model, and experiments
of actin-FLNa networks (CAF =20pM, R=0.02, and &o=0.05Hz) (Lee and Kamm, 2008)
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Figure 5-19. Theoretical (with nonlinear viscoelasticity) and experimental storage modulus (G') and
loss modulus (G") of actin-FLNa networks (CAF =20JM, R=0.02, and o~-0.05Hz) (Lee and Kamm, 2008)
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The resulting storage and loss shear moduli are shown in Figure 5-19 for

increasing network strain. The nonlinear viscoelastic model also captures the storage

modulus behavior well through the strain stiffening region, up to tan(y)-O.4. The

nonlinear viscoelastic response now also agrees, however, with the experimentally

measured loss modulus for shear strains through the strain stiffening region (and prior to

the strain softening response for tan(y)>0.35). This reversal of behavior for the loss

modulus, from monotonically decreasing to monotonically increasing with shear strain,

emphasizes the importance of including nonlinear effects to capture the true viscoelastic

response of cross-linked actin cytoskeletal networks.

The nonlinear viscoelastic response also varies with frequency. These responses

are shown in Figure 5-20 for the nonlinear viscoelastic network model in terms of their

shear stress-strain behavior. The values are calculated by evaluating the shear stress

response for an shear strain input of tan(y)--=0.01 (see Figure 5-20 inset) oscillating at

varying frequencies, and taking r=(G*)tan(y). Note that the stress-strain behavior shown

in Figure 5-20 is limited to the linear response due to the small shear strain oscillation.
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Figure 5-20. Shear stress-strain response for nonlinear viscoelastic model of actin-FLN at multiple
frequencies (i=O0.005, 0.05, 0.5, 5 Hz) taking r=G'tan(y)

At the lowest frequency (0.005 Hz), the viscoelastic network approaches its relaxed,

equilibrium state. At the highest frequency (5 Hz), the network responds with a short-

term behavior. The storage and loss moduli also vary with frequency (see Figure 5-21).

The storage modulus increases with frequency to a plateau value, as seen in experimental

actin-FLN networks in Figure 4-4 (Gardel et al., 2006b) of Section 4.1. The loss

modulus, based on a single relaxation time constant, increases for low frequencies but

decreases for frequencies greater than 0.03 Hz, suggesting that the viscoelastic behavior

of actin-FLN networks consists of a distribution of relaxation times, as is seen in many

macromolecular networks. Since the model assumes a single Maxwell leg to capture the

average
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Figure 5-21. Shear storage modulus (G') and loss modulus (G") for nonlinear viscoelastic model atmultiple frequencies (ar-o.005-0.5 Hz)

relaxation time due to intermolecular shear between filaments of an averaged length,

more Maxwell legs can be incorporated into the rheological model to approximate the

relaxation times of shorter filaments that relax more quickly (i.e. at observable at higher

frequencies). The distribution of relaxation times can be accommodated through adding

more nonlinear network spring-dashpot elements as done in a classic Wiechert model as

illustrated in Figure 5-22, though evaluating the required number of elements and

magnitudes of the viscoelastic parameters is saved for future work.
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Figure 5-22. Wiechert rheological model with n Maxwell elements for cytoskeletal network to capture
distribution of relaxation times for intermolecular shear viscosity.

The SLS rheological model shown in Figure 5-10 can be used to model the

viscoelastic stress relaxation and creep responses of the network as well, with the same

values used previously to match the storage and loss moduli for the actin-FLN network.

The stress relaxation of the network is shown in Figure 5-23 for three shear strains that

linearly ramp from tan(y)=0 to tan(y)=5%, 10%, 15% over t=0.01sec and then are held

constant for t > 0.0lsec. The response of the G" as a function of frequency exhibits the

peak at m-0.05Hz, which corresponds to a relaxation time of tR=l/(2Ro)=3.2sec. This

peak in G" and 8 is consistent with the characteristic shear relaxation time based on the

rheological properties, which is tR=,1/G=3.8sec, which is also on the same order of

viscoelastic timescales observed experimentally for fibroblasts (tR-lsec) (Karcher et al.,

2003) and actin networks in phagocytotic neutrophils (tR~-2sec) (Herant et al., 2006). The

short-term response at tan(y)=0.10 gives a short-term relaxation modulus of Grg=2.0Pa

and a long-term equilibrium relaxation modulus of Gr=1.lPa (Figure 5-24).
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Figure 5-23. Simulated stress relaxation of an actin-FLNa network (CAF =20pM, R=0.02) with constant
shear strains of tan(y)=0.05, 0.1, 0.15 (inset).
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Figure 5-24. Simulated stress relaxation modulus of an actin-FLNa network (CAF =20AiM, R=0.02)
with constant shear strains of tan(y)=0.05, 0.1, 0.15 (inset).
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The creep response is given in Figure 5-25 for three shear stresses that linearly

ramp from T=0 to r= 0.02, 0.04, 0.06Pa over t=0.Olsec and then are held constant for t >

0.01 seconds. The short-term response at r=0.04Pa gives a short-term creep function of

Jcg=0.50Pa-1 and a long-term equilibrium creep function of Je=0.92Pa' (see Figure 5-

26).

0.10

0.08 -

2 0.06

00.04 -
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0 00

0 10 20 30 40
Time (sec)

Figure 5-25. Simulated creep response of an actin-FLNa network (CAF =20pM, R=0.02) with a
constant shear stress of r=0.02, 0.04, 0.06 Pa (inset).
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Figure 5-26. Simulated creep function of an actin-FLNa network (cAF =209M, R=0.02) with a
constant shear stress of r=0.02, 0.04, 0.06 Pa (inset).

5.3.1 Actin-avidin networks

The second comparison was with actin-streptavidin networks at cA =20tM,

R=0.01, and r-=0.05Hz. At this frequency and R value, G' was approximately 10 times

greater than G" for shear strains up to tan(y)=0.2 and stresses up to r=lPa (Figure 4-14),

thus the viscous response is dominated by the elastic response. We use the same network

parameters as for the actin-FLN network, and originally given in Table 4-2, to define the

actin networks in the rheological model as used with the actin-FLN network. The

resulting best fit values are C=0.38 (Pa-s)"', a=470, and network volume fractions for the

fixed network (v.=0.8) and the relaxing network (Vr=0.2). Following the same

experimental procedure used for the actin-FLN networks, the viscoelastic response was

quantified by deforming the network with an oscillatory shear strain of tan(y)=+(0.01-
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0.35) to determine the storage and loss moduli. An example of the input strain time

history, and the leading stress time history, is shown in Figure 5-27. The resulting

storage and loss shear moduli are shown in Figure 5-28 for increasing network strain. A

comparison between the theory and the experimental data is only examined within the

linear viscoelastic regime since the experiment produced constant values of G', G" until

it experienced plate slippage at a shear strain of tan(y)-0.2. The nonlinear viscoelastic

response again shows the storage and loss moduli monotonically increasing with shear

strain.

U.U I0

0.01

.5 0.005

0

-0.005

-0.01

-n ni0

U.UO

0.04

0.02

0

-0.02 •

-0.04

-n nr

Time (sec)

Figure 5-27. Simulated time histories of shear strain and shear stress for actin-avidin networks (cA
=20giM, R=0.01, and oo=0.05Hz)
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Figure 5-28. Theoretical (with nonlinear viscoelasticity) and experimental storage modulus (G') and
loss modulus (G") of actin-avidin networks (CAF =20CpM, R=0.01, and co•0.05Hz). Experimental data from
(Lee and Kamm, 2008).

The nonlinear viscoelastic network model captures the storage and loss moduli behavior

well in the linear viscoelastic region up to tan(y)-0.2. The nonlinear model also gives

some insight into a possible contributor to the plate slippage, since it predicts a transition

into the strain stiffening region at tan(y)-0.2 - precisely when the network detached from

the rheometer plates. This prediction of the onset of strain stiffening at tan(y)-0.2 is also

significant for future work since the strain stiffening behavior (and the regime's strain

threshold) has not been demonstrated in the technical literature.

The shear strain contributions for the three components of the rheological model

(fixed network/hyperelastic spring, relaxing network/hyperelastic spring, nonlinear

dashpot) are shown again in the simulated time histories of Figure 5-29a for an
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Figure 5-29. (a) Nonlinear scaling included in the simulated time history of an oscillating shear strain
(tan(y)=-0.2) for the three components of the rheological model (Fixed hyperelastic network spring,
Relaxing hyperelastic network spring, nonlinear dashpot), with the strain in the 8-chain network equal to
the total strain. (b) Time history for shear stress in relaxing 8-chain network, fixed 8-chain network, and
total stress.

oscillating shear strain of tan(y)--±0.2. As noted earlier, the strain in the fixed 8-chain

network is equal to the total strain. The network shear stress is now dominated by the

response of the much stiffer avidin-biotin cross-linkers (Figure 5-29b). The phase lag

between the strain input and stress response is relatively small as shown qualitatively in

Figure 5-29, and explicitly in Figure 5-30. Other than some early fluctuations in the

experimental data, the phase angle is relatively constant with a mild increase by
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tan(y)=0.2, mirroring the G" behavior in Figure 5-28. While the viscoelastic network

model also gives a constant response in Figure 5-30, it overestimates the phase lag

(although the difference would be reduced through a better fit with the G' values over the

strain range in Figure 5-28).
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Figure 5-30. Phase angle for nonlinear viscoelastic network model and experiments of actin-avidin
networks (cAF =20gM, R=0.01, and om=0.05Hz) (Lee and Kamm, 2008)

The nonlinear viscoelastic response also varies with frequency. These responses

are shown in Figure 5-31 for the nonlinear viscoelastic network model in terms of their

shear stress-strain behavior. The values are calculated by evaluating the shear stress

response for an shear strain input of tan(y)=±0.05 (see Figure 5-31 inset) oscillating at

varying frequencies, and taking r=(G*)tan(y). Note that the stress-strain behavior shown

in Figure 5-31 is limited to the linear response due to the small shear strain oscillation.
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Figure 5-31. Shear stress-strain response for nonlinear viscoelastic model of actin-avidin at multiple
frequencies (wo=0.005, 0.05, 0.5, 5 Hz) taking T=(G*)tan(y)

At the lowest frequency (0.005 Hz), the viscoelastic network approaches its relaxed,

equilibrium modulus. At the highest frequency (5 Hz), the network responds with the

short-term modulus. The complex, storage and loss moduli also vary with frequency (see

Figure 5-32). The storage modulus dominates the loss modulus by an order of

magnitude at almost all frequencies. Therefore the G', and consequently G*, are

relatively constant throughout the range of frequencies, which is consistent with

experimental actin-avidin networks, e.g. (Wachsstock et al., 1994) as shown in Figure 4-5

of Section 4.1, and reproduced here in Figure 5-33. The loss modulus increases for low

frequencies, but decreases for frequencies greater than 0.05-0.06 Hz. Note that the low

values of loss modulus correspond with low values of phase angle (i.e. 8<90, 0.16 rad.)
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Figure 5-32. Shear storage modulus (G') and loss modulus (G") for nonlinear viscoelastic model as a
function of frequency

for the range of frequencies, which is also consistent with experimental actin-avidin

networks, e.g. CAF=15LM and R=CcLCAF=O.02 from (Wachsstock et al., 1994). Figure 5-

33 shows the data by Wachsstock, et al. compared to the current viscoelastic model that

was fit to the data at a single frequency by Kamm and Lee ("o-=.05hz, cAF= 2 0g1M and

R=0.02). The magnitudes of the complex modulus are relatively constant across the

frequency range, although at different magnitudes, with the Wachsstock magnitudes of

G* higher due to higher concentrations of the stiff cross-linker avidin. Although the two

experimental data sets were of actin-avidin networks at different CAF and R values, the

trends of G* and 8 are very consistent over the range of frequencies.
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Figure 5-33. Complex shear modulus, G*, and phase shift, 8, as a function of frequency for theory (fit
to cAF=20gM, R=0.01) and experimental (cA~15prM, R=0.02) (Wachsstock et al., 1994) actin-avidin
networks

The SLS rheological model shown in Figure 5-15 can be used again to model the

viscoelastic stress relaxation and creep responses of the actin-avidin network as well.

The stress relaxation of the network is shown in Figure 5-34 for three shear strains that

linearly ramp from tan(y)-0.0-0.05, 0.1, 0.15 over t=-0.01 seconds and then are held

constant for t > 0.01 seconds. The response of the G" and 8 as a function of frequency

exhibit the peak at a=0.06Hz, which corresponds to a relaxation time of

tR=l/(2nco)=2.7sec. This peak in G" and 8 is consistent with the characteristic shear

relaxation time based on the rheological properties, which is tR="/G=3.2 sec. The

response at tan(y)=0.1 gives a short-term relaxation modulus of G,•4.8 Pa and a long-

term equilibrium relaxation modulus of G,5=4.0 Pa (see Figure 5-35).
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Figure 5-34. Simulated stress relaxation of an actin-avidin network (cF =20ptM, R=0.01) with
constant shear strains of tan(y)=0.05, 0.1, 0.15 (inset).
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Figure 5-35. Simulated stress relaxation modulus of an actin-avidin network (cF =20j±M, R=0.01)
with constant shear strains of tan(y)=0.05, 0.1, 0.15 (inset).

The creep response is given in Figure 5-36 for three shear stresses that linearly

ramp from t=0 to T=0.02, 0.04, 0.06Pa over t=-0.01 seconds and then are held constant for
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t > 0.01. The short-term response at c=0.04 gives a creep function of J0g=0. 2 3 Pa-1 and a

long-term equilibrium creep function of J,,=0.28 Pa l (see Figure 5-37).
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0.00
20

Time (sec)
Figure 5-36. Simulated creep response of an actin-avidin network (cAF =20pM, R=0.01) with constant

shear stresses of x=0.02, 0.04, 0.06Pa (inset).
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Figure 5-37. Simulated creep function of an actin-avidin network (CAF =20jpM, R=0.01) with constant
shear stresses of r=0.02, 0.04, 0.06Pa (inset).
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5.4 Stress relaxation of actin networks in a cell

geometry

The 3D viscoelastic cytoskeletal network model is now integrated with membrane

and nucleus models in a finite element-based micromechanical model of the cell which

provides the ability to assign and evolve mechanical properties and filament

concentrations as a function of location within the cell. The composite cellular

viscoelastic model is evaluated by observing the stress relaxation experienced by a cell

under compression. The 6gtm diameter cell (Figure 5-38) includes a nucleus (1jm

diameter) which will be modeled as a neo-Hookean material as a simplifying assumption,

Varying
Filament
Density

Membrane -

Nucleus

Dlasm

Figure 5-38. 3D whole cell geometry
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and a membrane (10nm thickness), which will be modeled as an orthotropic,

incompressible linear elastic material. The 3D finite element illustration in Figure 5-38

also notes that the cytoskeletal filament density can be varied as a function of radial

position. The viscoelastic actin-FLN network developed in the previous sections will be

employed as the load bearing cytoskeletal network within the cytoplasm. The actin

concentration will initially be held constant at CAF= 20pM across the cytoplasm. This

will be followed by an analysis of the cell model with the actin concentration varying

over three equally spaced regions of the cytoplasm: CAF,inner = 10M, CAF,niddle = 30iM,

CAF,outer= 1701M to simulate in vivo actin gradients.

5.4.1 Mechanical properties of the nucleus and membrane

The elastic modulus for nuclei have varied considerably, e.g. 18 Pa - 10kPa

(Tseng et al., 2004; Dahl et al., 2005; Mofrad et al., 2006). Nuclei are typically stiffer

and more viscous than the surrounding cytoplasm, as demonstrated by chondrocytes

nuclei which are three to four times stiffer and roughly twice as viscous as the cytoplasm,

as measured via micropipette aspiration (Guilak and Mow, 2000). The relaxation time

constant reported for mechanically and chemically isolated nuclei of chondrocytes is

tR=20, 25sec, respectively (Guilak et al., 2000), which is almost an order of magnitude

larger than the relaxation times for the actin-FLN and actin-avidin networks. The

viscoelastic timescale of the cytoplasm has been observed experimentally for fibroblasts

(tR-lsec) (Karcher et al., 2003) and actin networks in phagocytotic neutrophils (tR-2sec)

(Herant et al., 2006). The nuclei within viscoelastic cells are therefore often considered

to behave elastically due to their higher viscosity and the resulting slower response time

247



with respect to the surrounding cytoplasm (Mofrad et al., 2006). The contribution of the

nucleus to cellular mechanical properties has been measured through uniaxial

compression of the cell as well as isolated nuclei, with average properties for the nuclei

of endothelial cells found to be E=1000 Pa, KB=5000 Pa, and G=340 Pa (Caille et al.,

2002).

The lipid bilayer membrane behaves more fluid-like (Evans and Yeung, 1989;

Evans, 1989) with viscoelastic time constants on the order of 10s of jIs (Mofrad et al.,

2006) that would allow a minimal mechanical contribution during cellular deformations

such as axial compression or magnetocytometry (Karcher et al., 2003). The membrane,

in conjunction with the underlying cytoskeletal cortex, can undergo three basic modes of

deformation (Figure 5-39).

N 41 M, PL M, N, N,

N2

Equibiaxial Bending Shearing
Stretching

Figure 5-39. Membrane deformation modes

The membrane stretching and membrane bending are subject to the following constitutive

relations, respectively.
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N= ,Iv]{Krnli (5.55)
N2  1-v2 V1Jl.2

(M i} E d, )d' v[I , 11, (5.56)M2 = 12 -v ' v I, K.,J

where Ni are the normal stresses, M, are the moments, Emi are the membrane strains, xmi

=1/pi are the membrane curvatures (for i = 1, 2), dm is the membrane thickness and v is

the Poisson ratio. Noting that Elf=E22 for equibiaxial stretching, and using the definition

of the area modulus, kA, we can extract a relation for kA from Equation (5.55),

N, = in(I + v)1, (5.57)
1- v2

N = kA -. , (5.58)

kA = (5.59)
1-v

We can similarly note that El 1=-l22 for shear, and using the definition of the shear

modulus, ks, we can extract a relation for ks from Equation (5.55),

EN, = (1-dv),, (5.60)

N = ks -., (5.61)

ks = E, (5.62)
l+v

Finally, we recognize that Kml-Km2 for bending, and using the definition of the bending

modulus, KB, we can extract a relation for K from Equation(5.56),

M, = Em -d' (1+ V)Km,, (5.63)12(1 _ 1V2

M = KB -K,, (5.64)
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B = 12 - (5.65)

These equations can be rearranged to solve for the elastic modulus of the membrane, Em,

in terms of the area modulus, shear modulus, and membrane thickness,

E = d(k kk (5.66)

The Poisson ratio can similarly be given in terms of the area modulus, shear modulus,

k, -ksv =kA .s (5.67)
kA +ks

The lipid bilayer membrane has an area expansion modulus of 0.1-1.0 J/m2 , and 0.45 J/m2

for red blood cells (Waugh and Evans, 1979). The area modulus for undulating, wavy

membranes, such as those found in B lymphocytes, have been found to be on the order of

ten times smaller than area moduli for the smooth membranes of red blood cells (Castro

et al., 2008b), so we will assume kA=0.045 J/m2. Pure lipid bilayers have a negligible

shear modulus, while red blood cells have a membrane shear modulus of ks-10-6 J/m2

(Evans and Rawicz, 1990). The membrane is modeled in the finite element model with

shell elements as an orthotropic linear elastic material under plane stress conditions,

defined by the in-plane properties El, E2, G12, V12, and the transverse shear moduli G13,

G23 (and El, E2, G12, G13, G2 3>0 and I vyj<(EI/E2)12 for a positive-definite stiffness matrix

and material stability) (Lempriere, 1968). Assuming a 2D emulation of an undulating,

wavy membrane with a thickness of approximately d=l 10 nm, the in-plane elastic

modulus of the membrane is E,=E2= Em=2 00 Pa, and the in-plane Poisson ratio is

v,2 =0.6, with little contribution from in-plane or transverse shearing (G,2=GI3=G 23=

G.=Em/0=20 Pa).
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5.4.2 Axisymmetric cell model

During the axisymmetric simulations the cell is compressed by applying an axial

normal strain (92,total=-5%, -10%, -15%) on the top plate according to a linear ramp for

t=0.01 second, followed by a hold time of 20 seconds (see Figure 5-40b). Figure 5-40a

shows the undeformed axisymmetric mesh next to the deformed mesh (with axial normal

displacement contours at t-0.01 seconds, U2=-0.9pm or s2,total=-15% for a 61pm diameter

cell).

(a) Input (b)Displacement , 0.20

C 0.15

* -0.22,III080
-IL27
4.45-LS3
•as 0.05

2 > 0.00

L 0 10 20
I Time [sec]

Figure 5-40. (a) Axisymmetric mesh schematic with axial normal strain contours in deformed mesh, and(b) Input (total) strain time history for compression of a viscoelastic cell with loading ramp time of 0.01second and a hold time of 20 seconds.

The axial normal strain (822) of the elements within the compressed cell is shown in

Figure 5-46 for 1=0.01 and t-20 seconds. There is very little change in the axial normal

strain between the initially compressed state (Figure 5-41a) and the relaxed state (Figure

5-41b). But both plots help to identify the regions of largest compressive axial normal
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strain (blue) directly under the load along the center axis of the cell, as well as the regions

of little or no compressive axial normal strain (tan-orange), including the stiffer nucleus.

The contour plots

Strain (c22)
U.uu
-0.04:0020:04
008
.030-0,01S-012
0:14g--o.t6-0.10

:0 20
-022

S-0,24
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0.00

50.02
-. 004~-0*.-O.0
,0.10
-0.12
9.0-014
0:16-0.1
0.22.- 0.24

Figure 5-41. Element strain in the 2-direction (&22) within actin networks in a compressed cell (62,total=-15%) at two different times, (a) -=0.01 sec, immediately after compression and (b) 1=20 sec, in thecompressed but relaxed state.

of the axial normal stress (a22) of the elements within the compressed cell is shown

inFigure 5-42 for t=0.01 and t=20 seconds, illustrating the relaxation of compressive

axial normal stresses, especially in the regions with the highest compressive stresses that

are adjacent to the plates.

252



Stress (ac22)

4.01-m .0U•1r4.15

4.1104.214.449
4.4.I..554.62

4.76

Stress (022)
4.006

4A2

4154.402
,4.45

400

4.6476~we~

Figure 5-42. Element stress in the 2-direction (a 22) within actin networks in a compressed cell (C2,total=-15%) at two different times, (a) t=0.01 sec, immediately after compression and (b) t=20 sec, in thecompressed but relaxed state. Units are Pa.

The reaction force time history is shown in Figure 5-43 for an actin network

(cAF=20jpM, Lc=0.89im, 4,=3pm, a=1.08%) with the same nonlinear scaling for the

viscoelastic Maxwell leg developed in Section 5.4, and subject to the three compressive

strain cases (C2,total=-5%, -10%, -15%). The relaxation time constant is tR= 3.8 seconds.
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Figure 5-43. Relaxation of reaction force on a solid plate compressing a cell (E2,total=-5%, -10%, and-15%). Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a cytoplasm consisting of anactin network (cAf=20pM, Lc=0.9p•m, 1p=3.pm, a=l.1%).

Figure 5-43 shows the change in peak reaction forces with increasing strain loads, with

the cell fully relaxed by t=20 seconds. The relative amount of relaxation for each case of

compressive strain loading is shown in Figure 5-44 by normalizing the reaction forces
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Figure 5-44. Relaxation of reaction force on a solid plate compressing a cell (2,total=-5%, -10%, and-15%). Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a cytoplasm consisting of anactin network (cAF=2 OgM, Lc=0.9pm, 1p=3pm, a=l. 1%) .
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for each case, s2,towI=-5%, -10%, -15%, by their peak reaction force at t=0.01 sec, f=-0.4,

-1.2, -2.6 pN respectively. The results show that increasing compressive strain on

uniform actin networks in a cellular geometry results in more total reaction force

relaxation, but slightly less relaxation relative to the peak reaction force for each case.

These results will be compared to the poroelastic response of actin networks in a cellular

geometry in the following chapter.

5.4.3 Axisymmetric cell model with varying actin concentration

The actin concentration is now varied over three equally spaced regions of the

cytoplasm: CAF.inner = 10M, CAF,niddIe = 30M, CAF.outer = 1701pM to approximately

simulate in vivo actin gradients. The thickness of the region nearest the membrane (800

nm) is an upper bound for observed thickness of the actin cortex, <1 im (Hartwig and

Shevlin, 1986; Nakata and Hirokawa, 1992; Keller and Eggli, 1998; Lang et al., 2000).

Note that this concentration gradient creates intracellular regions with sharp transitions in

material properties. The change, and evolution, of the material response within a cell is

much smoother due to the diverse, and dynamic, nature of the different cytoskeletal

networks. Thus, while the concentration and mechanical contribution from actin

networks decrease from the cell membrane toward the nucleus, the structural role of

intermediate filaments increases due to their higher concentrations near the middle and

inner regions of the cytoplasm. The microtubules will likewise make a separate

contribution as their long, stiff structures extend from the centrosome toward the
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membrane, often while cross-linking with other cytoskeletal networks. These additional

networks will need to be modeled to capture the total micromechanical behavior of the

cell. The following analysis serves to show the mechanical contributions from actin

networks when evaluated with concentration gradients and boundary conditions (i.e.

membrane and nucleus) that are more representative of a cellular environment.

The axisymmetric simulations again compress the cell by applying a axial normal

strain (&2,total=-5%, -10%, -15%) on the top plate according to a linear ramp for t-0.01

second, followed by a hold time of 20 seconds (see Figure 5-45b). Figure 5-45a shows

the undeformed axisymmetric mesh next to the deformed mesh (with axial normal

displacement contours at t-0.01 seconds, U2=-0.91m or E2,total=-1 5% for a 6pm diameter

(a) Input (b)
Displacement , 0.20

-U

C 0.150
4. 6 U2
2 0 is > 0.10

10 10 20S0.05 ..................................................2 0.00L 0 10 20

Time [sec]
Figure 5-45. (a) Axisymmetric mesh schematic with axial normal strain contours in deformed mesh, and(b) Input (total) strain time history for compression of a viscoelastic cell with loading ramp time of 0.01second and a hold time of 20 seconds.

cell). The axial normal strain (822) of the elements within the compressed cell is shown in

Figure 5-46 for t-0.01 and t-20 seconds. There is again very little change in the axial

normal strain between the initially compressed state (Figure 5-46a) and the relaxed state
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(Figure 5-46b), but now with a sharper transition in strain between the outer and middle

regions and a larger maximum compressive strain. Both plots still help to identify the

regions of largest compressive axial normal strain (blue) directly under the load along the

center axis of the cell, as well as the regions of little or no compressive axial normal

strain (tan-orange),

Figure 546. Element strain in the 2-direction (E22) within actin networks in a compressed cell (82,totai-15%) at two different times, (a) t-0.01 sec, immediately after compression and (b) t=20 sec, in thecompressed but relaxed state.

including the stiffer nucleus. The contour plots of the axial normal stress (022) of the

elements within the compressed cell is shown in Figure 5-47 for t-0.01 and t=20

seconds, illustrating the relaxation of compressive axial normal stresses, especially in the

regions with the highest compressive stresses that are adjacent to the plates.
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Figure 5-47. Element stress in the 2-direction (a 22) within actin networks in a compressed cell (&2,total=-15%) at two different times, (a) t=0.01 sec, immediately after compression and (b) t=-20 sec, in thecompressed but relaxed state. Units are Pa.

The reaction force time history is shown in Figure 5-48 for an actin network

(cAF=10-170pM, Lc=0.89pm, lp=3pm, a=1.08%) with the same nonlinear scaling for the

viscoelastic Maxwell leg developed in Section 5.4, and subject to the three compressive

strain cases (92,total=-5%, -10%, -15%) . The relaxation time constant remains at tR = 3.8

seconds.
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Figure 5-48. Relaxation of reaction force on a solid plate compressing a cell (2,tw=-5%, -10%, and-15%). Cell consists of a neo-Hookean membrane and nucleus, and a cytoplasm consisting of three regions
of actin networks (cAF=10-170pM, Lc=0.9pm, lp=3pm, a=1.1%).

Figure 5-48 shows the change in peak reaction forces with increasing strain loads, with

the cell fully relaxed by =--10-15 seconds. The relative amount of relaxation for each case

of compressive strain loading is shown in Figure 5-49 by normalizing the reaction forces

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0 10

Time [sec]
Figure 5-49. Relaxation of reaction force on a solid plate compressing a cell (s2,tot=-5%, -10%, and
-15%). Cell consists of a neo-Hookean membrane and nucleus, and a cytoplasm consisting of three regions
of actin networks (CAF= 10-170lpM, Lc=0.9ptm, 1,=31m, a=1.1%).
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for each case, 82,total=-5%, -10%, -15%, by their peak reaction force at t-0.01 sec,fR=-1.5,

-3.9, -7.0 pN respectively. The model with three regions of actin concentration exhibits a

stiffer overall response, and the results still show that increasing compressive strain on

actin networks in a cellular geometry results in more total reaction force relaxation but

less relaxation relative to the peak reaction force.
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CHAPTER 6 Poroelastic network models

6.1 Background

Many previous approaches to modeling the biomechanical response of cells have

tried to capture either the cell's solid-like or fluid-like behavior. Viscoelastic continuum

models have followed this trend (Evans and Yeung, 1989; Needham and Hochmuth,

1992; Karcher et al., 2003), in some cases using a rheological model that includes both

fluid and solid behaviors (Bausch et al., 1998). Structural-based cytoskeletal models

such as tensegrity (Ingber, 1993) or cellular solids (Satcher and Dewey, 1996) simulate

the elastic response through the cooperative deformation of solid elements. Recent work,

however, has used a multiphasic approach (solid, liquid, and sometime ionic) to simulate

the interactions between the phases as observed experimentally in volumetric changes of

cells subjected to mechanical loads and/or osmotic pressures as well as a possible source

of time-dependent effects normally attributed to viscoelasticity (Guilak et al., 2006).

Biphasic interactions also occur during the creation of migratory protrusions necessary

for cell migration (Pollard and Borisy, 2003). The cylindrical-like protrusions, or

pseudopods, extend into the 3D ECM via a polymerization/depolymerization cycle of

cytoskeletal filaments at the inner surface of the membrane (Mahadevan and Matsudaira,

2000; Mogilner and Oster, 2003; Rafelski and Theriot, 2004) in conjunction with

localized cytosolic swelling and poroviscoelastic effects (Herant and Dembo, 2006). A

combination of polymerization and poroelastic effects have also been identified as

possible contributors to the acrosomal extension (Tilney and Inoue, 1985; Condeelis,
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1993). The polymerization process at the leading edge may also be bolstered by delivery

of actin monomers into protrusions via cytosolic fluid flow at rates not achievable by

diffusion alone, as measured in fibroblasts using the FLAP (fluorescence localization

after photobleaching) method (Zicha et al., 2003). Simulation of these types of effects

requires a modeling framework that captures the biphasic interactions of cytosolic fluid

flow with the cytoskeletal microstructure.

This chapter will simulate the time-dependent behavior of the cytoplasm through

a biphasic, poroviscoelastic approach that accounts for the spatial diffusion of the cytosol

within the porous, viscohyperelastic filament network. Flow-dependent viscoelastic

effects are due to cytosolic flow (with mass balance governing the pressure gradient), and

flow-independent (time-dependent) effects are due to the material shear viscoelasticity.

Both effects manifest themselves in an apparent viscoelastic behavior (e.g. stress

relaxation and creep) but for different underlying reasons. As a first approximation, the

material shear viscoelasticity for the modeled F-actin networks is neglected due to the

low loss modulus observed for in vitro gels at the frequencies of interest (Janmey et al.,

1991; Gardel et al., 2004a). This approximation will be re-evaluated at the end of the

chapter to compare the relative time-dependent contributions from poroelasticity and

material shear viscoelasticity .

6.1.1 Biphasic, poroelastic models: Terzaghi model

Although recent work has employed a poroelastic approach to cell and tissue

mechanics, the origins of poroelasticity date back much farther to applications of soil
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consolidation in geomechanics. The origins of equilibrium thermodynamics of fluid

transport in elastic solids can be traced back as far as Gibbs (Gibbs, 1878). Karl von

Terzaghi initiated the field of Erdbaumechanik, or soil mechanics, in 1925 when he

accepted an appointment at MIT and introduced a 1D model to describe the consolidation

of a column of soil subject to a constant vertical load and laterally constrained on its sides

(Terzaghi, 1925). This new soil mechanics approach considered the soil particles bound

together by molecular forces to form a porous, elastic material (see Figure 6-1).

+

skeleton particle fluid particle porous medium

Figure 6-1. Biphasic porous media in soil mechanics from the superposition of two continuous media

[adapted from (Mokdad et al., 2004)]

Terzaghi's ID consolidation framework relies on the following assumptions:

1. Fully saturated soil

2. Incompressible water and soil particles

3. Permeability-based kinetic law (Darcy's law)

4. Compression load and fluid flow are one-dimensional

5. Linear elastic solid "skeleton" phase

6. External loading is applied suddenly and remains constant

7. Homogenous soil layer

8. Strains are small
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The "effective" stresses within the elastic solid skeleton, oeff is then the pore pressure of

the interstitial fluid, pf, subtracted from the total stress, 0 otl, for the porous medium,

aef = rot,, - pf (6.1)

Since the solid phase is considered to be linearly elastic, Terzaghi used the following

relationship

aef= -- , (6.2)
m,

where my is a soil constant that acts as a measure of compliance. Terzaghi employs

Darcy's law, originally developed to evaluate the flow of water through sand bed filters

for the municipal water supply in Dijon, France (Darcy, 1856), in one dimension as a

mass balance for fluid flow at the boundary,

-k, aPf
vz=- (6.3)az

where vfz is the velocity (flow rate), z is the distance measured downward from the top

surface of the consolidating mass, kD is the Darcy or intrinsic permeability [m2], and p is

the dynamic viscosity [Pa-s]. The Darcy (intrinsic) permeability for soils is strongly

dependent on the fluid fraction, of, or porosity, (i.e. kD - Wm with m>3) (Detournay and

Cheng, 1993). There are many power law relationships for kD (see, for example,

(Torquato, 1991)), including the Carman-Kozeny law (Scheidegger, 1974) which gives a

power law relation of kD - 3/(1 _ )2 based on a conceptual model of packing of

spheres. Darcy's law can also be considered to be a linearized version of a quadratic

relation given later by (Forchheimer, 1901),

a vf, z + z  -V p (6.4)
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where a vf,, and p v, vary with viscous and inertial effects, respectively (Rahli et al.,

1996). Assuming that the total stress is constant, the governing equation of the time

evolution of the interstitial fluid pressure is a homogeneous diffusion equation,

p 2P2
I caP v = 0 (6.5)
at vz2

where c, is the coefficient of consolidation [m2/sec] given by

cV =kH (6.6)

where kH is the hydraulic permeability (kH=kdop) and yw is the specific weight of the fluid

(water in this case). And since the soil properties are considered to be homogeneous and

constant, c, and mv do not vary with depth, z, or time. Thus, soil with a high permeability

will consolidate more quickly, while a soil with a more compliant solid matrix will

consolidate more slowly. Results for the consolidation of a column of soil using

Terzaghi's model is shown in Figure 6-2 and Figure 6-3. The model has an initial step

in which a vertical pressure load is applied suddenly with the porous platen closed, and

then held constant. The material then consolidates during the following step with the

porous platen open, as shown through the decreasing normalized vertical displacement in

Figure 6-2. The open porous platen condition gives a zero pressure boundary condition

and allows fluid to flow out of the bottom surface. The normalized fluid pore pressure

evolution with time during the second step is shown in Figure 6-3. The normalized pore

pressure is shown for the material point just below the solid platen that is compressing

the sample. Both plots are given in normalized values to qualitatively illustrate general

1D poroelastic behavior rather than to quantify the response of a particular soil. The

color contours (inset in Figure 6-2 and Figure 6-3) represent the gradient in vertical
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stress (022) and pore pressure, respectively, after the porous platen has been opened, and

they are shown to illustrate the non-uniform response of poroelastic state variables.

Porous Platen

0.001 0.010 0.100 1.000

Time [min]

Figure 6-2. Normalized vertical displacement evolution of a soil in confined compression with a porous

platen boundary (p=O) and subject to a sudden vertical pressure load. Qualitative contour plot of vertical

stress (G22) shown in inset at t-=0.01min.

0 5 10 15 20

Time [sec]

Figure 6-3. Normalized pore pressure evolution of a soil in confined compression with a porous platen
boundary (p=0) and subject to a sudden vertical pressure load. Qualitative contour plot of pore pressure

shown in inset at t=0.01min (0.9sec).
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6.1.2 Biphasic, poroelastic models: Biot model

In 1941, Maurice Biot presented a more rigorous and complete treatment of

Terzaghi's soil consolidation theory that extended it to three-dimensions and generalized

it to include an arbitrary load that could vary with time, a compressible solid phase, and a

partially saturated porous medium (Biot, 1941). Other than those enhancements, Biot

made similar assumptions as Terzaghi (Biot, 1941):

1. Isotropic materials

2. Linear elastic solid

3. Water is incompressible

4. Permeability-based kinetic law (Darcy's law)

5. Strains are small

6. Constant reservoir temperature

7. No mass exchange between solid and fluid phases

8. Neglect inertial and body forces

The poroelastic constitutive relationship can be given by the stress-strain equation

2Gv,a e = - + a pfI = 2G + 2G ,I, (6.7)
1-2v,

where v, is the undrained Poisson ratio, s is the small strain tensor, e, is the volumetric

strain, and a is the ratio of the fluid volume gained (or lost) in a material element to the

volume change of that element, when the pore pressure is allowed to return to its initial

state (Detournay and Cheng, 1993). The last term in Equation (6.7) captures both the

fluid pore pressure response and the volumetric response of the solid phase. Note that
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Equation (6.7) reduces to the familiar constitutive relationship for drained linear elastic

material (i.e. for pf= 0). These parameters are defined to be

e, = tr(E), (6.8)

ro= -tr(o), (6.9)
3

a = P + K (6.10)
Pf

1 1U+VUT)=6 4 au!
2 (VI )= , (6.11)

3K -2G
v, = 203Ku +G) (6.12)

2(3K, + G)

where K and K, are the drained and undrained bulk moduli, respectively, ui is the solid

displacement vector of the porous solid with respect to the reference configuration, ptotal

is the total pressure. The variation of a is [0, 1], v, is [v, 0.5], and K. is [K, oo].

Biot's poroelastic framework also uses Darcy's law in 3D as the governing kinetic

law (neglecting body forces),

Q -k
V v- D Vp- (6.13)

where Q is the volumetric flow rate vector, A is the cross-sectional area, v/ is the fluid

velocity vector. Darcy's law is an empirical relation that can also be derived through the

Navier-Stokes equation by neglecting the inertial terms (Bear, 1972). The standard stress

equilibrium expression apply (neglecting body forces)

V.o=O. (6.14)

The continuity equation for the mixture is given by
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(6.15)

where v, is the velocity vector of the solid and b,=(l-4o) is the solid volume ratio. This

theory was later expanded by Biot to include flow of a compressible, viscous fluid

through a porous solid (Biot, 1956a; Biot, 1956b). Biot's formulation led to the

evaluation of many different poroelastic materials subjected to experimental conditions

beyond the constant load dictated by Terzaghi's model.

6.1.3 Biphasic, poroelastic models: Mow model

Following Biot's poroelastic framework, Van Mow developed a successful

biphasic theory to describe the time-dependent mechanical behavior of articular cartilage

and other hydrated soft tissues (Mow et al., 1980). As with Terzaghi's formulation, the

tissue was initially modeled as a linear elastic isotropic solid and an inviscid fluid that are

both homogeneous, immiscible, and incompressible, with the same continuity equation as

given in Equation (6.15) (Cohen et al., 1998).

os = oE - sPfI  (6.16)

Of = -of pIl (6.17)

aotal = , +of = 6 E -Pf1 (6.18)

where a. is the stress tensor of the solid phase, of is the stress tensor of the fluid phase, C,

is the total stress tensor, and OE is the elastic stress tensor of the solid phase which was

initially assumed to be isotropic and linear elastic according to

E = 2Gs+ A,s,I (6.19)
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where G,, ), are the Lam6 constants. It should be noted that the aggregate modulus,

Ha=2G, + 4, is a commonly used term in the description of the equilibrium behavior of

connective tissues (e.g. a larger water content leads to a smaller value of Ha , which in

turn permits a larger equilibrium deformation) (Woo et al., 1987). The equilibrium

equations for the total stress, artoa,, are the standard ones also used by Biot,

V total = 0. (6.20)

And the coupled momentum balance equations for the individual fluid and solid phases

are

V.GE - SVps +K,(vf -V)= (6.21)

- fVP, +K,(v, -v,)= (6.22)

where KD is the diffusive drag coefficient defined by (Lai and Mow, 1980)

K = (6.23)
kH

Here the hydraulic permeability, kH, of cartilage was taken to be isotropic and constant

throughout the material although it has been shown to be strain-dependent in cartilage

(Mansour and Mow, 1976; Lai and Mow, 1980) as shown in Figure 6-4.

ir
Apopws Cwww owRn rM

Figure 6-4. Articular cartilage permeability for varying compressive strain and applied pressure (Lai and
Mow, 1980)
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6.1.4 Poroelastic testing procedures

Permeability and other intrinsic biphasic material properties are determined by

standard experimental procedures such as uniaxial confined compression, unconfined

compression and indentation (Mow et al., 1980; Armstrong et al., 1984; Mak, 1986;

Cohen et al., 1998). The schematic for a confined compression experiment is shown in

Figure 6-5 along with the displacement profile, stress relaxation response, and calculated

permeability variation with compressive strain.

PPM
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Confined compression
experimental setup
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Input displacement profile

di (s)
Stress relaxation and curve fit

Figure 6-5. (a) Schematic for confined compression test, (b) Input displacement profile with ramp time
(to), and (c) Stress relaxation time history and curve fit of bovine cartilage (adapted from (Ateshian et al.,1997)).

The experimental stress relaxation and equilibrium data was used to calculate average

material constants (i.e. kH, Ha) of the poroelastic theory using a nonlinear regression
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analysis (Ateshian et al., 1997). An example of the results from an unconfined

compression experiment with a varying compressive loading rate is shown in Figure 6-6.

to
U

ment 4
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0

C
0E

C
0

a a, - - Z
unconfined compression non-aimensional time t/t

experimental setup

Figure 6-6. (a) Schematic for unconfined compression test and (b) Stress relaxation time history for a
ramped displacement with ramp time (to) and an internal material diffusion time (td) of bovine cartilage
(adapted from (Cohen et al., 1998)).

Evaluation of the unconfined axisymmetric material behavior under a compressive

loading rate (Figure 6-6) would not have been achievable using Terzaghi's model.

Although Mow's governing equations were essentially the same as Biot's, Mow and

others changed the constitutive relations appropriately for application to biomaterials

(e.g. altering the stiffness tensor for transversely anisotropic cartilage (Cohen et al., 1998)

and also including a viscoelastic solid phase (Mak, 1986; Setton et al., 1993; Suh and

DiSilvestro, 1999) to account for observed fluid flow-independent viscoelasticity in

articular cartilage (Hayes and Mockros, 1971; Hayes and Bodine, 1978)).
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6.1.5 Biphasic poroviscoelastic theory

The popular biphasic poroviscoelastic theory (BPVE) employs such a viscoelastic

solid phase to capture flow-independent viscoelasticity in addition to the poroelastic

behavior. Using the quasilinear viscoelasticity (QLV) theory of Fung (Fung, 1980) to

describe the solid phase (see Chapter 5 for details on QLV), Mak developed an isotropic

biphasic model of cartilage (Mak, 1986). The BPVE often modifies the QLV relaxation

function, G(t),

G(O)=1cln (6.24)
r, ), (6.24)

G(oo)= 1

in order for the viscoelastic stress to reduce to the elastic stress at equilibrium (Huang et

al., 2001). As before, the model considers a biphasic mixture of an incompressible solid

phase (composed of collagen fibers, proteoglycans, and chondrocytes), and an

incompressible fluid (i.e. the interstitial water) (Mow et al., 1980). The governing

equations for the BPVE are the same as for the poroelastic model, but with the elastic

stress term replaced with a viscoelastic stress based on the modified QLV.

V-a=V-avE -¢,Vpf =0 (6.25)

The inclusion of intrinsic viscoelasticity into porous media models has enabled them to

better capture the empirical behavior of connective tissues (i.e. compared with poroelastic

models) (DiSilvestro et al., 1999; Suh and Bai, 1997), with some exceptions (Soltz and

Ateshian, 2000). Other constitutive models have also been included within the biphasic

model framework that are specifically suited to connective tissues (e.g. conewise linear

elasticity (currier) for the bimodular stress-strain response of cartilage), but often only for

infinitesimal strains (Huang et al., 2001).
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The BPVE model has also been applied at the cellular level to chondrocytes in

cartilage. Guilak, et al. have employed the biphasic theory with established linear elastic,

hyperelastic, and bimodal compressible viscoelastic constitutive models for the solid

phase to evaluate the mechanical properties of chondrocytes during micropipette

aspiration (Trickey et al., 2000; Baaijens et al., 2005; Trickey et al., 2006). In these

studies, the chondrocyte is taken to be a homogeneous material with poroviscoelastic

properties, but without differentiation between the membrane, cytoplasm/cytoskeleton, or

nucleus. Mechanical properties such as the Poisson ratio, aggregate modulus, and

hydraulic permeability are determined by fitting the BPVE model to the experimentally

observed cellular creep and relaxation behavior (Trickey et al., 2000; Baaijens et al.,

2005; Trickey et al., 2006). A comparison between the ability of the biphasic elastic

model and BPVE model to fit the creep response of the chondrocytes after micropipette

aspiration resulted in a better fit for the BPVE model, suggesting that the creep response

was due to the intrinsic viscoelasticity of the solid phase (Baaijens et al., 2005). BPVE

models have also been used to evaluate the biphasic behavior and interactions between

chondrocytes cells and the surrounding extracellular matrix, (Guilak and Mow, 2000),

while linear biphasic models have been used for chondrocyte-pericellular matrix

interactions (Alexopoulos et al., 2005).

These poroelastic and poroviscoelastic models generally restrict their focus to

infinitesimal strains defined in Equation (6.11) (Hayes et al., 1972; Hori and Mockros,

1976; Armstrong and Mow, 1982; Holmes et al., 1985; Jurvelin et al., 1987; Mow et al.,

1989; Athanasiou et al., 1991). The biphasic model has been extended to finite

deformation (Holmes, 1986; Holmes and Mow, 1990; Kwan et al., 1990; Cohen et al.,
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1998) while capturing kinetic (creep, stress relaxation) behavior in addition to the

equilibrium behavior (Ateshian et al., 1997).

The contribution of flow-independent viscoelasticity in biphasic tissues has been

examined (Huang et al., 2001). A viscoelastic response in torsional shear depends on

intrinsic, flow-independent, viscoelasticity of the solid phase (Hayes and Mockros, 1971;

Zhu et al., 1993) since an isotropic poroelastic model subject to infinitesimal torsional

shearing gives an isochoric deformation, precluding interstitial fluid pressurization and

flow (Huang et al., 2001). However, anisotropy and higher order changes in compressive

strain (neglected by the assumption of infinitesimal strains) can produce significant

interstitial fluid pressurization and flow typified by porous media models (Mow et al.,

1980; Frank and Grodzinsky, 1987; Lai et al., 1991; Huang et al., 2001).

Attributing experimentally observed time-dependent effects solely to intrinsic

shear viscoelasticity of the solid phase has also been questioned. Triphasic models (solid,

fluid, ions) have been employed to evaluate tissue electromechanics, including the role of
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Figure 6-7. (a) Electrokinetic transduction in cartilage via confined compression setup with a streaming

potential, and (b) Oscillatory input displacement with measured load and streaming potential response

(adapted from (Frank and Grodzinsky, 1987))
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flow-dependent viscoelasticity (Frank and Grodzinsky, 1987; Lai et al., 1991; Huyghe et

al., 1997; Wilson et al., 2005a). Figure 6-7a shows the confined compression setup that

uses a streaming potential connected to a porous electrode to measure electrokinetic

transduction in cartilage. The streaming potential is a surrogate marker for the fluid

velocity as the fluid flow from the applied compression entrains mobile ions that pass

through the porous electrode, and the oscillatory response shown in Figure 6-7b cannot

be predicted from a flow-independent viscoelastic model (Frank and Grodzinsky, 1987).

Heterogeneous pressure gradients possible on length-, time-scales associated with

cell motility (Charras et al., 2005). The poroelastic model, unlike viscoelastic models,

accounts for transient, localized hydrostatic pressure gradients, and it is especially useful

in simulating blebbing cells and other cases in which hydrostatic pressure can be used to

power local cellular shape change (Charras et al., 2005). Cellular blebbing occurs during

apoptosis (Mills et al., 1998), cytokinesis (Fishkind et al., 1991; Burton and Taylor,

1997), and cell motility (Trinkaus, 1973; Friedl and Wolf, 2003) through a detachment of

the cell membrane from the actin cytoskeletal cortex followed by an inflation of the

detached membrane from cytosolic fluid flow (Charras et al., 2005). Charras, et al. used

a one-dimensional version of Mow's biphasic model (including Darcy's law) with a

linear elastic solid phase to estimate the diffusion distance of the pressure gradient for

observed blebbing timescales, concluding that poroelastic effects in the cytoplasm make a

key contribution to cell motility (Charras et al., 2005). Charras, et al. also experimentally

measured the drained bulk modulus of the network to be K,- 2 kPa (Charras et al., 2005).
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Figure 6-8. (a) Schematic of isochoric blebbing based on poroelastic fluid flow. (b) Confocal micrograph
of a GFP-actin-transfected cell during bleb expansion. Scale bar, 5 gm(adapted from (Charras et al., 2005))

While previous poroviscoelastic models (Mow et al., 1980; DiSilvestro et al.,

2001; Wilson et al., 2005b) did not include microstructural details, work on cervical

tissue by Febvay and Socrate (Febvay, 2003) includes fluid flow through filaments

modeled using 3D microstructurally-based constitutive models. Febvay and Socrate use

a numerical treatment of the interstitial fluid flow by considering the interstitial mass

diffusion physics analogous to heat diffusion physics, with the pore fluid pressure

equivalent to the temperature. The governing equation for the time evolution of the

interstitial fluid pressure, based on Darcy's law , is

Xf apf /at = kHV2p - trD (6.26)

where Xv = 4f /K, Of is the fluid volume fraction, Kf is fluid bulk modulus, kH is the

hydraulic permeability, pf is the dynamic interstitial fluid pressure, and D='2(L+LT ) is the

global rate of stretch (with velocity gradient L as defined earlier) (Febvay, 2003). This

method is integrated into a finite element model via a coupled thermal-mechanical
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analysis in which the coupling occurs through the "heat source" term, which in this case

is the macroscopic rate of volume change, tr(D).

Although Febvay and Socrate have included microstructurally-based constitutive

models for tissues, the simulation of biphasic behavior at the cellular level requires a

modeling framework that captures the biphasic interactions of cytosolic fluid flow with

the cytoskeletal microstructure. These poroelastic and poroviscoelastic models presented,

however, do not account for either the microstructural features of the cytoskeleton, their

mechanobiological contribution, or their microstructural rearrangement.

6.2 Poroelastic governing equations

This section gives the governing equations for the 3D partially saturated

poroelastic model which includes the 3D cytoskeletal network model developed in

Chapter 3. As mentioned previously, the material shear viscoelasticity for the modeled

F-actin networks is initially neglected due to the low loss modulus observed for in vitro

gels at the frequencies of interest (Janmey et al., 1991; Gardel et al., 2004a), and also to

allow for independent evaluation of fluid flow effects on material behavior. The

poroelastic framework is implemented using the Soils analysis and pore pressure

elements within the ABAQUS finite element software (Simulia Dassault Systenes,

Providence, RI, USA). The porous media is considered to consist of three possible

phases: a compressible wetting cytosolic fluid, trapped interstitial gas (compressible), and

an incompressible, hyperelastic cytoskeletal solid. The total Cauchy stress for the
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TrToa = Ts,CSK + T,,CL + Kf(J - 1)I - ,fI (6.27)

multiphase system where Ts.CSK is the Cauchy stress tensor of the solid cytoskeleton

(Chapter 3), Ts.cL is the Cauchy stress from the cytoskeletal cross-links (Chapter 4), Kfis

the bulk modulus of the fluid, J is the volume ratio, ; is the saturation factor (1.0 for a

fully saturated medium, 0.0 for unsaturated), and pf is the cytosolic fluid pore pressure.

Note that the saturation factor can also be varied as a function of time or as a function of

another state variable (e.g. stress, stretch, etc.). This framework also allows the

flexibility to distinguish between trapped fluid and fluid that is free to flow through the

cytoskeletal network. A cellular biomechanical analog to the trapped fluid would be fluid

trapped within organelles. Although trapped fluid is relevant to geophysical applications,

it is of less importance in evaluation of poroelastic fluid flow at the cell periphery (i.e.

through the actin cortex), and will be neglected. Equilibrium is satisfied in the weak

form through the principle of virtual work, and includes surface traction forces (1,,f) and

body forces per unit volume (f),

J(Tota :6D)dV= s (t, : &4S+ J: fV, (6.28)

where &D is the virtual rate of deformation, and & is the virtual velocity field. Ignoring

trapped fluid, the continuity equation follows the familiar form

V.(fv/f +,v,)=O, (6.29)

where vf and v, are the velocity vectors of the fluid and solid, respectively, oy is the fluid

volume ratio and 0,=(l- o) is the solid volume ratio. The void ratio is defined
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e = .(6.30)
1-

Darcy's law is once again employed as the kinetic law, in terms of the hydraulic

permeability, kH,, neglecting body forces (e.g. gravity),

Vf = -kH N, (6.31)

where x is the position vector of a material point in the current configuration and iH can

be anisotropic and is a function of the saturation, X, and the porosity, of, (or void ratio, e)

of the material. Darcy's law is applicable for the low Reynolds number (Re<<l)

environment of cytosolic fluid flow within cytoskeletal networks (Scheidegger, 1974;

Zhu and Skalak, 1988). We take these dependencies to be separable according to

kH = kzk, (6.32)

where kz(x, x) depends on the saturation with k,(x, 1)=1.0 and k&x, 4,) is the

permeability of the fully saturated medium. Nguyen and Durso observed that for steady

flow through a partially saturated medium, the permeability varies with X3 (Nguyen and

Durso, 1983), therefore kz is taken to vary with X3,

k, (x, X) X 3, (6.33)

noting that the permeability may also be defined (and updated) in terms of location and

stress, stretch, or another state variable.

The fluid flow throughout the network alters the volume of local regions within

the network. At each increment in time, the updated total volume ratio is the product of

the mechanical and swelling volume ratios (JT=JmJw), as described in Section 3.7 on

network swelling. For nearly incompressible materials, Jm-+1, thus the swelling stretch
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can be given in terms of the total volume ratio which includes the effects of local volume

change due to fluid flow,

A,, = 3--. (6.34)

Local volume changes in the ensuing poroelastic analyses can be tracked through the

fluid volume ratio or the total volume ratio, and will therefore enable the poroelastic

analyses to account for the contribution from network swelling.

6.3 Actin permeability

Poroelastic effects driven by heterogeneous pressure gradients are possible on

length-scales and time-scales associated with cell motility, pseudopod growth, and

blebbing (Charras et al., 2005; Herant and Dembo, 2006). Unfortunately, there is a dearth

of experimental data regarding the permeability of the actin cytoskeletal networks that

play such a key role in these cellular processes.

In support of their ID poroelastic model for cell blebbing, Charras, et al. have

given an estimate for the hydraulic permeability of actin networks following the relation

2
kH /3, (6.35)

where ý is the pore size (units of nm), and p the viscosity of the cytosol. They used an

effective cytoplasmic viscosity p-0.05 Pa-s based on the diffusion of molecules up to

100A, a pore size ~-10 nm derived from examination of electron micrographs of the cell

line and size-exclusion experiments, and a very low fluid fraction, f-40. 2, to give a

Darcy permeability of koD-l.7xl0"-pm 2 and a hydraulic permeability of kr-3.4x10' 5
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m4 /(N-s) (Charras et al., 2005). This permeability value for F-actin networks is on the

higher end of measured hydraulic permeabilities of networks within cartilage, k--10"5 -

10-16 (McCutchen, 1962; Lai and Mow, 1980; Trickey et al., 2000) which has porous

gaps between GAG chains on the order of single nanometers.

Diffusion-based effective cytoplasmic viscosities, however, can overestimate the

viscous nature of the cytosolic fluid by including all impediments to the diffusive motion:

binding and collision effects in addition to the fluid-phase viscosity (Kao et al., 1993).

This overestimation of viscosity would result in a smaller permeability estimate. The

fluid-phase cytoplasmic viscosity has been measured by picosecond polarization

microfluorimetry and found to be 28% greater than the viscosity of water, i.e. pf =

1.28x10-3 Pa-s (Fushimi and Verkman, 1991). The fluid-phase cytoplasmic viscosity is

-40x smaller than the effective cytoplasmic viscosity used by Charras, et al., which will

now lead to a higher value for the network's permeability. While the permeability for F-

actin networks has not been measured, it can be calculated using the Kozeny-Carman

theory (Scheidegger, 1974; Ethier, 1983; Curry, 1986) as a function of *f and the F-actin

diameter, dAF:

d2 3

K = , (6.36)
80(1-b 1

kH = , (6.37)

which have been used to estimate ko (i.e. kD=KI/) for actin networks within leukocyte

pseudopods (Zhu and Skalak, 1988) and keratocyte lamellipodia (Rubinstein et al., 2005).

Equation (6.36) follows the familiar form, ko=r jAf), of many empirical relationships

developed to calculate the Darcy permeability of monodisperse fibrous porous media
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with high porosities (Jackson and James, 1986; Ethier, 1991; Rahli et al., 1996), where r

is the filament radius and not the pore size (4). Before calculating the permeability of an

F-actin network, however, we need to establish the fluid volume ratio, or porosity, for the

region of interest within the network. Based on an average F-actin diameter of 7 nm

(dAF=6-8nm, (Pryzwansky et al., 1983)) and an average filament spacing of h=50 nm,

with measured values from h=20 nm (Luby-Phelps et al., 1986) to h=100 nm (Hartwig

and Shevlin, 1986), the porosity of the F-actin network within a pseudopod is ýf=0.954

(Zhu and Skalak, 1988). The Darcy permeability is then ki=2.6x10" 4 jm 2, on the same

order as estimated by (Leshansky, 2006) for actin tails in Listeria., who also estimates the

tail porosity at qo=0.982-0.995. Note that the estimate for kD is also roughly equivalent to

that of (Charras et al., 2005), although they use a different approach and a much lower

porosity of of = 0.2. The hydraulic permeability within the F-actin network in a

pseudopod is found from Eqs. (6.36) and (6.37) to be kH=2x10-13 m4/(N-s).

4

kH, = 2x10-3 N (6.38)

The porosity of a more dense F-actin network within a sperm cell during the acrosomal

process is o4 =0.82 (Zhu and Skalak, 1988), resulting in a smaller permeabilities of

ko =0.1x10 4 jim 2 and kn=0.1xl0 13 m4/(N-s).

Existing experimental equipment for measuring poroelastic behavior (e.g. in

confined/unconfined compression conditions) of biological tissues are ill-suited for

measuring permeability of actin networks. Even highly concentrated actin networks,

with elastic moduli on the order of 1-10 Pa, are not stiff enough to be used in unconfined

compression setups. The abundance of small diameter (-7nm) filaments with lengths of
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1-20 Am can additionally present clogging problems for the porous platens utilized in

confined compression setups. A MEMS-based assay might be able to overcome these

challenges to provide actin permeability measurements that would be eagerly welcomed

by scientists and engineers evaluating actin networks within in vivo, in vitro, and in silico

environments.

6.4 Confined and unconfined compression simulations

Here we apply the poroelastic model described in Section 6.2 with the new

estimates for actin permeability (Section 6.3) in confined and unconfined compression

simulations. The confined compression simulation applies a sudden vertical pressure

load (Pinput10 Pa), then opens the porous platen. The material consolidates with the

porous platen open, as shown through the decreasing normalized vertical displacement in

Figure 6-9. The open porous platen gives a zero pressure boundary condition and allows

fluid to flow out of the bottom surface. The normalized fluid pore pressure evolution

with time during the second step is shown in Figure 6-10. Although the pore pressure

will vary by position, the normalized pore pressure is shown for the material point just

below the solid platen that is compressing the sample. The two F-actin networks shown

in Figure 6-9 and Figure 6-10 represent the two types of cortical actin regions (in an

acrosome or pseudopod) whose permeability was calculated in the previous section.

Here, they share common F-actin network properties (e.g. CAF=170M, Lc=1jIm, lp=3Am,

a=l%, Lc=lpm), but different permeability values in order to see the impact of

permeability in confined compression. The color contours (inset in Figure 6-9 and
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Figure 6-10) again represent the gradient in vertical stress (a22) and pore pressure,

respectively, after the porous platen has been opened, and they are shown to illustrate the

non-uniform response of poroelastic state variables. Figure 6-10 shows the transient

0.000

0.005

0.010

0.001 0.010 0.100 1.000

n4/N-s

10.000

Time [min]
Figure 6-9. Vertical strain magnitude of F-actin networks (k-0.1xl0"' 3, 2x10 -3 m4/N-s) in confinedcompression with a porous platen boundary (p=O) and subject to a sudden vertical pressure load ofp=10Pa.
Inset: Time history of applied pressure load, and qualitative contour plot of vertical stress (G22) shown ininset at t-10min.
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Figure 6-10. Time evolution of fluid pore pressure of top nodes below solid platen, normalized byequilibrium pore pressure in confined compression with a porous platen boundary (p=O) and subject to asudden vertical pressure load of p=10OPa. F-actin network (k-=O.1xl0 ", 2x10-" m4/N-s). Inset: Timehistory of applied pressure load, and qualitative contour plot of pore pressure shown in inset at t=10 Omin.

nature of the poroelastic network, as fluid pore pressure (of the point just below the solid

platen) peaks several seconds after the input pressure load, then begins to relax to an

equilibrium value. The pore pressure overshoot (pf > pi,,put) in Figure 6-10 experiences a

delayed response for the smaller value of permeability, along with a more gradual

relaxation to the equilibrium value. This behavior emphasizes the role of permeability on

the transient response of the material, even though it was already defined in relation to

the fluid velocity.

A similar simulation, unconfined compression, can be performed to evaluate the

transient, poroelastic response of F-actin networks in more than one dimension. The

unconfined compression simulation linearly ramps to a constant vertical displacement on

the top surface (C2,total=-15%) with the ramp occurring from t=-0-0.1 seconds (see Figure
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5-45), with zero pressure boundary conditions on the side surfaces. The top and bottom

surfaces of the sample are restrained by solid (nonporous) platens. After the vertical,

compressive

2 Input 0 1
L Displacement

p=o

C 0.15

.5 0.10

• 0.05

. 0 250 50
0 250 500

Time [sec]
(a) Boundary condition schematic (b) Input displacement time history

Figure 6-11. (a) Boundary conditions and (b) Input displacement time history for unconfined compressionsimulation

displacement is applied, the network initially expands in the lateral direction (1-direction

in Figure 5-45). Then as the fluid begins to flow radially out of the specimen's

periphery, the reaction force on the solid platen begins to relax and the side surfaces

begin to contract inward. The lateral strain contraction and the force relaxation time

histories are shown in Figure 6-12 for an actin network (CAF=170pM, Lc=~1m, 1 =3jm,

a=1%) at two different hydraulic permeabilities, k,=0.1x10' 3 m4/N-s, 2x10 "'3 m4/N-s, in

order to see the impact of permeability in unconfined compression.
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Figure 6-12. (a) Reaction force normalized by the peak reaction force, and (b) Lateral strain/vertical strainof F-actin networks (ki=O. lxl0 "13, 2x10 " m4/N-s) in unconfined compression with porous side boundaries
(p=O) and 2=- 15% compressive vertical strain with a peak lateral strain of E1=-8.4% for both cases

The reaction forces for the cases of kH=0.1x10-'3 m4/N-s, 2x10' 3 m4/N-s in Figure 6-12a

are normalized by their peak reaction forces at 1--.1 sec, fR=92.3, 80.0 9iN. The

corresponding reaction forces at t=500 sec are fR=87.1, 57.8 gtN. The ratios of lateral

strain to vertical strain for the cases of small and large permeability are shown in Figure

6-12b as a poroelastic analog to a "Poisson ratio", with a common peak lateral strain at

t-0.1 sec, 6i,peak=- 8.4 %. Figure 6-12b illustrates that while the sides of the specimen do

expand and contract, the lateral strains are roughly one-half of the imposed vertical strain.

The corresponding lateral strains for the small and large permeability cases at t-500 sec

are ej=-8.3%, -7.9%, respectively. The denser actin network, with a lower porosity and

permeability (k=-0.1x10 "'3 m4/N-s), experiences much less relaxation (both in reaction

force and contraction of the lateral sides) due to the reduced fluid flow out of the

network.

The relaxation of actin networks in unconfined compression also varies as a

function of the applied compressive strain. The actin network representative of the
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pseudopod (cAF=170 M, Lc=lgm, lp=3gm, a=l%, kH=2x10' 3 m4/N-s) is evaluated in

Figure 6-13 to see the impact of varying the compressive strains on the reaction forces.
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Figure 6-13. (a) Reaction force normalized by peak reaction forces and (b) Reaction force magnitudes of
an F-actin network (kH= 2x10 -13 m4/N-s) in unconfined compression with porous side boundaries (p=0) and
5%, 10%, and 15% total compressive vertical strain
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Figure 6-14. (a) Lateral strain normalized by peak lateral strain and (b) Lateral strain/vertical strain of anF-actin network (kH= 2x10- 13 m4/N-s) in unconfined compression with porous side boundaries (p=0) and
5%, 10%, and 15% total compressive vertical strain

The vertical displacements are applied on the top surface (c2,totl=-5%, -10%, -15%)

following a linear ramp from t=0-0.1 seconds, then held constant for 500 seconds. The
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reaction forces in Figure 6-13a for the cases of Ztogal= -5%, -10%, -15% are normalized

by their reaction forces at t=0.1 sec,fS=7.1, 23.8, 80.0 gN respectively (seen in Figure 6-

13b). The corresponding reaction forces at 1=500 sec are f,•=6.8, 20.7, 57.8 pN. The

lateral strains in Figure 6-14a for the cases of c2,toaI=-5%, -10%, -15% are normalized by

their lateral strains at t=0.1 sec, eI,,pk=2 .6 %, 5.4%, 8.4% respectively. The ratios of

lateral strain to vertical strain for the three vertical strain cases are shown again in Figure

6-14b as a poroelastic analog to a Poisson ratio. Figure 6-14b illustrates that while the

sides of the specimen do expand and contract, the lateral strains are still just less than

one-half of the imposed vertical strain. The corresponding lateral strains at t=500 sec are

e,=2.5%, 5.2%, 7.9%. The results show that increasing compressive strain on actin

networks results in more relaxation (both in reaction force and contraction of the lateral

sides) due to the increased fluid loss from the network.

The transient response of actin networks under unconfined compression also

varies as a function of lateral location. The fluid pore pressures will be highest at the

center of the network (Figure 5-45), decreasing to zero at the side boundary of the

network, with the pressure gradient relatively flat toward the center. This pore pressure

gradient will also evolve over time, as shown in Figure 6-15.
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Figure 6-15. Pore pressure time history for an F-actin network (kn=2xl0 -s3 m4/N-s) in unconfined
compression with porous side boundaries (p=0) and 15% compressive strain with a ramp time of 0.1
second. Pore pressure data are from nodes equidistantly spaced from the specimen's center to just inside the
outer boundary as shown in the pore pressure contour plot on the right.

The pore pressure response in Figure 6-15 represents the time history of several nodes

(equidistantly spaced, see pore pressure contour plot in Figure 6-15) following the radius

from the specimen's center to just inside the outer boundary surface. The pore pressure

on the outer surface is set to p=O. Note that the nodes just inside the outer boundary

experience an initial spike in pore pressure that decreases for nodes located toward the

center. The pore pressure of all nodes decreases with time, with the largest decrease

occurring for nodes located near the side boundary as they experience more fluid loss.

Increasing the ramp time for the applied compressive displacement will eliminate the

pore pressure spike in the nodes near the boundary (Figure 6-16). While this is a method

to avoid the initial pore pressure spike, it can obscure the initial poroelastic response of

the network since considerable fluid flow (and therefore stress relaxation) occurs during

the increased ramp time.
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Figure 6-16. Pore pressure time history for an F-actin network (kH=2xl0 13 m4 fN-s) in unconfmined
compression with porous side boundaries (p=O) and 15% compressive strain with a ramp time of 250
seconds. Pore pressure data are from nodes equidistantly spaced from the specimen's center to just inside
the outer boundary as shown in the pore pressure contour plot on the right.

The filament swelling stretch evolution in time is shown in Figure 6-17. As was

the case for the pore pressure time history plots, the swelling stretch response represents

the time history of several nodes (equidistantly spaced, see ,w contour plot in Figure 6-

17) following the radius from the specimen's center to just inside the outer boundary

surface. The swelling stretch on the side boundary surface experiences an initial increase

as fluid flows into nodes on the side boundary after the specimen is initially compressed.

This initial increase is reduced almost immediately as the zero pressure boundary

condition is applied and then continues to relax as fluid continues to flow out of the side

boundary at a steadily decreasing rate. The node just inside the outer boundary

experiences a similar initial spike which decreases for nodes located toward the center

that experience less initial influx of fluid. The swelling stretch of all nodes decreases

with time, with the largest decrease occurring for nodes located near the side boundary as

they experience more net fluid loss from their original state.
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Figure 6-17. Swelling stretch time history for an F-actin network (k,=2xl0 -3 m4/N-s) in unconfined
compression with porous side boundaries (p=O) and 15% compressive strain with a ramp time of 0.1
second. Swelling stretch data are from nodes equidistantly spaced from the specimen's center to just inside
the outer boundary as shown in the swelling stretch contour plot on the right.

6.5 Compressed cell simulation

6.5.1 Poroelastic cell compression

The 3D poroelastic cytoskeletal network model is now integrated with membrane

and nucleus models in a finite element-based micromechanical model of the cell, as was

done with the viscoelastic network model in the previous chapter. The composite cellular

poroelastic model is evaluated by observing the relaxation experienced by a cell under

compression in the absence of any viscoelastic properties. The geometry and properties

of the 6plm diameter cell, and its nucleus and membrane, remain the same as described in

Section 5.5, and are summarized in Table 3-1. The nucleus is modeled as nonporous,

neo-Hookean material with the membrane modeled as a nonporous, orthotropic linear

elastic material.
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NUCLEUS CYTOPLASM MEMBRANE
Radius = 0.5pm Radius = 0.5-3.0Opm Radius = 3.00-3.011gm
E = 1000 Pa CAF= 20pM E,= 200 Pa
K = 5000 Pa L,= 0.9gm G,= 20 Pa
G = 340 Pa ,p = 3.0gm v,= 0.6

ac= 1.1%
kH= 2x10 -13 m4/N-s

Table 6-1. Summary of geometry and key mechanical properties for cellular model

The poroelastic actin network developed in the previous section will be employed as the

load bearing cytoskeletal network within the cytoplasm. The actin concentration will

remain constant across the cytoplasm: CAF= 201tM.

6.5.2 Axisymmetric poroelastic cell model and results

During the axisymmetric simulations the cell is compressed by applying a axial

normal strain (E2,total=-5%, -10%, -15%) on the top plate according to a linear ramp for

t=-0.01 second, followed by a hold time of 1.0 second (see Figure 6-18b). Figure 6-18a

shows the undeformed axisymmetric mesh next to the deformed mesh (with axial normal

displacement contours at t=0.01 seconds, U2=-0.9jim or 62,toa=-15% for a 6gm diameter

cell). The time-scale of relevance for the poroelastic response is a function of the

permeability and porosity of the biphasic network. The following section will show that

the previously determined permeability and porosity of the actin networks will drive the

compressed networks to fully relax within 1.0 second under different axial normal strains.
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Figure 6-18. (a) Axisymmetric mesh schematic with axial normal displacement contours in deformed
mesh at t=0.01sec for 82,total=15%, and (b) Input (total) strain time history for compression of a poroelastic
cell with loading ramp time oft=0.01sec and a hold time of t=1.0sec.

The axial normal strain (&22) of the elements within the compressed cell is shown in

Figure 5-46 for t=0.01 and t=1.0 seconds. There is little change in the axial normal strain

between the initially compressed state (Figure 5-46a) and the relaxed state (Figure 5-

46b). But both plots help to identify the regions of largest compressive axial normal

strain (blue) directly under the load along the center axis of the cell, as well as the regions

of little or no compressive axial normal strain (tan-orange), including the stiffer,

nonporous nucleus. Note that there is a small region near the points where the cell

membrane diverges from loading plates in Figure 5-46 where there is a positive axial

normal strain. This positive axial normal strain is due to the shearing region between the

compressed center and the less deformed outer region of the cell (see shear contour plots

in Figure 6-20).
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Figure 6-19. Element strain in the 2-direction (6 22) within actin networks in a compressed cell (2,total=-15%) at two different times, (a) t=0.01 sec, immediately after compression and (b) r=1.0 sec, in the
compressed but relaxed state.
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Figure 6-20. Element shear strain (&12) within actin networks in a compressed cell (E2,total= -15%) attwo different times, (a) t=0.01 sec, immediately after compression and (b) t-1.0 sec, in the compressed but
relaxed state.
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Figure 6-21. Element axial normal stress (022) in a compressed cell (e2,total = -15%) at four different
times, (a) t-0.01lsec, immediately after compression, (b) t-0.02sec, (c) t=0.05sec, (d) t=1-.0 sec, in the
compressed but relaxed state. Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a
poroelastic cytoplasm consisting of an actin network (cAl=20pM, Lc=0.9pm, l,=3 pm, a=1l.1%, kH/= 2x 10-3
m4/N-s), Units in Pa.

The axial normal stress (a 22) of the elements within the compressed cell is shown in

Figure 6-21 for t=-0.01 through t=-1.0 seconds. There contour plots show the progression

from the initially compressed state (Figure 6-21 a), in which high pore pressures along the
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center axial normal axis leads to higher stresses, to the relaxed state (Figure 5-46b) in

which the pore pressure has become homogenous across the cell, and with lower,

compressive stresses now shown along the center axial normal axis.

The relative amount of relaxation for each case of compressive strain loading is

shown in Figure 5-48 by normalizing the reaction forces for each case, 62,total=-5%, -10%,

o 1^
. 1.0

0
LL.
C 0.9-
0

0.8 -

0.7 -

0• .6-

-- E~2,total= 15%
- - -- 82,total=10%
........ E2,total=5%

...................................

------------------

0.0 0.5 1.0

Time [sec]
Figure 6-22. Relaxation of reaction force normalized by peak reaction force on a solid plate
compressing a cell (2,total=-5%, -10%, and -15%). Cell consists of a neo-Hookean nucleus, orthotropic
membrane, and a poroelastic cytoplasm consisting of an actin network (cAr=20tM, Lc=0.9ptm, 1p=31m,
at=l.l%, kH= 2x10-3 m4/N-s) .
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Figure 6-23. Reaction force/displacement relaxation for a solid plate compressing a cell (E2,total=-5%,
-10%, and -15%). Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a poroelastic
cytoplasm consisting of an actin network (c~y=20pM, Lc=0.9pm, 1p=3pm, a=1.1%, kH= 2x10-3 m4/N-s) .

-15%, by their peak reaction force at t--0.01 sec, fR=-0.5, -1.8, -5.7 pN respectively.

Figure 6-23 contains the relaxation of the reaction force normalized by the axial normal

displacement, as a function of time, illustrating greater relaxation in the overall stiffness

of the cell with greater amounts of axial normal compression. Figure 5-49 shows the

reaction force time histories and the change in peak reaction forces with increasing strain

loads, with the cell fully relaxed by t=l.0 second. The results show that increasing

compressive strain on actin networks in a cellular geometry results in more total reaction

force relaxation and more relaxation relative to the peak reaction force for each case.

Note that the reaction force magnitudes in Figure 5-49 scale nonlinearly with strain due

to the nonlinear network elasticity.
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Figure 6-24. Relaxation of reaction force on a solid plate compressing a cell (c2,t--5%, -10%, and-15%). Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a poroelastic cytoplasm
consisting of an actin network (cAF=20pM, Lc=0.9in, l=3pým, a=l.1%, kH= 2x10-3 m'4N-s).

The relaxation of the reaction force for the poroelastic cell is due to the reduction

in pore pressure gradients throughout the cell. Recall that this simulation does not permit

fluid flow across the membrane or into the nucleus. The compression of the cell

therefore creates pore pressure gradients throughout the cytoplasm (Figure 6-25a).

Figure 6-25b illustrates the uniform pore pressure field when the cell is in the relaxed

state. The poroelastic network model also gives insight into the average mechanical

response of the microstructural features of the cytoskeleton. The swelling stretches are

shown in Figure 6-26, illustrating the localized flow away from the regions of highest

compressive stresses. The undeformed cell starts with a filament stretch of one ()1f= 1),

but Figure 6-27a shows the average filament stretch increases within the actin networks
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Figure 6-25. Pore pressure in a compressed cell (2,total= -15%) at four different times, (a) t=0.01sec,
immediately after compression, (b) t=0.02sec, (c) t-0.05sec, (d) t=1.0 sec, in the compressed but relaxed
state. Cell consists of a neo-Hookean nucleus, orthotropic membrane, and a poroelastic cytoplasm
consisting of an actin network (cAF=20pM, Lc=0.9pm, lp=3pm, (a=l.l%, kH = 2x101 3 m4/N-s), pore
pressure units in Pa.
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Figure 6-26. Swelling stretch within actin networks in a compressed cell (E2,total= -15%) at four
different times, (a) t=0.01 sec, immediately after compression, (b) t=0.02sec, (c) t=0.05sec, (d) t=1.0 sec, in
the compressed but relaxed state.
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Figure 6-27. Filament stretch within actin networks in a compressed cell (C2,total= -15%) at four
different times, (a) t=0.01 sec, immediately after compression, (b) t=0.02sec, (c) t=0.05sec, (d) t=-1.0 sec, in
the compressed but relaxed state.

just after the cell has been compressed (t =0.01 sec), especially near the center axis of the

cell where the macroscopic deformation and pore pressures are the highest. The contours

of highest filament stretch in Figure 6-27a correlate closely to the contours of highest
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pore pressures in Figure 6-25a, demonstrating the microstructural effects of cytosolic

fluid flow through actin networks. Just as Figure 6-25b shows a uniform pressure field

throughout the cell, Figure 6-27b also shows a more uniform, relaxed stretch field (f--

1), with some slightly compressed filaments in small regions near the plates with Af< 1

due to decreased fluid volume ratios (with respect to the initial state). Note that there is

still some positive filament stretch in the uniform green region in Figure 6-27b due to the

deformed state of the cell, however it is now reduced to less than Af< 1.003 (compared to

peak values of 4< 1.015 in Figure 6-27a).

The average initial angle of the filaments within the network model is 9fo = 54.70,

as discussed in Chapter 3. This filament angle is taken with respect to the maximum

principal stretch direction of the 8-chain network unit cell. Figure 6-28 shows that the

average filament angle within undeformed areas (i.e. away from the center axis of the cell

where the macroscopic deformation is the highest) remains approximately of= Of= 54.70

(with Of relative to the maximum principal stretch direction for each element). While the

filament stretch in the relaxed state (Figure 6-27b) correlate well with the relaxed

pressure field in Figure 6-25b, the filament angle contours in Figure 6-28 correlate well

to the axial normal strain (c22) contours in Figure 5-46 for both the peak and relaxed

states, reinforcing the observation that macroscopic network deformations are primarily

accommodated through rotation of the network filaments, with significantly less filament

stretch. A connection between the filament angle and the absolute orientation is found

through the corresponding angle between the maximum principal stretch direction and

the horizontal (2-direction), given in Figure 6-29 and which only exhibit subtle changes

from the peak state to the relaxed state.

305



Angle (Of)

Broo
5.60

5090
5 576

50:1

[4'-

Angle (Of)

.0

2

L

Angle (Of)
12.0
St'O

[d 

061

[ 

1

$0.169.647.145.6

Angle (Of)
2.o

5610

546131.1
41.1

Figure 6-28. Angle between filaments and the maximum principal stretch direction of the 8-chain
network unit cell for actin networks in a compressed cell (82,total= -15%) at four different times, (a) t-0.01
sec, immediately after compression, (b) t-0.02sec, (c) t--0.05sec, (d) t=-1.0 sec, in the compressed but
relaxed state. Angles shown in degrees.
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6.5.3 Poroviscoelastic cell compression

The 3D poroelastic and viscoelastic cytoskeletal network models are now

combined with the membrane and nucleus models in a finite element-based

micromechanical model of the cell. The composite cellular poroviscoelastic model is also

evaluated by observing the relaxation experienced by a cell under compression. The

geometry and properties of the 61Lm diameter cell, and its nucleus and membrane, remain

the same as before. In the first simulation, the reaction force time histories are compared

between the viscoelastic, poroelastic, and poroviscoelastic cytoskeletal network models

within a cell compressed by applying a axial normal strain (p2,to.=-10%) on the top plate

according to a linear ramp for t-0.01 second, followed by a hold time of 20 seconds.

Figure 6-30 shows the reaction force time histories and the change in peak reaction

forces, with the cell fully relaxed by t=20 seconds. The poroelastic response provides a

minimal contribution to the poroviscoelastic response for t > 1 second since the pressure

field within the cell has equilibrated.
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Figure 6-30. Relaxation of reaction force on a solid plate compressing a cell (2,tota=-10%). Cell
consists of a neo-Hookean nucleus, orthotropic membrane and either a poroelastic, viscoelastic, or
poroviscoelastic cytoplasm consisting of an actin network (cAF=20pM, Lc=0.9pm, 1p=3gm, a=1.1%, kH=
2x10 13 m4/N-s) .

The relative amount of relaxation for each case is shown in Figure 6-31 by

normalizing the reaction forces for each case (viscoelastic, poroelastic, poroviscoelastic)

by their peak reaction force at t=0.01 sec, fR-=-1.2, -1.8, -1.9 pN respectively. The

viscoelastic response relaxes at a much larger time-scale, as expected, while the short-

term response for t < 1 second (inset of Figure 6-31) shows a larger impact of poroelastic

effects on the poroviscoelastic relaxation response.
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Figure 6-31. Relaxation of reaction force normalized by peak reaction force on a solid plate
compressing a cell (2,tot=-10%). Cell consists of a neo-Hookean nucleus, orthotropic membrane and
either a poroelastic, viscoelastic, or poroviscoelastic cytoplasm consisting of an actin network (cF=20pM,
Lc=0.9pm, 1p=3pm, a=l.l%, kH= 2x10-13 m4MN-s).

The time-scale of relevance for the poroelastic response is a function of the

permeability and porosity of the biphasic network. A second set of actin properties for a

denser network (of=0.82) and smaller permeability (k-=O.1x10 "' 3 m4/(N-s)) during the

acrosomal process in sperm cells was given in Section 6.3. This denser, less permeable

network will now be used to compare the poroviscoelastic response of networks with

different porosities and permeabilities in the same cell geometry and boundary conditions

as previously used. Figure 6-32 shows the reaction force time histories for the

poroelastic and poroviscoelastic response of the two networks. The poroelastic response

from the denser network, inset (b) of Figure 6-32, exhibits much less relaxation due to

restricted fluid flow and consequently leads to less initial relaxation in the porovisoelastic

response (inset (a) of Figure 6-32). Conversely, the pressure gradients within the denser
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actin network take longer to dissipate, thereby increasing the relevant time-scale for the

poroelastic effects compared to the more porous network.
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Figure 6-32. Relaxation of reaction force on a solid plate compressing a cell (2,total=-10%). Cell
consists of a neo-Hookean nucleus, orthotropic membrane, and either a poroelastic or poroviscoelastic
cytoplasm consisting an actin network (cM;=20pM, Lc=0.9 pm, lp=3pm, a=l.l%) with either "-=0.95, kH=
2x10- 3 m4/N-s or "=0.82, kH= 0.1x10- 3 m4/N-s.

The relative amount of relaxation for each case is shown in Figure 6-33 by again

normalizing the reaction forces for each poroviscoelastic case (of=0.82, kn=0.1x10 1'3

m4/(N-s); and 4=0.95, kH=2.0xl0-13 m4/(N-s)) by their peak reaction force at t=0.01 sec,

fR=- 1.91, -1.85 pN respectively. While the denser network has a significant impact on the

short-term poroelastic response (for t < 4 seconds), the impact is reduced for the

poroviscoelastic response to times t < 1 second (Figure 6-33).
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Figure 6-33. Relaxation of reaction force normalized by peak reaction force on a solid plate
compressing a cell (E2,to=-l0%). Cell consists of a neo-Hookean membrane and nucleus, and either a
poroelastic or poroviscoelastic cytoplasm consisting of three regions of actin networks (cAF=10-1 7 0pM,
Lc=0.9pm, lp=3pm, =1.l%/o) with either 4f=0.95, kH= 2x10'3 m4/N-s or 4-0.82, kH= 0.1xl0-3 m4/N-s.

The behavior of both networks show that while viscoelastic effects may dominate the

long-term response of cytoskeletal networks, poroelastic effects cannot be neglected for

shorter time-scales in which pressure fields within the cell are not uniform. Both time-

scales have biological importance with regard to cytoskeletal mechanics. The overall

network turnover and decay time for motile neutrophils is approximately 20 seconds

(Herant et al., 2003). However, localized flow/turnover of actin crosslinkers, e.g. a-

actinin (Kuhlman et al., 1994; Wachsstock et al., 1994), and actin monomers in

neutrophils (Cassimeris et al., 1990; Cano et al., 1991) and other amoeboid cells (Sund

and Axelrod, 2000) has been observed to occur on a time-scale of less than 1 second

during cell motility. The combined poroviscoelastic network model captures transient
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mechanical effects on both of these time-scales, and it provides the framework for further

evaluation of the relevance and influence of pressure gradient-driven poroelastic effects

at locations throughout the cell which have different porosities and permeabilities,

including fluid flow into pseudopods as a partial contributor to amoeboid cell motility.
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CHAPTER 7 Summary and Future

Applications

7.1 Summary discussion

The central role of the cytoskeleton in cellular biomechanical processes makes it a

compelling subject for detailed 3D numerical modeling. The focus of this doctoral

research has been the development of a microstructurally-motivated model of the 3D

biomechanical response of cross-linked, semiflexible cytoskeletal networks during elastic

and viscoelastic deformations, with a specific emphasis on actin networks. These models

have been integrated into a 3D finite element cell model (along with membrane and

nucleus models) with the capability to vary material properties spatially within the cell.

7.1.1 Inextensible filament and network models

Constitutive models for F-actin microstructural network behavior have been

created using single molecule models for individual filament force-extension behavior in

conjunction with an eight-chain network model to capture the non-affine 3D molecular

network behavior. The single filament force-extension constitutive model was based on

the MacKintosh derivation of the Kratky-Porod energy functional for semiflexible

filaments (1,L-). In further developing this model, we developed an accurate

approximation for the MacKintosh force-extension expression of the form FM = FA(r)

using a Pad6 approximation. When combined with the eight-chain network model, the
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MacKintosh model was able to accurately capture the initial stiffness and nonlinear strain

stiffening behavior observed in shear rheology experiments. The 3D cytoskeletal network

constitutive model presented provides the ability to track microstructural stretch and

orientation states under macroscopic stretching conditions in an averaged manner, and

also enables variation of the filament mechanical properties and concentrations. An 8-

chain network model considering a linear constitutive model of the filament force-

extension behavior was presented and compared to the nonlinear MacKintosh model.

The linear force-extension relationship was found to result in strain stiffening of the

network, a consequence of filament rotation during network deformation. However, the

evolution in stiffness with strain differed from the behavior seen in experiments,

underscoring the need to also include nonlinear force-extension relationships for actin

filaments.

Using the 8-chain MacKintosh network constitutive model, we examined the

experimentally observed effects on the network stress-strain behavior that occur from

increasing the actin concentration. The model's shear stress-shear strain response

compares favorably with rheological data at low (8,12JpM) and high (29gM) actin

concentrations. The network model also exhibited good agreement with the experimental

tangent modulus-shear stress data for CAF= 2 1 jIM in both the low and high stress regions,

but not in the intermediate transition region. The experimental 21 •M data was shown to

exhibit an anomalous, delayed transition to strain stiffening behavior in comparison to the

other experimental concentration cases, which explained its diverging behavior from the

theoretical prediction. The network model's prediction for the transition to strain

stiffening behavior for the 21 •M case, however, did coincide with the trend exhibited by
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the other experimental concentration cases. The tangent shear moduli in the nonlinear

strain stiffening region, often difficult to model, also correlate well with the data for all

concentrations. This suggests that the network model is effectively simulating the

cooperative network behavior and the accommodation of the shear strain through chain

rotation and a small amount of end-to-end chain extension.

The relationship between filament pretension and isotropic network prestress is

also examined within the framework of the network model. We parametrically varied the

filament pretension to quantify its influence on network stress-strain behavior. Small

increases in filament pretension (a) leads to an isotropic network prestress and produces

large increases in initial network stiffness (Go), with a constant relation between tangent

shear modulus and shear stress for high stresses. Changes to filament geometries from

bundling also influence the network behavior. We found an increase in network stiffness

by increasing lp,, with excellent agreement between experimentally bundled actin

networks (R=0.5, CAF=7gIM) and the corresponding modeled networks composed of

three-filament bundles. The overall constitutive framework enables predictions of large-

strain multi-axial deformation of 3D isotropic F-actin filament networks, and can be

extended to model in vivo F-actin networks or in vitro networks of other filaments once

updated with the proper material properties.

7.1.2 Extensible filament and network models

The behavior of single cytoskeletal filaments has been extended beyond entropic

unbending to include enthalpic axial stretching of inter-atomic bonds along the
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macromolecular backbone. These two behaviors are combined through a multiplicative

decomposition of their mechanical stretch ratios to form an extensible model that is in

turn integrated into eight-chain cytoskeletal network model. The single filament

extensible model is compared with experimental data of single actin filament stretching,

and found to capture the behavior through the full range of extension. The single

filament and network extensible models are parametrically evaluated to show the

increasing mechanical contribution of axial filament stretching as the inextensible limit is

approached (r/LL.-+ 1).

7.1.3 Equilibrium network swelling model

The mechanical response of the cytoskeletal network due to the resultant localized

equilibrium swelling of the cytoplasm was captured using a constitutive model

employing multiplicative decomposition of mechanical and swelling stretches. The

reaction force of a swelled actin gel in a simplified spherical geometry is parametrically

evaluated by imposing a uniform swelling stretch on the actin network, then compressing

the sphere back to its original diameter. This equilibrium swelling model is later coupled

with Darcy's law, enabling the contributions of network swelling to be included in the

ensuing poroelastic fluid flow.

7.1.4 Cross-link effects

The constitutive model for cytoskeletal networks was expanded through torsional

potentials to include the strain energy for compliant intra-network cross-links (e.g. ABPs

such as FLNa and avidin). The mechanical contribution of network cross-links (through
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torsional potentials) is also examined, as well as the cross-links' influence on the entropic

configuration space. The initial focus of this model was below the force threshold

required to detatch the cross-link subunits from the chain. Within this regime, the cross-

link imparts some structural stiffness to the network chain while deforming solely

through enthalpic torsion at its hinge. The influence of cross-link torsional stiffness on

network elasticity was parametrically evaluated for varying torsional stiffnesses. The

network model with cross-link torsion was compared to experimental actin networks with

filamin (FLN) and avidin cross-linkers. Two regimes of cross-link behavior emerge

based on the actin-FLN network response. The first regime (r<3Pa) consists of standard

strain stiffening network behavior, which is accurately captured using an extensible

network model and cross-links in torsion. The network model gives us insight into the

second regime (3Pa<t<lOPa) by showing that while the network elasticity is

deteriorating, the actin filaments are not at their extensible limit, which suggests that the

FLNa cross-links are deforming (via entropic unbending, enthalpic stretching, and/or Ig

domain unfolding). This is confirmed by the experimental data with the rapid decrease in

strain stiffening after r<3Pa, followed by network failure. The model was then compared

to the stiffer actin-avidin networks (although the torsional stiffness of the individual

avidin-biotin cross-links has not been measured). The model also showed excellent

agreement with the measured initial response of the experimental actin-avidin networks

using the same actin parameters and by increasing the cross-link torsional stiffness by an

order of magnitude.

The torsional stiffness of cross-links does more, however, than just contribute to

the strain energy of the network. By resisting the rotation of filaments about their cross-
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linked junctions, the cross-link has an influence on the entropic bending configuration

space of the filaments. A finite element simulation and a new hybrid extensible filament

model were used to evaluate the extent to which increasing cross-link torsional stiffniess

(kCL) reduces the number of bending configurations available to an actin filament, thereby

leading to a stiffer mechanical response by the filament. The hybrid extensible filament

model contains rigid ends and a middle section that deforms elastically via entropic

unbending and enthalpic stretching. In concert, the two simulations demonstrate the

coupling between cross-links and the entropic unbending response of the extensible

filament. The influence of this coupling is greater for cross-links with larger torsional

stiffnesses. The influence is mitigated, however, by the observed decrease in lengths of

the rigid ends (which serves to increase the entropic unbending configuration space).

These models can be enhanced by adding a time-dependent stretching for the actin-FLN

bonds, as well as incorporating different deformation modes for the cross-links including

internal energy-based axial stretching, entropic unbending, and possibly unfolding of

cross-link subdomains.

7.1.5 Viscoelastic network models

The effects of interfilament shear viscoelasticity were added to the network model

and compared with rheological experimental data of actin-FLN and actin-avidin

networks. The viscoelastic response is captured by adding a nonlinear viscoelastic

Maxwell leg to the network model to account for molecular shear viscosity by

incorporating a hyperelastic spring based on the volume fraction of the relaxing portion

of the cytoskeletal network and a nonlinear dashpot based on the changing orientation of
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the network filaments. The relaxation in the Maxwell leg is included via a multiplicative

decomposition of the deformation gradient (F) into elastic (F) and viscous (Fv)

components. The nonlinear viscoelastic model captures the storage modulus behavior

well through the strain stiffening region, up to tan(y)-0.3 for the actin-FLN networks.

The nonlinear viscoelastic response agrees with the experimentally measured loss

modulus for shear strains through the strain stiffening region. The model also captures

the measured small strain linear viscoelastic response of the actin-avidin network. The

nonlinear viscoelastic model is evaluated at different frequencies as well as for creep and

stress relaxation conditions. The viscoelastic cytoskeletal model was also incorporated

within a larger finite element model of the cell that includes a neo-Hookean membrane

and nucleus. The stress relaxation of the combined cell was observed after subjecting it

to different amounts of compressive displacements. The results show that increasing

compressive strain on actin networks in a cellular geometry results in more total reaction

force relaxation, but less relaxation relative to the peak reaction force for each case.

7.1.6 Poroviscoelastic network models

The mechanical effect of cytosolic fluid flowing through the cytoskeletal network

via a poroelastic network model was demonstrated in confined compression, unconfined

compression, and compression of a cell with a membrane and nucleus. The time-

dependent behavior of the cytoplasm was integrated into the cytoskeletal model in a

poroviscoelastic manner that accounts for the spatial diffusion of the cytosol within the

porous, viscohyperelastic filament network. Flow-dependent viscoelastic effects are due

to cytosolic flow (with mass balance governed the pressure gradient), as compared with
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the flow-independent (time-dependent) effects due to the material shear viscoelasticity.

The 3D partially saturated poroviscoelastic model expanded on previous work (e.g.

biphasic theory for soil consolidation and connective tissues) by including

microstructural details for cellular applications. The saturation factor can also be varied

as a function of time or as a function of another state variable (e.g. stress, stretch, etc.).

This framework also allows the flexibility to distinguish between trapped fluid and fluid

that is free to flow through the cytoskeletal network. The local fluid volume changes are

tracked though the fluid volume ratio, enabling the poroelastic analyses to account for the

contribution from network swelling. Although not measured empirically, the hydraulic

permeability for actin networks is estimated via the Kozeny-Carman theory at high

porosities.

The poroelastic behavior of actin networks are parametrically evaluated with

varying permeabilities and compressive strains under confined compression and

unconfined compression conditions. Spatial variation in pressure gradients in unconfined

compression is also shown. The unconfined compression results show that increasing

compressive strain on actin networks results in more relaxation (both in reaction force

and contraction of the lateral sides) due to the increased fluid loss from the network.

Axisymmetric poroelastic and poroviscoelastic cell models are also parametrically

evaluated to observe the reaction force relaxation after an applied compressive strain.

The simulation does not permit fluid flow across the membrane or into the nucleus,

although the model could easily be adapted to allow fluid flow into the nucleus as well as

out of the cell.
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The results show that increasing compressive strain on actin networks in a cellular

geometry results in more total reaction force relaxation and more relaxation relative to

the peak reaction force for each case. The relaxation of the reaction force for the

poroelastic cell is due to the reduction in pore pressure gradients throughout the cell. In

the absence of fluid flow at the boundaries (i.e. such as in unconfined compression), the

compression of the cell creates pore pressure gradients throughout the cytoplasm. The

pore pressure field becomes uniform over time, allowing the cell to be in a relaxed state.

The poroelastic network model also gives insight into the average mechanical response of

the microstructural features of the cytoskeleton. The undeformed cell starts with a

filament stretch of one (,f= 1), but the average filament stretch increases within the actin

networks just after the cell has been compressed, especially near the center axis of the

cell where the macroscopic deformation and pore pressures are the highest. The contours

of highest filament stretch correlate closely to the contours of highest pore pressures,

demonstrating the microstructural effects of cytosolic fluid flow through actin networks.

The average filament angle within undeformed areas (i.e. away from the center axis of

the cell where the macroscopic deformation is the highest) remains approximately equal

to the initial filament angle. While the filament stretch in the relaxed state has largely

returned to iA= 1, the filament angle contours correlate well to the vertical strain (E22)

contours for both the peak and relaxed states, reinforcing the observation that

macroscopic network deformations are primarily accommodated through rotation of the

network filaments, with significantly less filament stretch.

The poroelastic response has a minimal contribution to the poroviscoelastic

response of actin networks for t > 1 second since the pressure field within the cell has
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equilibrated. The time-scale of relevance for the poroelastic response is a function of the

permeability and porosity of the biphasic network. The poroelastic responses from

denser networks exhibit much less relaxation due to restricted fluid flow, and

consequently lead to less initial relaxation in the poroviscoelastic response. Conversely,

the pressure gradients within denser actin networks take longer to dissipate, thereby

increasing the relevant time-scale for the poroelastic effects compared to the more porous

networks. The behavior of both networks show that while viscoelastic effects may

dominate the long-term response of cytoskeletal networks, poroelastic effects cannot be

neglected for shorter time-scales in which pressure fields within the cell are not uniform,

since both time-scales have biological importance with regard to cytoskeletal mechanics.

The poroviscoelastic and swelling models can be used in the future to capture part of the

cytoplasm's dynamic response during migrational processes like extension and

translocation as well as during other amoeboid processes like blebbing.

The poroviscoelastic model also has applications with cancer cells and their

surrounding tissue. Empirical and theoretical investigations (Netti et al., 1995) of the

time constants of transvascular and interstitial fluid exchange in tumors have been used to

improve oncologic drug delivery (Netti et al., 1999). The interstitial transport in

cancerous tumors has been found, via two-photon correlation microscopy technique, to

be biphasic in nature (Alexandrakis et al., 2004). Although biphasic theory has been

applied to interstitial lymphatic transport (Swartz et al., 1999), microstructurally-

motivated 3D poroviscoelastic models could yield new insights into methods for altering

solid tumor pressure, which has been used as diagnostic and prognostic value in the

management of cancer (Sahani et al., 2005; Kremser et al., 2006).
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The models developed through this doctoral research provide a beginning

framework for including active remodeling of cytoskeletal networks, such as the actin

network's reformulation in response to mechanical and chemical stimuli. A fully coupled

3D cytoskeletal network model could be integrated with membrane and nucleus models

in the finite element-based micromechanical model of the cell which already provides the

ability to assign and evolve mechanical properties and filament concentrations as a

function of location within the cell. Enhancements such as these, and others detailed

below, could eventually lead to a composite cellular microstructural model that would

enable detailed mechanical modeling of eukaryotic cells under a wide variety of loading

conditions encountered during both healthy and diseased cellular functions.

7.2 Future applications in cell motility

7.2.1 Dynamic nature of cytoskeleton for cell motility

Biological cells respond to mechanical as well as chemical stimuli. Mechanical

stimuli from its external environment, e.g. extracellular matrix (ECM), can lead to

microstructural changes in the cell membrane, the nucleus, and the cytoskeleton, and

even biochemical changes via mechanotransduction (Huang et al., 2004; Ingber, 2006).

The cell membrane can gather/concentrate focal adhesion complexes (FAC) (Davies et

al., 1994; Hu et al., 2003; Chen et al., 2004; Hu et al., 2004), while the nucleus can

experience changes in conformation of chromatin (Ingber, 1997; Maniotis et al., 1997;

Jean et al., 2005) in response to mechanical forces. The cytoskeletal filaments can
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actively rearrange their microstructure in response to mechanical stimuli. The

morphology of endothelial cells, for example, is changed dramatically from shear loads

from blood flow which cause elongation of the cells in the direction of shear stress. The

change in morphology is achieved by a reorientation and assembly of F-actin stress fibers

at the basal cell surface that ultimately protrudes the upstream and downstream limits of

the plasma membrane (McCue et al., 2004). Mechanical deformation of neutrophils

flowing in pulmonary capillaries can cause cytoskeletal disruption, pseudopod

projections, and a resulting decrease in shear modulus of more than 60% (Yap and

Kamm, 2005).

Cytoskeletal reorganization, extension, and contraction are critical to cell

migration, especially the mesenchymal migration of leukocytes and some metastatic

cancer cells. Cell migration has been studied for many biological processes such as

embryogenesis (Duncan and Tin Su, 2004), leukocyte extravasation and invasion

(Barreiro et al., 2004; Britta Engelhardt, 2004; Vicente-Manzanares and Sanchez-Madrid,

2004), cancer metastasis (Yamazaki et al., 2005), and migration of fibroblasts and

vascular endothelial cells during wound healing (Martin, 1997). Cell migration involves

multiple processes that are regulated by various signaling molecules (Ridley et al., 2003).

The actin cytoskeleton plays a critical role in many parts of cell motility and migration.

During cell migration, the actin cytoskeleton is dynamically remodeled via

polymerization, and this reorganization produces the force necessary for cell migration

(Pollard and Borisy, 2003). Regulating or inhibiting actin polymerization decreases cell

motility. An increased understanding of the mechanics of the cellular protrusions and

contractions can therefore augment understanding of critical immunological responses
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(i.e. extravasation, migration) as well as actin polymerization regulation therapies for

treating cancer (Zigmond, 2004; Quinlan et al., 2005; Walker and Olson, 2005).

Leukocytes in particular experience many deformation states to successfully

complete critical immune system processes. When unstressed, passive leukocytes present

a spherical morphology with numerous membrane folds (Schmid-Schonbein, 1990).

Passive leukocytes exhibit viscoelastic behavior with the stress shared by the cytoplasm,

nucleus, and the compliant, folded membrane. Activated leukocytes exhibit many

complex biomechanical behaviors (cytoplasmic poroviscoelasticity, cytoskeletal network

behavior and remodeling, membrane unfolding, etc.) during active processes such as cell

spreading, adhering to endothelial walls, cell rolling under high hemodynamic shear

loads, and migration through 3D extracellular matrix (ECM). Leukocytes, such as T and

B lymphocytes (T and B cells) and neutrophils, are highly migratory cells that exhibit a

variety of versatile migration modalities to enter and transmigrate through various tissues

and organs during critical immune system processes (Friedl et al., 2001). These

modalities are typically categorized as either mesenchymal or amoeboid migration.

Leukocyte movement on 2D substrates follow a mesenchymal pattern consisting

of four ordered processes: membrane protrusion at the leading edge, adhesion of the

protrusions to the substrate, translocation of the cell body via contraction, and finally

retraction of the trailing edge (Lauffenburger, 1996). Mesenchymal migration in 3D

extracellular matrix (ECM), e.g. for fibroblasts (Langholz et al., 1995) and tumor cells

(Friedl and Wolf, 2003), is typically accompanied by proteolytic matrix degradation

enzymes that slowly accumulate in an integrin-dependent manner at the leading edge of

migrating cells (Wolf et al., 2003a), leaving a trail of damaged ECM in its wake.
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Mesenchymal cell migration in 3D matrices has been simulated with force-based

computational models (Zaman et al., 2005).

Amoeboid migration, however, is typified by faster, low-affinity movement of a

rounded yet flexible cell morphology and dynamic pseudopod protrusions/retractions

which are independent of integrin-mediated focal adhesions (Devreotes and Zigmond,

1988). Lymphocytes move in this integrin-independent manner by changing shape and

squeezing through gaps in the 3D ECM both in vitro (Friedl et al., 1998) and in vivo

(Brakebusch et al., 2002) without degradation of the ECM. Since they are not dependent

on focal adhesions during amoeboid movement, T cells use stiff lateral pseudopod

protrusions as "footholds" that remain stationary and locked between fibers while the cell

mass flows forward (Friedl et al., 2001). The lymphocyte then squeezes through narrow

gaps (if greater than 1-2 Win in diameter) or changes migration direction to

circumnavigate around less porous obstacles with near-undiminished velocity (Wolf et

al., 2003b). As T cells squeeze through narrow regions, constriction points or rings act as

anchors for anterograde flow of the cytoplasm and forward propulsion of the cell (Friedl

et al., 2001). Finally, the cell contracts the lateral pseudopods and/or trailing edge uropod.

B cells (Carrasco et al., 2004) and neutrophils (Mandeville et al., 1997) can also exhibit

amoeboid migration behavior in 3D ECM. The cylindrical-like protrusions, or

pseudopods, are thicker than filopodia and extend/contract into the 3D ECM via

polymerization/depolymerization and thermal ratcheting at the inner surface of the

membrane. The pseudopods are termed invadopodium when proteolytic matrix

degradation enzymes, e.g. matrix metalloproteinases (MMPs), accumulate in an integrin-

dependent manner at the leading edge of migrating cells (Wolf et al., 2003a).
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Amoeboid migration, shown in Figure 7-1, is seen both in non-neoplastic (i.e.

non-tumorous) cells such as lymphocytes and neutrophils as well as in neoplastic cells

like lymphoma and small-cell lung carcinoma (Friedl et al., 2001; Francis et al., 2002;

Wang et al., 2002b). While understanding the complex biomechanics of leukocyte

deformation for passive and active states (e.g. amoeboid motility) yields insight into

essential processes of immune function, there is added value to this pursuit since some

tumor cells, (e.g. some fibrosarcomas) have been shown to undergo conversion from a

mesenchymal cell type towards an amoeboid cell type, which is termed a mesenchymal-

amoeboid transition (MAT) (Wolf et al., 2003a).

Maenchyml Amoebld

E8qur d

ECMJ

Figure 7-1. Mesenchymal and amoeboid migration in ECM (Yamazaki et al., 2005)

Pseudopod growth and contraction presents a unique, dynamic intracellular

mechanobiochemical state that plays a key role in mesenchymal migration (Figure 7-1).

The unique intracellular mechanical state is further confounded through interactions of

the actin microfilament and microtubule networks (Pantaloni et al., 2001). For instance,

the elongation of actin filaments may facilitate polarized microtubule instability, and

microtubules can modulate the actin cytoskeleton to control the direction of cell

migration through specific signaling pathways (Li et al., 2005b). Pseudopods and

lamellipodia dynamics have been examined for keratins (Pollard and Borisy, 2003),
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listeria (Cameron et al., 1999), and neutrophils (Chodniewicz et al., 2004; Zhelev et al.,

2004), among other cells, yet are still not completely understood.

The 3D cytoskeletal network models developed in this thesis provide the

framework to model the dynamic, mechanical response of pseudopods and motility-

enabling contractions. These models will require anisotropic microstructural detail to

capture filament behavior at the leading/trailing edges of polymerization. In addition, the

cytoskeletal network models developed in this thesis will need to extend beyond the

cross-linking proteins that mediate the response within individual networks (e.g. isotropic

cross-linking, bundling) to include interactions between different networks (e.g. AF-MT

cross-linking). Further evaluation can also be made of the different types of cross-link

extension and failure, including entropic unbending, enthalpic stretching, and subdomain

unfoliding. Empirically obtained failure and deformation thresholds can be implemented

in the network model by monitoring the average chain force and adjusting local network

properties accordingly.

7.2.2 Cell motility modalities and modeling needs

Modeling the migrational capabilities of highly motile cells such as leukocytes

will require multiple models in order to simulate the different biological functions

involved (see Figure 7-2).
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1) Extension
Key model: Cytoskeletal microstructural network model
Processes: Actin polymerization dynamics and

force propagation

2) Adhesion
Key model: Local interaction potential model
Processes: Creation of membrane-substrate bonds,

cell spreading

3) Translocation
Key model: Cytoskeletal microstructural network model
Processes: Hyperelastic and poroelastic behavior during

cytoskeletal contraction

4) De-adhesion
Key model: Local Interaction potential and cytoskeletal

microstructural models
Processes: Breaking adhesive bonds, contraction of

cross-linked cytoskeleton

Figure 7-2. Summary of cell motility and modeling needs [illustration from (Lodish, 2000)]

The steps shown in Figure 7-2 will require biomechanical models simulating the

dynamic behavior of cross-linked cytoskeletal filament networks and membrane-substrate

adhesion in addition to the basic membrane and nucleus models. During cell extension

(1), the baseline cytoskeletal model of cross-linked filament networks developed here

will require an additional actin polymerization submodel to simulate the leading edge of

the cell as it expands due to actin polymerization force propagation. For the cell adhesion

step (2) during migration (or any adhesive process), a local interaction potential

submodel will be needed in conjunction with the cytoskeletal model to simulate cell

spreading and FAC-substrate bond creation. The translocation force (3), generated from

cellular contraction through cytoplasmic actin-myosin generated tensile forces, is

simulated through loads applied to the hyperelastic- and poroelastic-based cytoskeletal

model also developed in this thesis. Finally, during cell detachment (4), a combination of
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all models is required for the final cytoplasmic contraction in addition to the detachment

of FAC at trailing edge of cell.

7.2.3 Modeling of anisotropic migrational cellular structures

Amoeboid cellular motility in the 3D ECM is driven at least in part by

polymerization of F-actin filaments to create both lateral and axial pseudopods, followed

by localized cytoskeletal contractions. Modeling pseudopod growth will require

evaluation of the forces driving the mechanical behavior in addition to quantifying

monomer concentration levels for polymerization in migrating cells. To capture the

creation of a pseudopod during amoeboid migration one can use the

poroviscohyperelastic cytoskeletal network model developed here along with a

polymerization submodel. The cytoskeletal network model allows us to monitor

cytoskeletal microstructural chain orientation, stretch, and force during deformation. This

structural information can be utilized to appropriately develop polymerization models to

actively reconfigure and evolve the network during protrusion growth as well as other

loading conditions. The ability of the model to monitor the force at the cross-link

junctions can also be utilized to explore effects of the rupture of cross-links at larger

strains.

The preferential polymerization of F-actin filaments in the direction of protrusion

necessitates the use of an anisotropic strain energy function in the cytoskeletal network

model. The strain energy density of an isotropic material reinforced by a single group of

fibers, with direction vo in the reference configuration, depends on the first five strain

invariants U=U(I,,I,,12,13,I5) (Spencer, 1984). While the strain energy density of
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materials that include n groups of reinforcing fibers, in directions vo(0 , additionally

depend on higher order invariants to capture interaction effects between the fiber groups

(Spencer, 1984); the dependence of the material response on 12, I5(' and the higher order

invariants is generally weak (Humphrey et al., 1990). This allows the use of a simplified

strain energy density function with both isotropic and anisotropic terms (Bischoff et al.,

2002a; Bertoldi and Boyce, 2007c; Cantournet et al., 2007), U= = o(l,,l,)+, (lI1)),

where l3=det(B) and I4') = vo -Bvois a measure of the fiber stretch of the preferentially

aligned F-actin filaments. The polymerization submodel will simulate the dynamic

remodeling of the actin network in the preferential direction by adjusting chain and

network properties (local concentrations, cross-link densities, contour lengths, and

orientations) at the critical polymerization thresholds. The area of F-actin polymerization

in free protrusions contains higher actin monomer densities. The resulting repulsive self-

interaction (due to either electrostatic interactions or thermal agitation) between actin

monomers in the high density region can expand the cytoskeleton and draw in cytosol

which provides volume flow that can also contribute to pseudopod growth (Herant et al.,

2003). The expansion into the cell is balanced by the viscous resistance of the cytoplasm

(Herant and Dembo, 2006). The existing poroviscoelastic submodel will capture this

additional method of pseudopod growth, while the anisotropic polymerization model

provides the ability to capture the structural behavior of preferentially oriented

cytoskeletal networks (e.g. Arp2/3 branching in lamellipodia).
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7.2.4 Membrane-substrate interactions

The cell's interaction with the three-dimensional ECM and its biomechanical

features (e.g. stiffness, ligand density) will also affect in vivo cell deformation. The

detailed adhesive behavior of the membrane and the receptor binding affinities of the

ECM's ligands are not dominant influences on amoeboid migration. Therefore a basic

adhesion model could be included in the 3D finite element model to capture the short-

lived membrane-substrate interactions that occur in a diffusely distributed manner on

contact areas. A local interaction potential model could be used to simulate the

proximity-dependent force of the weaker membrane-substrate bonds. The local

interaction potential model can be implemented via a user subroutine with an interaction

potential based on empirically measured adhesion properties (Lauffenburger, 1991; N'Dri

et al., 2003). Many aspects of the mechanics of substrate interactions have been

evaluated, including the stability of the circular front of advancing focal adhesion

complexes under sinusoidal perturbations (Shenoy and Freund, 2005), size effects on

receptor-mediated endocytosis of viruses (Gao et al., 2005), experimental and finite

element analysis of bacterial adhesion strength (Tsang et al., 2006), and constitutive

modeling of the entropic energy associated with binder distribution and migration within

a focal adhesion zone (Freund and Lin, 2004).

Membrane tension is regulated by cytoskeletal forces, pressures and the

membrane reservoir. Extra membrane surface from the membrane reservoir will affect

the deformation behavior of leukocytes (e.g. B lymphocytes). The current membrane

model, based on basic membrane (tensile) and bending behavior, can also be enhanced to

include undulations/bends to account for the reservoir material.
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7.2.5 Model validation

Validation studies can be conducted by comparing model predictions to empirical

data from published results in the technical literature as was done in this thesis using

theological experiments involving cross-linked in vitro filament networks. The forces,

monomer flows, and concentrations associated with actin polymerization can be obtained

from published data (Cassimeris et al., 1990; Cassimeris et al., 1992; Coates et al., 1992;

Westlin et al., 1992; Entschladen et al., 1997; Zigmond, 1998; Zigmond et al., 1998;

Friedl et al., 2001) including flow visualization (Danuser and Oldenbourg, 2000) and

microsphere-based motility (Cameron et al., 1999) assays. Further predictions of overall

cellular elastic and viscoelastic cell behavior can be compared to results from whole cell

rheology studies using micropipette aspiration (Schmid-Schonbein et al., 1981; Dong et

al., 1991; Tran-Son-Tay et al., 1991; Herant et al., 2003), microchannels (Yap and

Kamm, 2005), as well as cell poking (Elson, 1988; Zahalak et al., 1990). Comparison to

experiments involving more complex leukocyte deformation states such as cell spreading

(Bunnell et al., 2001; Coughlin and Schmid-Schonbein, 2004; Sumoza-Toledo and

Santos-Argumedo, 2004; Herant et al., 2006) and 3D migration in natural tissues and

synthetic gels (Haston et al., 1982; Parkhurst and Saltzman, 1992; Kuntz and Saltzman,

1997; Friedl and Brocker, 2000; Tan et al., 2001; Miller et al., 2002; Stoll et al., 2002;

Wolf et al., 2003a; Wolf et al., 2003b) can also be examined. A validated model will also

enable new insights into the efficacy of cytoskeletal inhibitors that can regulate

polymerization, which would impact diseased cell motility based on cytoskeletal

reorganization.
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