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ABSTRACT

A cellular automaton is constructed to allow modeling of
temperature equilibration and particle interactions
producing energy exchange on a two-dimensional lattice,
using two types of particles with different energy and
momentum, and photons to mediate the interaction between
the two particle types. The cellular automaton is
constructed out of the possible basic processes involving
these three classes of particles and their possible states
at any given lattice point, the number of which was
small. The exclusion principle is used, which stipulates
that no two particles of the same type can occupy the same
state at a given time. Out of these basic elements, an
update rule is constructed which gives a unique output
state for any input state at each lattice point.

The update rule is then put into Boolean form and coded
into FORTRAN for implementation on the MicroVAX. The 32-
bit processor allowed the treatment of 32 sites at a time,
which increased the speed of the code. The initial state
of the lattice is determined from the desired average
particle densities. After a large number of time steps,
the final state is then given to subroutines which output
the results in a usable form. These results are then
compared with the expected outcome based on physical
considerations.
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I: Introduction

Simulations using cellular automata have only

recently become objects of interest to physicists, even

though the concept of a CA is by no means new. The first

CA's, such as the Game of Life, did not pretend to mirror

any large-scale physical processes. More recently, CA

models to simulate basic fluid mechanics have been

devised, but these are sharply limited by the types of

states that they can deal with. All previous CA's have

dealt with one particle type only, which can occupy a

fixed number of states at each lattice site; this means

that the macroscopic phenomena which they can simulate are

limited.

One macroscopic variable in particular which cannot

be simulated by such a system is temperature. The

intention of the CA discussed in this thesis is to provide

a framework for modeling temperature; to do so, the major

change from previous work will be to use two particle

"types" instead of one, with different energies and

momenta, along with "photons" as the mediating particles

of an interaction between the two types. Each type of

particle will be able to occupy a fixed number of states

at each lattice site. With such a scheme, one can see

that the average energy per particle of the system, which

can be called the "temperature", can be varied by varying

the relative quantities of the two types of particles,



whereas in former schemes, with only one type of particle,

the concept of temperature was meaningless.

With a CA that can simulate temperature changes, it

becomes possible to model a wide variety of processes that

involve changes in temperature, rather than be restricted

to "isothermal" processes. In particular, the CA

discussed here will be the prototype for a CA which can

model a gas-to-liquid phase transition.

The objective of this thesis, then, is to construct

the basic CA which will serve as a framework for modeling

temperature and thermal processes. This involves

developing a description of the update rule which can be

coded into FORTRAN, and additional sections of code which

provide an easy way of testing the rule for physical

validity.

II: Physical Background and CA Construction

As mentioned above, the CA used in this thesis uses

two types of particles, which will be referred to as type

I and type II. Interactions between the two particle

types are mediated by particles of zero mass which we call

photons, although the interaction they mediate is not

necessarily electromagnetic; the only crucial point about

this interaction is that it provides a mechanism for

energy exchange between type I and type II particles.

Both types of particles have unit mass, but they are



distinguished by their momentum and energy, which are

determined as follows.

The lattice on which these particles move is a two-

dimensional rectangular grid, which can be of any size as

far as physics is concerned, but whose actual dimensions

will be constrained by the methods for storing bits in the

computer's memory. Type I particles and photons move in

the normal rectangular directions, parallel and

perpendicular to the walls, while type II particles move

"diagonally". The momentum of particles is then taken to

be proportional to the length of the segments along which

they move, so that type I particles and photons have unit

momentum, while type II particles have momentum of 2.

Since energy is proportional to the square of momentum, we

then find that type I particles and photons have unit

energy, while type II particles have energy of 2. We

choose all of our units so that the numerical values of

mass, momentum, and energy come out as stated above, i.e.,

all necessary normalization factors are included in the

system of units we use, so that we can forget about them

in subsequent analysis.

An interesting note here concerns the photons'

momentum. For the model here described, the sign of

photon momentum is positive; however, there is nothing

physically paradoxical about choosing the photons'

momentum to be negative. This does not affect their

energy, but it does make a difference when particle



interactions are discussed. When the CA is modified for

simulating a phase transition, giving the photons negative

momentum may well prove to be essential.

To return to our discussion, the various ways in

which these particles may interact must now be

considered. In the Game of Life, this problem was simple,

since each site had only two possible states, on and off.

All one needed to update the lattice from one time step to

the next was a rule defining the conditions for a cell

being on; otherwise, it would be off. In the CA's used to

model fluid mechanics, the update rule was a little more

involved, since "collisions" between particles moving in

different directions at a given site had to be considered,

so that the map from input states to output states had an

added degree of complexity.

For our CA, not only collisions between particles of

the same type, but also interactions which change a type I

particle into a type II, and vice versa, involving

photons,
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the mapping from input to output states must conserve

mass, momentum, and energy.

A comment on ways of viewing a CA's update rule seems

appropriate here. From a purely mechanical point of view,

a CA is nothing more, as has been stated, than a mapping

from input states to output states, something like a

logical truth table. In the Game of Life, this view seems

most appropriate, since the update rule is thoroughly

arbitrary and is not meant to mirror anything "real".

However, in our CA, actual physical processes are being

so that, from a physical point of view, the

update rule is deciding what processes are taking place at

a given lattice site, and determining their results. When

trying to understand why a certain update rule has been

chosen, this view is the only one that makes any sense.

It should not take long to convince oneself that the

number of possible processes involving all these particle

types, given the conservation constraints, is rather

small. The processes which are used in the CA are

diagrammed for greater clarity in Fig.l. Self-collisions

can occur between two particles of type I or two particles

of type II, provided they are moving in opposite

directions, so that their momenta cancel. They will then

"scatter", producing two particles of the same type moving

along the two perpendicular directions. Type-II

production processes can also occur when a type I particle

and a photon meet at right angles; they will combine to

modeled,
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produce a type II particle moving in a direction halfway

between their original directions. A type II particle, in

the reverse of this process, can then decay into a type I

and a photon moving at right angles. The production and

decay processes both possess a definite parity, meaning

that they can occur in two ways which are mirror images of

each other and cannot be rotated to coincide. Self-

collisions do not possess a definite parity. For the

purposes of our CA, we do not consider self-collisions

between photons; since they are meant to function only as

exchange particles, we are interested only in their

interactions with type I and II particles, not with their

self-interactions. Also, we do not consider "scattering"

interactions between photons and type I particles, even

though they can be constructed to conserve the relevent

quantities. Other possible processes are allowed,

however, and it should not take long to convince oneself

that no other processes which obey the conservation laws

are possible.

A notation to express the different processes

physically is now required. There are eight different

direction vectors on the lattice; we number these starting

with 1 for the direction "up"--vertically upward--and

continue clockwise from there, so that "up and to the

right" is 2, "to the right" is 3, and so on. Thus, odd-

numbered directions are occupied by type I particles and

photons, while even-numbered directions are occupied by



type II particles. Next, we symbolize a particle moving

in a given direction by the letter n with three indices,

as follows:

t
n
ij

where i indicates particle type (1, 2, or p), j

indicates direction (1 through 8) and t indicates the time

step at which the particle occupies the state. For each

lattice site, then, at each time step there are twelve

possible states which may be occupied or not; each state

is represented by a bit, so that twelve bits are required

to represent each lattice site, rather than the one bit

needed in the Game of Life. Our objective is then to

construct an update rule that will give each nij(t+1)

"going out" of a lattice site as a function of the nijt's

"coming in".

The next task is to construct "operators" for each

process at a given lattice site. All nij's are assumed to

be "coming in" to the lattice site at time step t. Our

operator notation also has three indices: the i and j are

the same as for the n's above, but the third index

indicates the type of process involved (s for self-

collision, p for production, d for decay). The operator

letter itself denotes creation (C) or annihilation (A).

We then obtain operators such as the following:

Cijs = ni(j+2)ni(j-2)nijni(j+4) (la)



AIjp = nljnp(j+2)n2(j+1) (ib)

where n is the negation of n, i.e., it denotes the

absence of a particle in that state at time step t. The

first operator, then, simply says that a self-collision

producing a particle in direction j requires the presence

of particles in directions j+2 and j-2 and the absence of

particles in directions j and j+4. All sums are modulo 8,

so that 7+2, for example, equals 1. The second operator

says that a production process which destroys a type I

particle in direction j requires that particle to collide

with a photon in direction j+2, and that there be no

particle of type II in direction j+1.

It is immediately obvious that there are relations

between C and A operators, since each process both creates

and destroys particles. For example, the two operators

defined above could equally well have been "named" as

follows:

Cijs = Ci(j+4)s = Ai(j+2)s = Ai(j+6)s (2a)

Aljp = Ap(j+2)p = C2(j+1)p. (2b)

Furthermore, there are certain pairs of operators

which, though defined differently, share a common name:

thus, there is another Aljp defined as follows:

Aljp = nljnp(j-2)n2(j-1) = Ap(j-2) = Cp(j-1) (3)

Each of the names of this operator, and in fact of

all production and decay operators, is shared with another

production or decay operator. This arises because of the

parity phenomenon mentioned above.



This becomes important when we consider what to do if

two processes are possible at a given lattice site. Some

pairs of processes will not "interfere" with each other,

but some will, and we need a method of determining when

this happens. The foolproof method is simply to list each

operator, with all its possible names; then, to find out

which other processes conflict with it, look down the list

for any other operator names which differ from its names

only in the process index. That is, to find out which

processes conflict with Cijs, we need to find all other

Cij's, Ci(j+4)'s, Ai(j+2)'s, and Ai(j+6)'s, no matter what

their process index. Since the list of operators is

finite, and not terribly long, this is a feasible process,

and it
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state can give rise to two different output states, but

that the same output state could have been caused by two

different input states. How are we to deal with this

problem?

In the real world, which is quantum-mechanical

microscopically, if two or more different output states

are possible from a given input state, nature chooses

randomly between them with a certain probability attached

to each; similarly, if two or more different input states

can produce the same output state, we will find that that

output state arose from each possible input state with a

certain probability over a large number of occurrences.

This is possible to model; however, what we are dealing

with is then, strictly speaking, no longer a CA, since it

is probabilistic and not determinate. It might be called

a "probabilistic CA" or a "microscopically indeterminate

quasi-CA."

For our purposes, however, we do not need to model

quantum effects directly, since they statistically average

out when considering a model of something like

temperature. We can, therefore, use any method which

gives the same statistical results, even if

microscopically it is unphysical, in order to model

temperature correctly. This permits us to use methods

which are much faster when implemented on a computer than

a random number generator, which would be used in a strict

quantum model.



It is thus expedient to adopt two conventions in

defining the update rule for our CA. The first is to add

an additional index to production and decay processes,

making them po, pe, do, and de processes ("odd" or "even"

parity). Thus, the two production operators defined above

no longer share the same name, since the first is Aijpo

and the second is Aijpe. The second is to index the time

steps; most simply as odd or even, but also as "decay" or

'non-decay", since we want to be able to vary the

frequency of decay processes, not necessarily having them

occur every time step (since they, unlike the other

processes, have only one particle as input, they are not

necessarily treated the same). Finally, in addition to

these conventions, we assume that multiple processes at

the same lattice site are rare enough that we can ignore

them; thus, whenever an input state has two or more

possible processes, we say that nothing happens, i.e.,

that the output state is the same as the input state (this

is the same as simple propagation of particles). Since we

will be dealing with low particle densities, this

assumption is reasonable. We have therefore adopted the

simple expedient of dealing with quantum effects by

ignoring them.

Combining these three elements, the final physical

description of the update rule is arrived at. On odd time

steps, we only let odd processes happen, and on even time

steps, we only let even processes happen; this eliminates



the indeterminacy arising from parity. Decays only happen

on decay steps. Whenever two processes "conflict" at a

given lattice site, nothing happens at that site for that

time step: every particle simply propagates.

Our list of conflicting processes is therefore useful

in that, to complete the conditions for each process

happening, we need only multiply its operator by the

negation of all conflicting operators, signifying that

only that process is possible. We represent any

conflicting operator to either Aij or Cij by the notation

Okl, where k is the particle type and 1 is the direction;

O is then either C or A, as required for each conflicting

operator name. The conditions for Aij or Cij actually

happening, then, are given by

AijWQkl

CijTQkl

where the IT notation represents the product of all

relevant terms, rather than the sum represented by the Z

notation, and 0 is the negation of 0.

We are now in a position to write the update rule in

its physical form. We want to consider all possible

processes which will give nij(t+l). There are two general

types of processes. The first is propagation of nijt,

which will happen provided that no Aij processes occur; we

express this by the notation linking nij and all Aij's.

The second is one or another of the Cij processes

occurring, and we express this by summing over all the Cij



terms. We must include the negation of all conflicting

processes, in the notation above, for both the Aij and

Cij processes, and we therefore arrive at:

nij(t+l) = nijtTnot(Aij•Qkl) + ECijrQkl. (4)

This is a physics equation, which is then converted

to logical operations in order to implement it on the

computer, by equating multiplication with "and" and

addition with "or". If this is done, we can then exploit

De Morgan's rule, which says that the product (and) of

negations is equal to the negation of a sum (or), which

will make the rule considerably simpler and faster when

implemented:

nij(t+l) = nijt*not(F-AijOkl) + ICij!Qkl. (5).

There is thus an elegant correspondence between the

creation and annihilation double sums.

A further consideration for the completion of the

update rule concerns boundary conditions. For present

purposes, a very simple treatment will suffice; this

thesis is most concerned with deriving the update rule and

proving that the code which implements it does so

properly, and so the simpler the boundary conditions, the

easier the testing becomes. In the actual code, then, a

simple "quasi-reflection" condition was used, in which any

particle hitting a wall had its direction changed by 180

degrees, so that the update equation would be:



nij(t+l)=ni(j+4)t. (6)

This is admittedly unphysical on a microscopic level;

however, it is apparent that this condition does not

affect the relative number of type I and type II

particles, so that, essentially, it is preserving the

"temperature" of the system at whatever level it

equilibrates to by means of the update rule. The

condition will affect the precise velocity distributions

of type I and II particles, but for the present this is

not an important concern.

Eventually, when the CA is modified to simulate

temperature changes, the boundary conditions will become

the means by which the temperature of the system is

controlled. This will be done by weighting the

probabilities of emitting type I and type II particles

from the wall, so that the relative numbers going out are

not necessarily equal to the relative numbers coming in.

However, before this can be done, the update rule must be

successfully implemented, and that is the next topic of

discussion.

III: The FORTRAN Code

From the logical form of the update rule (equation

(5)) it is a fairly straightforward task to code the rule

into FORTRAN; the code used for this thesis is given in

the Appendix. On the MicroVAX, system functions exist

which can perform bitwise operations on words in memory:



these are iand, ior, ieor, not, ishftc, and the mvbits

subroutine. The comments in the code explain how each

operator is generated logically and then used to build the

update rule.

The twelve bits for each lattice site are grouped

into twelve words of 32 bits each in memory; thus each

word stores one bit, denoting the presence or absence of

one particle state, for each of 32 lattice sites. The VAX

processor is a 32-bit processor, which is why this method

of storing data is utilized; each of the twelve particle

states can be updated 32 sites at a time for greater

speed. The words are organized horizontally on the

lattice, so that each word contains bits from 32 sites

lying along a horizontal line. The only exceptions are

the special left and right edge words, which are aligned

vertically. Thus the vertical array size is a multiple of

32 sites, and the horizontal array size is a multiple of

32 plus 2 extra sites.

The first section of the code concerns initialization

of the grid. Input parameters are given: the grid size in

bits, the number of time steps desired, the frequency of

decays, and the seed for the random number generator.

Then, after calculating other necessary parameters, the

program reads in the probabilities which will be used to

initialize the grid. At each lattice site, there are

twelve possible states which may be occupied, and the

probabilities, when compared with the outputs from a



random number generator, tell which of those states are

actually occupied. Thus the initial states of all lattice

points are generated, providing a starting array for the

update rule.

The first part of the update process is the "movement

phase". This phase is intended to make each of the twelve

words at location i in the grid represent the bits for

particles moving in that direction "into" the 32 lattice

sites represented by that word. Thus word 11(i) would

represent the bits for a particle moving in direction 1

"into" the 32 sites at location i in the grid. It is

obvious from our discussion of the update rule above that

this is the proper form for the words in memory in order

to apply the rule.

There are two tools used to move the bits to their

proper locations for applying the rule. The intrinsic

function ishftc represents a "circular shift" of bits,

each bit moving one place to the right or left (right was

+1, left was -1 in the function arguments); this is used

to move bits horizontally. Moving bits vertically amounts

to shifting whole words at once, with the array reference

variable shift used to denote the original location of the

word. Since for greater speed we use only one index to

reference our words in memory, this portion of the code is

a bit obscure. Word i=1 is in the lower left corner of

the grid; i increases to the right, and then upward, row

by row, so that i=32 (for a 1026x1024 bit array) is in the



lower right corner, and i=32768 (1024*32) is in the upper

right corner. Therefore, moving a word vertically upwards

means a shift from location i-32 to location i, and moving

a word vertically downwards means a shift from location

i+32 to location i. The actual array size is an input

parameter.

The mvbits system subroutine is then used to move the

end bits of words, which the circular shift would move to

the other end of the word, to the end bits of the proper

adjacent words. Thus, for a direction-3 move of word

location i, we circular shift one unit to the right,

meaning that the rightmost bit of word i (bit 31) would be

shifted to bit 0 of word i. We then use mvbits to move

that bit to bit 0 of word i+1. To make sure that we do

not overwrite the wrong bits, we start rightward moves

(directions 2, 3, and 4) from the largest value of i, and

leftward moves (directions 6, 7, and 8) from the smallest

value of i. The circular shift and mvbits subroutine are

also used to move the bits in the left and right wall

words to the necessary places for mvbits to be used

between them and the interior words.

This completes the movement phase; the words are now

all in their proper locations to apply the update rule.

Boundary conditions and the rule itself are implemented

directly from their logical forms, described in section

II. above, and then optimization is done, although most of

the optimization potential is in the movement phase.
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However, optimization is not a primary issue at present;

the code in the Appendix still has considerable

inefficiency, but it does mirror the rule correctly.

The final section of the code is the output phase,

which uses the raw data to calculate the total number of

particles of type I and type II, and the sum of both, over

the entire grid. This section of the code can be easily

modified to give density or temperature distributions

which can be analyzed to determine the macroscopic

behavior of the system.

IV: Results

Having developed a working FORTRAN code, the final

step is to determine whether it mirrors the update rule

correctly, and also whether that rule, as mirrored in the

code, provides the necessary framework for modeling

temperature. Testing to see whether the rule is correctly

implemented is straightforward, since the logical

equations (5) and (6) can be directly translated into

FORTRAN statements. However, there are still some

possible problems: after all, the "movement phase" does

not enter into the update rule equations, which assume

that it has already been accomplished. Also, we have an

input and output phase which are separate from the update

process.

Testing the input and output is fairly

straightforward; if the output consistently gives us the



expected probabilities of particles in each state, then

both sections of code are valid. For example, if there is

a probability of 0.2 of finding a type I particle in a

given direction at a given lattice site, then the

probability of finding a type I at that site, in any of

the 4 directions, is 4*0.2, or 0.8. Thus, if we take the

total number of type I particles, as output from the

program after 0 time steps, that should be 0.8 times the

total number of lattice sites on the grid. Similar

arguments apply to type II particles. This was checked

and found to be correct to within the limits of the random

number generator (statistical fluctuations).

To test other aspects of the code, physical

considerations must be brought into play, bringing us to

the second test, which is whether the update rule models

the correct physics for our purposes. If the results that

the code generates can be shown to do so, this will also

be proof that the aspects of the code which cannot.be

directly checked against the update rule are nevertheless

correct.

One aspect of the physics which can be checked is

conservation of mass. Since photons have no mass, the

conservation of mass simply implies that the total number

of type I plus type II particles is constant over every

time step. This was found to hold when the code was run

with various initial conditions.

22



The CA was also constructed to allow for energy

exchange between type I and type II particles, which can

be checked by observing the relative numbers of the two at

various time steps. It was found that, with initial

conditions which had approximately equal numbers of both

types, the number of type I's rose while the number of

type II's dropped. This can be interpreted as thermal

equilibration, since the numbers of both types were

observed to converge, with oscillations caused by

statistical fluctuations, to certain values which would

determine the equilibrium "temperature" of the system.

Thus, it seems that the CA does indeed provide what

is needed to model temperature. We have an update rule

that conserves necessary quantities, and we have a

mechanism for energy exchange which is shown to work.

This is the needed foundation on which to build CA's for

simulating actual thermal processes.
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V:_Suggestions for Further Research

The basic CA has now been constructed, and it appears

to model the necessary physics correctly. However, it is

indeed very basic: there is energy exchange between type I

and type II particles, but there is no immediately obvious

way of affecting the equilibrium temperature. We have

tried to show here that, if any errors appear in the model

when new considerations are added, they will not be due to

the basic code which has been developed here. The next

step in research will be to add these new considerations,

a short list of which follows:

A: As was mentioned at the end of section II, the

boundary conditions can be changed to allow the

temperature of the system to be controlled through

interactions with the walls. This could be used to set

the wall temperature equal to a constant or to vary the

wall temperature in time and observe the interior

distribution, as well as other effects, such as a possible

phase transition.

B: Also in section II the idea of giving photons

negative momentum was mentioned. This might also be

necessary to allow modeling of a phase transition.

C: It might be desirable to bias the photon

distribution in a certain direction, thus creating a

macroscopic "force field" in that direction. This effect

can be seen by considering the effect of production and

decay processes in s.equence: these sequences can have the

24



effect of moving a type I particle perpendicular to its

direction of motion but parallel to the photon involved,

as is shown in Fig. 2. Thus, if there is an overabundance

of photons in a certain direction, their net effect will

be to move type I particles in that direction. The more

abundant type I's will then, via more production

processes, create more type II's. This will be observed

macroscopically as a force field, which might be useful

when modeling a phase transition.

Dri 
ýLC
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Fig. 2: Effect of Production and Decay in Sequence



Appendix:

provided.

A copy of the code, with comments included, is



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCC

C

c PROGRAM FOR CELLULAR AUTOMATON TO SIMULATE
c AN INTERACTING SYSTEM
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(.) c
c first make all variables except those at end of alphabet integer*4
c so that the arrays will have 32-bit words
C

implicit integer*4 (a-t)
c
c reserve memory space: 1 arrays are particles, m are photons; the n
c in the name means "new", used in the move loop below; lleft and
c lright, mleft and mright are special words, vertically stacked,
c for the left and right walls, for easier implementation of the
c boundary conditions
c

di i1 32768_a 12 '32)768C 13 32 68) 1A 2) 8
u letllt l 1.1 )U3. (IO) ' OII IO), 3 I O ), 3

dimension 15(32768),16(32768),17(32768),18(32768)
dimension ml(32768),m3(32768),m5(32768),m7(32768)
dimension inl(32768),1n2(32768),1n3(32768),1n4(32768)
dimension In5(32768),1n6(32768),1n7(32768),1n8(32768)
dimension mnl(32768),mn3(32768),mn5(32768),mn7(32768)
dimension lright2(32),lright3(32),lright4(32),lright7(32)
dimension lright8(32),lleft8(32),lright6(32),lleft6(32)
dimension lleft2(32),lleft3(32),lleft4(32),lleft7(32)
dimension mright3(32),mright7(32),mleft3(32),mleft7(32)
common icount
open(unit=6,file='thesis.out',status='new')

c
ccccccccccccccccccccccccccccccINPUT PARAMETERSccccccccccccccccccccccccccccccc(
c
c section to read in necessary parameters
C

write(*,9900)
9900 format(/' Input max. time steps and array dimensions

1 in bits.')
read(*,*)tmax,imax,jmax
write(*,9901)

9901 format(/' Input decay frequency.')
read(*,*)m
write(*,9902)

9902 format(/' Input random number seed.')
read(*,*)seed

c
c calculate other parameters to facilitate single-index array
c references and proper number of words in memory. The variables
c are defined as follows:
c
c tmax--maximum number of time steps
c imax--vertical array size in bits; must be multiple of 32
c jmax--horizontal array size in bits; mod(jmax,32) is 2
c jm--number of words across one horizontal row, 32 bits per word
c im--total number of words on the lattice, not counting left and
c right edges
c in--number of words along the left and right edges, vertically
c aligned
c iml,im2--index limits of words when top and bottom edge rows are
c not included
c
c bits are numbered left to right, so that bit 0 is leftmost and
c bit 31 is rightmost in each word. For the left and right edge

* c words, bit 0 is lowest and bit 31 is highest. Words are indexed



c starting in the lower left corner, numbered to the right, row by
c row going up, each row increasing left to right. The left and
c right edge words are numbered bottom to top.
c

jm=(jmax-2)/32
im=imax*jm

*) in=imax/32
iml=im-jm
im2=1+jm,

c
cccccccccccccccccccccccccccccccINITIALIZATIONcccccccccccccccccccccccccccccccc(
c
c section here to initialize the array
c
c first input the probabilities which will be used to decide, for
c each particle type and direction, whether that state is full or
c empty initially at each lattice site
c

write(*,9899)
9899 format(/' Input initial particle probabilities.')

read(*,*)xdl,xd2,xd p
c
c procedure for determining initial array state; the variable
c iset is simply a word with a '1' in bit 0 and a 'O' in all
c other bits; we use it as a 'source' from which to set the proper
c bits in each word to 1.
c

iset=1
c
c do interior points only: no initial wall particles
c

do 10 i=im2,iml
do 10 j=1,32

c
c i is the word index, j is the bit index within the word.
c We check each of the twelve possible states for each bit
c (lattice site); probability of finding a particle in each
c one is the initial density xd for that particle type. We
c check twelve times at each bit site, once for each state,
c and if it is not occupied, we skip it, otherwise we fill it.
c

jd=j-1
ycheck=ran(seed)
if(ycheck.gt.xdl)goto 11
call mvbits(iset,0,1,11(i),jd)

11 ycheck=ran(seed)
if(ycheck.gt.xd2)goto 12
call mvbits(iset,0,l,12(i),jd)

12 ycheck=ran(seed)
if(ycheck.gt.xdl)goto 13
call mvbits(iset,0,1,13(i),jd)

13 ycheck=ran(seed)
if(ycheck.gt.xd2)goto 14
call mvbits(iset,0,l,14(i),jd)

14 ycheck=ran(seed)
if(ycheck.gt.xdl)goto 15
call mvbits(iset,0,1,15(i),jd)

15 ycheck=ran(seed)
if(ycheck.gt.xd2)goto 16
call mvbits(iset,0,1,l6(i),jd)

16 ycheck=ran(seed)
if(ycheck.gt.xdl)goto 17
call mvbits(iset,0,,l17(i),jd)

17 ycheck=ran(seed)



if(ycheck.gt.xd2)goto 18
call mvbits(iset,0,1,18(i),jd)

18 ycheck=ran(seed)
if(ycheck.gt.xdp)goto 21
call mvbits(iset,0,l,ml(i),jd)

21 ycheck=ran(seed)
if(ycheck.gt.xdp)goto 23
call mvbits(iset,0,l,m3(i),jd)

ZL ycnecK=ran(seea)
if(ycheck.gt.xdp)goto 25
call mvbits(iset,0,l,m5(i),jd)

25 ycheck=ran(seed)
if(ycheck.gt.xdp)goto 10
call mvbits(iset,0,l,m7(i),jd)

10 continue
c
c diagnostic writes
C

write(6,5550)tmax,imax,jmax
5550 format(/i5,' time steps on a',i5,' by',i5,' array.')

write(6,5551)jm,im,in
5551 format(/i5,' words per row,',i5,' words, and',i5,' side words.')

write(6,5554)m
5554 format(/' Decays every',i5,' time steps.')

write(6,5555)xdl,xd2,xdp
5555 format(/' Initial particle probabilities: ',3f5.2)

c
c initialize time step counters
c

tstep=0
parity=0

c
cccccccccccccccccccccccccccccccMOVE LOOPccccccccccccccccccccccccccccccccccccc(
c
c do movement phase--first step in updat.e process
c
c these first three loops are designed to move bits in accordance with
c the propagation rule for their direction, including bit shifts and
c movements of an entire word; thus, for example, direction 1 words are
c simply shifted as a whole one unit upwards, while direction 7
c words are circle-shifted only. The circle-shift is required to
c prevent the loss of a bit. Note that this is not really a complete
c movement process; it is simply making it easier for the collision
c operators below to be generated.
c
c first check for last time step completed; if so, go to output.
c This allows us to check the initial conditions by simply putting
c tmax=0, so that it will go to output immediately, without doing the
c update process. After checking, we increment the time step variable.
c
50 if(tstep.eq.tmax)goto 9999

tstep=tstep+l
do 100 i=l,iml

c
c The variable shift gives the index number of the word directly
c "above" word i

shift=i+jm
In6(i)=ishftc(16(shift),-l,32)
In5(i)=15(shift)
In4(i)=ishftc(14(shift),l,32)
mn5(i)=m5(shift)

100 continue
do 110 i=im2,iml



In3(i)=ishftc(13(i),1,32)
In7(i)=ishftc(17(i),-1,32)
mn3(i)=ishftc(m3(i),1,32)
mn7(i)=ishftc(m7(i),-i, 32)

110 continue
do 120 i=im2,im

c
c The variable shift now gives the index number of the word directly
c "below" word i
c

shift=i-jm
In2L()=isnftc12(shnift),1,32)
Snl(i)=l1(shift)
In8(i)=ishftc(18(shift),-1,32)
mnl(i)=ml(shift)

120 continue
C
c These next two loops do the bit shifts and movements for the
c special wall arrays, which must be done prior to the main
c mvbits loops
c

do 125 i=l,in
lleft2(i)=ishftc(lleft2(i),1,32)
lleft4(i)=ishftc(lleft4(i),-1,32)
Iright6(i)=ishftc(lright6(i),-1,32)
Sright8(i)=ishftc(lright8(i),1,32)

125 continue
do 126 i=l,in-1
shift=i+l
call mvbits(lleft4(shift),31,1,11eft4(i),31)
call mvbits(lright6(shift),31,1,lright6(i),31)
ip=in-i
ipl=ip+l
call mvbits(lleft2(ip),0,1,lleft2(ipl),0)
call mvbits(lright8(ip),0,1,lright8(ipl),0)

126 continue
c
c these next four loops finish the process of moving bits by
c transferring bits which were circle-shifted from the end of a
c word to their proper word -- thus, the 'left' bit of a direction-7
c word, which got shifted to the 'right' bit of that word, is now
c moved to the 'right' bit of the next word up. This requires two
c special 'rows' of words, left and right of the array, to take the
c last bits of the left and right edge words. Thus, the first loop
c and the last loop of the four move the proper bits in and out of
c these special arrays.
c
c Our pattern is to move bits "into" the walls first, then to move
c bits word by word, "sweeping" through the lattice so that each
c bit, as it is moved into its new word, overwrites the bit that
c was just moved out of that word. Thus, the last step involves
c moving bits "out of" the wall into the proper words.
c

do 130 i=l,in
kk=(i-l)*32
do 130 j=1,32

c the variable k is the 'counter' for bits along the matrix; since
c the left and right special arrays are 'stacked' vertically, k
c is needed to keep track of which bit in which array is being
c dealt with. The variables ik tell which word of the array to look
c at to move bits to and from the special arrays; ikjm gives the index
c numbers of the rightmost words, and ikl gives the index numbers of
c the leftmost words



k=kk+j
ikjm=k*jm
ikl=ikjm-jm+l
jd=j-1

the two if
bottom and
directions
directions
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to it, so
to is that
that will
bottom and
places, no

if(k.eq.im
call
call
if(k
call
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call
call

131 call
call

statements eliminate the proper mvbits statements for the
top walls: on the bottom, where k=1l, we need only consider
4 and 6; and on the top, where k=imax, we need only considei
2 and 8. This pattern continues in all loops dealing with
and top walls. Neither wall has particles moving parallel

directions 3 and 7 are out for both. What this all amounts
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130 continue
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30
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do mvbits
done in a

for interior words only; bottom
separate loop

and top walls are

do 140 i=im2,iml

if the word i is in column 32 (or the rightmost column) then we
cannot do directions 2,3,4; if the word i is in the leftmost
column we cannot do directions 6,7,8. Therefore we must put in
the two if-statements to preclude this. Also, since for directions
2,3,4 we must sweep 'backwards' through the lattice, for those
directions we use the array reference variable il, which means that
as i sweeps up and to the right, il sweeps to the left and down, so
that we are always moving the correct bits.

il=im-i
ill=il+1
id=i-1
if(mod(i,jm).eq.
call mvbits(in4(
call mvbits(in3(
call mvbits(in2(
call mvbits(mn3(
if(mod(i,jm).eq.

145 call mvbits(in8(
call mvbits(in7(
call mvbits(1n6(
call mvbits(mn7(

140 continue
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now do mvbits for bottom and top walls

do 150 i=l,jm-1
itop=iml+i
jtop=im-i
jbot=jm-i

Cd c
ccccc
C
c
c
c
c
C

c
c
c
c
c
c
c
c
c



il=i+l
itopl=itop+l
jtopl=jtop+l
jbotl=jbot+l
call mvbits(in4(jbot),0,1,1n4(jbotl),0)
call mvbits(ln2(itop),0,1,1n2(jtopl),0)
call mvbits(in6(il),3,1,1 n6(i),31)
call mvbits(1n8(itopl),31,1,1n8(itop),31)

150 continue
c
c now move bits out of left and right walls into proper words; here
c again, at the "corner" points, k=1 and k=imax, we only have two
c directions to deal with, one for each corner on both the bottom
c and top walls. The directions are reversed from the first time
c we did this because now we want the directions moving "out of" each
c corner.
c

do 160 i=l,in
kk=(i-l)*32
do 160 j=1,32
k=kk+j
ikjm=k*jm
ikl=ikjm-jm+l
jd=j-1
if(k.eq.l)goto 161
call mvbits(lleft4(i),jd,l,ln4(ikl),0)
call mvbits(lright6(i),jd,l,ln6(ikjm),31)
if(k.eq.imax)goto 160
call mvbits(lleft3(i),jd,l,ln3(ikl),0)
call mvbits(lright7(i),jd,l,ln7(ikjm),31)
call mvbits(mleft3(i),jd,l,mn3(ikl),0)
call mvbits(mright7(i),jd,l,mn7(ikjm),31)

161 call mvbits(lleft2(i),jd,l,ln2(ikl),0)
call mvbits(lright8(i),jd,l,ln8(ikjm),31)

160 continue
c
c this last loop 'clears' the In and mn arrays so that they can be used
c in the next phase of the update process; since the old values of the
c 1 and m arrays are no longer needed, they are written over.
c

do 170 i=l,im
11(i)=1nl(i)
12(i)=1n2(i)
13(i)=1n3(i)

*4 14(i)=1n4(i)
15(i)=1n5(i)
16(i)=1n6(i)
17(i)=1n7(i)
18(i)=1n8(i)
ml(i)=mnl(i)
m3(i)=mn3(i)
m5(i)=mn5(i)
m7(i)=mn7(i)

170 continue
c
cccccccccccccccccccccccccccccccBOUNDARY CONDITIONScccccccccccccccccccccccccccc

*h c
c update walls--simple condition to ensure conservation of particles
c and preservation of the relative distributions, so that the wall
c will not change the "temperature" of the system; we simply "reflect"
c each incoming particle by 180 degrees off the wall, so that, for
c example, a particle in direction 2 becomes a particle in direction
c 6, regardless of which wall it hits. This is not valid physically
c in a microscopic sense, but will affect only the velocity distribution



S c and not the relative numbers of type I's and type II's
C

do 300 i=1,in
lleft2(i)=lleft6(i)
Ileft6(i)=0
lleft3(i)=lleft7(i)

Slleft7(i)=0
lleft4(i)=lleft8(i)
lleft8(i)=0
mleft3(i)=mleft7(i)
mleft7(i)=0
Iright8(i)=lright4(i)
lright4(i)=0
1JI.r ILg ( f i )=1rightL3( 1.)

Iright3(i)=0
Iright6(i)=lright2(i)
Iright2(i)=0
mright7(i)=mright3(i)
mright3(i)=0

300 continue
do 350 i=l,jm
itop=iml+i
18(i)=14(i)
14(i)=0
ll(i)=15(i)
15(i)=0
12(i)=16(i)
16(i)=0
ml(i)=m5(i)
m5(i)=0
14(itop)=18(itop)
18(itop)=0
15(itop)=ll1(itop)
11(itop)=0
16(itop)=12(itop)
12(itop)=0
m5(itop)=ml(itop)
ml(itop)=0

350 continue
c
cccccccccccccccccccccccccccccccccUPDATE RULEccccccccccccccccccccccccccccccccC(
C

c update interior collisions using simple Boolean operators; there are
c four different kinds of time steps involved, odd and even, decay and
c non-decay, and each one has its own Boolean rule. The bit-movement
c process above has ensured that for each array element (i), all the
c bits in that word, for each velocity direction, are the proper ones
c to be 'plugged in' to the collision operators in order to obtain the
c right output state for that array element. Thus, as was said, the
c above process was not really a movement phase; the actual propagation
c operator is incorporated with all the others in the rule below.
c
c check for decay or non-decay step
c

chdecay=mod(tstep,m)
if(chdecay.eq.0)goto 590

c
c check for odd or even step
c

chparity=mod(tstep,2)
if(chparity.eq.0)goto 490

c
c odd non-decay step
c



do 400 i=im2,iml
C
c define basic operators-necessary conditions. What this means is
c that these operators define the 'first-order' conditions for a
c process to happen, namely, that the required input states are
c present and the the required output states are open. These operators
c have nothing to do with any other process which might share an
c input or output state with the given process; these conditions are
c taken care of by the composite operators defined below. Each basic
c operator corresponds to a creation or annihilation operator in the
c physical form of the rule.
c
c Each operator has several physical 'names', since it represents a
c creation of some particles and an annihilation of others. For
c consistency, for production processes I have chosen the unique
c 'creation' form, and for decays the unique 'annihilation' form
c (since these processes create and annihilate, respectively, only
c one particle). For self-collisions, I used 'creation' form and
c chose the lower-numbered of the two possible directions. A table
c of equivalences follows; the operator name as used in the program
c appears on the left, and other equivalent names, which may help in
c understanding the composite operators, are given on the right.
C
c csll =csl5=asl3=asl7
c cs22 =cs26=as24=as28
c cs13 =csl7=asll=asl5
c cs24 =cs28=as22=as26
c cpo22 =apoll=apop3
c cpo24 =apol3=apop5
c cpo26 =apol5=apop7
c cpo28 =apol7=apopl
c cpe22 =apel3=apepl
c cpe24 =apel5=apep3
c cpe26 =apel7=apep5
c cpe28 =apell=apep7
c ado22 =cdoll=cdop3
c ado24 =cdol3=cdop5
c ado26 =cdol5=cdop7
c ado28 =cdol7=cdopl
c ade22 =cdel3=cdepl
c ade24 =cdel5=cdep3
c ade26 =cdel7=cdep5
c ade28 =cdell=cdep7
c
c the operator notation corresponds to physics notation: the first
c letter denotes either (c)reation or (a)nnihilation; the next one
c or two letters are the process index: s for self-collision, po and
c pe for odd or even productions, do and de for odd or even decays.
c The last two characters are the particle type and direction: the
c latter is always a digit from 1 to 8, with 1 being vertically upward
c and the other directions numbered clockwise at 45 degree angles; and
c the particle type is either 1, 2, or p for photon.
c
c first, to save array references, we write the current
c words into dummy variables.
c
410 el=ll(i)

e2=12(i)
e3=13(i)
e4=14(i)
e5=15(i)
e6=16(i)
e7=17(i)
e8=18(i)



* fl=ml(i)
f3=m3( i)
f5=m5(i)
f7=m7(i)

c
c now do basic operators for like-like collisions
c

csll=iand(e7,iand(e3,not(ior(el,e5))))
cs22=iand(e8,iand(e4,not(ior(e2,e6))))
csl3=iand(el,iand(e5,not(ior(e3,e7))))
cs24=iand(e2,iand(e6,not(ior(e4,e8))))

c
c since the like-like operators are the same for all processes, we
c use the above lines of code in all four do-loops. Thus, we need
c the disjunct below: if the step is even we go to the even
c production operators, otherwise we stay with the odd ones below
c

if(chparity.eq.0)goto 530
c
c production processes-these are also used in decay steps, thus the
c disjunct after the four definitions to shift to the decay loop if
c on a decay step, but only after the composite operators are defined
c as well--since they are also the same for decay steps
c
430 cpo22=iand(el,iand(f3,not(e2)))

cpo24=iand(e3,iand(f5,not(e4)))
cpo26=iand(e5,iand(f7,not(e6)))
cpo28=iand(e7,iand(fl,not(e8)))

c
c define composite operators--link with negations of other basic op.
c to generate conditions for the process actually happening--thus we
c take into account all other processes which share either an input
c or an output state with the given process, and negate them. This
c ensures that the system will be microscopically reversible, i.e.,
c the mapping from input to output states at each point is one-to-
c one. These operators correspond to the summation/product terms in
c the physical rule of update. Note that each one is used both in
c the creation sum and the annihilation sum (which is negated in the

* c free propagation term), but not necessarily in the rule for particles
c of the same direction and type.
c
c production processes
c

nap2o=iand(cpo22,not(ior(cs22,csl3)))
nap4o=iand(cpo24,not(ior(cs24,csll)))
nap6o=iand(cpo26,not(ior(cs22,csl3)))
nap8o=iand(cpo28,not(ior(cs24,csll)))

c
c go to decay loop if on decay step
c

if(chdecay.eq.0)goto 620
c
c like-like collisions
c

nasl=iand(csll,not(ior(cpo24,cpo28)))
nas2=iand(cs22,not(ior(cpo22,cpo26)))
nas3=iand(rcs1no(inr(cnn22ncpo26)))

nas4=iand(cs24,not(ior(cpo24,cpo28)))
c
c use the above composite operators to generate the update rule:
c the conjunction of all possible processes that produce a particle
c in the given state. Note that the operators for each process
c are used both as creation and annihilation operators as context

) c requires. I have here defined the extra dummy variables nn in



c order to more clearly show how the rule is mirrored in the code;
c the nn's correspond to the first term, which is the free propagation
c times the negation of the annihilation summation terms. In the
c subsequent rule definitions, this extra dummy variable is omitted.
c

nnl=iand(el,not(ior(nas3,nap2o)))
11(i)=ior(nnl,nasl)
nn2=iand(e2,not(nas4))
12(i)=ior(nn2,ior(nas2,nap2o))
nn3=iand(e3,not(ior(nasl,nap4o)))
13(i)=ior(nn3,nas3)
nn4=iand(e4,not(nas2))
14(i)=ior(nn4,ior(nas4,nap4o))
nn5=iand(e5,not(ior(nas3,nap6o)))
15ki)=iorknnD,nasi)
nn6=iand(e6,not(nas4))
16(i)=ior(nn6,ior(nas2,nap6o))
nn7=iand(e7,not(ior(nasl,nap8o)))
17(i)=ior(nn7,nas3)
nn8=iand(e8,not(nas2))
18(i)=ior(nn8,ior(nas4,nap8o))

c
c for photons, note that in a non-decay step there is only one process
c that will produce a photon--propagation--and only one annihilation
c operator that needs to be included--the production process
c

ml(i)=iand(fl,not(nap8o))
m3(i)=iand(f3,not(nap2o))
m5(i)=iand(f5,not(nap4o))
m7(i)=iand(f7,not(nap6o))

400 continue
goto 1000

c
c even non-decay step
c
490 do 500 i=im2,iml

c
c goto like-like operator definitions

*) c
goto 410

c
c define basic production operators--the disjunct, as before,
c shifts to the decay loop if on a decay step, but only after the
c composite operators have also been defined

*) c
530 cpe22=iand(e3,iand(fl,not(e2)))

cpe24=iand(e5,iand(f3,not(e4)))
cpe26=iand(e7,iand(f5,not(e6)))
cpe28=iand(el,iand(f7,not(e8)))

c
* c define composite production operators

c
nap2e=iand(cpe22,not(ior(cs22,csll)))
nap4e=iand(cpe24,not(ior(cs24,csl3)))
nap6e=iand(cpe26,not(ior(cs22,csll)))
nap8e=iand(cpe28,not(ior(cs24,cs13)))

c

c go to decay loop if on decay step
c

if(chdecay.eq.0)goto 720
c
c define composite like-like operators
c

nasl=iand(csll,not(ior(cpe22,cpe26)))



nas2=iand(cs22,not(ior(cpe22,cpe26)))
nas3=iand(csl3,not(ior(cpe24,cpe28)))
nas4=iand(cs24,not(ior(cpe24,cpe28)))

generate update rule

=ior(
=ior(
=ior(
=ior(

iand(el,not(ior(nas3,nap8e)
iand(e2,not(nas4)),ior(nas2
iand(e3,not(ior(nasl,nap2e)
iand(e4,not(nas2)),ior(nas4

=ior(iand(e5,not(ior
=ior(iand(e6,not(nas
=ior(iand(e7,not(ior
=ior(iand(e8,not(nas

ml(i)=iand(fl,not(nap2e))
m3(i)=iand(f3,not(nap4e))
m5(i)=iand(f5,not(nap6e))
m7(i)=iand(f7,not(nap8e))

500 continue
goto 1000

(nas3,nap4e)
4)),ior(nas2
(nasl,nap6e)
2)),ior(nas4

),nasl
nap2e)
),nas3
nap4e)
),nasl
nap6e)
),nas3
nap8e)

check for odd or even before choosing decay loop

590 if(chparity.eq.0)goto 690

odd decay step

do 600 i=im2,iml

go to like-like and production operator definitions

goto 410

define basic decay operators

620 ado22=iand(e2,not(ior(el,f3)))
ado24=iand(e4,not(ior(e3,f5)))
ado26=iand(e6,not(ior(e5,f7)))
ado28=iand(e8,not(ior(e7,fl)))

define composite decay operators

also, composite production operators are the same, and have already
been defined by the goto statement above

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c
c
c

c
c
c

c
c
c

define composite like-like operators

nasl=iand(
nas2=iand(
nas3=iand(
nas4=iand(

csll,
cs22,
cs13,
cs24,

not(ior(ior(ado22,ado26
not(ior(ior(ado24,ado28
not(ior(ior(ado24,ado28
not(ior(ior(ado22,ado26

ior(
ior(
ior(
ior(

cpo24
cpo22
cpo22
cpo24

cpo28
cpo26
cpo26
cpo28

generate update rule

11(
12(
13(
14(
15(

)=ior
)=ior
)=ior
)=ior
)=ior

iand(
iand(
iand(
iand(
iand(

not(
not(
not(
not(
not(

ior(
ior(
ior(
ior(
ior(

nas3
nas4
nasl
nas2
nas3

,nap2o)
,nad2o)
,nap4o)
,nad4o)
,nap6o)

ior(nasl,nad2o
ior(nas2,nap2o
ior(nas3,nad4o
ior(nas4,nap4o
ior(nasl,nad6o

nad2o=iand(ado22,not(ior(cs24,csll
nad4o=iand(ado24,not(ior(cs22,csl3
nad6o=iand(ado26,not(ior(cs24,csll
nad8o=iand(ado28,not(ior(cs22,csl3

0)



ior(nas4,nad6o))
ior(nasl,nap8o))
ior(nas2,nad8o))

),ior(nas2,nap6o))
),ior(nas3,nad8o))
),ior(nas4,nap8o))

photons can now be produced by decays, hence the extra operator

ml(i)=ior(
m3(i)=ior(
m5(i)=ior(
m7(i)=ior(

600 continue
goto 1000

iand(
iand(
iand(
iand(

even decay step

not(
not(
not(
not(

nap8o))
nap2o))
nap4o))
nap6o))

,nad8o)
,nad2o)
,nad4o)
,nad6o)

c
690 do 700 i=im2,iml

goto operator definitions in other loops

goto 410

define basic decay operators

720 ade22=iand(
ade24=iand(
ade26=iand(
ade28=iand(

e2,not(ior(e3,
e4,not(ior(e5,
e6,not(ior(e7,
e8,not(ior(el,

define composite operators

nad2e=iand(ade22,not(ior(cs24,csl3)))
nad4e=iand(ade24,not(ior(cs22,csll)))
nad6e=iand(ade26,not(ior(cs24,csl3)))
nad8e=iand(ade28,not(ior(cs22,csll)))
nasl=iand(csll,not(ior(ior(ade24,ade28
nas2=iand(cs22,not(ior(ior(cpe22,cpe26
nas3=iand(csl3,not(ior(ior(ade22,ade26
nas4=iand(cs24,not(ior(ior(cpe24,cpe28

ior
ior
ior
ior

cpe22,cpe26)
ade24,ade28)
cpe24,cpe28)
ade22,ade26)

generate update rule

11
12
13
14
15
16
17
18
ml
m3
m5
m7

)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(
)=ior(

700 continue

iand(el,not(
iand(e2,not(
iand(e3,not(
iand(e4,not(
iand(e5,not(
iand(e6,not(
iand(e7,not(
iand(e8,not(

ior(nas3
ior(nas4
ior(nasl
ior(nas2
ior(nas3
ior(nas4
ior(nasl
ior(nas2

,nap8e
,nad2e
,nap2e
,nad4e
,nap4e
,nad6e
,nap6e
,nad8e

iand(fl,not(nap2e)),nad2e)
iand(f3,not(nap4e)),nad4e)
iand(f5,not(nap6e)),nad6e)
iand(f7,not(nap8e)),nad8e)

ior
ior
ior
ior
ior
ior
ior
ior

now go back to the line which checks see if we
last time step, and then start the update process

are on the
again

1000 goto 50

CCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccCCOUTPUTcccccccccccccccccccccccccccccccccc
c
c use simple algorithms to calculate and output the final numbers
c of type I, type II, and total particles (not including photons)

16(i
17(i
18(i

)=ior(
)=ior(
)=ior(

iand(
iand(
iand(

not(
not(
not(

fl))
f3))
f5))
f7))

nasl
nas2
nas3
nas4
nasl
nas2
nas3
nas4

,nad8e)
,nap2e)
,nad2e)
,nap4e)
,nad4e)
,nap6e)
,nad6e)
,nap8e)



9999 write(6,5999)
5999 format(//' OUTPUT PARTICLE COUNTS.')

itotal=0
itotall=0
itotal2=0

4 do 1100 i=l,imax
ijm=(i-l)*jm
icountl=0
icount2=0
do 1110 j=l,jm

c
c we loop row by row going upward; for each row, the 1110 loop
c returns values of icountl and icount2 which represent the total
c numbers of type I's and type II's in that row, regardless of
c direction (we are not concerned here with the velocities.) Then
c we must also add in the bits from the left and right special
c arrays, and finally, we add to the variables itotal, and the
c 1100 loop takes us to the next row.
c

ij=ijm+j
call countbits(ll(ij))
icountl=icountl+icount
call countbits(12(ij))
icount2=icount2+icount

g call countbits(13(ij))
icountl=icountl+icount
call countbits(14(ij))
icount2=icount2+icount
call countbits(15(ij))
icountl=icountl+icount
call countbits(16(ij))
icount2=icount2+icount
call countbits(17(ij))
icountl=icountl+icount
call countbits(18(ij))
icount2=icount2+icount

1110 continue
*) c

c add in wall bits
c

iword=int((i-l)/32)+1
ibit=mod((i-1),32)
iwall=0

* call mvbits(lleft3(iword),ibit,l,iwall,0)
icountl=icountl+iwall
call mvbits(lright7(iword),ibit,l,iwall,0)
icountl=icountl+iwall
call mvbits(lleft2(iword),ibit,l,iwall,0)
icount2=icount2+iwall

* call mvbits(lleft4(iword),ibit,l,iwall,0)
icount2=icount2+iwall
call mvbits(lright6(iword),ibit,l,iwall,0)
icount2=icount2+iwall
call mvbits(lright8(iword),ibit,l,iwall,0)
icount2=icount2+iwall

c
c add to total particle sums
c

itotall=itotall+icountl
itotal2=itotal2+icount2
itotal=itotal+icountl+icount2

1100 continue



c output the particle counts
c

write(6,1197)itotall,itotal2
write(*,1197)itotall,itotal2

1197 format(/' Numbers of particles: ',il0,' type I
1 and',il0,' type II.')
write(*,1198)tstep,itotal
write(6,1198)tstep,itotal

1198 format(/' Total particles at time step ',i5,':',i15)
stop
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c subroutine which, given an input word iarg, returns a value of the
c variable icount which is equal to the number of bits in the word
c iarg which have the value 1
c

subroutine countbits(iarg)
implicit integer*4 (a-t)
common icount
icount=0
iset=1
do 2000 j=1,32
itest=iand(iarg,iset)
if(itest.eq.0)goto 2010
icount=icount+l

2010 iarg=ishft(iarg,-l)
2000 continue

return
end


