DOI:10.35401/2500-0268-2020-18-2-46-50

А.В. Поморцев <sup>1, 2\*</sup>, Ю.Ю. Дьяченко <sup>1</sup>, М.А. Матосян <sup>1</sup>

# ДОПЛЕРОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРОФОБЛАСТИЧЕСКОГО КРОВОТОКА ДЛЯ ПРОГНОЗИРОВАНИЯ НЕБЛАГОПРИЯТНОГО ИСХОДА БЕРЕМЕННОСТИ

<sup>1</sup> ФГБОУ ВО «Кубанский государственный медицинский университет» Министерства здравоохранения РФ, Краснодар, Россия

<sup>2</sup>ГБУЗ «Краевая клиническая больница №2» Министерства здравоохранения Краснодарского края, Краснодар, Россия А.В. Поморцев, Кубанский государственный медицинский университет, 350063, Краснодар, ул. Седина, д. 4, e-mail: pomor-av@mail.ru

Поступила в редакцию 7 апреля 2020 г. Исправлена 14 мая 2020 г. Принята к печати 15 мая 2020 г.

Цель Определить диагностическую значимость параметров доплерометрии трофобластического крово-

тока для прогнозирования неблагоприятного исхода беременности.

**Материал и методы** Проведен ретроспективный анализ результатов обследования 218 беременных в сроках гестации с

8-й по 11-ю неделю. Женщины были разделены на 4 клинические группы в зависимости от исхода беременности для прогноза неблагоприятного исхода родов. Всем исследуемым выполнялось ультразвуковое исследование с использованием аппаратов Voluson S8, Voluson E8, работающих в режиме реального времени, имеющих качественную серую шкалу, режимы цветового доплеровского картирования и импульсно-волновой доплерометрии. Использовалась программа для акушерского исследования со следующими настройками прибора: частота доплеровского фильтра  $100~\mathrm{M}\Gamma$ ц, TI < 1, MI = 1. Время исследования не превышало  $20~\mathrm{минут}$ . Лучевая нагрузка отсутствовала. При-

менялись методики трансвагинального и трансабдоминального сканирования.

Результаты Для формирования группы риска неблагоприятного исхода беременности для плода, обусловлен-

ного фетоплацентарной недостаточностью, необходимо выявление ультразвуковых маркеров неадекватной плацентарной перфузии путем доплерометрического исследования фетоплацентарного кровотока. Для достижения поставленной цели – определения диагностической значимости различных параметров: индекса резистентности, пульсационного индекса, систоло-диастолического отношения и коэффициента васкуляризации хориона (k, %) – было обследовано 218 (100%) беременных сроком с 8-й по 11-ю неделю гестации. По клиническим группам получены результаты, доказывающие высокую чувствительность (76,9%) и специфичность (89,7%) коэффициента васкуляризации хориона (k, %), а также низкую специфичность (54,7%) и высокую чувствительность

(81,5%) индекса резистентности трофобластического кровотока.

Заключение Таким образом, коэффициент васкуляризации хориона (k, %) имеет высокую диагностическую

значимость для прогнозирования неблагоприятного исхода беременности для плода.

**Ключевые слова:** трофобласт, хорион, трофобластический кровоток, коэффициент васкуляризации, доплерометрия.

**Цитировать:** Поморцев А.В., Дьяченко Ю.Ю., Матосян М.А. Доплерометрические характеристики трофобластического кровотока для прогнозирования неблагоприятного исхода беременности. *Инновацион*-

ная медицина Кубани. 2020;18(2):46–50. doi:10.35401/2500-0268-2020-18-2-46-50

Alexey V. Pomortsev 1, 2\*, Julia Yu. Dyachenko 1, Mariam A. Matosyan 1

# DOPPLER ASSESSMENT OF TROPHOBLASTIC BLOOD FLOW TO PREDICT ADVERSE PREGNANCY OUTCOME

Alexey V. Pomortsev, Kuban State Medical University, 4, Sedina str., Krasnodar, 350063, e-mail: pomor-av@mail.ru *Received 7 April 2020. Received in revised form 14 May 2020. Accepted 15 May 2020.* 

**Objective** To evaluate the diagnostic utility of trophoblastic blood flow Doppler parameters in predicting an adverse pregnancy outcome.

Material and methods This was a retrospective study of 218 pregnancies of women between 8 and 11 weeks' gestation.

Depending on the pregnancy outcome, patients were divided into 4 clinical groups. All women underwent an ultrasound examination using Voluson S8, Voluson E8 with high-quality grey scale, color flow mapping and pulsed-wave Doppler modes. We used a program for obstetric research with the following instrument settings: 100 MHz Doppler frequency, thermal index (TI) was <1, mechanical index (MI) was 1. The examination time did not exceed 20 minutes. There was no radiation exposure. Transvaginal and

transabdominal sonographies were performed.

**Results**To form a risk group for an adverse fetal outcome due to fetoplacental insufficiency, it is necessary

to identify ultrasound markers of inadequate placental perfusion by means of a Doppler study of fetoplacental blood flow. For this purpose, we examined 218 pregnancies of women between 8

<sup>&</sup>lt;sup>1</sup> Kuban State Medical University, Krasnodar, Russia

<sup>&</sup>lt;sup>2</sup> Regional Clinical Hospital #2, Krasnodar, Russia

and 11 weeks' gestation to determine the diagnostic utility of various parameters: resistivity index, pulsatility index, systolic/diastolic ratio and chorionic vascularization index (k, %). We received results proving high sensitivity (76.9%) and specificity (89.7%) of the chorionic vascularization index (k, %), as well as low specificity (54.7%) and high sensitivity (81.5%) of trophoblastic blood

flow resistivity index.

Conclusion Thus, the chorionic vascularization index (k, %) is of high diagnostic utility for predicting an adverse fetal

outcome.

Keywords: trophoblast, chorion, trophoblastic blood flow, vascularization index, Doppler sonography.

Cite this article as: Pomortsev A.V., Dyachenko J.Yu., Matosyan M.A. Dopplerometric characteristics of trophoblastic

blood flow to predict adverse pregnancy outcome. Innovative Medicine of Kuban. 2020;18(2):46-50.

doi:10.35401/2500-0268-2020-18-2-46-50

# **ВВЕДЕНИЕ**

В настоящее время пренатальной диагностике принадлежит огромная роль в профилактике врожденной и наследственной патологии у детей, снижении перинатальной заболеваемости и смертности [1]. Формирование внутриутробного неблагополучия начинается на ранних этапах развития фетоплацентарной системы.

Фетоплацентарная недостаточность – это патологическое состояние, обусловленное морфофункциональными изменениями в плаценте, при прогрессировании которых развивается внутриутробная задержка развития плода, нередко сочетающаяся с гипоксией. Плацента начинает свое развитие с дифференцировки хориона в 7 недель беременности и завершает в 16 недель формированием маточно-плацентарного комплекса, который морфологически представлен слоем клеток эндотелия сосудов плода, их базальной мембраной, слоем рыхлой перикапиллярной соединительной ткани, базальной мембраной трофобласта, слоями цитотрофобласта и синцитиотрофобласта [2, 3]. Сосуды плода, разветвляясь в плаценте до мельчайших капилляров, образуют маточно-хориальный кровоток, который впоследствии определяет все функции плода [4]. При нарушении процесса формирования плаценты нарушается васкуляризация, уменьшается количество сосудистой сети трофобласта, плаценты, и, как следствие, данный механизм приводит к неблагоприятному исходу родов для плода [5, 6]. В связи с этим особую актуальность приобретает ультразвуковое доплерометрическое исследование маточно-хориального комплекса в сроки гестации с 8-й по 11-ю неделю для прогнозирования неблагоприятного исхода родов для плода.

## ЦЕЛЬ

Определить диагностическую значимость параметров доплерометрии трофобластического кровотока для прогнозирования неблагоприятного исхода беременности.

## **МАТЕРИАЛ И МЕТОДЫ**

Проведен ретроспективный анализ результатов обследования 218 беременных в сроках гестации с

8-й по 11-ю неделю. Критериями исключения являлись наличие отягощенного генетического анамнеза, тяжелой экстрагенитальной патологии, многоплодные беременности, случаи отслойки плаценты, преждевременные роды до 28-й недели беременности, родовой травматизм новорожденного. Набор клинического материала осуществлялся на базе ГБУЗ «Краевая клиническая больница №2» Министерства здравоохранения Краснодарского края, а также ООО «Клиника Екатерининская».

Всем исследуемым выполнялось ультразвуковое исследование с использованием ультразвуковых аппаратов Voluson S8, Voluson E8, работающих в режиме реального времени, имеющих качественную серую шкалу, режимы цветового доплеровского картирования (ЦДК) и импульсно-волновой доплерометрии. Использовалась программа для акушерского исследования с настройками прибора: частота доплеровского фильтра  $100 \text{ M}\Gamma\text{ц}$ , TI < 1, MI = 1. Время исследования не превышало 20 минут. Лучевая нагрузка отсутствовала. Применялись методики трансвагинального и трансабдоминального сканирования.

В зависимости от исхода беременности для плода женщины были разделены на 4 клинические группы. Критерием их включения была беременность с гестационным сроком 8–11 недель.

В **I** клинической группе (n = 65) средняя масса тела новорожденных составила 3495,26 ± 494,89 г с индивидуальными колебаниями от 2950 до 3940 г. Длина новорожденных в среднем равнялась 51,66 ± 0,54 см. Оценка по шкале Апгар — 8—9 баллов. Течение раннего неонатального периода без особенностей. Неврологический статус новорожденного, включая данные нейросонографии, соответствовал статусу здорового ребенка.

Во **II** клинической группе (n = 115) средние весовые показатели были  $3425,23 \pm 575,49$  г, индивидуальные – от 2850 до 4000 г при средней длине  $51,45 \pm 0,45$  см. Оценка по шкале Апгар – 8–9 баллов. Ранний неонатальный период протекал без особенностей. Неврологический статус новорожденного соответствовал статусу здорового ребенка. Эхографическая картина структур головного мозга без особенностей у 100 (87%) новорожденных, в 15 (13%) случаях имел

место незначительно выраженный перивентрикулярный отек, который при контрольной эхографии перед выпиской из родильного дома не визуализировался.

В ІІІ клинической группе (n = 25) средняя масса тела новорожденных составила  $2751,15 \pm 690,44$  г, индивидуальные колебания - от 2900 до 3950 г при средней длине  $50.55 \pm 0.96$  см. Оценка по шкале Апгар у 5 новорожденных составляла 6–7 баллов (20%), у 7 (28%) новорожденных отмечалась задержка внутриутробного развития І степени, у 25 (100%) по заключению невролога отмечались психоневрологические нарушения в раннем неонатальном периоде (тремор подбородка, снижение мышечного тонуса, дистония). По результатам нейросонографии имели место следующие проявления постгипоксических осложнений: у 16 (64%) новорожденных выявлен перивентрикулярный отек, в 3 (19%) случаях он сочетался с общим отеком головного мозга. Кроме того, данная патология сочеталась с субэпендимальным кровоизлиянием в 2 (12%) случаях, кровоизлиянием в сосудистое сплетение в 9 (56%) случаях и внутрижелудочковым кровоизлиянием в 1 (6%) наблюдении. При оценке сосудистого тонуса (пульсации) она была умеренной у 14 (56%), усилена – у 10 (40%) и снижена – у 1 (4%). Однако при динамическом наблюдении неврологический статус и данные нейросонографии имели положительную динамику.

В **IV** клинической группе (n = 13) в 3 случаях (23%) было проведено прерывание беременности до 20 недель (15–20-я неделя гестации) в связи с выявленными структурными аномалиями развития плода. Средняя масса новорожденных – в пределах 2359,24 ± 450,33 г с индивидуальными колебаниями от 2750 до 4100 г. Длина новорожденных в среднем равнялась

 $50,31 \pm 0,85$  см. У 6 (60%) оценка по шкале Апгар составила 4-5 баллов, у 4 (40%) -0-4 балла. Проводились реанимационные мероприятия. Ранний неонатальный период протекал с явлениями явной дезадаптации, из неврологической симптоматики преобладало состояние общего угнетения. По результатам нейросонографии в первые сутки после рождения у 10 (100%) новорожденных имел место отек головного мозга, у 8 (80%) сочетающийся с перивентрикулярным отеком. У 6 (60%) новорожденных имела место перивентрикулярная лейкомаляция, у 5 (50%) отмечалось внутрижелудочковое кровоизлияние с расширением боковых желудочков головного мозга. При оценке сосудистого тонуса у 8 (80%) новорожденных он был снижен, у 1 (10%) – повышен и у 1 (10%) – без особенностей. При динамическом наблюдении неврологический статус и данные нейросонографии без положительной динамики.

Доплерометрическое исследование маточно-хориального комплекса проводилось в следующих сосудах: в маточной артерии, сосудах трофобласта. С использованием ЦДК в режиме реального времени маточная артерия легко обнаруживается в области соединения шейки и тела матки [7, 8]. По стандартным методикам определяется систоло-диастолическое отношение (СДО), индекс резистентности (ИР) маточных артерий [9].

Кроме того, наряду со стандартными доплерометрическими методами исследования с помощью двухмерной эхографии определяют состояние трофобластического кровотока по коэффициенту васкуляризации (k,%) в период с 8-й по 11-ю неделю и 6 дней как отношение площадей суммы всех участков хориона ( $S_n$ , см²) в зоне сосудистых локусов к общей



Рисунок 1. На эхограмме представлен срок гестации 8 недель, адекватная васкуляризация хориона. Определение васкуляризации хориона методом определения индекса васкуляризации (k, %)

Figure 1. The echogram shows 8 weeks' gestation, there is an adequate chorion vascularization. We determine the chorion vascularization by assessing the vascularization index (k, %)



Рисунок 2. На эхограмме представлен срок гестации 9 недель, снижение васкуляризации хориона. Определение васкуляризации хориона методом определения индекса васкуляризации (k, %)

Figure 2. The echogram shows 9 weeks' gestation, there is a decrease in chorion vascularization. We determine the chorion vascularization by assessing the vascularization index (k, %)

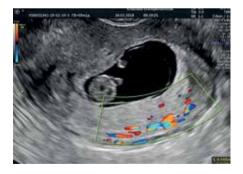



Рисунок 3. На эхограмме представлен срок гестации 9 недель, неадекватная васкуляризация хориона. Определение васкуляризации хориона методом определения индекса васкуляризации (k, %)

Figure 3. The echogram shows 9 weeks' gestation, there is an inadequate chorion vascularization. We determine the chorion vascularization by assessing the vascularization index (k, %)

площади хориона ( $S_o$ , см<sup>2</sup>) по ультразвуковому исследованию в автоматическом режиме ЦДК — на максимальном увеличении изображения функции ЦДК: окно аппарата ультразвукового исследования располагают на хорионе с захватом базальной части миометрия методом ручной трассировки (рис. 1–3).

Для обработки полученных данных и решения поставленных задач использовались методы дискриминантного и корреляционного анализа, сравнительный и качественный анализ данных, ROC-анализ.

С целью разработки методики дифференциальной диагностики для формирования групп риска по неблагоприятному исходу беременности для плода использовался метод пошагового дискриминантного анализа. В ходе анализа выявлялись наиболее значимые признаки, которые можно использовать для дискриминации пациентов по клиническим подгруппам. Достоверность различия между группами показателей оценивалась на уровне значимости р = 0,001 (если не указано иное) с помощью t-критерия Стьюдента. Эффективность диагностического теста оценивалась посредством построения характерологической кривой – ROC-анализа, в процессе которого вычислялись показатели чувствительности и специфичности для количественных УЗ-признаков, определялись их пороговые значения для выявления точки разграничения нормы и патологии. Информативность показателей оценивалась по величине площади под кривой ROC (AUC).

# РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для формирования группы риска неблагоприятного исхода беременности для плода, обусловленного фетоплацентарной недостаточностью, необходимо выявление ультразвуковых маркеров неадекватной плацентарной перфузии путем доплерометрического исследования фетоплацентарного кровотока. Для достижения поставленной задачи — определения диагностической значимости различных параметров: ИР, пульсационного индекса (ПИ), СДО и коэффициента васкуляризации хориона (k) было обследовано 218 (100%) беременных сроком с 8-й по 11-ю неделю гестации.

По клиническим подгруппам получены следующие результаты:

- 1) в I клинической группе (n = 65) показатель СДО маточных артерий 1,56  $\pm$  0,16; ИР васкуляризации хориона 0,38  $\pm$  0,18; ИР маточных артерий 0,73  $\pm$  0,15; ПИ васкуляризации хориона 1,42  $\pm$  0,16; коэффициент васкуляризации хориона (k, %) 68  $\pm$  0,26;
- 2) во II клинической группе (n = 115) показатель СДО маточных артерий  $-1,60\pm0,20$ ; ИР васкуляризации хориона  $-0,39\pm0,25$ ; ИР маточных артерий  $-0,74\pm0,25$ ; ПИ васкуляризации хориона  $-1,50\pm0,25$ ; коэффициент васкуляризации хориона (k, %)  $-63\pm0.58$ :
- 3) в III клинической группе (n = 25) показатель СДО маточных артерий  $-1,72\pm0,29$ ; ИР васкуляризации хориона  $-0,46\pm0,35$ ; ИР маточных артерий  $-0,76\pm0,29$ ; ПИ васкуляризации хориона  $-1,65\pm0,25$ ; коэффициент васкуляризации хориона (k, %)  $-30\pm0,26$ ;
- 4) в IV клинической группе (n = 13) показатель СДО маточных артерий  $-1,85\pm0,42$ ; ИР васкуляризации хориона  $-0,51\pm0,11$ ; ИР маточных артерий  $-0,77\pm0,39$ ; ПИ васкуляризации хориона  $-1,70\pm0,38$ ; коэффициент васкуляризации хориона (k, %)  $-23\pm0,25$ .

Данные показатели представлены в таблице 1.

Таблица 1 Доплерометрические показатели в клинических группах Table 1 Doppler parameters in clinical groups

| Показатель                                     |                              | Достоверность                |                              |                              |                                                                                                         |
|------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                | I (n = 65)                   | II (n = 115)                 | III (n = 25)                 | IV (n = 13)                  | разницы (р)*                                                                                            |
| СДО маточных артерий                           | $1,56 \pm 0,16 \text{ (a1)}$ | $1,60 \pm 0,20 \text{ (a2)}$ | $1,72 \pm 0,29 $ (a3)        | $1,85 \pm 0,42 \text{ (a4)}$ |                                                                                                         |
| ИР васкуляризации хориона                      | $0.38 \pm 0.18$ (b1)         | $0,39 \pm 0,25 \text{ (b2)}$ | $0,46 \pm 0,35 \text{ (b3)}$ | $0.51 \pm 0.11$ (b4)         | b1:b4 < 0,05                                                                                            |
| ИР маточных артерий                            | $0.73 \pm 0.15$ (c1)         | $0,74 \pm 0,25$ (c2)         | $0.76 \pm 0.29$ (c3)         | $0,77 \pm 0,39$ (c4)         |                                                                                                         |
| ПИ васкуляризации хориона                      | $1,42 \pm 0,16$              | $1,50 \pm 0,25$              | $1,65 \pm 0,25$              | $1,70 \pm 0,38$              |                                                                                                         |
| Коэффициент васкуляри-<br>зации хориона (k, %) | 68 ± 0,26 (d1)               | 63 ± 0,58 (d2)               | $30 \pm 0,26$ (d3)           | 23 ± 0,25 (d4)               | $\begin{array}{c} d1:d3 \leq 0,01 \\ d2:d3 \leq 0,01 \\ d1:d4 \leq 0,01 \\ d2:d4 \leq 0,01 \end{array}$ |

Note. SDR – systolic/diastolic ratio; RI – resistivity index; PI – pulsativity index. \*The difference between groups is significant (p < 0.05).

Таблица 2

Эффективность параметров трофобластического кровотока в клинических группах с помощью ROC-анализа

Table 2
Efficacy of trophoblastic blood flow parameters in clinical groups by ROC analysis

| Признак                                   | Площадь под кривой<br>ROC (AUC ± m) | р     | Пороговое<br>значение | Чувстви-<br>тельность | Специфич-<br>ность |
|-------------------------------------------|-------------------------------------|-------|-----------------------|-----------------------|--------------------|
| Коэффициент васкуляризации хориона (k, %) | $0,733 \pm 0,033$                   | 0,001 | >0                    | 76,9                  | 89,7               |
| Индекс резистентности хориона             | $0,658 \pm 0,037$                   | 0,004 | >0                    | 85,1                  | 54,7               |

Таким образом, коэффициент васкуляризации (k, %) показывает высокую чувствительность (76,9%) и специфичность (89,7%). ИР васкуляризации хориона имеет высокую чувствительность (85,1%) и низкую специфичность (54,7%) (табл. 2).

## **ЗАКЛЮЧЕНИЕ**

На основании определения диагностической значимости параметров доплерометрии трофобластического кровотока была показана высокая чувствительность (76,9%) и специфичность (89,7%) коэффициента васкуляризации хориона (k, %), а также низкая специфичность (54,7%) и высокая чувствительность (81,5%) индекса резистентности хориона. Таким образом, коэффициент васкуляризации хориона (k, %) имеет высокую диагностическую значимость для прогнозирования неблагоприятного исхода беременности для плода.

# ЛИТЕРАТУРА/REFERENCES

- 1. Syngelaki A, Guerra L, Ceccacci I, Efeturk T, Nicolai des KH. Impact of holoprosencephaly, exomphalos, megacystis and increased nuchal translucency on first-trimester screening for chromosomal abnormalities. *Ultrasound Obstet Gynecol*. 2017;50:45–8. PMID: 27558969. doi:10.1002/uog.17286
- 2. Aupont JE, Akolekar R, Illian A, Neonakis S, Nicolai des KH. Prediction of stillbirth from placental growth factor at 19–24 weeks. *Ultrasound Obstet Gynecol*. 2016;48:631–5. PMID: 27854395. doi:10.1002/uog.17229
- 3. Акушерство: учебник. Под ред. В.Е. Радзинского, А.М. Фукса. М.: ГЭОТАР-Медиа; 2016. 1040 с. [Radzinsky VE, Fuks AM, eds. *Obstetrics: Study Guide*. Moscow: GEOTAR-Media; 2016. 1040 р. (In Russ.)]
- 4. Akolekar R, Machuca M, Mendes M, Paschos V, Nicolaides KH. Prediction of stillbirth from placental growth factor at 11–13 weeks. *Ultrasound Obstet Gynecol*. 2016;48:618–23. PMID: 27854388. doi:10.1002/uog.17288
- 5. Радзинский В.Е. Акушерская агрессия. М.: Status Praesens; 2012. 687 с. [Radzinsky VE. *Obstetric Violence*. Moscow: Status Praesens; 2012. 687 р. (In Russ.)]
- 6. Экстраэмбриональные и околоплодные структуры при нормальной и осложненной беременности. Под ред. В.Е. Радзинского, А.П. Милованова. М.: Мед. информ. агентство; 2004. 393c. [Radzinsky VE, Milovanov AP, eds. *Extraembryonic and Amniotic Structures in Normal and Complicated Pregnancy*. Moscow: Med. inform. agentstvo; 2004. 393 p. (In Russ.)]

- 7. Милованов А.П. Патология системы «мать плацента плод». М.: Медицина; 1999. 448 с. [Milovanov AP. *Pathology of the 'Mother Placenta Fetus' system*. Moscow: Meditsina; 1999. 448 р. (In Russ.)]
- 8. Внутриутробное развитие человека. Под ред. А.П. Милованова, С.В. Савельева. М.: МДВ, 2006. 382 с. [Milovanov AP, Savelyev SV, eds. *Intrauterine Human Development*. Moscow: MDV; 2006. 382 р. (In Russ.)]
- 9. Медведев М.В. Пренатальная эхография. Дифференциальный диагноз и прогноз. 3-е изд., доп. и перераб. М.: Реал Тайм; 2012. 464 с. [Medvedev MV. *Prenatal Echography. Differential Diagnosis and Prognosis*. 3<sup>rd</sup> ed. Moscow: Real Taim; 2012. 464 р. (In Russ.)]

# СВЕДЕНИЯ ОБ АВТОРАХ

Поморцев Алексей Викторович, д. м. н., профессор, заведующий кафедрой лучевой диагностики, Кубанский государственный медицинский университет; руководитель центра лучевой диагностики, Краевая клиническая больница №2 (Краснодар, Россия). ORCID ID: 0000-0003-4129-3930. E-mail: pomor-av@mail.ru

Дьяченко Юлия Юрьевна, ассистент кафедры лучевой диагностики, Кубанский государственный медицинский университет (Краснодар, Россия). ORCID ID: 0000-0003-2957-9100

Матосян Мариам Альбертовна, ассистент кафедры лучевой диагностики, Кубанский государственный медицинский университет (Краснодар, Россия). ORCID ID: 0000-0002-9576-6724

Финансирование

Исследование не имело спонсорской поддержки. Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

# **AUTHOR CREDENTIALS**

**Pomortsev Alexey V.,** Dr. of Sci. (Med.), Professor, Head of the Diagnostic Radiology Department, Kuban State Medical University; Head of the Center for Radiation Diagnostics, Regional Clinical Hospital #2 (Krasnodar, Russia). ORCID ID: 0000-0003-4129-3930. E-mail: pomor-av@mail.ru

**Dyachenko Julia Yu.,** Assistant Professor, Diagnostic Radiology Department, Kuban State Medical University (Krasnodar, Russia). ORCID ID: 0000-0003-2957-9100

**Matosyan Mariam A.,** Assistant Professor, Diagnostic Radiology Department, Kuban State Medical University (Krasnodar, Russia). ORCID ID: 0000-0002-9576-6724

Funding: the study did not have sponsorship.

Conflict of interest: none declared.