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Abstract
In this thesis, we investigate unsupervised and semi-supervised methods to construct anatom-
ical atlases and segment medical images. We propose an integrated registration and cluster-
ing algorithm to compute an anatomical atlas of fiber-bundles as well as deep gray matter
structures from a population of diffusion tensor MR images (DT-MRI).

We refer to this algorithm as "Consistency Clustering" since the outputs of the algo-
rithm include population-wise consistent segmentations and correspondence between the
subjects. The consistency is ensured through using a single anatomical model for the whole
population, which is similar to the atlases used by experts for manual labeling. We experi-
ment with both parametric and non-parametric models for the gray matter and white matter
segmentation problems, each model resulting in a different kind of atlas.

Consistent population-wise segmentations require development of several integrated al-
gorithms for clustering, registration, atlas-building and outlier rejection. In this thesis we
develop, implement and evaluate these tools individually and together as a population-wise
segmentation tool. Together, Consistency Clustering enables automatic atlas construction
in DT-MRI for a population, either normal or affected by a neural disorder. Consistency
Clustering also provides the user the choice to include prior knowledge through a few
labeled subjects (semi-supervised) or compute an anatomical atlas in a completely data-
driven manner (unsupervised). Furthermore, resulting anatomical models are compact rep-
resentations of populations and can be used for population-wise morphometry.

We implement and evaluate these methods using in vivo DT-MRI datasets. We inves-
tigate the benefits of population-wise segmentation as opposed to individually segmenting
subjects, as well as effects of noise and initialization on the segmentations.
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Chapter 1

Introduction

Human brain is the control center of the human body, responsible for virtually all human

activity, including movement, thought and emotions. It does so by receiving and processing

external sensory information from other parts of the body, and sending electrical pulses

back to the body through the spinal cord and the peripheral nervous system. While it is

not completely understood how the brain processes this information, neuroscientists have

uncovered considerable knowledge of the brain's anatomy.

The human brain is not a single homogeneous entity, rather it consists of hundreds of

distinct functional structures in the form of gray matter, and numerous connections between

these structures in the form of white matter tracts. The field of neuroscience is often inter-

ested in studying the effects of neural diseases on specific structures. Some of these effects

could be a change in size, shape or tissue integrity. For example, it has been reported that in

the case of schizophrenia, the size of thalamus, an organ in the deep gray matter, decreases

[22] and the white matter connectivity in the fornix, corpus callosum, and cingulum tracts

degenerates [39].

These studies usually depend on manual segmentations obtained by trained experts

from structural magnetic resonance (MR) images. However, structural MRI offers little or

no contrast in many areas of interest, such as in deep gray matter or along white matter

tracts. This is why the recent introduction of diffusion weighted imaging (DWI) as a new

MRI modality has caused much excitement.

DWI is a relatively new imaging modality that measures free water diffusion, i.e. Brow-



nian motion, of the endogenous water in tissue [6]. This water diffusion is measured for the

entire brain using directional gradients in the MRI machine. Unlike structural MRI, how-

ever, DWI does not result in a single image, but a series of images, each one quantifying the

amount of water diffusion in a specific direction. These images are then combined together

to calculate a 3D water diffusion probability distribution function (pdf) for every voxel.

The most common way of calculating this pdf is to assume the water diffusion is Gaussian

for a given voxel and fit the data from individual DWI images to this model, resulting in

diffusion tensor images (DTI).

In human brain tissue, the water diffusion is not the same in all directions, since it is

obstructed by structural elements such as cell membranes or myelin [6]. When this ob-

struction constrains the water diffusion in a coherent direction, such as within the cerebral

white matter, the resulting water diffusion tensor becomes anisotropic, containing informa-

tion about the directionality of the axon bundles. Thus, quantification of water diffusion in

tissue through DTI provides a unique way to look into the organization of the brain.

Unlike white matter, the tissue in gray matter is less organized by orientation. The lack

of coherent orientation limits the use of DTI for gray matter analysis in some areas, such as

the cerebral cortex. However, there are certain gray matter structures, such as the thalamus,

that exhibit coherence in diffusion direction due to the presence of coherent white matter

near these structures. Thalamus and several other deep gray matter structures are organized

into distinct functional regions, called nuclei. Functionally related white matter tracts target

the same region of cortex once they leave the deep gray matter, resulting in organization of

diffusivity within the gray matter. This organized diffusion can be measured in DTI, and

it has been proposed that the thalamic nuclei can be distinguished by their characteristic

diffusion orientation [81].

1.1 Existing Segmentation Methods for DTI

Since the realization that both white and gray matter can be resolved through DTI, several

segmentation algorithms have been proposed to segment individual structures using DTI.

Previous research work on DTI segmentation can be categorized into two branches: Tensor



similarity based methods and connectivity based methods.

1.1.1 Tensor similarity based segmentation

The traditional way to obtain an image segmentation is to define a similarity measure

between pixels (voxels in 3D images) and then to calculate a solution that maximizes

a segmentation quality measure that depends on this similarity. The most commonly

used similarity measure in the DTI literature is the Frobenius norm between two tensors

[81, 21, 65, 73]. There are also other measures that depend on fractional anisotropy (a

scalar invariant of the diffusion) [85], symmetrized Kullback-Leibler divergence between

tensors [74], normalized tensor scalar product [31, 32], and angular distance between prin-

ciple diffusion directions [60]. Once a tensor similarity is chosen, the next step is to identify

a quality measure and an optimizer. Different segmentation methods are proposed in the

literature, including k-means algorithm [81], mean-shift algorithm [19], region-based and

edge-based level sets [85, 21, 65, 73, 31]. Most of these methods require a good initializa-

tion for successful segmentation. The initialization methods used were atlas-based [81, 32],

or manual [85, 21, 73, 44, 74]. These methods were demonstrated both on gray [81, 32, 19]

and white matter segmentations [85, 21, 31, 73, 65, 44, 74].

1.1.2 Connectivity based segmentation

Since DTI contains information about the directionality of the water diffusion, it is interest-

ing to attempt to reconstruct the underlying white matter tracts. Reconstruction typically

consists of starting at a voxel and following the most likely path of diffusion until a stop-

ping criteria is reached. This sort of reconstruction is called tractography and results in a

set of 3D curves, called fibers. If tractography is seeded at every white matter voxel in the

brain, the resulting set of fibers span the whole brain. We know that typical in-vivo imag-

ing resolution is too low to reconstruct individual axons from the DTI images, but since

these axons tend to move coherently in space, the larger white matter tracts appear as fiber

bundles in tractography.

Since larger white matter tracts become evident as fiber bundles in tractography, a natu-
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Figure 1-1: Three segmented fiber bundles from two subjects. Corpus callosum is shown in
black; cingulum is in purple and fornix is in green. A: Example of where the tractography
deviated from cingulum bundle to corpus callosum. B: Example of where tractography
failed to track the whole length of the cingulum bundle.

ral extension of tractography is to identify these bundles and assign them anatomical labels.

A popular technique to assign white matter anatomy to the fiber bundles is to manually se-

lect regions of interests (ROI) that are thought to correspond to a particular anatomical

white matter tract, and label all the fibers passing through this ROI with the corresponding

anatomical label [83]. In several studies it was reported that using two ROIs per white

matter tract results in more stable fiber bundle assignments than using only one ROI [28].

ROI based methods could be subject to user bias if the regions of interests are manually

traced. Therefore several methods have been proposed to identify anatomically meaningful

regions from the DTI data. One class of methods uses fibers generated via tractography

and groups them into regions either interactively or automatically [46, 47, 56].

The connectivity information is also useful in segmenting the deep gray matter nuclei.

Behrens et al. utilized probabilistic tractography, which is seeded at every voxel in the

thalamus. Since the white matter pathways connect the functional areas of thalamus to

the functionally related areas of the cortex, this method results in a probabilistic map from

every voxel in the thalamus to the cortex. They also hand segmented the cortex into its

functional areas, and used the probabilistic mapping from the cortex to the thalamus to

infer a segmentation of the thalamus.



Figure 1-2: Thalamus data from three subject is segmented individually using the k-means
algorithm (A). The resulting segmentations do not show correspondence among the sub-
jects as indicated by the coloring of the segmentations. In this thesis we propose a segmen-
tation algorithm that ensures consistency, as shown in (B). The consistency is ensured by
segmenting a population simultaneously.

1.2 Problems with existing methods

DTI suffers from low SNR and resolution, even more so than a regular MRI because of the

need for collecting many images to construct one DTI data set. This fact becomes apparent

in tractography and usually results in fibers deviating from one tract bundle to another and

fibers not fully covering the entire length of the bundle [83]. (See Figure 1-1 for effects of

noise on tractography).

Therefore, it is not adequate to cluster fibers into bundles and assign them anatomical

labels; there is also a need to ensure that the tractography noise is taken into account and

remedied before being able to segment the underlying DTI data. To our knowledge, this

is an open problem, and an important one since being able to segment the white matter

anatomy in a precise manner is the first step of quantitative analysis of white matter.

Furthermore, even though most of the tensor similarity based segmentation methods

summarized in Section 1.1.1 produce plausible segmentations for any given subject in a

population, they do not find a correspondence between the segments acquired from differ-

ent subjects (Figure 1-2). Without correspondence between segmentation results, it is not

possible to assign consistent anatomical labels to individuals.



Joint

Figure 1-3: Schematic description of previous thalamus segmentation algorithms [81, 86,
32, 19] (left) as opposed to the Consistency Clustering algorithm (right).

1.3 Objectives and Contributions of the Thesis

The main objective of this thesis is to derive, implement and evaluate a population-wise

DTI segmentation algorithm for white matter tracts as well as gray matter nuclei. We

refer to this algorithm as "Consistency Clustering" (CC) since the outputs of the algorithm

are population-wise consistent segmentations, as well as a correspondence between the

subjects (Figure 1-3). The consistency is ensured through using a single anatomical model

for the whole population, which is similar to the atlases used by experts for manual labeling.

We experiment with both parametric and non-parametric models for the gray matter and

white matter segmentation problems, each model resulting in different kinds of atlases.

The Consistency Clustering algorithm requires development of several integrated algo-

rithms for segmentation, registration, atlas-building and outlier rejection. The segmentation

is performed by labeling each voxel or fiber in the dataset using a probabilistic model. The

probabilistic model served as an anatomical atlas, and it is learned iteratively from labeled

data while performing the segmentation. To reduces the effect of noise on the learned

model, an outlier rejection is performed by introducing a default label with low probability

level everywhere in the model (see Figure 1-4 for effect of outlier rejection on the learned

atlas.) Finally, the registration (spatial normalization) is achieved through a poly-affine

framework, that consist of a single affine warp per cluster in the model.

In this thesis we develop, implement and evaluate these tools individually and together

Individual
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Figure 1-4: White matter atlases learned from 15 subjects' tractography results. The left
image depicts the spatial distribution of fornix fibers segmented using spectral clustering
without outlier rejection. The right image shows the spatial distribution of the same fibers
segmented with Consistency Clustering, which includes an outlier rejection scheme. Con-
sistency clustering removes dispersed low probability areas (dark red speckles) in the atlas
and assigns more of the probability mass to the core of the fornix, which is apparent by
higher amounts of white color in the atlas.

as a population-wise segmentation tool. Together, the Consistency Clustering enables au-

tomatic atlas construction in DTI for a population, either normal or affected by a neural

disorder. Consistency Clustering also provides the user the choice to include prior knowl-

edge through a few labeled subjects (semi-supervised) or to compute an anatomical atlas

in a completely data-driven manner (unsupervised) (See Figure 1-5 for example segmenta-

tions obtained either way). Consistency Clustering is implemented and evaluated on deep

gray matter (Figure 1-5) and also on white matter tracts (Figure 1-6). In either case, the

resulting anatomical models are compact representations of populations and can be used

for population-wise morphometry.

1.4 Organization of the Thesis

In Chapters 2 and 3, we provide brief background information on the human brain and

on diffusion tensor imaging, to familiarize the reader with these subjects. In Chapter 4,
we experiment with several unsupervised clustering algorithms for the deep gray matter

segmentation problem. The chapter highlights the shortcomings of individual clustering of

subjects as a segmentation tool, and provides comparisons between different tensor similar-

ity metrics for DTI segmentation. In Chapters 5 and 6, we formalize the idea of consistent

n



Figure 1-5: Segmentations of four thalami obtained through (A) Consistency Clustering
without prior information (unsupervised), (B) Consistency Clustering with few labeled
subjects used as prior information (semi-supervised), and (C) expert labeling. Consistency
Clustering results in consistent segmentations among the subjects with or without prior in-
formation. However, prior information results in segmentations more similar to the expert
labeled thalami (ventral nuclei, purple nuclei on the left side of the images, are divided into
two pieces without prior information, whereas they are not divided when segmented with
prior information.)

clustering and derive specific equations for the algorithm for deep gray matter and white

matter tract segmentation problems. We also provide experiments investigating the bene-

fits of population-wise segmentation. Finally, in Chapter 7, we summarize our findings and

provide a discussion for future research.



Figure 1-6: Tracts from Fornix (in green) and Cingulum (in purple) bundles along with a
few selected tracts from Corpus Callosum (in black) as labeled through spectral clustering
(left) and through Consistency Clustering (right). The tractography noise is evident in the
images on the left as tracts deviating from one bundle to another. Also, these images contain
instances where the high dimensional atlas failed to label the tracts correctly. Consistency
Clustering is able identify consistent tract bundles across subjects, while removing the
inconsistent parts of these bundles, resulting in "core" bundles.

25





Chapter 2

Human Brain

The purpose of this chapter is to familiarize the reader with human brain anatomy, par-

ticularly the anatomy of the white matter tracts and deep gray matter, whose automatic

segmentation is the topic of the thesis.

We begin with a review of the human brain tissue, which consists of two distinct re-

gions, gray matter and white matter. We then investigate the composition and organization

of the white matter and deep gray matter. While providing a basic background on brain

anatomy, we also highlight several structures that are investigated in the thesis.

The human brain is a complex structure that fascinates many, and attracts scientists

from all backgrounds. It is not practical to include a complete survey of this large set of

studies in this chapter; however, we recommend [55, 25, 82] to the interested reader for a

deeper understanding of the human brain anatomy.



2.1 Introduction

The human brain is a portion of the central nervous system that is located within the skull.

It is the control center of the human body and it is responsible for virtually all human ac-

tivity, including movement, thought and emotions. It operates by receiving and processing

external sensory information from other parts of the body, and sending electrical pulses

back to the body through the spinal cord and the peripheral nervous system. It is not com-

pletely understood how the brain processes this information, however, neuroscientists have

been studying the anatomy of the brain for hundreds of years and through this research we

learned quite a lot about the brain's anatomy.

Structure ef a Typical Neuron

Dendrites (receivers) Axon terminals

F .I I

cells
Iking myelin)

' Axon Myelin sheath
Nucleus

Figure 2-1: Structure of a typical neuron. A typical neuron consist of dendrites to receive
information, a cell body to process the information and an axon to transmit information to
other cells. Image is adapted from [84].

At the microscopic scale, the anatomy of brain consists of neurons and glial cells. The

glial cells account for a majority of the brain mass and together they provide physical and

physiological support to the neurons. Neurons are nerve cells and they are responsible

for receiving, processing and transmitting information as electrical pulses throughout the

brain. A typical neuron consist of dendrites to receive information, a cell body to process

the information and an axon to transmit information to other cells. An illustration of a

typical neuron is presented in Figure 2-1. When an electrical impulse is received at one

of the dendrites, the neuron may depolarize, transmitting the electrical signal through the
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Figure 2-2: The four lobes of the cerebral cortex along with a sketch illustrating the orien-
tation of the image. Image is adapted from [25].

length of the axon to the next neurons. The axons are covered with a white substance called

myelin, which acts as an insulator, increasing the speed of the electrical signal transmission.

At a larger scale, the brain consist of cerebrospinal fluid (CSF), gray matter, and white

matter. The CSF fills the space in the ventricular system around and inside the brain,

providing physical support and immunological protection to the rest of the brain. The gray

matter consists mainly of the neural cell body, which is gray in color. The majority of the

gray matter surrounds the perimeter of the brain, following a highly convoluted manifold,

which is called the cerebral cortex. The cerebral cortex is responsible for the majority of

the cognitive functions. A smaller portion of the gray matter is located deep inside the

brain, at the other end of the neurons, called the deep gray matter. White matter consists

of the myelinated axons, interconnecting the gray matter. Its name and color is due to the

white color of the myelin sheath that cover the axons.

At the macroscopic scale, the brain consists of two hemispheres, which are largely

seperated by a deep groove, but connected by a thick bundle of neurons, called the corpus

callosum (Figure 2-5). Each hemisphere of the cerebral cortex can be separated into four

functional lobes (Figure 2-2). The frontal lobe includes the motor cortex and has a major



role in planning and execution of movements. The central sulcus (a prominent valley in the

cortex) separates the frontal lobe from the parietal lobe. The parietal lobe contains the pri-

mary sensory cortex and is responsible for sensations, spatial orientation and information

processing. The temporal lobe is located inferior (below) to the frontal and parietal lobes,

and is involved in the auditory processing and memory. The occipital lobe is located pos-

terior (behind) to the temporal lobe, and is responsible for processing visual information.

All four lobes also contain areas whose specialized function have not yet been identified.

These areas are known as the association cortex and are subject of future neuroscientific

research.

2.2 White Matter

White matter consists of myelin covered axons, which are involved in transmitting electri-

cal pulses from one functional region of the brain to another. The myelin provides electrical

insulation for faster transmission, and its white color is the reason for the name white mat-

ter.

The axons can either occur in a diffusive manner or concentrated in bundles, forming

white matter fiber tracts. The white matter contains three different types of neural tracts,

which are called commissurral tracts, projection tracts and association tracts.

Commissurral tracts are white matter fiber tracts that connect functionally related re-

gions in one hemisphere to related regions in the other hemisphere. Projection tracts es-

tablish connections between the cerebral cortex and the sub-cortical gray matter structures,

such as the thalamus (Figure 2-3). Virtually all sensory information and motor commands

travel through the projection tracts to and from the cerebral cortex. And finally the asso-

ciation tracts are shorter tracts near the cerebral cortex, connecting one part of the cortex

to another. Association tracts come in different lengths, connecting two regions within the

same gyrus, connecting two gyri or connecting two functional lobes (Figure 2-4).

We now highlight some of the white matter tracts that are investigated in the thesis. We

investigate these tracts, because they are major fiber tracts in close proximity to each other,

and this proximity offers challenges to a segmentation algorithm.



Figure 2-3: Projection tracts from a dissected brain. Projection tracts establish connections
between the cerebral cortex and the sub-cortical gray matter structures. Image is adapted
from [82].

Corpus Callosum

The corpus callosum is a commissurral tract bundle that connects the two hemispheres of

the brain. It is the largest fiber bundle in the brain, and accounts for most of the inter-

hemispheric communication. It forms a concentrated neural bridge between the hemi-

spheres near the middle of the brain and diverges to a wide area closer to the cortex (Figure

2-5).

Cingulum

The cingulum is a prominent association tract bundle that is located adjacent but superior

to the corpus callosum. The axons in the cingulum are oriented in the anterior-posterior

direction as opposed to the lateral corpus callosum fibers (Figure 2-6). The cingulum is part

of the limbic system, which also includes the hippocampus and amygdala, and supports a

variety of functions including emotion, behavior and long term memory.



Figure 2-4: Illustration of association tracts. Association tracts are located near the cerebral
cortex, connecting one part of the cortex to another. Association tracts come in different
lengths, connecting two regions within the same gyrus, connecting two gyri or connecting
two functional lobes. Image is adapted from [25].

Fornix

The fornix is also part of the limbic system, connecting hippocampus to mammillary bod-

ies. The latter are deep gray matter nuclei, and act as relay stations for impulses that

originate at the hippocampus. Fornix is located inferior to the corpus callosum and travel

in the anterior-posterior direction, similar to cingulum (Figure 2-7).

2.3 Deep Gray Matter

Gray matter contains cell bodies and dendrites of neurons, and exhibits a gray brown color

due to blood vessels and the neural cell bodies. The majority of the gray matter is located

on the surface of the cerebral hemispheres as the cerebral cortex. A smaller portion of the

gray matter is located in the depth of the cerebral, cerebellar, brainstem and spinal gray

matter. Gray matter in the depth of the cerebral is organized into distinct nuclei, and we

investigate segmentation of these nuclei in the thesis. We are in particular interested in a

specific deep gray matter structure, the thalamus.



transcallosfibers"

A
Left+Rigt

P

forceps
minor

corpus
cailosum

forceps
major "

Figure 2-5: Corpus callosum from a dissected brain (left) and an illustration of the corpus
callosum (right). The corpus callosum is a commissurral tract bundle that connects the two
hemispheres of the brain. Images are adapted from [82, 25].

Anatomical region of cingulum Axons actually enter and leave

Figure 2-6: Illustration of the cingulum tracts. The left image illustrates the core of the
cingulum, whereas the right image depicts axons entering and leaving this core. Images
are adapted from [57].

Thalamus

A normal brain contains two thalami, one in each hemisphere, located symmetrically infe-

rior to the corpus callosum and the fornix (Figure 2-8 (left)). Each thalamus is about 6 cm
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Figure 2-7: Illustration of the fornix. The fornix is part of the limbic system, connecting
hippocampus to mammillary bodies. Image is adapted from [25].

Thalamus\ ~~ .....

Corpus callosur

Fornix

S
R•L

I

Figure 2-8: Illustration of the thalamus (left) and its distinct nuclei (right). The thalamus is
the major relay center to the cortex for all sensations (except the sense of smell). Image is
adapted from [25].

in length and exhibits a bean-like shape. All of the sensory pathways of the human brain

(with the exception of the olfactory pathway, responsible for the sense of smell) project to

the cortex via relay neurons in the thalamus. Hence, the thalamus acts as the central relay

station of the brain. These relay neurons are clustered into discrete clusters (nuclei) that

can be delineated based on histological or functional criteria (Figure 2-8 (right)).
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2.4 Summary of the Chapter

In this chapter we briefly introduced the human brain, specifically the white matter bundles

and the deep gray matter nuclei. Together, the structures that make up the human brain

account for virtually all human activity, including movement, thought and emotions. How-

ever, the exact mechanisms of this process is not completely understood. Neuroscience

aims to understand the human brain through studying the anatomy.

As we investigate in later chapters, a relatively new imaging technology, called diffu-

sion weighted magnetic resonance imaging, provides adequate contrast for the automatic

segmentation of the structures that are introduced in this chapter, and thus provide a new

avenue for understanding the human brain anatomy.





Chapter 3

Diffusion Weighted Magnetic Resonance

Imaging

In this chapter we provide a brief background on diffusion weighted magnetic resonance

imaging (DW-MRI). We start by discussing free water diffusion, a phenomenon first ob-

served by Robert Brown in 1828. We then relate this microscopic diffusion to macroscopic

diffusion propagators that aims to quantify the Brownian motion in a probabilistic fashion.

Stejskal and Tanner were the first to measure water diffusion using the magnetic reso-

nance technology in 1965. We briefly describe the experiment they performed and relate

that to imaging water diffusion in the human brain.

This in-vivo imaging technique took 30 years to mature into the diffusion tensor imag-

ing that we use today, and we briefly review the history of this development. And finally we

explain how the diffusion tensor images are visualized and used to reconstruct the under-

lying white matter fiber tracts. We recommend [71, 12] to the interested reader for further

understanding of the DW-MRI.



3.1 Diffusion

At the microscopic level, water molecules are constantly moving in a random motion,

called Brownian motion. This motion is named after Robert Brown, who was the first to

write about this phenomenon based on his observations on the movement of pollen grains

in otherwise stationary water [11 ]. This microscopic level activity is also observed in a

macroscopic level as diffusion. For example, a single drop of dye colors a whole glass of

water in time. In that case, even though the dye molecules are moving in random directions

at the microscopic level, this random motion translates into a macroscopic movement from

higher dye concentration areas to the lower ones. Even without the dye, water molecules

are diffusing among themselves, in a phenomenon called self-diffusion. This self-diffusion

follows the same laws of diffusion and we use the word diffusion in the thesis to describe

the self-diffusion of water molecules.

At the macroscopic level, diffusion is characterized with a diffusion propagator. The

diffusion propagator is a probabilistic description of the distribution of molecule displace-

ments in an ensemble. The probability of finding a molecule at the location described by

vector r, given that it was at location ro at time 7 ago is explained by the diffusion propa-

gator, p(r ro, T).

We also describe the diffusion within a volume v, with an ensemble average diffusion

propagator, p(r - ro7T), where r - ro is the displacement vector. This ensemble average

represents the average probability of a molecule, within the volume v, moving in the direc-

tion r - ro, for a distance of |r - r I in time 7. The DW-MRI aims to recover this ensemble

average diffusion propagator for each voxel in the tissue being imaged.

3.2 Quantifying Diffusion: Pulse Gradient Spin Echo

In 1965 Stejskal and Tanner [69] were the first people to use magnetic resonance imaging

to perform quantitative measurements of the molecular diffusion in a sample and relate this

measurement directly to the diffusion coefficient. Detailed derivations of this relationship

are presented in [69] and [12], but we review here the relevant findings that are necessary
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Figure 3-1: Pulse sequence diagram for the pulse gradient spin echo experiment. Please
refer to the text for details.

to understand DW-MRI.

A pulsed gradient spin echo (PGSE) experiment works by encoding the location of

an ensemble of molecules at an initial time, and then decoding the current locations of

molecules after a short duration of time. If the molecules move during the experiment

(for example due to diffusion), the encoding and decoding of the molecules at different

locations result in a drop in the measured MRI signal.

The experiment starts by placing the sample under a strong magnetic field. Due to the

strong magnetic field, the spins of the molecules within the sample get oriented along the

magnetic field direction. First a radio frequency signal is applied to flip the spins to the

transverse plane (Figure 3-1). This is followed by the first gradient pulse that causes a

phase shift on the spins. This phase shift is not constant in space, but is varying according

to a gradient direction and strength, thus encoding the current location of the molecules

into the phase of the spins. A second radio frequency signal followed by a gradient pulse

of the same direction, duration and strength of the first one is then applied. If there is no

movement in the molecules along the gradient direction, the spins are expected to rephase

exactly as before after this second gradient. However, in the case of molecular movement

along the gradient direction, there is an attenuation in the MRI signal, quantifying molecu-

lar diffusion.



Stejskal and Tanner related this MRI signal attenuation to the diffusion coefficient.

Assuming the molecules do not move during the application of the diffusion encoding

gradient, the phase accumulated by each spin is:

S= 7ygTro,

where y is the Larmor constant, 6 is the gradient duration, g is the gradient strength vector

and ro is the initial position of the molecule. The phase accumulated by each spin after the

second gradient then becomes:

0 = 6gT'(r - ro),

where r is the position of the molecule when the second gradient is applied. An MRI signal

measured at this experiment is an average magnetization of spins, each with phase Ok:

S = So k=l (3.1)

where N is the number of spins in the ensemble, and So is the spin echo signal in the ab-

sence of any gradient directions. We rewrite Equation 3.1 in terms of a probability density

function:

S = SoI eip(|T7)dO,

where T is the diffusion time. Let R A r - ro and q A 7yg, then

S(q, T) = So e iqTRp(qT R7)d{qTR}

= So eiq TRp(RT)dR

= SoFT{p(R T)}, (3.2)

where FT{p(R T)} is the Fourier transform of the probability density function. Therefore,

the signal that is measured in the PGSE experiment directly relates to the Fourier transform

of the probability density function of the spin displacements. This means we can vary



the diffusion encoding gradient direction, or equivalently q, to obtain samples from this

Fourier transform in order to construct the average diffusion propagator for the spins in the

ensemble.

The PGSE experiment as described measures the ensemble average diffusion propaga-

tor for the whole sample. It is also possible to introduce varying magnetic gradients in the

MRI machine in order to measure the signal attenuations for each voxel in the sample, in

order to create 3D volumes [70, 42].

In the following sections we investigate how such images are created and processed in

order to quantify water diffusion in the brain tissue.

3.3 Diffusion in Free Water

When there are no barriers to hinder the displacement of molecules, the Brownian motion of

the molecules leads into isotropic diffusion. In this case, the amount of diffusion is related

to the diffusion coefficient, which depends on the medium properties but not on direction.

The diffusion coefficient was related to the mean square displacement by Einstein [20] with

the following equation:

D= !(RTR),
6T

where 7 is the diffusion time, and R = r - ro is the net displacement vector. (.) denotes

an ensemble average.

The isotropic diffusion is quantified by a Gaussian diffusion propagator with mean ro

and covariance matrix 2Dr x 13, where 13 is the 3 dimensional identity matrix,

1 -(r-ro)D-1 (r-r o)p(RI7) = p(r - rolT) = I exp
v/D(47rr)3 4~

When free diffusion is measured through the PGSE experiment of Section 3.2, the resulting

MRI signal becomes:

S(q,7) = SoFT{p(RI7)}

= Soe-D-rq|2 (3.3)



Let b j 7- q 2, which is called LeBihan's b-value, then 3.3 becomes

S(q,7) = Soe - bD

(3.4)

This results means the diffusion coefficient can be quantified through two measurements:

the first one with no gradient encoding, called the b = 0 image, and another measurement

with any gradient direction. The resulting diffusion coefficient is

I S
D = -- In

b So
(3.5)

3.4 Diffusion in Tissue

Water diffusion is hindered in biological tissue due to barriers such as cell membranes or

myelinated axon sheaths (Figure 3-2). When these barriers are oriented coherently, such as

in the cerebral white matter, water diffusion becomes faster in the direction along the fibers

and slower across the fibers [6].

Diffusion is hindered
across fibers4

lot hindered
er direction

Figure 3-2: Illustration of anisotropic diffusion in fibrous tissue. Diffusion is hindered in
biological tissue due to barriers such as cell membranes or myelinated axon sheaths.

In the case of biological tissue, the diffusion coefficient is no longer the same in every

direction, and the resulting diffusion is called anisotropic. In the anisotropic diffusion case,



we can no longer calculate the diffusion coefficient with Equation 3.5, since the measured

signal amplitude is no longer independent from the encoding gradient direction. The mea-

sured diffusion coefficient in this case is called the apparent diffusion coefficient (ADC), to

distinguish the anisotropic diffusion in tissue from the isotropic diffusion of free water.

Measuring the apparent diffusion coefficient for each voxel in biological tissue leads

into construction of ADC images [70, 42]. This development became significant when

it was determined that the ADC is reduced by a significant amount within minutes of a

stroke, whereas other MRI modalities remain constant for hours [54]. In fact, ADC images

currently remain the most effective indicator of stroke in the emergency room setting [38].

Relaxing the assumption of isotropy, but restricting the diffusion propagator to a 3D

Gaussian results in diffusion tensor imaging (DTI) [6]. It was Peter Basser who introduced

DTI in 1994 [6], and DTI remains the most popular DW-MRI model that is currently in

use. Further relaxing the Gaussian assumption allows for more accurate representations of

the diffusion propagator, but due to technical limitations, these models are still an active

research area.

3.5 Diffusion Tensor Imaging

Diffusion tensor imaging assumes that the diffusion propagator takes a Gaussian form, with

zero mean and covariance matrix 2Dr,

1 [-(r - ro)D-'(r - ro)
p(RI7) = p(r - ro7) = I eP - 4

where T is the diffusion time, r is the final position of the diffusing water molecule and ro

is the original position of the molecule. D is the positive definite apparent self diffusion

tensor, which is in general referred as the diffusion tensor. Given the diffusion tensor, the

apparent diffusion coefficient DRt for any given directional vector R is calculated as:

DR = RTDR.



3.5.1 Diffusion Tensor Estimation

Similar to the diffusion coefficient estimation of Section 3.3, we use the Fourier relationship

between the Gaussian model and the PGSE signal, which in this case equals:

S(q, 7) = Soe -~qTDq .  (3.6)

Introducing unit vectors, u - q/ q|, and b-value, b = q 2, we rewrite Equation 3.6 as

S(b, u) = Soe - buT Du. (3.7)

Finally, taking the log of both sides reduces Equation 3.7 into a set of linear equations:

3 3

In S(b, u) = in S - E E biDi, (3.8)
i=1 j=1

where b = {bi/} A buuT is called the b-matrix. Equation 3.8 is a linear system of

equations with 7 unknowns, which include So and 6 independent elements of the diffusion

tensor D (since D is constrained to be symmetric). This system can be solved by mea-

suring diffusion once with b = 0 for So, and 6 more times with a higher b-value (around

1000smm - 2 ) in 6 different gradient directions. However, since the MRI signals tend to be

noisy it is a common practice to collect many more than 7 images, and then solve for the

diffusion tensor through a linear least squares [34] or some other non-linear optimization

method, while constraining the diffusion tensors to be symmetric and positive definite [48].

3.5.2 Eigensystem of Diffusion Tensor

The diffusion tensor's eigensystem is useful for visualization and quantitative analysis. For

a given diffusion tensor D, the corresponding eigenvectors and eigenvalues satisfy:

A, 0 0

D = EVET = [eI e 2 e 3 ] 0 A2 0 [el e 2 e 3

0 0 A3

44
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Figure 3-3: illustration of diffusion tensor in fibrous tissue through an isoprobability sur-
face. Since the underlying model is Gaussian, the isoprobability surface is an ellipse. The
major axes of the ellipse are aligned with the eigenvectors of the diffusion tensor, and the
radii are proportional to the ei V .

where E is a 3 x 3 matrix whose columns are the eigenvectors of the diffusion tensor, and

V is a diagonal 3 x 3 matrix whose diagonal elements are the corresponding eigenvalues.

A1 
> A2 > A3 > 0 are the eigenvalues of the diffusion tensor in decreasing amplitude and

el, e2, e3 are the corresponding eigenvectors. The eigenvector with the largest eigenvalue,

el, is called the principal eigenvector and defines the major fiber tract axis of the tissue [6].

The three dimensional Gaussian diffusion propagator can be visualized through an iso-

probability surface. Since the underlying model is Gaussian, the shape of the isoprobability

surface is independent of the probability level chosen for this visualization, and the surface

is described by an ellipse. The major axes of the ellipse are aligned with the eigenvectors

of the diffusion tensor, and the radii are proportional to the ei4V§. Refer to Figure 3-3 for

an illustration.

3.5.3 Scalar Derivatives of Diffusion Tensor

Unlike the ADC images, the diffusion tensor images are directional and matrix-valued.

Therefore, the DTI can not be visualized and processed in the same way as gray-scale

(scalar) structural MR images. This problem led to the introduction of scalar invariants,

which are visualized and processed in a similar fashion to the gray scale images. There are

two major types of scalar diffusion invariants, diffusivity measures and anisotropy mea-
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Figure 3-4: Common scalar derivatives of the diffusion tensor in an exemplar brain. White
matter tracts become apparent in Fractional Anisotropy and CL images as high intensity
(white) areas, whereas the trace is nearly constant in most of the brain tissue.

sures:

Diffusivity Measures

Diffusivity measures are used to quantify the overall diffusion in a given voxel. The most

common diffusivity measures relate to the trace of the diffusion tensor [4, 15, 41]:

3

trace(D) = Ai.
i=l

The trace of a tensor quantifies how free the water is to diffuse and is significantly higher

in CSF as opposed to the brain tissue. It is relatively constant in the rest of the brain, which

includes gray and white matter (Figure 3-4).

Anisotropy Measures

Anisotropy measures are used to quantify the degree of preference in diffusion in the prin-

ciple eigenvector direction as opposed to other directions. The most commonly used mea-

sures include a linear shape measure (CL) [80, 79] and fractional anisotropy (FA) [8]. CL

I



is defined as:
A1 - A2

CL = A

If the diffusivity in the principal diffusion direction, which is quantified by A1, is larger

than diffusivity in the secondary direction, A2, then the resulting CL value becomes higher,

indicating a preference in the diffusion direction. Consequently, the value of CL is higher

in white matter than that in gray matter (Figure 3-4).

The most commonly used anisotropy measure is FA [8], which is defined as:

1 1 X)
FA =

where A = (1/3) x (A1 + A2 + A3 ). Similar to the CL, FA becomes higher with a relatively

higher value of the principal eigenvalue A1, and is in general higher in the white matter

(Figure 3-4).

3.6 Higher Order Diffusion Models

It is also possible to relax the Gaussian assumption on the diffusion propagator to describe

non-Gaussian diffusion distributions. There are several methods designed for this purpose.

All these methods sample the q-space, the Fourier space spanned by the gradient directions,

in many directions and solve the inverse Fourier transform through either parametric or

non-parametric solvers. These methods include Q-space imaging [12], Diffusion Spectrum

Imaging [76] and Q-Ball imaging [71].

3.7 Tractography

With the introduction of diffusion tensor imaging, an interesting area of research has emerged,

concerned with reconstruction of the underlying tracts from the diffusion tensor images.

The common name for these algorithms is tractography. There are many methods in the

literature that perform this task, but the central theme of these methods is to construct 3D



curves that follow the principal diffusion direction in the diffusion tensor data.

Streamline Tractography

The most common approach to tractography is the streamline method [7, 16, 53, 78]. These

methods create 3D curves by starting at an initial location, called a seed voxel. From this

initial location, the streamline methods extend the curve at small steps, typically smaller

than the voxel dimension, following the principal diffusion direction at each step. Since the

diffusion tensor data is discrete, the algorithms use an interpolation method to calculate an

estimated tensor for any given location.

3.8 Summary of the Chapter

In this chapter, we presented a brief background on diffusion MR imaging. Water diffusion

is a microscopic phenomenon that can be explained by diffusion propagators in a macro-

scopic scale. When measured using MR technology, this water diffusion results in an MR

signal that directly relates to the Fourier Transform of the diffusion propagator.

Assuming different models for the diffusion propagators leads to different kinds of im-

ages. An isotropic diffusion assumption leads to apparent diffusion coefficient images,

which are used as early indicators of stroke in the emergency room setting. A Gaussian

propagator is the most commonly used for anisotropic diffusion, and results in diffusion

tensor images. Diffusion tensor images are matrix-valued images unlike the structural MR

images and therefore require development of new techniques for visualization and process-

ing, which is the subject of the thesis.



Chapter 4

Unsupervised Clustering as a Deep Gray

Matter Segmentation Tool

Recent work has shown that diffusion tensor imaging (DTI) can help resolve thalamic nu-

clei based on the characteristic fiber orientation of the corticothalamic/thalamocortical stri-

ations within each nucleus. In this chapter we describe a novel segmentation method based

on spectral clustering. We compare several tensor similarity metrics, and we explicitly min-

imize the normalized cut criteria of the spectral clustering for a better optimization. Using

this modified spectral clustering algorithm, we can resolve the organization of the thala-

mic nuclei into groups and subgroups based solely on the voxel affinity matrix, avoiding

the need for explicitly defined cluster centers. Identifying nuclear subdivisions facilitates

localization of functional activation and pathology to individual nuclear subgroups.



4.1 Introduction

All of the sensory pathways of the human brain (with the exception of the olfactory path-

way) project to the cortex via relay neurons in the thalamus. Hence, the thalamus acts as

the central relay station of the brain. These relay neurons are clustered into discrete groups

(nuclei) that can be delineated based on histological or functional criteria.

Precise identification of the thalamic nuclei is essential in a clinical setting, since many

motor-control disorders are surgically corrected by applying chronic electrical stimulation

to the appropriate functional area of the thalamus. Currently, these regions are detected

qualitatively before the operation using generic atlases along with structural MRI [26],

which does not provide adequate contrast to identify distinct nuclei. Changes have also

been reported in the thalamic nuclei during the progression of a large number of diseases,

including schizophrenia [63] and Parkinson's disease [23].

Diffusion tensor imaging (DTI) is a relatively new imaging modality that measures free

water diffusion, i.e. Brownian motion, of the endogenous water in tissue [6]. In human

brain tissue, the water diffusion is not the same in all directions, since it is obstructed by

structural elements such as cell membranes or myelin [6]. When this obstruction con-

strains the water diffusion in a coherent direction, such as within the cerebral white matter,

the resulting water diffusion tensor becomes anisotropic, containing information about the

directionality of the underlying tissue.

Since functionally related pathways target the same region of cortex once they leave

the thalamus, they result in organization of diffusivity within the thalamus. This organized

diffusion can be measured in DTI, and it has been proposed that the thalamic nuclei can be

distinguished by their characteristic diffusion orientation [81]. On DTI, the thalamus shows

distinct clusters of diffusion orientation (Figure 4-1). These clusters correspond to the

anatomic location and fiber orientation to the thalamic nuclei [18] (Figure 4-2). Diffusion

orientation thus provides a new anatomic criterion for distinguishing thalamic nuclei.

Although DTI can resolve thalamic nuclei, a segmentation algorithm is required to

explicitly delineate the nuclei from the DTI data. Several methods have been proposed

to resolve the thalamic nuclei, including the use of k-means [81], level-sets [33] and tract



Figure 4-1: Three-dimensional DTI rendering of a thalamus. The cuboids depict the full
diffusion tensor. The axes of the cuboids are scaled according to the tensor eigenvalues
and are oriented according to the direction of the corresponding eigenvectors. The color
indicates the direction of the principal eigenvector with red indicating medial-lateral, green
anterior-posterior, and blue superior-inferior. Anatomic labels for the nuclei are shown on
the thalamic hemisphere.

reconstructions from manually defined regions on the cortical surface [9]. A weakness

of the k-means algorithm is its geometric bias towards ellipsoidal clusters. Further, both

k-means and level sets show sensitivity to initialization, and susceptibility to local minima.

In this Chapter, we describe a new approach for segmentation of thalamic nuclei that

builds on the spectral segmentation algorithm described by Shi and Malik [66] with some

modifications. The spectral segmentation algorithm has attracted considerable interest in

the pattern recognition community due its computational simplicity, strong empirical per-

formance, and rich underlying theory [29, 37, 77]. The algorithm is based on a classical

result from spectral graph partitioning which relates the second smallest eigenvector of the

Laplacian matrix of a graph to optimal partitions. The spectral clustering algorithm has a

number of desirable features. For example, the algorithm consists entirely of direct ma-



I

I
S
ii
U
U?
U

IS
IS

I,

I,
Is

N*
,%W

u/~i~

0 ·

Figure 4-2: Coronal (top row) and axial (bottom row) DTI maps of 3 representative partic-
ipants (columns). The rightmost column shows the corresponding camera lucida drawings
from the Morel stereotactic atlas [52] (top: coronal section 9 mm anterior to PC level. bot-
tom: axial section 6.3 mm dorsal to AC-PC plane). The DTI maps are normalized to MNI
space. The axial section is from MNI Z=8 mm and the coronal section is from MNI Y =
-16 mm. The cuboidal glyphs depict the diffusion tensor principal eigenvector within each
voxel. The color scheme is the same as in Figure 4-1. The background grayscale image is
the FA map. The red overlay on the FA map indicates the manually drawn mask for each
individual. Anatomic labels for the nuclei are shown on the third participant's DTI maps.

trix operations and is therefore computationally efficient. Furthermore, the algorithm does

not require a geometric representation of the clusters and therefore contains no explicit

geometric biases.

In Section 4.2, we provide some background on spectral clustering and k-means algo-

rithms. We then describe our modifications to the spectral clustering algorithm for DTI

data. Finally, we present clustering results obtained on the DTI data from 10 healthy par-

ticipants. We also provide results from a set of experiments to evaluate the performance

of the spectral clustering algorithm. In these experiments, we measure the performance by

quantifying the volume overlap between the clustering results and expert labels. We com-

pared the performance of the spectral clustering method against an earlier method based on

the k-means algorithm [81] as a benchmark.



4.2 Background

In this section we will provide a brief background on the k-means algorithm and spec-

tral clustering. We will first review the k-means algorithm and provide the details of its

application to DTI segmentation as proposed by Wiegell, et al. [81]. We will then re-

view two spectral clustering methods that have different objective functions, but offer the

same solution to two different problems. These methods share the same solution, because

spectral clustering is suggested as a heuristic algorithm for NP-complete problems. This

provides the basis for the modifications that we make to spectral clustering for use in DTI

segmentation.

Some Notation

Before we begin, we would like to review the notation we use in this chapter. N(v) rep-

resent the number of elements in vector v and N(S) represent the number of elements

in set S. A cluster c is represented by a set of indexes I, = (i, i , i where

N(Sc) refers to the number of elements in cluster c. As follows, the overall dataset is rep-

resented by a union of clusters, I = {II, I2,. .. , Im}. Similarly a cluster c contains a set

of objects, which are represented by vertices in the graph notation of spectral clustering,

vc = vii E IC}.

4.2.1 k-means

The k-means algorithm is a clustering algorithm to separate n objects into k partitions,

based on a distance measure defined for the objects [27, 10]. The algorithm starts with an

initial set of k centroids, one for each cluster, and iteratively minimizes an objective func-

tion, also referred as the "distortion function." The iterations correspond to the estimation

of a specific Gaussian mixture model using the expectation minimization algorithm. The

corresponding Gaussian mixture model shares the same fixed covariance matrix for each of

the clusters. The k-means algorithm is guaranteed to converge to a local optima in a finite

number of iterations.



Inputs for the algorithm

The k-means algorithm requires the following four specifications:

1. k, the number of clusters,

2. a distance metric,

3. an initial set of cluster centroids,

4. a convergence criteria.

The number of clusters, k, and the distance metric are chosen by the user for the specific

problem. The initial set of cluster centroids are usually chosen randomly. Since the al-

gorithm is generally fast and guaranteed to converge to a local optima, the algorithm is

usually run with a number of different random initializations, and the solution with the

minimal distortion measure is chosen at the end. The convergence criteria is usually cho-

sen to stop the algorithm when no significant gains are made to the distortion function. The

pseudo-code for the algorithm is provided in Algorithm 4.1.

Algorithm 4.1 Pseudo-code for the k-means algorithm. xi denotes input data.
Require: Number of clusters, k, and initial set of cluster centroids, { t1, ~2, /ak}

repeat
for i = 1 to n do

for c = 1 to k do
Calculate distance between xi and cluster centroid pc

end for
Assign xi to the cluster with closest centroid

end for
for c = 1 to k do

Adjust centroid pc to be the mean of objects in cluster c
end for

until Convergence criteria is met



Distortion Function

The distortion function that the k-means algorithm minimizes is a function of the cluster

assignments of each of the objects being clustered:

k

D = E i -(x x
c=l xicSc

where there are k clusters, S = {S1, S2 ,..., Sk}, and pc is the centroid for the Cth cluster.

k-means as a segmentation tool in DTI

The k-means algorithm is used as a segmentation tool for deep gray matter in DTI by

Wiegell, et al. [81]. For the segmentation, Wiegell, et al. propose a distance metric based

on the Mahalanobis spatial distance and the Frobenius tensor distance. More specifically,

the distance metric Eic, between voxel i and cluster c, is set to be:

Eic = ||xi - xc we + ||Di - Dc,J

where xi is the location of voxel i, and Rc is the mean voxel location for cluster c. Similarly

Di is the diffusion tensor of voxel i, and Dc is the mean diffusion tensor for cluster c. W, is

the covariance matrix for the locations of voxels in cluster c, and 7 is a weighting parameter

that controls the tradeoff between the voxel location distance and tensor distance.

Since the k-means algorithm assumes the same isotropic covariance matrix for each of

the clusters, the resulting clusters have a spherical bias. To avoid this problem, the authors

proposed the Mahalanobis norm, which is defined as:

IIx = (xTW-lx)- 1/2

The covariance matrices, WC, are calculated at every iteration. The distance between the

tensors are calculated using the Frobenius norm, which is defined as:

F | = [Tr(FTF)] 1/2,



where Tr(.) represents the trace of a matrix. Please note that since the diffusion tensors are

symmetric, this operation is equivalent to first vectorizing the tensors (converting the 3 x 3

matrix into a 9 x 1 vector) and then calculating the Euclidean distance between the two

vectors. The vectorized tensor is given by

d = [D(1, 1) D(1, 2) D(1, 3) D(1, 2) D(2, 2) D(2, 3) D(1, 3) D(2, 3) D(3, 3 )]T,

where the right hand side of the equation takes into account that the diffusion tensor D is

symmetric. The weighting parameter -y is calculated to balance the covariance matrices of

the voxel location and tensor distance metrics:

(fTr(Ex) 1/2

STr(Ed))

where E, is the covariance matrix for the voxel locations and Ed is the covariance matrix

for the vectorized tensors.

A random initialization for the k-means algorithm is not desirable in this medical set-

ting, since the resulting clustering depends heavily on the initialization, and obtaining

different segmentations on the same dataset with the same algorithm degrades the confi-

dence in the algorithm's results. Therefore, Wiegell, et al. propose a uniform initialization

method, where the centroids are chosen to uniformly span the range of voxel locations. For

this purpose, Wiegell, et al. uniformly sample the line that passes through the posterior tip

of the thalamus and also the center of mass within the plane spanned by the first and second

eigenvectors of the voxel location covariance matrix.

4.2.2 Spectral Clustering

Spectral clustering is a clustering algorithm to separate n objects into k partitions. The

algorithm starts by converting the data into a weighted graph G = (V, E), where every

object is a vertex in V and the distances between objects are placed in a n x n edge-weight

matrix W. The algorithm only uses the pairwise distance measures in the edge-weight

matrix W, and therefore it can utilize arbitrary similarity measures as distances. Once a



graph is constructed, the algorithm calculates a k-way graph portion using the eigenvectors

of the normalized weight matrix.

Normalized Cuts

Shi and Malik define a graph for application of spectral clustering to image segmentation

by taking each pixel as a vertex of the graph [67]. For each node pair (i, j), the correspond-

ing edge weight wij is calculated from a feature similarity term f(xi - xj) and a spatial

proximity term s(xi, xj):

i(j =- exxp (- fXx ) if s(x, x) < r

-f 0, otherwise,

where an exponential kernel is used in the edge-weight calculation and af and rs are pa-

rameters to control the trade-off between the feature and spatial distance measures. To

reduce the size of graph from n x n to a more reasonable size for large problems, no edges

are placed between objects (pixels) that are further than distance r away from each other.

Once a graph is constructed, one can calculate the k-way graph portion using the Nor-

malized Cut (NCut) criteria. Formally, the problem is now reduced to the following:

Given a graph, G = (V, E) and its corresponding edge-weight matrix W = {wij},

find a set of disjoint sets VI, V 2,..., Vk, such that U.i Vi = V, which minimizes the

normalized cut:

NCut (V, ... , Vk) k asso(Vi, V) - asso(Vi, Vi)
i=1asso(V, V)

where asso(A, B) = -ieA,jeB ij [66]. NCut is a preferred measure over a more tradi-

tional minimum cut, since the Ncut criteria results in more even sized segmentations as

opposed to the minimum cut criteria [67].

Finding the NCut, even for the case where k = 2, is NP-complete due to the combina-

torial nature of the discrete permutations. Therefore, we need a polynomial time algorithm

that will provide a reasonable approximation. Shi and Malik describe a bi-partioning al-



gorithm that uses the second eigenvector of the affinity matrix and prescribe using it itera-

tively to accomplish the required k-way cut. Shi and Malik provided an elegant reasoning

for their algorithm and it is summarized below for the convenience of the reader.

Let x be an indicator vector, such that xi = 1 if node i is in A, and xi = -1 if node i

is in B, and let di = E• wij be the degree of node i. Also let D be a diagonal matrix with

D(i, i) = di. Then it follows that

asso(A, V) - asso(A, A) asso(B, V) - asso(B, B)
NCut(A, B) = +asso(A, V) asso(B, V)

which reduces to (after a considerable amount of algebra [67]):

NCut(A, B) = T(D- W)y(4.1)
yTDy

such that yi E {1, -b} and yD1 = 0, where b = EjeA dj/ / EB dj and 1 is a vector of

all ones.

The expression in Equation 4.1 is the Rayleigh quotient and if y is relaxed to take on

continuous values, it is minimized by solving the generalized eigenvalue system:

(D - W)y = ADy,

Dy-Wy = ADy,

-Wy = (A - 1)Dy,

D -Wy = (1 - A)y,

My = (y,

where M = D-1W and ( = (1 - A). M is a Markovian probability matrix that describes

the one-step probability of transitions, if the graph is thought of as a probabilistic graph,

where each edge weight represents the probability of moving from one vertex to another.

Therefore, the largest eigenvalue of the matrix N is 1 and the corresponding eigenvector

is a constant vector. Furthermore, the other eigenvalues of the matrix are guaranteed to

be less than 1 (if the graph is connected) and the corresponding eigenvectors are real and



orthogonal.

Thus, the Rayleigh quotient is minimized (non-trivially) by the second largest eigen-

value/eigenvector pair of M, and the minimum value of NCut is 1 - C.

However, there is no guarantee that the scaled indicator vector y satisfies the first con-

straint yi E {1, -b}. In fact in many real world problems, the continuous solution to y will

not satisfy this constraint, and this point needs to be investigated further.

Distance Sensitive Ordering

Distance sensitive ordering (DSO) is another optimization problem that is based on the

eigenvector ordering and solved through a spectral algorithm [18]. Even though the objec-

tive function is completely different from that of Shi and Malik, the solution is the same

in the relaxed case (from a combinatorial problem to a continuous optimization problem).

In DSO, the indicator vector consists of a stair function, unlike the step function of Shi

and Malik. Their approach is summarized below for comparison with the Normalized Cut

optimization.

Let p be a permutation vector (indicator vector) defined as p(l, 2,... , n) = (P1, P2, . .P. ),

and for W = {wi,j}, the permuted affinity matrix is Wper = {wp,,p~ }. An objective func-

tion J(p) is defined as:
n-1 n-1

J(p) =12 UZ •

/=1 i=1

With this objective function, the affinity matrix elements that are further away from the

diagonal are heavily punished, thus forcing the affinity matrix to be ordered such that more

similar voxels are located near each other. This problem is also potentially NP-Complete

and thus we need an approximate solution.

To find a solution, let q be the shifted and scaled inverse index permutation vector:

qi 0 - (n +1)/2wip• - (n+ )/2 1l-1 n 3-n n-1

n/2 n n n

which satisfies E• qi = 0 and Ei q% = 1. Thus, minimizing J(p) is equivalent to mini-



mizing a second objective function J(q), with constraints E• qi = 0 and -i q' = 1.

J(q) = (qi - qj2 Pi,pj

2qT(D - W)q.

However, it has been noticed experimentally [18] that the approximate solutions to the DSO

problem greatly improve if the constraints on the weights are replaced with:

Sqid = 0 and

qi di = 1. (4.2)

Minimization of J(q) produces the following expression when the constraint of Equation

4.2 is applied using a Lagrangian multiplier:

2qT(D - W)q
arg min

q qTDq

which is the Rayleigh quotient as it was the case with minimization of the NCut. If q is

relaxed to take on continuous values, the solution is exactly the same as the NCut case.



4.3 Spectral Split & Merge Clustering

Normalized cuts and distance sensitive ordering aim to minimize significantly different ob-

jective functions; however, they prescribe the same solution to these two problems. There-

fore, it is important to understand the subtle differences in the assumptions when the NP-

complete problem of identifying the discrete indicator vectors is relaxed and solved by a

continuous spectral approximation.

In the NCut case, the assumption is that the scaled indicator vector y contains values

that are only at two discrete levels yi e {1, -b}. In the distance sensitive ordering the

scaled permutation vector q, which is equivalent to y, is assumed to contain a wider range

of discrete values, qi E C x { 1-n, I. ,I n- }, which represents a staircase function.

However, in a majority of the problems, the Fiedler vector becomes neither a step func-

tion nor a staircase function. Since the Fiedler vector is assumed to be a continuous approx-

imation to the respective discrete indicator vector in each of the problems, it is necessary

to further investigate the relationship between the approximate continuous solution and the

discrete solution.

In Figure 4-3A, we present an ordered edge-weight matrix from a toy problem. The four

clusters are clearly visible as four bright squares in the diagonals of the current permutation

of the edge-weight matrix. The fourth cluster that is on the lower right side of the matrix

is smaller in size than the other three and exhibits connectivity to the first and the third

clusters but not to the second cluster.

The second eigenvector of the Markovian matrix is presented in Figure 4-3B. In this

case, the second eigenvector is neither a perfect step function as assumed by the normalized

cuts algorithm, nor a stair function as assumed by the distance sensitive ordering.

When the edge-weight matrix is permuted according to the second eigenvector, we ob-

tain the matrix in Figure 4-3C. The two-way portioning according to the second eigenvector

is outlined on the matrix with red squares. The resulting NCut value is higher than the op-

timal value NCut*. The optimal value NCut* is calculated in this simple case through an

exhaustive search of all possible two-way portions. The difference in the NCut value is

due to the smaller fourth cluster being separated mistakenly with this approximate solution.
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Figure 4-3: (A) An ordered edge-weight matrix from a toy problem. The four clusters are
clearly visible as four bright squares in the diagonals of the current permutation of the edge-
weight matrix. The fourth cluster that is on the lower right side of the matrix is smaller in
size than the other three and exhibits connectivity to the first and the third clusters but not
to the second cluster. The second eigenvector of the Markovian matrix is presented in (B).
The second eigenvector resembles neither a step function nor staircase function. When the
edge-weight matrix is permuted according to the second eigenvector, the fourth cluster is
divided into two, which results in a non-optimal NCut value as shown in (C). A greedy
split and merge algorithm finds the optimal solution as shown in (D).

However, the DSO objective function J almost achieves the optimal value J*. The optimal

value J* is once again calculated through an exhaustive search.

This example highlights the fact that the NCut and DSO are significantly different ob-

jective functions, and cannot be optimized by the same indicator vector as prescribed in

[67] and [18]. Furthermore, as we presented, it is possible to construct simple toy exam-

ples where the second eigenvector offers a better solution for DSO, rather than for the NCut



problem. Due to the high dimensional nature of our problems, Shi and Malik's spectral

clustering algorithm, when applied, often misassigns smaller clusters that exhibit high lev-

els of connectivity to other clusters that are otherwise not very well connected as illustrated

in Figure 4-3. To avoid this problem, we do not stop cutting when the number of clusters

reaches k, the predetermined number of clusters. Rather, we continue cutting until a very

high threshold of a 2-way NCut value is reached. This threshold is typically close to 1,

which is the level at which every point is clustered by itself regardless of the weights. This

is referred as a spectral greedy splitting algorithm (GS) and is presented as pseudo-code in

Algorithm 4.2. The greedy splitting is followed by a greedy merging algorithm, which is

described in Algorithm 4.3, to reduce the number of clusters back to 1. The greedy merging

algorithm produces a hierarchy tree of clusterings as it reduces the number of clusters back

to 1. From the hierarchy tree, a k-way clustering is then extracted for the pre-determined

number of clusters k. With the addition of the greedy merging algorithm, the misassign-

ment of smaller clusters in high dimensional problems can be avoided as demonstrated in

Figure 4-3C&D. We will further demonstrate the reduction achieved in NCut through the

new algorithm and its implications for segmentation accuracy later in Section 4.6 with DTI

data.

At the final stage of our algorithm, we allow single object swaps between clusters to

further reduce the NCut value. At every iteration of this stage, the algorithm considers the

possibility of reassigning a single object to another cluster. If the resulting cut has a smaller

NCut value than before, that point is reassigned to its new cluster. The algorithm stops if

there are no more objects left that can be reassigned to reduce Ncut. Pseudo-code for the

object swaps is presented in Algorithm 4.4. The final iterations are guaranteed to converge

within a finite number of stages since (1) the NCut values are finite (bounded by m if there

are m clusters) and (2) at every iteration the resulting graph's NCut is reduced by at least

the computer precision, which is also finite and non-decreasing. Since a point is reassigned

only when the NCut value is decreased, the resulting cut is guaranteed to have a NCut

value smaller than or equal to the original cut.



Algorithm 4.2 Pseudo-code for the spectral greedy splitting algorithm
Require: Graph G = (V, E) and NCut threshold th

Initialize: I, = {1, 2,..., N(V)}, I = {I,} and Istack +- {II} % Only one cluster
while Istack is not empty do

I <- Istack(1) % Pick a subgraph to be divided
Istack +- Istack - Istack(1) % Remove the subgraph to be divided from Istack
Calculate edge-weight matrix W for I
M <- D- 1W % Calculate Markovian matrix
Calculate the second largest eigenvector of M, v 2

[Vsorted, ind] = sort(v2) % Sort the second largest eigenvector
Wsorted --= W(ind, ind) % Permute W according to the second largest eigenvector

Isorted = I(ind) % Permute I according to the second largest eigenvector

% Search for the best two way portioning of I
minNCut <- 00

bestcutpoint +- oo
for cutpoint = 1 to N(I) - 1 do

newNCut -- NCutVal(G, {Isorted(l : cutpoint), Isorted(cutpoint + 1: N(I)})
if newNCut < minNCut and newNCut < th then

bestcutpoint -- cutpoint
minNCut -- newNCut

end if
end for

if bestcutpoint 00c then
I1 = Isorted(l : bestcutpoint)

12 = Isorted(bestcutpoint + 1 : N(I))
Istack -- {Istack, 1, I2} % Update Istack
I - I - I % Remove I since it is being cut into two clusters
I {I, Ii, I2}

end if
end while
return Clustering results, I



Algorithm 4.3 Pseudo-code for the greedy merging algorithm

Require: Graph G = (V, E) and clustering results I = {II, 2, ... , Im}
Initialize: lind +- {1, 2,... , m} and HieTree - {}
for iter = m to 2 x m - 1 do

minNCut <- oc
for i = 1 to N(lind) do

forj = 1 to i - 1 do
si < -ind(i)

sj - lind(j)

% Consider putting together Isi and Isj

newNCut - NCutVal(G, {I - {Isj, Isj}, {Isf, Isj}})
if newNCut < minNCut then

minNCut *- newNCut
besti = si
bestj = sj

end if
end for

end for
% Update I by joining Ibesti and Ibestj

I <+- I - {Ibesti, 'bestj}
liter+1 -- { Ibesti, Ibestj
lind = lind - {besti, bestj } + {iter + 1}
HieTree(iter - m + 1) <-- {Iiter+l1 {Ibesti, Ibestj}}

end for
return HieTree



Algorithm 4.4 Pseudo-code for the object swaps algorithm
Require: Graph G = (V, E) and clustering results I = {1h, 12, . , I}

minNCut - NCutVal(G, I)
repeat

for i = 1 to k do
for j = 1 to N(!i) do

for all 1 such that 1 E {1, 2,..., k} - i do
% Consider changing cluster assignment of object j from Ii to I,
newNCut - NCutVal(G, {I - Ii - I,, Ii - Ii(j), II, Ii(j)}})
if newNCut < minNCut then

% Change cluster assignment of object j to cluster 1
Ii *- Ii - Ii (j)

minNCut +- newNCut
end if

end for
end for

end for
until minNCut does not reduce in the last iteration
return I



4.4 Application of Spectral Split & Merge Clustering to

DTI

We treat the thalamic nuclei segmentation as a graph partitioning problem. For this purpose,

we define a graph G = (V, E), where vertices of the graph are chosen to be voxels from the

DTI data and the corresponding edge weights are pairwise similarities of these voxels. The

similarities are placed in an edge-weight matrix W, where wij is the weight of the edge

between vertices Vi and Vj. Since the quality of the segmentation depends highly on the

graph variables, they must be defined carefully.

4.4.1 Graph Construction

Our approach to nuclei segmentation is to partition the DTI data into compact regions

with homogeneous diffusion properties, since similar diffusion properties are likely to be

indicative of belonging to the same nuclei. For that purpose we are looking to construct

a graph in which the vertices within a homogeneous region are well connected and the

vertices in different homogeneous regions are not. This graph is constructed based on the

spatial distances between the voxels as well as the tensor dissimilarities.

The first step in the construction is to choose an appropriate metric to quantify the

tensor dissimilarities. There are a number of possible metrics for this purpose, such as the

Frobenius norm that was proposed for the k-means clustering:

frob (Ti, Tj) = Tr((T -T) 2)

fFhob (Ti, Tj) is explored in several DTI studies under names such as generalized tensor

dot product [35], Frobenius norm [81], and Euclidean distance metric [1]. Another recently

proposed metric is an information theoretic measure, namely the symmetric K-L divergence

[72]:

fKL (Ti, Tj) = Itrace(Ti-1Tj + T 1Ti) - 2n

where n = 3 for diffusion tensors. Finally, we will use another metric that is based on the



angular distance between the principle eigenvector directions:

fang (Ti, T3) = arccos (Ivi -vj 1) ,

where vi is the principal eigenvector of tensor Ti. The absolute value of the dot product

solves the problem with the sign ambiguity of the eigenvectors (if vl is an eigenvector

of Ti, so is -vl). This angular metric was previously used to create scalar images from

DTI and is called the intervoxel coherence [60]. Intervoxel coherence images are useful

in quantifying the coherence of diffusion between neighboring voxels, and are generated

using a sliding kernel and averaging angular distances between the center voxel and all

neighboring voxels the kernel covers.

After choosing a tensor dissimilarity metric, we also need to incorporate spatial rela-

tions of the voxels into the graph. One way to do so is to linearly combine the tensor

dissimilarity metric, f (Ti, Tj), with a spatial distance, s(x , xj), as in [81]:

d((xi, T2 ), (xj, Tj)) = f (Ti, Tj) + 7ys(xi, xj) ,

where y is a weighting factor to control the trade-off between the tensor dissimilarity and

the spatial distances. We choose y in the same way as in [81]:

(Tr(Ex) 1/2

Tr (d))

where Ex is the covariance matrix for the voxel locations and Ed is the covariance matrix

for the vectorized tensors.

Finally, the distance measures are converted into edge-weights through an exponential

kernel:

ij = exp-d( - x

where a is chosen to be the mean distance to the l-th neighbor of all vertices in the graph,

and I was set to be 10 in all of the experiments described in this Chapter.



4.4.2 Graph Cuts

Once the graph is constructed, one can calculate the k-way graph partition using Normal-

ized Cuts criteria. We solve this problem as described in Section 4.3.



4.5 Data Collection and Pre-Processing

4.5.1 Image acquisition

MRI data were acquired on ten healthy young participants (8 male, 2 female, age = 45 ±

10) at the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General

Hospital (Charlestown, Massachusetts). The data were acquired on a 3 Tesla Siemens Trio

MRI scanner using an 8-channel head coil. All participants provided informed written

consent by the guidelines of the MGH Internal Review Board. The participants gave their

informed consent in writing prior to the session.

The DTI data were acquired using a twice-refocused spin-echo EPI sequence [64]. The

sequence parameters were TR/TE=8400/82 ms, b=700 s/mm2, gmax=26 mT/m, 10 T2

images, 60 diffusion gradient directions, 1 average, with total acquisition time 9 min 59

seconds. The 60 diffusion gradient directions were obtained from the electrostatic shell

repulsion method [34]. Sixty four axial oblique slices were acquired. The slices were

oriented in the intercommissural (AC-PC zero) plane. The field-of-view was 256 x 256 mm

and the matrix size was 128 x 128 to give 2 x 2 mm in-plane resolution. The slice thickness

was 2 mm with 0 mm gap. The pre-averaged SNR of the T2 and diffusion-weighted images

in deep white matter was, respectively, - 28 and - 18. The eddy current distortions

between diffusion weightings were typically less than - 1 - 2 voxels.

4.5.2 Pre-processing

Correction for motion and residual eddy current distortion was applied by registering all of

the scans to the first acquired non-diffusion-weighted scan for each participant. The regis-

tration was performed using the FLIRT (FMRIB's linear image registration tool) program

which is available from the FSL library (http://www.fmrib.ox.ac.uk/fsl/flirt). The registra-

tion used a 12 degree-of-freedom global affine transformation and a mutual information

cost function [30]. Trilinear interpolation was used for the resampling. The diffusion ten-

sor, the tensor eigensystem, and the FA metric were calculated for each voxel using the

formulas described in [5] and [61].



The diffusion tensor and FA volumes were normalized to MNI-space (Montreal Neu-

rological Institute). The MNI-space normalization was preformed by registering each par-

ticipant's T2 volume to a skull-stripped version of the MNI 152-subject T2 template [50]

and then applying the transformation to the diffusion tensor and FA volumes. The MNI

template was skull-stripped using the BET (brain extraction tool) program [68] from FSL

(http://www.fmrib.ox.ac.uk/fsl/bet). The registration was performed using FLIRT with a

12 degree-of-freedom global affine transformation and a mutual information cost function

[30].

The registration transformation was then applied separately the FA and tensor volumes.

The FA volume was resampled using trilinear interpolation and the tensor volume was

resampled using nearest neighbor interpolation. Nearest neighbor interpolation was used

to resample the tensor volume to avoid partial volume averaging between different dif-

fusion tensor orientations in neighboring voxels. The tensors were reoriented using the

rotational portion R of the atlas transformation. The tensor reorientation was applied by

pre- and post-multiplying the native-space diffusion tensors, i.e., D = RDRT. The rota-

tional portion of the atlas transformation F was extracted using canonical orthogonalization

R = (FTF)-1/2FT [2].

4.5.3 Thalamus Mask

Thalamus masks were drawn manually for each individual by a trained neuroanatomist

1. The masks were drawn for each hemisphere on each individual's MNI-normalized

FA map. The masks were drawn using TkMedit, which is part of the Freesurfer toolkit

(http://surfer.nmr.mgh.harvard.edu). The thalamus was demarcated on axial, coronal and

sagittal views of the FA map for each participant. Brightness and contrast levels were set so

that the thalamus contrasted well with the caudate nucleus, lateral ventricle, third ventricle,

transverse fissure, posterior limb of the internal capsule, and cerebral peduncles. Bright-

ness and contrast levels were not changed during the segmentation of the thalamus and

were identical across participants.

'Thalamus masks and thalamic nuclei segmentation were performed by Jon Wisco at the Massachusetts
General Hospital



Table 4.1: Thalamic nuclei labels used in this thesis.

Initials Full Name

Ant Anterior
CM Center Median
LD Lateral Dorsal
LP Lateral Posterior
LGN Lateral Geniculate
MD Mediodorsal
MGN Medial Geniculate
Pu Pulvinar
VA Ventral Anterior
VL Ventral Lateral
VP Ventral Posterior

Voxels corresponding to the anterior, medial, and lateral divisions, as well as the intra-

laminar and reticular nuclei of the thalamus, were included in the segmentation mask. The

demarcation of the borders between the reticular nucleus and the posterior limb of the

internal capsule, between the ventral thalamus and zona incerta/subthalamic nucleus, and

between lateral geniculate nucleus and optic radiations was viewed on all three orthogonal

image planes and verified using the Nolte atlas [55].

4.5.4 Manual Nuclei Segmentation

Each hemisphere was further segmented into its nuclei on the corresponding tensor map by

the neuroanatomist, following the drawings of [59]. Nuclei that could be visually identified

consistently across individuals on the diffusion tensor cuboid maps were considered. The

nuclei were: LGN, MGN, Pu, VA/VL/VP, CM, MD/Ant, and LD/LP. The full names for

each nuclei are presented in Table 4.1. To visualize and record the position of the thalamic

nuclei, an interactive labeling tool was designed by the author of this thesis to display a dif-

fusion tensor cuboid map for each individual hemisphere overlaid on the FA images. Each

voxel inside the thalamus was assigned to one of the nuclei by a trained neuroanatomist

(JW). The labeled thalami were used to validate the algorithms described in this Chapter.



4.5.5 Validation

To quantify the quality of clustering results using different methods and different similarity

measures, we need a measure of quality. Dice's coefficient (DC), which provides such a

measure, is a similarity measure to compare two sets, A and B, and is defined as:

2 x N(A n B)
DC =

N(A) + N(B)

Dice's coefficient is used with medical images to quantify volume overlap of different

segmentation results [88]. It is also possible to extend this measure to quantify volume

overlaps of k-way segmentation. Using our notation, the resulting measure becomes:

- 2 x N(lI n L)
VolumeOverlap = i= N(

Ei N(I2) + N(Li)
k N(• i n Li)= N(L) (4.3)

where L = {L 1, L 2, ... , Lk} are the expert labels. However, in general an unsupervised

clustering algorithm, such as the k-means algorithm of [81], does not provide labels that

correspond one-to-one to the manual labels. In fact, in [81] this problem is called "nuclei

identification" and solved manually. The nuclei identification occurs after the clustering of

the thalamus, and it refers to manually assigning anatomical labels to the clusters. During

the nuclei identification, merging of clusters is allowed, which results through assigning

the same anatomical label to multiple clusters.

In more general terms, the nuclei identification problem is similar to the correspondence

problem of computer vision, which can be formulated as the following: Given two sets

of indexes I = {11i, 2, ... , Ik}, containing clustering results and L = {L 1, L 2,... , Lm}

containing expert labels, the correspondence mapping is a set of pairs (i, 1), where i E I

and 1 C L. For each pair of assignments, there is an affinity A(i, j) which quantifies the cost

of making this assignment. The number of clusters k is not required to be the same as m,

and in the case k > m, the solution to the nuclei identification problem involves merging

clustering results as in [81]. For our specific problem, there are exactly k pairs in the



correspondence mapping, since each cluster can only be assigned to a unique anatomical

label.

To solve this problem automatically, we need to identify a cost measure for each pos-

sible pair of assignments. Since we are quantifying the segmentation quality using the

volume overlap measure as defined in Equation 4.3, it is easy to show that the correspond-

ing cost function is N(Ii n L1). Therefore, to obtain the maximum volume overlap, each

clustering result needs to be assigned to the anatomical label. Such an assignment results

in the maximum number of overlapping voxels. We note that as the number of clusters k

increases, the volume overlap measure calculated this way is guaranteed to increase. When

k is set to be equal to the number of voxels, the solution to the problem of nuclei identifica-

tion becomes equivalent to manual segmentation. We will discuss this point further in the

conclusion of this chapter, as the previous work uses higher values of k without noting this

subtlety.



4.6 Experiments

4.6.1 Comparison of Heuristic Solutions to Normalized Cuts

We applied three spectral clustering algorithms to in-vivo DTI data from ten subjects. The

three algorithms used were

1. the spectral splitting as described in [67],

2. spectral split and merge as described in Section 4.3,

3. spectral split and merge followed by object swaps.

fang was used for tensor dissimilarity and the same edge-weight matrix was used for all

three algorithms. To demonstrate the qualitative differences between the three algorithms, a

single slice from an exemplary subject that was segmented by the three algorithms is shown

in Figure 4-4 along with the resulting normalized cut value for the respective segmentations.

As the normalized cut value decreases, the boundaries between the segments follow more

closely the valleys of low edge-weights as shown in the corresponding graph.

Normalized cut values along with volume overlaps of the resulting segmentations with

expert labeled data is presented in Figure 4-5 for all ten subjects. As in Figure 4-4, the

lowest normalized cut value is achieved with spectral split and merge, followed by object

swaps, and the highest values were obtained through the spectral splitting as described in

[67]. Furthermore, the lower normalized cut values translated into higher volume overlaps

with the expert labels.

4.6.2 Comparison of Tensor Similarity Measures

We applied the spectral split and merge algorithm, followed by object swaps, to in-vivo DTI

data from ten subjects using the three tensor similarity measures of Section 4.4.1. We also

repeated the same experiment with the k-means algorithm as described in Section 4.2.1

to use the k-means algorithm as a benchmark. Volume overlaps with expert labels are

presented for these experiments in Figure 4-6 for k = 7 and in Figure 4-7 for k = 12.

In both figures the results are presented separately for the left and right hemispheres. The



Figure 4-4: A single slice from an exemplary subject segmented by three spectral algo-
rithms is shown. fang was used for tensor dissimilarity and the same edge-weight matrix
was used for all three algorithms. Even though only a single slice is shown, the segmenta-
tion was done in 3D for the whole thalamus. The left-most figure shows the corresponding
graph, with each vertex of the graph (voxel) represented by a colored circle with the edge-
weights reflected by the thickness of the edge connecting the vertices. Only the edges
for the face-neighbors are shown for clarity. The resulting normalized cut values are as
indicated under each segmented slice.

resulting error bars are similar for both hemispheres. The spectral algorithms result in

higher volume overlaps as opposed to the k-means algorithm. As for the tensor similarity

measures, fang results in the highest volume overlaps, whereas the fKL results in the lowest.

Volume overlaps are higher with k = 12 as opposed to the results with k = 7.

4.6.3 Qualitative Results from Spectral Clustering on DTI Data

For all thalamic data sets, spectral reordering of the edge-weight matrix revealed a sig-

nificant clustering structure (Figure 4-8D). The graph created by the algorithm provides

necessary information for the clustering. Furthermore, the spectral ordering followed by

the modified spectral clustering algorithm was able to identify the clusters. These clusters

are presented in Figure 4-9 (Right) for one of the individuals along with the expert labels

(Left). Automatically segmented clusters are similar in both hemispheres, which were pro-
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Figure 4-5: Normalized cut values along with volume overlaps with expert labels from three
spectral clustering methods are presented for 10 subjects. S stands for spectral splitting,
S&M stands for split and merge and S&M+OS stands for split and merge followed by
object swaps. The error bars show the mean value of the respective quantity as well as
the range within one standard deviation calculated from the experimental results. The thin
lines indicate the range of values obtained in all experiments.

cessed independently, and they match well with the expert segmentation. The clustering

was achieved by the split and merge algorithm, followed by object swaps, and the resulting

hierarchy tree is presented in Figure 4-10.

4.6.4 Effect of k

To investigate the effect of k on the segmentation quality, DTI data from ten subjects were

segmented with varying number of clusters k E {5, 10, ... , 50}. The volume overlap mea-

sure increased monotonically with increasing k as shown in Figure 4-11. There are around

1000 voxels in each thalamus, therefore, the volume overlap would have reached to 100%

as k reached the number of voxels.
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Figure 4-6: Volume overlaps between the expert labeled data and clustering results with
different tensor similarity measures for the left and right hemispheres of 10 subjects. The
number of clusters were set to 7 in all experiments. k-means and the spectral split and
merge, followed by object swaps, were used for clustering.
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Figure 4-7: Volume overlaps between the expert labeled data and clustering results with
different tensor similarity measures for the left and right hemispheres of 10 subjects. The
number of clusters were set to 12 in all experiments. k-means and the spectral split and
merge, followed by object swaps, were used for clustering.
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Figure 4-8: A schematic outline of spectral segmentation algorithm. (A) A single slice ten-
sor data and (B) the corresponding graph with each vertex of the graph (voxel) represented
by a colored circle with the edge-weights reflected by the thickness of the edge connecting
the vertices. Only the edges for the face-neighbors are shown for clarity. (C) Edge-weight
matrix W with initial random ordering did not show clustering structure, but (D) the spec-
tral ordering presents clustering structure. The resulting clusters are marked by the red
contours. (E) The resulting segmentation is presented for one slice, (F) as well as the for
the whole thalamus in 3D.

E



Figure 4-9: Left: 3D rendering of expert segmentation of both hemispheres from one sub-
ject. Each cluster is colored according to the mean diffusion direction of the cluster. Right:
The same subject segmented by the modified spectral clustering with k = 12.
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Figure 4-10: An example hierarchy tree obtained through spectral clustering.
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Figure 4-11: Volume overlaps between the expert labeled data and k-means clustering re-
sults with differing k. As k becomes closer to the number of voxels present in the thalamus,
the overlap measure will asymptotically approach to 100%.
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4.7 Summary of the Chapter

In this section, we investigated several clustering algorithms with different tensor similarity

metrics for segmentation of thalamic nuclei. All of the algorithms investigated were able

to produce plausible segmentations for the thalami. However, the spectral split and merge

clustering, followed by the object swaps, produced both qualitatively and quantitatively

better results when compared to the other algorithms. Furthermore, all of the spectral

methods investigated in this chapter worked better than the previously proposed k-means

algorithm.

Another variable for varying performance is the choice of tensor similarity metric used

by the clustering algorithms. The full-tensor-based metrics such as the Frobenius norm and

KL-divergence failed to match the accuracy of segmentations when compared to our metric

that depends only on the principal diffusion direction. We believe the reason for that is due

to the cellular properties of the thalamus. The thalamic nuclei consist mainly of gray matter

structure with little mylenation and directional coherence due to the major white matter

tracts connecting to the cortex, which in return results in nearly isotropic voxels. The full-

tensor-based metrics quantify mostly the similarity due to the largely isotropic tensors and

to a smaller degree the directional information. However, the principal diffusion direction

disregards the isotropic part of the tensors and only quantify the orientation information.

This could result in a noisier metric; however, our results indicate that the advantage of

disregarding non-informative isotropic parts of the tensors outweigh the effects of noise.

A promising result is the negative correlation between the normalized cut value and

the volume overlap measure observed in all the experiments. This result indicates that the

normalized cut criteria is a good metric for segmentation of diffusion tensor data.

One major problem of segmentation through clustering individual thalami is the lack of

correspondence between clusters obtained in different subjects. This results in an inability

of assigning anatomical labels automatically. This problem has been addressed previously

through expert identification of the resulting clusters in each subject. In this chapter, we

solve this problem using an automatic assignment process that maximizes the volume over-

lap measure between the clustering results and the expert labels. We note that this is not



a suitable way to assign anatomical labels for unlabeled thalami; however, it was suitable

for our objective of quantifying the volume overlaps. An interesting result of this kind

of anatomical labeling is that as the number of clusters k increases, the volume overlap

measure is guaranteed to increase. And we confirmed this in our experimental setting in

Figure 4-11. Both in [81] and [33] k was set at 14. At that level of k with expert identi-

fication of anatomical labels, it becomes possible to obtain high volume overlaps between

subjects; however, this kind of user interaction makes the resulting segmentations less au-

tomatic.



Chapter 5

Consistent Gray Matter Segmentation

In Chapter 4, we investigated several unsupervised clustering algorithms for segmenting

thalamic nuclei from diffusion tensor images. These algorithms produce a plausible seg-

mentation on individual subjects; however, they do not address the problem of consistently

identifying the same functional areas in a population. The lack of correspondence be-

tween the segmented nuclei makes it more difficult to use the results from the unsupervised

segmentation tools for morphometry. In this Chapter we present a novel segmentation

algorithm to automatically segment the gray matter nuclei while ensuring consistency be-

tween subjects in a population. This new algorithm, referred to as Consistency Clustering,

finds correspondence between the nuclei during the segmentation since the segmentation is

achieved through a single model for the whole population. This model is an output of the

algorithm and it serves as a probabilistic atlas similar to the brain atlases experts use to iden-

tify thalamic nuclei. Furthermore, the Consistency Clustering can utilize both previously

labeled and unlabeled data, therefore the algorithm can be used both as an unsupervised or

as a semi-supervised method for creating probabilistic brain atlases.



5.1 Introduction

Diffusion tensor imaging (DTI) is a relatively new imaging modality that measures free

water diffusion, i.e. Brownian motion, of the endogenous water in tissue [6]. In human

brain tissue, the water diffusion is not the same in all directions, since it is obstructed by

structural elements such as cell membranes or myelin [6]. When this obstruction con-

strains the water diffusion in a coherent direction, such as within the cerebral white matter,

the resulting water diffusion tensor becomes anisotropic, containing information about the

directionality of the white matter connectivity. Thus, quantification of water diffusion in

tissue through DTI provides a unique way to analyze white matter organization of the brain.

Unlike white matter, the tissue in gray matter is less organized in orientation. The

lack of coherent orientation limits the use of DTI for gray matter analysis in some areas,

such as the cerebral cortex. However, there are certain gray matter structures that exhibit

coherence in diffusion direction due to the presence of coherent white matter near these

structures, such as the thalamus. The thalamus acts as the central relay station of the brain

with nearly all of the sensory tracts project to the cortex passing through the thalamus.

Since functionally related pathways target the same region of cortex once they leave the

thalamus, they result in organization of diffusivity within the thalamus. This organized

diffusion can be measured in DTI, and it has been proposed that the thalamic nuclei can be

distinguished by their characteristic diffusion orientation [81].

Precise identification of the thalamic nuclei is essential in a clinical setting, since many

motor-control disorders are surgically corrected by applying chronic electrical stimulation

to the appropriate functional area of the thalamus. Currently, these regions are detected

qualitatively before a surgical operation using generic atlases along with structural MRI

[26], even though the structural MRI does not provide adequate contrast to identify the dis-

tinct nuclei. Changes have also been reported in the thalamic nuclei during the progression

of a large number of diseases, including schizophrenia [63] and Parkinson's disease [24]

Using the knowledge that thalamic nuclei can be resolved through DTI, several seg-

mentation algorithms have been proposed to segment the thalamic nuclei. The earliest

segmentation method, which depends on DTI data only from within the thalamus, uses
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Figure 5-1: Schematic description of previous thalamus segmentation algorithms [81, 86,
32, 19] (left) as opposed to the Consistency Clustering (right).

the k-means clustering algorithm [81]. Other clustering methods have been proposed that

use spectral clustering [86], level-sets [32] and the mean-shift algorithm [19]. These other

methods avoid some of the weaknesses of k-means, which includes a bias toward ellipsoidal

clusters and sensitivity to initialization. Even though each of these clustering algorithms

produce plausible segmentations for any given subject in a population, they do not find a

correspondence between the segments acquired from different subjects.

In this Chapter, we present a new approach to the segmentation of thalamic nuclei.

Unlike the previous methods, this new algorithm, referred to as Consistency Clustering

(CC), is designed to segment multiple subjects simultaneously and find a correspondence

between the segmentation results (Figure 5-1). The CC achieves these goals by learning a

thalamic model of the population under investigation, which serves as a probabilistic atlas

of the thalamic nuclei. This model involves a spatial component as well as a directional

component for each nuclei. The CC also performs a non-linear (poly-rigid) registration to

account for inter-subject variability. Since the segmentation of each individual subject is

done according to a common model, the consistency of segmentations between subjects is

ensured. We formulate the joint segmentation problem as a maximum likelihood problem

which the Consistency Clustering solves using a generalized Expectation Maximization

(gEM) framework. This joint segmentation approach results in a segmentation for each

subject and determines a correspondence between subjects. Also, the thalamic model,
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which is learned from the population, serves as a compact representation of the population

under investigation, which finds applications in quantitative morphometry.

In the following Sections, we first provide background on the expectation maximiza-

tion (EM) algorithm, and then describe the theory behind the method which uses EM for

optimization. Finally, we present results from several experiments that demonstrate the

feasibility of the proposed method with DTI data from 10 healthy participants.



5.2 Background on Expectation Maximization

Expectation maximization (EM) is a numerical algorithm for optimization of parametric

functions. In this section we will provide a brief background on the EM algorithm and its

application to clustering through Gaussian and von-Mises Fisher mixture models.

5.2.1 An Iterative Lower Bound Optimization

The intuition behind EM is a simple one: Given a function J(O), whose value we wish to

maximize, and an initial estimate of the parameter set E(0) , the EM algorithm iteratively

updates the parameter set E (") until J(O) can no longer be increased. EM achieves this task

by identifying a lower bound b~ (O), at every iteration (n), which satisfies the following two

conditions:

* bn is a lower bound for J; i.e., bn(O) < J(O) for all O,

* bn touches J at the (n)th estimate of the parameter set; i.e., bn(O (n )) = J(O()).

An illustration of these conditions is provided in Figure 5-2. Given these two conditions,

it is clear that the (n + 1)-t parameter set, which is chosen to maximize the lower bound

b,(O), also results in a higher or equal value of the optimization function; i.e. J(O(n+~)) >

J(O(")). Through this observation, the EM algorithm reduces the problem of maximizing

J(O) to identifying a lower bound function that is easier to maximize. Identification of

such a lower bound is not a trivial problem, but good choices for such a lower bound exist

for some important family of functions, such as the parametric density estimators. We refer

the reader to [51] for formal proofs of these statements and for a large set of problems with

known solutions.

5.2.2 Maximum Likelihood Density Estimation

We define a maximum likelihood density estimation problem as following: Given a set

of N points in D dimensions, X = {x1, X2,... , XN jXi E RD}, and a family ý§ of den-

sity probability density functions defined on RD, calculate the probability density function
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Figure 5-2: Illustration of an EM iteration. The algorithm identifies a lower bound b,(O)
for the (n)th estimate of the parameter set O(n ) , which touches the objective function J(O)
at O(n). Calculating the maximum of the lower bound in some cases is easier then identi-
fying the maximum of the objective function. Iteration (n) is completed by obtaining the
parameter set that maximizes the lower bound. The algorithm is guaranteed to find the
local maxima of J(8) through these iterations.

p(x; E) E 9~ that maximizes the likelihood of the observations in X. Since the density

functions in this family are parametrized with O, this problem is equivalent with finding

O* that maximizes the likelihood of observations in X. For an arbitrary density function

family, this problem is formalized as:

0* = argmaxL(O1X),
e

N

= arg max f p(xi; O),
E i=1

where the samples xi are assumed to be independent. It is common practice to use a

monotonic function, such as the logarithm function, to linearize a problem that involves



products. In that case, our density estimation problem becomes:

8* = argmaxlogL(EOX),
e

= arg max Y(OIX),

N

= arg max logp(xi; E).
i=1

Here 2'(E) denotes the log-likelihood and it is analogous to the optimization function

J(8) of Section 5.2.1.

Class Labels

We now introduce class labels c E {1, 2,..., C}, which serves as the mixture weights in

our problem:

N

i=1
N

i=1

N

i=1

C

log p(xi, c; 8),
c=1

C

log p(c; O)p(xi c; E),
c=1

C

log E 7rcp(xi c; E),
c=1

(5.1)

where 7re = p(c; O) is the mixing weight for mixture (class) c. To ensure p(c; 8) is a valid

probability distribution, the mixture weights need to be non-negative and sum up to one;

i.e.,

crr > 0,

EC =c
c

Introduction of the class labels enables finding a lower bound b,(8). Class labels are

usually called "hidden variables" since they are not observed in the random experiment,

but they appear in the optimization function as variables.



Jensen's Inequality

We use Jensen's inequality to construct a lower bound for the log-likelihood in our problem.

Jensen's inequality provides a lower bound for any real concave function ;,

Ei( ZCfvi )> Ž (5.2)

where {yi} denote samples in the domain of ; and {afo} denote non-negative weights for

the corresponding samples. Adding an additional constraint on the weights, E• ai = 1 and

choosing log as the concave function, Jensen's inequality becomes:

log a•iYi >• a~ i log(yi).
i i

(5.3)

Lower Bound

To use Jensen's inequality to construct a lower bound in our problem, we revisit the log-

likelihood from Equation 5.1, and introduce a generic probability distribution q(c) defined

over the class labels:

N

i=N

N

i=1

C

c=1

C

log p(c; E)p(x |c; ) qc
c-i

(5.4)

where -c q(c) = 1. Then, using the Jensen's inequality from Equation 5.3, we obtain a

lower bound for the log-likelihood:

N C q(c) N C

-) = log ip(xi c; ) > q(c) log
i= 1 c=:1 i= q(c)

(5.5)



where we substituted q(c) for ca and (p(xi, c; O)/q(c)) for yi in Equation 5.3. Further

manipulation of this lower bound results in:

Ni C (x, (c)E q(c) log (c)i=1 c=1

NC NC

E E q(c) logp(xi, c; E) - E q(c) log q(c),
i=1 c=1 i=1 c=1

NC

= E q(c) logp(xi, c; 0) - Constant,
i=1 c=l

N

= E Eq[logp(xi, C; )] - Constant,

where Eq[.] denotes an expectation with respect to q. The appearance of the expectation in

the lower bound is the reason for the name of expectation maximization algorithm.

In Equation 5.5, any choice for function q(c), from the set of valid distributions over c,

is guaranteed to be a lower bound for the log-likelihood; however, we also need to ensure

that the resulting lower bound touches the log-likelihood at O (n ) . This second condition is

met for q(c) = p(clxi; EO(")), which is easy to see by plugging in p(clxi; 0(n)) for q(c) and

setting O = (n") in the lower bound from Equation 5.5:

EE q() loqg (c)
i=1 c=1 l

NC

E= p (c Xi; 0(n)) log
i=1 c=1

NC

= Ep(c xi; (n)) log
i=1 c=1

N C

N C

= log (p(xi; E())) E
i=1 c=1

N
= 0log (p(xi; E(n))),

i=1

= •(e(")),

p(x ,; 6(n)))

p(x, ; (n))p(xi; O(n))

p(X,,-C; E)(n))p(X; - E) )) ,
px c ()p(x, ()px, C; E)(n))

(p(xi; E(n))),

p(c xi; 9(n))

where we used the fact that Ec=l p(c xi; 0(n)) = 1. The resulting lower bound bn(O) is



written explicitly as:

N C NC

b,(E) = 3 Cp(c xi; 8E)) log p(xi, c; E) - S p(c xi; eBn) logp(c X; O"()),
i=1 c=1 i=1 c=1

where the second summation does not depend on O and therefore maximizing bn,(O) is

equivalent to maximizing b, (8):

N C

b,(8) = P p(c xi; O (n)) logp(xi, c; O). (5.6)
i=1 c=1

The EM algorithm maximizes this lower bound iteratively, with two stages per iteration. In

the first stage, called the expectation step or "E-Step", the algorithm constructs the lower

bound b,(O) using the current estimate of the parameter set, ((n ) . In the second stage,

called the maximization step or "M-Step", the algorithm maximizes the bound bn,(8) by

calculating the parameter set O((n • l) that maximizes the lower bound (See Figure 5-2).

5.2.3 EM for Estimating a Gaussian Mixture Model

We now derive the specific update equations for estimating a Gaussian mixture model using

the expectation maximization algorithm. In Section 5.2.2, we define the density estimation

problem as following: Given a set of N points in D dimensions, X = {X1, X2 ,. . , XN Xi E

RD}, and a family §' of density probability density functions defined on RD, calculate the

probability density function g(x) E W that maximizes the likelihood of the observations in

X. For a Gaussian mixture model, the density functions are conditioned to be mixtures of

Gaussians, i.e.,
C

g(x) = cf (xIC; 6)
c=1

where 7e is the mixing weight (probability) for mixture c. f(x c; 0) is a Gaussian, i.e.

f(x c; O) = N(x; pc, EC) = (2_)3/2Ecj1/2 exp - (x - c)E- l(x - Pc) ,

94



where p, is the mean vector and E, is the covariance matrix for mixture c. As before, the

mixture weights need to sum up to one, Ec 7r = 1 and be non-negative, 7r > 0. Given

this model, the log-likelihood of X becomes:

Y(O) = logL(E),
NC

= log H cN(xi; pc, Ec),
i=1 c=1

N C

= log 1 cN(xi; tc, Ec).
i=1 c=1

Assuming we start with an initial estimate of the parameters 0(0) -= 0) 0c), ... E, ~),

where O~0) = {•0), o), o)}, the expectation maximization algorithm calculates a better

estimate for the parameter set first by constructing a lower bound b,(6) in the E-Step

and then maximizing this bound with respect to the parameters in E in the M-Step. We

now derive the specific update equations for the Gaussian mixture model that is used to

iteratively estimate 8*.

E-Step

In the E-Step the algorithm constructs the lower bound b,(6) by taking the expectation of

the log-likelihood with respect to the current distribution of the class labels. From Equation

5.6, the lower bound (excluding the constant term) is:

NC

b, () = p(cIxi; E(')) logp(xi, c; 6),
i=1 c=1

N C

= I p(c x i; ')) log 7r r N(x i ; p, Ec), (5.7)
i=1-i c=1

where we plugged in the specific equations for Gaussian mixture model in the second step.

To construct this bound, we need to calculate p(c xi; O(N)), which are called "membership



probabilities", for each of the samples in X:

p(cx; e(n)) = p(xilc; e("))p(c; e(n))
p(xi; EO( ))

7rc( )N(xi; ,•n), E n ))

EC 7rn•)N(xi;t IL), E (n) )

S(n)
PCpI (5.8)

where p)(nwhere pc denote the membership probabilities.

M-Step

In the M-Step, the algorithm updates the parameter set E to maximize the lower bound

b, (O). Update equations for each of the parameters are derived using Lagrange multipliers

for the corresponding constraints (if any) and setting the derivative of the lower bound to

zero. We first derive the update equation for 7r, with the constraint EC 7r = 1:

N C C
H, (O) ~~ph=l E l (n) • E 1(,

= pci log N(x; pc-A c7 - 1
i=1 c=l c==1

N C C N C
= log - A - (n) log N(x; , ).
i=1 c=1 c=1 i=1 c=1

Taking the derivative of H,(O) with respect to a specific mixture weight, rXj for c = j

results in:

dH,(O)
07rj

N (n)

• = 7rj (5.9)

Rearranging to solve for 7rj gives us:

N

I = (n)
i=1



To solve for A, we sum each side over j:

C 1

j=l

Since E I 7I 1, A equals:

N C

i=1 j=1

N CS(n)
i=1 c=l

N

= El,
i=1

- N,

C (n) (n+1)where we used the equality Ec=1 =p 1. Finally, the resulting update equation for 7i)c

is:

N

(n+1) )

i=1

There are no constraints on the mean vectors pc; therefore we do not need a Lagrange

multiplier for the corresponding update equation:

N C

Hp() = p (log 7cN(xi; p, Ec),
i=1 c=l1

NC

= p c(n)
i=1 c=l

NC
log w + E p (n)log N(xi; ft, Ec),

i=1 c=1

NC

log 7ci -
i=1 c=1

1

2

NC

+ E E c log((27)3/2 2c 1/2).
i=1 c=1

N

=1
i= 1

C
(n)Pci

- Ac)Tc E (xi - tc)



Taking the derivative of H ,(8) with respect to a specific mean vector, pj for c = j results

in:

S i= 1

We now set the derivative to zero:

N N
E]1 (n) Xj - E1j E (n)=0

i-i i=1

Rearranging to solve for pjI results in the following update equation:

(n+1) - Zi=Pci xiPC N (n)i=1Pci i

which is equal to the weighted mean of all the samples, weighted according to their class

membership probabilities. Update equations for the covariance matrix are derived in a

similar fashion as the mean vectors. The resulting update equation is:

N (n) (n+1) (n+1) T
E(n+1) i=1 c Xi - c )(Xi- ci)

c N (n)
i i=1 Pci

5.2.4 EM for Estimating a von-Mises Fisher Mixture Model

The mixture density estimation problem is not limited to Gaussian distributions, but can

easily be generalized to many other parametric distributions. In this chapter we are inter-

ested in clustering diffusion tensors, which contain directional information. The von-Mises

Fisher (vMF) distribution is a simple parametric distribution for directional data, and has

properties similar to the Gaussian distribution. For example, the maximum entropy density

defined on a unit sphere is a vMF distribution for a fixed mean vector [49].

Similar to the Gaussian mixtures, we define a mixture density estimation problem

for the vMF mixtures: Given a set of N points on a D dimensional unit sphere, X =

{X 1, X 2 ,... ,XN , X i E R D and ||xil| = 1}, and a family 5 of density probability density

functions defined on RD, calculate the probability density function g(x) E W that max-



imizes the likelihood of the observations in X. For a vMF mixture model, the density

functions are conditioned to be mixtures of vMF, i.e.,

C

g(x) = E7rcf(xlc; O)
c=1

where 7rc is the mixing weight (probability) for mixture c. f(x c; 8) is the vMF distribution

function, i.e.

f(xlc; 8) = vMF(x; v~, nc) = CD(rc)exp (,ceTx) ,

where vc is the mean vector that is subject to the constraint |Jv|ll = 1. rc is called the

"concentration parameter" for mixture c, since it describes how strongly the unit vectors

are drawn toward the mean vector. A higher value of tc results in a more concentrated

distribution of the vectors on the unit sphere. The normalization constant CD (cr) is given

by:

CD)= - r(D/2)-1/(27)D/21(D/ 2) 1-IW,

where I,(.) represents the modified Bessel function of the first kind and order r. As before,

the mixture weights need to sum up to one, Ec 7c = 1 and be non-negative, 7,r > 0. Given

this model, the log-likelihood of X becomes:

N C

Y =() = log 1 vMF(xi; vc, Kc).
i=1 c=1

Similar to the Gaussian mixture case, we first obtain a lower bound on the log-likelihood

and then derive the specific update equations.

E-Step

In the E-Step the algorithm constructs a lower bound b~ (O) by taking the expectation of

the log-likelihood with respect to the current distribution of the class labels. From Equation



5.6, the lower bound (excluding the constant term) is:

N C

b,() = p i logp(xi, c; 6),
i=1 c=1

N C

- p • log 7rcvMF(xi; vc, c),
i=1 c=1
N C NC NC

S E p) log1 rc + E E D( ) + Z KCVCTXi, (5.10)
i=1 c=1 i=1 c=1 i=1 c=1

where p) = p(cjxi; E(n)). To construct this bound, we need to calculate the membership

probabilities pc for each of the samples in X:

(n) p(xi c; o(n))p(c; E (n))
Pc p(xi; E(n))

7rc )vMF(xi; vK"),  C"))

C=: 7r( ")vMF(xi; Vn") I ( )) )

M-Step

In the M-Step, the algorithm updates the parameter set E to maximize the lower bound

b,(O). The update equations for each of the parameters are derived using Lagrange mul-

tipliers for the corresponding constraints (if any) and setting the derivative of the lower

bound to zero. We first derive the update equation for 7rc with the constraint EC 7rc = 1:

H,(O) = bn(O) - A x~ - 1 ,
( c=1

Taking the derivative of H,(O) with respect to a specific mixture weight, 7rj for c = j

results in:

N (n)
OH, (O) pji

i=1
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This is the same as Equation 5.9 from the Gaussian mixture model derivation, and results

in the same update equation for r,:

.(n+l) 1)

i=1

The mean vectors v, are constrained to be on the unit sphere, i.e. v~'v = 1. Note that

this constraint is dependent on the class index c, resulting in C equations with C Lagrange

multipliers Ac. Using a Lagrange multiplier for a specific constraint for c = j:

N N

H,(e)= pi) log rj + pCD ) + p jqjix - Aj (v,3  - 1),
i=1 i=1

Taking the derivative of H,(O) with respect to the mean vector, vj results in:

H() E .pSn)jxi - Aj2vj.

Oj i=1

Setting the derivative to zero and rearranging to solve for vj gives us:

N

= i=

rj 
(5.11)

2A'

where rj = 2Ei P) xi, the weighted mean vector. Adding the constraint vT v = 1 to solve

for Aj results in:

2
34 T = 1.

Rearranging the equation gives us:

A j Irj1
A - 2
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Finally, plugging Aj back into Equation 5.11 gives us the update equation for v,:

n+l) - PciX

Src 11 11IiN1PcinXi "

The update equation for the concentration parameter K is derived in a similar fashion using

the constraint ic > 0. The resulting equation is:

I(D/2) ( n n +1 ) rc-'"- rc.
(n+ l)) i (- ) c= T

I(D/2) -1 Kci=1ci

Since the equation contains a fraction of two Bessel function, there is no analytical solution

for K ). We can either use a numerical scheme to solve for n , or use an approxima-

tion. We use an asymptotic approximation proposed in [3]:

(n+1) (D - r)

Generalized Expectation Maximization

Even when there is no analytical solution for the maximum of the lower bound, like in the

case of Kc, we can derive an iterative algorithm that shares the same properties with EM,

such as the guarantee for convergence to the local minima, as long as the lower bound is

increased (but not necessarily maximized) in the M-Step [51]. The resulting algorithm is

called "generalized Expectation Maximization" (gEM). However, gEM may require more

iterations to converge, since the lower bound is increased but not maximized in the M-Step.

In general, the M-Step of gEM is slower to compute, if a numerical scheme is used rather

than an analytical solution for the maximization.
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5.3 Consistency Clustering

In this section we formulate the problem of population-wise consistent segmentation of

thalamic nuclei and derive a solution using gEM as described in Section 5.2. We ensure

correspondence of class labels and consistency between subjects through a single mixture

model (atlas) for all subjects. Since there is significant variability between the location,

orientation, shape and other properties of the nuclei between subjects (See Figure 4-2), we

also introduce registration parameters in our framework for spatial normalization. Since the

principal diffusion direction results in more accurate segmentations than full tensor based

metrics (Chapter 4), we use only the principal diffusion direction and the spatial location

of the tensors as features in the segmentation.

We define a maximum likelihood density estimation problem as following: Given a

set of N diffusion tensors from S subjects, where each tensor is represented by spatial

location X = {X8 }, X, = {xlxi E cR 3} and principal diffusion direction V = {V},

S={v vv i E R3 and IIvll = 1}, and a family W4 of density probability density functions

defined on R3 U RI, calculate the joint probability density function p(x, v; O) E W that

maximizes the likelihood of the observations in {X, V}. We model the DTI data with the

following set of parameters: E = {,7rf, /p, Ec, vnc} U {R,}, where c is an index over

class labels, i.e. c E {1, 2,.. ., C} and s is an index over subjects, i.e. s E {1, 2, ... , S}.

Given this model, our problem is finding the optimal parameter set 0* that maximizes

the likelihood of observing the sample pairs {X, V}. Given these parameters, the log-

likelihood of the parameter set becomes:

S C

Y(6) = log c l if (R, o xi; 8) f, (R, a v; ),
s=1 xiX, c=l1

where we assume independence between every observed sample pair {xi, vi} and also

independence between the spatial location xi and principal diffusion direction vi . R, o xo

and R, ovi denote the sample pairs after undergoing the spatial registration for subject s. To

derive the specific equations for this problem, we also need to choose a family of parametric
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density functions. We model the spatial locations with Gaussian density functions:

fx(x; 0) = f /(x; uc, Ec) = (2r)3 /2  c 1/2 exp (- c)E (x -c)

where pe is the mean vector and E, is the covariance matrix. We model the distribution of

the principal diffusion directions with a von Mises-Fisher distribution:

fv(v; -) = fv(v; ve, e,) = C(Kr)exp (rcv'Tv) ,

where vc is the mean orientation and rc is the concentration parameter. The constant,

C(t) = K1/2/(27) 3/2 11/2(K), where I1/2(K) is a modified Bessel function of the first kind

and order 1/2. Under this model, we formulate our problem as a maximum likelihood

estimation of the parameter set 0:

0* = arg max •(G).

In the next sections we obtain a lower bound for the log likelihood and derive specific

update equations for our formulation to iteratively estimate 8*.

5.3.1 E-Step

In the E-Step the CC constructs the lower bound b,(O) by taking the expectation of the

log-likelihood with respect to the current distribution of the class labels. In this case, the
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lower bound (excluding the constant term) is:

S C

E S Ep logp(xi,vi, c; ),
s=l xiCEX, c=l

S CS S p• log icf(R, o xi; 1c, Ec)
s=1 xEX, c=l1

S C S C
(n) log c c + (n

S C

+(p5 log f, (R o vi; v, r),
s=1 xiEXs c=1

fv(R, 0ov; Vc, c),

log f,(Rs o xi; pu, Ec)

(5.12)

where p (n) = p(c xi, v,; O(n)). To construct this bound, we need to calculate the member-

ship probabilities pA) for each of the samples pairs in {X, V}:

(n) p(x, IcC; (n))p(c; (n))
p(xi; O(n))

(rUn)f. (n ) o ;0)(n ))f(R n) o vi; 1'n) r ))

Ec=ln) f(R (n) 0 Xi; Pn), n) fv(Rn n ) o Vi n ) , n )
(5.13)

5.3.2 M-Step

In the M-Step, the CC updates the parameter set E to maximize the lower bound bn,().

The update equations for each of the parameters are derived using Lagrange multipliers

for the corresponding constraints (if any) and setting the derivative of the lower bound to

zero. We note that the lower bound of Equation 5.12 is similar to the lower bounds in the

Gaussian (Equation 5.7) and vMF mixture (Equation 5.10) cases. We rewrite (after change

of variables) the lower bound of CC in a form that is similar to the previous mixture models,

which result in similar update equations as in Sections 5.2.3 and 5.2.4:

NC NC

b,(() = p~) log c + p ) log f (R o xi- c, c)
i=1 c=l i=1 c=l

NC

( 5pnP log f, (R o vi; vc, K).
i=1 c=1

(5.14)
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We note that Irc appears only in the first term of the lower bound, and is in same format as

in the previous cases. Therefore, the update equation for ~r"n+•) is the same as before:

N
r(n+1) (1 n)

i=1

= P(")/N, (5.15)

where we define Pn) = j,, pci for a more compact notation. Similarly, the Gaussian

mixture parameters c, and E, appear only in the second term of the lower bound of Equa-

tion 5.14, and are in the same format as in the Gaussian mixture model case. Therefore, the

update equations for these two parameters are:

N
(pn+1) (n) i, (5.16)

i=1

~(n+1) - () (xi (- n+l)) (Xi - n+1)(5.17)

cn i=1

(5.18)

The vMF mixture parameters only appear in the last term of the lower bound, and the

resulting update equations are the same as the ones in the vMF mixture model case:

N

rc= (n Vi, (5.19)
i=1

f = ,i (5.20)

V ) - re (5.21)

(n+ (3 - r)K C(1) C - (5.22)

where, in the last equation, we plugged in D = 3 since our problem is three dimensional.
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Registration

Registration parameters are also updated in the M-Step. We parametrize the registration as

one rigid transformation per class per subject, i.e.,

R( ) o R(nX,(X i p, _ (n) t(n) +t(n)

ox = s -Psc )+SC SC,

R n ) o vi = R()vi,

where R( ) is a rotation matrix and pn) is the weighted mean of the voxel locations in

a given subject; i.e., p = Pi pxi/ X Ci pci . We first derive the update equation

for the translation components of the registration. Rewriting the items that depend on the

translation tsc from the lower bound of Equation 5.12, we get:

S C

Ht(t) = p) log f, (R, o xi; Pc, Ec).
s=1 xiEXs c=l

Fixing the subject index s = k and the class index c = j for a particular translation

component tkj, we obtain:

Ht(tkj) = - (Rk o Xi-~ +)) jn+l)) 1 (Rk 0o - #j ) + C(fx)
xiEXk

where we plugged in the most current estimates for pu and ij. C(fx) is the constant term

that does not depend on tkj. We recall that Rk o xi = Rkj(Xi - Pkj) + Pki + tkj. Let

Xi = xi - ,kj and tkj = ij + tkj, then ignoring the constant term, our problem becomes:

Nk
"t(trcj) = (n) ( (n+1) T -(n1. (n+1)
Ht (tkPl (RkjX tkj - ) n+l))-(RkjXl + tkj -- Lj+

/=1

where Nk is the number of samples in subject k, and 1 is a replacement index for notational

convenience. Taking the derivative of Ht (tkj) with respect to tkj yields:

Ht (tk) _ 3(n+l)t-iNk()(n+

Otkj 2- (•+)) (Rkjl + kj - n+1)
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We set the derivative to zero and rearrange the equation to solve for tkj:

Nk Nk k•k j (n) . (n+l) (ýn)-
tklj i~+1) n) R k j P Xl -

/=1 1=1 =1

Since-N• (n)-Since E pjl Xi = 0;

tkj = 113 (n+l)

Then, the update equation for the translation component t + l ) becomes:

t(n+ 1) - (n+1) _ (n+1)

SC C rSC "

Thus, the optimal translation is the one that aligns the weighted mean of the voxels in

subject s and the weighted mean of the voxels in all subjects. Unfortunately, the same

technique does not lead to a simple analytical solution for the rotation matrices, R±+1 ).

However, we derive a maximum likelihood optimization function and optimize the function

using a numerical scheme. The resulting optimization function is:

R n + )  argmax p (n) (2 (n+l) n+l),lTR•sc - x T xRc(n+l)),TRscxi)
Rsc xiEXs

s.t. RcR T = I and |R| = 1.

We further parametrize Rsc using Euler angles so that the constraints are automatically

met. Then we find optimal values for the Euler angles (and therefore Rs) using a simplex

search method [40].

5.3.3 Prior Information

Our model is formulated as a maximum likelihood problem and is well suited for population-

wise clustering without any labeled data. However, in practice, it may be possible to obtain

a few labeled subjects or just a few labeled voxels in one subject without much additional

cost. In that case, it is interesting to use this prior information in the segmentation. To

enable the use of prior information, we modify our problem, and show that the resulting
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algorithm is a simple variation of the algorithm derived above.

The density estimation problem in the presence of labeled data becomes: Given a set of

N diffusion tensors from S subjects, where each tensor is represented by spatial location

X = {Xs}, X, = {xlxu E R13} U {xx 1 E G R3}, where x, denote the unlabeled data and

xt denote the labeled data. Also given a set of principal diffusion direction V = { V, }, V, =

{vlvi e R 3 and IIv ll = 1}, where v, denote the unlabeled data and vl denote the labeled

data. Calculate the joint probability density function p(x, v; O) E V that maximizes the

likelihood of the observations in {X, V}. In this case, the log-likelihood of the parameter

set becomes:

s=1 xlEX, c=1

S C
+(1 - a) log fxir(Rs ox,; ) f,(R, o v,; E),

s=1 xuEX, c=l

where we introduced a weighting parameter a that controls the impact of labeled data on

the learned model. When a = 0, the labeled data is not used by the algorithm and this

formulation becomes exactly the same as before. When a = 0.5, the labeled and unlabeled

data are weighted equally, and labeled data is used to "anchor" the model. When a = 1,

the model is built solely by the labeled data. We set a = 0.5 in our experiments, unless it

is stated otherwise.

Rewriting the lower bound from Equation 5.14 to reflect this new formulation results:

NC

b(8) = a• PCI (log7c + log f(R o x1; 1c, E) + log f,(R o v1; vc c))
1=1 c=1

N C

+(1 - a) p ) (log 7r + log f,(R o xu,; p, E) + log fv,(R o v;u vc))
U=1 c=1

where pc = p(clxt, vi) does not depend on the iteration (n), since the membership prob-

abilities of labeled data are held constant through the model learning. Note that pcl is a

probabilistic vector and can be used for both soft and hard priors. When we set a = 0.5,

the E-Step becomes exactly the same as before; however, the membership probabilities are
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updated only for the unlabeled data. The M-Step is also the same as before, with the model

updated using both labeled and unlabeled data pooled together.

For a $ 0.5, the E-Step of the algorithm always remains the same; however, the mem-

bership probabilities of the labeled data are not updated at any time. The equations for

the M-Step also remain the same, but it is easy to see from the lower bound (by moving

a and (1 - a) inside the summations) that the membership probabilities will need to be

weighted by a for the labeled data and (1 - a) for the unlabeled data. Therefore, the

Consistency Clustering framework can easily handle labeled and unlabeled data together

within the same framework, resulting in a semi-supervised technique for atlas creation in

diffusion MRI.

5.3.4 Implementation Details

There are certain details that are important in the application of the CC to the DTI data. The

first one is about handling the principal diffusion direction, whose sign is arbitrary since

the Gaussian probability model of the diffusion tensor is symmetrical around the origin.

The second point is about topology correction after convergence of the algorithm.

Handling Ambiguity in the Sign of Principal Diffusion Direction

The Gaussian probability model of the diffusion tensor is symmetrical around the origin,

resulting in equal probability of diffusion in direction v and in direction -v. This results

in an arbitrary sign for the principal diffusion direction, and it depends on the specific

eigenvector solver used. This is not a problem for a single diffusion tensor; however,

since we learn the parameters of the vMF distribution from a multitude of samples, the

probability model we learn would become arbitrary if the vector signs are not handled

properly.

We formulate the sign ambiguity problem as following: Given a set of N points on a

D dimensional unit sphere, V = {vl V2, .... ,VN Ivi E RD and Ilvil = 1}, and vMF

distribution function parameters {v, i}, maximize the log-likelihood of the observations in
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N

arg max log p(sivi; V, v,
Si i=1

where si E {-1, + 1}. This formulation leads to calculating the probability of each vec-

tor vi under the given vMF model with either sign choice, and picking the one that has

the higher probability. Since p(siVi; v, K) are independent, we can solve this for each i

separately:

arg max log p(sivi; v, ),
Si

arg max KvTsivi + constant,
Si

arg max siv Tvi,
Si

where we plugged in the specific equation for the log-likelihood and removed the constant

term. The last equation is the definition of the modulus function, since v•Tv. _> I•vTvi.

Therefore, the choice of si that maximizes the log-likelihood is:

si = sgn(v~Tvi),

where sgn(.) denotes the sign function. Thus, there exists a unique sign for each of the

principal diffusion directions that maximizes the log-likelihood and that sign depends on

the mean vector of the current vMF model. We handle the sign ambiguity by choosing a

unique sign through si = sgn(vTvi) when calculating the probability of principal diffusion

directions in the E-Step, and similarly in the M-Step, when maximizing the expected log-

probability.

Topology Correction

The parametric model we propose is well suited to handle noisy data such as the diffusion

tensor images, since the problem of atlas construction is reduced to a parametric estimation

problem with few parameters. However, the simplicity of this model may also lead to frag-

mented segmentations. We handle this through a topology correction step, which is based
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on connected components. Topology correction works by identifying the largest spatially

connected component for each class, and relabeling any fragments. Fragments are iden-

tified as voxels that are not connected to the largest connected component for each class.

The relabeling is done using the learned probability model; however, this time assigning to

the second most likely class instead of the most likely one, which lead into the fragmenta-

tion. In our experiments, we observed that less than 2% of the voxels in the thalamic data

are fragments, and can easily be corrected through the topology correction. The model is

updated one last time through the M-Step after the topology correction, in order to reflect

the changes made to the solution.

112



5.4 Experiments

The Consistency Clustering was validated on 10 normal subjects' DTI datasets, using only

the left hemisphere from each subject. The main questions we were seeking to answer

were:

1. Is there an advantage of clustering a population of subjects jointly versus individu-

ally?

2. Does prior information increase the accuracy of segmentations in Consistency Clus-

tering?

3. How does Consistency Clustering compare with some of the previously proposed

DTI segmentation tools?

5.4.1 Data Collection and Pre-Processing

The same DTI data as in Chapter 4 was used in the experiments. Please refer to Section 4.5

for details on the image acquisition parameters, pre-processing, drawing of the thalamus

masks, expert labeling and validation methods.

5.4.2 Individual versus Population-wise Segmentation

The first set of experiments investigated the advantages of population-wise segmentation

over individual segmentation. In this first set of experiments, we applied the CC to 10

thalami individually. For each thalamus, the CC was initialized uniformly. The resulting

segmentations are presented in Figure 5-3, in which the colors indicate the mean diffusion

orientation within each cluster. We also overlaid contours (circles, rectangles and triangles)

to indicate inconsistencies between segmentations of different subjects.

The same thalami were also segmented simultaneously using the Consistency Cluster-

ing. In this case, the CC was initialized uniformly as in the individual segmentation case.

The resulting segmentations are presented in Figure 5-4. The contours of Figure 5-3 were
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Figure 5-3: Individually segmented thalamic nuclei, resulting from Consistency Cluster-
ing with uniform initialization. Each image depicts a segmentation result obtained from a
different subject. Colors indicate the mean diffusion orientation within each cluster. Geo-
metric contour pairs indicate areas where segmentations are not consistent among subjects.

once again overlaid in identical locations onto the segmentations. The simultaneous appli-

cation of the CC was able to correct the inconsistencies in the segmentations. This qualita-

tive improvement in the segmentations also resulted in increased average volume overlaps

as well as decreased variance, when compared against the expert labeled data (Figure 5-5).
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Figure 5-4: Simultaneously segmented thalamic nuclei, resulting from Consistency Clus-
tering with uniform initialization. Each image depicts a segmentation result obtained from
a different subject. Colors indicate the mean diffusion orientation within each cluster. Ge-
ometric contour pairs are placed in the same locations as in Figure 5-3 and highlight the
improvement in consistency of segmentations among subjects
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Figure 5-5: Quantitative comparison of individual versus population-wise segmentations
obtained through Consistency Clustering with uniform initialization. The boxes indicate
one standard deviation around the mean, and the thin lines indicate the range of volume
overlaps obtained from 10 subjects. Population-wise segmentation results in increased
average volume overlaps as well as decreased variance in volume overlaps.
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5.4.3 Effect of Varying Amounts of Prior Information

To understand the effect of varying amounts of prior information on the segmentation qual-

ity we repeatedly applied the Consistency Clustering to 10 thalami (simultaneously) using

differing amounts of prior information.

The weakest form of prior information was obtained through labeling only k (seven)

voxels in one subject, and leaving all remaining voxels unlabeled. These voxels were cho-

sen by first fitting the model of Consistency Clustering to one of the expert labeled subjects,

and then identifying the highest probability voxels for each class. The class membership

probabilities for each of these voxels were set to be 1 for classes labeled by an expert, and 0

for all other classes (hard priors). These points were then used to initialize the Consistency

Clustering, and their membership probabilities were held constant throughout the Consis-

tency Clustering, as described in Section 5.3.3. The resulting segmentation is presented in

Figure 5-6.

A stronger form of prior information was obtained by using all the expert labeled voxels

in one subject and leaving the other nine subjects unlabeled. The labeled subject was used

to initialize the model. The resulting segmentation is presented in Figure 5-7.

To evaluate the impact of the choice of labeled subject on the segmentation results, we

repeated this experiment with using different expert-labeled subjects. Since there were ten

thalami in our database, there were ten experiments in total. The resulting volume overlaps

from each of these experiments are shown as error bars in Figure 5-8. The range and

average accuracy of segmentations vary with the choice of expert labeled subject.

The strongest form of prior information was obtained through using nine expert-labeled

thalami and labeling the remaining subject through Consistency Clustering. Since applying

Consistency Clustering this way would only label one novel subject at a time, this exper-

iment was repeated ten times, once for each novel subject. The resulting segmentation is

presented in Figure 5-9. The expert labeled thalami are presented in Figure 5-10 for a qual-

itative comparison with each of these methods. Consistency clustering was able to segment

all subjects with higher accuracy as more prior information was utilized. This observation

was also quantified in Figure 5-11 as volume overlaps.
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Figure 5-6: Results from Consistency Clustering with seven labeled voxels used as prior
information. Each image depicts a segmentation result obtained from a different subject.
Colors indicate the mean diffusion orientation within each cluster.
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Labeled Subject

Figure 5-7: Results from Consistency Clustering with single labeled subject used as prior
information. Each image depicts a segmentation result obtained from a different subject.
Colors indicate the mean diffusion orientation within each cluster.
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Figure 5-8: Quantitative comparison of differing expert-labeled thalami used as prior in-
formation in Consistency Clustering. The boxes indicate one standard deviation around the
mean, and the thin lines indicate the range.
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Figure 5-9: Results from Consistency Clustering with nine labeled subjects used as prior
information. Segmentation was done in a leave-one-out fashion with nine labeled subjects
and one unlabeled subject. The experiment was repeated 10 times, once for each subject
shown in the figure. Colors indicate the mean diffusion orientation within each cluster.
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Figure 5-10: Expert labeled thalami. Each image depicts a segmentation result obtained
from a different subject. Colors indicate the mean diffusion orientation within each cluster.
Expert labels are overlaid as abbreviations from Table 4.1 on one of the thalami.
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Figure 5-11: Quantitative evaluation of Consistency Clustering with varying amount of
prior information. The most accurate segmentation from Figure 5-8 is presented for the
"one labeled subject" experiment. The boxes indicate one standard deviation around the
mean, and the thin lines indicate the range.
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5.4.4 Comparison of Segmentation Methods

To compare Consistency Clustering with the previous segmentation methods presented in

Chapter 4, each subject's thalami were segmented individually using the k-means algorithm

as described in [81] with uniform initialization and using the spectral clustering algorithm

presented in Section 4.4. The segmentation results from these experiments are presented in

Figure 5-12 and Figure 5-13, respectively. When compared with Figure 5-10, the lack of

consistency among subjects becomes clear for both methods. This lack of consistency is

also apparent in the volume overlaps, which are presented for different methods in Figure 5-

14.

Not surprisingly, Consistency Clustering with prior information performed better than

the unsupervised methods. The worse performing method was the k-means algorithm of

[81], indicating the need for prior information and the weakness of the unsupervised algo-

rithms for replicating expert preference.

The Consistency Clustering took under 2 minutes for each case to converge on a desktop

personal computer with a non-optimized MATLAB implementation for the joint segmen-

tation of 10 subjects. The algorithm's complexity is linear with the number of voxels for

fixed number of clusters.
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Figure 5-12: Segmentation results from k-means algorithm. Each image depicts a segmen-
tation result obtained from a different subject. Colors indicate the mean diffusion orienta-
tion within each cluster.
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Figure 5-13: Segmentation results from spectral clustering algorithm. Each image depicts
a segmentation result obtained from a different subject. Colors indicate the mean diffusion
orientation within each cluster.
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Figure 5-14: Quantitative evaluation of the k-means, spectral clustering and Consistency
Clustering. The boxes indicate one standard deviation around the mean, and the thin lines
indicate the range.
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5.5 Summary of the Chapter

In this Chapter we presented a novel algorithm, called Consistency Clustering, for jointly

segmenting a population of diffusion tensor images of the deep gray matter. The joint

segmentation resulted in highly accurate segmentations for each subject as well as cor-

respondence between the subjects. This is an important difference between Consistency

Clustering and previous algorithms proposed to segment the gray matter, since without

correspondence between the segmentations of individual subjects, it is difficult to assign

consistent anatomical labels to the resulting segmentations. Also, without consistent and

anatomically meaningful segmentations, the quantitative morphometry becomes a chal-

lenge in the gray matter.

Consistency Clustering provided consistent segmentations for the population, either

with prior information about the expert labels or in a completely data-driven fashion. Also,

through the use of labels from other subjects in the population, the algorithm was able

to produce segmentations that were both qualitatively and quantitatively very similar to

the expert's preference. Therefore, Consistency Clustering can be used in two different

ways to produce consistent segmentations in a population. The first way involves running

the algorithm unsupervised on the population, and then assigning anatomical labels to the

segmentations only on one of the subjects. The labels are then automatically transferred

to the rest of the subjects since the correspondence problem is already solved at this stage.

The second way involves labeling one or several subjects by hand, and then using these

labeled subjects as prior information to label the rest of the population according to the

expert preference.

Consistency Clustering learns the parameters of a common probabilistic model for the

population from the DTI data. The accuracy of the segmentations depend on the effective-

ness of the model in representing the data. In this Chapter, we used a simple parametric

data model that included a spatial Gaussian distribution and a von-Mises Fisher distribu-

tion for the principal diffusion direction. Furthermore, we made simplifying assumptions

for the observed data, such as independence between the spatial observations and the prin-

cipal diffusion direction for a given voxel and independence between the spatial locations
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of voxels. Neither of these assumptions are realistic; however, they result in less complexity

for the algorithm. We also used a poly-rigid registration framework, which is also a simple

model for registration problem and results in a simpler algorithm. Consistency Clustering

with this simple model resulted in over 92% volume overlap between the expert labeled

data and the automatic segmentations, indicating that the model is sufficient for accurate

segmentation of the DTI data.

In this Chapter we compared our automatic segmentation results against labels pro-

duced by a single expert, and reported 92% volume overlap between the expert labeled

data and the automatic segmentations when performed using prior information. In general,

comparision with a single expert is not desirable, since there is inevitably some variance

between labels obtained by different experts. However, additional expert labeled datasets

for thalamic nuclei are not available at this time. Even then, we can compare our results

with another automatic segmentation method proposed by Pohl [62], where Pohl compared

automatic segmentation results of the whole thalamus obtained from structural MRI against

an expert labeling. In that case, Pohl reported 89% volume overlap between the automatic

segmentations and an expert labeled image. Futhermore, Pohl evaluated the automatic

segmentation algorithm results (from a different structure) against the reference standard

obtained by the STAPLE algorithm, which aims to generate a ground truth segmentation

from multiple expert labeled images [75]. Pohl's segmentation results were comparable to

all six experts, and in fact better than two of the experts. Therefore, we believe the 92%

volume overlap we report would be comparable to an expert labeling, and it could be tested

if multiple expert labeled data were available for the thalamic nuclei.

Either completely data-driven or with prior information, Consistency Clustering (or a

variant with an improved model for the thalamic nuclei) is a powerful tool that provides

fast and consistent segmentation of the deep gray matter and has a use in a variety of

applications such as in quantitative morphometry studies and pre-surgical planning.
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Chapter 6

Consistent White Matter Segmentation

In this chapter, we extend Consistency Clustering to automatically construct a probabilistic

white-matter atlas from a set of multi-subject diffusion weighted MR images. We formu-

late the atlas creation as a maximum likelihood problem which the proposed method solves

using a generalized Expectation Maximization (gEM) framework. Additionally, the algo-

rithm employs an outlier rejection and denoising strategy to produce sharp probabilistic

maps of certain bundles of interest. We test this algorithm on synthetic and real data, and

evaluate its stability against initialization. We demonstrate labeling a novel subject using

the resulting spatial atlas and evaluate the accuracy of this labeling. Consistency Clus-

tering is a viable tool for completely automatic white-matter atlas construction for sub-

populations and the resulting atlas is potentially useful for making diffusion measurements

in a common coordinate system to identify pathology related changes or developmental

trends.
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6.1 Introduction

The human brain consists of a large number of distinct structures along with a complex

network of white matter tracts connecting these structures. Neuroscientists have long been

interested in studying these white matter connections, and have advanced their understand-

ing through histological studies of sliced animal brains [36] and by studying single tracts

through the injection of markers followed by a 3D imaging experiment [45]. However,

histological studies are limited to analysis of highly deformed 2D slices and thus are not

adequately informative of the complex 3D connections, and marker studies are limited to

imaging a single tract at a time. This is why the recent introduction of diffusion weighted

imaging (DWI) as a new magnetic resonance imaging (MRI) modality caused much excite-

ment.

DWI is an imaging modality that measures free water diffusion, i.e. Brownian motion,

of the endogenous water in tissue. This water diffusion is measured for the entire brain

using directional gradients in the MRI machine. Unlike structural MRI, however, DWI

does not result in a single image, but a series of images, each one quantifying the amount

of water diffusion in a specific direction. These images are then combined together to

calculate a 3D water diffusion probability distribution function (pdf) for every voxel. The

most common way of calculating this pdf is to assume the water diffusion is Gaussian for

a given voxel and fit the data from individual DWI images to this model, resulting in the

diffusion tensor images (DTI) [6].

In human brain tissue, the water diffusion is not the same in all directions, since it is

obstructed by structural elements such as cell membranes or myelin. When this obstruction

constrains the water diffusion in a coherent direction, such as within the cerebral white

matter, the resulting water diffusion tensor becomes anisotropic, containing information

about the directionality of the axon bundles [43, 61]. Thus, quantification of water diffusion

in tissue through DTI provides a unique way to look into white matter organization of the

brain.

With the observation that the diffusion within the white matter is highly directional,

an interesting area of research has emerged, aimed at reconstructing the underlying white
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matter architecture from DTI data. Reconstruction typically consists of starting at a voxel

and following the most likely path of diffusion in small steps, until a stopping criteria is

reached. This sort of reconstruction is called tractography and results in a 3D curve, called a

fiber [7]. Note that these fibers should not be confused with individual axons since we know

that typical in-vivo imaging resolution is too low to reconstruct individual axons from the

DTI images. However since these axons tend to be situated coherently in space, the larger

white matter tracts appear as fiber bundles in tractography [46, 47, 56]. If tractography is

performed by seeding in every white matter voxel in the brain, the resulting set of fibers

spans the whole brain.

A natural extension of tractography is to group fibers into bundles and assign them

anatomical labels. One popular technique to construct fiber bundles is to manually trace

a region of interest (ROI) that is thought to correspond to a certain anatomical structure,

and initialize the tractography algorithm from the set of voxels within this ROI [13]. The

resulting tracts are then grouped together into a fiber bundle. A slightly more advanced

variant of this technique involves seeding at every voxel in the brain that is thought to

belong to the white matter, and grouping all the fibers that pass through the previously

traced ROI into a bundle [83]. It is also possible to use multiple ROIs and it has been

reported that this approach improves consistency between subjects [28].

ROI based methods are popular for their flexibility but could be subject to user bias

since ROIs are manually traced. Therefore several methods have been proposed to iden-

tify anatomically meaningful regions from the DTI data without dependence on manu-

ally traced ROIs. One class of methods automatically groups tractography results, which

were seeded everywhere in the brain, into bundles through clustering algorithms, e.g.

[46, 47, 56].

Even though resulting fiber bundles from the aforementioned algorithms, in general,

match well with the known anatomy, the quality of the results suffer from low SNR and

low resolution of diffusion images. These issues lead to at least two types of artifacts in

tractography: early termination of fibers and deviation of fibers from one bundle to another

[83] (See Figure 6.1 for the latter type of artifacts).
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Figure 6-1: Some common tractography and clustering errors. Tracts from the fornix (in
green) and the cingulum (in purple) bundles along with a few selected tracts from the
corpus callosum (in black) are shown as labeled using the high dimensional atlas of Section
6.2.4. The tractography noise is evident in the image as tracts deviating from one bundle to
another (a) as well as a few outlier tracts (b). Also, these images contain instances where
the high dimensional atlas failed to label the tracts correctly (c).

In an attempt to reduce such errors in tractography, there have been some studies that

repeat the same analysis on several individual subjects and average the results to create

group maps of white matter tracts [83, 14]. By cross-subject averaging, the goal is to create

a group map that is more robust to multiple sources of inconsistency: noise in tractography,

inter-subject anatomical variability and registration errors. These methods involve single

subject ROI drawing, followed by bundling of tracts that pass through these ROI's. This

yields a binary image for each bundle in each subject, that represents whether a fiber from

the bundle of interest is present or not in that voxel. The next step is to employ an "off-

the-shelf" registration algorithm that ignores DTI information to co-register subjects into a

common coordinate frame. This is followed by an averaging of the binary images.

In this Chapter we combine the group-wise registration and tract labeling with the atlas

construction into an integrated and principled method. This method segments correspond-

ing white-matter regions from a group of subjects while creating a spatial white-matter atlas

of the common structures for a sub-population in a completely automatic and data-driven

fashion. For this purpose, we start with a group-wise clustering to identify fiber bundles in

individual subjects as well as correspondences among subjects. That is followed by a novel

learning algorithm, which we call "Consistency Clustering". This algorithm utilizes gen-

eralized Expectation Maximization (gEM) [51] for optimization. Consistency Clustering
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performs group-wise labeling, de-noising, outlier rejection, and group-wise registration in

an iterative, integrated scheme and results in a spatial map that represents the most common

structures in a group of subjects.

The possible uses for this algorithm are multi-fold. It could be used to compute a spatial

atlas that retains only the most reproducible tracts. This atlas would represent consistently

present white matter tract regions in a group of subjects. Knowing what is normal also

provides a way to identify what is not, which is useful for pathology identification. Also

of interest is a statistical framework for the comparison of different sub-populations, to

identify disease-related or developmental changes.
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6.2 Data Collection and Pre-Processing

In this section, image acquisition details and the tools used for preprocessing the DTI data

are introduced. These tools include diffusion tractography and the creation of a high di-

mensional atlas through spectral clustering of the tractography results.

6.2.1 Image acquisition

MRI data were acquired on fifteen healthy young participants at Johns Hopkins University.

The data were acquired on a 1.5 Tesla Philips Medical Systems MRI scanner using an 8-

channel head coil. All participants provided informed written consent by the guidelines of

the Johns Hopkins University Internal Review Board. The participants gave their informed

consent in writing prior to the session.

The DTI data were acquired using a single-shot spin-echo EPI sequence. The sequence

parameters were TR/TE=7000/80 ms, b=700 s/mm 2, 5 T2 images, 30 diffusion gradient

directions, 1 average, with total acquisition time 12-15 minutes. Fifty to sixty axial slices

were acquired. The field-of-view was 256 x 256 mm and the matrix size was 96 x 96 to give

2.5 x 2.5 mm in-plane resolution. The slice thickness was 2.5 mm with 0 mm gap.

6.2.2 Tractography

Diffusion tensor imaging models microscopic diffusion in the brain tissue as a Gaussian

diffusion process and encodes this information in a 3 x 3 diffusion tensor that is analo-

gous to the covariance matrix of a 3-dimensional Gaussian random variable. The principal

eigenvector of this tensor is aligned with the most likely direction of diffusion and that

is the direction a streamline tractography algorithm aims to follow. In this work, tractog-

raphy was performed using a Runge-Kutta order two integration of the underlying tensor

field. The algorithm is initiated in every voxel in the brain with a CL value exceeding 0.25,

since having a high CL value is an indicator of coherent diffusion [79]. The quantity CL is

defined as A 1- 2  , where A1, A2, A3 are the eigenvalues of the diffusion tensor sorted

in descending order [79]. Tractography is performed at a step size of 0.5 mm until the

trajectory comes to the edge of the white matter, defined by a threshold of CL = 0.15.
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6.2.3 Initial Registration

The group-wise clustering tool we will employ assumes all subjects' tractography is in a

common coordinate frame, therefore a spatial normalization is needed. This normalization

is performed using a group-wise, template-free affine registration algorithm [87], known as

"congealing", on the Fractional Anisotropy (FA) images generated for each subject. This

initial normalization aims to remove gross differences across subjects due to global head

size and orientation. It is thus limited to a 9 parameter affine transformation that accounts

for scaling, rotation and translation. The resulting transformations are then applied to each

of the computed fibers to map them into a common coordinate frame for clustering.

6.2.4 Fiber Clustering for a High Dimensional Atlas

Fiber clustering is based on the assumption that fibers that are in the same bundle follow a

similar trajectory within the tissue. To quantify this similarity, the employed algorithm uses

the mean closest point distance [17]. This is defined as the average distance from each point

in one tract to the nearest point on the other tract. This distance is then symmetrized by

taking the minimum of the two distances between every fiber pair. The algorithm converts

this distance into an affinity measure using a Gaussian kernel. Once these affinities are

calculated for every tract pair, we employed spectral clustering with normalized cuts criteria

[67] to compute clusters of fibers, similar to the voxel-based segmentation of Chapter 4.

Once clustering is completed, an expert needs to assign anatomical labels to these clus-

ters. This is done interactively on one of the subjects by selecting clusters one by one and

assigning them anatomical labels. Since the clustering is done on a number of subjects

jointly, these labels are automatically transferred to all the subjects used for the clustering

stage.

By clustering fibers from multiple subjects into bundles, common white matter struc-

tures are discovered in an automatic way, and the bundle models are saved with expert

anatomical labels to form a high dimensional atlas [58]. This atlas is called high dimen-

sional since the clustering is done in a high dimensional space and the cluster definitions

as well as the anatomical labels are saved in this high dimensional space. Even though re-
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suiting fiber bundles from labeling with such an atlas in general match well with the known

anatomy, the quality of the results exhibit artifacts such as mislabeled tracts and outlier

tracts labeled as with one of the anatomical labels (See Figure 6.1). Also the quality of the

spatial atlas obtained by simply voxelizing a set of multi-subject images labeled with a high

dimensional atlas is limited (see speckles in Figure 6-6a), which indicates that automatic

identification of consistent bundles and their localization in the common coordinate frame

is problematic due to limited inter-subject alignment, cross-subject anatomical variability

and tractography noise.

In the current work, we utilize the automatically segmented tractography results ob-

tained through the aforementioned semi-supervised, high-dimensional atlas framework as

initial but noisy tract labels, and perform a group-wise labeling, de-noising, outlier rejec-

tion, and registration in an iterative and integrated scheme while building a spatial atlas that

represent the most common structures.
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6.3 Consistency Clustering for White Matter Segmenta-

tion

In this Section, we introduce several tools to discover the most consistent bundles across

subjects and obtain a sharp atlas of these bundles. These tools include a nonlinear reg-

istration component defined on the bundles, outlier rejection and a "tract cut" operation.

We formulate the problem as maximum likelihood and solve it using a generalized EM

algorithm. The probabilistic framework is well-suited for extensions such as inclusion of

anatomical prior information and integration with existing probabilistic atlases based on

expert labeled structural MRI.

Probabilistic atlas building as described in [83] involves a sequential process of

1. Registrating a set of DTI images,

2. Labeling tracts through manually drawn ROI's

3. Stacking the registered labels and statistical averaging; i.e., counting the number of

times each voxel inherits the same label.

One of the premises of such an atlas is its ability to label registered tracts. Consistency

Clustering we propose in this work capitalizes on this premise by iteratively relabeling

tracts while building the atlas. This iterative process has the advantage of ensuring that

tract labels match with the atlas that is being built and therefore results in a sharper and

more consistent result. (See Figure 6-6c).

We start with a set of subjects indexed with s e {1, 2,..., S} and a set of tracts from

each subject, T = {T 8 } and T, = {ti}. We formulate our problem as a maximum likelihood
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estimation of the parameter set 0:

S

* = argmaxI p(T e)
s=1

S

arg max E log p(TS1O)
O s=1

S

= arg max log p(t O)
s=- tET,

= arg max L(0 T)

The term 8 includes the parameters we wish to estimate and will be defined later to include

a non-parametric spatial mixture density and registration parameters. Here we assumed the

tracts are statistically independent from each other in calculating Y (O), the log likelihood

of the data, i.e. the observed tracts. We can then derive the Expectation Maximization

update equations by marginalizing this likelihood term over a set of cluster (in this context,

bundle) labels c E {1, 2,..., C},

S C

Y(0)= log p(t, c|)
s=1 tET, c=l

S C

= log E (t, c8)q(c)
s=l tET, c= 1c

C

s.t. (c) = 1,
c=l

for any distribution q(c), defined on the cluster labels. Now, using Jensen's inequality:

S C

>(0) Ž2 q(c) logp(t, c 1) + const (6.1)
s=1 tET, c=1

S

= E Eq [log p(t, cIO)] + const. (6.2)
s=1 tcTs

The constant term does not depend on 0 and Eq denotes expectation with respect to q.

Further, the equality of Equation (6.1) is met if and only if q(c) = p(c t, 0(n)), for a given
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(fixed) (n") [51]. The generalized EM algorithm maximizes this lower bound using the

current estimate of the parameters, 8(n), in the E-step and re-estimates the parameters in

the M-step. This iterative optimization is guaranteed to converge to a local optimum of the

parameter set, e*. Now, let's define the probability of a tract through a non-parametric and

voxelized spatial mixture density distribution:

c

p(t O )  7 cp (tIc, O)
c=1

C

E e Z c I 0C(L[J),
c=1 xERs(t)

where 7r are the mixture weights and Zc 7rc = 1. R , 
: R'3 R' is a subject-specific spatial

transformation and R, (t) denotes a tract obtained by applying the spatial transformation to

a tract t. x E R3 are the samples along a given tract and [x] denotes quantization of

x, i.e., the voxel that sample falls into. And, finally, 09( [xJ) represents a non-parametric

spatial distribution, quantifying the spatial probability of observing tracts from cluster c.

Naturally, ExEx 0(z) = 1 for all c E C. Then, the parameter set we wish to estimate

becomes, E = {1(L[xJ)} u U c} U {R}.

In the next sections we derive the specific update equations for our formulation to iter-

atively estimate e*.

6.3.1 E-Step

In the E-step, the algorithm updates the membership probabilities for each of the tracts

given the current estimate of the parameter set O( ).

p(clt, O(n)) c p(tIc, O(n))p(cjO (n)) (6.3)

"c ") 7 0(") [RS) (x)j (6.4)
xEt

a -(n)
pt , (6.5)

where, at every iteration (n), Ec p = 1 for all tracts t.
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6.3.2 M-Step

In the M-step, the algorithm updates the parameter set e to maximize the expected value of

the log likelihood. From Equation (6.2), ignoring the constant term which is independent

of O, e* is computed as:

S C

9* = argmax E E t c logp(t, cle)
s=1 tET, c=1

S C

= arg max p tc log [xclOc([Rs(x))])
e s=1 tET, c=1 xEt

S C

= arg max EEEPtc log7c+ C log Oc(LxJ) (6.6)
S s=l tET, c=l zER,(t)

s.t. E O(x) = 1 , for all c and E r = 1
x C

For a fixed parameter set O (n ) the update equations for 7n+ and n+ l ) (x) can be derived

using Lagrange multipliers for the corresponding constraints and setting the derivative of

Equation (6.6) to zero. The resulting update equations are:

S
Sn+10) (6.7)

s=1 tET,

S

0(n+l1) () cx E E5 ) N( LxJ E LRbn) (t)j) (6.8)
s=1 tET,

where N( [zJ E LR) (tJ) denotes the number of times warped tract samples LRS (t)
appear in voxel [xJ. The normalizing constants are computed so that E~C•n+1) = 1, and

-x 0(n+ 1)(X) = 1, Vc.

Registration

Unlike 7rt + 1) and •~n + 1) (), the registration parameters R. + 1) do not have an analytical

solution. However, we derive the maximum likelihood optimization function, and optimize

that iteratively using a numerical scheme. Then for each subject, the registration parameters
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are updated as R n+l):

C

R -n+l) arg max J j log 9n+1) ( [l xj)
R, tET, c=l xER(n)(t)

C

arg max () p log 0n+1) (L xJ) (6.9)
tET, c=l ,W R(t)

In the last equation we parameterize the registration R, as a set of affine transformations

{ R,,} for each subject s and for each cluster c, and solve for these separately. We perform

this optimization using a simplex search method [40] to find the 9 affine parameters that

correspond to translation, rotation and scaling (no shearing).

6.3.3 Tract Cut

Even with the correct labeling and perfect registration, we will not be able to recover from

the errors in tractography that are present as deviations of tracts from one bundle to another.

One way to reduce the effects of this sort of artifacts is to remove the tract samples that do

not agree with their corresponding tract labels. Our problem formulation offers a natural

way to identify these deviating tract samples since it offers a maximum likelihood estimate

for the label of each tract sample as well as the whole tract. The segments of every tract that

consist of samples whose maximum likelihood label do not agree with the tract's overall

label are identified as deviating tract segments and can be separated from the rest of the

tract, resulting in a shorter tract whose every sample has the same maximum likelihood

label (See Figure 6-2). More specifically, the tract cut operation removes tract samples

from the tips of each tract, if the samples' labels do not match with the tract's overall

label. The removal starts at the two ends of each tract, and continues until the label of the

remaining sample at the tip of the shortened tract is no longer inconsistent with the rest of

the tract.
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Before Tract Cut Operation

After Tract Cut Operation

Figure 6-2: Illustration of the tract cut operation. The atlas contains two labels: A (in red)
and B (in green). Each sample of the tract has been assigned a probability vector, p(clxi )
for c E {A, B}. The overall tract label is determined as the one that maximizes the tract
likelihood: p(c t) oc p(c) x Ti p(xi c). However, there are parts of this tract that does not
agree with the tract's overall label. Tract cut operation removes these parts of the tracts.

6.3.4 Outlier Rejection

Another type of artifact is the presence of tracts that do not belong to any of the clusters.

These are considered to be outlier tracts. Since these tracts are situated in the areas that are

unlikely to belong to any of the clusters that are under investigation, they can be automat-

ically identified and removed with the introduction of a default label that has a fixed very

low probability throughout the image (See Figure 6-3).
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Figure 6-3: Illustration of outlier removal. The atlas contains two labels: A (in red) and
B (in green). A third label is created for the outliers. Each sample of the tract has been
assigned a probability vector, p(clxi) for c E {A, B, o}, where 'o' is the label for outliers.
The overall tract label is determined as the one that maximizes the tract likelihood: p(clt) oc
p(c) x ]1- p(xi c). If this likelihood is greater for the outlier class than any other, the tract
is labeled as an outlier.

145



6.4 Experiments

In this section we demonstrate the dual purposes of the Consistency Clustering algorithm:

a group-wise clustering algorithm, as well as a robust atlas building algorithm. We apply

the algorithm on synthetic data and in-vivo DTI data.

Synthetic data is created to simulate 5 subjects with two fiber bundles in each subject.

The fiber bundles cross each other in the middle of the data range at a 30 degree angle

(See Figure 6-4) (when the noise parameters are set to zero). There are also two noise

parameters, uin and rbtw that control the variability of the 3D lines that make up each one

of these bundles. ain controls the variability within a subject's bundles and abtw controls

the variability in between two subjects' bundles as described in the following: For a given

starting point xt and a norm-one slope vector si for i = 1, 2 - one for each bundle, each

subject k is assigned a random starting point xt = x,t + N(0, cbtw), and a random slope

vector sý = si + N(0, 0.2 x Ubtw), where N(0, a) is a zero-mean 3 dimensional random

variable with a diagonal covariance matrix whose elements are set to a. Once each sub-

ject's starting point and slope is determined, each tract within the subject is generated by

randomly perturbing these values to 4x + N(0, ai,) and Sk + N(0, 0.2 x ai). Each line

then consist of a set of uniformly spaced points in 3D, generated using these parameters.

The lines are constrained to be within a pre-determined range to limit the length.

Diffusion MRI images are acquired on a 1.5 T Philips scanner with SENSE parallel

imaging along 30 noncollinear gradient directions, using a single-shot spin echo EPI se-

quence along with five non-diffusion-weighted T2 images at a resolution of 2.5 x 2.5mm x

2.5mm per voxel. The b-value was set to b = 700s/mm 2. 50-60 slices per subject cover-

ing the entire hemispheres and the cerebellum were analyzed for 15 subjects. Tractography

was performed in each subject using Runge-Kutta order two integration, with the follow-

ing parameters: seeding threshold of CL = 0.25, stopping threshold of CL = 0.15, step

size of 0.5mm, and minimum total length of 25mm. Initial labels to the resulting tracts are

assigned using a high dimensional atlas as described in Section 6.2.4.
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6.4.1 Consistency Clustering: A Clustering Algorithm

Consistency Clustering is an atlas-based group-wise clustering algorithm. To demonstrate

its use as a clustering algorithm we utilized synthetic data, for which we have the ground

truth. To understand the effect of noise on Consistency Clustering, we created synthetic

data with varying noise levels. Each synthetic data set consisted of 5 subjects with two

fiber bundles for each subject. We initialized Consistency Clustering with random labels

as in Figure 6-4 (A and B) and repeated the experiment at each noise level 30 times. The

algorithm recovered the ground truth labels with high accuracy for a wide range of noise

parameters as presented in Figure 6-4 (C and F).

Unlike synthetic data, real DTI data does not offer ground truth to evaluate our algo-

rithm against. However, we can still evaluate the stability of our algorithm for initialization.

For this purpose, we applied Consistency Clustering to 15 subjects without the outlier re-

jection and the tract cuts (since removing tracts and tract segments complicate the error

measurement). Once the algorithm converges on an optimal set of tract labels, we stored

these optimal labels to test the stability of our algorithm. A stable algorithm is expected to

converge back to the same optimal labels from a range of differing initializations. To eval-

uate this kind of stability, we randomly changed a certain percentage of the optimal labels

(varying between 5% and 50%), and reran the algorithm initialized with these sub-optimal

labels. We repeated this experiment 10 times for each percentage level, which is varied in

increments of 5%. The results from these experiments are presented in Figure 6-5. For a

wide range corruption levels, the algorithm produced nearly identical labels as the initial

optimal solution.

6.4.2 Consistency Clustering: An Atlas-building Algorithm

As mentioned earlier, Consistency Clustering is an atlas-based group-wise clustering al-

gorithm and can also be used for creation of probabilistic MRI atlases based on DTI trac-

tography clustering. The corpus callosum, the cingulum and the fornix were selected for

investigation in this study, because of the specific challenges they present. These three

structures are in close proximity with each other, and that results in many mislabeled fibers
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Figure 6-4: Consistency clustering results from a synthetic dataset. Each dataset consists
of 5 simulated subjects with two fiber bundles crossing each other at a 30 degree angle.
ai, controls the variability of lines within each subject and abtw controls the variability of
lines between the subjects (See Section 6.4 for details). Figures A and D show simulated
fibers from 5 subjects overlaid on top of each other and colored according to the initial
random labels. Figures B and E show the same datasets as in figures A and D respectively,
with the labels and registration parameters resulting from Consistency Clustering. Figures
C and F show the algorithm's accuracy in labeling fibers under varying noise levels. The
data is randomly created and clustered with random initialization for 30 times at each noise
level increment. The cross marks represent observed error levels from each one of these
experiments, and the boxes indicate one standard deviation from the mean error at each
noise level increment. Figure C shows at least one correctly labeled instance at each noise
level between the subjects whereas the algorithm starts to fail regularly with increasing
noise within the same subject as shown in Figure E

when labeled using a high dimensional atlas (see Figure 6-7 (left)). Their close proximity

also results in a number of trajectories deviating from one structure to another. These are

precisely the sorts of artifacts we wish to reduce through learning common spatial distribu-
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Figure 6-5: Stability of labels produced by Consistency Clustering for the 15 subject DTI
data. A set of optimal labels is acquired by running the algorithm on 15 subjects' DTI
data until convergence. To test for stability of these optimal labels, a certain percentage of
the optimal labels (varying between 5% and 50%) are changed randomly, resulting in sub-
optimal labels. These sub-optimal labels are then used as an initialization for the algorithm,
to test whether the algorithm would converge back to the same optimal labels. The graph
depicts the percentage errors of the tract labels at initialization (x axis) and convergence
(y axis) stages of the algorithm. Errors are calculated as the percentage of tracts with
non-optimal labels at the corresponding stage. Each cross mark indicates the error from
one experiment in which a certain percentage of the optimal labels are changed and the
algorithm is rerun with these corrupted labels as initialization. Solid line is produced by
fitting a second degree polynomial to these experimental results.

tions of fiber bundles from a group of subjects.

We constructed three different atlases to compare the effects of labeling algorithms on

the quality of resulting group maps. The first one is constructed using the initial labels from

the high dimensional atlas. A second one is built using Consistency Clustering without

the outlier rejection and the tract cut operations, and the last one is generated through

Consistency Clustering with the outlier rejection and tract cut operations.

Tracts labeled with the high dimensional atlas qualitatively conformed with the known

anatomy of the white matter; however most subjects contained individual tracts deviating

from one bundle to another (Figure 6-7 (left)). Also, the high dimensional atlas failed

to label some of the tracts correctly, potentially due to registration errors. The proposed
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algorithm was able to remove the segments of the tract bundles that were not consistent

from subject to subject (Figure 6-7 (right)).

6.4.3 Atlas Quality

Once the atlases are built, it is of interest to quantify the quality of these atlases. We do so

through entropy, which is an information theoretic measure of uncertainty in a probability

distribution. A smaller entropy measure indicates a sharper atlas, which is due to increasing

similarity in the shapes of the bundles that are used to construct that atlas. These relative

similarities result from a better registration or more consistent labeling across subjects. The

entropy of a spatial distribution of a specific fiber bundle in our atlas notation is defined as:

H -= - O (Lxj) log 0 ([XJ)

Method FX CC CI

High Dim. Atlas 8.0791 9.6492 8.1250
EM w/o cuts 7.1830 9.5204 7.6818
EM with cuts 6.8434 9.1506 7.0911

Table 6.1: Spatial probability distribution entropies (measured in nats) for each of the struc-
tures constructed through three different methods. FX, CC and CI stands for the fornix, the
corpus callosum, and the cingulum bundles, respectively. A lower entropy value indicates
a sharper distribution that is less contaminated with artifacts. Smaller structures seem to
benefit more from the better registration and label correction Consistency Clustering pro-
vides.

Removing inconsistencies between subjects before averaging resulted in a qualitatively

sharper atlas, which is presented in Figure 6-6. The colored overlays indicate the proba-

bility of a tract bundle being present in any location in the brain. A whiter color indicates

regions where there were more consistent alignment in the labeled tracts among the sub-

jects, resulting in higher probability values. Spatial probabilities were greatest in the central

regions of the bundles under investigation in all three atlases. However, these probabilities

increase in the central regions and decrease in the perimeters with improved registration

and corrected labels through the proposed algorithms. This resulting improvement in the
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atlas quality is quantified in Table 6.1 through the distribution entropies. This analysis in-

dicates that smaller structures benefit more from the better registration and label correction

Consistency Clustering provides.

1.5

0.5

1.5

0.5

io

Figure 6-6: Spatial distributions of the corpus callosum, the cingulum and the fornix bun-
dles from three single slices overlaid on their corresponding FA images. These maps are
constructed using three different methods. a) High dimensional atlas, b) Consistency Clus-
tering without tract cuts, c) Consistency Clustering with tract cuts. The colorbars indicate
the probability of each voxel in the spatial distribution of the corresponding fiber bundle.
Note that the probabilities become higher in the central regions of the bundles and the num-
ber of sporadical voxels with non-zero probabilities decrease from left to right, indicating a
sharper atlas through better registration and more consistent labeling of the subjects. This
observation is quantified through these distributions' entropies in Table 6.1.

Another way of quantifying the atlas quality is through its accuracy in labeling novel

subjects that were not used to build the atlas. Once again since we do not have the ground

truth for the DTI tracts, we ran Consistency Clustering on all 15 subjects without the outlier

rejection and the tract cuts and stored the resulting tract labels for later evaluation. Then we

repeated this atlas building experiment 15 times, each time with 14 subjects participating

in the atlas building stage. Once such an atlas is constructed, the remaining subject is
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Figure 6-7: Tracts from the fornix (in green) and the cingulum (in purple) bundles along
with a few selected tracts from the corpus callosum (in black) as labeled through the high
dimensional atlas (left) and through Consistency Clustering with tract cuts (right). The
tractography noise is evident in the images on the left as tracts deviating from one bundle
to another. Also, these images contain instances where the high dimensional atlas failed to
label the tracts correctly. Consistency Clustering is able identify consistent tract bundles
across subjects, while tract cuts operation remove the inconsistent parts of these bundles,
resulting in "core" bundles.

labeled using the atlas through a modified EM loop that involves the registration step and

the E-step until convergence. Once each one of the subjects are labeled in this way, the

resulting labels are then compared against the labels produced when all 15 subjects were

used for the atlas construction. The overall differences in the labels were in the range of

1.0% to 2.8%. That translates to more than 97% of the labels being the same whether a

subject was used in the atlas construction or not. The results from these experiments are
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Figure 6-8: Evaluating the consistency of atlas-based labeling. Each cross mark represents
an experiment in which one subject labeled with the atlas constructed from the remaining
14 subjects. These labels are compared against the labels produced by the atlas building al-
gorithm with all 15 subjects included. The boxes indicate one standard deviation above and
below the mean difference level. Leftmost column shows the overall differences, summa-
rizing the results for the whole atlas, and the the other three columns shows the differences
for each of the structures represented in the atlas. These structures are the fornix (FX), the
corpus callosum (CC) and the cingulum (CI).

presented in Figure 6-8 for each one of three structures used in the atlas building as well as

the overall results. Labels in the cingulum bundle showed more variability than the labels

in other structures, due to the high number of tracts that deviate from the cingulum to the

corpus callosum. Even though the absolute effect of these deviating tracts are the same on

the cingulum and the corpus callosum, the variability is signficantly higher in the cingulum

due to the relatively low number of tracts in the cingulum bundle as opposed to the corpus

callosum.

The resulting atlas through the proposed algorithm is also presented as isoprobabil-

ity surfaces to qualitatively inspect the resulting distributions in 3D (Figure 6-9). These

spatial distributions retained very little of the tractography noise that was apparent in the

individuals' tract bundles, and conformed well with the known anatomy.
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Figure 6-9: Isoprobability surfaces of the spatial distributions of the fornix (in green) and
the cingulum (in purple) bundles constructed from 15 subjects using the EM algorithm
with tract cut operations. The surface is generated by thresholding the spatial atlas at a
probability level of 10- 4 . A few selected tracts from the corpus callosum (in black) are also
drawn to highlight the spatial proximity of the three bundles. These spatial distributions
retain very little of the tractography noise that is apparent in the individuals' tract bundles.

Figure 6-10: Impact of varying outlier class probability level demonstrated on the fornix of
one exemplar subject. As the outlier class probability is increased, a larger percentage of
the tracts from the fornix (in green) are classified as outliers (in gray).
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6.5 Summary of the Chapter

In this Chapter, we extended the consistency clustering algorithm to segment and label

white matter fibers while computing an atlas of fiber-bundles from a set of multi-subject

diffusion weighted MR images. To demonstrate the use of this algorithm, we constructed

spatial distributions of three fiber bundles in close proximity. The relative closeness of

these bundles causes erroneous labeling of tracts when automatically labeled with a high

dimensional atlas. However, the integrated approach we present in this paper is able to

recover from these errors, resulting in a sharper atlas that is less contaminated with the

mentioned artifacts.

We also demonstrated the stability of our algorithm by randomly changing the initial

labels of varying proportion of the tracts. The results indicate that the solution of Con-

sistency Clustering is stable under initialization and therefore is well suited for medical

applications.

Another important aspect of any atlas is its ability to label novel subjects. We demon-

strated that the tract labels are very similar whether a subject is used in the atlas building

stage, or is left out at that stage and labeled afterward with the resulting atlas.

Furthermore, we presented a fully automated atlas construction pipeline, that consists

of tractography, labeling with a high dimensional atlas and group-wise correction of the

labels and registrations. With the introduction of a principled outlier rejection and tract

cut scheme, we showed that it is also possible to retain only the "core" tract bundles, the

tract segments that have their counterparts present in the group of subjects that is being

analyzed. Since all of the fiber bundles are also aligned in a common coordinate system, it is

then possible to define measurement axes, which are not limited to simple curves, for each

of the core bundles and collect quantitative measurements for group-wise morphometry.

This could prove to be a powerful statistical framework for the comparison of different

sub-populations, to identify disease-related or developmental changes in the white matter

anatomy.

Due to the low SNR and ambiguity of the tensor model in the fiber crossings, streamline

tractography results in many errors. We have introduced a tract cut operation to identify and
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reduce these artifacts. It is of future interest, however, to include the tractography into this

iterative framework to make these corrections in a more integrated way. The probabilistic

nature of our algorithm makes it possible for such an extension and the fact that we are

using spatial and voxelized atlases makes it possible to fuse DTI based white-matter atlases

with ones that were created using expert labeled structural MR images.

156



Chapter 7

Conclusion

In this thesis, we investigated automatic atlas construction for population-wise consistent

segmentations of medical images. The atlases were constructed using an integrated regis-

tration and clustering algorithm, and evaluated by computing an anatomical atlas of fiber-

bundles and deep gray matter nuclei from a population of diffusion tensor MR images

(DT-MRI).

The consistency between segmentations in different subjects is ensured through using

a single anatomical model for the whole population, which serves as an anatomical at-

las. We experimented with both parametric and non-parametric models for the gray matter

and white matter segmentation problems, each model resulting in a different kind of atlas.

We constructed these atlases using unsupervised and semi-supervised approaches, which

is enabled by our problem formulation for the population-wise segmentation. We refer to

the integrated population-wise segmentation algorithm as Consistency Clustering since the

outputs of the algorithm include population-wise consistent segmentations and correspon-

dence between the subjects.

Consistent population-wise segmentations required development of several integrated

algorithms for clustering, registration, atlas-building and outlier rejection. In this the-

sis we developed, implemented and evaluated these tools individually and together as a

population-wise segmentation tool. We evaluated Consistency Clustering using in vivo

DT-MRI datasets. We investigated the benefits of population-wise segmentation as op-

posed to individually segmenting subjects, as well as effects of noise and initialization on

the segmentations.
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Consistency Clustering provided consistent segmentations for the population, either

with prior information about the expert labels or in a completely data-driven fashion. Also,

through the use of labels from other subjects in the population, the algorithm was able to

produce segmentations that were both qualitatively and quantitatively very similar to the

expert's preference.

Furthermore, along with noisy labels generated from a High Dimensional Atlas or a

single labeled subject, Consistency Clustering becomes a fully automated atlas construction

pipeline for the white matter tracts. With the introduction of a principled outlier rejection

and tract cut scheme, we showed that it is possible to retain only the "core" tract bundles,

the tract segments that have their counterparts present in the group of subjects that is being

analyzed. Since all of the fiber bundles are also aligned in a common coordinate system, it is

then possible to define measurement axes, which are not limited to simple curves, for each

of the core bundles and collect quantitative measurements for group-wise morphometry.

This could prove to be a powerful statistical framework for the comparison of different

sub-populations, to identify disease-related or developmental changes in the white matter

anatomy.

Consistency Clustering can be used in two different ways to produce consistent segmen-

tations in a population. The first way involves running the algorithm unsupervised on the

population, and then assigning anatomical labels to the segmentations only on one of the

subjects. The labels are then automatically transferred to the rest of the subjects since the

correspondence problem is already solved at this stage. The second way involves labeling

one or several subjects by hand, and then using these labeled subjects as prior information

to label the rest of the population according to the expert preference.

Either way, Consistency Clustering is a powerful tool that provides fast and consistent

segmentation of the deep gray matter as well as white matter tracts and has a use in a vari-

ety of applications such as in quantitative morphometry studies and pre-surgical planning.

The data driven segmentation is useful in certain settings, such as when there is limited

expert labeled data is available for the structure to be segmented or when expert labeled

data is obtained for normal subjects but the novel subjects (that are to be segmented) are

affected by a disease. In these settings, obtaining a consistent segmentation with no or little
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dependence on expert labeled data, makes it possible for the expert to efficiently assign

consistent anatomical labels to the whole population, and quantify population-wise impact

of the disease under investigation.

Future Research Directions

Consistency Clustering requires a data model and learns the parameters of the model for

the population under investigation. The accuracy of the segmentations depend on how ac-

curately the model can represent the population. In this thesis, we used simple models for

the deep gray matter and the white matter tracts, since simple models result in simple al-

gorithms. Specifically, for the gray matter we used a Gaussian spatial model and assumed

independence between the locations of the voxels. An improvement over this model in-

cludes a higher order spatial model and a Markov random field so that the neighboring

voxels impact each other. We also used only the principal diffusion direction information

from the rich but noisy diffusion weighted images. The principal diffusion direction may

not be informative at the fiber crossing locations, which could more accurately modeled by

fitting multiple tensors to the diffusion data. Similarly, we modeled white matter tracts as

a bag of samples, which does not serve as a generative model for the tracts. Once again,

it is possible to use higher order models that represent the data better, and these models

could increase the accuracy of the results; albeit at an additional algorithmic complexity.

Furthermore, in both gray matter and the white matter we used a poly-affine registration

framework, which can be readily replaced by a more flexible registration framework.

In the thesis, we compared our automatic gray matter segmentation results against la-

bels produced by a single expert. Further validation with additional experts is necessary to

use Consistency Clustering in a clinical setting, such as for pre-surgical planning. In the

case when additional expert labels for the thalamic nuclei proves challenging to obtain, it

is possible to use other validation methods, such as tracing the white matter tracts from the

labeled thalami to the cortex, for which the anatomical labels are more readily available.

More immediately, Consistency Clustering can prove useful as an interactive segmenta-

tion since the framework is adequately flexible to include any amount of labeled data to be

pooled in, and achieves convergence in linear time.
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