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Abstract

A central question in supply chain management is how to coordinate activities and
inventories over a large number of stages and locations, while providing a high level of
service to end customers. One theoretically and practically important methodology for
addressing this problem is the guaranteed service (GS) framework, in which the stages of
the supply chain operate according to base stock policies, and prove guaranteed service to
one another. Demand is assumed to be bounded. Previous work on GS models has
established very effective algorithms for finding optimal safety stock placement.

In the first essay of the thesis, we show how these methods can be generalized to
handle problems with capacity constraints. Furthermore, we investigate orders that are
censored (reduced so as to prevent deliveries greater than what can be processed). We
find safety stock reductions, sometimes even below what was needed in the no-constraint
situation.

In the second essay, we investigate a situation in which different parts of the
supply chain are controlled by different parties, each of which selfishly applies its own
GS optimization. We find that provided that the parties can agree on the right service
time between them, it will be in their own interests to maintain the globally optimal
solution (i.e., the system is incentive compatible). This suggests that the GS framework is
better suited for coordination, than are other frameworks analyzed in the coordination
literature.

Finally, in the third essay, we apply the GS framework to a setting where orders
are driven by forecasts and schedules, rather than by past demand as in previous GS
work. We show precisely how the demand bound can be replaced by a bound on forecast
errors, and that existing optimization methods can be used. In a case study, we obtained
data from the supply chain of an electronic test system, as well as characterized the
forecasting process. We found that incorporating the forecast process led to 25%
reduction of safety stocks.

Thesis Supervisor: Stephen C. Graves

Title: Abraham J. Siegel Professor of Management Science
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I. Introduction

1. The guaranteed service framework and thesis overview

A central question in supply chain management is how to coordinate activities and

inventories over a large number of stages and locations, while providing a high level of

service to end customers. This question is of great practical importance, and is also well

suited for theoretical analysis. Accordingly, it has attracted a great deal of attention from

both practitioners and scholars.

A multi-echelon supply chain is so complex that one cannot hope to incorporate

every conceivable cost, benefit, action and activity into a single, all-inclusive

optimization problem. Rather, researchers and practitioners focus on more limited

problems within different frameworks - sets of "ground rules" and shared assumptions.

During the past decades, numerous investigations within several different frameworks

have thus resulted in a rich literature detailing theories, models, and empirical

experiences of various supply chain problems and solutions. Nevertheless, many

questions remain unanswered, and others are worth revisiting for a deeper examination.

Indeed, during field work I found many examples of important, real-world supply chain

challenges which have not been adequately solved in the academic literature.

I chose to investigate a subset of these problems taking the guaranteed service

(GS) framework as a starting point. The key original assumptions of this framework are

that the different stages of the supply chain operate according to local base-stock policies.

This means that each stage is somehow able to observe end-customer demand in each

period and then places a replenishment order equal to the total end-customer demand in

each period. Moreover, it is assumed that demand is bounded, and that the stages provide

guaranteed service (for orders within the demand bound). By changing the service time

between the stages, one can effectively decide the size and location(s) of safety stock(s)

in the supply chain. Specifically, one seeks the lowest cost safety stock placement(s),

subject to the guaranteed service constraint. I write much more about these assumptions

and how they can be justified in the essays themselves.



Previous research on guaranteed service models has established effective

optimization methods for many common supply chain topologies. As a consequence, in

this thesis I do not explore improvements to these optimization algorithms. Rather, the

objective is to improve the generality of existing methods, by showing how we can apply

the known optimization algorithms to supply chain problems that are, in different ways,

more general than those studied to date.

However, in doing so, we will also discover methods that increase supply chain

performance, even when applied to the original supply chains studied before. By

increasing performance, we mean reducing holding costs, without compromising service

levels. This performance increase does not come from better optimization algorithms; as

noted, this thesis does not investigate optimization algorithms. Rather, the benefits come

from expanding the space of investigated solutions. Specifically, we investigate ordering

policies that in various ways differ from the original base stock policies. These findings

challenge the notion of "optimality" in the guaranteed service framework; we will discuss

this topic in greater detail below. First, we will outline the content of the three essays

which comprise the thesis.

2. About the three essays

In the first essay, "Strategic safety stocks in supply chains with capacity constraints," we

consider safety stock placement in contexts where there are significant capacity

constraints. In many real-world situations there are limits to how much goods can be

processed, transported, or stored, in a given time frame, but this has not been previously

studied in the GS literature. If one operates a supply chain while disregarding such

constraints, one may encounter unexpected stock-outs, as deliveries are delayed at system

bottlenecks. Not surprisingly, we find that one may sometimes need to add extra

inventory downstream of such bottlenecks. However, the extra inventory is not a simple

additive term, but rather follows a non-linear pattern. For capacity constraints which are

only slightly greater than average demand, the required extra inventory can be significant,

indeed, arbitrarily large. On the other hand, we find that if a stage would need significant

safety stocks anyway to protect against demand volatility, then a capacity constraint



might not necessitate any additional safety stocks. By characterizing the necessary safety

stock levels as functions of service time, we effectively generalize existing optimization

methods so that one can determine the optimal safety stock placement in supply chains

with one or many capacity constraint(s).

For the initial analysis we assume that each stage continues to operate with a local

base-stock policy. We then relax this assumption and consider a multi-stage system in

which stages censor their orders, based on their capacity limits. That is, rather than

placing an order larger than the maximum processing capacity, excessive order quantities

are delayed so that they will not arrive until sufficient capacity is available. Again we

analytically characterize the necessary base stock levels, and develop an extension to the

existing dynamic programming algorithms to find the optimal base stock levels and

safety stocks. Censored orders are less variable than uncensored orders, so there is less

need for safety stocks upstream of the constrained stage. However, that stage will often

need extra safety stock (relative to an infinite capacity, no-censorship situation), in order

to fulfill the guaranteed service constraint. When both effects are accounted for, we find

that the total holding costs for the censored order policy can sometimes be less than that

for the corresponding base-stock system without capacity constraints. For this reason, one

may want to censor orders even in systems lacking physical capacity constraints.

Numerical simulations suggest that the best way to do this is by censoring far

downstream in the supply chain, using a censorship value only slightly larger than

average demand.

The second essay in this thesis is "Coordination of multi-echelon supply chains

using the guaranteed service framework". Here, we investigate how the guaranteed

service framework can be used when different parts of the supply chain are controlled by

different parties. Past work on guaranteed service models has been made from the

perspective of a single decision-maker, who controls the entire supply chain. In reality,

different parts of the supply chain are often controlled by different companies (or

business units within the same company). These different entities might have conflicting

and competing interests and objectives. When multiple parties selfishly optimize their

own parts of the supply chain, will the entire system function well, or will the parties'

myopic behavior induce inefficiencies? Considerable research efforts have been put into



related questions in the past. However, only limited attention has been paid to

coordination of multi-echelon systems, and none at all in the context of guaranteed

service models. We find that the GS framework is particularly well suited to facilitate

coordination. Specifically, provided that the different parties can agree to use the "right"

service time between them, their individual objectives will be aligned with the objective

of the entire system. The "right" service time is the service time which coincides with the

one obtained from a global optimization. This finding leads us to propose a simple

contract structure, in which the supplier agrees to provide guaranteed service for all

demand realizations within a specific demand bound, with a service time equal to the

globally optimal one. With this contract in place, there is no need for the parties to

monitor each others' internal activities, and the system will behave efficiently. That is,

there is incentive compatibility. In the essay itself, we discuss several other benefits, and

relate the results to Nash's bargaining model.

Moreover, the simple structure of this agreement stands in sharp contrast to other

approaches to coordination in multi-echelon supply chains. For example, in order to

coordinate Clark and Scarf's model, one needs a more complex contract structure that

specifies transfer pricing, consignment, shortage reimbursement, and an additional

backlog penalty.

The last essay, "Strategic safety stocks in supply chains with evolving forecasts,"

differs significantly from the other essays (and from past work on guaranteed service

models), in terms of the assumptions on how the stages place their orders. Rather than

assuming demand-driven, base-stock orders, we consider a system where orders are

placed in response to schedules and forecasts. Such logic is widely used in industry, often

facilitated by material resource planning (MRP) software systems. We show that the

safety stock problem in this setting is mathematically very similar to the problem from

the base stock setting. Specifically, we replace the assumption of bounded demand with

an assumption of bounded forecast errors. That is, safety stocks are not set up to

guarantee service for any demand within a certain bounds. Rather, we specify the safety

stocks so as to guarantee service as long as forecast errors stay within certain bounds. An

alternative interpretation is that they allow for a maximum quantity of schedule changes.

We specify exactly how the bounds can be determined, given a history of forecast data,



and/or a mathematical demand model. This method applies even if demand is non-

stationary. Indeed, we highlight how the model is compatible with general state space

models of demand (e.g., ARIMA), as well as the well-known forecast evolution

(martingale) model. We also discuss how these approaches relate to each other.

Once the forecast error bounds have been determined, the safety stock

optimization problem is mathematically very similar to the well-studied problem in the

base stock setting. Therefore, we can use the effective optimization algorithms developed

by other authors.

In a field study I collected data on the forecasting process and supply chain

characteristics of a supply chain at Teradyne, Inc, a manufacturer of electronic test

equipment located in North Reading, Massachusetts. I found that incorporating the

forecasting process into the safety stock analysis resulted in significant (about 25%)

safety stock reductions relative to the optimal base stock solution. Inventory could be

reduced, especially downstream in the supply chain, because demand for products in the

late stages of completion could be forecasted with good accuracy. The supply chain we

analyzed had some 3,866 part-locations, yet the optimization took only about a minute on

a mobile computer. We are not aware of any comparable results using other approaches

to safety stock optimization in forecast-driven systems.

3. A common theme: challenging "optimality" in the GS

framework

In this thesis, the notion of optimality in GS models is repeatedly challenged. We recall

that the GS framework, as originally presented, seeks to minimize average inventory

costs, assuming that the stages operate according to base stockpolicies and provide

guaranteed service to each other, for demand realizations within the demand bound. The

assumptions of base stock policies, guaranteed service, and demand bounds, are caveats

to the optimality achieved within the GS framework.

A base stock policy relies on observed demand and does not account for any

information from a demand forecast. Not surprisingly, one can do better if one modifies

the ordering policy in response to useful information about future demand. As noted



above, we explore this in detail in "Strategic safety stocks in supply chains with evolving

forecasts". We also demonstrate the benefits in a case study with real data.

But even without forecast information, we find that (local) base stock policies are

not generally optimal. Indeed, in a well-known paper, Clark and Scarf show that

echelon-based ordering policies are optimal. These authors look at different optimality

criteria; rather than having a guaranteed service constraint, they add a back-order cost

component into the objective function. Nevertheless, in our essay "Strategic safety stocks

in supply chains with capacity constraints", we give realistic examples of situations when

employing order censorship can lead to improvements. These improvements are with

respect to the same performance criteria, and are subject to the same service guarantee

constraints, as in the standard GS model. The reason why this is possible is that we have

expanded the space of possible solutions; no longer do we limit our optimization to local

base stock policies, but rather, we consider more sophisticated ordering policies as well.

Evidently, having a downstream stage "smooth out" the variability in a demand process

can reduce the necessary safety stocks upstream in the supply chain. Even though this

smoothing results in more inventory at the downstream stage, if the conditions are right,

global costs can decrease.

Although local base stock policies and guaranteed service are not optimal per se,

they do have many practical advantages. It is easier to manage a supply chain where

every stage can be counted on to perform to some shared criteria. The demand bounds

and service times are easy to understand and communicate, and orders can be executed

using only local information. We regard the essay "Coordination of multi-echelon supply

chains using the guaranteed service framework," as one formalized argument for why GS

models are easy to manage.

4. Limitations and future directions

Each of the three essays answers questions, but also suggests new ones for future

research. Some specific follow-up questions are discussed in the respective essays. In all

three essays, we develop the initial analysis on serial systems and other simple network

topologies. Real-world supply chain structures are often more complex, and may have



multiple customer stages and even cycles. In the work on coordination, it is relatively

easy to extend the results to more complex systems. It appears to be more challenging to

extend the work on forecasts and capacity constraints. One difficulty is how to establish

valid order bounds for stages that serve multiple different customers (or downstream

stages). One can always use the simple sum of the downstream bounds as a conservative

bound, but this does not capture any savings from statistical economies of scale (or risk

pooling), and so the bound may not be tight (and therefore, inefficient). For the forecast-

driven orders, we explore this problem in a separate Addendum. Supply chains with both

capacity constraints and multiple demand nodes are left for future investigations.

This speaks to a general theme: it is often possible to analytically address various

challenges one at the time. However, when multiple complications arise it is often very

difficult, if not impossible, to mathematically characterize the necessary safety stocks, let

alone finding optimal solutions. This situation is common in other areas of operations as

well. The resolution may be higher reliance on simulation and numerical solutions. In the

addendum we show how bounds on multiple merged forecast processes can be

determined by measuring inventory variation directly; this is a step in that direction.

Finally, our discussions on "optimality" touch upon the fact that different

frameworks use different performance criteria and make different assumptions about how

the supply chain operates. These frameworks also differ in terms of the effectiveness of

available optimization algorithms, and in terms of how easily various constraints can be

incorporated into the analysis. In this thesis, we reconsider some of the assumptions of

the GS framework, and also make connections with completely different supply chain

frameworks (for example, MRP). From both a theoretical and a practical perspective, it

would be desirable to explore further these types of connections. It would be valuable to

investigate in depth how different methods and optimality criteria lead to different

solutions, and if there are specific situations for which one framework or the other is

particularly well suited.





II. Strategic safety stocks in supply chains with

capacity constraints

We generalize the guaranteed-service (GS) model for multi-echelon safety stock
placement to include capacity constraints. We first develop an extension of the single-
stage base-stock model to include a capacity constraint. We then use this result to model
a multi-stage system with a base-stock operating policy. We establish that we can adapt
the existing algorithms for the un-constrained case to solve for the safety stocks in a
capacitated system. We then consider a multi-stage system in which stages censor their
orders, based on their capacity limits. Again we analytically characterize the necessary
base stock levels, and develop an extension to the existing dynamic programming
algorithms to find the optimal base stock levels and safety stocks. The censored order
policy leads to a better solution compared to that for the base-stock policy. Indeed, we
find that the total holding costs for the censored order policy can be less than that for the
corresponding base-stock system without capacity constraints.

5. Introduction

A central question in supply chain management is how to coordinate activities and

inventories over a large number of stages and locations, while providing a high level of

service to end customers. Simpson (1958) found that if the individual stages in a serial-

system supply chain operate according to local base stock policies with service

guarantees, then the globally optimal safety stock strategy is to concentrate inventory to

certain key locations, effectively decoupling different parts of the supply chain. Simpson

also proposed an enumerative algorithm for determining these locations. Once the

globally optimal safety stock strategy has been determined, each stage of the supply chain

can operate independently, providing guaranteed service to its downstream customer, and

operating according to a simple base stock policy, with a minimum need for

communication and coordination between different parts of the supply chain. Graves and

Willems (2003) term this framework for supply chain management as the guaranteed

service (GS) model.

For a review of work on GS models we cite the overview articles of Inderfurth

(1991), Diks et al. (1996) and Graves and Willems (2003). We note in particular that



Graves and Willems (2000) extend Simpson's work to supply chains with spanning tree

topology, and formulate a polynomial-time dynamic programming algorithm. Optimizing

general networks is an NP-hard problem (Lesnaia et al. 2005); nevertheless, Humair and

Willems (2007) have developed very effective algorithms for optimizing the safety stocks

in large-scale real-world supply chains. We also note that the GS framework has been

deployed successfully in industry (e.g., Billington et al 2004).

However, to our knowledge, all published work on the GS model assumes

unlimited capacity for processing and inventory storage at each stage. In reality, there are

often limits to the quantity of goods that can be transported, processed or stored in a

given time frame. If a stage is unable to process a large order in a short period of time,

then this may cause stock-outs that are not anticipated by existing theoretical models.

Thus the first goal of this paper is to generalize Kimball's (original manuscript 1955,

reprinted in 1988) single-stage base-stock model to account for a capacity constraint

(also, see Simpson, 1958). We then show how to combine multiple stages into a network,

so that we can optimize the inventory across a multi-stage supply chain with capacity

constraints. We show in particular how to extend the decoupling structural property and

the effective optimization methods developed for the un-capacitated case to this setting.

Secondly, we propose a modification of the base-stock policy, specifically, that a node

should propagate an order which is the lesser of its capacity and the order it receives (plus

extra quantities to "catch up", as necessary). We refer to this as the "censored" base-stock

policy. We show that we can optimize the safety stock inventory in supply chains with

censored ordering and capacity constraints, with small modifications to the Graves-

Willems' dynamic programming method. We find that the inventory holding costs for the

censored base-stock policy are less than for the original base-stock policy, and sometimes

even less than that for the corresponding system without capacity constraints. Moreover,

for the censored policy the orders still depend only on local information.

Whereas capacity constraints have not been analyzed before within the GS model,

there has been some progress for Clark and Scarf's (1960) framework of echelon-based

ordering, sometimes referred to as the stochastic service (SS) model. A complete

characterization of the optimal solution has not been obtained for capacity constraints for

SS models, and, indeed, Speck and van der Wal (1991) show by example that the



echelon-based ordering policy is generally not optimal in multi-echelon systems with

capacity constraints. Gallego and Scheller-Wolf (2000) look at a single stage system with

fixed ordering costs and capacity constraints, and find that the optimal policy takes (s,S)

form. For a single stage, Gallego and Toktay (2004) characterize the optimal policy in

the high fixed ordering cost regime, under the assumption that all orders are full capacity

orders. Parker and Kapuscinski (2004) provide a detailed analysis in a two-echelon, serial

system, and show that a modified echelon base stock (MEDS) is optimal. We will also

consider a modified policy, but both the "original" policy and the modification are

different.Glasserman and Tayur (1994) consider the stability properties of multi-echelon

systems with capacity constraints. They find that inventories and back-logs are stable

(i.e., they converge to unique stationary distributions from any initial state) if the mean

demand is less than the capacity constraint. In subsequent papers, Glasserman and Tayur

assume that an echelon-base stock policy is used in a multi-echelon system, and find

optimal order points using simulation and perturbation analysis (Glasserman and Tayur,

1995), and analytical approximations (Glasserman and Tayur, 1996).

Gupta and Selvaraju (2006) develop an approximation for setting echelon-based

service levels when the supply chain is modeled as a queueing network, and the stages

have exponentially distributed service times. Although we will not deeply explore the

relationship between this work and ours, we do in fact also employ queueing theory in

order to estimate a certain cost term.

A markedly different approach is taken by Bertsimas and Thiele (2004,2006),

who show that capacity constraints can be incorporated into a tractable, robust

optimization problem. This approach can handle general networks, and uses echelon-

based policies as in the Clark and Scarf (1960) model. A similarity between the robust

optimization approach and ours is that there is no need to specify a probability

distribution for demand. However, our work differs from all of the aforementioned work

in that we consider "local" (as opposed to echelon-based) base stock ordering policies,

and, as mentioned, guaranteed service constraints rather than back-order costs and

stochastic service.

This paper is organized as follows. In §6, we generalize the base-stock model of

Kimball (1988) and Simpson (1958) to include a capacity constraint in a single-stage



setting. In §7, we consider optimization of a supply chain with a base-stock policy and

potentially any number of capacity constraints. In particular, we find that the optimization

procedures and structural results identified by Simpson (1958) and Graves and Willems

(2000) carry over to this setting. In §8, we analyze what happens if each stage modifies

its order based on its capacity constraint, i.e., censors the order. We find that the

structural properties and optimization methods carry over to this setting as well. In §9, we

perform a numerical experiment to illustrate our methods and to examine the structure

and performance of these policies. We conclude the paper with a discussion on our

findings and suggestions for possible future work in §10.

6. Single stage model

In this section we generalize the single-stage model originally developed by Kimball

(1988) and Simpson (1958) to include a capacity constraint.

In this model, a stage represents a processing activity that requires one or more

inputs and that converts these inputs into an output product or final good. The output can

be stored as inventory at the stage, and is used to meet demand from multiple customers

or as input into downstream stages. The stage might represent the procurement of a raw

material, or the production of a component, or the manufacture of a subassembly, or the

assembly and test of a finished good, or the transportation of a finished product from a

distribution center to a warehouse.

We let d(t) denote the demand in period t. We assume that the stage provides the

same guaranteed service time S to each of its customers; this means that the stage

guarantees that it will satisfy the demand d(t) by time t + S, where S is a non-negative

integer.

We also assume that the suppliers to the stage provide a guaranteed service time,

which we denote by SI for the inbound service time. Thus, for an order placed at time t,

the suppliers will deliver their inputs to the stage at time t + SI.

We assume the stage has a capacity limit c and has a known deterministic

production lead-time, call it T. Each period the stage can release into production any

amount up to the capacity limit of c, assuming that all of the inputs are available and on



hand. The production lead-time is the time from when production is started until

production is completed and available to serve demand. The production lead-time

includes the waiting and processing time at the stage, plus any transportation time to put

the item into inventory.

We assume that the stage operates with a periodic review base-stock

replenishment policy with a review period being one time unit (e.g., one day). The timing

of events is as assumed by Kimball (1988) and Simpson (1958). In each period t, the

stage first observes its demand d(t) and then places an order on each of its upstream

suppliers. The stage then receives the earlier order placed at time t - SI from each of the

upstream suppliers. Next the stage decides the quantity to release into its process; the

stage then completes the process on the release quantity from time t - T and places this

quantity into its inventory. Finally the stage serves the demand from period t - S,

namely d(t - S) .

For the base-stock policy without a capacity constraint, Kimball (1988) and

Simpson (1958) assume that in each period t, the stage places an order, equal to d(t), on

each of its upstream suppliers to replenish the inputs necessary to replenish the observed

demand. When these inputs are received by the stage at time t + SI, the stage will then

initiate production of d(t) units; that is, the release quantity at time t + SI is d(t), which

will complete the process and be placed in inventory at time t + SI + T.

We now adapt this policy to account for a capacity constraint. We again assume

that in each period t, the stage places an order, equal to d(t), on each of its upstream

suppliers to replenish the inputs necessary to replenish the observed demand. When these

inputs are received by the stage at time t + SI, the stage will attempt to initiate production

of d(t) units, subject to capacity availability. If the production starts are less than d(t)

units due to the capacity limits, then the delayed production will be started as soon as

capacity is available. More specifically, we assume that the extra supplier material gets

placed into an internal queue IQ(t) while it waits until there is sufficient capacity for

processing (i.e., when demand once again falls below c). We illustrate the envisioned

arrangement in Figure 1.



A

-A-
queue Processing Inventory
Internal

Customer

Inbound Production Service time S
service time SI lead-time T

Figure 1: Overview of a single-stage system

We denote the production release at the stage at time t by R(t) . Without capacity

constraints, we would have R(t) = d(t - SI) ; with capacity constraints, we have

R(t) = min(c, d(t - SI) + IQ(t - 1)), (1)
where we specify the internal queue IQ(t) by the equation:

IQ(t) = IQ(t - 1) + d(t - SI) - R(t). (2)

The balance equation for the final-good inventory I(t) at the stage is now:

I(t)= I(t-1)+R(t-T)-d(t-S). (3)

Combining (2) and (3) we have

I(t)+IQ(t-T)= I(t-1)+IQ(t-T-1)+d(t-T- SI)-d (t-S). (4)

We assume that the system starts at time t = 0 with

d (t) = 0, IQ(t) = 0, for t •< 0 and I(0) = B, where B is the base-stock level. Then for

suitably large t we can write the inventory as:

I(t)= B-d(t-T-SI,t-S)-IQ(t-T) (5)

where we define the notation

b

L d (i) for a < b
i=a+l

0 fora=b . (6)

- d(i) for a > b
i=b+l

In the Appendix we show that we can express the internal queue as:

Supplier

d(a,b) =



IQ(t) = max {d(t- SI -n,t- SI) - cn (7)

where we use Z to denote the set of non-negative integers. We substitute (7) into (5) to

obtain:

I(t)= B-max d(t-SI-T-n,t-S)-cn}. (8)
nEZ

The base-stock problem is now to determine the minimal value of B that assures that the

inventory I(t) is always non-negative, which is sufficient to satisfy the guaranteed

service commitment.

We assume that d(t) is non-negative and takes the average value p where p < c.

Furthermore, as in Kimball (1988) and Simpson (1958), for the purposes of setting the

base stock and safety stock levels, we assume that demand is bounded. Specifically we

assume that there exists a function D(r) that bounds demand over any r consecutive

periods. That is,

D(r)=max(d(t,t+r)} Vt,r 20. (9)

The combination of guaranteed service and bounded demand constitutes the most

significant assumptions in the GS framework. Simply put, we assume that as long as

demand stays within certain bounds, there should always be enough safety stock to meet

that demand within the service time. This general approach applies well to the typical

context in which the implicit and explicit costs of stocking out are perceived to be much

greater than the costs of holding inventory. We refer to Graves and Willems (2000) for

more discussion and motivation of these assumptions.

We will restrict our attention to demand bounds with certain properties, as follows.

Defintion 1. A bound function D(r) onr e= [0,oo) is said to be valid if D(O) = 0, and if it

is non-decreasing, and concave. For r < 0 we define D (r) = 0.

These properties hold true for demand bounds that arise in practice. Intuitively, the

maximum possible demand over some time period will usually increase with the length

of the period, but with diminishing rates. We can now combine (8) and (9) to find that for

I(t) 2 0 the minimal base stock is:



B(r)=maxlD(r+n)-cn} where r=T+SI-S. (10)

In (10) r denotes the net replenishment time for the stage without the capacity limits. We

write the base stock in (10) as a function of r to make explicit its dependence on this

parameter. When we optimize the safety stocks across a supply chain, the decision

variables will be the service times (S, SI) for each stage, which combine with the given

lead time T to determine the un-capacitated net replenishment timer. We will limit our

attention to capacity constraints of certain magnitudes as follows.

Definition 2. A capacity constraint c is said to be valid with respect to a valid bound

function D(r) if there exist a single point f > 0 such that D(if) = cf , and that

D(r) >cr Vr < and D(r)<c r Vr > .

The intuitive meaning of this is that we assume demand can exceed the production

capacity over some time interval (otherwise the capacity constraint could be omitted from

the model), but given sufficiently long time there must be enough capacity to meet any

valid demand realization (otherwise guaranteed service is infeasible).

For a given bound function, we can easily find the base stock level for any value

of r. To get some insight into the nature of the solution, let us suppose that the demand

bound and the capacity constraints are valid as defined above, and in addition that the

demand bound is differentiable. Let us further ignore the integrality restriction on the

argument n in (10). Then we can perform the maximization in (10) to get an explicit

formula for the base stock level as a function of r. We define q by D'(q) = c, i.e., q is the

point at which the derivative of the demand bound equals the capacity. Then the base

stock is:

0 for r <q D(q)
c

B(r)= c(r-q)+D(q) forq <r<q . (11)

D(r) for r 2 q



For a valid demand bound and capacity constraint we note that q -D(q) < 0; hence we
c

permit the net replenishment time to be negative. That is, unlike in the un-capacitated

case, a stage may find it economical to quote a service time S that is longer than the

nominal time SI + T that it takes for its inventory to be replenished; due to the capacity

constraint, though, the actual replenishment time can exceed this nominal time. We note

that the base stock level will be zero at the pointr = q . For higher values ofr ,
c

the necessary base stock level grows linearly at rate c until r = q ; beyond r = q the base

stock level equals the demand bound function, as is true for the un-capacitated case. For

D(q)completeness we note that B(r)= 0 for r < q - ;(q) however, when optimizing the
C

safety stocks in a supply chain, we need not consider net replenishment times in this

range, as we can show that any solution in this range can be dominated by another

solution with = q D(q)in terms of the inventory requirements.

In practice we often set the bound function analogous to a probabilistic service

level with i.i.d. normally distributed demand. That is, we set

D(r) = pr + za , (12)

where a corresponds to the standard deviation of demand and z is a safety factor. We note

that this bound is valid and differentiable, and that any c > pu will constitute a valid

capacity constraint. With z = 2, we have q = for this demand function and we

can find from (11) the base stock level to be:



0 forr< -_p···o r)Corp
frB(r) 2 f ra 1 I <r<e (13)

/pr + 2aUF for r >

Thus the necessary base stock level for a stage with a capacity constraint takes a rather

simple and intuitive form. First, we see that there is a threshold value for the net

replenishment time r = , beyond which the capacity constraint does not matter,

in that the base stock is the same as for the un-capacitated system. Second, we see that

when the capacity constraint is relevant the base stock depends not just on the demand

variability a and net replenishment time t but also on the amount of "slack capacity"

a2
c - p. Third, in this range the base stock is afixed amount- plus a variable

c-p

amount that increases linearly at rate c in the net replenishment time. We plot the

capacitated base stock level (13) in Figure 2, together with the base stock level for the

unconstrained case.
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Figure 2: With capacity constraints, for small r a higher base stock level is necessary, but
for r > 4 the capacity constraint does not matter. Plotted parameters are / = a = 4,
c = 6 and z = 2

To get some additional insight, we use (5) and (13) to find the average inventory

in finished goods and the internal queue E [I(t)] + E [IQ(t - T); as we expect the

internal queue to be modest, we use this to approximate the average safety stocks:

( )+- for - 1 - ) 2 <- _<
c-p c k c-p c-B(r)-.r = (14)

2aJ for r (

We again note that there is a threshold value for the net replenishment time, beyond

which the capacity constraint does not matter. When the capacity constraint is relevant,

a-2
the safety stock is afixed amount- plus a variable amount that increases linearly

c-Pt

in the net replenishment time. In contrast, for the un-capacitated system, the safety stock
is proportional to the square root of the net replenishment time. Finally, as the slack
capacity goes to zero, the fixed amount of safety stock increases hyperbolically; this is
analogous to what happens to the waiting time in a queue as utilization goes to one.



Similar to the traditional square-root formula for safety stocks in an un-capacitated

setting, we regard (14) to be a valuable back-of-the-envelope heuristic in that it succinctly

displays how the safety stock depends on the slack capacity, the demand variability and

the net replenishment time.

7. Multiple stage model with base-stock ordering

In the previous section, we considered the necessary base stock level for a single stage

with a capacity constraint. We now investigate a supply chain consisting of multiple

stages, each of which may potentially have a capacity constraint. In this network, each

stage provides guaranteed service to its customers (downstream neighbors), and operates

according to a (local) base-stock policy. We assume that customer demand is

immediately propagated up through the system, so that in each period t each node places

an order on its suppliers equal to the sum of the customer demand from all its adjacent

downstream stages.

In order to describe the network and its characteristics, we index the nodes (or

stages) and denote the parameters Sk Tk , SIk and ck specific to node k. To specify the

topology of the network, we define the directed edge set A so that (j, k) e A indicates that

nodej directly supplies (is upstream of) node k. Customer facing nodes are defined by the

set C, and have service times exogenously specified; Sk = sk for k e C. Other service

times (and inbound service times) are decision variables. The demand bound Dk( ) is a

bound on the demand from the customer node(s) downstream of node k; see Graves and

Willems (2000) for how to combine the bounds from multiple demand streams. To

facilitate the derivations to follow, we use operator notation (see e.g. Griffel, 1985) to

describe how we determine the base stock level from the capacity constraint and the

demand bound. We use the symbol yrk to denote the continuous and node-specific

version of (10) as follows:

(YlkDk)(r) = max {Dk(r + n)-ckn}. (15)

As before, we set the base stock level to this quantity to ensure guaranteed service:



Bk (T) = (YkDk)(r)

If node k does not have a capacity constraint, we can set ck = oo in (15) and find that

Bk (r) = Dk(r). At stage k, the total inventory that is on hand (either as finished

inventory or delayed in the internal queue) is Ik (t) + IQk(t). We use the node-specific

version of equation (5) to characterize the average of this quantity, Ik + IQ"

Ik k = Bk -d(t - Tk -SIk,t-Sk -Qk Qk (17)

= (kDk)(Tk + SIk - Sk)-(Tk + SIk - Sk )

Note that we do not include inventory in process at stage k, because the average level of

this pipeline inventory is proportional to the lead time Tk and is not affected by the choice

of service times. We will not consider pipeline inventory further. We assume that stage k

accrues holding costs proportional to Ik + Qk,, with the proportionality constant hk. This

is a simplification that we make for tractability. In many contexts one might expect the

holding cost for the internal queue inventory to be less than that for the finished good, as

holding costs should increase as we add more value to the product by processing.

Nevertheless, we expect this difference in holding costs to be modest; moreover, the

average internal queue IQk does not depend on the service times and thus has no impact

on the optimal solution.

We are now ready to formulate an optimization problem; the problem is to find

the service times that minimize the total inventory holding cost, subject to providing

guaranteed service at all nodes, for any demand realization within the bounds.
N

min hk ((YkDkSIk +Tk -Sk)-(SIk +Tk - Sk))
sk',Sk k=1

Sk,SIk 2 0 Vk
SIk Sj V (j,k)eA (18)

Sk =Sk keC

SIk Tk -Sk qk -Dk k Vk
Ck

The decision variables are the service times, which are non-negative by the first

constraint. The second constraint assures that the inbound service time for each node is

(16)



greater than or equal to the maximum service time from its supply nodes. The third

constraint fixes the service times for customer-facing nodes to the exogenous

specifications. The fourth constraint provides a lower bound on the net replenishment

time for each node, as discussed in the prior section, where qk is specified

by Dk'(qk)= Ck. Simpson (1958) and Graves and Willems (2000) formulate the un-

capacitated version of (18) for a serial system and for general networks, respectively. In

both cases, they observe that an optimal solution is on a corner of the solution space,

since the problem minimizes a concave objective function over a polyhedral set. We are

therefore interested in whether this observation applies here, namely whether the

modified function (ykDk)(r) is concave for each node k. Under some reasonable

technical conditions, this is in fact the case.

Proposition 1. Suppose D(r) is valid, and c valid with respect to D(r). Then

(~vD)(r) = max (D(r + n) - cn} is concave on r E [q , o).

The proofs of all propositions are in the Appendix. Thus, the objective function in (18) is

concave as long as we have a valid bound and capacity constraint at each node; hence,

the optimal solution will be at an extreme point of the solution space. One practical

implication of this is that something similar to the all-or-nothing result identified by

Simpson (1958) holds in the capacitated setting as well for serial systems. Specifically,

for a serial system either Sk = 0, meaning that the stage holds enough inventory to

always provide immediate service, or alternatively, Sk = SIk, + T-qk + D(q) in which

case the base stock level Bk = 0. In the latter case, the net replenishment time is at its

lower bound, and the service time Sk exceeds the nominal replenishment time SIk + Tk .

Simpson (1958) solved the un-capacitated version of (18) for a serial system by

enumeration. Graves and Willems (2000) develop an exact dynamic programming

algorithm, which can be used for networks with spanning-tree topology; Lesnaia (2004)

shows how to modify and implement this algorithm so that it is polynomial. We will not



review this algorithm here, but will establish that we can modify the Graves-Willems

algorithm to solve (18) for spanning-tree networks with capacity constraints. In

particular we need to make two modifications. First, instead of using Bk (r) = Dk (r) for

the base stock levels, we use the exact characterization of the base stock level necessary

to handle capacity constraints given by (16). Second, the only other change in the

problem formulation (18), relative to the un-capacitated problem, is that the lower bound

on the net replenishment time is no longer zero, but is given by qk -Dk ) for node k.
ck

To account for this, we just need to extend the search space for each iteration of the

dynamic program; this can be done with no change to the computational complexity.

8. Multiple stage model with censored order policy

In the prior section we have shown how to generalize the GS framework, and associated

optimization methods to encompass capacity constraints. In this section, we will show

that certain improvements are possible, if the stages with capacity constraints modify

their orders. The basic idea with the censored policy is that a stage should not propagate a

full order upstream, if it knows that it will be unable to process such a quantity because of

its capacity constraints. Alternatively, we observe that there is no need for an internal

queue at a capacitated stage; rather the stage should place orders on its supplier so that

these orders arrive at a rate consistent with the stage's capability to process the work.

To simplify the development in this section, we will consider a serial system,

where we number the nodes from downstream to upstream; thus node 1 is the customer

facing node, and N is the most upstream node. We will briefly discuss censorship in other

network structures at the end of this section.

When we censor orders, then we need to distinguish the orders placed by each

node, as different nodes will generate different series of orders due to their capacity

constraints. We denote the order received by node k at time t by dk (t); we will denote its

bound by Dk (t), where

dk(t,t+ r)< Dk(r) Vt, r0O. (19)



Accordingly, we write d, (t) = d(t) and D1 (t) = D(t) for customer demand and its bound.

Suppose node k has capacity ck . We assume that it will never order more than its

capacity. Thus whenever its demand exceeds its capacity (dk (t) > ck), it orders less than

the demand and creates a shortfall. When demand falls below ck again, stage k will

increase its orders to catch up with the lost quantities. To this end, node k keeps a backlog

BLk (t) of this shortfall, equal to the amount of its demand for which it has yet to place a

replenishment order. Node k will add this to its orders as soon as capacity is available.

We now specify the orders placed at time t by node k on node k + 1 by:

dk+1 (t) = min(dk (t) + BLk (t- 1), k) . (20)

We can specify the backlog BLk (t) recursively:

BLk(t) = max {BLk(t -1) +dk(t) - ck,O

= max {max {BLk((t- 2) + dk(t-1)-ck,+dk (t)-ck,0 (21)

= max (dk(t - n,t)- ckn}.
nEZ

Here we assume that the system starts at t = 0 with BLk (t) = O,dk (t)= 0 for all t 0. In

each period, stage k adds the difference between its demand and capacity, dk (t) - ck, to

the backlog, subject to keeping the backlog non-negative. In Table 1 below, we illustrate

the censored order and the backlog with a simple example, using the capacity constraint

ck = 8, and an initial backlog of 0:

Order dk 6 7 9 9 7 6 6

Censored order 6 7 8 8 8 7 6

dk+l

Backlog BLk  0 0 1 2 1 0 0

Table 1: Example of orders, censored orders, and backlog

We can show that the inventory for node k, Ik (t), is the inventory for the un-capacitated

problem, net of the backlog at time t - SIk- Tk . Since the replenishment time is



SIk + Tk , anything in the backlog at node k at time t - SIk - Tk cannot be available by time

t to meet demand at node k. Thus, we have:

Ik (t)= Bk - dk (t - SIk - Tk, t - Sk ) - BLk (t - SIk - Tk)
= Bk -dk(t-SIk -Tkg,t-Sk)-max dk(t-n-SIk Tk,t -SIk -Tk)-ckn} (22)

nEZ

= Bk -max (dk(t-n-SIk -Tk,t -S)-c kn
neZ

Except for the fact that the demand dk is now stage-specific, this is equivalent to the

inventory equation for a capacitated stage that does not censor its orders, namely

equivalent to (5). That is, when considering the inventory Ik (t) at some stage, it makes no

difference whether items are waiting in the internal queue, or whether the orders placed

by that stage were temporarily put into a backlog because of censorship. In both cases the

quantities that start and finish their processing in each period are the same. Thus if node k

has a capacity constraint, we can use equation (16) to determine the base stock level that

guarantees service, regardless of whether a censored order policy is employed or not.

Thus we set the base stock level by

Bk(r) = (kDk X)(r) .

where we use the operator Yk defined in (15).

There are a couple of immediate implications from the censored order policy.

First, in comparison to the base-stock ordering the average inventory will be less (for a

fixed base-stock level), because orders never exceed capacity and there is no internal

queue. We obtain the total average inventory by taking the average of (22):

Ik =Bk - (SIk +TK -Sk)-BLk (23)

Thus in the case of censored orders, we need to calculate the term BLk, in order to

determine average inventory levels and costs. The term BLk depends on specific

properties of the demand distribution, and is generally difficult to estimate; we will

discuss this topic in greater detail in the Appendix. However, we note that BLk does not

depend on the decision variables (the service times). Thus we do not need to determine

BLk to find the optimal safety stocks; rather, the sole purpose for determining BLk is for

the determination of the average inventory level given by (23).



A second implication of the censored order policy is that the censored order is

bounded by the capacity at stage k, i.e., (dk+l (t) ck ) ; thus, a looser capacity constraint at

stage k + I (ck+ l > Ck ) is irrelevant. Indeed, any upstream capacity constraint that is

greater than a downstream capacity limit can be ignored.

A third more significant implication of the censorship is that the upstream stages

will face a different demand bound, one that is censored by node k's capacity. We

describe next how to determine the bound on the censored orders.

Proposition 2. Suppose dk+ý (t) = min(dk (t) + BLk (t -1),ck) where BLk is given by (21),

and initialized with BLk (t) = 0 for t < 0. Assume that Dk is a valid bound for dk (that

is, dk(t,t + r) • Dk (r) Vt, r 0), and that Ck is valid with respect to Dk(r). Then

dk+l(t,t + r) • Dk+j (r) = (kDk)(r) Vt, r 0 (24)

where Dk is defined by

(ckD)(r) = min(ck r, D(r)). (25)

This bound is tight, in that for every rv 0 there is some dk(t,t + r) = Dk (r).

Thus we have an evaluative model for a serial system with capacity constraints and

censored orders. We assume that the demand is propagated up the supply chain by (21),

with (22) to account for the backlog of orders. We can then use Proposition 2 to compute

the demand bound at each node. Given these demand bounds we can then use (16) to

characterize the necessary base stock level for each node. Given the base stock level, we

can calculate the average inventory from (23). We summarize these iterative steps in

Table 2, with a comparison to the un-capacitated model.



No capacity constraint at Capacity constraint ck at node k
node k

Orders placed dk+, (t) = dk(t) dk+• (t) = min(dk (t) + BLk (t -1), ck)

Bound on Dk+1 () = Dk (r) Dk+l(r)= (DkDk )(r)
orders placed = min(ckr, Dk ())
Base stock Bk(rk) = Dk () Bk(rk ) = (~kDk )(rk)
level =max {Dk(r k +n)-ckn}

n20

Average k = Bk (k)- pZA  4(t) = Bk (zk)- k -BLk
inventory

Table 2: Summary of node properties in serial system supply chain with capacity
constraint(s) and censored base stock policy; we use rk to denote the net replenishment
time at node k.

We can now embed this model in an optimization, analogous to (18), to find the best

choices for the service times. In the following proposition we establish that the demand

bounds and capacity constraints are in fact valid as defined earlier; as these properties

were necessary to derive the necessary base stock levels. We also show that the resulting

base stock levels Bk (rk) are concave functions.

Proposition 3. Suppose that end demand d(t) = d, (t) is bounded by D(r) and that D(v)

is valid. Assume further that some subset of nodes has capacity constraints, and that

these are all valid with respect to D(r), and that these ck are decreasing with increasing

k. Finally, suppose that each node kplaces orders dk+1 (t) according to (20). Then

a) All orders dk are bounded by Dk (r), as specified by (24)

b) AllDk (r) are valid

c) c1for nodes with capacity constraints are valid with respect to Dk (r) , for all

1 k

d) The base stock levels Bk (r) as specified by (16) ensure that Ik (t) > 0

e) All Bk (r) are concave in r .



Thus we have shown that in a serial-system supply chain with capacity constraints and

censorship, we can compute the demand bounds and necessary base stock levels by

recursively applying a sequence of functional operators, as summarized in Table 2. Thus,

as for the case of base-stock ordering, we can use the algorithm developed by Graves and

Willems to find the optimal service times for a serial-system supply chain with both

capacity constraints and censorship, after only small modifications.

We can extend the results in this section to arborescent (assembly tree) supply

chain topologies in which each node has a single customer node. The iterative steps laid

out in Table 2 apply directly, but with one modest modification: the order placed by node

k (given by (21)) is now placed concurrently on each of the suppliers to node k. Again we

can use the existing algorithm from Graves and Willems to find the optimal service times

and safety stocks.

The extension to supply chains with several end demand nodes (as in a distribution

network, for example) is not as immediate. The primary challenge is to determine how to

combine multiple demand bounds, each of which may be censored. For un-capacitated

supply chains, Graves and Willems (2000) propose how to set bounds if demand streams

are independent, and the bound is set analogous to a probabilistic service level, as in (12).

They also propose bounds for larger or smaller measures of risk pooling. If one or more

bound are generated by a censored order policy, then it is not clear how best to merge

bounds from multiple streams. Of course, one can always obtain a valid and conservative

bound by simply adding the bounds of downstream stages; we leave for future research

the question of how to improve upon this demand bound for supply chains operating with

a censored order policy.

9. Numerical experiments

To test the results from previous sections and to get some intuition for the properties of

the optimal solution, we performed a number of numerical experiments. We used the

same supply chain and cost structures as in Graves and Willems (2008). Specifically, we

considered a serial system with N = 5 nodes, and with three alternatives for both the cost

accumulation and the production lead-time as follows:



Stage 5 4 3 2 1

Increasing 36 28 20 12 4

Constant 20 20 20 20 20

Decreasing 4 12 20 28 36

Table 3: Alternative structures for supply chain lead-time and cost accumulation

The terms "increasing" and "decreasing" should be understood in terms of going

upstream starting from the customer facing stage 1. In the case of cost accumulation, the

values stated in Table 3 represent the cost added at each stage. For example, for the

increasing cost scenario, the cost at stage 5 is 36, the cost at stage 4 is 36 + 28 = 64, the

cost at stage 3 is 36 + 28 + 20 = 84, etc. For all three scenarios the cost of the finished

good at stage 1 is 100.

For the production lead-times, the values for each scenario represent the values

for Tk . For each scenario the cumulative lead-time for the supply chain is 100. We

assumed that the demand bound was given by D(r) = pr + zavr' , with the parameters

(u, z, a) = (40,2,20).

We considered a supply chain with no capacity constraint, as well as a single

capacity constraint at any one of the 5 nodes. The value of the capacity constraint was

taken from the set (42, 45, 50, 60, 70), thus representing P + 0. la up to P + 1.5r.

Moreover, in each test problem, we solved for both the base-stock policy and the

censored ordering policy. The alternatives outlined above made for a total of

3 x 3 x (1+ 5) x 5 x 2 = 540 test problems. In all cases, we recorded the average total cost of

the safety stocks, as well as the optimal solution.

We will first discuss the results for the test problems under the base-stock policy.

In Table 4 below, we normalize the total cost of the average supply-chain safety stock to

be 1.0 for the unconstrained problem; the results are equivalent for average holding costs

provided that the holding costs are proportional to the inventory costs. In this table, we

show how the cost increase depends on the size and location of the constraint for the test

problems with constant lead time and increasing costs.



Table 4: Normalized
cost scenarios.

costs for base-stock policy, for constant lead time and increasing

Location of capacity constraint

Cost Lead time (none) 5 4 3 2 1

Increasing Increasing 40.0 102% 111% 117% 114% 100%

Constant 40.0 106% 113% 117% 119% 100%

Decreasing 40.0 107% 113% 117% 119% 100%

Constant Increasing 36.8 100% 100% 102% 102% 100%

Constant 39.4 100% 104% 112% 116% 100%

Decreasing 40.0 103% 108% 112% 116% 100%

Decreasing Increasing 26.8 100% 100% 100% 100% 100%

Constant 34.6 100% 100% 102% 109% 100%

Decreasing 39.2 100% 100% 103% 113% 100%

Table 5: Total costs for base-stock policy with capacity constraint c = 45. In each case,
the cost of the constrained problem is given as a percentage of the corresponding un-
constrained problem.

In Table 5 we report the total inventory cost for the un-capacitated cases and then

report the relative costs for the capacitated cases for a base-stock policy with capacity

constraint c = 45. We see from Table 5 that the experiments with increasing (decreasing)

costs had higher (lower) total costs, due to the higher holding costs for the non-customer

facing stages. Conversely, decreasing lead times implied long lead times downstream

(where holding costs are higher) and led to higher holding costs overall.

Location of capacity constraint

Ck (none) 5 4 3 2 1

42 1.00 1.03 1.07 1.13 1.19 1.01

45 1.00 1.00 1.04 1.12 1.16 1.00

50 1.00 1.00 1.04 1.06 1.08 1.00

60 1.00 1.00 1.02 1.03 1.04 1.00

70 1.00 1.00 1.01 1.02 1.03 1.00



From both Table 4 and Table 5 we see that the cost of a capacity constraint is

greater the smaller the capacity. The location of the capacity constraint matters greatly,

but without a simple pattern. To better understand this, we looked more closely at the

optimal solution in a few scenarios as listed in Table 6 below.

Net replenishment Cost 5 4 3 2 1

time at stage

No constraint 1.0 20 0 0 0 80

Capacity 45 1.0 20 0 0 0 80

at stage 1

Capacity 45 1.12 0 0 60 0 40

at stage 3

Table 6: The cost and optimal solution for scenario with constant lead time and constant
cost accumulation

We see that in the unconstrained problem, the optimal solution is to have one large

inventory (and a long net replenishment time) at the first, customer-facing stage, and a

small inventory at stage 5. If we introduce a capacity constraint at stage 1, then one may

use the same solution - we recall from equation (11) and Figure 2 that for sufficiently

large net replenishment times the capacity constraint will not matter. In this case it means

no extra inventory even though capacity at stage 1 is quite significantly constrained at

45 = p + 0.25o-. As is clear from Table 5, this was in fact the case for all the examples

with a capacity constraint of 45 at the first stage. More specifically, from (13) we know

that the capacity constraint does not matter when

a 20
c-r + p=2 +40= 42.2 .

Equivalently, we found that the capacity constraint c = 45 only matters when the net

replenishment time r is less than 16.

On the other hand, if such a capacity constraint is located at stage 3, then the

original solution cannot guarantee service, since stage 3 will need safety stock even if its



net replenishment is zero. The optimal solution is not simply to add extra inventory to

stage 3, but rather to completely change the safety stock strategy, at a cost of about 12%

of the original optimum.

Thus if we locate a capacity constraint at a node that holds a safety stock in the

un-constrained problem, then we find that the cost of the constraint can be quite limited.

Informally speaking, one might say that the cost of a capacity constraint depends on

whether it is "in harmony" with the un-capacitated optimal solution. Indeed, we found

for our entire set of test problems under the base-stock policy that if the stage with the

capacity constraint had inventory in the un-constrained problem, then the optimal service

times did not change when we introduced the constraint , and the average additional cost

was only 3.9%. On the other hand, if the constrained stage did not originally have

inventory, then in 44.1% of the cases, the optimal service times changed when the

constraint was introduced, and the average cost increase was 5.6%.

We also performed corresponding experiments for the censored order policy; the

optimal costs relative to the unconstrained problem are listed in Table 7 and Table 8

below.

Location of capacity constraint

ck (none) 5 4 3 2 1

42 1.00 0.98 0.95 0.91 0.85 0.55

45 1.00 0.98 0.97 0.99 1.01 0.83

50 1.00 0.99 1.02 1.02 1.03 0.94

60 1.00 0.99 1.01 1.01 1.01 0.97

70 1.00 1.00 1.00 1.01 1.01 0.98

Table 7: Normalized costs for censored order policy, constant lead time and cost
accumulation scenarios



Location of capacity constraint

Cost Lead time (none) 5 4 3 2 1

Increasing Increasing 40.0 98% 102% 104% 100% 85%

Constant 40.0 102% 104% 106% 107% 87%

Decreasing 40.0 103% 105% 107% 108% 89%

Constant Increasing 36.8 98% 93% 90% 84% 69%

Constant 39.4 98% 97% 99% 101% 83%

Decreasing 40.0 101% 102% 104% 106% 88%

Decreasing Increasing 26.8 99% 96% 89% 77% 60%

Constant 34.6 99% 97% 93% 93% 74%

Decreasing 39.2 100% 98% 97% 99% 82%

Table 8: Total costs for base-stock policy with capacity constraint c = 45. In each case,
the cost of the constrained problem is given as a percentage of the corresponding un-
constrained problem, for censored orders.

We see that the costs are, especially for smaller capacities in Table 7 significantly

reduced relative to the uncensored case in Table 4. Indeed, for the 225 test problems with

a capacity constraint, we found an average cost reduction of 8.0% when we replace the

base-stock policy with the censored ordering policy. Thus when capacity constraints are

present, a strong case can be made for censoring the orders at that stage.

Remarkably, under censorship the costs are often even lower than in the

corresponding problem without capacity constraints. Indeed, for the 225 test problems,

we find that the total cost for the constrained system with a censored order policy is on

average 3.6% lower than the total cost for the corresponding unconstrained base-stock

system. Nevertheless, as is clear from both Table 7 and Table 8, the effect can be

positive or negative depending on the size and location of the constraint. Since the

benefits of censorship are mostly found upstream of the capacitated stage, it is not

surprising that the best outcome (in terms of total supply chain costs) is when the

constraint is downstream in the supply chain, ideally at the customer-facing stage. This is

especially true when, as in our examples, the customer-facing stage needs to carry

inventory to provide a zero service time to its customers. Indeed, in all the cases we



investigated, for a given capacity value, the best outcome was always when the constraint

is at the customer facing-node. In order to make a meaningful impact, the capacity

constraint needs to be only slightly higher than average demand; in fact, for all the

examples with censorship at the customer-facing stage, the lowest tested capacity

pu +0. l always gave the best value. However, we also know from theory, and

specifically equation (13), that as the capacity approaches average demand, the necessary

base stock level goes to infinity.

When determining the average cost for the censored ordering policy, one must

calculate the term BLk in (23). We discuss this topic in greater detail in the Appendix.

We note here that this term will depend on specific properties of the demand process,

properties which up until this point have not been specified. In the experiments listed

here we estimated this term using formula (A28). When we compared these answers to

ones obtained using numerical estimates of BLk , the average difference in terms of total

costs was only 2.1%, and none of the overall results and conclusions were significantly

different from those presented here. We also emphasize that while the value of the term

BLk does impact the total cost, it does not affect the optimal solution, nor does a poorly

estimated BLk compromise the guaranteed service constraint.

10. Conclusions and discussion

We have analyzed the inclusion of capacity constraints in the context of the GS model for

safety stocks in multi-echelon supply chains. We have shown how to extend the single-

stage base-stock model to include a capacity constraint. We have used this result to

model multi-stage supply chains with capacity constraints. We have characterized the

base stock level for two cases that depend on how orders are propagated across the

supply chain. In both cases we can extend the structural findings and solution methods

that have been developed for the un-capacitated supply chains, e.g., by Simpson (1958)

and Graves and Willems (2000).

In general we expect to need more safety stock when we have capacity

constraints. Indeed, as is clear from (13), the costs associated with capacity constraints



can be arbitrarily large, as the "slack capacity" goes to zero. On the other hand, for stages

with sufficiently high net replenishment time, there may be no additional cost associated

with capacity constraints. When optimizing a supply chain the total effect depends

significantly on whether the constraints are located at stages that had safety stocks in the

corresponding unconstrained problem.

When we use the censored order policy, the costs are not only lower than in the

corresponding capacity-constrained problem with base-stock ordering, but frequently

even lower than in the unconstrained problem as well. Intuitively, a capacity constraint

typically increases the base stock level for the stage with the constraint (Equation (10);

Figure 2); however, the resulting increase in the average inventory may not be as great

because some of the increase in the base stock ends up as the positive backlog.

Furthermore, the censored orders can be much smoother than the original demand

process. As a consequence there can be a substantial reduction in the need for inventory

at upstream nodes (Proposition 2; Table 7). The total effect may imply higher or lower

costs depending on specific parameters.

On a more abstract level, it may seem surprising or even paradoxical that adding a

constraint can lead to a better solution. The explanation is that we have in effect

expanded the space of possible ordering policies. The original GS model from Simpson

(1958) is based under the assumption that all stages operate with a (local) base stock

policy. The results from these experiments concretely illustrate that this policy need not

be optimal in a multi-echelon supply chain with guaranteed service. Indeed, one might

want to introduce a censored order policy even in the absence of capacity constraints in

order to get these benefits. In our experiments the best outcome was when the customer-

facing node was tightly constrained. This suggest that it may be preferable for the first

stage in a supply chain to act as a damper, whereby it absorbs the variability from a

demand signal, rather than pass along this variability to the rest of the supply chain.

As we have noted, the costs (but not the optimal solution) of systems with

censorship depend on the term BLk , which in turn depends on specific properties of the

demand distribution, and which moreover appears difficult to estimate. This suggests

opportunities for future research, but also hints at certain fundamental limitations on the

ability to predict the performance of censored systems. It is a rare practical situation in



which one can be confident about higher-order properties of the demand distributions

(although, in our experiments, the total system costs were quite similar when we

estimated BLk in different ways). The challenges of calculating BLk also make it difficult

to find "optimal" censorship value(s) and location(s), although surely improvements are

possible over the simple brute-force searches we presented in our experiments.

Another opportunity for future research is to generalize our results to more complex

supply chains, for example those with general network structures.



Appendix 1: The average backlog

Here we consider estimating BLk .We recall that this quantity is necessary to understand

the expected inventory costs for a node with capacity constraints and censorship.

However, BLk does not depend on the decision variables (the service times) and it is not

needed in order to obtain or implement the optimal solution.

We note that the back log described in (21) behaves rather like a queue - there is a

random quantity of arrivals every period, and a fixed, maximum processing rate. Even

though BLk operates in discrete time, we can use continuous-time queuing theory as an

approximation. Suppose that we model the internal queue with an M/D/i queue with

arrival rate 2, and deterministic processing time s. We then seek A and s that agree with

the average au and standard deviation a of demand per period, or and if we

normalize with respect to capacity. That is, we model demand using a continuous-time

model with Poisson arrivals, but we ensure that the probability distribution of the number

of arrivals agrees in first and second moments to our original process. We are making a

second order, continuous-time, approximation:

S= 2s
(A26)

Conversely, if we already have a mean and standard deviation for demand, we can invert

the relations (A26) solve for s and 2.

S ( "

-2

S2s (A27)2- - "2

sc cc



Having calculated s and A, we can use the Pollaczek-Khintchine formula (with zero

processing time variability) for calculating expected number of jobs and the expected

waiting time. This formula is exact for Poisson arrivals in continuous time, but for a

discrete time system it is only an approximation. Noting that the utilization is simply

p = -, we have:
C

Expected number ofjobs

S2 Time perjob

BL=p+ x s

= __+
c 2(1 i w (A28)

2(c -p) c

c- p 2c
Finally, we mention that if one wants to estimate BLk for more complex (not i.i.d.)

demand processes or if greater precision is desired, it is easy to estimate numerically or

using historical data. One can simply evaluate (21),

BLk (t) = max ( BLk (t - 1) + dk (t) - ck ,0}, for a real or simulated sequence of demand

realizationsd k(t) and calculate the average value BLk . In the context of the numerical

experiments in 99, we compared the formula (A28), with the aforementioned numerical

estimate, using a normal distribution.

c 42 45 50 60 70

Simulated/ Normal 88.5 29.6 10.6 2.5 0.7

PK-formula/ Poisson 104.8 44.4 24.0 13.3 9.5

Table 9: BLk for p = 40, a = 20, and various censorship values c.



The continuous-time formula appears to give much higher values of BLk for large

capacities, but for smaller capacities the results are reasonably similar. An explanation for

this is the continuous time assumption in the Pollaczek-Khintchine formula; there will

frequently (and on average) be a queue just after each job arrival, but in the discrete-time

system processing effectively happens "after" all the job arrivals in each period. This

effect becomes less and less significant as the capacity constraint becomes smaller and

smaller and the busy periods become longer and longer.

While these methods yield rather different results, the term BLk is typically only

responsible for a small portion of all costs. Fortunately, the different methods are

increasingly similar as the cost contribution from the BLk term grows and makes a

significant contribution. Thus in the experiments we performed, the average total cost

difference between the two methods was, on average, only 2.1%.



Appendix 2: Proofs and derivations

Derivation of (7). First we apply (2) recursively on IQk (t - 1), IQk(t - 2), and so on:

IQ(t) = max {IQ(t - 1) + d(t - SI) - c, 0}

= max {max {IQ(t- 2)+ d(t- SI - 1)-c, 0} + d(t-SIk)-c,0)

= max (IQ(t- 2)+d(t -SI)+d(t -SI -1)-2c,d(t-SI)-c, O} (A29)

- max {d(t - SI - n,t - SI)-cn}
nEZ



Proof of Proposition 1. We define

T = arg max {D(r)- cr} (A30)

Because D(r) is concave (by Definition 1) and crosses cr at a single point f (by

Definition 2), there must be some maximizing positive ^ < f (if there are multiple

maximizing values, any one can be picked as f for this proof). Now

B(r) = (VID)(r)

= max {D(r + n)-cn}
n20

= cr + max {D(r +n)-c(r+n)} (A31)
n20

= cr + max (D(x) - cx}
x!r

Now if r < ^, then the constraint is irrelevant and x can take the maximizing value f

from (A30). However, if r > If, then x will take the smallest value possible (because D is

concave, and crosses cr at a unique point), which is r. Thus:
B(r) = c + D()-c for r5<

(A32)D(r) for r > f

Now we are ready to prove concavity, by definition. For r <~< 2 I or < rz < r2we

must clearly have that

B(A2r + (1- A)r2) _ AXB(r 1) + (1- A)B(r 2), (A33)

since both cr + D(0) - cf and D(r) are individually concave. Now for r, < I < r 2 let us

first suppose that A2r + (1- A)r2 <5 I. Then

B(Ar1 +(1-A)r 2 ) = c(2rl + (1-2)r2)+D(e)-cf

= A(cr, + D() - ce) + (1 - A)(cr 2 + D(f) - cf) (A34)

= AB(rz) + (1- A)(cr 2 + D() - cfA)

However, by definition (A30) of A we must have that cr + D(0) - cf 2 D(r), and hence

B(Ar, + (1 - 2)r 2)

2 AB(r,) + (1 - A)D(r 2) (A35)

= AB(r) )+(1- A)B(r 2)

On the other hand, if A , + (1 - A)r2 = 3 > f , then



B(T3) >

=B(T) +3 -1 (B(r2) - B(f))
T2 _.

A A-B(?) 1 Z +2 B(T2 )

This holds because B(r) is concave by assumption for z > T. Now we note that

B(i) = ((c 2 + D(i) - c? ) - B(2r,)) 1 + B(r1 )
2 - Z1

This is simply describing B(?) as a point on a line between B(rz) and cr 2 + D() - ci .

Combining (A36) and (A37) we have

B(r3)

2 ((c 2 + D() - ct) - B(r) ) T 2 + B(r)

(A36)

(A37)

1-2 -I +r2 B(T2)

2 (D(r2)- B())22- 2'- + B(• )(1
1"2 -TI

_2___3- T23 -
- - + • B(T2)

T2 - V 2 - T

= B )) T - "1 + B(r )  1 -3

S) - 2
H(r•)

+ - B(T2)
22 -

The second inequality comes from noting the maximizing property of i . On the last line

we just defined H(r3) as an affine function of r3 . Now we evaluate H(.) at I and T2.

This gives us

H(f) = (B(r2 )
(A39)

-B(r))

H(r2) = B(Tr2)

Exactly the same holds if we instead evaluate the function(B(z- 2 ) - B(-rz)) 3 - T + B(,rz).
T2 - 21,

But two affine functions that take the same values at two different points are identical,

and so:

B(r3) 2 H(r 3) = (B( 2)- )B(TI)) T T - (+ B(z1)"2 -T,

(A38)

(A40)



This proves that final case and the proof is complete.o

Proof of Proposition 2. Let ? be the point such thatDk (?) = ckJ, which must exist per

Definition 2. Clearly, by the ordering mechanism (20), dk+ (t) can never exceed ck , and

so we must have that

dk+l(t,t+ r) <ckr<Dk(r) r f. (A41)

In order to investigate r > f we note that:

dk+I (t, t + r) = dk (t, t + r) - BLk (t + r) + BLk (t)

< dk(t, t + r)+ BLk (t)

= dk(t, t + r)+ (dk (t - i, t)-ck ) (A42)

= dk(t-ii ,t + r)- ck".

where

h - minn 2 0: BLk(t - n) = 0. (A43)

That is, h 2 0 is the number of periods that node k has been working at capacity before

time t. By the assumption that BLk (t) = 0 for some sufficiently low t, there must always

exist such an h. We can replace i defined by (A43) with a maximizing n; we will still

have a valid (although potentially looser) bound:

dk+l (t, t + r)

5 dk (t - h,t + r)- ckP (A44)

_ max dk (t- n,t + r)-ckn .
n!O

Finally, we invoke the bound on dk:

dk+l(t, t + r) < max Dk (r + n)- ckn (A45)
n>0

However, for r > f we have, because Dk is concave and f is the equality point, that

(A45) is maximized for n = 0 and hence, for r > f, we have

dk+l(t,t+r)Dk(r) <ckr r > (A46)



Combining (A41) and gives us the claimed relation. Finally we note that the bound (24)

is tight; for example dk+l (t, t + r) = Dk+l (r) is realized if BLk (t - 1) = 0 and

dk (t,t + r) = Dk (r) O

Proof of Proposition 3: We start by proving a)-c) by induction, noting that they are true

by assumption for k = 0. The inductive step is trivial if there is no capacity constraint; we

therefore consider the case when k does have a capacity constraint. We make the

induction hypothesis, that a)-c) are true for some k- 1, and that node k has a capacity

constraint. We can then use Proposition 2 to get that Dk+l(r) = min(ckr, Dk(r)). Thus a)

holds for k as well. Moreover, Dk+, (0) = min(ck x 0, Dk(0)) = 0. Both ck r and Dk () are

non-decreasing and concave, and these properties are preserved under minimization.

Hence, if Dk(z) is valid then Dk+1 (r) is valid as well, and so b) holds for k.

Suppose now that c) holds for k- 1, that is, any c, (1 2 k -1) is valid with respect to

Dk (r). We need to show that any c, (1 > k) is valid with respect to Dk+l(r). By

Definition 2 there is a crossing point such that

ci = Dk(f) (A47)

By the inductive assumptions a)-c), we can use Proposition 3, and so we have

min(ckf, Dk ()) = Dk+l (f) . (A48)

Because c, is decreasing in 1, we have

ctf = min(ckf?,cf) Vl > k (A49)

Combining (A47)-(A49) gives us

cf= Dk+l (f) VI 2 k (A50)

That is, cr crosses Dk+l(r ) and Dk (r) at the same point . Furthermore, for r < f we

have cqr <Dk(r ) and c,r < ck so cCr <min(ckr,Dk(r)) = Dk+l(r). For r > f we have

c,r > Dk(r) 2 min(ckr, Dk()) = Dk+l (r). Thus, cl is valid with respect to

Dk+l(r) = min(ckr, Dk (r)) as well. Thus c) holds for k as well.



Therefore, we have shown that a)-c) for node k-i imply that a)-c) hold for k as well.

Since the base case k = 1 is true by assumption, by the induction axiom a)-c) must hold

for all k. This means that the necessary assumptions for Propositions 1 and 2 are fulfilled

for all k, and this proves d) and e), respectively. o





III. Coordination of multi-echelon supply chains

using the guaranteed service framework

We investigate how the guaranteed-service (GS) framework for multi-echelon safety
stock placement can be used when different parts of the supply chain are controlled by
different parties. We find that this framework is naturally well suited for decentralized
decision-making, and we propose a specific, simple contract structure which facilitates
such relationships. This contract is incentive compatible and has several other desirable
properties; it is also simpler than contracts proposed for coordination in the stochastic
service (SS) framework. We also highlight the role of holding costs, how these should be
calculated, and some of the difficulties that this might cause decentralized supply chains.

11. Introduction

A central question in supply chain management is how to coordinate activities and

inventories over a large number of stages and locations, while providing a high level of

service to end customers. This question is particularly delicate when different parts of the

supply chain are controlled by different parties, which may have competing and

conflicting interests. In general, selfish behavior in different parts of the supply chain

may lead to globally suboptimal behavior, as illustrated for example by a game-theoretic

analysis (Corbett and Karmarkar, 2001) of a multi-echelon supply chain controlled by

two or more parties.

In this paper, we investigate how coordination works when the different parties

operate according to the guaranteed service (GS) framework (so termed by Graves and

Willems, 2003), each optimizing his or her own part of the supply chain. In the GS

framework, the individual stages operate according to local base stock policies and

provide guaranteed service, as long as demand falls within certain bounds. Simpson

(1958) found that for a serial system, the globally optimal safety stock strategy is to

concentrate inventory to certain key locations, effectively decoupling different parts of

the supply chain. Simpson also proposed an enumerative algorithm for determining these

locations.



For a review of work on GS models we cite the overview articles of Inderfurth

(1991), Diks et al. (1996) and Graves and Willems (2003). We note in particular that

Graves and Willems (2000) extend Simpson's work to supply chains with spanning tree

topology, and formulate an effective dynamic programming algorithm. Optimizing

general networks is an NP-hard problem (Lesnaia et al. 2005); nevertheless, Humair and

Willems (2007) have developed very effective algorithms for optimizing the safety stocks

in large-scale real-world supply chains. We also note that the GS framework has been

deployed successfully in industry (e.g., Billington et al 2004).

In this paper, we consider the problem of how to use GS models in contexts in

which two different parties control different parts of a supply chain. The different parties

could represent different companies, or different business units with separate

performance metrics. If such separate parties apply GS models to their own sections of

the supply chain, will the results coincide with those that are obtained from a global

optimization? We find that provided that the parties can agree on the right service time

for orders between them, the global optimum can be obtained. We propose a simple

contract structure that codifies such a relationship, and argue that in addition to optimal

safety stocks, this form of cooperation has many properties which are desirable for

coordination, and which have been discussed by Lee and Whang (1999). We also show

that negotiating over the parameters in such a contract is closely related to Nash's (1950)

bargaining problem.

GS models thus lend themselves well to decentralization among self-interested

parties. By contrast, consider Clark and Scarf's (1960) well known model for echelon-

based ordering, sometimes referred to as a stochastic service (SS) model. In this

framework, orders depend on echelon inventory, and so to place an order a stage must

obtain information about the inventory positions of all the downstream stages of the

supply chain. This can be challenging even if the different stages have a common goal,

but it is of course especially problematic if the stages have different priorities; it may not

even be in their best interests to truthfully share inventory information with one another.

(Nevertheless, as shown by Axsliter and Rosling (1993), echelon-based base stock

policies often have an equivalent representation in the form of local base stock policies.)

Another complication, which has been pointed out by Lee and Whang (1999), is that in



Clark and Scarf's model, only the customer facing nodes face back-order costs if they run

out. Therefore, if the stages are independently managed, upstream stages have no

incentives to carry any inventory at all. Thus in order to implement Clark and Scarf's

solution in one type of decentralized supply chain, Lee and Whang (1999) propose a

rather elaborate scheme involving transfer pricing, consignment, shortage reimbursement,

and an additional backlog penalty. Similarly, Berling and Marklund (2006) consider a

one-warehouse, multiple-retailer system and obtain a near-optimal solution by enforcing

an induced backorder cost. Chu and Leon (2004) study coordination in a system with the

same topology, but with fixed ordering costs and deterministic demand. They propose

heuristics for decision-making both under local and central information.

We do not here attempt to give a comprehensive overview of the large and

growing literature on coordination in supply chain management; instead we refer the

reader to Cachon (2003), Chen (2003), and Cachon and Netessine (2004) for overviews.

We point out that a distinguishing feature of our work is that we consider coordination of

safety stocks in multi-echelon supply chains. By contrast, most existing work considers

coordination of other decision variables (for example, price and production quantities)

and/or for simpler, two-echelon supply chains.

The remainder of the paper is organized as follows. In § 12, we review the GS

optimization problem, and show that we can separate it into sub-problems for the

different parts of the supply chain. In §13, we propose and discuss a specific contract

which facilitates such arrangements. We also relate bargaining over such a contract to the

bargaining theory proposed by Nash (1950). In §14, we discuss how to best determine

holding costs (for the purpose of safety stock optimization), and some complications that

might arise in decentralized supply chains. In §15 we investigate experimentally the

costs of choosing the wrong service time between parties, and of using the wrong holding

cost. We conclude the paper in § 16.



12. The optimization problem and its separation

The global problem

We assume that the supply chain consists of a number of stages. Although we can

generalize most of the results derived in this paper to more complex supply chains, we

will limit ourselves to serial systems in derivations and examples. Moreover, we will

initially consider the problem facing a single decision-maker, and move on to the

coordination problem later in the section.

Thus we index the nodes in a serial system by k, and we designate the customer-

facing stage as node 1, and node N as the most upstream stage. A stage might represent

the procurement of a raw material, or the production of a component, or the manufacture

of a subassembly, or the assembly and test of a finished good, or the transportation of a

finished product from a distribution center to a warehouse. Each stage k is a potential

location for holding a safety-stock inventory of the item processed at the stage.

For each stage, we assume a known deterministic production lead-time, denoted

as Tk . When a stage reorders, the production lead-time is the time from when all of the

inputs are available until production is completed and available to serve demand. The

production lead-time includes the waiting and processing time at the stage, plus any

transportation time to put the item into inventory. We assume that there is no capacity

constraint and thus, the lead-time is not affected by the size of the order.

We assume that each stage follows a (local) base stock policy and places an order

equal to customer demand d(t) in each period. Thus we assume that in each period, the value of

customer demand is immediately propagated through the system. Moreover, we assume that each

node k provides a guaranteed service time Sk; that is, an order received from the

downstream node (or from the customer, for k = 1) must always be met within this time.

Thus if node k places an order on node k + 1 at time t, then the order will be met

by node k +1 at time t + Sk+l, at which time node k can use it as input into its process.

This order will be available as processed inventory at node k at time t + Tk + Sk+1.

Similarly, an order received by node k from node k -1 at time t must be delivered at time

t + Sk. We designate the difference between these times



Tk + S+, - Sk k (51)

to be the net replenishment time, which we constrain to be non-negative. We regard the

service times to be decision variables, except for a pre-determined boundary condition

S, = sj, where s, is an exogenous input for the service time guaranteed to the customer.

Significantly, we assume that demand is bounded, that is, we define the function

D(r):

D(r)= max { d(j)} Vt,r 20 (52)

If we initialize the inventory at each stage to a base stock level, i.e., Ik (0) = Bk, and if

the system operates as described in this section, then we can show that the inventory

Ik (t) at stage k will be

Ik(t)= Bk -  d(j). (53)
j=t-rk +1

Now by setting

Bk= Bk (rk) = D(rk), (54)

we ensure that Ik (t) is non-negative for all demand realizations within the bound; that is,

it is always possible to guarantee service. If the average demand is P, we can combine

(53) and (54) and take the average to get the average inventory:

k =D(rk)- rkp . (55)

Finally, if each stage incurs a holding cost proportional to the average inventory with

proportionality constant hk, we get the minimization problem P:

N

P min hk(D(Sk+l +Tk -S k )-(S k+l + T, - S k) /
S2 ..... +I k-=1

s. Sk - Sk+1 Tk fork {l,2,...,N} (56)

S,=s,
Sk 2 0 for k e {2,...,N + 1}



The meaning of this is that we seek the service times and inventories that minimize total

holding costs, while at the same time fulfilling the guaranteed service time requirement

for all stages and all demand realizations within the bounds. D(r) is often assumed to be

concave, in which case the optimal solution will be on a comer of the polyhedral

constraint set. The practical implication of this is the "all-or-nothing" property identified

by Simpson (1958); a stage either has inventory and offers immediate service (Sk = 0),

or it has no inventory at all ( Sk= Tk + Sk + ).

Separation of the problem

We now assume that different parts of the supply chain are controlled by two different

players, player 1 who is downstream, and player 2 who is upstream. Specifically, player 1

controls stages 1,2,..., N, and player 2 controls stages N, +1,..., N. We assume that, as

in the original problem, all stages operate according to periodic review base stock

policies, provide guaranteed service, and propagate customer demand. Like before,

demand is bounded by D(r) . The players control service times and inventories in their

own parts of the supply chain. Then the service time for orders placed by player 1 and

delivered to player 2 is SN,+. This service time between the players we shall also denote

as SB = SN+,. Initially, we will just view S, as an exogenously specified parameter, and

investigate the cost impact of agreeing upon various values of SB. In § 13 we will

consider bargaining over S,.

Under the arrangement described here, the players each face a problem that is

very similar to the global optimization problem. Specifically, for a given value of S ,,

player 1 will face the optimization problem P, (SB) as follows:

PI (SB) min hk (D(Sk+ + Tk -S)-(Sk+ l +Tk -Sk)P)
S2-...,SNI k=1

s.t. -S-S k+1 Tk for j {l,2,...,N9} (57)

S 1 =1 s,SN,+I = S

Sk 2 0 for k e {2,..., N }

Similarly, player 2 will face the problem



N

P2(SB) min m hk(D(Sk+ + Tk -Sk)-(Sk+ l + Tk - Sk)
S +1,...,Sv+I, k=N I+1

s.t. Sk - Sk+ Tk fork {N, +1,...,N} (58)

SN ,+I = SB

Sk 2 0 for kE {N +1,...,N+I}

In Figure 3 below we plot P, (SB) and P2 (S,), and their sum (which represents total

system holding costs), for an example system with four stages. Each stage has lead

(processing) time equal to 20. The demand bound is D(r) = pr + za,f with parameters

p = 20, z = 2, a = 20. The holding costs parameters are, starting with the customer-facing

stage and going upstream, 200,160,140,20 (these particular values were chosen so as to

make for an instructive example). We also assume that the two downstream stages and

the two upstream stages are controlled by different companies; this implied that S, = S3 .

We also assume that S, = S5 = 0. Thus, each of the two companies only controls a single

decision variable (S 2 and S4, respectively), with only two possible solutions for each.

Thus for a given S, it is easy to determine the optimal solution in each part, i.e.,

Pl (S,) and P2(S,).
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Figure 3: The cost for the lower part, upper part, and total supply chain, as a function of
SB. In this example, the worst SB resulted in total costs that were 22.1% higher than the
best value.

Obviously, P, (SB) is increasing inS,, and P2 (SB)is decreasing in SB (player 1 benefits

from getting deliveries as quickly as possible, but player 2 would prefer to delay them).

We see that P1 (SB) is here a rather well-behaved function; in fact we show in the

Appendix that a concave D(r) implies a concave P,(SB). It should, however, be

apparent from Figure 3 that P2 (SB) and P, (SB) + P2 (SB) are generally not concave;

indeed, the sum can be quite irregular.

Now, suppose that the players would select the value of SB so that global holding

costs were minimized (knowing that they would subsequently solve P, (SB) and P2 (SB),

respectively). That is, suppose they sought min P, (SB) + P2 (SB), which is equivalent to the
s,_>o

program P , as we shall see in Equation (59) below. In Figure 3 the minimum value is

for S, = 40, which means that player 2 does not hold any safety stock at all, but rather

delays delivering an order until his or her own inventory has been replenished. We now

~Al· ~Al



proceed to prove the aforementioned equivalence:

min P, (S) + P2 (SB)=

minS'ý!O

N,

min hk (D(Sk+l +Tk -Sk )-(Sk+ +Tk -Sk)
,...,S"'"I k=1

s.t. Sk -Sk+l1 Tk for j {1,2,..., N, }

S1 = SI,SNS1, = SB

Sk > 0 for kE{2,...,N,}
N

mnn hk(D(Sk+ +Tk -Sk )-(Sk+ +Tk-S,))
SNl,.'"'.SN*I k=N, +l

s.t. Sk -Sk+ , Tk  forkE{N, +,...,N}

SN.+I = Se

Sk 0 for k{N, +1,...,N+1}

(A)

N

min Ek(D(Sk+1 +Tk -Sk)-(Sk+l +Tk -Sk)
S2,..."'.SN+' k=l

(B)

min. s.t.Sk -Sk+ 1 
- Tk for k e {l,2,...,N} =

S1 S=SISN,+I = SB

Sk 0 for kE{2,..., N+1}
N

in hk (D(Sk+l +Tk - Sk) -(Sk+ +Tk -Sk))
S2 ""'S ,NS k=1

s.t. Sk - Sk+1 < Tk for k E {1, 2,..., N} (C)

S
1 

= S.,SN,+1, = S=

Sk 20 for k E {2,...,N+1}

S, > 0

N

min hk (D(Sk, +Tk -Sk) - (Sk+ +Tk -Sk)p)
S

2
,..,S +

I  
k=1

S.t.Sk-Sk+1 _Tk for k {1, 2,..., N} =
S1 =SI

Sk 2 0 for k E {2,...,N +1} (59)

Step (A) holds, because for a given SB, the two programs are independent of each other

(that is, changing decision variables in one program does not affect the solution or the

constraints in the other). In step (B), we have incorporated the two minimizations into a

--

, +

L

4

.4



single program. Finally, in step (C), we identify the variable SB as redundant (because it

is always equal to S,,,, and has no additional constraints), and remove it.

Thus in principle, we can separate the program P into two components P, (SB) and

P2 (SB), provided that we can also identify the minimizing value of SB. As is clear from

Figure 3, the global objective function P, (SB) + P2 (SB) does in general not take a simple

form. On the other hand, if one has information about the constraint set (specifically, the

processing times in the upstream part of the supply chain), then one need not investigate

the entire space of possible solutions but only look at the corner points (the "all-or-

nothing" property). For this problem, these points are SB =0, S, = T3 = 20, and

SB = T3 + T4 = 40; they have been marked with circles in Figure 3.

For the purposes of supply chain coordination, this result is important because it

establishes that, assuming that the parties can agree upon the right SB, it will be in their

best interest to manage the supply chain in accordance with the optimal solution. That is,

the system is incentive compatible. We will explore this in greater detail in the next

section.

Finally, we mention that the derivation (59) naturally generalizes to more complex

supply chain structures. We can always separate the global problem into separate sub-

problems, plus the problem of finding the right service time in the intersection (or service

times, if there are several connections between the parties).

13. A proposed structure for contracts and bargaining

Thus we observe that the optimization problem P can be separated into sub-problems,

which can be managed separately by different players. In Figure 4 below, we propose a

specific contract that facilitates such an arrangement.



1. The demand bound D(r), within which player 2 commits to meet any demand

realization

2. The service time SB, within which the player 2 must meet all orders

3. The price per unit p, which player 1 agrees to pay for each unit upon placing an

order

Figure 4: Terms to be specified in a contract

Next we will argue that it is plausible that the players will reach an agreement in which

the optimal and coordinating service time SB* is used. Specifically, suppose that player 1,

sells finished units at a price P, and that player 2 purchases raw material at a cost C per

unit (other exogenous costs or profits could easily be incorporated into these parameters).

Under this arrangement, the utilities, or average profits, for the two players are

u1 = PP- up-P,(S) (60)
u2 = P• -PC -P2 (SB)

Of course, all else being equal, player 1 would prefer for SB to be zero, and player 2 for

S, to be as large as possible, i.e., S, = N+Tk . On the other hand, suppose that the

parties consider a contract with a service time S,' which is different from the globally

optimal service time SB*. Then either party could (assuming that the optimal solution is

known) propose a new contract in which both parties are better off. Specifically, if the

original proposal was for compensation p', a service time S,', and a utility ul', then we

can set a new price p such that the gains from greater efficiency is evenly divided

between the parties. Mathematically, we have:

(P,(SB +P2(S,)-(PI(S,*)+P 2(S,*))pp- P2(S,*) = p'p-P2(S, + +
(61)

Pl (SB ) + P2 (S, *) - PI(S *) P(S, (61)
2,u

Thus we can reasonably believe that the players will be able to reach an agreement that

uses the efficient solution SB*. The resulting arrangement, in which the players follow



the contract from Figure 4, using the service time SB*, has many benefits. We highlight

some in the list below:

B l.Incentive compatibility. As shown in (59), once the players have agreed on the

service time SB*, it will be in their own best interests to operate the supply chain

according to the globally optimal solution.

B2.Informational decentralizability. Other than passing on orders equal to customer

demand, the players do not need to know inventory levels or anything else about the

other player's part of the supply chain.

B3. Cost conservation property. Costs can be traced to individual sites, and there is no

need for a central authority to hand out subsidies or tariffs to motivate the players to

participate (however, an important caveat to this principle is discussed in § 14).

B4. Simplicity. The contract only calls for a simple payment for purchased items, without

induced backorder costs, shortage reimbursement, etc. The requirement for player

2 to meet orders within the demand bound within a time period SB is easy to

understand, communicate, and monitor. In fact, all the benefits that a single

company using a GS model can be enjoyed by both parties.

B5.Arbitrary division ofprofits. By adjusting the pricep, one can achieve an arbitrary

division of profits between the players, and hence, the proposed contract structure

can be used both in industries where the upstream players have more power, and

in industries where the downstream players have more power.

Benefits B 1-B3 in particular were highlighted as desirable properties by Lee and Whang

(1999).

Predicting the price p with the Nash bargaining model

Above, we argue that it is reasonable to assume that an agreement to use SB* can be

reached, because for any other S ,, either player could propose an alternative contract

under which both players are better off. Is it possible to predict upon which value of the

price p the players will agree?



It may be, if we accept some additional assumptions proposed by Nash (1950) in

his work on bargaining models. Specifically, let us assume that the players bargain over p

and SB. One could also include the demand bound D into the bargaining process, but for

simplicity we will view it as exogenously specified (reflecting the common situation that

many firms do not set their customer service levels based on negotiations over vendor

delivery terms).

Considering the general problem of bargaining between two players, Nash posited

that the outcome aught to be subject to four axioms as follows:

1. Invariance to equivalent utility representations

2. Pareto efficiency

3. Symmetry

4. Independence of irrelevant alternatives

These axioms, and some mild technical conditions (e.g., the set of feasible agreements

(p, SB) should be compact) are explained and discussed in for example Osborne and

Rubinstein (1994).

Moreover, we assume that if the players disagree and negotiations break down,

they will receive utilities ul (d) and u2 (d), respectively. Nash showed that the only

solution (the "Nash solution") that satisfies all four axioms, is the solution that maximizes

the product (the "Nash product") of the players' net (over the disagreement outcome)

utilities IuI - u, (d)l x u2 - u2 (d) . In our setting we have:

mPsa ~(62)
max(Pp - P,(S,*)- pp - ul (d))x (pP - P2(S,*)- Cp - u2(d))

This is true because we know from (61) that only S,* fulfills Pareto efficiency. Now

differentiating with respect top, we have

0 = -p(p* p - P2 (SB *) - Cp - u2 (d)) + p(Pp - P1 (SB*) - p* p - u, (d))

p P+ P2 (SB*)+u 2 (d)+Cp -Pl(SB*)-u,(d) (63)
2p

Thus, under the axioms proposed by Nash, we can predict not only the service time, but

also the price, which the parties ought to agree upon. Since the price per unit is paid from

player 1 to player 2, any term that has a positive impact on player 1 or a negative impact



on player 2 will increase the price (a positive sign in (63)) that must be paid. For

example, if player 2's raw material cost C per unit would increase, then the price paid by

player 1 would increase by half that amount, so as to evenly split the loss in profit. We

can model asymmetries in this framework by appropriately setting the disagreement

utilities ul (d) and u2 (d). For example, if player I is a powerful oligopolist with many

alternative suppliers, he or she may enjoy a high disagreement utility ul (d) . As is

apparent from (63), this will lead to a lower per-unit price.

Other forms of asymmetries are not modeled in Nash's framework, and indeed,

are ruled out by the postulated axioms (however, extensions are discussed in Muthoo,

1999).

14. Identifying relevant holding costs
In this section, we will discuss in greater detail the calculation of holding costs when

optimizing safety stocks within the GS framework. This topic is pertinent for any GS

implementation (and presumably, for other supply chain theories as well), but it is

particularly relevant in settings where different parts of the supply chain are controlled by

different parties.

The basic idea is that when calculating holding costs, one should only account for

those costs, which are actually affected by the quantity and location of safety stocks.

Examples of relevant costs are cost of capital, risk for obsolescence, per-unit physical

storage costs, and so on. Many of these costs, for example the cost of capital and the cost

of obsolescence are driven by the value of the part. A part that is twice as dear will

require twice as much capital and will cause twice the loss if it suddenly becomes

obsolete. On the other hand, costs that are not affected by the location and quantity of

safety stocks should not be incorporated into the holding costs. For example, for the

purpose of determining safety stocks locations, one should not allocate a portion of fixed

costs to each part, since those costs are not affected by the choice of service times and

safety stocks locations.



However, consider what happens when a company purchases a part from another

company; the price charged by the supplier will surely be large enough to cover not only

the supplier's variable costs of production, but also the supplier's fixed costs, overhead,

markups, and so on. As a consequence, the holding cost at the buyer is based on not just

the variable costs in the supply chain, but also on any mark-up that is charged by the

supplier to cover its fixed costs.

In general, suppose that the value of a part is the sum of the all prior value adding

activities vk at the upstream stages, and that the holding cost is proportional (with

N

parameter a ) to the value of the part; hk = avj . Let us further assume that stage
j=k

N, +1 , may add an additional markup m, so that downstream stages use the holding cost

k = a + ,for k N1 . We note that there is no guarantee that the two safety-stock

optimization problems with hk and hk, (representing with and without markup) have the

same optimal solution.

We explore this issue with a small, illustrative example. In § 15 below, we will

perform a larger set of experiments to better characterize the typical impact of this

phenomenon. For now, consider a supply chain with two stages, where each stage just

transports the part from one location to another location, each with a transportation time

of 10; we assume a demand bound of pr + zarF and we will see that the parameter

values do not matter for this argument. Suppose that the firm purchases the units for $1

each, and sells them for $4 each. If no value-adding activities happen at the two stages,

the value of the part at each stage will be $1, (For the example we assume that there is a

zero or negligible value added from the transportation steps.) The optimal solution is to

have one safety stock location at the downstream stage, with an average inventory of

zaNFi& and average holding cost of a x zavii where a is the holding cost rate.

Suppose now instead that the two stages are operated by different parties, and that

the downstream firm buys the product for $3 per unit from the upstream firm. Now if we

allocate the values $3 and $1 to the two stages, the optimal solution will instead be to

have safety stocks at both locations, for an apparent objective value of



3a x za-.jIi + a x zcr1i . If we were to use this solution with the original holding costs

(without the markup), which are $a at each stage, we get the cost

a x za-li + a x zaoi~-6 > a x zao20 . Thus adding a markup at some stage can lead to a

suboptimal solution. Note in particular that this problem persists even if the parties share

information and coordinate their activities through a contract such as the one proposed in

Figure 4. If player 1 pays a markup to player 2 his relevant cost is $3, so this is not a

matter of truthfully sharing information. An intuitive explanation for what is happening is

that the extra holding cost am caused by the markup, is not a system-wide cost but

merely a type of transfer from the downstream stage to the upstream stage. Presumably,

the upstream stage could earn more interest if the downstream stage added more safety

stock, but this effect is presently not captured in the objective function.

Moreover, the optimal solution will typically be different even when we add the

markup m to all stages of a system. That is, the program (56) is not insensitive to adding

a constant term to all of the holding costs parameter (if instead we multiply by a constant,

the optimal solution will be the same). One implication of this is that even if the parties

could agree to run an optimization with the "real" costs hk and agree on using the

system-optimal service time SB* between them, there is no longer incentive compatibility.

That is, if the downstream player controls multiple stages, the optimal solution for that

part of the supply chain will generally depend on the markup m,. Critically, for the

service time SB*, the downstream player will implement the locally optimal solution,

which will depend on the markup m and does not always coincide with the global

optimum. Intuitively, the downstream player will seek to reduce the interest on the

markup am, even though this might increase the system-wide cost at the expense of

player 2.

We close this section by considering possible contract structures that may realign

the players' incentive structures. Obviously, when the supply chain is controlled by

different parties, cutting out the profit margin m of the upstream player will generally not

be a feasible alternative. Indeed, we highlighted as a benefit B5 precisely the property

that a good contract structure should enable an arbitrary distribution of profits. Instead,

we should consider contract structures in which markup or profit payments are made in



such a way that they do not affect holding costs. One specific possibility is to divide
N

payments into two parts, one part p = L vj which is paid when ordering, and a second
j=NI+1

part m, which is paid upon delivery to the end customer. Note that in this case, the

N

downstream player will then use the "real" holding cost hk = a vj for the purpose of
j=k

optimizing safety stocks, since the incremental investment to change the downstream

N

safety stock level is proportional to p = vj and does not depend at all on the markup
j=Nl+1

m.

Under the base stock policy, the orders placed from player 1 to player 2 are

actually the same as those placed by the end customer. Therefore, for this contract

N

structure, the payment in period t will be d(t) x L vj for the order placed on player 2
j=NI +1

plus d(t) x m for the markup on the delivery to the customer. Hence the total payment is

d(t) x m + v j , which is exactly the same as for the traditional payment scheme.
j=N+1l

Thus, it might seem that the proposed payment scheme amounts to nothing. However,

this equivalence only applies in steady state conditions. Whenever the downstream player

makes an adjustment in its safety stock, it will only payp for each unit of adjustment. In

particular, when the firms initialize the supply chain, the downstream player must place a

series of orders to establish its safety stock. Similarly, whenever there is a change in the

demand bound or in the production times, the downstream player might adjust its safety

stocks, and again make payments at the price p. It is during those transient time windows

that the payment on orders must not contain a markup, for the system to be coordinated.

The new contract structure is summarized in Figure 5 below.



Figure 5: A contract for situations when downstream holding costs are affected by a non-
value added markup m. We note that during steady-state conditions the separation of
payment is of no consequence.

The proposed contract structure retains all the benefits Bl-B5 highlighted for the contract

outlined in Figure 4, with the possible exception of B4, "simplicity". While it is possible

to realign incentives in a system with non-value added markups, the solution has a more

complex payment structure. Fortunately the extra complexity only appears when player 1

is making modifications to its safety stock strategy, such as at the initiation of the supply

chain.

Finally, we note that negotiating over the contract in Figure 5 is no different from

negotiating over the contract in Figure 4. All else being equal, player 2 will find it

disadvantageous to sell units at cost in the initial set-up phase, just like he or she will find

it disadvantageous to offer fast service. But all things are not equal; player 2 can demand

a higher per-unit price as a compensation for agreeing to these globally beneficial terms.

1. The demand bound D(r), within which the player 2 commits to meet any

demand realization

2. The service time SB, within which the player 2 must meet all orders

N
3. The price per unit p = vj , which player 1 agrees to pay for each unit upon

j=NI +1

placing an order

4. The additional price per unit m which player 1 agrees to pay for each unit upon

delivery to end customer



15. Numerical examples
In order to test the significance of coordination, we performed two sets of numerical

experiments. In both cases, we used the same supply chain and cost structures as in

Graves and Willems (2006). Specifically, we considered a serial system with N = 5

nodes, and with three alternatives for both the cost accumulation and the production lead-

time as follows:

Stage 5 4 3 2 1

Increasing 36 28 20 12 4

Constant 20 20 20 20 20

Decreasing 4 12 20 28 36

Table 10: Alternative structures for supply chain lead-time and cost accumulation

The terms "increasing" and "decreasing" should be understood in terms of going

upstream starting from the customer facing stage 1. In the case of cost accumulation, the

values stated in Table 10 represent the cost added at each stage. For example, for the

increasing cost scenario, the cost at stage 5 is 36, the cost at stage 4 is 36 + 28 = 64, the

cost at stage 3 is 36 + 28 + 20 = 84, etc. For all three scenarios the cost of the finished

good at stage 1 is 100.

In a first set of experiments, we tested, for each supply chain structure, what

would happen if different parts of the supply chain were controlled by two different

parties that did not necessarily agree on the system-optimal service time SB*. We

investigated cases when the first player controlled the most downstream 1,2,3 or 4 stages.

For each case we enforced various values of SB and tested the quality of the optimal

solution. As we have seen earlier, if SB = SB* the solution will coincide with the optimal

one, even when the different players control their own parts separately, but for different

values of SB the results will generally not be as good. The purpose of this experiment

was to see how big a difference it made when the parties agreed on the "wrong" S,, and

subsequently controlled their respective parts of the supply chain as well as possible

given SB as a hard constraint. This S, was then varied among all integer values between



0 and +1 T. In each case, we have listed the average and worst (in terms of all the

feasible values ofSB) objective values, as compared to the optimal objective value. The

results are listed in Table 11 below.

Performance relative Player 2's most downstream stage (N, + 1)
best possible 5 4 3 2

(using S,*)

Cost Lead Time Avg. Worst Avg. Worst Avg. Worst Avg. Worst

Increasing Increasing 105% 106% 108% 116% 112% 125% 113% 126%

Constant 105% 106% 111% 119% 117% 131% 122% 137%

Decreasing 103% 105% 112% 117% 121% 130% 128% 139%

Constant Increasing 103% 104% 105% 107% 106% 110% 107% 113%

Constant 102% 104% 104% 107% 107% 115% 111% 124%

Decreasing 101% 102% 106% 108% 111% 117% 118% 128%

Decreasing Increasing 102% 103% 104% 109% 111% 124% 122% 149%

Constant 101% 102% 104% 106% 107% 116% 108% 116%

Decreasing 100% 100% 101% 102% 103% 106% 108% 117%

Table 11: System performance whenSB is chosen suboptimaly and parties optimize their
sections separately. For the different scenarios on the left, the average, and worst cases
are stated relative to the optimal one.

On average, a randomly chosen S, resulted in an 8.6% higher costs than SB*, and the

worst choice of SB resulted in 15.1% higher costs on average (over the 36 cases). In

general, the biggest differences were found when Player 2 controlled a larger part of the

supply chain, perhaps because of a larger space of feasible (and potentially poorly

performing) S, .

We also performed a set of experiments to investigate the impact of a superfluous

0-50% mark-up of holding cost by stage 3, and thus incurred in the form of larger

holding costs by stages 1 and 2 (in addition to their own value-adding activities). In each

case, we calculated the optimal solution for the system with the extra cost, and then used

that solution in a system without such a markup. That is, we sought to understand to what



extent adding extra costs distorts the "real" optimal solution. The results of this exercise

are in Table 12 below.

Cost relative optimal Extra markup used by lower two stages

Cost Lead time 10% 20% 30% 40% 50%

Increasing Increasing 101.6% 101.6% 101.6% 101.6% 117.0%

Constant 100.0% 100.0% 100.0% 100.0% 100.0%

Decreasing 100.0% 100.0% 100.0% 100.0% 100.0%

Constant Increasing 100.0% 101.7% 101.7% 101.7% 101.7%

Constant 100.0% 100.0% 100.0% 100.0% 100.0%

Decreasing 100.0% 100.0% 100.0% 100.0% 100.0%

Decreasing Increasing 100.0% 100.0% 100.0% 100.0% 100.0%

Constant 100.0% 100.0% 101.6% 101.6% 101.6%

Decreasing 100.0% 100.0% 100.0% 100.0% 100.0%

Average 100.2% 100.4% 100.5% 100.5% 102.3%

Table 12: Actual system costs
holding cost

when lower two stages use a superfluous markup in their

As we can see, the cost of using the wrong holding cost was generally quite modest. In 6

out of the 9 settings, even a 50% markup caused no suboptimality at all. A single outlying

data point is the increasing cost, increasing lead time scenario with a 50% markup. In this

particular case, the real optimal solution is to have all the inventory at stage 1, but the

50% markup solution is almost the opposite, with a distributed safety stock strategy with

significant inventories upstream.

We also performed a similar set of experiments except with the markup added by

stage 2 or stage 4, instead of by stage 3. The results for these cases (which we do not

show here), were quite similar. We found that the additional average cost associated with

a markup was only 0.94%; however, it was uneven, and in 5 out of the 105 cases the cost

was 14% or more.

It is always true that increasing holding costs downstream will encourage more

inventory to be held upstream. Conversely, when there the "optimal" solution in a

coordination problem is to have most inventory upstream, one might find gains by



reviewing the true causes of the holding costs and considering alternative payment

structures, as discussed in § 14.

16. Conclusion

In summary, the guaranteed service (GS) framework is well suited for distributed

decision-making between parties with competing interests. Specifically, we showed in

§12, that provided that the parties can agree on the right service time SB* between them,

they will manage their own parts of the supply chain in alignment with the globally

optimal solution. In Figure 4, we propose a specific contract structure that would

formalize such an agreement, and in the subsequent discussion we highlight numerous

benefits with this type of arrangement.

Noteworthy features of this contract are that it makes explicit in advance what is

expected from the upstream player during times of high demand. By integrating per-unit

price into the same contract, the upstream player can in effect seek compensation for the

holding costs that it must incur in order to provide guaranteed service..

The relative ease by which we coordinate the supply chain stands in contrast to

supply chains operating according to echelon-based ordering, which need more complex

contracts to be coordinated (Lee and Whang, 1999). However, we did note in §14, that if

holding costs are driven by markups or other non-value added activities, the supply chain

can be misaligned, and in systems with two players where markups are necessary, a more

complex payment structure is necessary to coordinate the supply chain. Fortunately, this

payment structure is equivalent to the normal one when the system is in steady state; it is

only when setting up or changing safety stocks that this becomes an important issue. our

numerical tests show that the cost of disregarding this issue altogether is generally low,

but there are exceptions. Specifically, one should be concerned about this when the

markup is significant, and the solution (when the markup is included in the downstream

holding costs) suggests little inventory downstream in the supply chain. In this situation,

employing the modified contract proposed in Figure 5 might shift safety stocks

downstream and reduce the overall global holding costs.

The results discussed here are not only valid for serial systems, but generalize to

more complex supply chain structures as well. We can easily modify derivation (59) to



show that any connected subset of a supply chain will be incentive compatible with the

global optimum, provided that the connection (or all the connections, if there are more

than one) have service times that coincide with the global optimum.

A more difficult question is whether the parties can reasonably be expected to

share the information necessary to calculate the globally optimal solution and the

coordinating service time S,*. As we have pointed out, and in fact highlighted as a

benefit B2, the proposed contract structure does not call for the parties to share any

information on an ongoing basis, other than the order quantities for the base-stock policy,

which equal end-customer demand. However, in order to find SB* and agree on an

efficient contract, one needs to have access to the production or processing times and the

holding costs across the supply chain. If the parties only have such information for their

own parts of the supply chain, it is not clear whether it is in their own best interests to

share that information, or even to truthfully reveal the functions . P, (SB) and P2 (SB),

which are needed to find the optimal solution. While we show in the Appendix that

P (SB) is a concave function, P2 (SB) and P (SB) + P2 (SB) will generally have no simple

structure. Therefore, a sequence of offers and counter-offers cannot be expected to

converge towards the optimal solution. In the experiments we performed, using the

wrong value of S, led to an average of 8.6% too high costs, although there was

considerable variation. We leave the challenges of information-sharing for future

research.



Appendix: the concavity of P,(S,)

We can view P,(S,)and P2 (SB) as functions of S, . We first show that, in serial systems,

if D is concave, then so is P (SB)

First, when D is concave, then the all-or-nothing property holds (for any value of

SB), and we can enumerate all potential optimal solutions, say with index i. Specifically,

we can write a binary string with the length equal to the number of stages, and let a 1

indicate that that stage has inventory, and a 0 that that stage does not have inventory. The

number of solutions grows exponentially with the number of stages, but this does not

matter for our argument. Now letj(i) be the last (most upstream) stage which has

inventory in solution i, and let C, be the total cost of the inventory downstream of stage

j(i) . Then the total cost of solution i can be written as a function of SB:

Ci + hj() D(S, + T Tk)-(S, + Tk )p (A64)
k=j(i) k=j(i) I

Under the assumption that D is concave we note that (A64) is a concave function of S, .

Now we can express the optimal solution as minimization over all of the enumerated

solutions

P,(ST)= min C c +ho, D(S+ s Tk)-(SB,+ d Tk)P (A65)
S k=j(i) k=j(i)

The minimum of a number of concave functions is concave, and then so is P1 (S,).





IV. Strategic safety stocks in supply chains with

evolving forecasts

We examine the placement of safety stocks in a supply chain for which we have an
evolving forecast of demand. Under specific assumptions about the forecasts, the
demand process, and the supply chain structure, we show that safety stock placement for
such systems is effectively equivalent to the corresponding well-studied problem for
systems with stationary demand bounds and base stock policies. Hence, we can use
existing algorithms to find the optimal safety stocks. We use a case study with real data
to demonstrate that there are significant benefits from the inclusion of the forecast
process when determining the optimal safety stocks. We also conduct a computational
experiment to explore how the placement and size of the safety stocks depend on the
nature of the forecast evolution process.

17. Introduction

Most firms plan their supply chain operations based on a forecast of future demand over

some planning horizon. Furthermore, firms regularly update and revise these forecasts

based on observed sales, advanced orders, and market intelligence. With each forecast

revision, a firm will also revise its supply chain plans, in terms of its master schedules for

production, procurement, and transportation. Indeed, this update and revision process is

central to any supply-chain planning function and is facilitated by the wide-spread

deployment of material requirements planning (MRP) systems.

The intent of this paper is to examine the optimal placement of safety stock

inventory in a supply chain that is subject to a dynamic, evolving demand forecast. In

particular we strive to develop models and algorithms that have the potential to determine

safety stocks in real-world supply chains. We assert that the paper makes five

contributions.

First, we incorporate a forecast evolution process into the safety stock placement

models developed by Simpson (1958) for a serial-system supply chain, and by Graves

and Willems (2000) for supply chains with spanning-tree topologies. In particular, we use



the forecast evolution process and model that has been previously used by Graves, Meal

et al. (1986), Heath and Jackson (1994) and Graves et al. (1998).

Second, we show for a serial-system supply chain with an evolving forecast that

the optimal placement of safety stocks satisfies the all-or-nothing property: that is, each

stage either holds a decoupling safety stock or no safety stock. As one consequence of

this property, we can determine the optimal safety stocks by a simple enumeration

procedure.

Third, for an assembly supply chain with an evolving forecast, we show that its

safety-stock optimization problem has the same structure as the safety-stock optimization

for an assembly system operating with a base-stock ordering policy. Graves and Willems

(2000) have developed a dynamic programming algorithm to determine the optimal

safety stocks for this latter system. Thus, we can use this algorithm to solve the safety-

stock optimization problem for assembly systems with an evolving forecast. This

equivalence also extends to supply chains with spanning-tree topologies; however, the

analysis of the supply chains with an evolving forecast requires a bound function on the

forecast process, and we do not have a satisfactory way of specifying this bound function

for these more general supply chains.

Fourth, based on an industrial study and on a computational experiment, we

demonstrate the potential value from incorporating the forecast evolution process into the

safety-stock optimization. We find that substantial reductions in inventory are possible,

where the size of the reduction depends on how the forecast improves over time; to no

surprise, the better the forecast, the less safety stock is required. However, prior safety-

stock optimization methods were not able to extract the value from an improving

forecast.

Fifth, we demonstrate that we can use our forecast evolution process to model a

wide class of demand processes introduced by Aviv (2003); for instance, this class

includes autoregressive integrated moving average (ARIMA) processes. The significance

of this result is that all of the developments in the paper also apply to a supply chain

whose product demand comes from one of these demand processes. For instance

consider an assembly system that is subject to demand from an ARIMA (p, d, q) process

for any specification of the parameters (p, d, q); we can infer a forecast process for this



supply chain and then use this forecast process to determine the supply-chain safety

stocks, using the models and methods developed in this paper.

We organize the paper into seven sections. In the remainder of this section, we

provide a brief review of related literature. In § 18 we introduce the forecast evolution

process and show the equivalence between the forecast evolution process and a class of

demand processes introduced by Aviv (2003). In §19 we define the ordering policy for a

supply chain with an evolving forecast, and then use this to model the inventory

dynamics for a serial-system supply chain. We also establish the safety stock required at

each stage to satisfy the guaranteed service constraint. In §20 we establish the all-or-

nothing property for the optimal solution for a serial-system supply chain, and then show

how to determine the safety stocks for an assembly system. We report on an industrial

case study in §21 and on a set of computational experiments in §22. We conclude the

paper in §23. We also include an Appendix in which we provide the detailed

development for several of the results in the paper.

Literature Review

This paper adds to a rich body of work on multi-echelon supply chain

management. For a general overview of this research area, we refer to review articles by

Axsiter (1993), Federgruen (1993), Inderfurth (1994), and Diks et al. (1996). This paper

contributes to three bodies of work in particular.

First, our model uses a dynamic model for forecast evolution, and is related to

other work on forecasting and advanced demand information in supply chains. Our

forecast evolution model (§ 18) is a generalization of the one used by Graves, Meal et al.

(1986), Heath and Jackson (1994), and Graves et al. (1998). We show that there is a close

relationship between this forecast model and popular time-series demand models, such as

ARIMA. Therefore this paper is related to the growing body of work that assumes such

demand models in supply chains. In particular, the demand model we use is based on the

framework introduced by Aviv (2003). We refer the reader to Zhang (2004) for results

and references on supply chain dynamics, Aviv (2004) for an overview of forecasts and



collaboration, and Gallego and Ozer (2001) and Karaesmen et al. (2002) for results on the

value of advanced demand information in the supply chain.

Second, the underlying supply chain model (§ 19) and optimization procedure

(§20) follow closely the work of Simpson (1958) and Graves and Willems (2000). These

authors assume that each stage or node of the supply chain operates under a base-stock

policy and that demand is bounded. They then find the least cost service times and

inventory placement that are guaranteed to meet any demand realization within these

bounds. This approach provides a way to find the optimal strategic safety stocks in quite

general supply chains, and it has successfully been deployed to industry (e.g., Billington

et al. 2004).

Our work shares many important aspects with this line of work, but one

significant difference is that we assume that each stage places orders in response to

changes in schedules and forecasts of future demand. The aforementioned work assumes

that the stages operate according to (local) base stock policies and place orders in

response to realized demand at the customer-facing stages. Because of these differences,

the new safety stock strategies are more applicable for firms that already operate in a

forecast- or schedule-driven way, and who seek a comprehensive safety stock strategy.

Thirdly, our assumed ordering policy is similar to that for an MRP system; thus,

we can relate our work to the research literature on safety stocks in MRP systems. For an

overview of MRP literature in general, see Baker (1993). Guide and Srivastava (2000)

have reviewed buffering in particular, and list a comprehensive table of various

approaches and results.

More specifically, Lambrecht et al. (1984) consider exact solutions for small

systems, and heuristics for serial systems. Buzacott and Shanthikumar (1994) analyze and

compare safety stocks and safety times in a single-stage system. Yano and Carlson (1987)

consider a two-stage system under either fixed or flexible scheduling; the current analysis

corresponds most closely to flexible scheduling. Lagodimos and Anderson (1993)

consider the maximum service level achievable, for a given safety stock quantity.

Mollinder (1997) studies a number of systems using simulation, and finds optimal

solutions with simulated annealing.



Most of the aforementioned work is limited to small systems, typically one or two

stages. The lack of solutions for larger systems in particular has been highlighted in the

overview paper by Guide and Srivastava (2000). Moreover, none of the aforementioned

authors model dynamically evolving forecasts and non-stationary demand.

We note that the ordering policy in the current paper is a special case of the class

of policies considered by Graves et al. (1998), who model a supply chain with a

dynamically evolving forecast and with an objective to smooth operations to reduce the

variability of production. However, Graves et al. (1998) does not attempt to optimize the

supply-chain safety stocks, which is the primary point of the current paper. Similar to

Graves et al. (1998), Aviv (2007) develops a model of a two-stage supply chain with a

dynamically evolving forecast; he also incorporates production smoothing and

schedule/forecast changes into his objective function. But the primary intent of this work

is to understand the benefits from collaborative forecasting. In contrast, we assume an

ordering policy and accept the resulting variability from the induced schedule changes,

and seek only to reduce the safety stock costs across the supply chain.

18. The forecast model

We use a forecast evolution model based on Graves et al. (1986) and Heath and Jackson

(1994). In period t we denote the forecast for period t+i as f (t + i) for

i E {1, 2,..., H} where H is the forecast horizon. By convention we set f (t) = D, where D,

is the demand in period t. We will not make any notational distinction between D, for

future times, which are random variables, and for past times, which are realized scalar

values. We assume that in each period t we make an initial forecast for the demand in

period t+H, that is f (t + H) ; we also assume that each period we revise the nearer-term

forecasts, where we define the forecast revision as

Aft(t+i)= f(t+i)- f_1(t+i) for i E {0,1,...,H-1}.

We can express demand as follows

H

D = f_-H (t) + AfH+i (t). (66)
i=1



We let Aft be the vector of H forecast revisions. We assume that Af, is a random, i.i.d.

vector with E[Af, (j)]= 0 for all t andj. With these assumptions Graves et al. (1986),

Heath and Jackson (1994) and Graves et al. (1998) have established several properties for

this forecast evolution model: f,(t + i) is a martingale; f, (t + i) is an unbiased estimate

of D,,,; and the variance of the forecast error (D,,, - f, (t + i)) increases in i.

Furthermore, they show that the variance of the random variable D, is the trace of the

covariance matrix for Aft, which we denote by E.

The prior work assumes that the initial forecast is f (t + H) = p for all t. Under

this assumption the demand process D, has mean p and variance given by the trace of .

We depart from the earlier work in that we do not make any assumptions about f, (t + H) .

In particular, we permit f (t + H) to be generated by a non-stationary process of arbitrary

complexity, or to be user-specified.

Thus we can apply this forecast model to contexts in which the initial forecast

f,(t + H) contains information of future orders or advanced demand information. For

instance, consider the planning process used at Teradyne Inc., a manufacturer of

semiconductor test equipment with which we have worked (see also Abhyankar and

Graves (2001) for more about Teradyne's planning process). For many of its product

lines, Teradyne is a make-to-order operation. But the supply chain lead-time (the longest

procurement time for a piece part plus the internal assembly and test lead-times) exceeds

the customer lead-time (the delivery lead-time requested by customers). Hence, Teradyne

must plan much of its procurement and upstream production activities prior to receiving

an order. Teradyne does this by means of a master production schedule (MPS) that covers

a planning horizon that corresponds to the length of the supply chain lead-time. In effect

this MPS is its demand forecast. At any point in the time, the master schedule consists

of a mix of open orders, identified orders and booked orders. An open order corresponds

to a traditional forecast of what the sales force plans to sell, an identified order is

associated with a potential customer and is based on some preliminary discussions with

the customer, and a booked order is a firm customer order. As time moves forward, an

open order gets converted into an identified order as the sales force obtains tentative



commitments and product specifications from a customer. Similarly, an identified order

gets converted into a booked order once (and if) the product specifications and due date

become a firm order.

From our experiences, this process is descriptive of many other make-to-order

companies as well. In these cases, the initial forecast is based on the progress at

identifying customers and in securing advanced orders. Subsequently, the forecast

revisions correspond to changes of the master schedule, which reflect the success at

converting the forecast (open orders) into demand (booked orders).

Relationship with demand models

In the previous section we defined a forecast process, and discussed how the framework

arises in practice. Moreover, since D, = f, (t), defining a forecast process also gives us a

demand process; that is, the specification of the covariance matrix I and the initial

forecast f (t + H) determines a demand process D,.

In this section, we start with a demand model D, and show that we can infer a

forecast process by setting the forecast to the expected value of demand. That is, for a

given demand model Dr, we set'

f (t + s) - E[D,,+ I D,,D,_1,Dt-2,... ] , and

Aft(t + s) E[O,+s I ,O_,-1, Dt-2,I...]- E[+s, I t_,-2 _,...].

A question of interest is whether the forecast revisions generated in this way are i.i.d. and

have zero mean, since these assumptions were made in the forecast evolution model, and

in fact are necessary for the supply chain work to follow.

We find that these i.i.d. and zero mean properties hold quite generally. In

particular, suppose that we model demand by the general state space framework proposed

by Aviv (2003):

We remind the reader that we use D, to denote both the random variable for future demand as
well as the realized history for past demand.



x, = FX,_ + V,
T, = HX, (67)

D, =p + RY,

where X, is the state vector (with a dimension that depends on the complexity of the

demand model), T, the vector of observations, F, H and R constant matrices, and V, an

i.i.d., multivariate random variable with zero mean. Demand can in general also be a

vector (if there are multiple demand streams), but presently we will consider the case

where demand is scalar and R is a row vector. Assume further that the system is

observable, which loosely speaking means that the system state X, can be inferred from

the observations T,, or more specifically for the model (67) that E[X, I ,t ] = X,. Then,

we show in the Appendix that

Af,(t + s) = E[D+,, I t ,,t,_,,...] - E[D,,, I tt,,t,_z, ..t-2]
(68)

= RHFS+IVt

Since V, is i.i.d. with zero mean, so is Af, (t + s) and thus, Aft is i.i.d. with zero mean.

Given the covariance matrix for V, we easily find from (68) the covariance matrix for

the forecast revision Af . We note that most common time series models of demand,

including ARIMA models, can be written in this state space framework, and are

observable. Thus we find that even demand models that are quite complex and non-

stationary often have i.i.d. forecast revisions. Also we will see that whereas the initial

forecast f (t + H) = E[D,+H I D,, D,_, D,2,...] might be quite complex, this has no bearing

on our safety stock analysis.

This equivalence between the forecast evolution model and this broad class of

demand models means that we can apply our results, for example, in make-to-stock

supply chain with a time-series demand model. We refer the reader to the specialized

literature (for example Hamilton 1994) for how to estimate a time series demand model

based on historical data. Once this is done one can use (68) to find the properties of

Af (t + s), which are needed for the safety stock optimization to follow.



19. Supply chain model and ordering policy

We assume that the supply chain consists of a number of stages. For convenience, we

will derive most of our results for serial systems; we discuss the extension to assembly

systems and to spanning-tree topologies in the optimization section. For a serial system,

we index the nodes by k and we designate the customer-facing stage as node 1, and node

N as the most upstream stage. A stage might represent the procurement of a raw material,

or the production of a component, or the manufacture of a subassembly, or the assembly

and test of a finished good, or the transportation of a finished product from a distribution

center to a warehouse. Each stage k is a potential location for holding a safety-stock

inventory of the item processed at the stage.

For each stage, we assume a known deterministic production lead-time, denoted

as Tk . When a stage reorders, the production lead-time is the time from when all of the

inputs are available until production is completed and available to serve demand. The

production lead-time includes the waiting and processing time at the stage, plus any

transportation time to put the item into inventory. We assume that there is no capacity

constraint and thus, the lead-time is not affected by the size of the order.

We assume that each stage places an order in each period, and that each node

provides a guaranteed service time Sk; that is, an order received from the downstream

node (or from the customer, for k = 1) must always be met within this time.

Thus if node k places an order on node k + 1 at time t, then the order will be met

by node k +1 at time t + Sk+l, at which time node k can use it as input into its process.

This order will be available as processed inventory at node k at time t + Tk + Sk+1.

Similarly, an order received by node k from node k -1 at time t must be delivered at time

t + Sk. We designate the difference between these times

Tk + Sk+1 - Sk = k (69)

to be the net replenishment time, which we constrain to be non-negative. We regard the

service times to be decision variables, except for the pre-determined boundary conditions

S, = SN+ = 0. We do this particular assignment without loss of generality, because we



can model a nonzero S, (customer lead-time) by shifting the forecast process (in

particular, the forecast is perfect over the time between customer order and delivery). We

can add a nonzero S,,, into the production lead-time T, of node N.

The assumptions to this point are identical to those made by Simpson (1958) and

Graves and Willems (2000). These authors assume that each stage uses a base-stock

ordering policy; that is, in each period each stage observes and orders the customer

demand:

pBase stock (t) = f (t) = D, Vk (70)

By contrast, in this paper we assume that each stage places an order based on the forecast

of future demand. Specifically, we define

k k

Lk =Sk + T1 j ,= (71)
j=1 j=1

to be the cumulative lead-time for node k. This represents the shortest time for an order

on stage k to reach the final stage and become available to meet customer demand. Given

the cumulative lead-time Lk we denote the order placed by stage k at time t as P (t) and

specify it as follows:

Lk -1

Pk (t) = f(t + Lk) + t (t + i). (72)
i=0

We note that this ordering mechanism assumes that in each period the forecast is

shared among all the nodes. We will term (72) to be the forecast-based ordering policy.

Intuitively, if forecasts were perfect ( Af, - 0) then P, (t) = f (t + Lk ); in each period

each node of the supply chain places an order so as to push forward exactly what is

necessary to meet customer demand in the future, and there is no need for safety stocks.

We can view the base-stock policy as a special case of the forecast-based ordering policy

(72) in which the initial forecast f (t + H) = p , there are no forecast revisions until the

period of demand realization, and then Af, (t) = f (t) - f-, (t) = D, -a u. With these

assumptions, it is easy to show that for each stage (72) reduces to the base-stock

policy P, (t) = D,.



An alternate characterization of (72) is that each node k in each period t places an

order so as to keep the expected inventory at node k at time t + Tk + Sk+I constant (we

prove this in the Appendix). We also note that the forecast-based ordering policy (72) is

the multi-node extension of the installation-based order-up-to policy from Aviv (2003).

Moreover, the forecast-based ordering policy is analogous to what one might

expect in practice, as it represents the orders that would be generated by applying MRP

logic to a serial system with no lot-sizing and no yield uncertainties. In particular, if we

denote node k's on-hand inventory at the end of time t with Ik (t), we show in the

Appendix that we can write (72) recursively as

Po (t) = D,
Tk+Sk+1 Tk+Sk+-I1

S()= EP [k-l(t+i-Sk)]- P(t-i)- k (t) + I°. (73)
S= inventory on hand desired safety stock

scheduled downstream demand inventory on order

The first term on the right hand side represents the order schedule that node k

needs to fulfill over its replenishment lead time. The second term represents what is

currently on order to node k, namely the inbound orders from node k+l and the orders

currently in process at node k. The third term is inventory on hand. The final term I° is a

constant safety stock target, which is set to maintain an inventory buffer for the

eventuality of higher than expected demand. Thus, from (73) we see that the order

placed by stage k in time t equals the forecast of requirements on stage k over its

replenishment lead-time, net of the inventory that it will have available over this time

period, plus the safety stock target.

In some simple settings, we can show that the forecast-based ordering policy is

optimal with respect to certain criteria. As noted, the policy is optimal when the forecasts

are perfect, since the inventory variation is zero in this case, and no safety buffers are

needed. Moreover, Aviv (2003) shows by induction that each stage should follow such a

policy in order to deliver on orders received and minimize a quadratic cost function.

These results all assume that the service times are zero; the present contribution is to

consider non-zero service times in a global optimization problem.



Inventory dynamics

For the given assumption of a forecast-based ordering policy, we now proceed to

investigate the dynamics of the inventories Ik (t). For guaranteed service times, we have

the inventory balance equations:

Ik (t + 1) = Ik (t)- P-(t + 1- Sk )+ P (t + - Sk+ - Tk ) (74)

We show in the Appendix that by combining (72) and (74), we have:

t+rk t+Lk

Ik (t + Tk + Sk+l) = Ik - A (j), (75)
i=t+l j=i

where we choose the time t + Tk + Sk+1 on the left hand side for ease of exposition, and I°

is the target safety stock. The expression (75) shows that the current inventory level is a

function of recent forecast revisions. Indeed, to get some insight on the required safety

stock, we can re-express the forecast revision summation in terms of the forecast errors:

t+r k t+Lk t+Lk t+Lk t+Lk t+Lk

SZ Af (j) =Z Af (j)- Af (j)
i=t+l j=i i=t+1 j=i i=t+rk+l j=i

t+Lk j t+Lk i

ZE A(j) -  E Af(j) (76)
j=t+l i=t+1 j=t+rk +1 i=+k +1

t+Lk t+LkZ (D)) -ft (j))
j=t+l j=t+rk +1

The first term on the right-hand side of (76) is the cumulative forecast error for the

forecast made at time t for the next Lk periods. The second term is the cumulative

forecast error for the forecast made at time t + rk for the next Lk-_ = Lk - r k periods.

Thus, from (76) we need set the safety stock target to cover the forecast revisions that are

made to the Lk -period cumulative forecast over the next rk = Lk - Lk- periods.

We now assume that we have a bound B(Lk-_, Lk) on the forecast revisions to the

Lk -period cumulative forecast over the next rk = Lk - Lk-1 periods. That is, we identify

B(Lk_1, Lk) such that



t+rk t+Lk

:Af (j) <B(Lk-,Lk) Vt. (77)
i=t+l j=i

If we set

I° <- B(Lk_,, Lk ) ,  (78)

then it is clear from (75) that the inventory is non-negative, and thus we fulfill the

guaranteed service constraint.

A natural question is how to determine the bound function. We might obtain this

bound based on historical data; if we have enough observations of the forecast revisions,

then we can develop an empirical distribution for the left-hand side of (77) and use this to

determine bounds for setting the safety stocks.

An alternate way to obtain the bound is to suppose that management specifies that

the safety stock is to protect against some maximum level of forecast error. (For a

discussion and justification of this perspective, see Simpson, 1958 and Graves and

Willems, 2000) In particular, suppose we can measure the standard deviation of the

cumulative forecast error for each possible cumulative lead-time. Then, for the purposes

of setting the safety stocks, we might set the maximum forecast error analogous to a

service level bound F(L) on the cumulative forecast error:

t+L
F(L)= z (Dj - f (j)) (79)

j=t+1

where z is a safety factor and ( ) denotes the standard deviation. Thus, we want the

safety stock to provide 100% protection as long as the forecast errors are within F(L) for

all lead-times L.

With this specification, we show in the Appendix that the bound function is

simply

t+Tk t+Lk

B(Lk-1,, Lk)= za I Af(i ) = F(Lk)-F 2 (Lk). (80)
(i=t+1 j=i

Hence, if we are given the maximum allowable level of forecast errors (79) for each

possible L, we can then determine the bound function (80); from the bound function we

can determine the safety stock level (78) that is necessary to assure the guaranteed

service for all forecast/demand realizations within the maximum forecast errors.



We note that (80) is a fairly simple and workable form. We just need to

characterize the variance of the cumulative forecast error over all relevant time horizons.

From this function, we can directly compute the bound function as given by (80). In the

next section we show how we use this bound function to choose the optimal service times

Sk (and consequently Lk ) to minimize the total inventory costs.

20. Optimization

Given the bound function on the forecast revisions, we can formulate the optimization

problem. The objective is to minimize the expected inventory holding costs in the system.

From (75) we observe that the expected inventory level at each stage is given by:

E[k] = Ik .

We assume that we set the safety stock target I° according to (78), and thus:

E[Ik]= Ik =B(Lk1,Lk ).

Finally, we assume that each stage k incurs holding costs at a rate hk proportional to the

average inventory level I°o. In addition to this safety stock, the supply chain has pipeline

inventory, which is directly proportional to the production lead-times. We do not consider

pipeline inventory in the optimization as this inventory does not depend at all on the

choice of service times.

By changing the service times Sk we can find different safety stock

configurations; we seek the least cost solution. The optimization problem for a serial

supply chain is:

N

min hkB (Lk_, Lk)
Sk k=1

s.t. Sk+1Tk + 2 Sk Vk
(81)

kLk =Sk+1 + Vk
j=1

Sk 0 O Vk S,,S+,NLo =0



The first set of constraints assures that the net replenishment time is non-negative for

each stage; the second set of constraints defines the cumulative lead-times for each stage.

Simpson (1958) posed and analyzed a similar problem for a serial system

operating with a base-stock policy. He assumes that for any time interval (0,z] there is a

bound on the demand given by:

B(r) = +xr+zojz

where gi is the average demand rate and a corresponds to the standard deviation of

demand. We can interpret his assumptions and his analysis as a special case of

optimization problem (16) in which the bound function for each stage k is given by

B(Lk_,,Lk)=zaOLkk-1
,  =zoTk +Sk+ -S Vk (82)

Thus, for the base-stock policy, the objective function is a sum of terms, each of which is

concave in the service times. As a consequence, the solution is found on the corners of

the solution space, which implies "all-or-nothing" solutions: either a node keeps no

safety stock (Sk+l + Tk = Sk, ), or it keeps so much safety stock that it is decoupled from the

downstream supply chain (S, = 0). It also means that we can find the optimal solution for

a serial system through enumeration.

Now suppose we assume an evolving forecast and the forecast-based ordering

policy, with the bound given by (80). We will demonstrate that the optimization (81) for

the general case is no more difficult than that solved by Simpson for the special case of a

base-stock policy. For ease of notation, we define

g(L) = F2(L) = z2 ar (Dj - f (j). (83)

We can re-write the optimization problem:

N

min hk, g(Lk)-g (Lk-
Sk k=1

s.t. Sk++ +Tk 2S Vk
k

Lk =Sk+ Tj, Vk
j=I

S•k Vk S,,SN+,,Lo =0



k-I

Without loss of generality we add Y Tj (a constant) to both sides of the first set of
j=1

constraints and to the non-negativity constraints:

N

min hk g(Lk) - g(Lk-
Sk k=1

k-I k-I

s.t. S+l + Tk +ZTj Sk j Vk
j=1 j=1

k
Lk =Sk+1 Tj Vk

j=1

k-1 k-1

Sk +ZT•Z T, Vk
j=1 j=1

SI,, SN, Lo =0

Now we can rewrite everything, including the decision variable, in terms of Lk

N

min hk g(Lk) - g(Lk-)
Lk k=1

s.t. Lk Lk_ 1 Vk
k

Lk >Tj Vk
j=1

L = 0

At this point, we need to make a mild technical assumption: that the variance of the

cumulative forecast error g(L) is strictly increasing in L. Then, we can apply g(.) to both

sides of the constraint equations:

N

min hk g(Lk ) - g(Lk
Lk k=1

s.t. g(L k ) g(Lk_-1) Vk

k

g(Lk)jg(L7) Vk
j=1

g(Lo)=O
Finally, we define Zk = g(Lk ) , and use this as a scalar decision variable. We can do this,

because by assumption, g(.) is strictly increasing, and hence it is a bijective (one-to-one)

mapping. Every solution in terms of Zk corresponds to a unique solution in terms of Lk



and Sk, and the feasibility and objective value are unaffected by the mapping (note that

k
g( Tj) is a constant). The final program is:

j=1

N
min _hk Zk - Zk-

Zk k=1

s.t. Zk 2 Z k -1 Vkk (84)

Zk g(-Tj) Vk
j=1

Zo=0

This program has the same concavity properties as found by Simpson, which

implies that the optimal solution is found on a corner of the feasible region: for each stage
k

either Zk= g( Tj) or Zk = Zk-l, corresponding to Sk+l = 0 or Sk+l +T -Sk = 0,
j=1

respectively. Thus, the all-or-nothing property of the optimal solution still holds when

there is an evolving forecast and the forecast-based ordering policy. Moreover, we can

find the solution by enumeration, although, as we will see next, faster dynamic

programming methods are available as well.

Assembly system supply-chain topologies

Graves and Willems (2000) introduce a dynamic programming algorithm to solve the

safety-stock optimization problem for systems with base-stock ordering. This approach is

not only faster that Simpson's, but it can also be used on supply chains with more general

spanning-tree topology. Moreover, it does not rely on concavity properties of the bound

function B(Lk-1, Lk) .

We can extend Graves and Willems' algorithm to supply chains with spanning-

tree topology and with forecast-based ordering policy. We first show how to do this for

an assembly system; this case is simpler, as we have only one end item and thus one

bound function, which applies to all nodes. We will then briefly describe the

development required for more general settings in which we have multiple end items,

each with a bound function.



For the assembly system, we let k = 1 be the customer-facing node as before, and

introduce the function a(k) to denote the node that is immediately downstream (after) of

k. We set a(l) = 0. Each node can now have multiple upstream supply nodes. Since

processing at a node cannot start until material from all of its supply nodes is available,

we define the inbound service time SIk as the longest service time from the set of supply

nodes:

SIk = max S. Vk (85)
j: a(j)=k} J

We then can define the cumulative lead-time for each stage by the recursion:

LO =0
Lk = SIk+ Tk - Sk+ La(k)

Given the cumulative lead-time Lk, we assume that in each period t each node k places

an order on its supply nodes for delivery at time t + SIk with the forecast-based ordering

policy, namely:

Lk -1

Pk (t) = f (t + Lk + Af(t + i).
i-0

Analogous to (73), we can re-express the ordering policy in the following form:

Po (t) = D,
k +sk Tk +SIk -1

Pk(t)=: Et [Pj(t+i-Sk)]- S Pk(t-i)- I,(t) + Io, (86)
S= inventory on hand desired safety stock

scheduled downstream demand inventory on order

where j = a(k). (For any supply node i for which S, < SIk and k = a(i), we delay each

order from node k by SIk - S periods so as to avoid early delivery and excess inventory.)

As in Graves and Willems, the inventory dynamics at each node k depend on the

node's outbound and inbound service times, namely Sk , SIk . By following the same

development as for the serial system we can express the expected inventory at each stage

k as:

E[Ik ]=I =B(La(k) Lk

We can then write the optimization problem:



Nmm L hkB(L(k),Lk)
Sk,S'k k=-

s.t. SIk + Tk  Sk Vk

Lk = La(k) + S1k +Tk -Sk Vk (87)
Slk Sj Vj,k=a(j)

S,,Lo =0
SIk , Sk > 0 Vk

As for the optimization for a serial system, the first set of constraints assures that the net

replenishment time is non-negative and the second set specifies the cumulative lead-time;

for the assembly systems we need add a third set of constraints to relate the inbound

service time for each stage to the outbound service times for the adjacent upstream

stages.

The optimization problem (87) is the very same problem as solved by Graves and

Willems' algorithm for base-stock system, except that we now have a different bound

function. Graves and Willems use a demand bound in their objective function, whereas

here we use the bound function on the forecast revisions, given by (77); that is, we set the

bound function (with modifications for the assembly system) as

t+rk t+Lk

SjEAf(j) < B(L(k),Lk) Vt (88)
i=t+1 j=i

where the net replenishment time is rk = Lk - La(k) . Since Graves and Willems' dynamic

programming algorithm does not rely on any special properties of the bound function, we

can solve (87) by their algorithm.

Graves and Willems' approach applies to not just assembly systems but to more

general spanning-tree topologies as well. For supply chains with evolving forecasts, we

can in principle apply the same methods to find the optimal safety stock placements,

provided that one can construct the bound function for each stage. For serial systems and

for assembly systems we only have one end item and one evolving forecast; we thus only

need to develop one bound function, given by (77), which applies to all stages in the

supply chain. However, with general spanning-tree networks with multiple end items, we

can have upstream stages that supply more than one end item. Each end item has a

forecast process for which we would need to specify a bound on the forecast revisions,
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similar to (77). The forecast process for upstream stages can now be a combination of

the forecast processes for multiple end items; however, it is not clear how best to create a

bound function on the forecast revisions for the combined forecast processes. This is a

critical step in extending the model to these types of supply chains, as the bound function

determines the safety stock requirements. Of course, one can use the simple sum of the

bounds on the individual forecast revisions as a conservative bound. However, we leave

the development of more economical bounds for future research.
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21. Case study

In order to test the results from the previous sections, we performed a case study of the

supply chain for an electronic testing system manufactured by Teradyne, Inc. At the time

Teradyne had large safety stocks and a high service level, but was looking at ways to

reduce inventories. It was thus a good match for our research. This test case also allowed

us to develop some intuition for how the new method manifests itself in terms of the

locations and quantities of safety stocks. To do these things, we implemented Graves and

Willems' dynamic programming algorithm in the PERL programming language, after

modifying it with the new bound function.

The supply chain produces a family of semiconductor test equipment. The actual

product that is sold to a customer is customized to meet the requirements of the

customer's application. This customization is accomplished by the selection of options

from a large set of alternatives, where there is an electronic subassembly for each option.

Nevertheless, except for this choice of options, the rest of the product is standard for all

customers. For our test, we consider only the standard bill-of-material and the

corresponding supply chain, which is common for all products. This supply chain entails

3,866 stages or nodes and a single end item, where each node represents one specific part

at one specific location. The supply chain extends over multiple locations. Many of the

production steps are not done by Teradyne, but by subcontractors. Because of close

cooperation and strong relationships with the suppliers, Teradyne has considerable

influence over safety stocks at their locations as well. We used real data from the bill of

material to characterize the different parts and locations. We assumed that the holding

cost was directly proportional to the value of the parts, which were already calculated by

Teradyne. We plot the supply chain topology in Figure 6.
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Figure 6: Schematic view of supply chain for the studied product.

Teradyne forecasts the demand for future weeks in a master schedule. Orders are

first entered as open or "preliminary" orders, representing perhaps an early discussion

with an interested customer or a sales target. Eventually the customer has to commit and

the order becomes booked. In this way, the master schedule can be seen as a forecast. The

upcoming few weeks are quite accurate (booked orders cannot be cancelled, and new

orders are usually not allowed), whereas further into the future the schedule is bound to

undergo more changes and hence it is less reliable.

We collected data on schedules and their revisions for one year, and compared the
schedules with actual demand. For each week, we had data for the forecasts that were

made for a sixteen-week horizon into the future. In total we had about 50 observations

for each of the sixteen forecasts in the forecast horizon; that is, we had fifty observations
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for the one-week ahead forecast, for the two-week ahead forecast, up to the sixteen-week

forecast.

As shown in Figure 7, we measured the correlation between each forecast and the

demand and found that this correlation decreased approximately linearly over the

upcoming ten weeks. Beyond ten weeks, we found that there was effectively no

correlation, which implies that the forecast had no predictive power. In the subsequent

experiments we use the linear fit for the first ten weeks, and then assume zero correlation

beyond that. Under the assumption of i.i.d. forecast revisions we find that the forecast

correlation is equivalent to the standard deviation of the forecast, normalized with respect

to the standard deviation of demand:

p(D,, f (t)) = cov(D = f(t))
c(D,)a(f (t))

t

cov(f(t) + Af(t), f(t))
j=i+l

a(D1 )o(f (t))

cov(f(t), (t)) + cov( Af (t), (t))
j=i+l a ,(f(t))+0 oa(f(t))

r(D,)o-(f (t)) or(Dt)

Figure 7: Forecast quality (correlation with what was actually produced) as a function of
time into the future, for an electronic test system.
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Also we can relate this forecast quality measure to the variance of the forecast

error, which we use to calculate the bound function in equation (80); we show in the

Appendix that:

var(D, - f (t)) = ( - p2 (D,, f (t))) var(D,) (90)

To make the initial test simple, we assume that Af, (t + j) are independent for differentj

(in addition to the weaker assumption of independence over t, which we make throughout

the paper). With this additional assumption, and equations (90) and (82), we have (see

Appendix):

t+Lk
B(L(k),Lk) = za(D,) Lk -Lk ( )

j=t+L(k)+l (91)

t+Lk

= zo(D,) Tk + SIk - p2 (D, f (j))
j=t+L~k,)+1

This is similar to the expression for the base stock problem (82) with SIk = Sk+ , but now

the square root term has an additional term. In particular, we reduce the net replenishment

time for node k (rk = Lk - La(k)) by a measure of the forecast quality over the time

window (t + L(k), t+ Lk]

We note that in both cases the bound is proportional to the term za(D,); this can

be seen as a constant with which the objective function is multiplied, but which does not

affect the optimal solution or the relative performance between the base stock policy and

the forecast-based policy. Making the arbitrary assignment za(D,) +-- 1, we compared the

bound functions for the base stock ordering policy versus the forecast-based ordering

policy, using the straight regression line from the correlation terms measured at Teradyne

and illustrated in Figure 7. In Figure 8 we plot the bound B(O,L) for both the base-stock

system (82) and for the forecast system (91). Since we assume S1 = 0, the bound

function B(O, L) equals the required safety stock for node k = 1 if its net replenishment

time were L = T, + SI1.
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Figure 8: Normalized bound functions for systems with forecasts and with base stock
policies.

We see that for node 1, the forecast-based ordering policy results in significantly

less inventory than the base-stock ordering policy, especially when its net replenishment

time is only a few weeks. This is because the forecasts are relatively accurate in the short

term. As the net replenishment time increases, the inventory savings decline as the value

of the forecast decreases.

We solved the optimization problem (87) for four cases. For three cases, we

assume a forecast-based ordering policy but with different forecast properties.

Specifically, we assumed that the correlation between the forecast and actual demand

drops linearly from one to zero over a five week, ten week or twenty week horizon, and

then remains at zero beyond this horizon. As illustrated in Figure 7, the ten week horizon

closely matches the actual situation at Teradyne and is our base case. The five week and

twenty week were hypothetical cases included for comparative purposes. For the fourth

case, we assume a base-stock ordering policy, i.e, the Graves-Willems optimization; this

case ignores the evolving forecast.
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Figure 9: Total safety stock inventory costs for all the nodes with less than a certain lead
time

The safety-stock holding costs for the forecast-based ordering policy with a ten-

week horizon are 25% less than that for the base-stock ordering policy. Thus, for this

supply chain, there seems to be substantial benefit from accounting for the forecast

evolution when setting the safety stocks.

We also find that the safety stocks depend on the quality of the forecast process.

For the actual case the forecast improves steadily over a ten-week period as seen in

Figure 7. In comparison, we considered the supply chain assuming that the forecast

improves over a twenty-week horizon. This is a higher quality forecast as all of the

forecasts in a twenty-week horizon are more accurate relative to the ten-week case; when

we optimized this case, we find that there is a reduction of 21% in the safety stock

holding costs, relative to the optimal solution for the ten-week case. Similarly, we

considered a lower quality forecast in which the forecast improves over a five -week

horizon; here the optimal safety stock holding costs were 17 % higher than for the case

with a ten week horizon.
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To get some intuition for how the four solutions differ, we calculated how the

inventory was distributed in the supply chain for each case. In order to make this

comparison, we defined the minimal cumulative lead time 4k to be the cumulative lead

time Lk when SIk = 0. That is:

(92)
L, = k+ Tj k = a(j),Vj

By construction, k is a property of each node that does not depend on the service times,

and so it serves as a measure by which we can compare the inventory placement for

different solutions.

In Figure 9, we plot the total holding costs (on the y axis) for all nodes k such that

Ik < x (on the x axis). For example, at ten weeks on the x axis, the curve represents the

total inventory holding cost for all inventory that can, in theory, be processed into

finished products within 10 weeks. We only plot the holding costs for the first twenty

weeks, which accounts for 97% of the total holding cost of the supply chain for the base

stock case. Beyond twenty weeks the cumulative holding costs for the four cases grow at

the same rate.

From Figure 9, we see that the difference in the solutions is found primarily in

those parts of the supply chain whose distance is less than the effective range of the

forecasts. For example, the safety stock for the base-stock policy initially grows much

faster than that for the ten week case. As explanation, the ten week case requires very

little safety stock in the downstream parts of the supply chain, as it can take advantage of

the accuracy of the short-term forecasts. In contrast, the base-stock ordering policy does

not use these forecasts and so cannot realize this gain; this policy must have inventories

commensurate with the temporal variations of demand, which are considerable.

However, beyond ten weeks, the safety stocks for the ten week case and for the base-

stock case grow at approximately the same rate; this is because the stages with

cumulative lead-times greater than ten weeks use the same bound functions for both the

forecast case and the base-stock case and hence, the forecast case has no advantage over

the base-stock case.
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The computations for each of these supply chain problems took about one minute

on a mobile computer (Intel® CoreTM2 CPU, 2.33GHz, 1GB RAM); no doubt this time

can be reduced by implementation in a compiled programming language.

It is somewhat difficult to compare the solution directly to the actual situation at

Teradyne, since at the time there were multiple layers of buffering and it was not clear

what the actual service level was. As Teradyne had not performed a global optimization

to set its stocks, we suspect that the optimal solution for the base-stock ordering policy is

a fairly conservative proxy for their current state. Hence we believe there is substantial

opportunity for improvement from the consideration of the evolving forecast.

22. Numerical examples

To examine the impact of an evolving forecast for various supply chains, we performed a

number of numerical experiments. We used the same supply chain and cost structures as

in Graves and Willems (2006). Specifically, we considered a serial system with N = 5

nodes, and with three alternatives for both the cost accumulation and the production lead-

time as follows:

Stage 5 4 3 2 1

Increasing 36 28 20 12 4

Constant 20 20 20 20 20

Decreasing 4 12 20 28 36

Table 13: Alternative structures for supply chain lead-time and cost accumulation

The terms "increasing" and "decreasing" should be understood in terms of going

upstream starting from the customer facing stage 1. In the case of cost accumulation, the

values stated in Table 13 represent the cost added at each stage. For example, for the

increasing cost scenario, the cost at stage 5 is 36, the cost at stage 4 is 36 + 28 = 64, the

cost at stage 3 is 36 + 28 + 20 = 84, etc. For all three scenarios the cost of the finished

good at stage 1 is 100.

109



For the production lead-times, the values for each scenario represent the values

for Tk . For each scenario the cumulative lead-time for the supply chain is the 100.

We assume that the length of the forecast horizon is 100 periods and we consider

five forecast processes. For each forecast process we use (26) as a bound on the forecast

revisions, where we assume z = 2, a = 20. Similar to the Teradyne example, we assume

that the correlation between the forecast and realized demand goes linearly from 0 to 1

over a horizon of 0,25,50,75, or 100 periods. The first case thus represents no useful

forecasts and is equivalent with Graves-Willems optimization. The 25, 50, 75 and 100

period cases represent increasing improvements in the quality of the forecast.

The combination of 3 cost structures, 3 lead-time structures, and 5 forecast

horizons results in a total of 45 experiments, listed in Table 14 below. We state the

optimal holding cost for the zero-horizon case, which corresponds to the base-stock

policy. For the other forecast-horizon cases, we report the optimal cost as a percentage of

the zero-horizon case.

Forecast horizon

Cost Lead-Time 0 25 50 75 100

Increasing 40.0 96.0% 90.8% 84.5% 78.3%

Increasing Constant 40.0 96.0% 91.6% 86.9% 82.0%

Decreasing 40.0 96.0% 91.6% 86.9% 82.0%

Increasing 36.8 87.2% 79.7% 72.2% 66.0%

Constant Constant 39.4 95.4% 90.3% 84.8% 79.0%

Decreasing 40.0 96.0% 91.6% 86.9% 82.0%

Increasing 26.8 79.2% 66.7% 58.2% 52.0%

Decreasing Constant 34.6 93.9% 85.0% 76.6% 69.7%

Decreasing 39.2 95.5% 90.5% 85.2% 79.4%

Table 14: Total costs for various supply chains and forecast horizons

We see that in all cases, one can reduce the safety-stock costs significantly if one can

incorporate a high-quality forecast into the planning process.

Not surprisingly, the "decreasing" cost scenario leads to the lowest overall costs,

because under this scenario the upstream stages have much lower holding costs compared
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to the other cost scenarios. The inventory savings from the forecast are the largest for the

decreasing cost scenario, relative to the other cost scenarios.

The "increasing" lead-time scenario also results in lower costs; in this scenario,

the shortest lead-times are downstream, nearest to the customer, where holding costs are

the highest. Similarly, the forecast provides the greatest savings for this case relative to

the other lead-time scenarios.

The combination of decreasing costs and increasing lead times results in

particularly low total costs, especially in combination with forecasts which are useful

over the planning horizon.

We also report the structure of the optimal solution in Table 15. We denote a

solution by a binary code, whereby a "1" in the kth position denotes a decoupling

inventory at stage k, while a "0" denotes no inventory. For example, "00001" represents

inventory at stage 1 only.

Cost Lead Time

Increasing

Increasing Constant

Decreasing

Increasing

Constant Constant

Decreasing

Increasing

Decreasing Constant

Decreasing

Forecast horizon

0 25 50 75 100

00001 00001 10001 10001 10001

00001 00001 00001 00001 00001

00001 00001 00001 00001 00001

01001 10011 10011 10101 10101

10001 10001 10001 10001 10001

00001 00001 00001 00001 00001

11101 11011 11111 11111 11111

11001 11001 10101 10101 10101

11001 11001 11001 11001 10101

Table 15: Structure of optimal solution; 1 represents inventory at a node.

For this set of test problems there is a wide variety of optimal solutions. However,

for a particular cost and lead-time scenario, the structure of the solution (i.e, where we

place safety stocks) is relatively stable across the different forecast scenarios. This is

important as it suggests that the optimal location of safety stocks depends primarily on

111



how the holding costs and lead-times are set across the supply chain, rather than on the

specifics of the forecast process.

23. Conclusions and future directions

In spite of the ubiquity of forecast-based planning systems (e.g., MRP systems), the

analysis of safety stocks has been limited to simple special cases, such as one or two

nodes, i.i.d. demand processes or perfect forecasts (Guide and Srivastava 2000). In this

paper we develop an approach that extends the framework of Simpson (1958) and Graves

and Willems (2000) to include an evolving forecast. We are then able to apply the

dynamic programming algorithm from Graves and Willems (2000) to solve for the safety

stocks in assembly-system supply chains. Furthermore we demonstrate that accounting

for the forecast evolution process results in less safety stock, where the magnitude of the

savings depends on the quality of the forecasts. We expect that our approach is

computationally fast enough to solve supply chains of any size likely to arise in practice.

In the literature, there is debate over where to place safety stocks in MRP systems,

or the type of buffer to use (Guide and Srivastava 2000). If one accepts the specific

assumptions made in this paper, then we note that the optimal placement of supply-chain

safety stocks is driven by three different (and sometimes conflicting) principles. The first

two points are the same as for systems with base-stock ordering policies.

* Statistical economies of scale, as manifested in the (strict) concavity of the bound

functions, encourage the use of fewer, larger, safety-stock buffers.

* Value-adding activities (holding costs that increase downstream in the supply chain)

encourage the use of more numerous, smaller, and distributed safety stocks

* When using a forecast-based ordering policy (e.g., MRP logic), the overall size of the

safety stocks depends on the size of the forecast errors, rather than the variability of

demand. To the extent that we have a meaningful forecast, we expect the forecast

errors to be smaller than demand variability, resulting in less safety stock. These

reductions in safety stock will primarily be downstream in the supply chain, at the

stages whose cumulative lead-times correspond to the horizon of useful forecasts.
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Finally we remind the reader of the limitations of this work, and the opportunities

that this suggests. We do not have a good solution for supply chains with spanning-trees

topologies. We believe that the crux of the problem is to find a practical way to

determine the bound function on the forecast revisions; nevertheless, there might be

completely different and better ways to approach and analyze this type of supply chain.

We also leave even more general (cyclic) networks for future research. Another

limitation is the simplicity of the ordering policy. We do not consider many features that

are typically incorporated in MRP systems, such as lot sizing, capacity constraints, and

supply uncertainty; we do not account for these considerations in the present framework

for strategic safety stocks. Finally we note our assumption of deterministic procurement

and production lead-times; it would be most valuable to determine how to extend this

approach to accommodate stochastic lead-times, as is common in practice.
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Appendix

In this Appendix, we provide proofs and detailed derivations for some of the claims made

throughout the text. The order is the same as that used in the text.

Derivation of (68)

Aft (t + s) = E[Dt,, I Tt, T t-_1,...]- E[Dt,, I Tlt-1 , ,t-2 9

= E[p + RHXt+, I t' t-1 ',...]- E[p + RHXt+, I tl, l t
-2' ' '

]

= RHE[X,,, I '~t, Y,_,...] - RHE[X,,, I It- 1,_,t-2,... ]
= RHE[FXt+,_l + Vt+,_s I P,, y,_1,...] - RHE[FXt+s,• + Vt+s-' I t-_, tI,-2,]

= RHFE[Xt+,_+ I ,, _1 ,...]- RHFE[Xt+sl i t-1, It-2 , ..

= ...= RHFSE[X, I t,,,_,,...]- RHF'E[X, I t,_, t-2 ,] (A93)

= RHF5 (X, - E[X, I ,_,, t,-2,...1)

= RHFs (FX,_, + Vt - E[FXt_, + Vt I t_,, YT t- 2 , . . .])

= RHFs (FX,_1 + Vt - E,_1 [FXt_, + V I ' , t-29,...])

= RHF'+IV,

Proof that (72) holds if and only if E, [Ik(t + T + Sk+l)] constant

In this proof, and the ones to follow, we will use the notation E,[.] to indicate

expectation conditional on all events (specifically, all realizations of the forecast revision

process) up to time t, inclusive. First we note that for i int < i < t + Tk + Sk+1 it is

impossible to hold E, [Ik (i)] constant since any control only affects Ik(t) after a

leadtime Tk + Sk+l. Furthermore, if E, [Ik (t + T + Sk+1)] is held constant every period, then

E, [Ik (i)] for i > t + Tk +Sk+1 will automatically be held constant as well. Hence, keeping

E, [Ik (t + Tk + Sk+,)] constant is in some sense the best we can do in terms of keeping

expected future inventory constant. We now proceed with proving the claim.

If: This will be shown in the derivation of (75) below.
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Only if: We need to assume that E, [Ik (t + Tk + Sk+,) ] = Ik , and show that this implies the

policy (72). In what follows we use the identity E, [Pk] = Pk for t 2 s:

I° = E,[Ik(t+Tk + Sk+1,)]

= E,_, [Ik (t + Tk + Sk+,1 - 1)]+ (E, [Ik (t +Tk + Sk+ )]- E,_ [Ik (t + Tk +Sk+ -1)])

t+Tk +Sk+1 -Sk

S E[ k-1 +
i=t-Sk

= I + -E, [ k-1
Ik- [+T +Sk+,-s -S

i=t+Tk +Sk+ 1-S k -1

i=t-S k

t+Tk +Sk+1 - -1

i= E k-1
i=t-Sk

E,_1[k-'] +

ip + p1-

i=t+Tk+Sk+1-Sk -1
-

E
i=t-Sk

IkO -Et[k-+S+t+Tk+S,+ s ]+ (E,
i=t-S k

+Tk +Sk+1 -Sk -

k -+ 
/- ( Ekk-- 

E k ki=+ ++
i-t -

= I -E,[k sk+-S ] +  pk
i=t-S

k

1 k-1)+( E l[ k-1 k 1)

t+Tk +Sk+1 -Sk--1
+ y (E,_k[•-ll--Et[k-1 k)

i=t+l

t+Tk +Sk+1 -Sk -1

= I-E,[Pk+is,+ ]+ E,-k-- Pk-) + (+] E,_[tk- -E, •k-1' k

i=ting in terms +l we have

Comparing the first and last line, and rewriting in terms ofPk , we have

k =E,t[P +S,,Sk k- 1 - Et [k-l ] +
t+Tk +Sk+1 -Sk - 1

i=t+l
(A94)

For the special case k =1, we have that Po = D, and E, [Dt ] f, (t + j) . Inserting these

identities in (A94) gives us (72). Hence the claim is true for k= 1, we now proceed to

prove it for greater k, by induction. Suppose that the policy (72) is used for some k-1, and

that I° = E, [I(t + Tk + Sk+)] for all k. Then we have:
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1k

Et_1 [k-1 ]
Et=-TA -Sk+l

pk

t+Tk +Sk+1 -S k -1

i Etk---E, k-1 k
i=t-Sk

IkO -Et[ sk- +1Skt.[ +Tk + +_Sk ]

[k-I]
-

E [Pk-1 ])i-(E k] 
-

Et[k-1])

=I ° + Ik(t- 1)- Pk Ik Qt- 1)



t+Tk +Sk+I-Sk-1
pk = E,[ k +-Sk -1 - E [ -1 ]k-1 [ _Et

i=t+l

t+Tk +Sk+1 -Sk -1
= ft(t + Lk-1 +Tk +Sk+l-Sk)+ k-1 ft-l(t + Lk-1,) + t(i + Lk-, t-l,(i+Lk-)) =

i=t+1

=ft(t+Lk)+ f(t+Lk-)+ Aft(i)It-l(t+Lk-1)+ Aft(i)
i=t )i=t+Lk- +1

t+L4 -1

= J(t + Lk)+ E Af(i)
i=t

(A95)

Since we showed that the claim was true for k-l, we have that I, = E [Ik (t + Tk + Sk+)]

for all k implies policy (72) for all k.

Proof that (72) and (73) are equivalent

From the inventory balance equation (74) we can describe Ik(t + Tk + SIk ) in terms of

Ik (t) and incoming and outgoing orders.

Tk +Slk Tk+SIk

I k (t+T k +SI k = (t) -1 (t + i - Sk) + P t - SIk) (A96)

Taking the expectation at time t gives us

Tk +SIk T +SIk

Et[Ik(t +Tk +kSI = Ik E[Pk-(t +i-Sk)]+ E[P(t+i-Tk -SIk)].

We note that in the rightmost sum t + i- Tk - SIk < t and so the orders

Pk(t + i- Tk - SIk ) have already been realized and the expectation operator is redundant. If

we furthermore simplify the last summation index and separate out the last term we get
rk+SIk Tk +Sk

Ik (t)-- E[jP+k-(t+i-Sk)]+ E E[Pk t+i-Tk -SIk)]
i=1 i=1

Tk +SIk  
Tk +SIk-l

Ik (t)- Et[P-l(t+i-Sk)]+ Pk(t-i)+Pk(t)
i=l i=l
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So far we have not used any properties of the policy itself, only of the generic inventory

balance equations. Now suppose that the order Pk(t) is determined by (73). Then:

Tk +SIk Tk +SIk-

Ik ()- Et[Pk-1(t+i-Sk)]+ Pk(t-)+Pk(t)
i=1 i=1

Tk +Sk Tk +SIk-

= Ik (t)- E, [Pk-_(t+i-Sk)]+ , Pk(t - i) +

Et l[P-(t+i-Sk)]- 1k(t-i)-Ik(t)+Ik0
i= l i= l

=I°
Thus when (73) is used E,[Ik (t + T+ SIk)]= I°4 and is thus constant. But we have already

shown that this property uniquely characterizes the policy (72), and so (72) and (73)

must be equivalent.
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Derivation of (75)

Ik (t +Tk + Sk+) = Ik (t + Sk ) -
I+Tk +Sk+1 -Sk

E -Pk-l+
i=t+1+Sk -SA

t+(Tk +Sk+l )-(Tk +Sk+l )

i=t+l+Sk -(T k +Sk+l )

t+rT I

=Ik(t+Sk)I-±k-1+ 
E pk

i=t+l i =t+l-r

+r' i+L -1 t i+Lk 1

= Ik(t+Sk)- Afk(j)+ (i+Lk _) + Af(j)+ f(i+Lk)
i=t+l j=i i=t+l-trk j=i

=Ik(t + Sk)- I Af(j)++ f(i + Lk
i=t+l j=i 

l=i-rk +l

t +L - 1

+ Af (j) +
i=t+l-rk j=i

t+1k i+Lk-f-1 it i+LkA1

Ik(t - Af(j)+ f I(i+Lk-) + (j)
i=t+l j=i l=i-r k +1 i=t+l-rk j=i

t+ik i+Lk-I -1 j

=Ik(t+Sk)- Af(j) + Af (i+Lkl)
i=t+l j=i =t+l

t i+Lk 1 Tk

+ Af (j)- Z Af (i + Lk-1
i=t+-r k j=i i=t+ll=i-Tk +1

t+Tk i+Lk-1-1 t+rk

Ik(t+Sk)- Af(j)- Af i ( j + L k- 1)

i=t+l j=i j=t+l i=t+l

t i+Lk -1 t+Tk

+ Af-(j)- (j+L
i=t+l-r k j=i j=t+l i=j-r k + l

t+r k i+L4_ -1 + t+rk  k

=Ik(t+Sk)- Afj (j)- I IAf (j+ Lk-+
i=t+l j=i i=t+1 j=i

t i+L4-k

+ EAf(j)-
Si t+1-Tk=

i+r k - 1

i~t+l-k j=t+)

t+rk i+Lk-1-1 t+r k t+L4

= Ik (t + Sk(j)- A(j)
i=t+l j=i i=t+1 j=i+Lk1

t+Tk t+Lk r t+L
= Ik(t + Sk)- (j) t A (j)

i=t+l j=i i=t+l-rk j=i

t i+Lk - 1

i=kt+ j=i

S i+++Lk -1

i=t+1-Tk j=t+1+Lk-1
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1+rk t+L4

We note that Af (j) is the change of inventory caused by new forecast revisions in
i=t+l j=i

t

the time window [t + 1,t + zk ], and
i=t+l-r k

t+Lk4-

2 Af (j) is the replenishment for the forecasts
j=i

that happened during [t + 1- rk, t]. These expressions are identical except for a translation

t+Tk t+Lk

of rk . If there were no change of forecasts during [t + 1, t + rk ], A f(j) = 0, then
i=t+l j=i

the replenishment would bring the safety stock back to its default value which we denote

I° . Mathematically, we have that Ik (t + Sk)+
,i=t+1-r k

t+Lk-1

SAf(j)
j=-

I. Hence

Ik (t +Tk + Sk+) =

t+rk t+Lk

S - Af (j). Note also that I is the average inventory level:
i=t+l j=i

E[Ik(t+Tk +Sk+l)] = E[I]- EI Af (j) = I
Li=t+1 j=i

Derivation of (80)

For the bound to be valid, we need to show that

zr (Ik(t)) = F2(Lk) 2 Lk-).

(A97)

(A98)

We have that
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var[Ik (t)]
[t+rk t+Lk 1

= var ( A j)
i=t+l j=i

= var[I Af(j) (A99)
i=t+l j=i

t+L, [+ t+L k Ft+L 1
S var (j)l - var Af()(j)
i=t+l j=i i=t+rk + 1 j=i

var [ (j> j -var E Y (j)
Li=t+1 j=i ] i=t+rk+l j=i

We note that since AfJ(j) are i.i.d., we can add or deduct any constant from i andj, and

still preserve the variance:

[ t+Lk t+L4 var t+Lk t+Lkvar I (f -var Z Afj j)
i=t+l j=i Li=t+Tk+l j=

= var ( (j) -var • A_• (j - rk
[i=t+l j=i =t+rk+l j=it

Because Lk = Lk- 1 +rk , we have
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Ft+Lk t+Lk t+Lk t+4L

var l I L t) +var J _, k
i=t+1 j=i i= t+k +1 j=t+L4 1 t+ t+ k= var [ Af () -var A k_,:l

i=t+ j=i =t+r+l =-

i=t+Lk t+L var

i=t+ j=i

t+Lk-rk t+L4 -k

i=t+r -rk+l j=i
Af(i )

r t 4+L +L, ][t+ t +Lk . ]
varE E A -var ( Af (j)
Li=t+l j=i L=t+1 j=i

St+Lk 

J=var A ( A j (f
Lj=t+l i=t+l

1+L, t+L

j=t+l j=t+1

t+L, t+L[4]-varl (D,- _, (j)) -v=ar ( j)
J-j=t+l _j=t+l

var[Ik (t)] = var

which combined with the definition (79) ofF, gives the claimed relation.
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(A101)

(A102)

t+L~k-l-var/ EAfl(j)
I j=t+1 i=t+ I

t+L, t+[4-
(,-j-)f -varl) , -f())t ,

j
=t +l j=t+1



Derivation of (90)

var(D, -fi(t))

j=i+l= var( Af 1(t))

= var( Afj(t))+var(f (t))-var(f (t))=
j=i+l

= var( Afj (t) +fi(t)) - var(f/ (t))=
j=i+l

= var(D,) - var(f (t))

=(- var(f (t) var(Dt)var(D,))
Finally, using (89), we have:

= ( var((t) var(D,)var(Dt)

= (1- p 2 (DI, fi(t)))var(Dt)

Derivation of (91) under additional independence assumption

We have from (79) and (80) that:

B(Lk-1,Lk) = z/var• (Dj - f(j)) -
j
=t+l

ar(t+4-(var (D•,
j=t+l

If we now make the additional independence assumption (as stated), then (Dj

(A105)

-f(j))
are independent for differentj. Then

t+Lk
= z var[Dj -f(j)] (A106)

j=t+Lk-i1
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-f (j))

-f (j))
t+Lk (t+Lk-1

z var jt(D- (j)) - (Dj=t+1 j=t+1



And finally, using (90)

t+Lk

z,/C var[D, -f(j)]
j=t+Lk-, +1

t+Lk

j=t+LkI +1

I+Lk

j=t+L(D) +1
i=t+Lkl +1

(A107)
=t+Lk j=t+

j=t+
1

j=t+1

t+Lk
= z(D,) Tk + Sk+ -S -  I p2D, fJt (j))

j=t+Lk-_ +1
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V. Addendum

24. Forecast-based ordering with multiple end products

In the essay "Strategic safety stocks in supply chains with evolving forecasts," we

extended the applicability of the guaranteed service framework to a setting in which

orders were placed in response to changes in forecasts and schedules. We showed that

one can use the Graves-Willems optimization algorithm, which was developed under the

assumption of base-stock ordering, in the forecast setting after some limited

modifications. In particular, the key modification is to replace the demand bound with a

forecast error bound.

Our work on forecasts was limited to supply chains with a single demand stage.

Here, we discuss how we can construct bounds on the forecast errors for multiple merged

order streams. Specifically, we define the set A of demand nodes. We also define the

binary (indicator) variable Sk, for 1 e A, so that 8 , = 1 if the demand node I is

downstream of the node k, and zero otherwise. We index the demand and forecast

processes by the relevant demand node, so that d'(t) is the demand in period t at stage 1,

and f'(t + j) is the forecast made at time t for the demand at node 1, at time t+j. We

assume that for each 1, the forecasts f/' and forecasts revisions Af4' fulfill all the

condition specified in the single customer case.

We assume that a stage k which (directly or indirectly) serves multiple customer

stages, provides the same service time Sk to all of them (this assumption is shared with

Graves and Willems). We define C(k,1) to be the set of stages that are downstream of k

but upstream of l (inclusive); we can then define the cumulative lead time

Lk =SI + k Tj. (108)
jeC(k,l)

That is, the cumulative lead time is specified for a duplet (k, 1), which is the time it takes

from the point where k places an order, until that order has been delivered all the way to

the demand node 1. With this notation in place, we can generalize the inventory formula
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(10) from the essay "Strategic safety stocks in supply chains with evolving forecasts", as

follows:

I, (t + Tk + SIk , 1 - k ( j) . (109)
leA i=t+l j=i

Assuming, analogously to the single product case, that Af7 are normally distributed, we

can specify a probabilistic service level by setting

Bk(SkSIk Z [Ik(t)]0= Z Ski r 2 Af'(j) (110)
-lr=A i=t+1 j=i

where z is a service level parameter and a[ ] indicates standard deviation. It is thus

quite straightforward to formulate the equations for inventory and forecast error bounds,

even when there are multiple demand nodes. The challenge is to determine the standard

deviation term in practical applications.

If the forecast (and demand) processes for different end products are independent,

we have from elementary probability that

Bk (Sk, SI) in epdt z i vaT ZEA'(j) (111)
Edep nt A _i=t+1 j=i

In principle, one could envision specifying a multivariate demand and forecast

process, and then determining (110) analytically. However, this approach may require an

extraordinary amount of data and computation. Specifically, if there are Mdemand nodes

and a forecast horizon of length H, then the forecast revision process Af' (t + i) consists of

MH different values, and would have a covariance matrix with M2H 2 values. Such a

matrix can be challenging to store, let alone compute from historical data.

Instead, we propose that we estimate Ik (t) and za [Ik (t)] directly from historical

data. That is, rather than completely characterizing the (multi-dimensional) forecast

revision process, one can save a lot of memory and computation by directly calculating

only the resulting inventory variations for relevant service times. In each period we

observe the forecast revisions for each product. If we have access to a sufficient quantity
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t+r, 1+4I

of such data, we can determine the empirical distribution of IS j r, E f'( E, for
leA i=t+1 j=i

any parameter values needed by the optimization. Specifically, suppose we need to

evaluate (111) for given values of k, Sk and SIk, and that we have data on past AfJ.

Suppose further that for the purpose of finding asymptotic complexity, we disregard the

factor E . Then if we evaluate the term for T different values of t, the computational
leA

cost will be O(rkLkT) , or O(H 2T) if we consider that the first two terms are bounded by

the forecast horizon H. In order to perform Graves-Willems' optimization, ( 11) must be

evaluated for all N stages, and for each stage for O(H2 ) different combinations of Sk and

SIk . Thus the total computational requirement for this naive approach is O(NH4T).

t+1k t+L!

We can improve on this by noting that the sums in ( C Af' (j) will be
i=t+l j=i

calculated many times, often with only small changes in indices. Recalculating the whole

sum from scratch every time may not be the most economical approach. Indeed, we will

next outline a faster method, starting by defining the stage-specific matrices ak and bk as

follows:

(m+1+ T
jeC(k,)

ak (i,m) = Ski Z)
leAj=i (112)

n

bk(n,m) = a(i,m)
i=1

The matrices ak and bk and their individual elements do not necessarily have any

particular intuitive meaning, rather they are devices which help us store partially

computed sums. ak has the dimension (T + H) x (T + H), and bk has the dimension

H x (T + H). We note that ak and bk can be calculated recursively:

ak(i,m) =ak(i,m-1)+ 6kiA'(m+l+ I Tj)
leA jeC(k,l) (113)

bk (n, m) = bk (n - 1,m)+ ak (n, m)
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Hence, we can use the following algorithm to calculate ak and bk for all relevant values,

using only O(NH(T + H)) = O(NHT) operations. The symbol - stands for assignment.

1. For iE(1,...,T+H)

(i+1+ I T

lD jeEC(k,()

2. For mE(1,...,T+H)

a. bk(l,m)-- ak(l,m)

b. For ne (2,...,H)

bk (n, m) <- bk(n - 1, m) + ak (n, m)

Now using (110) we have that

oak (t)] =
t+SIk+ Tj

t+Tk +SIk -Sk jeC(kJ)

{Z i =+ ]j=i (114)

=a[4(t+Tk +SI,- -SkSI)-b(t,SIk)]

And therefore, for a service level type bound, we have that

Bk(Sk,SIk )=zk ' (bk(t+ +SIk -SSl)-bkSIk)) 2 (115)
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If b has been calculated in advance and stored in a matrix, (115) can be calculated

with O(T) operations whenever Bk (Sk, SIk) is called, which happens O(NH2 ) times in the

Graves-Willems algorithm. Thus the total time complexity for first calculating a and b

from historical data and then solving for the optimal solution is

O(NHT + NH2 x T) = O(NH2 T). This represents an increase by only a factor T over the

original base-stock algorithm.

As we saw in the case study in "Strategic safety stocks in supply chains with

evolving forecasts", Graves-Willems algorithm enables us to quickly optimize even a

very large supply chain on a mobile computer. This suggests that the increase of a factor

T will be affordable in many practical situations.

How large does T need to be in order to establish reliable estimates of

Bk (Sk,SIk)? We recall that Bk (Sk,SIk)is a measure of the maximum cumulative forecast

errors. The forecast horizon H is the greatest time period for which we need to estimate

these cumulative errors. Therefore, it is desirable to have T many times larger than H, so

that we have many independent cumulative forecast error realizations. For example, in a

supply chain with a maximum lead time of two months, one may want at least two years

worth of data, to have 12 independent observations of cumulative forecast errors over two

months. To get a more quantitative understanding of estimation errors, one can determine

confidence intervals. It must be noted, however, that 2 years of data will generate a very

large number of separate but overlapping observations that can be used for example (111)

. However, these sums are not independent and must not be treated as such for the

purposes of calculating confidence intervals. We leave a deeper exploration of this topic

for future research.
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25. Base-stock ordering when demand is not i.i.d.

In this section we will make some remarks about demand that is not i.i.d. in guaranteed

service models. We recall that guaranteed service models do not make any explicit

assumptions about demand (other than the existence of an average demand level gt).

However, the demand bounds can be seen as being consistent with certain demand

distributions. In particular, Simpson (1958) proposed using the demand bound

,nr + azvf, where a is the standard deviation of demand, z a service level parameter,

and r the net replenishment time. This bound is consistent with providing a certain

service level for a demand process that is i.i.d., and normally distributed. The bound has

been extensively used in theory and practice. More recently, Graves and Willems (2000)

suggest that the bound ur + oz (r)P can be used, and indeed has been used, in situations

with non-i.i.d. demand. Although Graves and Willems (2000) provide no theoretical

justification for this particular form, one might choose the value ofp by fitting to

historical data. A p < 2 implies that the demand bound grows faster over time than in the

i.i.d. case, which is consistent with positive period-to-period correlations in demand.

Here, we remark that given any model for a stationary demand process, it should

in fact be possible to derive an exact form for the cumulative demand over some window

r . We illustrate this by looking at an auto-regressive, 1st order model, AR(l). We hope

that this example will be useful in its own right, as well as motivate investigations of

other demand distributions.

We recall that the AR(1) model is:

d(t +1)= ad(t)+ p +6t  6, - N(0, a), Ja <1 (116)

where a, p and a are parameters, and c, are i.i.d. random variables. We wish to derive

equations for inventory for a stage that has the net replenishment time r and faces such

demand. First we note that
"-1

d(t + r) = ad(t + r - 1) + + p+ ., = ...= a'd(t) + aJ ( + CE,,_) (117)
j=0

Now, using (117) we have
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Zd(t
i=l1

+i)= a'd(t)+ aj (p+,+ )
i=1 j=0

= a'd(t)+ Ia' e, (p + ,)
i=1 i=1 j=O

1- a' 1' - r
1 di-a =1- i1j0 i--=1 I-a i=1 j=0

1- a'
=a- d(t)+

1-a 1-a
1 ar+' r
1-a )= j=0

1 -a'
= a - d(t) +

1-a
- 1(- a'-la

1-a 1-a
S- a' r- i+l

+=1 +i1-a

To proceed, we need to consider the distribution ofd(t), assuming that the demand

process has reached steady state and we have no prior demand observations. We use

(117) and note that c, is i.i.d.:

d(t)~ N( )2 )N( , 21-a I=0 1-a 1-a
We recall that in a base stock setting, we can state the inventory Ik (t) at stage k at time t

as:

t+Tk +SIk

Ik(t)= Bk- d(j) ,
j=t-S, +1

where Bk is the (constant) base stock level. Combining (118), (119) and (120) we can

find the inventory variance as follows:
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var[Ik (t) =

= var a d(t) + 1 _ 1E
1-a I-a 1-a I 1-a

1-1 - ar- i+1 2
= (a var[d(t)]l+ var[c.,]

-a- 1-a

= a 1-a 2 - 2 r --a 2 C 2

7+ -2a +a
(1- a)2 (1- 2  - - a + a

- (l2a)-----2, l +a2 + r-2aIl2a =
'- a2 a2(2 - 2ar)+ -2a I-a"

(1 - a) 2 2- 2I

rec2 v2 (2 - 2a') - 2a(s+ a)(cs- ar') b

a 2 a2(2 -2a')- 2a(1 + a -a' -a"') (121)

a 2  -2a(1- a' ) +
(1- a)2 -2-

Thus if we want to set safety stock so that it corresponds to a service level, we have:

- -2a(1 -a')
I k  2 Z+- (122)1-a 1- a

This term should replace the term zoalf used in the i.i.d. case, which incidentally is

recovered in the special case a = 0 (this can be confirmed both by looking at the demand

distribution itself, (116) and the resulting safety stock equation (122)).

We think that (122) can be used as a refinement of Simpson's formulation in

practical cases. The parameter a is in fact equal to the period-to-period demand

correlation p :
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cov(D(t), D(t + 1)) =

= cov(D(t), aD(t)+ pu + 6,,1)

= cov(D(t), aD(t)) + cov(D(t), p + 1) (123)

= a var(D(t))

Rearranging for a gives us:

a cov(D(t), D(t + 1))

var(D(t))

cov(D(t), D(t + 1))
Jvar(D(t)) var(D(t +1))

= p(D(t), D(t + 1))

Of course there is no guarantee that demand follows exactly the AR(1) process;

but it would seem like this is a sensible refinement of Simpson's model, which in effect

amounts to the assumption that the period to period demand correlation is zero. The

formulation (122) requires that one more parameter a = p be estimated but will

presumably result in better inventory allocation when demand is not i.i.d.

Estimating a = p from historical data can easily be done with standard spreadsheet

functions.
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