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Abstract

The elastic and viscoelastic stress-strain behavior of cytoskeletal networks, important to
many cellular functions, is modeled via a microstructurally-informed continuum
mechanics approach. The force-extension behavior of the individual filaments is captured
with a new analytical expression of the MacKintosh worm-like chain relationship for
semiflexible filaments. The filament expression is used in the Arruda-Boyce eight-chain
network model to capture the 3D stress-strain behavior, quantifying the effects of
isotropic network prestress and tracking microstructural stretch and orientation states
during large deformations. The network model captures the initial stiffness of the
network as well as the nonlinear strain stiffening observed at large stresses in shear
rheological data of bundled/unbundled in vitro F-actin networks.

The cytoskeletal network model has also been extended to include the internal energy-
based mechanical contributions at the filament and network levels from torsional cross-
link deformations as well as from direct axial stretching of filaments. This enhanced
model effectively captures the stress-strain behavior of F-actin networks cross-linked
with two different types of actin binding proteins (filamin and streptavidin). The
enhanced model is also used to evaluate the influence of the cross-links’ torsional
stiffness on the entropic bending configuration space of the cytoskeletal filaments.

The 3D constitutive network model provides a framework for capturing time-dependent
spatial diffusion of cytosol within a porous, viscohyperelastic filament network. The
poroelastic behavior is coupled with the hyperelastic network behavior through a 3D
biphasic theory that includes network swelling effects for finite deformations. The
mechanical response of the cytoskeletal network due to the localized swelling is captured
by employing multiplicative decomposition of mechanical and swelling stretches.
Nonlinear shear viscoelasticity is also included to create a 3D poroviscohyperelastic
network model capable of capturing the time-dependent response of cytoskeletal
networks on short and long time scales. The model captures the nonlinear time-
dependent behavior of in vitro actin-filamin and actin-avidin networks observed in shear
rheological experiments. The constitutive models are evaluated in a finite element model
with a cellular geometry (including membrane and nucleus submodels) and the ability to
spatially vary network properties throughout the cell.
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Figure 3-12. Effect of network isotropic prestress on the network shear stress-shear

strain behavior (a) and the network tangent modulus-shear stress
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Figure 3-13. Phase contrast (top) and immunofluorescence (bottom) micrographs of

100nm fluorescent nanoparticles in Swiss 3T3 fibroblasts before (left) and
after (right) shear flow. The inset is a magnified view of focal adhesions at
the ends of actin stress fibers. Bar, 20uym. Adapted from (Lee et al.,



Figure 3-14. Sketch of 1-particle and 2-particle microrheology using lasers for
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Figure 3-16. Linear and nonlinear rheology with stress stiffening from cross-linked
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Figure 3—-18. (a) Shear stress and normal stress difference (N4-N2) vs. shear strain and
(b) Tangent shear modulus vs. shear stress for in vitro F-actin networks
(car = 8uM, R=0.03). (experimental data adapted from (Gardel et al.,

Figure 3—19. (a) Shear stress vs. shear strain and (b) Tangent shear modulus vs.
shear stress for in vitro F-actin networks (ca = 8uM, R=0.03) using WLC
filament model with pinned-pinned or clamped-clamped boundary
conditions. Experimental data adapted from (Gardel et al., 2004a)..............
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Figure 3—-21. (a) Tangent shear modulus-shear stress theory and experimental data,
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R=0.03), (experimental data adapted from (Gardel et al., 2004a))................
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Figure 3-23. (a) Shear stress-shear strain response and (b) tangent shear modulus-
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Figure 3-24. (a) Force vs. end-to-end distance and (b) force vs. chain stretch behavior
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Table 3-3. Network parameters and material properties MacKintosh, Linear models.......

Figure 3-25. (a) Shear stress-strain and (b) tangent shear modulus-shear stress for in
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Figure 3-26. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress
for in vitro F-actin networks over the range of published persistence
lengths =3, 10, 17um (car = 8uM, R=0.03), vary L. for best fit.
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Figure 3-27. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress
for in vitro F-actin networks over the range of published persistence
lengths 1,=3, 10, 17pm (car = 8pM, R=0.03), vary L. and a for best fit.
Experimental data from (Gardel et al., 2004a)...............cccorrrreirriininecnrsienne
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Figure 3-29. (a) Shear stress-strain and (b) shear stress-filament extension
comparison of inextensible model and extensible model...........ccccccceeuuennn..
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Figure 3-32. (a) Undeformed axisymmetric mesh and (b) Radial expansion in a
swelled sphere (Asw= 1.1) held fixed at its center. 6um diameter sphere
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Figure 3-33. (a) Reaction forces on plates compressing a swelled sphere (Asw= 1.02,
1.03, 1.04, 1.05). The 6um diameter sphere consists of an actin network
(car=170uM, L=0.9um, ,=3pm, a=1.1%). (b) Contour plot of
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Figure 3-34.

Figure 3-35.

Figure 3—-36.

Contour plots of normal stress in 2-direction from plates compressing a
swelled sphere: (a) Asw=1.02, (b) Asw=1.03, (c) Asw=1.04, (d) Asw=1.05.
The 6um diameter sphere consists of an actin network (ca=170uM,

L=0.9um, [,=3pm, a=1.1%). Stress units are Pascals. ...............cecerrucrrerunen.

(a) Reaction forces on plates compressing a swelled sphere (Asw= 1.02,
1.03, 1.04, 1.05). The 6um diameter sphere consists of a nearly
incompressible neo-Hookean solid (G=13.5Pa). (b) Contour plot of
normal strain in 2-direction...........c.ccceeveerireiniecncnr e

Contour plots of normal stress in 2-direction from plates compressing a
swelled sphere: (a) Asw=1.02, (b) Asw=1.03, (c) Asw=1.04, (d) Asw=1.05.
The 6um diameter sphere consists of a nearly incompressible neo-
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Figure 4-3.
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Schematics of (a) actin network with FLNa cross-links (adapted from
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(a) A force-extension curve of Filamin A molecule in aqueous solution
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Figure 5-6. (a) Closed-loop control during stress-relaxation tests of an articular
chondrocyte using a spherical AFM probe tip, (b) corresponding AFM
probe displacement input and stress relaxation response of chondrocytes,
and (c) example data sets shown with elastic and viscoelastic curve fits.
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Figure 5-8. (a) Fully preconditioned stress -stretch response for uniaxial tension of
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Figure 5-9. (a) Storage modulus (G°), (b) loss modulus (G™), (c) dynamic viscosity (1),
and (d) damping ratio (tan(3)) for canine vocal fold mucosa based on the
QLV model (o=mean value, +=standard deviation). Adapted from(Chan,
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Figure 5-24. Simulated stress relaxation modulus of an actin-FLNa network (car
=20uM, R=0.02) with constant shear strains of tan(y)=0.05, 0.1, 0.15
(145 T=1 0 TSSO

Figure 5-25. Simulated creep response of an actin-FLNa network (cas =20upM,
R=0.02) with a constant shear stress of t=0.02, 0.04, 0.06 Pa (inset). .........

Figure 5-26. Simulated creep function of an actin-FLNa network (cas =20uM, R=0.02)
with a constant shear stress of 1=0.02, 0.04, 0.06 Pa (inset). ........c.ceccen..c..

Figure 5-27. Simulated time histories of shear strain and shear stress for actin-avidin
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Figure 5-28. Theoretical (with nonlinear viscoelasticity) and experimental storage
modulus (G’) and loss modulus (G”) of actin-avidin networks (car =20uM,
R=0.01, and «=0.05Hz). Experimental data from (Lee and Kamm, 2008). ...

Figure 5-29. (a) Nonlinear scaling included in the simulated time history of an
oscillating shear strain (tan(y)=+0.2) for the three components of the
rheological model (Fixed hyperelastic network spring, Relaxing
hyperelastic network spring, nonlinear dashpot), with the strain in the 8-
chain network equal to the total strain. (b) Time history for shear stress in
relaxing 8-chain network, fixed 8-chain network, and total stress..................
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Figure 5-31. Shear stress-strain response for nonlinear viscoelastic model of actin-
avidin at multiple frequencies (#=0.005, 0.05, 0.5, 5 Hz) taking
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Figure 5-32. Shear storage modulus (G') and loss modulus (G”) for nonlinear
viscoelastic model as a function of frequency...........cccevrrrrrrvrrrerereerceereen.

Figure 5-33. Complex shear modulus, G, and phase shift, 5, as a function of
frequency for theory (fit to ca=20uM, R=0.01) and experimental
(car=15uM, R=0.02) (Wachsstock et al., 1994) actin-avidin networks...........
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Figure 5-34. Simulated stress relaxation of an actin-avidin network (css =20uM,
R=0.01) with constant shear strains of tan(y)=0.05, 0.1, 0.15 (inset).............

Figure 5-35. Simulated stress relaxation modulus of an actin-avidin network (car
=20uM, R=0.01) with constant shear strains of tan(y)=0.05, 0.1, 0.15
L= S

Figure 5-36. Simulated creep response of an actin-avidin network (car =20upM,
R=0.01) with constant shear stresses of t=0.02, 0.04, 0.06Pa (inset)...........

Figure 5-37. Simulated creep function of an actin-avidin network (¢4 =20uM, R=0.01)
with constant shear stresses of 1=0.02, 0.04, 0.06Pa (inset).........................
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Figure 5-39. Membrane deformation Modes..........cccccuvrerincirnecrninneecsenneccnnescessensnneees

Figure 5-40. (a) Axisymmetric mesh schematic with axial normal strain contours in
deformed mesh, and (b) Input (total) strain time history for compression of
a viscoelastic cell with loading ramp time of 0.01 second and a hold time
Of 20 SECONMS.......cercriirrrcccccntrer e e e ssn s e e e sses e s e e sanssas s e saeassessnesananes

Figure 5-41. Element strain in the 2-direction (gz2) within actin networks in a
compressed cell (e2.0a= -15%) at two different times, (a) =0.01 sec,
immediately after compression and (b) t=20 sec, in the compressed but
relaxed state. ... s

Figure 5-42. Element stress in the 2-direction (o) within actin networks in a
compressed cell (2= -15%) at two different times, (a) =0.01 sec,
immediately after compression and (b) =20 sec, in the compressed but
relaxed state. Units are Pa.............cccccveirriecceiiinnnnceeceecen e seneens

Figure 5-43. Relaxation of reaction force on a solid plate compressing a cell (2 tota=-
5%, -10%, and -15%). Cell consists of a neo-Hookean nucleus,
orthotropic membrane, and a cytoplasm consisting of an actin network
(car=20uM, L=0.9pm, [;=3M, @=1.1%) .ecoueeeeeeeeeeeeeeeereseeee e see e e e seenes

Figure 5-44. Relaxation of reaction force on a solid plate compressing a cell (&2 oa=-
5%, -10%, and -15%). Cell consists of a neo-Hookean nucleus,
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Figure 5-48.
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Figure 6-1.

Figure 6-2.

orthotropic membrane, and a cytoplasm consisting of an actin network
(car=20pM, Lc=0.9um, [p;=3pm, 0=1.1%) .....cceccvrmnrciirmrnccniscneninte e

(a) Axisymmetric mesh schematic with axial normal strain contours in
deformed mesh, and (b) Input (total) strain time history for compression of
a viscoelastic cell with loading ramp time of 0.01 second and a hold time
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Element strain in the 2-direction (e22) within actin networks in a
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relaxed state. ... e

Element stress in the 2-direction (o2) within actin networks in a
compressed cell (2= -15%) at two different times, (a) +=0.01 sec,
immediately after compression and (b) =20 sec, in the compressed but
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Relaxation of reaction force on a solid plate compressing a cell (&2 wt=-
5%, -10%, and -15%). Cell consists of a neo-Hookean membrane
and nucleus, and a cytoplasm consisting of three regions of actin
networks (ca=10-170uM, L=0.9um, [,=3um, a=1.1%) . ...cc.ceoevrrrririrrrcrirnenne

Relaxation of reaction force on a solid plate compressing a cell (&2 otai=-
5%, -10%, and -15%). Cell consists of a neo-Hookean membrane
and nucleus, and a cytoplasm consisting of three regions of actin
networks (car=10-170uM, Lc=0.9um, [,=3pm, a=1.1%) .....cccerrerrrrrrnscrrcrrcrnnne

Biphasic porous media in soil mechanics from the superposition of two
continuous media [adapted from (Mokdad et al., 2004)].............c.ccceeecurreennen.

Normalized vertical displacement evolution of a soil in confined
compression with a porous platen boundary (p=0) and subject to a
sudden vertical pressure load. Qualitative contour plot of vertical stress
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Figure 6-3. Normalized pore pressure evolution of a soil in confined compression with
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Figure 6—4.

load. Qualitative contour plot of pore pressure shown in inset at £=0.01min
(0 L= o) OO TP

Articular cartilage permeability for varying compressive strain and applied
pressure (Lai and Mow, 1980) ..........ccccreriirccnnnrinreiscsinncseenseesssesensecsssanens

Figure 6-5. (a) Schematic for confined compression test, (b) Input displacement profile

Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.

with ramp time (t;), and (c) Stress relaxation time history and curve fit of
bovine cartilage (adapted from (Ateshian et al., 1997)). ........cccceeirriccrrecaenn.

(a) Schematic for unconfined compression test and (b) Stress relaxation
time history for a ramped displacement with ramp time (t;) and an internal
material diffusion time (t5) of bovine cartilage (adapted from (Cohen et al.,
T998)). ettt ettt e s st e e e an s ne s an b e annneenenene

(a) Electrokinetic transduction in cartilage via confined compression setup
with a streaming potential, and (b) Oscillatory input displacement with
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Figure 6-12. (a) Reaction force normalized by the peak reaction force, and (b) Lateral
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CHAPTER 1 INTRODUCTION

1.1 Cell mechanics and role of cytoskeleton

Many important biological cellular functions in multicellular organisms rely on
the micromechanics of the cell and its cytoskeleton. Microstructural cellular features
govern the cell’s mechanical behavior primarily via three main components: the plasma
membrane, nucleus, and internal cytoskeleton (see Figure 1-1) (Boal, 2002). The
semipermeable plasma membrane, composed of a lipid bilayer and transmembrane and
surface proteins, provides a protective barrier for the cell while simultaneously
facilitating interactions with its external environment (Lodish et al., 2004). The cell
nucleus is enclosed by a double membrane and filled with chromatin-rich nucleoplasm
and a nucleolus. Nuclei can dominate the mechanical response for cells such as inactive
B lymphocytes (B cells) in which their nuclear volume consumes a large fraction of the

cell, and they are often modeled as a viscoelastic solid (Guilak et al., 2000).

Cytoskeletal
> Filaments

Nucleus

Figure 1-1. Cellular structures: plasma membrane, nucleus, and cytoskeletal filaments (adapted from
(Cummings, 2001)).
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The membrane works in concert with the dynamic cytoskeletal microstructure to perform
a crucial role in many of the regulating cellular functions including cell division,
adhesion, spreading, migration, contraction (Stamenovic and Wang, 2000; Boal, 2002;
Lim et al., 2006), and other mechanotransductive effects which influence many
biochemical processes such as gene expression (Maniotis et al., 1997; Guilak et al.,
2000).

The membrane and cytoskeleton can play an equally important role in many
abnormal cellular actions that lead to disease. Environmental influences and genetic
mutations leading to disruption or dysfunction in cytoskeletal proteins have been linked
to heart failure (Hein et al., 2000; Lemler et al., 2000) and neurodegenerative diseases
such as Alzheimer's disease (Lee, 1995; McMurray, 2000; Nigel J Cairns, 2004).
Chemomechanical pathways can lead to microstructural alterations in the cytoskeleton
resulting in less cell deformability and a decrease in cell mobility for diseased states such
as malaria and gastrointestinal cancer (Suresh et al., 2005). Increases in cell stiffness
have also been linked to complications in diabetes mellitus (Perrault et al., 2004). Some
therapeutic treatments can alter the cytoskeleton, thereby causing additional
complications. For example, an increased stiffness is observed in leukemia cells after
exposure to chemotherapy, leading to leukostasis; while a combination of chemotherapy
and cytoskeletal inhibitors led to apoptosis (cell death) of leukemia cells without the
complications of decreased deformability (Rosenbluth et al., 2006).

The cytoskeleton is composed of three protein filament networks: actin
microfilaments (AF), intermediate filaments (IF), and microtubules (MT).

Microrheological studies have been conducted on all three cytoskeletal filament
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networks. These studies have quantified the detailed mechanical behaviors (e.g. force-
deformation, shear moduli vs frequency, or shear moduli vs concentration) of the
cytoskeletal filaments for both in vitro (Isambert and Maggs, 1996; Shin et al., 2004; Liu
et al., 2006) and in vivo (Schliwa, 1986; Elson, 1988; Lyass et al., 1988; Portet et al.,
2004; Daniels et al., 2006) environments. The rheology of in vitro single filament
networks (Janmey et al., 1991; Tseng et al., 2002b; Gardel et al., 2006b) has also been
examined, as well as the rheology of multiple filament networks (Schliwa et al., 1982;
Leung et al., 1999; Karakesisoglou et al., 2000) with and without cross-linking proteins.
The constitutive behavior of the cytoskeletal filaments can be integrated into structure-
based micromechanical models of the entire cell to predict the mechanical response of the
combined network in the cytoplasm. When combined with membrane and nucleus
structural models, the composite cellular microstructure is amenable to detailed
mechanical modeling.

Three-dimensional (3D) cytoskeletal network models, especially when integrated
with cellular models containing membrane and nucleus components, have utility for a
wide variety of applications. The integrated model can be used to understand
mechanotransductive effects during cancer tumor growth (Paszek and Weaver, 2004;
Thamilselvan et al., 2004), cardiac cell remodeling/heart failure (Hoshijima, 2006),
angiogenesis (Li et al., 2005c), and stretch-activated ion channels (Itano et al., 2003).
The model could be used for directing multiple types of tissue engineering experiments
(e.g. controlling growth of budding/branching of embryonic lungs via cytoskeletal

tension) (Ingber, 2005). Models of cellular manipulation are also useful for blood cell
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separation processes (Li et al, 2005a) and for BioMEMS applicationsA such as
deformation on cell culture scaffolds (O'Brien et al., 2004).

The focus of this doctoral research has been the development of a
microstructurally-motivated model of the 3D biomechanical response of cross-linked
cytoskeletal networks during elastic and viscoelastic deformations, with a specific
emphasis on actin networks. This thesis is composed of seven chapters. The remainder
of the first chapter will give some background on the morphology, properties, and
network behavior of the three cytoskeletal filaments (AF, IF, MT). The second chapter
will focus on approaches for modeling the behavior of single cytoskeletal filaments
including entropic unbending and internal energy-based axial stretching. These two
behaviors are combined in an extensible model that employs a new analytical
approximation for entropic unbending of semiflexible filaments. The third chapter
addresses cytoskeletal network behavior through a brief review of other modeling
approaches, and a detailed derivation and validation of a network model that incorporates
the extensible filament model with the Arruda-Boyce eight-chain network model. The
model also includes bundling, swelling and prestress effects. Chapter four examines the
mechanical contribution of network cross-links (through torsional potentials) and the
cross-links’ influence on the entropic configuration space. The fifth ¢hapter adds the
effects of nonlinear interfilament shear viscoelasticity to the network model and
compares the model with rheological experimental data of actin networks. The nonlinear
viscoelastic cytoskeletal model is also incorporated within a larger finite element model
of the cell that includes a neo-Hookean nucleus and an orthotropic, linear elastic

membrane. Chapter six shows the mechanical effect of cytosolic fluid flowing through
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the cytoskeletal network via a poroelastic network model demonstrated in confined
compression, unconfined compression, and compression of a cell with a membrane and
nucleus. Finally, the seventh chapter presents a summary and a number of future

enhancements for the model and their applications.

1.2 Cytoskeletal filament networks

1.2.1 Morphology & filament properties

1.2.1.1 Actin filaments

Actin is one of the most abundant proteins in the human body and can reach
concentrations over 100uM in eukaryotic cells (Higgs, 2001), with cortical actin
concentrations in lamellae averaging 300pM(Hartwig and Shevlin, 1986). Actin plays a
crucial role in many cellular processes including migration, contraction, cell division, and
it has accordingly been of key interest since it was first observed by Straub in 1942

(Straub, 1942).
The morphology of in vivo actin networks varies depending on the location within

the cell. Figure 1-2 shows three different locations within the cell for cross-linked and

bundled actin networks. The different types of bundled and cross-linked network
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Figure 1-2. Actin network morphologies throughout the cell (Alberts, 1996)

morphologies are necessary for normal cellular functions (structural stability, motility,
mechanotransduction, etc.). These different morphologies for F-actin are readily seen in

the micrographs of Figure 1-3.
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Figure 1-3. The endothelial cytoskeleton in increasing magnification, clockwise. A, Fluorescently labeled
endothelial cell cytoskeletons with nuclei stained blue, F-actin stained red, and microtubules stained green.
The “striped” actin appearance throughout the cells is due to the bundling of F-actin into stress fibers which
are differentiable at optical resolution, panel width 200 pm. B, Higher magnification reveals that the cells
actually contain a pervasive network of actin filaments that fills the space between stress fibers
(arrowheads), staining a diffuse red in fluorescent imaging, panel width 20 pym. C, D, Increasing
magnification of the network showing it to be a dense, porous, evenly-distributed web of individual
filaments. The pore size of the network is approximately 100 nm, (A, image courtesy of Molecular Probes.
B-D, images courtesy of John Hartwig. All four panels are taken from different cells; inset boxes are placed
solely for scale). Hartemink, C.A., Ph.D. Thesis, MIT (2005).

The actin cytoskeleton employs its polymerization and structural capabilities in
support of cell motility and migration. Actin cytoskeletal filaments actively rearrange

their microstructure in response to mechanical as well as chemical stimuli. Globular actin

e Nuclous o
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F-actin
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Figure 1-4. F-actin polymerization and polarity, bar=10nm (Lodish et al., 2004)
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monomers (G-actin) polymerize into polar, helical strands of filamentous actin (F-actin)
as seen in Figure 1-4. Aided by actin binding proteins (ABPs) to regulate filament length
and geometries, in vivo actin polymerization can achieve incredible speed and flexibility,
with polymerization of micrometer-thick layers of densely packed filaments in seconds
(Higgs, 2001). During the creation of migratory protrusions, the actin cytoskeleton is
dynamically remodeled via polymerization, and this reorganization leads to the force
necessary for cell migration (Pollard and Borisy, 2003). The cylindrical-like protrusions,
or pseudopods, extend into the 3D extracellular matrix (ECM) via a
polymerization/depolymerization cycle, or “treadmilling,” at the inner surface of the
membrane. These protrusions are generated from the dense, porous sections of the actin
network (see Figure 1-3) in conjunction with localized cytosolic swelling and
poroviscoelastic effects (Herant and Dembo, 2006). The importance of actin
microstructures is emphasized through the fact that regulating or inhibiting actin
polymerization decreases cell motility. Mechanical deformation of neutrophils flowing in
pulmonary capillaries, for example, can cause cytoskeletal disruption, pseudopod
projections, and a resulting decrease in overall cell shear modulus of more than 60%
(Yap and Kamm, 2005). An increased understanding of the mechanics of the actin
cytoskeleton during the cellular protrusions and contractions can therefore augment
understanding of critical immunological responses (i.e. extravasation, migration) as well
as actin polymerization regulation therapies for treating cancer (Zigmond, 2004; Quinlan

et al., 2005; Walker and Olson, 2005).
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The morphology of the actin filament is two long-pitch right handed helices as shown
in Figure 1-5. The crystal structure of the globular actin monomer is also shown in
Figure 1-5. The radius of gyration of the F-actin helix has been shown to be 10 nm
(Egelman and Padron, 1984) or greater (depending on osmotic pressures, etc.)(Grazi,
1997; Oda et al., 1998), equivalent to a homogeneous rod with a diameter of 7.1 nm

(Egelman and Padron, 1984).

Figure 1-5. (A) Crystal structure of monomeric G-actin and (B) structural surface representation F-actin
with 13 monomers (Images courtesy of Thomas Splettstoesser with the open source molecular visualization
tool PyMol, based on the atomic models of (A) Kabsch, et al. (Kabsch et al., 1990) and (B) Holmes, et al.
(Holmes et al., 1990))

F-actin can have in vitro contour lengths of up to 20 pm (Gittes et al., 1993). In vivo
measurements of contour lengths of F-actin filaments, however, range from 0.1-1 pm in
the actin cortex (Hartwig and Shevlin, 1986; Podolski and Steck, 1990; Medalia et al.,

2002) as shown in Figure 1-6.
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Figure 1-6. Electron micrograph of the actin cortex of a macrophage cytoskeleton, labeled with myosin
subfragment 1. Bar, 0.1um (top right corner). (Hartwig and Shevlin, 1986)

The persistence length of a filament is a representative length beyond which the
filament’s curvature is uncorrelated due to thermal fluctuations, and will be defined in
more detail in Chapter 2. The persistence length of F-actin has been obtained from many
experimental techniques involving both native and fluorescently labeled actin filaments
(Boal, 2002), generally within the range of 3-18 pm (Janmey, 2000; Wagner et al., 2007).
The principle techniques include dynamic light scattering, microscopic observation of
thermal fluctuations, and microscopic observation of driven oscillation of labeled actin
filaments. Dynamic light scattering has a broad range of results with the most recent
converging on /,~16pm (Janmey et al, 1994; Boal, 2002). Direct microscopic
observation of the thermal fluctuations of fluorescently labeled actin filaments yield
persistence length values of 18+1 pm when stabilized by phalloidin (Gittes et al., 1993;
Isambert et al., 1995) and 9+0.5 um when not stabilized (Isambert et al., 1995). Direct
microscopic observation of hydrodynamically driven filaments have provided more

flexible values at 7.4+0.2 um (Riveline et al., 1997; Wiggins et al., 1998). Steinmetz, et
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al. measured the persistence length of F-actin using conventional transmission electron
microscopy (CTEM), while taking into account that the adsorption of the filaments onto
the carbon support film would force the filament from a 3D configuration into a 2D
environment and thereby leading to artificially stiff filaments (Steinmetz et al., 1997a).
They found that the persistence lengths varied from /,~3pm for native filaments to
Iy~6um for filaments fluorescently labeled with phalloidin (Steinmetz et al., 1997a;
Steinmetz et al., 1997b). Kas, et al. (Kas et al, 1994) and Takebayashi, et al.
(Takebayashi et al., 1977) also measured a persistence length of /;,~4pm. And F-actin
persistence lengths have been found as low as /,~0.1-0.5pm by Piekenbrock and
Sackmann (Piekenbrock and Sackmann, 1992), although the results were obtained with
F-actin that wasn’t purified as much as in other experiments. It should also be noted that
eukaryotic cells express three classes of actin isoforms (a, f3,v), each with different
functions and properties: a-actin (in muscle cells) is associated with contractile/muscle
cells; y-actin exists in nonmuscle stress fibers; and B-actin is present at the leading edge
of filopodia and lamellipodia (Lodish et al., 2004). And while some isoforms are easier to
extract (i.e. a-actin from skeletal muscle), other isoforms (i.e. B-actin) are much more

plentiful in cells and are more flexible (Allen et al., 1996; Steinmetz et al., 2000).

1.2.1.2 Intermediate filaments

Intermediate filaments (IF), composed of a large heterogencous family of proteins,
extend across the cell and are important to the cell architecture as well as nuclear/ cellular
stability (Portet et al., 2004). IF form a cage-like structure around the nucleus and can be

modulated to meet the changing needs of cells such as mechanical support,
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cytoarchitecture, cell migration, and signal modulation for cell growth/death through

dynamic interactions with non-structural proteins (Coulombe and Wong, 2004).

o |
5 pm

Figure 1-7. Intermediate Figure 1-8. Electron micrograph of in vitro
filament substructures vimentin IF. Bar = 100nm. (Mucke et al., 2004)
(Campbell et al., 1999)

They are assembled from a 45 nm long coiled-coil dimer as the elementary building
block (i.e. in stranded-rope fashion shown in Figure 1-7 with an overall diaméter of 10
nm) (Herrmann and Aebi, 2004). In vivo contour lengths of intermediate filaments have
been observed to range from 10-20 pm (Fudge et al., 2003). In general, vimentin IF
(Figure 1-8) contribute about 20% of cytoskeleton stiffness in endothelial cells and
fibroblasts as measured with magnetic twisting cytometry (Wang and Stamenovic, 2000).
Persistence lengths for intermediate filaments such as vimentin can vary from 0.3-3 pm
depending on the measurement technique. Similar values are seen for desmin IF (0.1-1
pm) when measured by light scattering (Hohenadl et al., 1999). The higher value of /,
for vimentin, 3 um (Inagaki et al., 1989), represents an upper bound since it was obtained

via electron micrograph (EM) and the forces associated with adsorption to the EM grid
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can cause significant nonthermal bending (Howard, 2001). Lower values, ranging from
0.3-1 pm (Mucke et al., 2004), were measured by adsorbing the IF to mica and glass,
then measuring the contours with an AFM. Mucke, et al. note that the lowest values are
likely due to the constraints of the adsorption process on the glass/mica substrates, thus
yielding a persistence length of ~1 pm for vimentin in a dilute solution. The lower
persistence length of IF compared to that of F-actin filaments is caused by the presence of
flexible linker regions within the coiled-coil dimer and also due to axial slipping between
dimers within the filaments (Mucke et al.,, 2004). This structure, while still highly
resistant to elongation, is much less resistant to bending and torsional stresses (Howard,
2001). The coiled-coil dimer structure enables the IF to have a Young’s modulus on the
order of E~6 MPa (calculated from persistence length and diameter measurements) and a

high tensile strength of approximately 180 MPa for keratin-like IF (Fudge et al., 2003).

1.2.1.3 Microtubules

Microtubules are polar, tube-like structures with an outer diameter of 25 nm, an inner
diameter of ~15 nm, and are typically composed of 13 protofilaments consisting of
multiple heterodimer subunits (see Figure 1-9) (Amos and Baker, 1979; Bordas et al.,

1983).



microtubule SR
50 nm

Figure 1-10. Microtubules with sinusoidal
shapes (arrowheads) at their ends (white line
indicates cell periphery). Bar = S5um.
(Brangwynne et al., 2006)

Figure 1-9. Microtubule composition (Alberts,
2002)

In vivo contour lengths for MT (see Figure 1-10) generally range from 1-10 pm, while in
axons their length can vary from 50-100 um (Bray, 2001). Microtubules provide the
pathways for intracellular transport of vesicles and organelles in addition to helping to
define the cellular structure in conjunction with other filaments. Microtubules are of
primary structural importance during mitosis (i.e. composing the mitotic spindle) and for
dynamic cellular structures such as cilia and flagella. Microtubules extend radially from
the centrosome with higher concentration patterns near the nucleus (Alieva and Vorobev,
1992; Lodish et al., 2004). Microtubules also interact with other cytoskeletal filaments
through cross-linking proteins such as plakins at cellular junctions (Karakesisoglou et al.,
2000), and microtubule actin cross-linking factor (MACF) (Leung et al., 1999).
Mechanical properties (flexural rigidity, persistence length, etc.) are measured via a

variety of empirical methods for bending and buckling of individual microtubules:
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buckling force measurement using optical traps (Kurachi et al., 1995; Tran et al., 1995) or
within vesicles (Kuchnir Fygenson et al., 1997), bending response via AFM (Vinckier et
al., 1996; Kis et al., 2002), analysis of post-bending relaxation (Felgner et al., 1996;
Felgner et al., 1997), image analysis of bending from hydrodynamic flow (Venier et al.,
1994; Kurz and Williams, 1995), and thermally induced vibrations or shape fluctuations
(Mizushima-Sugano et al., 1983; Gittes et al., 1993; Venier et al., 1994; Kurz and
Williams, 1995; Mickey and Howard, 1995; Janson and Dogterom, 2004). These

methods are illustrated in Figure 1-11.
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Figure 1-11. Primary experimental methods to measure mechanical properties of individual microtubules.
P is the loading force, F is the response from the microtubule. (Kikumoto et al., 2006)

In vitro values for persistence length of MT composed from highly purified tubulin
have ranged from 1 mm (Gittes et al., 1993; Venier et al., 1994) via thermal fluctuation
imaging to 8 mm (Kurz and Williams, 1995) using the hydrodynamic flow method at
physiologic temperatures and pH levels. Typical values for Young’s modulus range
between 1 MPa, measured with an AFM and calculated via the Hertz formula (Vinckier
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et al., 1996), and 7 GPa from buckling experiments with optical traps (Kurachi et al.,
1995) assuming a tube-like MT cross-section. They are often modeled as homogeneous
and isotropic, but experimental evidence suggests anisotropic behavior with stronger
longitudinal bonds between heterodimers than the _transverse, inter-protofilament bonds
(Kis et al., 2002; Pampaloni et al., 2005). “Bending” occurs by sliding between filaments
(governed by shear modulus) in addition to stretching of protofilaments (governed by
Young’s modulus). When measured with the same method (e.g. AFM deflection), the
shear modulus (upper limit of 1.4 MPa) ié two orders of magnitude lower than the
Young’s modulus (~100 MPa), giving rise to a length-dependent flexural rigidity of MT
(Kis et al., 2002). Short MT are flexible due to a low value of the shear modulus while
longer MT become more rigid as the Young's modulus dominates the mechanical
behavior (Kasas et al., 2004). The length-dependence can be seen in persistence length
measurements for MT with increasing contour lengths (see Figure 1-12) measured
through a single-particle tracking method combined with a fluctuation analysis

(Pampaloni et al., 2006).
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Figure 1-12. The persistence lengths of MT as a function of their contour lengths (Pampaloni et al., 2006)
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Some recent work, however, has added to the debate by extending the isotropic,
homogeneous models to include protofilament corrugations in order to explain the linear
elastic response of microtubules (Schaap et al., 2006).

In vitro studies suggest that MT can only withstand small compressive loads ~1 pN
(Deguchi et al., 2005; Dogterom et al., 2005). It has recently been shown, however, that
highly curved in vivo MT influence cell shape by resisting large-scale compressive forces
(~100 pN) exerted by the surrounding contractile cytoskeleton, and that their buckling
wavelength is reduced significantly because of mechanical coupling to the surrounding
elastic cytoskeleton (Brangwynne et al., 2006). Brangwynne, et al. compressively loaded
initially straight MTs (that has polymerized out to the cell boundary) with a microneedle
and then imaged over time to capture the sinusoidal shapes and compared them to thin
plastic rods (0.1mm diameter) compressed in aqueous solutions (exhibiting classic long-
wavelength Euler buckling) and in gelatin (exhibiting short-wavelength buckling with
repeatable, local disruptions in the gelatin near the buckled region) (Brangwynne et al.,

2006).

1.2.2 Cross-linked network behavior

1.2.21 Actin filaments

In vitro rheological experiments on reconstituted actin gel-like networks have been
conducted with varying levels of actin and cross-link concentrations (Janmey et al., 1988;
MacKintosh et al., 1995; Gisler and Weitz, 1999; Shin et al., 2004; Storm et al., 2005;

Gardel et al., 2006b). Reconstituted actin gels under physiological conditions exhibit in
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vitro shear moduli that are low, ~0.1-1 Pa (Hinner et al., 1998; Gardel et al., 2004a;
Gardel et al., 2006b), compared to in vivo values, ~100-1000s Pa (Fabry et al., 2001;
Wang et al., 2002a; Alcaraz et al., 2003). Much of the variation, even for gels at the
same concentration, can be attributed to differences in gel preparation, polymerization,
and storage in addition to the measurement method chosen (Xu et al., 1998a). Many of
the measurement techniques are indirect, either conducted from outside the cell or by
physically altering the structure of the cytoskeleton to measure its properties. And local
microrheological measurements have been found to yield different results for in vitro
actin gels depending on the method chosen (e.g. the number of sampling points) (Shin et
al., 2004). Variation is also seen for different cell types (Zahalak et al., 1990; Bausch et
al., 1999; Sato et al., 2000). In vitro network prestress appears to increase the shear
modulus to typical values found in the in vivo networks, which is a reasonable
assumption for adherent cells and cells in a 3D extracellular matrix (Gardel et al., 2004a).
While the empirically obtained dynamic modulus values vary considerably, a power-law
description for modulus behavior is often used (Fabry et al., 2001; Koenderink et al.,
2006). Microrheological test data exhibiting this power-law relationship are
conventionally presented through plots showing the dynamic shear moduli as a function
of frequency. Figure 1-13 demonstrates this behavior, for a 1 mg/ml solution of F-actin
with and without cross-linking, obtained via an optical microrheology technique based on
laser-interferometric detection of thermal fluctuations of embedded probe particles

(Koenderink et al., 2006). Note the plateau region for the storage modulus (G’)
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Figure 1-13. (a) Storage modulus G'(®) and (b) Loss modulus G"(w) of F-actin filaments. Solid lines:
theory with G*(w) ~ »** [adapted from (Koenderink et al., 2006)]

at low frequencies in Figure 1-13a. For semi-dilute solutions without cross-links, this
plateau region can be attributed to polymer entanglements, with G’ again decreasing at
lower frequencies according to a power law relationship (not shown in Figure 1-13). For
semi-dilute solutions with cross-links, however, the G’ plateau modulus shown in Figure
1-13a extends indefinitely to low frequencies (Gittes and MacKintosh, 1998). Whether
through entanglements behaving like a network of temporarily fixed cross-links or
through a truly cross-linked network, the plateau region for G’ at intermediate
frequencies suitably corresponds to time scales of importance within the biological cells
(Boal, 2002).

For low frequency, the shear modulus is often shown as a function of the shear strain.
Figure 1-14 shows this relationship for F-actin/filamin-a (FLNa) (2 mg/ml), and a
number of cross-linked biopolymer networks, at 10 rad/s measured in a strain-controlled

rheometer which applies a sinusoidally varying strain with controllable maximal strain

50



amplitude and computes the elastic storage moduli from the amplitude and phase shift of

the resulting stress (Storm et al., 2005).

Figure 1-14. Dynamic shear storage moduli as a function of shear strain (Storm et al., 2005)

The influence of cross-links in actin networks is often examined by tuning the degree
of filament cross-linking and bundling by varying the concentration of cross-links (ccr)
for a fixed actin concentration (ca), or R = ccL/ ca. Using the cross-linker scruin, Gardel,
et al. determined that actin-scruin gels exhibited elastic network behavior for values of

R>0.03, with a viscous, fluid-like response for R<0.03 (Gardel et al., 2004a).

Elastic Modulus, G, (Pa)
s

-l
<
-
gy

R Actin Concentration, ¢, («M)

Figure 1-15, Elastic shear modulus of actin-scruin networks as a function of (A) ratio of cc; / ¢4 and (B)
actin concentration; R = 0.03(m), 0.13(A), and 0.3 (e). (adapted from (Gardel et al., 2004a))
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The results in Figure 1-15, obtained by polymerizing the cross-linked networks in
situ within a stress-controlled rheometer, show G, decreasing weakly for R < 0.03
(Figure 1-15A). The elastic shear modulus increases with concentration according to the

52

power-law relationship of G,~c,>* (Figure 1-15B), with a stiffer response for increasing

values of R, possibly due to bundling of filaments (Gardel et al., 2004a).

At high strains (e.g. y > 0.4 for FLNa-F-actin), however, nonlinear effects dominate
the stress-strain response, and the (secant) shear modulus (G = o/ y) used in the linear
elastic regime is less useful than a differential (tangent) shear modulus (K = do / dy)
evaluated at a fixed stress (Gardel et al., 2006b). This concept is illustrated in Figure 1—

16 (inset) for a network in which G"<<G’.

3

10'

Differential Elastic Modulus, K' (Pa)

10* 10" 10° 10'
Applied Prestress, o, (Pa)

Figure 1-16. Differential elastic modulus, K', as a function of applied shear prestress, c,, for actin-scruin
networks: R=0.03 and c, =29.4 pM (4A), 21.4 uM (®), 11.9 pM (m), 8.33 uM (®) (Gardel et al., 2004a).
Inset: schematic showing implications of the nonlinear stress-strain relationship for networks in which
G"<<G’ (Gardel et al., 2006b)
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To obtain linear measurements in the nonlinear elastic regime, rheological

experiments employ a superposed oscillatory stress for a constant applied prestress (o)

to determine the dynamic differential elastic modulus K'(c,)= (60'/67)6 as shown in

Figure 1-16 for four different concentrations of actin (Gardel et al., 2004a). For small
prestress, K' is nearly constant, corresponding to a linear network response while
increasing prestress leads to elastic stiffening (from the nonlinear force-deflection
behavior of individual filaments) which is consistent with an entropic model for the

elasticity of actin networks (Gardel et al., 2004a; MacKintosh, 2006).

1.2.2.2 Intermediate filaments

The in vitro shear storage modulus of 2 mg/ml vimentin IF networks was found to
be 3.2 Pa using a torsion pendulum viscoelastometer [corrected value from (Janmey et
al.,, 1991)]. The storage modulus G'(®,y) (considered to be the differential modulus
G’(®,y) = G(y) + y dG/dy for short times (Janmey et al., 1983)) was also measured for the

same 2 mg/ml vimentin networks as a function of shear strain and concentration (Figure

1-17).
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Figure 1-17. Dynamic shear storage modulus of vimentin IF as a function of shear strain y (c = 2mg/ml),
and as a function of vimentin concentration (low initial strain) [adapted from (Janmey et al., 1991)]

The vimentin IF networks exhibit strain hardening at larger strains, a feature
predicted to be characteristic of polymer networks where the elastic response results from
bending of the filaments (Doi and Kuzuu, 1980). The static stress-strain response of

vimentin in a torsion rheometer also exhibits the strain hardening behavior (Figure 1-18).
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Figure 1-18. Shear stress-strain response of vimentin (2 mg/ml) [adapted from (Janmey et al., 1991)]
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Vimentin also exhibits some unusual viscoelastic properties not shared by actin or
tubulin. Vimentin is less rigid (lower shear moduli) at low strain but hardens at high
strains and resists breakage, suggesting it maintains cell integrity (Janmey et al., 1991).
The differences between F-actin and vimentin are optimal for the formation of a
composite material with a range of properties that cannot be achieved by either polymer
alone (Janmey et al., 1991). In addition to interacting with F-actin, vimentin can also
interact with microtubules via plectin cross-linking protein bridges as shown in Figure 1-

19.

Figure 1-19. Electron micrograph of a fibroblast after dissolution of actin filaments revealing
microtubules (orange), IFs assembled from vimentin (green), plectin (red), and gold particles marking
plectin (yellow). Gold particles are 10 nm in diameter. [(Fuchs and Cleveland, 1998) adapted from
(Svitkina et al., 1996)]

1.22.3 Microtubules
The in vitro shear storage modulus of 2 mg/ml MT networks, stabilized with 2 pg/ml

taxol, was found to be 3.4 Pa using a torsion pendulum viscoelastometer [corrected value
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from (Janmey et al., 1991)]. The storage modulus G'(w,y) was also measured for the
same 2 mg/ml MT networks as a function of shear strain and concentration (Figure 1—

20).
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Figure 1-20. Dynamic shear storage modulus of microtubules as a function of shear strain y (¢ = 2mg/ml),
and as a function of microtubule concentration (low initial strain) [adapted from (Janmey et al., 1991)]

As would be expected from a very stiff, pipe-like structure, the MT do not exhibit
strain hardening at larger strains, unlike F-actin and vimentin networks. The slope of the
static stress-strain response (Figure 1-21) of a MT network (2 mg/ml) in a torsion

rheometer also exhibits the relatively constant (secant) shear modulus of ~1 Pa, within a

factor of 2-3 of storage modulus value at high frequency.
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Figure 1-21. Shear stress-strain response of microtubules (2 mg/ml) [adapted from (Janmey et al., 1991)]

Although there has been considerable experimental evaluation of the cytoskeletal
networks, microstructurally-based mechanical models of the networks are less plentiful.
The next two chapters will review the previous modeling work in addition to detailing the
framework for a new micromechanical model of an isotropic cytoskeletal network. The
fundamental component of that framework, modeling the mechanical response of the

filament, is addressed next in Chapter 2.
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CHAPTER 2 FILAMENT MODEL

This chapter focuses on modeling approaches for single cytoskeletal filaments.
The three filament stiffness regimes are delineated: flexible, stiff, and semiflexible. Next
follows a description of entropic models and their applications while introducing a new
analytical approximation for entropic unbending of semiflexible filaments. An internal
energy stretching relationship is introduced and combined with the entropic unbending
approximation to form an extensible filament model for semiflexible filaments. The

chapter concludes with an examination of pretension in filaments.

2.1 Filament energy and stiffness regimes

According to the first law of thermodynamics, the net change in the internal energy
(d6) of a body is the sum of the heat absorbed (dQ) by the body and the work done ()
on the body, with negligible changes in kinetic energy.

dé =dQ+dW 2.1)
The work done on the body is solely a function of the applied stresses (neglecting body

forces), allowing Eq (2.1) to be given as
ds=dQ+l(s:dE), 2.2)
P
where S is the symmetric 2™ Piola-Kirchoff stress tensor and E is the Green-Lagrange

strain tensor defined by

1 1(r
E =—?:(C—I)=-2-(F F-I), (2.3)
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where C=F"F is the right Cauchy-Green strain tensor, I is the identity tensor, and F is the
deformation gradient, F=0x/0X where x is the position vector of a material point in the
current configuration and X is the original position. Additionally, the second law of
thermodynamics relates the change in heat added to the body, for a reversible process,
solely to the temperature (T) and change in entropy per unit mass (dS).

dQ=TdS 24
It is important to recognize that this equation applies to elastic deformations because they
are reversible processes. Equations (2.2) and (2.4) can be combined to give,

dé = TdS+-l—(S :dE). (2.5)

P
The Helmholtz free energy, 4, for any system (and the incremental change in 4) are
defined as
A=6-TS, (2.6)
dA =d&—TdS —SdT . 2.7
Assuming typical loading conditions and a constant temperature, Equation (2.7) becomes
(d4), =(d6), - T(dS),. 238)

This can now be combined with Equation (2.5) to give
1
;(S=dE)=(dA)T=(ds),—T(dS),, 2.9)

or, given in terms of unit volume (i.e. pS, pd, p6), the work done on the body from

applied stresses (in the absence of body forces), can be given as

[s: €], =[d(pa)}, =[d(o6)]; -T[d(oS)];. (2.10)

The strain energy density per unit volume (W) is defined through the integral
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W(E)= [ S:dE. @.11)
Using this definition of W for materials with negligible changes in internal energy (e.g.
elastomers and other rubbery elastic materials), we assume that dp&=0, and Equation
(2.10) becomes

), s =-Tld(pS)};. (2.12)

or solving for stress we have

oW A
S=|— =-pl|l —| . 2.13
(aE ),,s ’ (aE)m @13

For the case of biopolymers, the entropy for each macromolecular filament can be given
by

S = k,In(Q) (2.14)
where kg is Boltzmann’s constant and Q is the number of available configurations. The
number of configurations of a filament with total contour length, L., can be expressed in
terms of a filament-specific probability density (per unit volume), p(r), where r is the
end-to-end distance of the chain. For the case of a freely jointed chain, to be discussed in
Section 2.2, Q= p(r)dV and p(r) is the Gaussian distribution function.

However, if the entropy change during deformation of a material is infinitely
small (e.g. metals, ceramics, or fully extended biopolymer filaments), then the isentropic
assumption (dS=0) causes Equations (2.10) and (2.11) to become

), =[s: e}, =[d(c8)]; . (2.15)

Thus, in this case the isothermal work applied to deform these materials is converted to a

change in internal energy (d6) without affecting the conformation of the filament or
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structure of material (e.g. stretching of interatomic bonds from bending, torsion, or axial

extension).

Figure 2-1. Geometric quantities for biopolymer filaments.

Entropic effects, enthalpic effects (based on changes in internal energy), or
sometimes a combination of the two will control a filament’s elastic behavior depending
on its stiffness regime. The stiffness regimes are based on the relative magnitudes of the
persistence length, /,, and contour length of the filament. The persistence length, is
defined in terms of the distance (dsy) along the length of the filament (see Figure 2-1)
beyond which the filament’s curvature is uncorrelated due to thermal fluctuations. The

tangent vector at any point along the filament’s contour length is given by
i(s;)=0F(s,)/os,, (2.16)
where 7(s,)is the radius vector to the point on the curve from the curve’s end point

(Yamakawa, 1976; Kroy and Frey, 1996). The average correlation between tangent
vectors decays according the following relationship for three dimensions (Landau and

Lifshitz, 1951),
(7(s)-7(0)) = {coslos,) - 6(0)) = T _ il 2.17)
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where E = Young’s modulus and I = area moment of inertia. The persistence length is
therefore defined in its more familiar form as /, = x/(ksT), where x = EI = bending
stiffness of the filament.

Biopolymer filaments are traditionally considered to be flexible if their
persistence length is much less than their contour length (/,<<L.) and stiff if the opposite
is true ([,>>L;). The intermediate regime of semiflexible filaments, in which /,~L,
describes the behavior of many biological macromolecules including F-actin
(MacKintosh et al., 1995).

Due to a high bending stiffness, the number of filament configurations available
(and entropy contribution) to stiff filaments is very small, and internal energy dominates
their response. Internal energy-based filament deformations such as axial extension,
torsion, and bending increase the internal energy of the stiff filament by straining
interatomic bonds without causing a significant change in entropy. Bertoldi and Boyce
modeled the behavior of mussel byssus using an internal energy-based filament model
that captures the straightening out of bends in byssus molecular chains using an elastica-
type solution followed by axial stretching of the chains and subsequent force-induced
unfolding of the modular domains (Bertoldi and Boyce, 2007b). An internal energy-
based elastica approximation has also been used to capture the elasticity of other soft
tissue fibrils (Garikipati et al., 2008) and fibrous networks of collagen fascicles (Castro et
al., 2008a). The mechanical response of flexible polymers, to be discussed in the next
section, is entropic in origin, with an initial end-to-end distance =0 to maximize the
entropy difference and minimize its energy state. Semiflexible filaments, however,

behave more like continuously flexible filaments, often called a worm-like chain (WLC),
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rather than the traditional freely jointed chains of rigid rods (Boal, 2002). Except for
large extensions (#/L~1), the mechanical response of a semiflexible filament is based on
entropic unbending. As a semiflexible filament is unbent, the change in entropy comes
from sampling fewer configurations of bent filaments, which will be covered in the next

section.

2.2 Inextensible Entropic Models

The force-extension response of biopolymers is usually characterized by a linear
region followed by a nonlinear region of increasing tangent stiffness as the filament’s
extensional limit is reached (Fernandez et al., 2006; Kasza et al., 2007). Entropic models
have been successful in capturing the majority of both regions of the force-extension

response for many biopolymers.

2.2.1 Freely jointed chain model

Flexible polymers, with high molecular weight polymers with long contour lengths,
often behave like freely jointed chains (FJC) (Kuhn and Griin, 1942; Treloar, 1958) made
of many discrete rigid rods, and therefore many possible configurations. Figure 2-2
shows a schematic of a FJC which is subject to the assumptions that all bond angles, 0,

and rotational angles, ¢ are equally probable, no restriction on bond rotations, and no
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Figure 2-2. Freely Jointed Chain

excluded volume effects. The total contour length (L.) consists of “N” statistical segment
lengths (Kuhn length) “/’, or L=NI. To develop a quantitative evaluation of the
probability of chain configurations, we can employ an appropriate probability, p(r)dV,
that the free end of the chain is found within a small volume element (d/=dx dy dz), with
the fixed end at the origin as illustrated in Figure 2-2. The Gaussian error function

provides a good model for this probability, for r<<L.,
3
plx, y,z)dxdydz = —1)3—/2—exp(— b (x2 +y*+2° ))dxdydz (2.18)
T
where

’ 3

The Gaussian distribution, often referred to as a random walk profile, can be given in

terms of the radial distance from the origin of the “walk”,

3Nz 32
p(r)=( — J exr{— 2N12J’ (2.20)
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which is valid for approximately r < NI/3 (Boyce and Arruda, In preparation).
Substituting the Gaussian probability function into Equation (2.14), we obtain the change

in entropy per unit volume for the FIC,

S =k,1n(p(r)dV)=kB{ln(MJm _( 3r° )+ln(dV)}. (2.21)

2z 2NI?

The entropy per unit volume for an undeformed single molecule is then given by

3r?

EV_IT +c, (2.22)

S=—k,

where the arbitrary constant, ¢, will cancel out when the change in entropy (AS) is
evaluated:

_ 3r?

=ky o = ks (* + y* +22). 2.23)

The isothermal work done to extend a single biopolymer filament can be found (in terms
of the change in entropy per unit volume, AS) from Equation (2.12), still assuming no
change in internal energy or polymer volume,

(W)T,s = fohaindr =T (AS )T s (2.24)

or, rewritten using the Gaussian statistical distribution, we can calculate the force
required to extend the FJIC according to

OAS  3k,T
Joric= ‘T“a‘r— == NIBZ

r (2.25)

At deformations where the macromolecular end-to-end length approaches the contour
length, non-Gaussian effects must be addressed (typically for »/L. > 0.4) (Boyce and
Arruda, 2000). The non-Gaussian behavior is captured through the use of Langevin

chain statistics which describe the limited extensibility of polymer chains during the
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elastic extension as derived by Kuhn and Grin (Kuhn and Griin, 1942). The
corresponding non-Gaussian extensional force is given by

k,T
Sve.ric = _BTﬂ (2.26)

where f=¢ 1(r/ Nl) is the inverse Langevin function and () is the Langevin function

defined by £(8)=coth(8)-1/5.

2.2.2 Worm-like chain model

The worm-like chain (WLC) model, a more appropriate representation of the axial
extension of semiflexible filaments, is derived from the Kratky-Porod expression (Kratky

and Porod, 1949) for total energy of bending deformation due to thermal fluctuations:
P
Ecr=7 [lrcs,) 05, fas, 2.27)
0

where the tangent vector, 7, arc length, s; and contour length are shown in Figure 2-3

for a WLC. The WLC is a continuous chain that can be interpolated to any amount of

Fﬁgure 2-3. WLC filament schematic [adapted from (MacKintosh, 2006)]
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stiffness or flexibility between the two extremes of a FIC and a rigid rod (Yamakawa,
1976). With a force (f) applied along the x-axis (Figure 2-3), the total energy of a

stretched WLC becomes (Fixman and Kovac, 1973; Yamakawa, 1976)

Lc

I
Epe=k,T j{zp(at (s,)/ds, ] — f cosé(s f)} ds, (2.28)

0
with L>>], assumed. Using the rigid constraint of |7(s ; )‘ =1 (Yamakawa, 1976; Kroy

and Frey, 1996; Spakowitz and Wang, 2005), we can express the tangent vector

fluctuations in the x-direction are quadratic in terms of the lateral tangent vectors,
7,=[t,,t,], or t, =1-7; [2+0(}); and to quadratic order ot [0s, = ot, /as, (Marko

and Siggia, 1995), which yields a Gaussian approximation for the energy function (Kovac

and Crabb, 1982),

L¢c l N ~
Eyc=k,T JB(@:L Jos, - ftf} ds, —k,T [ L,. (2.29)
0

Using the Fourier transform for the lateral tangent vector to decouple the energy into

normal modes yields (Marko and Siggia, 1995),

L

7,(9)= [e*,(s)ds, , (2330)
0
1kl
Epc =k} J‘—E-”——[Ipqz +fldg-r1L.}. @.31)

0

Unlike biological and synthetic filaments with limited configurational space whose
elasticity is governed by changes in internal energy (Castro et al., 2008a; Garikipati et al.,

2008), semiflexible filaments’ entropic fluctuations within their configurational space is
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driven by thermal energy. The principle of equipartition of energy (Waterston, 1846;
Boltzmann, 1871; Boltzmann, 1876) states that, once the system reaches thermal
equilibrium, molecules equally share their averaged energy among the independent
degrees of freedom of their motion. For a system in which the system’s energy (Egys)
varies quadratically with a parameter (£), Egy=c g% (where c is a constant), the average

energy is (Howard, 2001),
(E,.)= j (5)p(5)d§=—;- [E,.@extl-E,, @k, The
j (©)expl-E,, (&) /k,THE  [c&® expl-c£? /k,T e

= === . (2.32)
jexp[ E,.(&)/k,THE [expl-ce? /k,T e

Ler
23

Applying the equipartition of energy to the wormlike chain, we find that

|~

-’2

(i2)= j< ) o] S (2.33)

: H (,,q +f) Lf

where the factor of 2 has been included to capture both lateral components of 7, (Marko

and Siggia, 1995), and the extension of the WLC can now be given to quadratic order as

(Marko and Siggia, 1995),
r - <?L2> 1
—_—= 1- =]1- . 2.34
L. 2 2, /I oS @39
Solving in terms of the force yields,
kT *
= -1, 2.35
Tme 161,,( Lc) @33)
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which captures the WLC behavior in the inextensible limit for which r/L. ~f . As the
filament is stretched close to its contour length, the amplitude of the undulations
decreases and the tangent vector fluctuates minimally about the x-axis (Kovac and Crabb,
1982). This decrease in thermal undulation amplitude results in a corresponding decrease
in available filament conformations to sample, leading to an increase in the axial stiffness
of the flexible filament.

The WLC model has been effective at describing the entropic elasticity of a
number of single molecules when L. > /,, including DNA at low to moderate strains
(Bustamante et al., 1994), single RNA molecules (Liphardt et al., 2001), and titin (Rief et
al., 1997). Although its full force-extension relationship requires numerical evaluation of
the path integral, interpolation approximations have been successfully used to simplify
calculations. For example, the popular interpolation approximation from Marko and

Siggia (Marko and Siggia, 1995) is

k;T| r 1 1
= —_ -—1. 2.36
f mCM-5 =7 [ L 4(1 _, / L )2 4} ( )

14

This approximation was created to encompass the small-force and high-force regimes,
but it diverges from the exact WLC path integral solution in the cross-over region as seen

in Figure 24,
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Figure 2-4. Comparison of WLC, FJC, and linear models for dsDNA data (Bustamante et al., 2000)

Figure 2—4 also demonstrates that the WLC provides a superior fit, for biopolymers such
as dsDNA, compared to the FJC or a linear relationship (note that linear results are not
straight due to the semi-log plot format). One should consider, however, that the Marko-
Siggia approximation requires an end-to-end distance of zero for no applied force
(rr=0=0), and is only defined for L>>], (Marko and Siggia, 1995). The Marko-Siggia
approximation also exhibits the non-intuitive behavior of requiring a decreasing

extensional force with increasing filament bending stiffness with other quantities fixed

(Figure 2-5).
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Figure 2-5. Normalized force-extension plot of WLC approximation for increasing persistence length, /,

While these issues are not of concern with biopolymers such as dsDNA or titin (both with
L>>1,), they become more significant for networks of semiflexible filaments.

Subsequent molecular theories (e.g. (MacKintosh et al., 1995)) have addressed the
semiflexible regime for L. ~ ], with energy functionals and force-deflection relationships
that are still entropic in origin but allow for rr-¢>0 as would be encountered in a
cytoskeletal network. Still following the Kratky-Porod formulation, the MacKintosh
model is derived in the following pages for bending deformations due to thermal
fluctuations (MacKintosh et al., 1995; MacKintosh, 2006). The MacKintosh model
describes a filament at a finite temperature, with transverse thermal fluctuations that

result in a contraction, (AL)r—¢ in Figure 2-3, causing the end-to-end distance, 7, at an

axial force, F, of zero to be less than the filament contour length, rr—g = L. — (AL)r=o.
Letting the x-axis define the average orientation of the filament and u define one of the

two transverse displacements, the incremental change along a filament segment (dsy) is
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ds, = d +du’ = dey[1+ (du/ ) . (2.37)

The projected length for small transverse displacements, du, is the contour length to

leading quadratic order:

L ={ds, = jabc,/n(du/abc)2 : (2.38)
Newton’s iteration for calculating a square root Jn is given by

Jn=x,, =12(x, +n/x,). (2:39)
with x,=1 and which converges quadratically in the limit of /imy_.x;. Taking the second

term of the iteration (x;), the change in length (AL) takes the form:

AL=L, —r= [\1+(dufdx) dx- fdx =12 [(dufdx} ax (2.40)

The total energy associated with applying an extensional force to the filament is

L 2, \? 2 2
Epy =~ [| o 2% +F(§“—) dx. 2.41)
2 )& o

The change in length and energy expression can be simplified by representing u(x) as a

Fourier series with pinned boundary conditions.

u= u,sin(gx) with g =wavenumber =nz/L, . (2.42)
q
Lc 4 2 2
Enw =2 (kg +Fg)u;. 243)
q
AL=1/2 '[Zu:qz cos®(gx)dx = %Z ug’ . (2.44)
q 9

The ensemble average contraction length is amended by inserting a factor of two to
include the contributions of both (orthogonal) transverse degrees of freedom of a filament

in 3D fluctuation.
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(AL) =%2q;q2[2(u§ ) 245)

In solving for the average transverse displacement <u,>, we apply the principle of

equipartition of energy to this case, as was done earlier for the general WLC,

1 ~ Lc 4 2 2

Skl = —4—(1«] +Fg*} u?). (2.46)
Solving for the average transverse displacement for the cases of F#0,

2 2k,T
u )= . 2.47
< "> ¢’L (i +F) (247)

Based on the equilibrium amplitudes, the contraction (for small transverse fluctuations) is

found by converting the wave number back from Fourier space and combining Equation

(2.45) and Equation (2.47).

(2.48)

where the dimensionless force ¢=FL:/xn* (MacKintosh, 2006). The contraction

length at the zero force condition is

T 1 L
(AL>¢-0 =L =1y =’_:;‘?';‘n—2= o (2.49)

where the Riemann zeta function, ) 1/n* =z°/6, is used to solve for the series. The

value of r at the zero force condition can then be shown to be

Poy = Lc(l - 6L; ] (2.50)

P
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We simplify the series relation of Equation (2.48) through the use of the earlier defined
Langevin function. The series for the average contractions converges to the following

expression:

(AL)=L, ~r= L [z cothlz|p)-1 _L 20 @.51)
A 29 20| np '

where 7\ = L \[F/x .

Since the functional dependence of F on r is of more interest than r as a function of F,

Cohen’s Padé approximation for the inverse Langevin equation (Cohen, 1991),

'(x)=x 1_;: +0x*) @.52)

is used to create a more useful force-extension relationship,

SO (YETEA)

1, \4Q-r/L.} \L.f1,-20~7/L,)
which reduces to Equation , (249) for the zero force condition. The
corresponding strain energy function is

kT
IP

L 2
[ TR lin(22 -21,2, +21,7)-m(r—1L,)]- c:l 2.54)

where c is a constant equal to the initial strain energy of the filament.

This approximation is valid for (1-0.3L, /l)<r/L <1 ; noting that
rro/L, =1-0.167L /I, , this approximation covers the range of filament extension of

relevance for the semiflexible (/,~L.) network. In order to maintain a positive extension,
r/L>0, the approximation is therefore subject to the following limit for tensile loads: L, <

6.0 I,. Densely cross-linked networks can accommodate much lower ratios of L/, with
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a reasonable lower limit of L~1/10 [, giving a limit of 0.98 < /L. < 1. For the case of
L= l,, the extension range is 0.83 < /L. < 1. The approximation is also valid, to a lesser
extent, for negative (compressive) forces by increasing the range of values for 7/L. via the
following relation: (1-0.3L/,) < /L. < 1, so that the extension limit becomes 0.7 < /L. <
1 for L= I,. The corresponding practical upper limit is then L. < 3.3 /, (again, to ensure 0
<r/L.<1). A lower limit value of L.=1/10 /, yields an extension limit of 0.97 <r/L. < 1.
Note that since all of the in vitro networks evaluated in the paper were densely cross-
linked (L.<l;), none of these limits precluded the use of the approximation. It is also
unlikely that in vivo actin networks would exist with contour lengths 3-6 times greater
than the filament persistence length. The Padé approximation-based force-extension
expression, Equation (2.53), compares very favorably with the exact numerical
expression, Equation (2.48), with the average error for each of the four cases in Figure 2—
6a (I, =3, 5, 7.5, 10um) equal to 0.4%, 0.8%, 1.2%, and 1.5%, respectively.

Figure 2-6a shows the single filament response of the MacKintosh model using
characteristic properties of F-actin filaments from a densely cross-linked network (/,=3-
10pm, L~=1pm). The end-to-end distance at zero force, rr-9, depends strongly on the
combination of persistence length /, and contour length L.. Here, keeping L. constant and
varying /, from 3-10pm, we see the effect of /, on r#- in the different starting points of
Figure 2—6a where rr-g is smaller for smaller /,. This then results in the increased initial
chain stiffness with increase in /, as shown in Figure 2-6a. Note that a densely cross-

linked network (/,>L,) operates in this highly nonlinear regime of the force-extension
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Figure 2-6. (a) The effect of persistence length on filament force-extension behavior as computed using
MacKintosh model (fixing contour length to L=1.02um); (b) the effect of pretension on filament force-
stretch behavior as computed using MacKintosh model (for case of L~=1.02um; /,=3um). Both figures
show exact results as well as results using the proposed approximation, Equation (2.53), illustrating the
accuracy of the approximation.

curve (i.e. #/L>0.94 in Figure 2—6a). Figure 2—6b shows the effect of a different initial
end-to-end distance, g, on the filament force-stretch (A.=r/ ry) behavior. Here, taking the
case of [;=3um and L~1.0pm which has a zero force length of rr-4=0.962um, we
compare the behavior when rj=rr-=0.962um to that when r;=0.976um. The
ro=0.976um case begins with an initial tensile force on the filaments (i.e. chain
pretension) of F;~=0.07pN. The pretension results in the observed increase in initial
stiffness and decrease in limiting stretch as shown in Figure 2-6b. Conversely, a
precompression condition will shift the curve to the right, resulting in a lower value on
the ordinate axis, a reduced initial stiffness, and an increased limiting stretch.

The previous MacKintosh WLC derivation describes the limiting case of a filament
with pinned-pinned boundary conditions. The other limiting case for a filament would be
clamped-clamped boundary conditions. The expressions for length change (2.40) and

energy (2.41) can therefore be simplified by representing u(x) as a Fourier series with
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clamped boundary conditions. In the clamped-clamped configuration, the length of the

filament subject to significant thermal bending is reduced to L/2.

u= Zuq sin(gx) with g = wavenumber =2nz/L, . (2.55)
q
L
Erw = —;Zq‘,(xq“ +Fg ). (2.56)
L
AL=1/2 [ ulq’ cos*(gx}dx = = 2ud (2.57)
q q

The ensemble average contraction length is amended by inserting a factor of two to
include the contributions of both (orthogonal) transverse degrees of freedom of a filament

in 3D fluctuation.

(AL>=%Zq2[2<uj>]. 2.58)

q
In solving for the average transverse displacement <u,>, we apply the principle of
equipartition of energy to this case, as was done earlier for the general WLC and the

pinned-pinned case,
1 ~ Lc 4 2 2
Skl = ?(xq +Fg*) u?). (2.59)
Solving for the average transverse displacement for the cases of F£0,
2 4k, T
()=~ 7Ll o) (2.60)

Based on the equilibrium amplitudes, the contraction (for small transverse fluctuations) is

found by converting the wave number back from Fourier space.

1
" (nz +¢c)

LZ
ALV=L —r=—= i
(Al)=Le-r=g (2.61)
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where the dimensionless force for the clamped filament is @, = FL? /4xz® . The

contraction length at the zero force condition is

kT L1 L
(AL>F=0 =L —rep =f;;'z"z;{= YT (2.62)

where the Riemann zeta function, Zl/ n= 7:2/6 , is again used to solve for the series.

The value of » at the zero force condition for a clamped-clamped filament can then be

shown to be

L
=L]1-—|, 2.63
0 ( 241,,] (2.63)

which, as expected, give a larger value of rr-y than the pinned-pinned case. We can
again simplify the series relation of Equation (2.61) through the use of the earlier defined
Langevin function. The series for the average contractions converges to the following

expression:

L (afgconlefg)1)_2[slzg)
(AL)=L,-r= 4lp”2( %, }—E[—WZ— (2.64)

where 7,/¢, = L \[F[4x .

Since the functional dependence of F on r is of more interest than r as a function of F,

Cohen’s Padé approximation for the inverse Langevin equation (Cohen, 1991),

.s.r'(x)=xi‘:;‘: +0(x°) (2.65)

is used again to create a more useful force-extension relationship for the clamped-

clamped filament,
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kT L/l,-24(1-r/L,)
Fe= (16(1 -r/L, )’IL/I ~8(1- r/L)J (2.66)

which reduces to Equation (2.63) for the zero force condition. The stiffer behavior of the

WLC filament with clamped-clamped boundary conditions is shown in Figure 2-7.

...... Pinned-pinned WLC

Clamped-clamped WLC

Force [pN]

e

0.94 0.96 0.98 1.00
riL;

Figure 2-7. Force-extension behavior of WLC filaments subject to pinned-pinned or clamped-clamped
boundary conditions (L.=1pum; /,=3m)

An analytical extension-force relationship has also béen recently obtained from
the WLC energy functional, Equation (2.28), for a semiflexible filament with both
pinned-pinned and clamped-clamped end conditions (Hori et al., 2007). Hori, et al.
employ the small fluctuation approximation to create a Gaussian path integral for the
energy function, which can in turn be given in terms of a Green’s function that gives the
probability of the end-to-end distance, similar to previous treatments (Yamakawa, 1976;

Spakowitz and Wang, 2005). In their “fluctuating rod” model of semiflexible filaments,

Hori, et al. give the analytical extension- force relationship for the case of pinned-pinned

boundaries as
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r _d—l[’fch coshlxc,L,)- Sinh("ch)] 2.67)

L~ 2L ] sinh(x,L,)

c

where d is the number of dimensions and x,L, = LM/F /x (Hori et al., 2007). Note that

this relationship gives the same response as the MacKintosh WLC, with Lc\ﬁ"_/; = zﬂ
and with Equation (2.67) (for d=3) equivalent to our analytical expression of the
MacKintosh WLC (Equation (2.51)). Indeed, both expressions reduce to
7rw/L, =1-L,[6l, for the zero force condition. Hori, et al. also provide an analytical

extension-force expression for a semiflexible filament with clamped ends (Hori et al.,

2007),

T d-1{ kL, cosh(lc,Lc )— sinh(x'ch)
L 2 2x2L ] sinh(x,L,)
(@ —IXKch cosh(foc )—3sinh(foc )+ 2x ,Lc)

‘ (2.68)
221, + 21, L2, sinh{xc, L, }- 4x2L 1 sinh(x L, )

Although Equation (2.68) is not defined for F=0, Hori, et al. expanded it in the limit of
small forces (xrL.<1) to yield the following approximation for the clamped case (d = 3)

(Hori et al., 2007),

IR

3
11F1
I 1_._1_ L | —r L , (2.69)
L 307, ) \25200k,T )1,

which approaches r._,/L, =1-L /(30],), a larger value than the pinned case and very

close to the value given in Equation (2.63) for the clamped MacKintosh WLC at the zero

force limit.
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2.3 Internal energy axial stretching model

Filament extensibility, for actin cytoskeletal filaments in particular, has been
observed using multiple experimental techniques including optical traps (Dupuis et al.,
1997; Adami et al., 1999), x-ray diffraction (Huxley et al., 1994; Wakabayashi et al.,
1994; Bordas et al., 1999), light-scattering methods (Higuchi et al, 1995), or
measurement of thermal fluctuations (Oosawa, 1977; Oosawa et al., 1977, Oosawa, 1980;
Yanagida et al., 1984; Gittes et al., 1993; Ott et al., 1993; Kas et al., 1994; Kas et al.,
1996). Due to their inextensible formulation, the previous entropic models diverge from a
filament’s true force-extension behavior as the filament approaches its extensional limit.
Thus for extensions where the filament end-to-end distance approaches the contour
length, the entropic-based force-deflection relationships for the flexible and semiflexible
filaments have been expanded to include an additional term for the internal energy axial
stretch contribution (Odijk, 1995; Smith et al., 1996; Wang et al., 1997; Storm et al.,
2005). The model presented here will account for the internal energy contribution due to
the stretching of inter-atomic bonds along the macromolecular backbone. The total
extended length, Ly, for a straight filament is the sum of the initial contour length, L., and
the additional extension in length due to axial stretching, L,. Assuming small strain, linear

elastic stretching, the force-extension and strain energy expressions are simply

EA K
f=—i\L-L,)=—"*(L 2.
f Lc( T c) Lc ( J) ( 70)
K K
f= (L -L) == :
w=op L) =gy @71)

where A=cross-sectional area, K,=EA=linear stretching modulus with units of force. An

attempt has been made in some previous studies (Grosberg and Khokhlov, 1994; Odijk,
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1995; Storm et al., 2005) to define the linear stretching modulus in terms of the
persistence length and filament radius, 7, using the definitions: [,=El/ksT, K,=EA,
I=(nrf)/4, and A=zr7,

Kk = lly

s

5 2.72)
f

While semiflexible filaments may be helical in nature (i.e. F-actin, vimentin), their cross-
section is often taken to be equivalent to a homogeneous circular rod (e.g.
Aar=7 (3.5nm)’=38nm?). The noncircular cross-sectional area of an actin filament,
however, has been estimated to be A=25nm? based on its atomic model (Holmes et al.,
1990; Kabsch et al., 1990), assuming that the area within the average contour of the
filament cross-section is filled in homogeneously (Kojima et al., 1994). While this
definition of stretching modulus relies on the assumption of a circular cross-section, we
recognize that the area moment of inertia could be given more generally as I=£47 (where
€ is a filament-specific shape factor). This definition of stretching modulus also seeks to
link the entropically-based bending stiffness, and therefore persistence length and thermal
energy, with the internal energy-based axial stretching stiffness. The actin filament’s
helical structure and bonding that govern the bending stiffness is quite different from
those which govern the axial stretching stiffness, while the relation given in Equation
(2.72) assumes the same governing structural interaction. The resulting force and stretch
behavior in bending and axial stretching will therefore differ significantly, and this
difference is exemplified through an underprediction from Equation (2.72) when

compared with empirically deduced values, as will be examined in Section 2.4.3 for

comparisons with experimental data.
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The next section will introduce an extensible WLC model that is not based on the
Marko-Siggia approximation, and will thus be able to capture the extensible nature of
filaments for L.</, (i.e. as found in densely cross-linked cytoskeletal networks). An
overview of the single filament enthalpic (internal energy-based) and entropic models

mentioned in the past three sections is included in Table 2-1.

Model F"? ment <r> Force-Extension Mechanisms
ype
Stiff _ Internal energy
Rod Le<<lp L F=(EAL) & stretching of bonds
Btm R Stiff Fo2El rila-a,) Internal energy
PN Le<<l, | Treo @uPs J4 o _[(,;)z +L- Lf]’ unbending
FJC Freely
jointed F=(kT/1,)e'(/L,)
0 lriigli; 0 Entropic
n = -
Los), £(x)=coth(x)-1/x
WLC | ponding F~££(L+ _ 11 J Entropic
M L>>p | o 1, \L, 4Q-r/Ly 4
Bending R L P _FD
m Le~l, Femo |(r=1)= P Zm where ¢= = Entropic
Table 2-1 Single filament force-extension models

2.4 Extensible model

This section introduces an extensible filament model that combines the
MacKintosh entropic unbending model developed in Section 2.2 with the internal energy

axial stretching model of Section 2.3. First we address two approaches to the kinematics
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of the extensible filaments. The total fiber stretch is defined as A=r/ry as shown in Figure

2-8.

v

L. he—

L™

34393444444 43484444

b
-

Figure 2-8. Extensible filament schematic including entropic unbending and internal energy stretching

2.4.1 Kinematics: multiplicative decomposition
The fiber stretch can be multiplicatively decomposed into stretches from entropic
unbending (4Y) and internal energy axial extension (4p following a multiplicative
decomposition (Kréner, 1959; Lee, 1969; Bertoldi and Boyce, 2007b)(see F igure 2-9).

A, =2 (2.73)
Initial deformation of the filament will be accommodated by the entropic unbending
stretch. As the filament approaches its extensibility limit (+/L.—1), the fiber stiffens
significantly, and the imposed end-to-end length must also be accommodated by axial
internal energy stretching (see Figure 2-10). The additional extended length, L,, beyond
the filament’s contour length, L., due to axial stretching is

L =L(x-1). (2.74)
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Figure 2-9. Multiplicative decomposition of A into entropic unbending and internal energy stretching
components. Adapted from (Bertoldi and Boyce, 2007b).
The relative stretch contributions of the unbending and stretching as a function of end-to-
end distance can be seen in Figure 2-10, using the following filament properties: /,=3pum,
k=1.24x102Nm?, L=1 pm, K~40nN. There is no stretch contribution from internal

energy axial extension below 7/L.~0.98, as the entropic unbending dominates the
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£ Stretching :
S 1.06- :
o .
= .
N :
E 1.04 T [
[
E :
8 1.02- '
i ,
1-
0.98 c L. ; L T2 I } . ; L 4 1 1 }
0.94 0.96 0.98 1.00 1.02 1.04

Figure 2-10.Stretch contributions from entropic unbending and internal energy stretching
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filament’s behavior. As r/L.—1, however, the stretch contribution from entropic
unbending diminishes and the internal energy axial stretching begins to increase. The
axial stretch finally exceeds the stretch from unbending at »/L~1.03.

The force-stretch and strain energy expressions due to unbending are

o kT L1, -61-2n/L,)
/= [ a1- 2 /L, )’IL /1, - A‘;ro/L)J 275)

k[ 1 . .
w7 [m 1 [n(22 21, L, +21 247, )-tn{22r, - )] c] 2.76)

where c is a constant equal to the initial strain energy of the filament. The resulting

force-stretch and strain energy expressions for the internal energy axial stretching

are
f= 'i“‘ S -1)= sz n(E -1) @M
W = fT’r: (x -1f (2.78)

where A=cross-sectional area, K;=EA=linear stretching modulus. Fiber force equilibrium

requires that

f=r=f. 2.79)
Note that the stretches for entropic unbending and internal energy stretching are functions

of
2 =2,k 0 ,L,%)

2= 2(4,,K, 0L, 2

s$? p,

(2.28)
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which allows the force in the filament to be calculated by recursively solving for 4“;and

’, using Egs. (2.73), (2.75), (2.77), and (2.79) via the bisection method. The extensible
filament force is plotted as a function of r/L. in Figure 2-11 and compared to the
inextensible entropic unbending model. Consistent with Figure 2-10, the inextensible
and extensible models begin to diverge as the stretch from internal energy axial extension
begins to increase as r/L.—1. For the given the filament properties /,=3um, L~1pm,
there is less than 3% difference between the inextensible and extensible models for
extensions below r/L:~0.99. For extensions beyond r/L~=1, the extensible model takes
the slope of Ky/L.. The strain energy of the unbending and stretching components is
shown in Figure 2-12, with the internal energy stretching component dominating for

r/L>1, as expected.

300

| —
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J —»— Extensible: Stretch Decomposition
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Figure 2-11. Force comparison of inextensible entropic unbending model and extensible model with
stretch decomposition of entropic unbending and internal energy axial stretching
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Figure 2-12. Strain energy contributions from entropic unbending and internal energy axial stretching

The extensible model’s response for varying persistence lengths, but all other variables

held constant, is included in Figure 2-13. The inextensible model’s response for /,=3um
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Figure 2-13. Force comparison of inextensible entropic unbending model and extensible model with
varying persistence lengths

is also included for reference. The stretching modulus is held constant (K;=40nN) for
each extensible case. The impact of increasing /, is seen in two regions of Figure 2—-13.
In the first region (/L.<1.), the force response is initially lower for higher values of /, due
to an increase in rr—9 which reduces the unbending strain energy (for #/L. < rp=¢/L.), but
the response is stiffened as it extends into the extensible regime. Around r/L~1.01, the
extensible curves then crossover and enter the second region in which larger values of /,
give a stiffer response (see inset of Figure 2-13). This crossover occurs in the region of
actin filament rupture (~200-500pN), depending on the amount of axial twisting due to
thermal forces and/or mechanical loading as shown in the experimental data in Figure 2—

14 (Tsuda et al., 1996).
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Figure 2-14. Tensile strength of actin filament as a function of rotational angle. (a) Schematic of
experimental procedure using microneedles. 05 is the rotational angle of the actin filament undergoing the
rotation under no tension, and 6y is the angle of the filament rotated by the needle. (b) Average tensile
strengths of single actin filaments (L,=10+2pm). Temperature = 25+2°C. Bars = SD for 20-150 filaments.
(c) Distribution of thermal rotational angles (6x=0°). (d-h) Histograms of tensile strength of single actin
filaments twisted by 0° (d), 45° (e), 90° (f), 180° (g), and 360° (h). Figures and experimental data from
(Tsuda et al., 1996).

2.4.2 Kinematics: additive decomposition
An additive decomposition approach to the kinematics takes the unbending and stretching

deformations as springs in series. The extension due to stretching is & (or A’s ry), the
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unbending extension is &, (or A ry,), and the total extension is &=dy+8,=r-ry. The

stretching force-extension relationships is

[i=—=26, (2.80)
The unbending extension can therefore be solved as
L
o, =r—f—= 2.81
, =r—f X (2.81)

Employing Egs. (2.75), (2.81), and (2.79), the force-extension expression can now be

given as

Lc/lp—6[l—LL+kf—J
= ' ; f 2.82)
P r f — _r.Jz
{i-po L) | {-1+)

(4 s

The results of using the multiplicative and additive decompositions are shown in Figure
2-15 using the following filament properties: J,=3pm, L=1pm, K,~40nN. The results of
the two methods are in agreement within 3% or less for /L.<1. The percent difference

between the two methods increases for /L1, with a difference of ~4% at r/L~1.01.
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Figure 2-15.Comparison of kinematics methods in extensible model: additive and multiplicative
decompositions

2.4.3 Comparison with F-actin stretching experiments

The extensible filament model is now used to compare to empirical data from F-
actin stretching experiments conducted with nano-scale SiN; cantilevers and low
pretension (Liu and Pollack, 2002). The experimental setup is shown in Figure 2-16.
Liu and Pollack found best fit values of K, =35.5+3.5nN and 1,;=8.3um for actin filaments
with contour lengths of L,~19.1um, as shown in Figure 2-17, with the curve fit using
Odijk’s extensible WLC approximation (Odijk, 1995; Liu and Pollack, 2002). This value
for K is approximately three times greater than what would be predicted using Equation
(2.72), for r; =3.5nm, an underestimation described in Section 2.3 based on the
assumption of a cylindrical cross-sectional area and linking filament structure and
bonding that governs the entropically-based bending stiffness with the structural

interactions governing the internal energy-based axial stretching stiffness. Odijk’s
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Figure 2-16. Experimental setup for F-actin stretching with micro-scale SiNj cantilevers. Inset
fluorescence image shows a captured actin filament between two cantilevers (cantilever width~4pm).
Adapted from (Liu and Pollack, 2002).
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Figure 2-17. Experimental data using micro-scale cantilevers to stretch actin filaments
(L=19.128um). Best fits with extensible WLC models.(Liu and Pollack, 2002)
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extensible WLC model is valid for the case of small elongations beyond the contour

length ( |r-L.|<<r) and weak undulations (Odijk, 1995),

2
P e
which is not defined for /=0, and the first two terms provide the asymptotic response
from Marko and Siggia’s WLC approximation in Equation (2.36), while the third term
provides for linear elastic stretching (Liu and Pollack, 2002). They were unable to fit the
data with the extensible WLC approximation by Wang, et al. (Wang et al., 1997), which
adds an extra term for axial stretching following the additive decomposition described

earlier,

fi,
k,T

- 1 1 f
L A1-r/L+f/K,} 4 K, @9

The experimental data in Figure 2-17 was taken with filaments that only had contour
lengths greater than their persistence lengths, in order to utilize the Marko-Siggia WLC
approximation. The extensible filament model developed in this section based on the
MacKintosh WLC expression is also plotted in Figure 2-17 with the same values of
[,=8.3um and L~19.128um as used in the Odijk model fit, but with a stretching modulus
of K, =56nN. While this demonstrates that the Odijk extensible model produces a stiffer
response within the axial stretching regime (#/L>1), both models capture the extensible
behavior of the actin filament using reasonable values for the stretching modulus. For
example, the best fit values of K, for both models are within 30% of values measured
from similar experiments using microneedles (glass rods with 300 nm diameters) and
high pretension that found a stretching modulus of K;=43.7+4.6nN for actin filaments

with contour lengths of L~=1um (Kojima et al., 1994).
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It should also be noted that the Odijk WLC model, which becomes the limit of the
Marko-Siggia WLC approximation for #/L.~1, exhibits similar behavior of decreasing
stiffness for increasing persistence length (or bending stiffness), even in the extensible
regime (see Figure 2-18), unlike the MacKintosh extensible model which exhibits a

crossover once in the extensible region as shown in Figure 2-13.
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Figure 2—18.Force-extension plot of Odijk’s extensible WLC approximation for increasing persistence
length, I, (L;=19.1pm, K,=34.5nN)
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CHAPTER3 Network Model

3.1 Previous cell models and experimental techniques

There are an increasing number of experimental techniques using various
bioassays to probe the mechanical response of cells. Several of these techniques are listed
in Figure 3-1 along with a few examples of material models used to simulate the cellular
mechanical response within the specific bioassay. The first three bioassays listed, atomic
force microscope (AFM) indentation, cytoindentation, and magnetic twisting cytometry
(MTC) are used to probe subcellular regions; shear flow and cell contraction via substrate
deformation (SD) or microfabricated post array detector (mPAD) are used to measure
adherence, deformation, and motility characteristics; and  microplate
compressors/stretchers (OS), micropipette aspiration (MA), and optical tweezers (OT) or
magnetic tweezers (MT) are used to evaluate whole cell deformations (Suresh, 2007).
The force scales and deformation length scales associated with these different
biomechanical assays are listed in Figure 3-2 along with relevant cellular and subcellular
processes and components. While these are relevant to the whole cellular response, other
experimental techniques are used to explore the rheology of cytoskeletal systems (see

Section 3.4).

96



Experiment Material model References

s Lisonr clastic (Costa and Yin, 1999; Ohashi et al., 2002; Ng etal., 2007)
1 Nonlinear elastic (Costa and Yin, 1999; McElfresh et al, 2002)
‘f, Gmsises  Oytoindentetion . s
Eneurniaic (Shin and Athanasiou, 1999)
Poroelastic
S (Charras and Horton, 2002; Mijailovich et al,, 2002)

(Ohayon et al., 2004)

Nonlinear elastic
& SESRE | PR
Power law structural damping

(Vaziri and Gopinath, 2008)
/i Tl Linear elastic (Charras and Horton, 2002; Cao et al., 2007; Ferko et al., 2007)
- S
a Noulinear elastic (adhav et al., 2005)
Col Contraction Micr carrayw/ substrate) Lincar elastic (Nelson et al., 2005)
»==v | Modified Maxwell viscoelastic | (McGarry et al., 2005)
Bioch hanical (Deshpande et al., 2006; Deshpande et al., 2007)

Wicrop el Compression

Mol L
Nonlinear elastic (Caille et al., 2002)
|
Linear elastic (Haider and Guilak, 2002)
e Nonlinear elastic (Baaijens et al., 2005; Zhou et al., 2005)
el Maxwell viscoelasti (Baaijens et al., 2005; Trickey et al., 2006)
N Modified Maxwell viscoelastic |  (Haider and Guilak, 2000)
Poroelasti (Baaijens et al., 2005)
Poroviscoelastic (Baaijens et al., 2005; Trickey et al., 2006)
Opticsl Twemers
i Nonlinear elastic (Dao et al., 2003; Mills et al., 2004; Suresh et al., 2005)
*ﬁmw Modified Maxwell (Mills etal, 2004)
viscoelastic

Figure 3-1. Biomechanical continuum models for whole cell deformation in common experimental
techniques (adapted from (Vaziri et al., 2007)).
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Figure 3-2. (a) Force scale and (b) deformation length scale associated with different biomechanical
assays (Suresh, 2007)

There have been many approaches to modeling cells and their cytoskeletons.
These methods can generally be grouped into four categories: cortical shell-liquid core

and solid core continuum models, discrete member models, enthalpic cellular solid

Most of the material models listed in Figure 3—1 represent recent examples of the
cortical shell-liquid core and solid core continuum models. Simple cortical shell-viscous
fluid models have been used to simulate the response of entire cells during micropipette
aspiration (Yeung and Evans, 1989; Tran-Son-Tay et al., 1998). A cortical shell along
with hyperelastic neo-Hookean properties, describing the cytoplasm and nucleus, have

been used to model lymphocytes deformed in cell poking experiments (Zahalak et al.,



1990). The red blood cell (RBC) membrane and cortical spectrin network have been
modeled using hyperelastic models based on the first and second order terms of the first
invariant of the Finger tensor (a 2-parameter Yeoh model (Yeoh, 1990)) to effectively
predict RBC deformations from optical tweezers (Dao et al., 2003; Mills et al., 2004).
Constitutive models of the stress-strain behavior for spectrin networks which capture the
network stretch and chain force-extension behavior have also been developed (Arslan and
Boyce, 2006; Arslan et al., 2008). Both the membrane/cortex and the cytoplasm/nucleus
have been modeled as linear viscoelastic materials to predict the response of cell
micromanipulation by magnetocytometry (Karcher et al., 2003) as well as cell recovery
after expulsion from a micropipette (Chien et al., 1987; Tran-Son-Tay et al., 1991). The
cytoplasm can alternatively be described by a poroelastic model in which the
cytoskeleton is a porous, actively contractile, elastic network infiltrated with interstitial
cytosolic fluid (Charras et al., 2005). The poroelastic components require the addition of
a spatial diffusion term to the governing differential equation for viscoelastic behavior as
originally presented by Biot for soil consolidation (Biot, 1941; Biot, 1956a; Biot, 1956b).
Other biphasic poroviscoelastic models have been developed to model soft biological
tissue, as pioneered by Mow for tissues (Mow et al,, 1980) and recently applied to
chondrocyte cells (Baaijens et al., 2005; Trickey et al., 2006). The poroelastic model,
unlike viscoelastic models, accounts for spatio-temporally localized variations in
hydrostatic pressure, and it is especially useful in simulating blebbing cells and other
cases in which hydrostatic pressure can be used to power local cellular shape change

(Charras et al.,, 2005). These models, however, do not account for either the
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microstructural features of the cytoskeleton, their mechanobiological contribution, or
their microstructural rearrangement.

The second type of cytoskeletal model is based on the interaction between
discrete members (e.g. filaments) in a network. Many discrete member models assign
discrete filaments randomly within a 2D (Head et al., 2003a; Head et al., 2003b; Wilhelm
and Frey, 2003; Onck et al., 2005) or 3D (Huisman et al., 2007) network, allowing
intersection points to become cross-links until a critical amount of network connectivity
(or percolation threshold) is reached. When implemented in 3D, however, the analyst
must include attractive force fields to initiate filament movement and create crosslinks
between nearby filaments, that are not in contact, in order to create realistic network
topologies (Huisman et al., 2007). The discrete filaments are modeled either as straight
rods (i.e. pre-thermal undulations), or with a slightly curvature to simulate the geometry
after thermal undulations. In either case, neither changes in filament curvature from
thermal energy nor the entropic contribution to filament elasticity are considered. The
percolation-based models identify the influence of node connectivity on the amount of
non-affine behavior witnessed in biopolymer networks (Head et al., 2003a). Their models
deformed in an affine behavior when dominated by filament stretching with no filament
rotation, and they observed non-affine behavior with considerable filament rotation when
filament bending dominated relative to axial filament stretching (Onck et al., 2005;
Huisman et al., 2007). The observation that, in bending-dominated regimes, reorientation
can play a much larger role than stretching in accommodating macroscopic deformation

has also been seen in biopolymer models (Palmer and Boyce, 2008).

100



Tensegrity models also make use of discrete members by describing the actin
microfilaments as the tensile elements and the microtubules as elements under
compression (Ingber, 1993). The tensegrity approach is based on the principles of
compression and tension elements in equilibrium as originally described by Buckminster
Fuller (Fuller, 1975). Traction force microscopy experiments have been conducted to
evaluate the tensegrity-related behavior of cells to explain combined cytoskeletal
response during adhesion (Wang et al., 2001). Tensegrity principles allow for the scaling
of shear modulus with solid fraction to the first power (G ~ ¢) (Stamenovic and Ingber,
2002). Although tensegrity networks have been defined as networks comprised of
continuous tension and local compression in which local mechanical inputs produce
distributed cytoskeletal responses (Ingber, 1993; Ingber, 1997; Pourati et al., 1998a),
critical experiments have shown highly localized cytoskeletal responses to forces rather
than integrated, spatially broad responses (Heidemann et al., 1999). Tensegrity models
omit the influence of thermal fluctuations on elasticity, and also do not lend themselves
to modeling polymerization of just one filament network that may occur in pseudopod
growth.

A third approach to cytoskeletal modeling is the enthalpic cellular solid model
originally developed by Gibson and Ashby (Gibson and Ashby, 1988) and extended to
actin networks by Satcher and Dewey (Satcher and Dewey, 1996). It describes the
cytoskeletal network using a cubical frame with an overall network modulus based on
solid fraction and bending of the cell edges. If the relative solid fraction is very small,
then the structural elastic modulus proportional to either ¢s or ¢s> depending on whether

enthalpic stretching or enthalpic bending and twisting of the edges, respectively, are
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major modes of accommodating the imposed deformation (Warren and Kraynik, 1997).
As with tensegrity networks, however, the cellular solid models do not account for the
influence of thermal fluctuations on cytoskeletal elasticity (Kamm, 2006). They also do
not account for nonaffine motion or the ability of networks to accommodate deformation
through rotation of filaments.

The fourth class of cytoskeletal models extends polymer theory to biological
macromolecules to create biopolymer network models. Some of the background details of
biopolymer filament models from Chapter 2 are summarized here within the context of
biopolymer network models. Polymers are traditionally categorized as flexible ([,<<L.),
rigid (J,>>L.), or semiflexible (/,~L.). The worm-like chain model is a more appropriate
representation of continuously flexible filaments rather than the traditional polymer
theory of freely jointed chains of rigid rods. The entropically-based WLC model is
derived from the total energy from sampling fewer configurations of unbent filaments as
a filament, or network, is deformed. The WLC model has been effective at describing the
entropic elasticity of very flexible biopolymers (L. >> ;) including DNA at low to
moderate strains (Bustamante et al., 1994). Other single filament behaviors, such as the
“saw-tooth” pattern from the force-extension behavior of single biomacromolecules with
folded domains, have also been modeled successfully with the WLC model for a variety
of biological materials (Rief et al., 1997; Qi et al., 2006). The cortical spectrin
cytoskeletal network of the red blood cell, has a well-defined triangulated geometry
which has been successfully modeled based on a freely jointed chain (FJC) model
(Arslan and Boyce, 2006; Arslan et al., 2008) as well as the WLC model (Li et al., 2005a;

Dao et al., 2006; Li et al., 2007). Although its force-extension relationship requires

102



numerical evaluation of the path integral, interpolation formulas have been successfully
used to simplify calculations in the small and large-force regimes (e.g. Marko and Siggia
(Marko and Siggia, 1995)). The chain flexibility assumption (L. >> [,) is considered for
single, flexible polymers with random walk statistics such that the initial end-to-end
distance, rq, is zero. While useful for analyzing single filaments, the WLC model must
use a nonzero value of 7y for analyzing dense, cross-linked networks. While WLC and
FJC-based models have been evaluated with nonzero 7, for spectrin networks with L, >>
I, (Qi et al., 2006), they have not been applied to denser, stiffer cross-linked networks in
which the effective contour lengths are lower than their persistence lengths (L.< ).

Subsequent molecular theories (e.g. MacKintosh, et al. (MacKintosh et al., 1995))
have addressed the semiflexible regime for L, ~ [, with similar energy functionals and
force-deflection relationships that are still entropic in origin. At high strains, additional
theories have expanded the force-deflection response of the semiflexible filaments to
include terms for the enthalpic stretch contributions (once thermal fluctuations from
bending are pulled out) in addition to the entropic elasticity due to thermal fluctuations
(Storm et al., 2005).

The biopolymer network models calculate the bulk elastic properties of
cytoskeletal networks by integrating the force-deflection behavior of individual elastic
cytoskeletal filaments within network geometry models (MacKintosh et al., 1995;
Isambert and Maggs, 1996; Storm et al., 2005). This also provides a framework for
determining the impact of cross-linking proteins on the behavior of cytoskeletal filament

networks. Empirically observed shear moduli for F-actin networks with permanent cross-
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links (but the same concentration of F-actin) have been observed to vary over two orders
of magnitude by varying the cross-link density (Gardel et al., 2004a).

In order to determine the bulk elastic network properties including cross-link
effects, biopolymer models often employ a 3D volume averaged framework of the 1D
filament force-extension response which is aligned in the primary load direction (see
Figure 3-3) (MacKintosh et al., 1995; Isambert and Maggs, 1996). These models often
assume affine network deformation, and can further be constructed to account for varying
degrees of cross-link densities. For example, the amount of force required to extend a
single F-actin filament a distance, &, has been defined for the low force, linear regime by
linearizing MacKintosh’s equation from Chapter 2 about rr-y (Isambert and Maggs,

1996):

Lyn—L (3.1)

where 6 = filament extension. Volume averaging is achieved starting with a given a
mesh size of £ for a cubical volume which gives (1/£?) chains per unit area. In shear, the
chain extension (J) is approximated by (¥ Ic.) where y is the lshear strain and /¢y, is the
end-to-end chain distance between cross-links (see Figure 3-3). For small transverse

fluctuations, /c;=L.. Thus, the shear stress is approximated as (Kamm, 2006):

F «xl
Pt (.2)
CL
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Figure 3-3. Single filament subjected to a shearing force [adapted from (MacKintosh, 2006)]

where the shear modulus is then defined as

xl
G= 52]‘; ) 3.3)
CL

Since the solid volume fraction is defined for a filament of diameter (a) as based on a

4 ~ 5;2 - “_z (3.4)

T

Since the solid volume fraction is defined for a filament of diameter (a) as based on a
mesh size of ¢, the volume-averaged network shear modulus scales linearly with solid
fraction for low cross-link density (G ~ ¢s). For the limit of maximum cross-link density
(i.e. I, — &) the shear modulus is related to the solid fraction as G ~ ¢s>°. Biopolymer
network models have shown promise for predicting the behavior of cross-linked filament
networks. As an example, Figure 3—4 shows the theoretical predictions (based on both

enthalpic stretching and entropic unbending contributions) for fibrin protofilament

networks of varying concentration (Storm et al., 2005).
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Figure 3-4. Experimental data for fibrin protofilaments (dots) at various concentrations, and
corresponding theoretical curves (solid lines). Best-fit values were determined for A-D as follows: A, ¢ =
0.5 mg/ml (/,= 0.39mm), K, = 67 pN; B, ¢ = 1.0 mg/ml (/,= 0.27mm), K, = 58 pN; C, ¢ =2.0 mg/ml (/,=
0.19mm), K; =73 pN; D, ¢ =4.5 mg/ml (/,=0.12mm), K; =110 pN (Storm et al., 2005)

Network models which essentially evaluate the volume averaged force extension
of a single filament aligned with a primary load direction, however, do not properly
account for how a network deforms to accommodate macroscopic deformations. Volume
averaged networks based on the 1D models are limited by highly strained chains in

primary load direction (Figure 3—5A), with the shear strain accommodated by extensive

chain stretching and minor rotation of the chains.

(A) Volume averaged single chain network (B) Multiple chain network

Figure 3-5. Chain stretch and rotation for 1D-based models in (A) volume averaged single chain network
and (B) multiple chain networks
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Real networks accommodate the macroscopic deformation with network
constituent chains undergoing both rotation and stretch. Indeed, much of the imposed
deformation will be accommodated by chain rotation with a small amount of chain
stretch. For comparison purposes, the deformation of the network depicted in Figure 3—
5A is contrasted to an alternative simple network shown in Figure 3-5B. For the network
of Figure 3-5B, the imposed shear strain is primarily accommodated by the rotation of
the constituent chains with relatively little chain stretch, especially as compared to the
network deformation of Figure 3-5A. Hence, more realistic cytoskeletal network models
must address the network’s ability to accommodate deformation by both rotation and
stretching (where the minimum energy configuration that satisfies compatibility and
equilibrium will be found by the network).

There have been many chain network models developed within the field of rubber
elasticity over the past 65 years. Four models of note for chain networks (3-chain
network, 4-chain network, full network, and 8-chain network) are briefly summarized
here. Also see the review of rubber elasticity constitutive models by Boyce and Arruda
(Boyce and Arruda, 2000). The 3-chain network model by Wang and Guth (Wang and

Guth, 1952) is shown in Figure 3-6. The

’

4

Figure 3—6. Geometry for 3-chain network model
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3-chain model was created due to the inadequacy of Gaussian models to explain the well
known stress-stretch behavior of rubber-like polymers at moderate and large strains
(Wang and Guth, 1952). And while the Gaussian model is effective for uniaxial
predictions at small strains, it is not able to accurately predict the corresponding shear
and biaxial behavior.

To derive an expression for free energy Wang and Guth first obtained a statistical
distribution function for the length of representative chains employing the inverse
Langevin function (Wang and Guth, 1952). They then aligned these representative
chains with the unit vectors of a cubic coordinate system defined by the directions of
principle stretch (Wang and Guth, 1952).

Although the 3-chain model does not completely explain experimentally observed
behavior, it does capture the main features of the stress-stretch response of rubber-like
elasticity better than Gaussian treatments. The most significant reason that the model
fails to predict the response accurately is the oversimplification of the network. The 3-
chain model is limited to the response of a single chain during uniaxial deformation and
therefore does not include any of the cooperative effects of other models.

The 4-chain model by Flory and Rehner (Flory and Rehner, 1943) accounts for
the complex, and generally raﬁdom, three dimensional network structure formed by the
introduction of occasional cross-linkages between very long polymers. The four chains
are cross-linked at a junction (point J) whose most probable location is at the center of the

tetrahedral unit cell, point O in Figure 3—7. These cross-linkages are not fixed in space,
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so they can move and diffuse within the confines of the tetrahedron. The end points of

the chains attached to these cross-links define the four corners of an irregular tetrahedron

Figure 3-7. Geometry for 4-chain (tetrahedral) network model (adapted from (Treloar, 1958))

and, in turn, the center of neighboring tetrahedrons. Flory and Rehner make the
following assumptions and approximations for a network comprised of these tetrahedrons
(Flory and Rehner, 1943):

1. The actual random network of chains can be replaced by one in which
each chain is the same contour length, forming an average cell.

2. The properties of the entire network can be computed based on those of
the average cell.

3. The restraints imposed by the network on a given cross-linkage can be
approximated by fixing the nearest neighbor cross-linkages at their most
probable location.

4. The distribution function is applied to chains prior to vulcanization, fixing

the lengths of chains and locations of the cross-links in the virgin material.

There cannot be affine motion of the center point since it would not satisfy force
equilibrium. The outer nodes can move affinely, but the cells are not mutually exclusive

and numerous tetrahedrons could partially occupy the same space. Also note that though
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the cells can occupy the same space, each cell’s volume is preserved due to
incompressibility (Flory and Rehner, 1943).

The strain energy density functions are defined by the changes in entropy. It is
assumed that the changes in entropy associated with displacements in directions
perpendicular and parallel to tetrahedron faces are representative of a general
deformation. Note that without the affine assumption the strain energy density for an
entire macroscopic material must be calculated iteratively. Thus there is no constitutive
law that can be easily derived and written in the form of a strain energy density function.

The first full network model by Treloar and Riding (Treloar and Riding, 1979)
was derived and tested for biaxial extension along fixed axes under plane stress
conditions, and later extended to a general formulation by Wu and van der Geissen (Wu
and van der Giessen, 1993). The full network model does not assume a representative
formation of the molecular chains within a network, but instead allows for all possible
formations by assigning a probability distribution for any single cell to have its chains
oriented in any direction. A central concept employed in the derivation of the full
network model is the orientation distribution of individual molecules within the network.
This Chain Orientation Distribution Function (CODF) is governed by balance equations
and assumes the chains of all orientations deform affinely with the deformation of the
continuum (Wu and van der Giessen, 1993). The affine assumption combined with the
evaluation of chains in all directions causes the model’s response to be overly influenced
by the response of the chain oriented in the direction of the applied deformation. The
concept of the CODF is used to derive a continuum model for rubber elasticity by

summing the contribution of each chain to the free energy of individual chains to
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determine total free energy over all chain orientations (Wu and van der Giessen, 1993).
Depending on the chosen chain model, solving the integral for the free energy of the
network has no closed form solution and requires numerical integration, which makes it

less feasible for inclusion with finite element analysis software.

3.2 8-chain Network Model

Here, a constitutive model is proposed for the stress-strain behavior of the
cytoskeletal AF network. The force-extension behavior of the AF will be taken to follow
a MacKintosh-type model. The AF network will be modeled as an effective 8-chain
network to capture the molecular network structure.

A network structure can be described by four basic topological features (see
Figure 3-8): (1) a distribution in the initial distance between network junctions which is
called the junction-to-junction distance or initial filament length, 7¢; (2) a distribution in
the fully extended length (i.e. contour length) of a filament between network junctions,
L;; (3) the network connectivity (functionality of network junctions); and (4) the
orientation distribution of the filaments. In order to simplify the mathematical description
of the network structure, these basic features of the network are represented in terms of
average or idealized quantities: (1) an average initial filament length; (2) an average
filament contour length; (3) an idealized network connectivity; and (4) the average
orientation of the filaments. A further simplification takes the case of an initially isotropic

network (no preferred orientation in the initial state).
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(a) Random actin network (b) Irregular chain network (c) Volume averaged network

Figure 3-8. Random F-actin network and corresponding idealized eight-chain network model. The stereo
micrograph of actin cortex reproduced from The Journal of Cell Biology, 1983, 96:1400-1413. Copyright
1983 The Rockefeller University Press (Niederman et al., 1983; Hartwig, 2004); bar in (a-b), 100 nm)

The orientation of a filament can be defined by the angle between a reference axis
and the junction-to-junction vector connecting the ends of the filament. For an initially
isotropic network, filaments are randomly oriented in space. Thus, the average filament

angle can be obtained by taking the volume average of all possible orientations and is

/2

given by (0) = J' da, .[;,/:odﬂs cos™ [cos a, cos ﬂ,]cos a, =57.3° where a; and f; are the

a, =0
azimuthal and polar angles, respectively, in the spherical coordinate system (see
Bergstrom and Boyce (Bergstrom and Boyce, 2001) for the analogous case of molecular
orientation in polymeric networks). An alternative average can be obtained using
Hermann’s orientation function and gives 54.7°. Therefore, an idealized network
topology should capture an initial average filament orientation close to that of 54°-57°.
The network features used in this model are represented in terms of average or idealized

quantities to simplify the mathematical description. Distributions of model parameters
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have been successfully incorporated within an 8-chain network model in, for example,
Qi, et al. (Qi et al.,, 2006) who examine a distribution of initial contour lengths for
different chains when examining protein unfolding. Qi, et al. found that the first protein
unfolding event for distributed networks occurred at significantly lower values of stress
and stretch when compared to the uniform network (Qi et al., 2006). They also noted that
the stress-stretch curve of the distributed network exhibits a smoother character with
smaller peak values and smaller force drops during unfolding compared to the uniform
network. The approach of using distributions for network features is reserved for future
work.

An idealized network structure that has been found to capture this initial
orientation in an average sense is the eight-chain network model of Arruda-Boyce which
was originally proposed to capture three-dimensional aspects of macromolecular network
structure and its evolution with deformation in elastomeric (Arruda and Boyce, 1993b)
and glassy thermoplastic (Arruda and Boyce, 1993a) materials. A combined WLC/8-
chain model has also been extended to anisotropic biopolymer networks such as the
collagen network in skin tissue by Bischoff, et al. (Bischoff et al., 2002b) and Kuhl, et al.
(Kuhl et al., 2005), and an isotropic 8-chain network model of unfolding modular chains
developed by Qi, et al. (Qi et al., 2006). Bertoldi and Boyce extended both of these
models to capture the behavior of mussel byssus via an anisotropic 8-chain network
model with a filament model that captures the straightening out of bends in byssus
molecular chains using an elastica-type solution followed by axial stretching of the chains
and subsequent force-induced unfolding of the modular domains (Bertoldi and Boyce,

2007a). Here, the 8-chain network approach is applied to densely cross-linked and
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bundled cytoskeletal networks in which L.<l,. The eight-chain network considers an
averaged or idealized structure of eight chains located along the diagonals of a cubic unit
cell and connected by a centrally located junction (see Figure 3-9). For the isotropic
network, the cell is taken to be aligned with and to deform with the macroscopic principal

stretches. Therefore, taking
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tension in 1, 2-directions)

Figure 3-9. Eight-chain network model geometry and deformation (adapted from (Arruda and Boyce,
1993b))

the normal to any face of the cell as the reference axis, the average initial chain
orientation of this network is simply the initial orientation of the eight chains or 54.7°,
capturing the average orientation for a randomly oriented network. Since the cell
deforms with the principal stretch state A; (where i represents the three principal
directions), the stretch on any chain in this network, A, is the root-mean square of the

principal  stretches and is always tensile for isochoric deformations,

A=l == ,/‘/112 + B+ 2 ’/3 =4/1,/3, where I;=A,*+A,>+A5” is the first invariant of the
left or right Cauchy-Green tensor. In this thesis, chains and filaments are synonymous,

so the chain stretch (A.) and filament stretch (1) are equivalent. The initial end-to-end
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distance is related to the network’s actin concentration (c4r) and filament properties (L.,
;). The chains are also found to rotate towards the maximum principal stretch
direction(s). For example, in the case of uniaxial tension, the chains extend and rotate
towards the tensile axis (Figure 3-9b); in the case of uniaxial compression (or equibiaxial
tension), the chains extend and rotate away from the compression axis (Figure 3-9c). For
the cases of uniaxial tension and uniaxial compression, the principal axes remain fixed
throughout the deformation, and thus the chains in the unit cell rotate and stretch in an
affine manner.

The “non-affine” mapping of macroscopic deformation to network chain deformation is
more apparent when examining the case of simple shear (see Figure 3-10). The
macroscopic basis is denoted as [xyz] while the principal basis is shown as [123]. In the
undeformed state, the principal basis is undefined and could be oriented in any direction
(see Figure 3-10a). Upon application of simple shear, the principal axes of stretch are
identified and will rotate with deformation and, furthermore, the chains will undergo
additional rotation relative to the maximum principal stretch direction (6, - Figure 3—

10b).

.
-
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Figure 3—-10. Simple shear deformation of eight-chain network model
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Note that during simple shear deformation the principal stretch direction does not stay
coincident with the diagonal of the unit cell. For example, if the unit cell was originally

oriented along the 45° diagonal, at tan(y)=0, an affine motion would require the unit cell
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Figure 3-11. 2D illustration of affine and non-affine simple shear deformation

to remain oriented along the diagonal throughout the deformation (shown in 2D for
clarity in Figure 3—11). The eight-chain network model allows the unit cell to rotate with
the maximum principal direction, which does not stay coincident with the diagonal
throughout the simple shear deformation (Figure 3—11).

This network representation is seen to accommodate the imposed shear by both
non-affine rotation and non-affine stretching of the constituent chains, effectively
sampling the non-affine nature of the network behavior in a simple but effective manner.
The physical counterpart would be to view the rotated unit cell as a method of sampling
the rotation and stretching of chains (in eight directions with respect to the maximum
principal direction) such that the overall non-affine network response is captured in an
averaged sense. The eight-chain network model formulation captures the basic features

that Chandran, et al. (Chandran and Barocas, 2006) and Onck, et al. (Onck et al., 2005)
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observe in their many membered discrete network modeling approaches, in particular, the
significant reorientation of filaments that accommodates macroscopic deformation.

Due to the ability of the eight-chain network to effectively mimic the initial state
of a randomly oriented network and to also capture the evolution in chain stretch and
orientation with different deformation states, this simplified network topology will be

utilized to represent the cytoskeletal network.

3.2.1 Stress-strain behavior

The three-dimensional stress-stretch behavior of the AF network can be
determined using the eight-chain network topology and its evolution with stretch together
with a representation of the axial force-stretch behavior of an AF where the initial length
of the filament is the initial junction-to-junction distance, 7y, and the limiting length is
essentially the contour length, L, of the filament. Cytoskeletal filaments, especially AF,
are observed to have only a slight curvature between junction points (Figure 3-8a). The
force-extension relations govern the filament’s response during axial stretching by
displacing the two junction points and thus increasing the junction-to-junction distance
from 7y to r. The force-stretch behavior will consist of an initially linear elastic region;
followed by a strain stiffening region as the junction-to-junction distance r approaches
the filament contour length L. (see Figure 2-5a). The limiting filament stretch is
therefore defined as A =L/7p.

The work done by each chain can be found by integrating the filament force-

extension expression [Equation (2.26)]: AW, = I f dr, and is equal to the filament strain

energy. The strain energy density of the network, W, is simply the product of the
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filament density, » (number of filaments per unit volume), multiplied by the strain energy

of a single filament, wy, in the eight-filament network: W =nw, since all filaments in the

8-chain network experience the same stretch. The expression for the strain energy

density of the eight-filament cytoskeletal network model is

W=nk,,T[ L

e 1 [n(z2-20L, +21 r)- ln(r—Lc)]—cjl (3.5)

41-r/L,)

where c is a constant equal to the initial strain energy density from the filaments. Since
r=Arn= r;,\ﬁl_/g , the strain energy density expression is a function of /;.

The actin cytoskeleton is embedded in a nearly incompressible fluid (cytosol) and
hence is taken to deform at constant volume. Note that this network model will be
incorporated into a poroelastic framework in Chapter 6 to capture fluid flow and,

consequently, swelling/deswelling effects on the mechanical behavior. The Cauchy stress

is found by differentiating the strain energy density:

ow nk,T r, L/1,-6(-4n/L,)
T=22"B-p*1=22 0 B-p*I, (3.6
a,  © T ,1(4(1 ﬂro/L)z}(L/l Wanr) P GO

where B=FF" is the left Cauchy-Green tensor (Finger tensor), A= 1/triBf/F) , F is the

deformation gradient, F=0x/0X where x is the position vector of a material point in the
current configuration and X is the original position. Also in Equation (3.6), I is the
identity tensor and p* is the additional pressure required due to the incompressibility

constraint and obtained by satisfying equilibrium.
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Alternatively, the effects of compressibility can be included in the constitutive
relationship by adding a term to the strain energy function to account for the additional
entropic contribution due to volume change as well as adding a term for the bulk

response.

Comp =

k L
e [4(1 - :'/ Lc) = [ln(Li —2,L + ler)_ ln(r -L, )]— c]

P

_nkgT L,
{{4(1 n/LY (-n/LYL, /1 —2-n/L, ))] ‘nJ} 3.7
+£2"-(J—1)2

where K is the bulk modulus. The compressible Cauchy stress can then be found as

SELN.
Jol, &
(1 ( 1 J[Lc/l,,—6(1-3.;,,/@)]}3W
2\ 40 -an/LY \L.J1,-20- 25 /L 3.8)
=nr;,kBT‘ c L ( cr/ c)2 c/P ( r/ C) >_*_1(”(‘]-1)1
3le _ ( 1 Lc/lp—6(1_’z)/Lc) 1
L \4(1—6/1‘(:)2 LL‘/IP—Z(]'_'&/Lc)

The Cauchy shear stress-strain relationship becomes

nkTr;, 1 Lc/lp_6(1—1'c'b/Lc)
tany . 3.9
T =73, 4[ M- An/LY \LJ, -2-2n/L)) ¢

The initial shear modulus is given by:

(3.10)

0=

_ nky Tro(

IL 1 —6(1—;;,/Lc)]
4-n/LY \Lf1,-21-r/L.))

The constitutive model presented here is a function of the material properties #, /,

L., and rp. The filament density, » (filaments/m®), is defined asn = p, /L. . The actin
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length density, p (um/m®), is defined as p, =(c,.-M,, )/ P, Where car is the

experimental actin monomer concentration, o4 (Da/um) is the linear actin density and
M,y (Da/monomer) is the molecular mass of each actin monomer. Both o4 and My, are
actin material properties, defined a priori. As defined earlier, the zero force junction-to-
junction distance rr-g is a function of L., /,, where a network initial junction-to-junction
distance ry slightly larger than 77—y indicates a prestress in the network due to in vitro or
in vivo environmental conditions (Zhu et al., 2000; Wang et al., 2002a; Kasza et al.,
2007). Here, the percent increase (o) of 7o beyond rr—g is defined as ro = rr=o (1+a). In
principle, 7y and L. are measurable from micrographs and /, is measurable from single
molecule bending, however they are operationally fit from empirical stress-strain data for

each network.

3.2.2 Implementation in finite element analysis

The constitutive model is incorporated as a user-defined material within the
ABAQUS finite element software (Simulia Dassault Systémes, Providence, RI, USA).
The ABAQUS user subroutine UMAT is used to define a material's mechanical behavior,
and requires the calculation of the 4™ order Jacobian tensor (C) and 2™ order Cauchy
(true) stress (T) at the end of each increment. C is taken to be an approximate value and
need not be exact for convergence of the finite element model. The generalized
derivation for the Jacobian tensor is given here following the approach given by Wilson
(Wilson, 2005). The derivation of the Jacobian for the inextensible 8-chain MacKintosh

network model follows the generalized derivation, while the Cauchy stress tensor was
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given in Equation(3.6). The Jacobian (C) is defined through the variation in Kirchoff
stress as

5(JT)=JC:D (3.11)
where J=det(F) and D is the rate of stretch, defined as the symmetric part of the velocity

gradient (L):

D= Sym(L)= ; L) (3.12)

L= = SFF", (3.13)

S’IS’
S’IS’

The left hand side of Equation (3.11), &J T), can be equivalently taken to be

S(JT)=T& +J8T = (T@%u‘;{) F=A:F (3.14)

Substituting Equation (3.13) into Equation (3.14) gives
5(J T)=A:(LF)= A* :(F'L")=(A™F"): L. (3.15)
If (ARTFT) is right symmetric, Equation (3.15) can be given as
5(JT)=(A"F"):D. (3.16)
Note that if (A RTFT) is not right symmetric, there will be a small error in C. This should

not, however, inhibit convergence of the finite element model since C is only taken as an
approximate value from the UMAT subroutine. The 4™ order Jacobian tensor from

Equation (3.11) can therefore be shown as
c=L(ampr)-1 T®§1+J§r) F (3.17)
J J oF OF

where &J/JF is defined as
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& _ 5det(F)

Lol =JF7. 3.18
- o (3.18)

Thus, given a material-specific expression for the Cauchy stress (T), the Jacobian (C) can
be determined by solving for the derivative 5T/JF.

The Jacobian may now be specialized to the constitutive model for the
inextensible 8-chain MacKintosh network model. In order to simplify the expressions,

the following abbreviations are used within Equation (3.8),

. L LC/IP_6(1"1J6/L¢)
‘ _Z[(“(l-&ro/lac)’ ILc/l, -2(1-A.r, /L“))] (3.19)
1 L /l 6(1_r0/Lc)
(4(1 -n/L )ZL /I, -2(1-r, /Lc))’ (3:20)

noting that ¢ is a material-dependent constant and {'is a function of 4. The expression for
the Cauchy stress for a compressible material is now given by

- 2k T(éB )+ K, (7 -1 (3.21)

The Jacobian (C) is now found by solving for the derivative 5T/JF,

T nrokT 1.8 1(é a
® 3 { (gB d)+ ($J+J(wn)}+1<,,wl (3:22)

where the terms within Equation (3.22) are defined as

%:2(I’wa =21, F)" =21, F)” (3.23)
I, = 040, ;5:15:1: (3.29)
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3.3 Isotropically prestressed Networks

Isotropic prestress (i.e. in the absence of an applied deformation) occurs in both in
vitro or in vivo networks due to a variety of environmental conditions and is an important
component in the cell stiffening response (Hubmayr et al., 1996; Cai et al., 1998; Pourati
et al., 1998b; Zhu et al., 2000; Wang et al., 2001; Wang et al., 2002a; Kasza et al., 2007).
Prestress in spectrin networks within red blood cells has been captured via continuum
models and shown to increase the initial elastic modulus of the network and significantly
decrease the stress and stretch levels required for subdomain unfolding (Arslan and
Boyce, 2006; Arslan et al., 2008). In vitro or in vivo actin networks could experience the
isotropic prestress from sources including osmotic/swelling pressures, external tractions
due an adherent cell membrane’s interactions with the ECM (or the in vitro gel’s’
interactions with the substrate), and/or internal myosin-generated contractile forces.
Stiffening of actin networks from myosin contractile tension has been attributed to the
tension in the actin filaments and not the crosslinks (Mizuno et al., 2007). The proposed

8-chain MacKintosh network model can account for filament pretension and network
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isotropic prestress, and hence can be used to parametrically explore the effect of isotropic
prestress on the stress-strain behavior. The actin network isotropic prestress is accounted
for di;'ectly through a percent increase (@) in ro beyond 7. Figure 3—12 demonstrates the
effect of an increase in network isotropic prestress on the overall network shear stress-
strain behavior. The results show that increasing isotropic prestress results in an increase
in the initial shear modulus of the network and a decrease in the network extensibility (as
seen in the dramatic increase in tangent modulus (slope) of the stress-strain curve

occurring at smaller strains when isotropic prestress is increased).
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Figure 3-12. Effect of network isotropic prestress on the network shear stress-shear strain behavior (a) and
the network tangent modulus-shear stress behavior (b), with the initial isotropic prestress (o,) based on ro =
/= (1+ @)

3.4 Rheological experimental techniques

Although many variations exist to explore the rheology of cytoskeletal systems,

the experimental techniques usually fall into one of two categories: bulk rheology or
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microrheology.  For microrhology, the mean squared displacements (MSD) of
microscopic probe particles embedded within a cell are tracked via laser or optical
tracking techniques while their displacement is either actively driven by external forces
or passively driven by local thermal energy (i.e. Brownian motion) (Brau et al., 2007).
Then a generalized Langevin equation of motion for a microsphere in a viscoelastic
medium (Xu et al., 1998b) is used to transform the MSD into elastic and viscous moduli
(Tseng et al., 2002a). Alternately, a viscoelastic memory function can be calculated
using equipartition and a Laplace transformation, and then solving for the shear modulus
with the generalized Stokes law (Mason et al., 1997; Janmey and Schmidt, 2006). Figure

3-13

t=0 min =

0.0531 cm*/dyn

0 0007 cm/dyn

Figure 3-13. Phase contrast (top) and immunofluorescence (bottom) micrographs of 100nm fluorescent
nanoparticles in Swiss 3T3 fibroblasts before (left) and after (right) shear flow. The inset is a magnified
view of focal adhesions at the ends of actin stress fibers. Bar, 20um. Adapted from (Lee et al., 2006).
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shows an example of multiple particle tracking to monitor the local changes in cell
stiffness in a cell subjected to a shearing flow (Lee et al., 2006). The 100nm nanoparticles
are enlarged and colored in the micrograph to show regions of the cytoskeletal networks
(actin=green, vinculin=red) that were structurally altered to stiffen their response (blue)
or regions retained their original level of elasticity (red) (Lee et al., 2006).

Active microrheology techniques generally employ one- or two-particle methods.
Large discrepancies can occur between macroscopic viscoelastic moduli and moduli
found by one-particle microrheology if any characteristic length scales (mesh size,
persistence length) in the cytoskeletal network exceed the size of the particle size (i.e.
application of the generalized Stokes law is not valid) (Janmey and Schmidt, 2006).
Two-particle microrheology was developed (Crocker et al., 2000; Levine and Lubensky,
2000) to avoid these problems by cross-correlating the displacements of two particles
separated at a given distance which then becomes the relevant length scale (i.e. influence

of particle size/shape is reduced), see Figure 3-14 (Janmey and Schmidt, 2006).

Laser 1 Laser 2

Figure 3—14. Sketch of 1-particle and 2-particle microrheology using lasers for trapping, displacing,
detecting. (Janmey and Schmidt, 2006)
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Bulk rheometers are usually categorized as rotational (“stress-strain”) rheometers,
capillary rheometer, and extensional rheometer, with the rotational rheometers most
commonly used to explore bulk behavior of reconstituted cytoskeletal networks. The
rotational rheometers use different experimental geometries (cone and plate, parallel
plates, or annular cylinders) to shear a material by applying an oscillatory force or
displacement in order to measure the elastic (in-phase) or viscous (out-of-phase)
response. The “cone and plate” and “parallel plate” rotational (torsional) rheometers hold
one plate fixed while applying a torque to the other plate/cone (Figure 3—-15). Both are

useful for measuring gels with viscosities greater than 10mPa-s. The cone and plate

Normal Normal
Force Force

Cone and Plate Parallel Plate
Figure 3-15. Torsional rheometer geometries
rtheometer provides a uniform radial strain field due to its geometry. Many models of
both torsional rtheometers, however, use a load cell in the vertical direction to measure the

normal force exerted by the material, often a positive force due to the Poynting effect

(Poynting, 1909) although negative normal forces have been observed in some complex
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fluids at high flow rates (Lin-Gibson et al., 2004; Montesi et al., 2004) and some

semiflexible polymer gels (Janmey et al., 2007).
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Figure 3-16. Linear and nonlinear theology with stress stiffening from cross-linked gels (adapted from
(Kasza et al., 2007))

The shear stress-strain behavior, like the force-extension response, of semiflexible
biopolymers is characterized by a linear region followed by a nonlinear region of
increasing tangent stiffness as the filament’s extensional limit is reached (Fernandez et
al., 2006; Kasza et al., 2007). The linear response occurs for small deformations, and
small oscillatory stresses or strains (white double-headed arrow in Figure 3-16) can be
used to measure the elastic shear (storage) modulus, G’, and the viscous shear (loss)
modulus, G”. The differential change in shear stress-strain in the nonlinear region is
characterized as a tangent shear modulus, K=dt/dy, instead of a secant shear modulus,

G=t/y (Figure 3-16). Thus, at larger strains an initial stress or strain is applied to the
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material to place it in the nonlinear regime, followed by the oscillatory stress or strain to

measure the differential elastic (K”) and viscous (K”) response.

3.5 8-chain/MacKintosh Network Model Results

3.5.1 Experimental data used for comparison

The rheology of actin networks has been quantified in several studies (Janmey et
al,, 1991; Janmey et al., 1994; Isambert and Maggs, 1996; Gardel et al., 2004a; Gardel et
al., 2004b). The model will be compared to the Gardel, et al. data (Gardel et al., 2004a),
introduced in Chapter 1, which systematically varied the actin concentration, c4r, while
holding R =c¢,, /c,. constant (where cc; is the cross-link concentration). This data
measured the shear rheology of F-actin cross-linked with scruin cross-linking proteins,

and observed a network response for R>0.03 in which the elastic behavior dominated the

viscous behavior for the frequencies of interest (see Figure 3-17).
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Figure 3-17. Storage modulus (G’) and loss modulus (G”) over a range of frequencies for reconstituted
actin-scruin networks (adapted from (Gardel et al., 2004a))
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3.5.2 Representative low concentration case

The model was evaluated by first fitting the model to the data with the lowest
actin concentration found to exhibit entangled network behavior, ¢4+ = 8uM and R=0.03.
The contour length was calculated following the relation presented by Gardel, et al.
(Gardel et al., 2004a) and the empirically derived exponent (0.2) given by Shin, et al.

(Shin et al., 2004) for actin-scruin networks,

02
=2 ;‘“'“ ,/—”—, (.27)
Csr

with dyci,=7nm, R=0.03, and c,~8uM, resulting in L~=1.1pm. The chain density is
determined to be #=1.2e19 filaments/m® based on the values of L, =1.1um, car = 8uM,
par= 16 MDa/um, and My, =42 kDa/monomer. The values of /, and a are chosen to best
fit the model to the 8uM experimental data, noting that the value of r, associated with a
will be nearly equal to L. based on the observed network topology of nearly straight
filaments between junctions. The best fit of [,=3um agrees with observed values of
[,~3pm for F-actin with L.~1-3pm (Steinmetz et al., 1997a).

The shear stress-strain results are shown in Figure 3-18a, with the tangent
modulus-shear stress results shown in Figure 3—18b. The network modeling parameters
are n=1.2¢19 filaments/m*, [,=3.0um, L=1.1pm, and 7~1.0pm. The network model
captures the experimental data through the entire range of shear strain using physically
realistic material properties. The network model also fits well with the experimental
tangent modulus-shear stress behavior, including the low stress region of relatively stress-
independent modulus and the nonlinear increase in tangent modulus at higher levels of

shear stress.
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Figure 3-18. (a) Shear stress and normal stress difference (N)-N) vs. shear strain and (b) Tangent shear
modulus vs. shear stress for in vitro F-actin networks (c,» = 8uM, R=0.03). (experimental data adapted
from (Gardel et al., 2004a))

The network model could alternatively use the WLC filament model with
clamped-clamped boundary conditions (developed in Chapter 2) instead of the WLC
model with pinned-pinned boundary conditions. The shear stress-shear strain behavior of
both models is shown in Figure 3-19a, with the tangent modulus-shear stress results
shown in Figure 3-19b. The network parameters for both models are »=1.2e19
filaments/m®, [,=3.0pm, L~=1.1pm, and 0y=0.7Pa. While the network model with the
pinned WLC filaments captures the experimental data through the entire range of shear
strain using physically realistic material properties, the network with the clamped WLC
filaments quickly diverges due to its inherently stiffer response and would require an

unrealistically small persistence length to fit the experimental data.
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Figure 3-19. (a) Shear stress vs. shear strain and (b) Tangent shear modulus vs. shear stress for in vitro F-
actin networks (c,+ = 8uM, R=0.03) using WLC filament model with pinned-pinned or clamped-clamped
boundary conditions. Experimental data adapted from (Gardel et al., 2004a).

The AF network model also enables tracking of the evolution in filament
orientation and stretch with macroscopic deformation. The average orientation of a
filament is expressed as the azimuthal angle with respect to the direction of maximum
principal stretch (0¢), together with the direction of the maximum principal stretch
defined by its angle (8;) with respect to the direction of imposed shear (see inset of
Figure 3-20). The filament orientation evolution shows that the shear strain is
accommodated by significant filament rotation and a small amount of filament stretch.
The eight-filament network gives a filament stretch of A=1.0004 for a shear strain of
tan(y)=0.05 and A=1.01 for tan(y)=0.25. In contrast, an affine network with a dominating

diagonal filament (e.g. Figure 3-5a) subjected to shear strains of tan(y)=0.05 and 0.25

requires much larger filament stretches of A=1.03 and 1.15, respectively.

132



60 1.014

ol e /) +1.012
________________ J1om g
— “ g
; + 1.008 g
0l
g 2] ! = 8| 00 5
-0 =
"] — { 1.002
, . 1.000

[] 0.05 0.1 045 0.2 0.25 03
Shear Strain - tan(y)

Figure 3-20. F-actin filament molecular orientation evolution

Figure 3-18a also shows the normal stress difference, Ni-N; (where N=T;-T2,,
N,=T»»-T33) as a function of shear strain during the simple shear deformation. The
normal stress difference is found to be negligible at small strains and to monotonically
increase as a positive value, as expected, for an initially isotropic network based on the
first invariant of strain. Gardel, et al. did not present results for the normal stress
difference for their networks. However, recent work by Janmey, et al. (Janmey et al.,
2007) has observed a negative normal stress difference during finite shear of much higher
concentration, cross-linked actin networks. This suggests a possible initial anisotropy in
the Janmey network configuration which could be modeled using an anisotropic
formulation of the 8-chain network (e.g., Bischoff, et al. (Bischoff et al., 2002a)), or,
alternatively suggests a cross-linking condition that favors direct axial stretching of the
filament over filament rotation; this effect could be captured in future expansions of the
strain energy function by including torsional potential contributions of the cross-linking

junctions and the enthalpic contributions from direct axial stretching of the chains.
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3.5.3 Effects of increasing actin concentration

Gardel, et al., have further explored the effects of varying actin concentration and
cross-link concentration on the shear rheology of the network. Figure 3-21a shows the
tangent modulus-stress behavior for four levels of c4r at fixed R=0.03. Note in Figure 3—
21a that the tangent shear modulus for the c,+=21uM case is constant up to a shear stress
of 1=0.5Pa, while the trend of nonlinear strain stiffening observed in the other three
concentrations suggests that the 21pM network should begin strain stiffening at
approximately 1=0.2Pa. The shear stress-strain data were obtained by taking a curve fit
of the raw tangent modulus-stress data to calculate the shear stress-strain behavior. The
experimental data in Figure 3-21b show the resulting shear stress-strain behavior for
varying cr at fixed R=0.03.

The focus is now turned to explore the ability of the proposed model to capture
the effect of actin concentration on the stress-strain behavior by attributing the observed
effects to changes in network structure (», ry, etc.). Next, the model’s ability to capture
network isotropic prestress and bundling effects by parametrically changing ry and I,
respectively, is evaluated. This evaluation begins by determining /,, L., and a (due to
isotropic prestress) for the lowest concentration case (8uM) as shown previously. The
persistence length is then held constant (indicating a “no bundling” assumption), while
the contour length is taken to scale with concentration (L.~c4r ") following Equation
(3.27). The percent increase (o) in r9 beyond rr-p due to isotropic prestress for each
concentration is then adjusted to provide a fit to the experimental results as shown in
Figure 3-21. Table 3-1 contains the network parameters used for each concentration

case, with the initial isotropic prestress (o) based on rp = rr— (1+a). Note also that o
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decreases monotonically with c,r =8, 12, 29uM (ignoring the anomalous 21yM data)

approximately following the relationship o=6.2(c.) .
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Figure 3-21. (a) Tangent shear modulus-shear stress theory and experimental data, (b) shear stress-shear
strain theory and experimental curve fit data of actin networks with varying actin concentration (c,=8, 12,
21, 29uM, R=0.03), (experimental data adapted from (Gardel et al., 2004a))

Ip n Lc rr=g o a Op

CONCENTRATION 1o} [m?  [um]  [um]  [um] _ [%] __ [Pa]
8§ M 3.0 1.2e19 1.07 1.00 1.03 2.7 0.66

12 yM 3.0 2.1el9 0.89 0.85 0.87 2.1 1.1

21 yM 3.0 5.1e19 0.67 0.64 0.65 1.2 24

29 uM 3.0 8.2¢l19 0.57 0.55 0.56 14 8.6

Table 3-1. Network parameters for different actin concentrations

The stress-strain results correlate well with both the 12uM and 29uM data as shown in
Figure 3-21b. The model also captures the experimental behavior for the entire range of
applied shear stress as shown in the originally published log-log plot of tangent modulus
vs. shear stress shown in Figure 3-21a. The good agreement between the model result
and the data also indicates that there is relatively little bundling in these cases, and that

the increasing stiffness with increasing c4r is due to the change in network topology. The
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good agreement in the high stress region, where strain stiffening occurs, is a benefit of
using a network model that accounts for the non-affine deformation of a network,
accommodating macroscopic deformation by rotation of filaments and a small amount of
filament stretch.

Note that the network model results for the 21pM case in Figure 321 exhibits the
transition to nonlinear strain stiffening behavior by 1=0.2Pa, consistent with the empirical
trend exhibited by the other concentrations. The network model results for the 21uM case
also exhibit good agreement with the experimental tangent modulus-shear stress data in
Figure 3-21a in both the low and high stress regions. The 21pM shear stress-strain
predictions of Figure 9b are in good agreement with the data up to a strain of 0.10, but
exhibit a much stiffer behavior at larger strains. This is likely a direct result of the
ambiguity of the 21pM tangent modulus data in the transition region which is key to

reconstructing the stress-strain curves.

3.5.4 Parametric evaluation of bundling effects

The network will also become stiffer with increasing persistence length. Filament
bundling increases the persistence length of the “effective” bundled filament. At large
values of R (R=1), the actin network behavior is dominated by thick bundles in contrast to
almost no bundling observed at R=0.03 (Gardel et al., 2004a). Here, the ability of the
proposed model to capture the stiffening effects of bundling is explored.

The bending stiffness of the bundle, and hence J,, can be determined from the
number of filaments per bundle (m). Filament bundles might be unbonded, partially

bonded along the length, or fully bonded along the entire axial length of the filaments.
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Next is an examination of the two limiting cases of “unbonded bundles” and fully
“bonded bundles”. The stiffness of unbonded bundles will scale linearly with the number
of filaments in the bundle. The stiffness of bonded bundles will scale by the ratio of the
effective moments of inertia of the bonded geometry with that of the single filament; this

scaling is determined by estimating the effective bonded bundle radius (R.p).

rs Rqo'

(a) Bonded bundle (b) Unbonded bundle

Figure 3-22. Filament bundling geometry with (a) bonded bundles and (b) unbonded bundles

For bundles with two adjacent filaments (m=2), the stiffness is simply twice the stiffness
of an individual filament. For bundles with m>3, the unbonded bundle stiffness will
simply scale linearly with m. For bonded bundles with m>3, the increase in R.g which
leads to an increase in stiffness from bundling, is illustrated in Figure 3—22a (where r, is

the radius of a single fiber) and the effective radius required for an equivalent cross-

sectional area is R =m r,. Since the area moment of inertia of a solid cylinder

is] = (ﬂ' R;} )/4, the ratio of increasing effective stiffness for bonded bundled filaments

can be calculated as follows (with E as Young’s modulus):

(ED), (4)4_
. ()

(3.28)
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The results for scaling the persistence length of a single actin filament to obtain the
effective persistence length, , ,,, of a bonded bundle of m filaments are given in Figure 3
23. Table 3-2 contains the network parameters used for each case in Figure 3-23. Each
actin network was taken to have a isotropic prestress set by assuming a=1%, but with the
persistence length increasing for increasing numbers of bundled filaments. The contour

length was calculated using Equation (3.27) with dy.i,=7nm and c~7puM, resulting in

L=2.04pm.
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Figure 3-23. (a) Shear stress-shear strain response and (b) tangent shear modulus-shear stress response of
bundled F-actin networks with varying persistence length (R=0.5, c,~7uM) (experimental data from
(Gardel et al., 2004a))

Myonded Mygbonded lom Tr=0 T a R CaF L. n
[#/bundle] [#bundle] [pm] [pm] [pm] [%] mM] [pm] [m?]
1 1 3 1.81 1.83 1 0.5 7 204 5.4el8
2 2 6 1.92 1.94 1 0.5 7 204 5418
- 3 9 1.96 1.98 1 0.5 7 2.04 5418
3 9 27 2.01 2.03 1 0.5 7 204 5.4el8

Table 3-2. Network parameters for different amounts of filament bundling

The case of /,=6um represents a bundle of two filaments while the case of

[,=3"x3=27um represents a bonded bundle of three filaments. The smallest stable
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filament bonded bundle is assumed to consist of three filaments, and this case also
exhibits excellent agreement with the experimental shear stress-strain data (Figure 3-23a)
as well as the tangent shear modulus-stress data of Gardel, et al. (Figure 3—-23b).
Alternatively, if the model assumes linear scaling of bending stiffness due to
unbonded bundles (Figure 3-22b), then the same case (R=0.5, car=7uM) with three
filaments would exhibit reduced stiffness as shown by the 1;=9um curve in Figure 3-23a.
Of course, the unbonded, bundled case matches the R=0.5 data equally as well if nine
filaments are bundled instead of three (I,=9x3=27pm). This unbonded bundle of nine
filaments would have an average diameter (Dg~30-40nm depending on spacing between
filaments) on the order of the actin-scruin bundle diameters observed by Shin, et al. (Shin
et al., 2004) via confocal microscopy (Dp~20-65nm for R=1, with Dg~R"*). This would
suggest that bundled actin fibers in the Gardel networks are only minimally bonded to

each other for the case of car=7pM, R=0.5.

3.5.5 Network stress-strain with linear filament force-extension

Here the network behavior obtained considering the constituent filaments to
follow a linear force-extension behavior is compared with that obtained when the chains
exhibit the nonlinear force-extension behavior as represented earlier with the MacKintosh
model. This comparison will help highlight the source of nonlinearity in the network
stress-strain behavior arising from the evolution in structure geometry due to chain
rotation from that arising due to the nonlinearity of the filament behavior.

The force-extension relationship for the linear model is shown below, where &, is

the linear stiffness of the filament.
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FLinea' = klina = klin(r_'b): klin’b(zc - 1)

(3.29)

Figure 3—24 compares the force—end-to-end distance and force—stretch behaviors of the

MacKintosh and linear models using F-actin network properties (see Table 3-3 in the

next section
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Figure 3-24. (a) Force vs. end-to-end distance and (b) force vs. chain stretch behavior of F-actin filaments
using the linear and MacKintosh models

for values and discussion), with ry labeled for each model. Note in Figure 3-24b that

MacKintosh response (with r¢> re) leads to an automatic chain pretension at r=rq (Ac=1).

The expressions for the strain energy density of the eight-filament cytoskeletal

network models based on the linear and MacKintosh model are

U,

inear

=nk

lin

(rz

\ 2

—=r,—C

L

| 4(1-7/L,)

)

1, [in(z2 -2, L, +21r)-In(r- L)) c]

140

(3.30)



where ¢ is a constant equal to the initial strain energy of the filament. Following the
derivation of the Cauchy stress-strain relationship developed earlier for the MacKintosh
model, the corresponding Cauchy shear stress-strain relationships for the three single

filament models become

nk 1

(4

_nk,T r, LJ1,-6(1-r/L)
Fuelr)= 3, A( a(-1/L, )’J(L /1, ~20-7/L, )]tan

(3.31)

3.5.5.1 Comparison with representative low concentration case

The models were evaluated by comparing to the data with the lowest actin
concentration (car = 8uM and R=0.03) shown to exhibit network behavior (Gardel et al.,
2004a). The parameters in Table 3—3 are used in the MacKintosh and linear network

models.

MACKINTOSH LINEAR
n (filaments/m3) 1.2e19 1.2e19
Stiffness term ;=3.0pm kir=40uN/m
L.(um) 1.07 1.07
ro(pm) 1.03 1.03
rr-o(um) 1.00 1.03

Table 3-3. Network parameters and material properties MacKintosh, Linear models

The stiffness-related term (J, or k) and 1, (via o) are chosen to best fit the models to the
8uM experimental data. The shear stress-strain results are shown in Figure 3—25a, with
the tangent modulus-shear stress results shown in Figure 3-25b. If the linear stiffness is
related to actin filament geometry as k,, = AE/L, =(AEI)/(L1)= (16,7 )/(d%L.) with

ds=Tnm,; then /,=0.03um for the best overall fit shown in Figure 3-25a. This persistence
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length value is two orders of magnitude lower than experimentally observed F-actin

values (/;~3-17pm).
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Figure 3-25. (a) Shear stress-strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks (¢4 = 8uM, R=0.03). Experimental data from (Gardel et al., 2004a).

Note that the network with linear filaments exhibits a nonlinear network shear

stress-shear strain behavior in Figure 3-25a due to the filament rotation effects (Arslan

and Boyce, 2006). The linear model, however, captures neither the shear stress-strain nor

the tangent modulus-stress behavior of the actin network, emphasizing the importance of

using a nonlinear force-extension relationship for single F-actin filaments. The tangent

modulus-stress response of the MacKintosh model, when used in an 8-chain network,

closely matches the predictions given by Gardel, et al. (Gardel et al., 2004a), with a good

fit at low stresses as well as in the strain stiffening region at higher stresses (Figure 3—

25b). The 8-chain MacKintosh network model, because of its superior performance

when compared to experimental data, was chosen for comparison with actin networks at

varying concentrations.
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3.5.6 Network model performance with varying persistence length

The network model’s ability to fit experimental data over a range of persistence
lengths is addressed in this section. There is a range of published values and testing
methods for persistence lengths of in vitro actin filaments (I,~3-17pm). The model’s
behavior is compared for ,=3, 10, 17um (car=8.33uM, R=0.03) by only varying L. to

obtain a best fit to the initial shear modulus (see Figure 3-26).
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Figure 3-26. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks over the range of published persistence lengths 1,=3, 10, 17pm (¢, = 8uM, R=0.03), vary L. for
best fit. Experimental data from (Gardel et al., 2004a).

In order to obtain a best fit to the data, an increase in the persistence length to
10pm or 17um requires the contour length to be increased to L.=2.8, 4.3um, respectively;
both of which are beyond experimentally observed values (i.e. L.~1um). Note that while
the fit appears good in the tangent modulus-shear stress plot (with log-log axes) in Figure
3-26b, the shear stress-strain plot in Figure 3-26a reveals divergent behavior in the

nonlinear strain stiffening region for larger persistence lengths. A better overall fit can be

obtained by varying o as well as L. as seen in Figure 3-27.
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Figure 3-27. (a) Shear stress-shear strain and (b) tangent shear modulus-shear stress for in vitro F-actin
networks over the range of published persistence lengths 1,=3, 10, 17pm (c,+ = 8uM, R=0.03), vary L. and
o for best fit. Experimental data from (Gardel et al., 2004a).

Decreasing a. while holding the contour lengths constant (from Figure 3-26) gives
a better fit in the strain stiffening region at the expense of a poorer fit to the initial shear
modulus. The model’s performance with higher persistence lengths, however, still does
not achieve as good of a fit to the 8.33uM data as with the 1, =3um. The persistence
length has a significant effect on the transition to the strain stiffening region as the bends
in the filaments are straightened out, which enables a better fit of the more compliant
actin-scruin filaments with the lower value of 1,. Since the best fit was obtained with 1,
=3pum and a realistic contour length of L.=1.0um, these values were used for earlier

comparisons.
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3.6 Extensible 8-chain Network Model

The strain energy functions for entropic unbending and enthalpic stretching of a

compressible material are given within the extensible model framework as

e = nl;:T [4(1 _L;/Lc)_l” fin(e2 - 21,2, + 20}~ (- 1, )] c]
_nk,T L ,
p {[4(1 -n/L, )2 (l -n/L, XL /l 2(1 -n/L, ))} IDJ} (3.32)
Ky
W o 2L (,1: 1)2 +_L( J-1F. (3:33)

Note that the right hand side of Equation (3.32) is equivalent to that of Equation (3.7).
The Cauchy stress for a compressible, extensible 8-chain MacKintosh network model is
based on either of the strain energy density functions given in Equation (3.32) or
Equation (3.33) due to force equilibrium between entropic unbending and enthalpic
stretching. Choosing the enthalpic stretching strain energy density, and recalling that

J=0w/dr, gives the Cauchy stress as

P20 oW

Jal, el

2(néw or 04, ow

B+ 27 34

(6r6/1 61] ) [("fx{,)J+afl (3-34)
nr} .

- 2 —1B+K. (/-1

L ( B+ K, (/-1
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3.6.1 Implementation in finite element analysis

The Jacobian may now be specialized to the constitutive model for the extensible

8-chain MacKintosh network model. As before, the Jacobian (C) is found by solving for

the derivative JT/JF,

(& -1)a1; o (-1 ar

st_mik| T & 4 &

oF 3L 7+ 1ot (B-)m
T, A, o

B

>+K,%1 (3.35)

P

where the terms within Equation (3.35) are defined earlier except for

st _ola,/4)83, 1 1 .y
F &, &F L34, 3L

(3.36)

3.6.2 Evaluation of extensible network model behavior

The relative stretch contributions of the unbending and stretching in an extensible
network subjected to simple shear deformation can be seen in Figure 3-28, using
K~=40nN (used for other parametric comparisons in Chapter 2), and the following
filament properties, ,=3.0um, L,~1.07um, that provided a best fit with the experimental

data from Gardel, et al. (Gardel et al., 2004a).
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Figure 3-28. Stretch contributions from entropic unbending and enthalpic stretching in a network

subjected to simple shear deformation

Note that the stretching energy does not contribute much to the overall filament stretch
until a network shear strain of approximately tan(y)~0.4, larger than the shear strain at
failure for the actin-scruin networks by Gardel, et al.. As before, the force in the filament,
and now the shear stress in the network, can be calculated by recursively solving for A",
and A’z The extensible network’s shear stress-strain and shear stress-filament extension
behaviors are shown in Figure 3-29 and compared to the inextensible entropic unbending
model. Consistent with force comparisons, the inextensible and extensible models
diverge as the average filament extension approaches the inextensible limit. At the
inextensible limit (#/L.=1) the inextensible model asymptotes to larger stress values as

r/Lc—1, while beyond the limit the extensible model converges to a slope of K, /L.,
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Figure 3-29.  (a) Shear stress-strain and (b) shear stress-filament extension comparison of inextensible
model and extensible model

The extensible model’s response for varying persistence lengths (with a constant
K=40nN) is included in Figure 3-30. The inextensible model’s response for [,=3um is
also included for reference. As expected, the initial stiffness increases for both shear and

normal behavior with larger values of /,.
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Figure3-30.  (a) Shear stress-shear strain and (b) Normal stress-shear strain comparison of inextensible
model and extensible model with varying persistence lengths
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3.7 Equilibrium swelling of cytoskeletal networks

Equilibrium swelling of elastomeric networks has been studied extensively within
the rubber elasticity field (Flory and Rehner, 1943; Treloar, 1944; Flory, 1953; Treloar,
1975), and recently reviewed by Boyce and Arruda (Boyce and Arruda, 2001). A
resurgence of interest in the thermodynamics and mechanics of swelling has been driven
by investigations on the swelling of hydrogels (Horkay and McKenna, 1996; Dolbow et
al., 2004; Dolbow et al., 2005; Hong et al., 2008), active polymers (Therkelsen, 2005),
osmotic swelling of biological cells and tissues (Gu et al., 1997, Wilson et al., 2005b;
Ateshian et al.,, 2006; Haider et al., 2006), and swelling as a contributor to cellular
motility in lamellipodia (Oster et al., 1982; Oster and Odell, 1984; Oster and Perelson,
1985; Oster and Perelson., 1987) and amoeboid pseudopods (Dembo and Harlow, 1986;
Zhu and Skalak, 1988; Herant et al., 2003; Herant and Dembo, 2006). This section will
address the statistical mechanics model for equilibrium swelling following the approach
of Boyce and Arruda (Boyce and Arruda, 2001) and Therkelsen (Therkelsen, 2005). This
equilibrium model will be coupled with a kinetic law while addressing poroelastic
behavior in networks. The poroviscoelastic and swelling models will establish the
framework to capture part of the cytoplasm’s dynamic response during migrational
processes such as extension and translocation as well as during other amoeboid processes

such as blebbing.

150



3.7.1 Kinematics of equilibrium swelling

Swelling in networks incorporates an internal balance of network tensile stress
and osmotic/swelling pressure from an influx of solvent molecules. This balance of
internal stress and isotropic pressure results in zero macroscopic stress for a traction-free
network. The mechanical response of the cytoskeletal network due to the resultant
localized swelling of the cytoplasm will be captured using a constitutive model
employing multiplicative decomposition of mechanical and swelling stretches (see Figure

331y,

» Deformed
@ Configuration
Reference
Configuration 9
‘ ’l,-'”,F'"
A

Swelled
Configuration

Figure 3-31. Swelling decomposition [adapted from (Therkelsen, 2005)]

In Figure 3-31, the principal values of total stretch (A;) are defined as
A =4"4, (3.37)
where A" are principal values of the mechanical stretch and A, is the isotropic swelling

stretch. The deformation gradient (F) can be multiplicatively decomposed into

mechanical and swelling gradients,

F=F"A,, (3.38)
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where the swelling stretch tensor is Asw=Ay I and F™ is the mechanical deformation
gradient (Boyce and Arruda, 2001; Therkelsen, 2005). The swelling, mechanical, and
total volume ratios are defined, respectively, as

|4

—_sw _ 43
J,, = ;. 2, (3.39)
J, =7V—= det(F" )= AmAn A (3.40)
Jy =%=det(F)=A,A2A3 =R =JJ,. (3.41)

0

The volume fraction of the polymer with respect to the dry state can then be defined

fa—y

(3.42)

V =—=

1

R
or, alternatively, as /?m,,=(v,,)‘”3 . The mechanical left Cauchy-Green strain tensor is
B” =F"F". (3.43)
The mechanical left Cauchy-Green tensor can be related to the total left Cauchy-Green

tensor by

B" =F"F" =FA.(FAL ) =FALATF
=FAZF" =F(AZ1IF" = 12FF (3.44)
=1 B=v"B

The total and mechanical stretch invariants are then given by

I, =trace(B) = A> + A + A%, (3.45)
1, =Y(trace(B)Y — trace(B? ))= A2A% + A2A% + A2AZ, (3.46)
I, =det(B)= A2A2A2, (3.47)
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and

I" =trace(B")= 2" + 22" + 2", (3.48)
Ir= */z((zracen'“)‘ —trace(B"'z))= A e A (3.49)

Ir=detB”)=2" 22", (3.50)

3.7.2 Thermodynamics, constitutive equations for equilibrium swelling

Swelling phenomena on a microscopic scale are governed by the statistical
thermodynamics of the constituents. For swelling of polymer networks, the driving force
for the swelling is the entropy of mixing, where entropy is maximized through the
creation of a uniform mixture (Therkelsen, 2005). If the two mixing constituents are gas
particles, the total entropy change from an unmixed state to a completely mixed state is
given by the entropy of mixing (Flory, 1953),

AS,, =—ky(m Inv, +n,1nv,), (3.51)
where v=n;/(n;+n;) is the number fraction of the i constituent (or volume fraction if the
constituents are the same size). Unlike mixing gases, a polymer gel is constrained from
freely interchanging particles during mixing. Using Flory’s assumption of long chain
molecules composed of “x” segments that are equal in size to the solvent molecules
(Flory, 1969), we can consider the polymer-solvent mixture to be equivalent to the
mixture of ideal gases. An increase in intermolecular forces between the polymer chains
accompanies the influx of solvent molecules. In equilibrium, the increase in entropy
from mixing is equal to the entropy lost from polymer chain stretch, thereby preventing

further fluid intake (Therkelsen, 2005). Thus, the osmotic pressure of the solvent is
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balanced by the tension within the stretching chains. The total change in entropy for the

system is the sum of the entropy change from mixing (AS’,) and the configurational
entropy lost from chain stretching during swelling (AS!,)

AS, . = AS,, +AS,,, (3.52)
where the prime on AS’ denotes that the entropy change is per unit unswollen volume.

The mixing entropy, per unit reference volume (7>), is then

AS, - —ky(n, ln; +mlnv;) (3.53)
2

where n; and v; are the number and volume fraction of solute molecules and », and v, are
the number and volume fraction of polymer segments (assuming each chain segment is
equal in size to a solvent molecule). Assuming that the chain segments occupy the same
volume as the unmixed solvent, there must be an equal number of solute molecules per
unit reference volume (n;/V;) as there are chain segments per unit reference volume
(n2/V3), which leads to the reduced form of the mixing entropy per unit unswollen
volume,

AS}, =—kzxN,(J -1)inf1-v, )+ 10v, ), (3.54)

where v/=1-v,, n/V2=xN, and n/V,=xN(J-1) with x=number of solute sized chain
segments, and Nc=number of chain molecules per unit reference volume (Therkelsen,
2005).

Assuming that the swelling process has occurred slowly enough to reach an
equilibrium state, the next step is to apply a mechanical stretch to the swollen polymer.
The entropy change due to mechanical stretching from the swollen state (but with respect

to the unswollen state) is given by
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AS' = AS,

total

A" (3.55)

For the inextensible network model, AS] , is given by

L
—_e I nl2-21L +2] A.r,)-In(A r,—L
nky 4(1-A_n /L) P[(c ple T4, c’b) (A, c)]
ASpu = . (3.56)
l,, "Io{ 1 - l )anT—c
(-r/LY @-r/LXL/1,-20-7/L,))

and AS!, is found by replacing the total stretch (Ac) with the swelling stretch (Asw),

L ha(z _
_ r YA L2 -20,2, +21,4,1)-10(4, 5, - L,)] o
- o 1 1 nJ - ' '
3 4(1—’6/1'0)2 (l-n)/LcXLc/lp_Z(l_'b/Lc))

The change in entropy due to mechanical stretching from the swollen state (per unit

swollen volume) is calculated as

AS=AS'—L=ASY, =—. (3.58)

The elastic stress of the polymer network must balance the osmotic pressure in the
absence of surface tractions or body forces. Thus, there is no contribution to the strain
energy density from volume change due to swelling (Therkelsen, 2005). The strain

energy per unit swollen volume for a compressible network can therefore be given as
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- =

Lc - lp [ln(Lz - ZIPLC + 2IPAc'b )— ln(Acro - L" )]_

T
A L __ L2 -2, L, +21 A1 )04, n - L)} |+ K, (7, - 17,

i[ S : Jan
_3 4(1_ro/Lc)2 (l—ro/LcXLc/Ip —2(l—ro/LcD "

(3.59)
noting that In(J7) - In(J;,) = In(J,,). The network stress represents the network tension
balanced by the osmotic pressure from swelling, combined with a mechanical
deformation. The Cauchy stress is given by

T=2W g W,
J, ol aJ,

rL 1 Lc/ Ip _ 6(1 - Ac'b/ Lc) B\
wrie.T ||\ 4U=An /LY \L/1,-20-A15/L,) . (3.60)
=320 ] -+ Ky, — 1)
ot
| 41-r,/L.) Lc/lp—z(l‘ro/Lc)

The compressible Cauchy stress for the extensible network model may similarly be given

as

2
__m K (s _
AT L (2 -1)B+K,(, - L. (3.61)

3.7.3 Implementation in finite element analysis

The constitutive model is incorporated in the ABAQUS finite element software

(Simulia Dassault Systémes, Providence, RI, USA) using the previously defined user
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subroutine (UMAT), which defines a material's mechanical behavior through the 4™ order
Jacobian tensor (C) and 2™ order Cauchy (true) stress (T) at the end of each increment.
The user may wish to calculate the constitutive equations in terms of the mechanical
deformation gradient (F™). The total deformation gradient (F), however, is input into the
UMAT subroutine, and may be transformed to F™ using the multiplicative swelling
decomposition developed earlier,

F™=F(Aw)", (3.62)

(Aw)'=(1/A5) L. (3.63)
The compressible Cauchy stress for the extensible network model can be given in terms

Of Fms A’SW ’ and Jm=det(Fm)9

_m K, 2 (2 -1)B+K,(J, -1

VWA
nrl s n _
BEYA W) A TA el - 2B+ Ky, - (3.64)
m;, . _
ﬂ'mﬂ'xw‘lm (4 (l lb +K l)I

The 4™ order Jacobian tensor (C) is calculated as defined in Sections 3.2 and 3.6, while
recognizing that the volume ratio and filament stretch are replaced with their swelling

counterparts: J—Jr, Ae—>A.. The Jacobian (C) is found for the inextensible model by

Or _ mnk,T |18, 1(,.B) 1(d K, aJ,
{ (B-d)+ ( &‘)+Jr( B)} —L1 (3.65)

oF 32J1 |J: F oF A’&"

where the terms within Equation ~ (3.65) are defined in Section 3.2. The Jacobian (C)

is found for the extensible model using
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([ 15 — s -
LT PAN
g _mK, | Jr X b F O K8 (3.66)
F 3L L 5/1;B+(,1;—1)an %, OF
U A, & TA K

where the terms within Equation(3.66) are defined in Section 3.6.

3.7.4 Swelling of actin networks in a spherical geometry

The 3D cytoskeletal network model with equilibrium swelling is now included
within a spherical finite element model. The spherical model is first evaluated by
observing the swelling experienced in the absence of viscoelastic or poroelastic effects.
The spherical structure is evaluated with uniform properties throughout the volume (i.e. a
6um diameter sphere composed only of an actin gel with a concentration of c4r =
170uM). The axisymmetric model is fixed at its center and is not subject to external
tractions or body forces, allowing stress-free swelling to occur in the radial direction."
Figure 3-32 shows the boundary conditions for uniform, spherical actin gel as well as the

radial displacement from a swelling stretch of As=1.1.

158



ooo0000000000
OOO0O = NNNNW
ONUANONUANONUNO

Figure 3-32. (a) Undeformed axisymmetric mesh and (b) Radial expansion in a swelled sphere (Asw=
1.1) held fixed at its center. 6um diameter sphere consists of an actin network (c,+~170uM, L,=0.9um,
L,=3pm, a=1.1%).

After the first step of swelling, the spherical actin gel is now subjected to a second
step in which the cell is compressed between two plates. The final vertical distance
between the two plates is equal to the original, unswelled, diameter of the actin sphere.
The increasing reaction forces on the plates for increasing swelling stretch ratios of
Asw=1.02, 1.03, 1.04, and 1.05 are shown in Figure 3-33a. Figure 3-33b also shows the
contour plot of normal strain in the vertical, 2-direction after the sphere is compressed
back to its original diameter. The corresponding normal stresses in the 2-direction for the
four swelling cases are shown in the contour plots of Figure 3-34. Note that while the

spatial distribution of stresses is essentially equivalent for all four swelling cases, the
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Figure 3-33. (a) Reaction forces on plates compressing a swelled sphere (Asw= 1.02, 1.03, 1.04, 1.05).

The 6um diameter sphere consists of an actin network (c,~170uM, L.~0.9um, /,=3pm, a=1.1%).
(b) Contour plot of normal strain in 2-direction.
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Figure 3-34. Contour plots of normal stress in 2-direction from plates compressing a swelled sphere:
(@) Asw=1.02, (b) Asw=1.03, (c) Asw=1.04, (d) Asw=1.05. The 6um diameter sphere consists of an actin
network (c4~170pM, L,=0.9pm, /,=3um, a=1.1%). Stress units are Pascals.
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magnitude of the compressive normal stresses varies significantly. For example, the
maximum compressive stress for Asw=1.02 (02;=-12Pa in Figure 3—34a) is more than an

order of magnitude smaller than the maximum compressive stress for Asw=1.05 (o2=
-142Pa in Figure 3-34d).

The same simulation is now conducted with a swollen, spherical neo-Hookean
solid compressed between two plates. The final vertical distance between the two plates
is once again equal to the original, unswelled, diameter of the neo-Hookean sphere. The
constant shear modulus for the nearly incompressible neo-Hookean material was chosen
to match the initial shear modulus of the actin gel (G=13.5Pa). Of course, the neo-
Hookean solid does not exhibit the nonlinear strain stiffening behavior exhibited by the
actin gel, and the resulting reaction forces on the plates for the neo-Hookean solid
decrease with increasing swelling stretch ratios as shown in Figure 3-35a. Figure 3-35b
also shows the contour plot of normal strain in the vertical, 2-direction after the sphere is
compressed back to its original diameter. The corresponding normal stresses in the 2-
direction for the four swelling cases are shown in the contour plots of Figure 3-36. The
spatial distributions of stresses are very similar for all four swelling cases, and the
magnitude of the compressive normal stresses, like the reaction forces, is much lower
than those for the actin gel and do not exhibit a large difference across the range of
swelling stretches. The maximum compressive stress for Asw=1.02 (6,,=-4.2Pa in Figure
3-36a), for example, is only 40% less than the maximum compressive stress for

Asw=1.05 (02,=-6.8Pa in Figure 3-36d).
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Figure 3-35. (a) Reaction forces on plates compressing a swelled sphere (Asw= 1.02, 1.03, 1.04, 1.05).
The 6pm diameter sphere consists of a nearly incompressible neo-Hookean solid (G=13.5Pa). (b) Contour

plot of normal strain in 2-direction.
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Figure 3-36. Contour plots of normal stress in 2-direction from plates compressing a swelled sphere:
(@) Asw=1.02, (b) Asw=1.03, (c) Asw=1.04, (d) Agw=1.05. The 6um diameter sphere consists of a nearly

incompressible neo-Hookean solid (G=13.5Pa). Stress units are Pascals.

162



Although the previous swelling simulation of actin networks was not intended as
an example of cell propulsion, it is interesting to note that swelling of cortical actin
networks (c47= 100-200uM) can produce forces of the same order of magnitude as the
viscous drag forces which oppose cellular motion [e.g. fp~20 pN for Listeria at a velocity
of 100 nm/s (Mogilner and Oster, 1996), which is also roughly equivalent to actin
polymerization velocity (Theriot et al., 1992)]. This suggests that localized swelling of
actin networks is capable of providing the forces required to contribute to cellular
processes involved with cell motility. The network swelling model will be coupled with
the poroelastic network model in Chapter 6 in order to begin to evaluate their combined

contribution to cellular motility.
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CHAPTER 4 Influence of network cross-

links

4.1 Cross-link types, roles, and geometries

The different types of cross-linking proteins were introduced in Chapter 1 as the
mechanical link to enable naturally occurring bundled and cross-linked network
morphologies that are necessary for normal cellular functions (structural stability,
mechanotransduction, etc.) as well as providing the ability to actively rearrange the
cytoskeletal microstructure in response to mechanical stimuli. Intra-network cross-links
(e.g. actin binding proteins/ABPs) and inter-network cross-linking proteins (e.g. MACF)
bind to the network filaments at different angles and with varying stiffness depending on
their structural role. For example, fimbin is a monomer that binds actin in a tight parallel
bundle (14 nm diameter), while a-actinin is a dimer that binds actin looser than fimbrin
(Lodish et al., 2004). Spectrin is a tetramer that binds actin in a loose parallel
arrangement in the cortex; and filamin-a (FLNa) is a dimer that crosslinks actin filaments
at almost right angles to each other (Lodish et al., 2004). Table 4-1 contains a sampling

of the structural binding proteins of actin and some key properties.
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Molecular

Name Shape Weiaht Common Location Comments

9y Cell cortex branches,
23 ., x 15 nm ellipsoid 25 kDa bacterial “comet tails”

Tight bundles within

nm globular monomer 55 kDa o e

Fimbrin 14 nm rod 20 kDa Tight bundles in cells

Coats actin in
: : perpendicular fashion;
Scruin 10 nm rod 120 kDa :‘;;g:stot:nu:;iles o scruin cross-links by
binding to each other,

not multiple F-actin

Titin 1000 nm rod 3000 kDa Muscle sarcomeres Largest known protein

Table 4-1. Structural binding proteins of actin and their properties (Hartemink, 2005)

Figure 4-1 shows the different actin network morphologies possible with different ABP
(FLNa, o-actinin) under identical preparation conditions. Although the geometrical (and
some mechanical properties) of the cross-linking proteins are generally known, their
impact on the coupled response of filament networks under different loading conditions is
not as well understood. Recent work by Bathe, et al. has evaluated the stretching,
bending, and inter-filament shearing of actin bundles through simulation of the ABP
using internal energy-based linear elastic springs (Bathe et al., 2008). Exploring and

quantifying these effects is a key component in understanding the overall cytoskeletal
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Figure 4-1. (A) Orthogonal actin network polymerized in presence of FLNa (B) Identically prepared
actin network/bundles except polymerized with a-actinin. Bars, 100 nm. (Stossel et al., 2001)

behavior. The work in this chapter focuses on role of cross-linking proteins in isotropic
actin networks. The effects of bundling proteins were addressed in Chapter 3 for actin-
scruin networks.

This section will expand the constitutive model for cytoskeletal networks through
torsional potentials to include the strain energy for compliant intra-network cross-links
(e.g. ABPs such as FLNa and avidin). Filamin, the most common ABP within actin
networks, is critical to cellular functions such as motility and membrane morphology
(Cunningham et al., 1992; Cunningham, 1995) as well as human embryo development

(Fox et al., 1998). A schematic of an actin-FLNa network is shown in F igure 4-2a. The

Oc

# ey o &3
(a) Actin network with (b) FLNa
FLNa cross-links Structure

Figure 4-2. Schematics of (a) actin network with FLNa cross-links (adapted from (Lodish, 2000)), (b)
FLNa structure (adapted from (Gardel et al., 2006b)).
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schematic is intended to convey the 3D nature of the network since the FLNa cross-links
maintain a relatively constant chain angle, &,, of 72°. The structure of FLNa is shown in
Figure 4-2b, with two arm-like subunits of length 80 nm and 3-5nm diameter (Hartwig
and Stossel, 1981). Each subunit of the V-shaped dimer is interrupted by irregularities in
the primary sequence of Ig repeats: between repeats 15/16 midway along the subunit and
23/24 at the vertex of the dimer (Gardel et al., 2006b). These gaps are considered to
serve as hinges between the rod-like components of the subunits (Gorlin et al., 1990).
Streptavidin (or avidin) and biotin form a stiff, commonly used cross-link. The
interaction between avidin and biotin exhibits the highest known affinity between a
protein and a ligand (Bayer et al., 1975). The structure of the avidin-biotin composite

cross-link is shown in Figure 4-3.

Avidin Q\";\ »\/\/ |

Figure 4-3. Schematics of avidin-biotin cross-link structure (Theoretical Biophysics Group, 2007).

Cross-linking proteins play a large role in modulating the geometry, elasticity,
and durability of actin networks. Considerable in vitro rheological experiments with
reconstituted actin gel-like networks have been conducted with varying levels of actin

and cross-link concentrations (Janmey et al., 1988; MacKintosh et al., 1995; Gisler and
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Weitz, 1999; Shin et al., 2004; Storm et al., 2005; Gardel et al., 2006b). Empirically
observed shear moduli for F-actin networks with permanent cross-links (but the same
concentration of F-actin) have been observed to vary over two orders of magnitude by
varying the cross-link density (Gardel et al., 2004a). Examples of the rheological
behavior of FLNa and avidin within actin networks is shown in Figure 44 and Figure 4—

5, respectively.
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Figure 4-4. Storage (G’, closed symbols) and loss (G”, open symbols) moduli of 12uM actin-FLNa.
R is varied from 1/2000 (squares), 1/1000 (triangles), 1/500 (diamonds), and 1/100 (circles). Inset: G’ at
0.01 Hz as a function of R (Gardel et al., 2006a).
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Figure 4-5. Frequency dependence of the complex modulus and phase shift for 15 pM actin-avidin

networks with 2% biotinylated actin alone (o), 0.03 uM avidin (m), 0.1 pM avidin (o), or 0.3 pM avidin
(®) (Wachsstock et al., 1994).
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Figure 44 demonstrates that the viscoelastic behavior of actin-FLN networks is highly
dependent on the frequency and value of R. For example, the elastic and viscous
response is essentially equivalent for R=1/2000, especially at higher frequencies; while

the elastic response dominates the viscous response for R=1/1000 at lower frequencies.
For Figure 4-5, the magnitude of the complex modulus, G, is |G'| = JG?+G" and the

phase lag, J, between the elastic and viscous response is given by tan(6)=G”/G’. Thus,
the elastic response dominates the behavior of actin-avidin networks for different values
of R.

This framework for cross-link torsion assumes that the cross-links remain
completely bonded to the chains during deformation. Once cross-links such as filamin
detatch from the chain they can accommodate further deformation through unbending
and unfolding of Ig domains. Below the force threshold for unfolding, the extension of
unbonded filamin cross-links can be modeled as entropic unbending, behaving as a
wormlike chain (DiDonna and Levine, 2006). Above the force threshold for unfolding,
Ig domains are ruptured and unfolded as shown in the sawtooth pattern in Figure 4—6a.
The Ig domain unfolding has been modeled using the worm-like chain approximation
(Marko and Siggia, 1995) (see example in Figure 4-6b), with L.=150nm, /,=13.8nm for
folded filamin and L.~10nm, /,=0.33nm for the unfolded filamin domains (Furuike et al.,
2001; Hartemink, 2005; Ferrer et al.,, 2008). At larger extensions, however, enthalpic

stretching of the cross-link will occur prior to rupture.
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Figure 4-6. (a) A force-extension curve of Filamin A molecule in aqueous solution measured by
AFM at room temperature. Filamin A was stretched at a pulling speed of 0.37 um/s. (b) The fit between the
WLC model and the sawtooth pattern of the force-extension curve where the force gradually increased after
the abrupt decrease in force. Filamin A was stretched at a pulling speed of 0.37 um/s (Furuike et al., 2001).

4.2 Cross-link stiffness and torsion properties

The cross-link torsional stiffness has been calculated for some ABPs, including
FLN and Arp2/3. The torsional stiffness is based on the standard deviation of junction
angle between subunits. Based on the work by Hartemink (Hartemink, 2005) that
showed the FLN subunits to be bonded along their entire length to the actin filaments, the
FLN junctibn angle is also taken to be the previously defined chain angle, &, between

actin filaments. From the equipartition theorem, the thermal energy, k3T, is related to the
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cross-link torsional stiffness, kc;, and the variance of the junction (or chain) angle, and

can be rewritten as

tand

BT.

(62)= o (4.1)

Hartemink measured the average chain anglq of filamin molecules bound to single actin
filaments in a dilute solution and found <6.rLnv>=71.8°£15.5° (Hartemink, 2005). This

gives a torsional stiffness of

_ kT _ (1.38¢-23J/K)300K) s PN =nm

= = 4.2
“ <6’62> (0.27rad)’ rad’ i

Blanchoin, et al. performed a similar high speed imaging experiment with Arp2/3 cross-
links in a 4uM actin solution (see ) (Blanchoin et al., 2000). The mean angle for bovine
Arp2/3 complex was found to be <Gurp2i3>=T1° £ (13°), yielding a torsional stiffness of

kCL, Arp 2/3=76pN-nm/rad2 s

150 ms 450 ms

Figure 4-7. Thermal fluctuations of branched actin filaments formed from 4uM muscle actin and
15nM Arp2/3 complex. Every frame illustrates the stiffness of the branch point relative to the flexibility of
the filament. Branch length=2pm. (Blanchoin et al., 2000)

171



4.3 Cross-link torsional potential model

A torsional potential is shown schematically in Figure 4-8 within the context of
the 8-chain network. The junctions within the 8-chain network are taken as pinned
connections (see Chapter 3), with torsional resistance about the junction governed by the
mechanical properties of the cross-link. The limiting case of a filament with clamped
boundary conditions, equivalent to an infinite torsional stiffness, is included in Section
4.4 for the discussion on the effects of cross-link stiffness on the filament entropic
configuration space. The FLN cross-link torsional stiffness was measured