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ABSTRACT

The option valuation model is a financial model used in evaluating
the price of put and call options in stock markets. The model may lend
itself to more general applications. Its statistical representation of
stock market mechanisms seems to be appropriate to describe risky
assets whose development is influenced by an uncertain economic
environment.

This.thesis investigates its potential applications to construc-
tion projects. A model involving three sucessive options is proposed
to describe the construction development process. This method may
allow to valuate a piece of land, a project, or alternatives for the
use or the renovation of a facility. This schema, along with situa-
tions where more specific options can be identified, is discussed in
the case of buildings and industrial construction, and infrastructure
planning.

Numerical applications are discussed on the example of a building
which may be used for office space or apartments. The values of one or
two development schemas are derived at different stages of the project,
and sensitivity analyses with respect to the input parameters of the
model are presented.

Thesis Supervisor: Dr. Fred Moavenzadeh

Title: William E. Leonhard Professor of Engineering
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INTRODUCTION

Among the many issues addressed before a construction project is

undertaken, financial considerations are more and more perceived as

critical. This sole factor is often able to counterbalance technical

arguments in the final choice of the project, and a strong financial

plan is becoming a prerequisite to any serious evaluation of such

investments.

This fact probably shows that the construction environment is

becoming increasingly complex and that decisions have to be made more

carefully. An accounting for the time value of money is demanded by

high interest rates. The uncertainty surrounding future economic

conditions affects long run construction project plans. And methods of

financing are becoming major issues for these capital intensive

projects.

On the other hand, the demand for construction projects is

changing, although it is still important. Infrastructure

redevelopment, the construction of modern plants, and the development

or renovation of certain urban areas should still provide substantial

activity for the U.S. construction industry. However, new emphasis is

put on well planned designs, flexibility, maintenance costs, and

potential further developments.

The financial evaluation of these projects is becoming sensitive

to this evolution in the environment and the demand. Evaluating a

project as a large investment which will produce constant cash flows

year after year is no longer appropriate. The sensitivity of the

project to random future events, and the alternatives offered to the

decision maker if the expectations are deceived, have to be taken into



account. Traditional methods, however, do not adequately handle these

uncertainties and opportunities, and more elaborate analysis methods

are needed.

In an attempt to shed light on these questions, this thesis

investigates the possible use of a new financial model. The option

valuation model is presently used in finance to evaluate stock options

and similar securities. The model may lend itself to more general

applications, since it captures important criteria affecting the

behavior of investors in an uncertain environment. Its statistical

treatment of risky assets is an additional benefit.

This thesis therefore focuses on identifying and discussing

construction alternatives which can be described in terms of options.

The following points are addressed.:

- Does the financial model of option valuation fit to construction

projects? This questi'.n will be discussed in Chapter 1.

- Can the construction process be modelled as a set of options,

without reference to other valuation schemes? (Chapter 2)

- How do the specifics of building, industrial, and infrastructure

construction influence the application of the option valuation

methodology? (Chapters 3 to 5)

- Are applications of the model consistent with real world cases

observations? (Numerical applications will be discussed in Chapter

6).

Focus will be placed on developing the option valuation

methodology applied to construction projects, and on pointing out its

capabilities, its weaknesses, and the validity of its assumptions. A

final question would be to evaluate the impact of this approach on the



design of facilities. That is, how can the value of these investments

be optimized by developing real options, even if construction costs are

increased?



CHAPTER I

OVERVIEW OF THE OPTION VALUATION MODEL

Although the financial concept of option was introduced early in

many stock exchanges, it has not aroused much interest among

researchers until the last two decades. The option valuation model

appears as one of the most recent developments in finance. This

chapter will review the basic model and the relevant subsequent

developments, and compare this approach with other methods of

valuation. Focus will then be placed on applications to real assets,

and some recent results will be presented. (for a more detailed

presentation of the option valuation model, see references [1] and [8])

1.1 Options as Financial Securities

Since the creation of the Chicago Board of Options Exchange in

1973, the word "option" means a very specific kind of security for

investors. This security is related to a traded company's stock and

its value depends on the variations of the stock's price. There are

two basic types of options:

- a call option gives the option's owner the right to buy a stock at a

specified exercise price on or before a specified exercise date.

- a put option gives its owner the right to sell the same stock at a

specified exercise price on or before a specified exercise date.

Call and put options are not the only securities presenting these

properties. Other securities such as warrants, callable bonds,

convertible securities, or options on commodities or foreign exchange



bonds are similar contracts between investors. All of these can

however be defined in terms of the put and call options.

These definitions do not explain why these securities receive the

attention they do and are more than a mere by-product of traditional

stock markets. Why are they so successful and what determines their

value? The unique set of parameters defining an option may explain

this fact. The underlying stock's price (S) is variable overtime and

can be assumed to follow gaussian movements, while the exercise price

(E) is fixed. The time to maturity (¶) is meant to limit the changes

in S to a specific period. This gamble between S and E can be

described by Figure 1.1, where the case of a call option is

represented.

probability

S E stock price (s)
O

Figure 1.1: Distribution of a Stock's Value and the Exercise
Price for a Call Option

t



In this figure, we have assumed that the exercise price, E, is

higher than the stock price at the time of issue. Exercising the

option, that is choosing to buy the stock at the agreed upon exercise

price, is not profitable at this particular moment. However, the

distribution curve shows that there is some probability that S will

eventually exceed E. If this condition is met, it will be profitable

to exercise the call option. This operation will yield S-E, which

itself depends on the value of S. Or the investor may choose to sell

his option if the time to maturity is not reached. The selling price

will then be slightly higher than S-E since the option still offers an

opportunity for future gains if the stock's price increases. These

arguments show why an option is valuable, even if exercising it

immediately is not profitable. It may also show why option valuation

is not straightforward. The problem is to evaluate an uncertain payoff

reflecting an unknown spot on the stock price's probability density

function.

1.2 The Black Scholes Model

The search for an option valuation method has been a challenge to

researchers in the '60s and early '70s. The first satisfactory

solution was derived in 1973 by Fischer Black and Myron Scholes. In

their model, the value of a simple call option is expressed as a

function of the following parameters:

S(t): price of the underlying stock

E: option exercise price

T: option time to maturity

r: risk-free interest rate



2: variance of the stock's rate of return S for one unit of
S

time).
The value of the call option, C, is derived as

C(S,E,T,r,a) = S N(dl) - E • e-rt * N(d2)

In (S/E) + (r + c2 /2)t
where d =

d2 = dl - a/

N(.) = cumulative standard normal distribution function

The theoretical study deriving this solution is based on a

statistical model of the stock market. A brief outline of the

procedure follows.

The first step is to describe the dynamics of the stock price, in

accordance with the investors' expectations. Black and Scholes have

assumed that the stock price is log-normally distributed (log(S)

follows a normal distribution function) which can be mathematically

represented by the differential expression:

dSS _ adt + a dZ

where = instantaneous expected rate of return of the stock

a = variance on the movement of log S (hence a is the variance on

the rate of return 
--
S

t = time variable

Z = stochastic varible for a normal distribution.

The second step is the derivation of a differential equation for the

call option function C(S,E,t,r,a):



1 2S 2 -2C r C sC
2 2  rS rC + 0

with three boundary conditions:

C(O,E,T,r,a) = 0 (if S=0, the option is worthless)

C(S,E,t,r,a) ' S (the option value is lower than the stock price)

C(S,E,O,r,a) = Max [0,S-E] (at maturity, the option is worth
0 or S-E)

Solving this equation is possible after noticing that it is a

variation of the standard heat exchange equation. Hence the closed form

solution described earlier.

The main assumptions which are made to derive this solution are the

following:

(1) There are neither taxes nor transaction costs on the market.

Trading takes place continuously, borrowing and short selling

are allowed for all investors, and borrowing ind lending rates

are equal (The market is "frictionless")

(2) r and a are known and constant

(3) the price is log normally distributed

(4) the stock pays no dividend

The most interesting feature of this approach is the small number

of data necessary to use the formula. All the parameters are

observable, except a which results from the investors' expectations and

can be approximated from past data. No risk-adjusted rate of return for

the stock appears in the final expression. Nor does the probability

distribution of future stock prices need be known.

Figure 1.2 shows sample calculations for different tradeoffs

between S and E. Calculations for different values of the time to



Stock price (S) t = 3 months -= 6 months t = 3 months
S= .20 = a .20 = .30

25 .067 .355 .307

30 1.589 2.483 2.166

35 5.787 6.612 6.013

Figure 1.2: Value of a Call Option Shown for 3ample Calculations
with E = $30 and r = .10

Effect of an Increase
Parameter in the Parameter's Value

stock price (S) increase

exercise price (E) decrease

time to maturity (T) increase

interest rate (r) increase

variance (C2) increase

Figure 1.3: Effect of an Increase of the Basic Parameters



maturity and the variance show that an increase in one of these

parameters increases the value of the option. Figure 1.3 shows the

influence of the 5 parameters on the value of the option as given by the

model. These results can be generalized to almost all options.

Finally, it can be noticed that the price of a put option can be

easily expressed as a function of the same parameters, using the

equation

P(S,E,t,r,U) = C(S,E,T,r,5) - S + Ee- r t

1.3 Uses and Extensions of the Model

The Black-Scholes model is a useful tool to calculate the

investment potential of an option or a similar security. The model can

also be used to evaluate a security or a contract when part of the value

comes from an option. It gives satisfactory results, specially when E

and S are close numbers, and when the order of magnitude of the time to

maturity T is a few months or more. The tests are however difficult to

interpret as the validity of the hypothesis, the measure of a, and the

formula itself cannot be addressed individually.

Another area of financial application is the valuation of equity

and debt in a leveraged firm. Researchers have noted that shareholders

hold a call option on the firm since they have to pay the value of the

debt (exercise price) to get the value of the firm (see reference [1]

for a discussion of this problem). This important application shows

that the option methodology can be appropriate outside the field of the

valuation of securities, and at a more general level.

Moreover, theoretical developments have considerably enlarged the

potential applications of this approach. Robert C. Merton has studied



the influence of the basic assumptions in the derivation of the

Black-Scholes model. It results in particular that the no dividends

assumption can be relaxed. This introduces a new term in the basic

differential equation. Solving the equation becomes more difficult

since no closed form solution can be derived. Finite elements

techniques have to be used in order to approximate the option value.

This framework can be appropriate for real assets since dividends can

represent cash flows generated by an asset. It has been adopted to

evaluate abndonment options (see reference [31), in which an asset

offers the alternative to switch from one stream of cash flows to

another, or simply to be sold. This approach can be applied to salvage

decisions, or a decision to change the use of an asset during its

economical life. A simplified version of the abandonment option

assuming an infinite time to maturity is presented in Appendix 2.

More sophisticated options have been studied recently. Stanley

Fischer (reference [2]) studies the valuation of options when the

exercise price is variable (variance OE, and expected rate of increase

aE). William Margrabe (reference [4]) derives the value of the option

to exchange one risky asset to another. Rene Stulz (reference [91)

values a call option on the maximum or the minimum of two risky assets.

In this latter case, the investor has the choice between two mutually

exclusive alternatives, characterized by their values (V and H),

variances (av and OH) and their correlation (P). Exercising none of

them is also possible. A closed form solution is derived with

hypotheses similar to the simple call problem. The valuation formula is

presented in Appendix 1, and will be used for numerical applications in

part of this thesis.



1.4 The Evaluation of Risky Projects Using Options

1.4.1 Traditional Approaches in Dealing with Uncertainty

The Option valuation model recognizes that an option which

is worthless now may offer a profit opportunity at a certain point in

time depending on the value of an external parameter, the stock price.

It takes into account the fact that the exercise decision depends on the

variations of the stock price (therefore its variance) and can take

place within a certain time span. Such circumstances can be encountered

outside the stock markets, in particular in the uncertain environment of

risky projects. These projects generally offer alternatives among which

the decision maker must choose at different stages. Such decisions

depend on unpredictable circumstances at the moment of the choice. The

idea is to model these alternatives as options, so that the decision

maker chooses to exercise the option or to ignore it.

Traditional methods based on the Net Present Value concept try to

analyse these alternatives in terms of probabilities. When the exact

revenues are not known, this method uses an evaluation of "expected cash

flows" which are weighted averages of the possible cash flows with

assumed probabilities. Uncertainty is also taken into account through

the project risk adjusted discount rate. The valuation formula is the

following

T E(CF t)
Net Present Value = E

t=O (1+r)t

where E(CFt) is the expected cash flow at time t



n
E(CFt) = 2 p(Ei) X Ei

i=i

Ei = cash flow in alternative i

p(Ei ) = probability of the payoff i

When external variables have a significant effect on the project,

or when managerial decision will allow to direct the project towards the

most profitable alternatives after evaluation of the context at

different points during the project, several techniques may complete

this approach:

- sensitivity analysis, which evaluates the effect of changes in key

parameters on the overall profitability

- decision tree analysis, which identifies the main alternatives

through the project's life and evaluates the possible outcomes with

their probabilities of occurence

- Monte Carlo techniques, which use the same framework as decision

trees, but estimate the statistical distribution of the project's

values through computerized simulation methods.

However, these approaches have several drawbacks:

- they do not take into account explicit timing factors and choices.

For example, the ability to delay a decision is not well-handled.

The choice of the timing of the nodes in tree patterns is set in

advance, often arbitrarily, and denies the operating and decision

flexibility which is offered in most projects.

- they are based on discontinuous distributions. Statistical

distribution function such as given by gaussian curves are

approximated with a small number of discrete values



- they are subjective. Estimating the exact probabilities is difficult

and may be affected by the lack of information as well as the

attitude towards risk of the person doing the evaluation.

- they are very sensitive to the choice of the discount rate, which may

also change at different stages of the project and is difficult to

evaluate.

- their application is limited by the amount of calculations. Monte

Carlo simulations, for example, require an intensive use of

computers.

1.4.2 Advantages of the Option Methodology

The option approach may avoid many of these theoretical and

practical difficulties. Given certain assumptions, a more

straightforward process is offered, based on a totally different

description of the decision process.

With this model, a key decision at any time during the project is

evaluated as a two way problem: the choice is to exercise the option or

not. Figure 1.4 shows how a choice between two alternatives encountered

in a decision tree schema would be represented by an option approach.

alternative A * the base project is
70% evaluated with alternative A

30% the project contains an
alternative B option to switch to

alternative B

decision tree analysis option approach

Figure 1.4: Comparison of the Option Approach with a Traditional Point
of View Exhibited by Decision Tree Analysis



The option approach here is superior to the traditional approach as

it incorporates two new fundamental dimensions. A time lag is allowed

for the decision to go for alternative B through the time to maturity.

This is particularly appropriate when, for example, choosing alternative

B is possible at any time during several years, or even during the whole

duration of the project. Second, the option model evaluates this

alternative with a stochastic distribution of payoffs, instead of fixed

payoffs and probabilities. This approach is more realistic in capturing

the effect of uncertainty. Comparing the values of alternatives A and B

may also be represented in this approach, since their variances, their

correlation, and their tradeoff can be implemented in the model. They

would be evaluated in the same way as one would intuitively consider

these opportunities.

A third interest may also be mentioned: the simplicity of this

approach. The study of decision tree analysis is limited since each

additional node doubles the number of configurations to evaluate. In

comparison, each additional option adds only one value to the main

project, or is part of the evaluation if the project is linear. Options

such as abandoning the project at any moment, waiting until undertaking

a following development phase, or switching to another configuration may

simply be added to the analysis without significantly increasing the

number of calculations.

The option viewpoint can actually be considered as a higher level

or more general tool compared to the methods described before. Correct

statistical hypotheses are made to model the alternatives, but the

complex mathematical development required by these hypotheses is handled

by the model so that the user only needs to specify the relevant



parameters. As a consequence, probabilities do not have to be evaluated

since they are already taken into account by the model.

The option model finally seems to generalize the study of all the

alternatives offered in the completion of a project, since it can

represent explicit choices such as in decision tree analysis as well as

more diffuse alternatives. It seems appropriate to study projects

taking place in a risky environment, and how these projects can be

adapted so as to maximize profit despite the hostile environment.

1.5 Applications to the Valuation of Real Assets

1.5.1 The Valuation of Oil Leases

The valuation of real assets is the first attempt to use the

option methodology outside the field of finance. These assets clearly

present option-like characteristics: they do not have value by

themselves (an undeveloped piece of land, or mine does not produce

revenue), and their value lies in the development opportunities that

they offer. They can therefore be regarded as call options, in which

the owner has to spend a certain investment to increase his chances of

obtaining revenue.

Up to now, the most advanced development in this field is the

valuation of oil leases by J. Paddock, D. Siegel and J. Smith (reference

[7]). The development process of an oil tract from its purchase to its

exploitation has been modelled by a series of three successive options:

exploration, development, and extraction. Each stage requires that the

company exercise the related option and gives rise to the following

option. The exercise decision is subject to a favorable environment

(e.g. the reserves appear to be substantial after the exploration phase,



or oil prices are high enough to justify the oil tract development) and

can be delayed until better conditions.

lease exploration development extraction
Spurchase) option option option

This schema allows the derivation of the lease value by working

recursively from the value of the extracted oil (as stock price) and

using the option model at each of these three stages. The final lease

values are greater than those obtained with traditional methods. They

are closer to the observed winning bids for these tracts, although very

different assessment of the oil reserves by oil companies do not permit

efficient testing of this method.

This situation is also favorable to the application of the option

model for practical reasons. Capital costs are very high for the

development of these tracts, so that the financial decision process is

here essential. These assets are however standardized, and market

mechanisms are recognizable. Developed reserves are traded in secondary

markets, and their value can also be derived through specific stocks,

which are traded in the securities markets. Finally, uncertainty is an

important element of the decision process. The final cash flows, for

example, depend on the price of oil, which can be modeled as a stock

with a significant variance.

These criteria appear to provide useful guidelines to the modelling

of other circumstances where the option approach may apply. Part of

this thesis has therefore been built upon the identification of similar

situations and the application to the situations of the concepts

developed in this study.



1.5.2 Theoretical Difficulties

Some reservations may be expressed concerning the validity

of certain assumptions used in the financial models, in the context of

real assets. One of these is related to the derivation of the Black

Scholes formula and the following developments which rely upon arbitrage

arguments. A comparison between two combinations of assets having the

same payoff at any point in time allows valuation of these assets. This

argument is correct in a world where assets are easily traded and

duplicable. Real assets generally do not have these properties as:

- many real assets are unique and therefore not duplicable. A facility

may be unique by its location, design, technology, etc. An oil field

itself is unique in the exact composition of its reserves and cost of

development and different tracts within this field also have

different values.

- market mechanisms are generally limited. When they exist, their

efficiency is very questionable, and the valuations may differ widely

from one investor to another. The wide discrepancy of the traded

assets and the low volume may add to the fuzziness of the

valuation process.

These arguments show that at this point, a strict application of

the model would probably be pointless given the assumptions necessary to

apply essentially financial-market-based evaluation models to real

assets. Moreover, the practical difficulties of acquiring objective

data would also prevent an accurate evaluation. At this stage of

development, these applications aim at exploring the capabilities of the

option model and at judging the order of magnitude of the numerical

results. They may also give some guidance on the main factors affecting

decision processes which have not been well described until now.

26



CHAPTER II

A CONSTRUCTION PROJECT AS A SUCCESSION OF OPTIONS

2.1 The Model of the Process

From the moment a piece of land is purchased until the facility on

this land is scrapped, a construction project passes through several

stages. Each of these stages requires the developer and operator to

make a decision involving a choice among several possible actions, the

commitment of a certain budget for construction, and consequently an

increase in the value of the asset in place based on the receipt of

cash flows immediately or during subsequent phases. The importance and

particularities of these options depend highly on the type of project

under evaluation. Buildings, plants and infrastructure facilities do

not offer the same alternatives, construction constraints and

flexibility in the possible uses. Integrating all these specifics into

a single schema requires therefore that we remain at a general level

where large variations in the parameters are allowed.

The following process is a proposed model which tries to encompass

as many kinds of construction as possible. Three options are defined:

the design, the use, and the renovation options. This section will

briefly outline these three options in the context of a real

development process. The adaptation of the option model for a

construction project will be studied in general terms in section 2,

while each of these options, their parameters, and their results will

be described in details-in section 3.



2.1.1 The Design Option

Given a particular piece of land and the constraints due to

its location (utilities, regulations, access, urban area...) the

developer has a wide choice as to what general kind of construction

will take place: factory, buildings of different shapes and sizes,

parking, warehouse... The solutions differ by the general type of use,

dimensions, structure, as well as cost. This option starts as soon as

the land is purchased and has the particularity of an infinite time to

maturity provided no regulation or practical problem imposes a time

constraint. As a consequence, this point of view recognizes that a

developer may wait a few years before undertaking a construction or

simply selling the land. This is particularly favored if holding

costs, e.g. taxes and interests, are low for an undeveloped land.

2.1.2 The Use Option

Exercising the design option means that the developer

commits himself to a narrow range of uses. He has chosen an overall

design, and as a result, will get a well defined shell construction

after a certain duration allowing for the detailed design, bids, and

gross construction phases. However, some flexibility may still be

permitted: he may have a choice among different finishes determining

the final use of a building, or different equipment changing the final

product of a plant. The use option may also be viewed as a GO/WAIT

decision before starting the operation phase. The cost of the

finishes, or the start-up cost (including inventories and overhead) may

be balanced against the immediate profitability of the operations so

that the decision may be to wait for better economic conditions. In

this case however, the cash flows which were planned during this period

cannot be recovered.
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2.1.3 The Renovation Option

This option can be defined as any possibility to change or

enhance the use of the facility by means of a construction operation.

For a building, a renovation operation leads to a change in the

finishes in order to accomodate a new use or simply to make it more

attractive for the same use, and therefore increases its value through

the future cash flows. Other facilities present the same process:

industrial units can be retrofitted to adapt to new market conditions,

the equipment of a plant can be changed for the manufacture of a new

product, infrastructure facilities can be reorganized if the volume or

any other characteristic of their use has changed. On the whole, these

operations involve a relatively small cost as well as a small loss of

time, but their apparent effect may be important. They contribute to

the profitability of the project by increasing the cash flows, in

particular towards the end of the project's life. They constitute a

certain hedge against the risk of depletion and should allow to take

advantage of any opportunity during the operation phase.

2.2 Adaptation of the Option Valuation Model

Using the option model for a construction project requires one to

define the five parameters used as inputs. The analogy with the stock

model is straightforward and can be described by the following table:



Notation Stock option Construction Project

S Current stock price Value of the
construct project

E Exercise price Construction cost

Time to maturity Time to maturity
(depends on option)

r Risk-free interest rate Risk free interest
rate

Variance of the rate of Variance of the
return rate of return

Figure 2.2: Comparison of the Variables for the Pricing Model
of a Stock Option and a Construction Project

We can notice that the model stresses the difference between the

value of the physical asset (S) and the construction cost (E).

In the case of a single independent option whose exercise leads to

the receipt of cash flows, S represents the discounted present value of

these cash flows. A project risk adjusted rate (rl) is used, and with

the same notations as in Chapter I, we obtain:

T CFtS - t

t-0 (1+r1 )

In the case of several successive options, an additional term is

added. As exercising the option gives rise to the following option,

the value of this second option, noted C, has to be added:

T CF
S= E + C

t=0 (1+r )

This scheme is encountered when the model is applied to an option

on an option. In certain cases, when no cash flow is received in the

next phase, S is exactly the value of the following option.



The example of the design option and the use option illustrate

these considerations:

- in the design option, no cash flow is expected in the next phase

(construction). S is therefore the value of the use option.

- in the use option, S is the net present value of the operating cash

flows plus the value of one or more renovation options.

Furthermore, we will see in Chapter 6 that there exists an

alternative method for valuing S through the stock market. S can be

derived from specialized stock values if a company holding only the

particular kind of asset under evaluation can be found. This solution

has the advantage to suppress any reference to discounted cash flows

methods, thus enhancing the specifics of the option approach.

S is sensitive to market conditions and its variability introduces

the risk of the project. This risk is accounted for by the value of 5.

However, '>0 implies that future payoffs can be greater than expected

as well as less.

On the other hand, construction costs are easier to evaluate and

less susceptible to variations. Specialized publications such as the

"Means Guides" are commonly used by professionals for the evaluation of

construction costs of buildings, and other publications are available

for more specific calculations. The breakdowns of these costs are

known in details, and their evolution is easy to forecast as

construction cost generally do not show sudden variations. The

approximation of a fixed construction cost can therefore be considered

as satisfactory provided a mechanism corrects the effect of inflation

(calculations in real terms, for instance).



In practice however, this fundamental difference between cost and

value does not always appear clearly. In several cases, construction

costs are currently used to evaluate a facility. A "replacement value"

approach is used under which a building is evaluated by the cost of

duplicating it, adjusted for a factor taking its age into account.

This method ignores generally changes in technology or replacement of

productive units as value.

In the case of infrastructure facilities, the values of the

facilities are difficult to know since no cash flow is received.

Comparing projects in terms of costs, or cost savings may be

attractive but is not appropriate for an option approach. The model

cannot be applied in this case unless a satisfactory method of

evaluation is defined, for example in terms of social value or benefits

to users.

2.3 Valuation of the Project at Each Stage

This section will describe in more details each of the options in

the construction process model and the interpretation of their values.

Figure 2.3 shows what are the imputs of the model (S, E, and T) for

each option and what are the results, in order to support as well as

summarize the following discussion.

2.3.1 Value of a Piece of Land Through the Design Option

The value of a piece of land is generally defined as the

greatest of its value under all the possible schemes of development.

This approach is however based on a relatively rigid view of the ways

the land may be used. In particular, it does not take into account two

issues which account for a great part of the speculation on the market:



Design option

S = value of the use option

E = construction cost of the shell construction

S= infinite

value of the option = value of the piece of land

Use option

S = Net present value of the expected cash flows + value of
renovation option

E = Construction cost (finishes, start-up cost...)

T = design, bids and construction phases duration

value of the option = value of the project as viewed during the
construction phase (most of the construction cost is already spent)

Renovation option (put option)

S = net present value of remaining cash flows under the present
use + future potential renovation options

E = net present value of the alternate use (net of conversion
cost)

z = economic life of the present use

value of the option = added value due to the renovation operation
opportunity

Figure 2.3: Summary of the Parameters for the 3 Options



- the choice offered to the owner to develop (or sell) his land at any

time in the future, if the market condition is favorable. Owning

undeveloped land is cheap, and this offers the opportunity to wait

until the best moment for a construction project, or more often, to

sell it when market prices are high, thus passing the option on the

the buyer.

- the different possible types of development: the owner has the

choice to undertake the most profitable one at any time. There is

no unique best use through time, but a set of possibilities whose

values depend on the location, size of the land as well as the

development of the surrounding parcels and changing economic

conditions. Each piece of land is also unique and may be

appreciated differently by developers under uses related to their

own business. At any time, the market reflects the highest of these

values.

The timing issue can be captured by the design option under a

model of simple call valuation. Assuming that the land offers a single

bust opportunity for development, its value can be computed with the

formula C(S,E,T,r,a) presented in 1.2, where S and E are the value and

cost of the project and T is a reasonably great number of years. One

result of the option theory offers some insight into how the

development process would take place: the model shows that it is

always more profitable to sell the option rather than exercise it

before its expiration date. In other words, the owner would have to

give up some value to undertake the development, in comparison with a

selling policy. With a great or infinite time to expiration, this

would even mean that the development would never take place. This



paradox was noted in the case of oil leases and is also true for land.

Further research on this issue is needed since the basic crux of the

paradox is that when a stock option is exercised, no new net supply of

the underlying asset is created, unlike new oil reserves and new

buildings when those options are exercised (see reference [7] for a

discussion).

Calculating the additional value due to the opportunity to choose

among several equivalent schemes of development require the use of a

more sophisticated model of the call option on the maximum of several

assets. In the case of two development alternatives whose

characteristics are respectively H (value), E (construction cost),

1H (variance) and V, F, cv, respectively, with a correlation P, the

model for the maximum of two assets would provide this value as

f(V,H,E,F, ,r, •H, •vP)

development 1: H,E,1 H

land I correlation P between H and V

development 2: V,F,'v

Numerical applications of this valuation model are studied in Chapter

6. Although the context is not the valuation of land, the situation is

similar (except T), and the main results can be extended to this

problem. In particular, increases in the variances (av and aH) and a

decrease in the correlation coefficient (P) increase generally the

value of the option.



2.3.2 Alternatives During the Construction Phase Through the Use

Option

The decision to start a project is a bet to the extent that

nobody knows precisely what the market conditions will be when the

facility is completed. Having to forecast a certain number of years in

advance is a constraint creating major risks: the risk to end up with

a facility which does not match the market demand, and the risk to miss

a very profitable opportunity which could not be forecasted.

The premium given by the valuation of the use option over

traditional approaches represents, in these conditions, the value of

the ability to delay the major decisions until sufficient information

is available. This point of view recognizes a value to the reduction

of the construction time constraint through more flexibility. The

developer can actually hedge against market uncertainties with this

method.

The valuation of the use alternatives can be done at any moment

during the design and construction phase. All other things being

equal, the option value will depend on the time to maturity, T. As T

decreases from the duration of the design and construction phase (2 to

5 years generally) to 0 (when the construction phase finishes), the

value of the option will decrease, as a result of the decrease in the

project's flexibility when the final decision becomes imminent. For

=0O, the value of the option is exactly the present value of the most

profitable alternative (as with the NPV method).



2.3.3 Value of Flexibility During the Operation Phase with the
Renovation Option

The renovation option acts as an additive term to the total value

of the present use of the facility. It can therefore be viewed

directly as the value of the opportunity to change the operation's

scheme at any time during the physical life. In the case where several

renovation alternatives are possible, the value of the project can be

even more increased as several option values are added, and each option

may also involve other later renovation opportunities.

A renovation opportunity can be viewed as a put option to abandon

the present use for another pattern of use. Such a point of view was

developed by Stewart Myers and Saman Majd (reference [3]). The main

differences with the simple put option are summarized here.

- this option offers the opportunity to switch from one uncertain

stream of cash flows (value S) to another uncertain stream (value

E). The model must therefore allow for an uncertain exercise price

E with a variance aE. In order to simplify the calculations, E is

defined as the net present value of the alternative use net of all

cost of switching (E is therefore decreased by the cost of

completing the renovation operation).

- S(t) and E(t) are the present values of the remaining cash flows at

time t. S and E are decreasing functions of time since less and

less cash flows are incorporated as time passes (Figure 2.4)



value

main use
S(t)

cash flows from
---secondary use

a cost)

expected time
renovation time

Figure 2.4: Value of the Main Use and the
Renovation Alternative through Time

- the model includes dividend payments (cash flow C(t) received at

time t). Solving the model in a general case would therefore

require important calculations. The most simple cases are obtained

C(t)when the "payout ratio" Y = is constant over time. A close
s S(t)

form solution can be obtained if the time to maturity (usually the

economic life of the use) is considered infinite.

- S(t) and E(t) are correlated. A correlation coefficient, P, is

incorporated when the variances aE and aS are involved. The more

uncorrelated the uses, the highest the value of the option.

These hypotheses make the resolution of this problem more

complicated than for a simple option valuation. Using the exact curves

of project value over time in the case of construction projects would

increase significantly the amount of calculations. Orders of magnitude

are however available in the case of simplified hypothesis. They



depend, as usually, on the tradeoff between S and E, and the variances

"E and aS and correlation P.

2.4 Other Options in the Construction Process

The process that has just been described is far from encompassing

all the options relative to the construction phase or the project in

general. The following chapters will describe how particular

characteristics of different projects can also be described with the

option methodology. Although these particular cases may not fit into a

general description, some common features can be noticed concerning

their occurence.

From a general point of view, each activity of the construction

process can be viewed as an option. For example, the design phase is

an option to the bidding phase. Bids are an option to start the

construction of the foundations, completion of the foundations gives an

option to start the structural work, and so on until the final

completion. Such a detailed breakdown may probably go beyond the scope

of the project financial evaluation. However, some of these steps may

take a significant importance in the case of a project whose

achievement would be questionable. Some typical concerns of the

developer would then be:

- how to spend as little money as possible if the project is likely to

be cancelled. The answer would probably be to delay the

non-critical activities. Let us suppose, for example, that an

independant unit has to be build on the site. This can be done at

the beginning or at the end of the construction phase. If the

project has some probability to be cancelled, it is advisable to



wait until the end of the construction phase. This is actually

viewing the completion of this unit as a put option allowing to

recover its value if the project is cancelled before its

construction has started.

- with the same perspective, some particular milestone in the project

can define put options affected by an eventual change in the initial

project. Before the milestone is reached, the completed part of the

construction may have little effect on the final construction: this

part may be used for different designs, or its cost may be recovered

if the material in place can be sold or used in another project.

After the milestone, the flexibility may be lost, or recovering the

cost may become impossible. Therefore, an important decision may be

required at this point in time. This decision is equivalent to

exercising or not an option.

- more generally, each milestone between activities in the schedule

offer the opportunity to stop the construction. Exercising this

option gives immediately a complementary option, resuming the

construction.

Finally, issues concerning the dimensionment and the long run

development planning of important facilities seem to offer option-like

characteristics. Incorporating demand forecasts and tradeoffs between

the cost of different solutions are key issues in these problems.

Particular cases where such issues are apparent will be described in

Chapter 4.



CHAPTER III

APPLICATIONS TO BUILDING CONSTRUCTION PROJECTS

3.1 Specifics of Real Estate Investments

Buildings are probably the most immediate example of real assets.

At the same time, real estate development is a sector of the U.S.

economy where financial integration has always been important and where

market characteristics are easily observable. This is therefore a

favorable field of application of an option approacn, in particular

since uncertainty affects the market value of these assets.

The valuation of a building generally depends on two general

characteristics. Buildings can first be classified into general

categories of uses, e.g., hotels, apartments, offices, shopping

centers, and private houses. Each of these types define to a certain

extent a market segment evolving independently on a supply-demand

basis. Secondly, building values are affected by their location and

relation to their immediate environment. Areas can be defined, and

their evolution through time influences the value of different building

types in different ways. Both factors are specific sources of risk for

any construction project. Their influence over a year or a decade can

be significant. Their conjunction however affects uniquely each

building, and justifies the reservations expressed before regarding the

treatment of real assets in the same manner as financial securities.

In this context, the approach developed in Chapter 2 may be of

interest to a developer. Given a particular use, flexibility during

the construction phase may allow him to choose the right configuration



in order to satisfy the market demand. Being able to choose between

two or three uses at the last moment, or later during- the operational

phase may be even more valuable. This would enable him to choose the

more profitable of these alternatives, in a market where the uniqueness

of the assets and the slow response of competition probably allow

important differences to persist.

In addition, new investment schemes can be made possible by

combining two uses. A risky investment can be undertaken if some

possibility to switch to a safe use is available in case the project

would fail. Conversely, a safe, but not very profitable investment can

be worth undertaking if it allows later and instantaneously to capture

a very attractive but risky opportunity. This latter configuration is

described in figure 3.1: if the economic environment puts the

outcome out in the right hand tail, the developer can go with the

risky use, otherwise he will go with the safe use.

cost project value

Figure 3.1: A Risky Opportunity Enhances the Value of a Safe Project



I will present in the next sections what the real options offered

by a building are and how the general model fits to the well known

building construction process. Examples and practical difficulties

will then be analysed in the context of the present structure of this

sector.

3.2 Options in the Building Development Process

Among the three options introduced before, the design option and

the renovation option present little specifics in the case of

buildings. The former deals with a larger approach of the construction

process, while the latter does not need more elaborations over the

presentation in section 2.3.3, although its formulation is

particularly adapted to building projects. We will therefore focus on

the use option, or in other words, the evolution of the project once a

general shape and structure have been chosen.

When the design option is exercised, the overall design of the

building defines the arrangement of the space within the enclosure. In

addition, the organization of the piece of land is now fixed, and in

particular, accesses, open spaces, and the relationship of the building

with its immediate environment are defined. This process determines

therefore the main parameters which will direct the development of the

project through its physical life. Any further development will have

to be accomodated within this simple framework.

What are in these conditions the possibilities of development?

Several options are offered, which can be classified in two categories:

- mutually exclusive options: when two options apply to the same

space, choosing one of them automatically excludes the other. Using

the building for offices or as a hotel are examples of mutually



exclusive options in the sense that both cannot be exercised at the

same time.

- independent options: the building may offer additional options

which do not depend on the exercise or not of any other option.

Such options may be using the basement of the building as storage

area, using the roof as a support, or using any available space on

the land for a related construction.

The developer will probably be mostly concerned with the first

type of options. The final use of the building requires obviously the

most important decision. The value of having this type of choice would

be given in our model by an option on the maximum of two or more

streams of cash flow.

The second category represents additional features which can be

implemented on the project at any time. They would also be accounted

for under a use option model, as a simple call option: the option to

extend the project before or during the operation phase if the total

profitability can thus be increased. In certain cases, their value may

be affected by the choice of the function of the building. For

example, the use of the basement may have different values in the case

of offices or apartments. Such options may thus also be considered as

dependent on the choice of the main use.

All these options are represented in a typical case on figure

3.2. Alternatives A and B may be as different as a large flat

building and a high rise building. Building A may be used as a

shopping center, or for small, accessible offices, and B may be more

suitable as an office building for larger companies or a hotel. Other

options may be available for minor parts of these buildings. The
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Figure 3.2: Succession of Options in the Building Development Process



alternative to sell the building and the land at any time may also be

represented on this scheme. This is not an option in the sense of the

financial model. It is simply a way to translate the value of the

project at any stage into market terms. The modelling of the process

with options should try to approximate as accurately as possible this

market value, but does not include this alternative in the

calculations.

3.3 A Parallel with the Real Construction Process

The use option becomes predominant at the very beginning of the

construction operation: an architect is hired for the execution of the

detailed design, and financial aspects of the operation have to be

dealt with. The development process will then go on with the bids and

construction phases, during which the developer may receive information

on the market conditions relevant to his operation. Assuming that he

wants the building to produce revenue as soon as possible, his decision

on the final configuration will have to take place a few months before

the end of the construction phase, in order to allow time for the

completion of the finishes.

Figures 3.3 and 3.4 show how the real process is simplified under

the assumptions of the proposed model. The comparison is made in terms

of schedule (duration of the use option compared to a bar chart of the

main activities) as well as construction spending.

In the comparison between the schedules, the maximum duration has

been given to the use option. The design phase lasts at least one year

as it includes many slow tasks such as organizing a design team with

different professionals, having information flow between participants,

the submission-correction-approval cycle between the design team and
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the owner, obtaining permits from administrative authorities. The

project can however still be modified or cancelled at this stage. On

the other hand, the option extends until the building enters into the

operation phase. The completion of the finishes is assumed to be

instantaneous. These hypotheses are a very rough description of the

actual process, since it supposes that the developer can wait until

the end of the construction phase to make up his mind about the choice

of the use of the building. This decision would take place, in the

actual process, at least 9 to 18 months before the operation phase.

The comparison between the cumulative construction cost curves

show that the actual S-shaped curve is approximated by two discrete

expenditures. The construction cost of the building less the finishes

is assumed to be known and spent at the beginning of the design phase.

In the real process, this sum is spent later, mainly in the

construction phase. This time lag may be accounted for by translating

the real expenditures to the beginning of the design phase at a

risk-free discount rate (i.e., this sum is put in the bank). The

finishes work can be defined as partitions, wall, floor and ceiling

finishes, and additional light electrical, mechanical, and other

equipment. Mechanical and electrical rough-in may be considered as

part of the shell construction provided a common configuration can be

found for all the uses under consideration. The cost of the finishes

generally amounts to 30% of the total construction cost (order of

magnitude). In this model, completing the finishes yields immediately

the whole value of the use, that is all the later revenues discounted

to this moment.



These hypotheses will be used in the numerical example developed

in Chapter 6. However, a criticism can be expressed concerning the

timing assumption of this model. The assumption that the time to

maturity of the option is limited to the duration of the construction

phase takes into account the choices between 2 or 3 uses, but does not

account for the possibility of delaying the operations phase after the

building is completed. The interest of this viewpoint is that the

owner may not be satisfied with the present level of rents for his type

of building and may prefer to wait until a stronger demand allows him

to charge more. Moreover, the importance of this choice appears in the

fact that the first rent will determine the level of the rents during a

large part of the operations phase through indexation formulas

negotiated in the context or regulations. This decision is therefore

essential for the profitability of the project, in particular if the

owner has little choice over the use of his building.

A more sophisticated approach can take this aspect into account.

A dividend payments model can be used with the hypothesis that the use

option extends until the end of the physical life. The construction

process and immediate operations phase would be modelled as a single

phase where no dividends are perceived until the construction is

completed, and a stream of dividends is available as soon as operations

can begin. The developer may be allowed to delay his decision until

after the construction is completed, but he would lose the dividends

which would have been available if he had begun the operation phase

immediately. As soon as he exercises the use option, the process will

go on as modelled under the hypotheses described before. This is

illustrated by Figure 3.5 presented below.
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Figure 3.5: A More Elaborate Model for the Use Option

This model would simulate the developer's probable decision scheme

in the sense that:

- as long as no dividend is paid, the option model suggests that the

optimal policy is to wait until the maturity date. The developer

whould therefore wait at least until the end of the construction

phase before making a decision.

- as soon as dividends are paid, a penalization occurs. It is likely

that the value of the option decrease with time, or that holding

costs incur (financial costs), thus suggesting that the optimal

exercise time is the end of the construction phase.

The complexity of the dividend function in these hypotheses does

not allow for straightforward calculations. Deriving a numerical

solution may not however present theoretical difficulties as solving

the basic differential equation is theoretically possible with any kind

of function. Moreover, finite element methods must accomodate easily

such a step dividend function. These problems are not addressed in

this thesis.



3.4 Examples and Practical Considerations

Figure 3.6 shows a listing of different types of buildings with

their average cost per square foot and typical size. These data give

an idea of the similarities between some uses in terms of complexity

and size, although it gives little information about the design itself.

Several types seem to offer enough similarities to be accomodated into

relatively standarized shell constructions.

* Apartments, offices, hotels, and even colleges can probably be

located in common types of buildings. In particular, mid-rise

parallelepipedic buildings with roughly 50,000 sf of gross

area would probably be appropriate for two or more of these

uses provided their dimensions (width, floor to floor height)

and structure allow for the partition into units whose geometry

is adequate for each use.

* Schools and housing buildings for the elderly seem to offer

this flexibility. Renovation operations conducted by

municipalities have proved that converting buildings from the

first use to the second one is not difficult and can provide

substantial benefits for a low cost.

* Hospitals, research buildings, medical offices have

similarities in the importance of HVAC, safety regulations,

general organization as well as cost. Developing such a

flexibility may be of particular interest for the evolution of

a hospital. As technology and needs change very often,

reorganizations are required after short periods of use. The

best way to keep up with this very demanding path is to use new

buildings. The solution may be to develop a lifecycle of uses



Square Foot Base Size
Building iMedian Cost [Typical Size Typical Range Building Median Cost 17ypical Size Typical Range

Type Per S.F. Gross S.F. Gross S.F. I Type Per S.F. Gross S.F. Gross S.F.
Apartments. Low Rise $ 38.80 21.000 9.700- 37,200 Jails $111.00 13.700 7,500- 28.000
Apartments, Mid Rise 48.30 50.000 32,000- 100.000 Libraries 70.10 12.000 7,000- 31,000
Apartments, High Rise 53.20 310.000 100.000 - 650,000 Medical Clinics 65.40 7,200 4.200- 15.700
Auditoriums 64.00 25.000 7.600- 39,000 Medical Offices 61.90 6.000 4.000- 15.000
Auto Sales . 40.50 i 20.000 10.800- 28,600 Motels - 39.10 27.000 15.800- 51.000
Banks 88.60 4.200 2,500- 7,500 Nursing Homes 66.20 23,000 15,000- 37,000
Churches 58.70 9,000 5.300- 13.200 Offices, Low Rise 52.50 8,600 4,700- 19.000
Clubs. Country 55.40 6.500 4,500- 15,000 .Offices, Mid Rise 57.60 52,000 31,300- 83.100
Clubs, Social 56.90 10.000 6,000- 13,500 Offices, High Rise 69.70 260.000 151.000 - 468,000
Clubs. YMCA 60.00 28.300 12,800- 39.400 Police Stations 85.50 10.500 4.000- 19.000
Colleges (Class) 77.60 50.000 23.500- 98,500 Post Offices 65.60 12,400 6.800- 30,000
Colleges (Science Lab) 90.50 45,600 16,600- 80,000 Power Plants 432.00 7,500 1,000- 20,000
College (Student Union) 83.40 33,400 16,000- 85.000 Religious Education 48.60 9,000 6.000- 12.000
Community Center 60.60 9.400 5,300- 16,700 Research 83.70 19,000 6.300- 45,000
Court Houses 81.10 32.400 17,800- 106.000 Restaurants 77.40 4,400 2.800 - 6.000
Dept. Stores 35.70 90,000 44.000- 122,000 Retail Stores 37.90 7,200 4,000- 17,600
Dormitories, Low Rise 58.60 24,500 13,400- 40,000 Schools, Elementary 57.30 41,000 24.500- 55.000
Dormitories, Mid Rise 74.30 55.600 36,100- 90.000 Schools, Jr. High 57.00 92,000 52 000 - 119,000
Factories 34.80 26,400 12,900- 50,000 Schools, Sr.High 55.80 101.000 50.500- 175.000
Fire Stations 63.30 5,800 4.000- 8.700 Schools, Vocational 54.10 37.000 20.50 - 82,000
Fraternity Houses 55.10 12.500 8.200- 14.800 Sports Arenas 43.50 15,000 5.000 - 40.000
Funeral Homes 55.30 7,800 4,500- 11,000 Supermarkets 37.30 20.000 12,000- 30.000
Garages. Commercial 40.10 9,300 5,000- 13.600 Swimming Pools 70.20 13.000 7.800 - 22,000
Garages. Municipal 41.10 8,300 4,500- 12.600 Telephone Exchange 97.60 4,500 1.200 - 10.600
Garages. Parking 19.10 163.000 76.400 -225,300 Terminals, Bus 43.00 1 11,400 6.300- 16.500 i
Gymnasiums 54.20 19.200 11,600- 41,000 Theaters 52.80 10.500 8.800- 17,500
Hospitals 112.00 55.000 27.200- 125.000 Town Halls 62.20 10.800 4.800 - 23.400
Housing fElderly) 55.00 37,000 21.000- 66,000 Warehouses 25.10 25,000 8.000- 72,000
Housing (Public) 42.10 36,000 14,400- 74,400 Warehouse & Office 28.70 25,000 8,000- 72.000
Ice Rinks 43 00 29.000 27.200- 33.600 1 .. 1

Figure 3.6: Square Foot Costs and Typical Sizes for Several
Categories of Buildings

SOURCE: Means Building System Cost Guide
(reference 14)
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by which a hospital building would be turned into a research

laboratory and later an office building so that medical

activities would take place in up to date buildings while an

economic operation would be also achieved through the entire

life of the building.

0 complex development projects where either one single high rise

building accomodates several uses (for example shopping center

at ground level, then parking, offices, even hotel in the

subsequent floors) or a whole area is devoted to an

administrative complex (offices, hotels, restaurants, parkings,

etc...) give such options. The breakdown into different uses

can be easily changed in this flexible framework and under the

authority of a single developer.

Achieving this flexibility may have important consequences on the

design: the spatial organization, structural design, dimensionment of

the accesses, choice of glazing system may create additional costs.

The profitability of the building would also be affected by its

organization (notion of space efficiency) and general standard. The

main use options as well as the additional independent options would

induce choices in the initial design. A typical example is the option

to use the basement of the building: this option depends on the

initial choice on the type of moisture protection adopted for the

foundations. The choice of a dry basement has to be made very early

and cannot be reversed later. The trade off between the additional

cost of a flexible design and the increase in value due to the use and

renovation options has to be studied in order to make the decision at

the beginning of the project.



The use of this valuation scheme is difficult in several cases:

when buildings are owned by institutions, they are not considered as

profit centers, which means that they do not produce revenue. Schools,

hospitals, municipal buildings, and offices operated by large companies

for their own needs are not operated on a profit basis, so that their

value is not known. The parameter S cannot therefore be implemented in

a straightforward fashion in the model. On the other hand, all income

producing buildings such as offices, hotels, apartment buildings are

easily valuable through the rents. Several solutions for this

valuation will be presented in Chapter 6.

This situation is paradoxical: institutions have very favorable

opportunities to take advantage of this flexibility, as owner and user

coincide. On the other hand, income producing buildings are less

flexible as contractual terms prevail between owner and users. For

example, office space leases extend for 5 or 10 year periods, which

means that no construction operation can take place during these

periods. Renovation options can be exercised only at very specific

moments.

Finally, we can notice the similarities between this financial

approach and architectural concepts developed in the sixties. In

reference [l1], N.J. Habraken proposes the idea of building

configurations based on a "support structure": "a support structure is

a construction which allows the provision of dwellings which can be

built, altered, or taken down, independently of the others." (the

support structure is defined as the beams and floors, while dwellings

apply to walls and all other equipment). Although this theory is

developed primarily for housing projects, it shows that the idea of



accomodating different configurations within a single skeleton

construction and with flexibility through time is not new. As noted by

this author, the interesting features of this approach are, besides

flexibility, the ease of organizing renovation operations and

maintenance, and of improving the building with new technology and

renewals.



CHAPTER IV

POTENTIAL APPLICATIONS TO INDUSTRIAL PROJECTS

4.1 Specifics in the Application of the Three Option Model

The description of a construction project with the design, use,

and renovation options is applicable to investments in manufacturing or

process plants, as well as extractive facilities. These projects are

generally larger than building construction projects, and the capital

costs are more important. Many of them also involve a great part of

risk: power plants, refineries, chemical plants are examples where a

project can be cancelled during the construction phase due to a change

in economic, politic, or technological conditions. Manufacturing

plants involve a great deal of risk due to the competition in their

market, regulations, the international environment, in particular when

margins are tight. Our model takes into account some of these

uncertainty factors and their effect on the decision process at

different levels:

- the design option: an option to undertake a construction project is

created by the conjunction of favorable factors such as the location

of a site, availability of infrastructure, ease of organization, and

availability of the appropriate technology. These factors are

relatively known and they affect the cost of the project (exercise

price). They should place the company in good position vis a vis

the competition. Uncertainty appears in the cost of inputs, labor,

raw materials and the demand of the market for the output. These

factors affect the cash flows received from the operations. The

option model takes them into account by the uncertain "underlying



project's value." The tradeoff between a known cost of the project

and an uncertain project's value is probably representative of the

decision process at the overall evaluation stage.

the use option: the decision to begin the operation phase may not

be as simple as in the case of a building. The exercise price is

here the cost of inventories, additional tools, organization, that

is, the start-up cost of the factory. We may even include in this

figure the loss which is likely to occur in the first months or

years of operations. This investment may be large, and its

magnitude may be close to the cost of the plant itself. As a

consequence, the exercise of the use option may not be

straightforward as in a building. It may appear more profitable to

dismantle the plant and sell it at this stage. This is a difference

with the building case, where the cost of the finishes usually

cannot justify to cancel the project, and where selling at this

point may not be easy.

the renovation option: converting a facility to another production

is feasible, at least in the manufacturing sector, and adapting the

production process so as to include new technologies is possible as

well. In this field, the profitability of a facility is affected by

obsolescence (in the manufacturing process or the product itself),

and not its age by itself, as in the case of a building. Lifecycle

effects have to be taken into account, and their duration may be

much shorter than the physical life of the facility. Therefore, it

is important that the facility be designed to accomodate different

production schemes, or different product lines. This gives a

significant value to the renovation option.



As a conclusion, it can be noticed that significant differences

exist between buildings and plants construction projects and their

description under the options process. This general framework will

however not be investigated in more details in this chapter. The

theoretical description is not different from the preceding chapters,

even if some options appear to be more valuable in this case.

Furthermore, it is difficult to give general conclusions in the case of

industrial projects. There is such a wide discrepancy in the sizes,

breakdowns of costs, operation schemes, physical descriptions, that

common points are difficult to observe, and a general description would

be either imprecise or inaccurate for extreme cases. We will therefore

focus on specific fields where an option approach can be developed.

Examples will be studied, where the source of uncertainty is easy to

identify, so as to point out typical situations.

4.2 Flexibility in the Production Mode

4.2.1 Choice of the Final Product

A first category of options can be defined as the options

to change the final product of the facility. It can be valuable if

there is a shift in the demand for this product, or if the current

model of the product has to be changed for a new model. As these

options appear in the operation phase, they can be classified as

renovation options.

Such flexibility appears generally when the equipment is

standardized. It can be enhanced by dividing the production process so

that each workstation can be used for another type of production.

These considerations have important consequences on the design of the

facility: many professionals argue now in favor of simple, segmented,



modular designs where each stage of the product's transformation is

isolated in a specific unit, rather than a single sophisticated

equipment making the whole transformation at once. Beside the possible

advantages in cost or maintenance, the flexibility is increased by

allowing a wider range of modifications. Each unit gives valuable

options as it is standardized (therefore easy to reuse or sell) and

independant (can be integrated into another production cycle). The

advantage of a modular versus an integrated facility can be compared to

holding a portfolio of options versus an option on a portfolio. In the

first case, the most valuable options can be exercised independantly,

while in the second case, there is only the choice between all or none

of the options. Thus the value of a portfolio of options will be

greater than an option on a portfolio with the same components.

Interesting examples where this flexibility has important

consequences on the design can be found for manufacturing plants. For

instance, car factories must be able to accomodate different models of

cars, or even trucks or buses. The design of the production lines and

the choice of the tools is influenced by the high probability that a

line will have to be adapted to another product at some point in time.

Therefore, a tradeoff between cost and flexibility has to be found.

One extreme example is the case of the River Rouge plant where the

Ford's model T was built in the 20's. This plant was designed to

minimize cost, without any concession to flexibility. Ford would

surely have been better off if he had realized how valuable is the

option to change the manufacturing process at low cost. More recently,

we may wonder where the optimum point is between an equipment designed

specifically for a certain task on a particular model, and more



flexible equipment which can accomodate changes in the basic model, but

may be less efficient.

Other examples can be found in an international environment.

Manufacturing in less developed countries is often attractive as labor

costs are cheap and local markets offer some opportunities of

development. However, uncertainty is high: exchange rates, political

stability, taxation, and nationalization create very important risks.

In case a sudden change happens in a particular country, flexibility in

the production can allow two types of responses: the company can shift

its production to another country and thus remedy a break in an

internationally integrated production cycle; or it can change the

production of its factory in order to adapt to new conditions on the

local market or requiremens dictated by the local government.

Finally, process plants offer identical features. For example,

the final product can be modified by adding an additional treatment

unit eliminating a minor component or achieving a higher degree of

refinement. Using part of the plant for another production is also

possible if a transitory stage of the product offers the opportunity to

end up with a totally different final product. Changes concerning by-

products or linked to environmental regulations can also be

implemented: recycling steam or transforming minor products so as to

make them marketable have appeared to be profitable in the seventies

for certain types of facilities.

On the whole, the exact definition and the valuation of these

options seem difficult. Valuing an alternative production scheme is

probabily not easy as the organization has to be defined again.

However, the examples of manufacturing plants show that a tradeoff



between flexibility and efficiency is generally implicitely evaluated,

even if no figures are derived. In other cases, even if different

market scenarios are not examined, clever designs generally offer

opportunities to improve the profitability of the production if an

important change occurs. It would be interesting to evaluate these

qualitative rules of good design in terms of options, and study their

impact on different kinds of investments.

4.2.2 Choice of the Inputs

The price of the inputs can affect significantly the

profitability of a production. Typical examples can be found in the

chemical, petrochemical, and utilities industries, which depend to a

high degree on the prices of hydrocarbon components, namely oil,

natural gas, coal, and their derivatives. These industries have been

facing a very uncertain environment since the 1974 and 1980 price

increases. Furthermore, the availability of new technologies for

substitution of the most critical products must be taken into account

when new investments are studied. In this environment, it is not

surprising that decision makers emphasize flexibility as a major

feature of new plants. Here again, the option valuation model may be

useful in valuing the opportunities to change the feedstock during the

operation phase.

The example of ethylene production is striking. Until 1974, the

producers used natural gas as the main feedstock. After the first

energy crisis, natural gas became too expensive as well as somewhat

scarce, so that most producers turned towards naphta and gas oil for

their new investments. In 1980, the price of naphta tripled, so that

natural gas became competitive again. As a result, many crackers have



been retrofitted to process either pure natural gas, or natural gas as

a certain percentage of the total feedstock (naphta). However,

synthetic natural gas produced from coal will probably be available in

the next decade when the technology is applied to large scale

projects, and may become the most economical feedstock.

Similar evolutions have taken place for other productions. The

production of electrical power from coal, fuel, or uranium raises

similar problems to utilities. All these temporary market conditions

are shorter than the usual physical life of a plant -- at least 10

years -- shifting market data must be considered when a company decides

on an investment. A certain number of factors are then likely to

affect the decision as well as the design:

Competitive feedstocks: the possible feedstocks may be as

different as coal and its derivatives, natural gas, oil, uranium, or

naphta, butane, ethylene, etc. But all these categories do not even

represent a unique and homogeneous product. Coal, natural gas, and oil

vary widely by their composition of sulfur and nitrogen components, as

well as marginal components such as chloride (which affects corrosion

rates). These components require specific treatment units.

Flexibility among these products may not be easily achieved as

illustrated by the problems of refining light, medium, or heavy oils

imported from different producing countries in the world.

Market data: the possible fuels can be traced back to the

original raw materials, which affect their prices, variances,

correlations. These statistics are important, as discussed before, for

applying the option model. However, more elaborate subproducts are

also very sensible to the supply/demand equilibrium. While the supply



of petroleum derivatives is a fixed proportion of the oil production

(after cracking), the demand is determined by the competition between

the different components for a very wide range of applications. The

choice of a feedstock for a particular production depends on prices,

the processes available, and technical considerations, but affects also

the other productions.

As an illustration, figure 4.1 and 4.2 show the evolution of the

prices of some feedstocks since 1973. In figure 4.1, a record of the

prices of the main fossil fuels, i.e., fuel oil, natural gas, and coal

is indicated on the basis of their heat content (in cents per MBtu

delivered to utilities). The differences in their movements, and also

their variances and correlations can be observed. Figure 4.2

describes the prices of intermediate chemical products obtained from

natural gas and its derivatives, naphta and gas oil (both obtained from

fuel oil cracking), or even coal, for which several processes are often

in competition.

Technical solutions: the technical feasibility affects directly

the cost of converting a plant to another feedstock. Some favorable

factors are:

- a standardized design. For example, crackers have appeared to be

able to accomodate several feedstocks, even if they were not

designed for them

- a modular design, making part of the plant common for all

feedstocks. For instance, all power plants are identical from the

moment fuel has been burnt to produce steam (turbines and electrical

equipment)
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- a feedstock requiring less treatments: most of the coal based power

plants can be almost readily converted to fuel oil or natural gas as

coal is the most demanding feedstock. The contrary is more

difficult and requires more sophisticated treatment units. This is

illustrated by the transformations at the Crystal River Plant in

Florida, which was first operated with coal in 1966, converted to

heavy fuel in 1970, and reconverted to coal firing in 1975 (see

reference [20]).

Environmental requirements: this may create obstacles, as the

subproducts of the plant may differ, thus requiring additional

treatments. This may also lead the company to require a more refined

feedstock, thus increasing the cost or decreasing the flexibility.

These options may be incorporated in the project's valuation as

use options (change in the feedstock decided before the operation)

renovation options, or both. In the case of a renovation option, (put

option), the parameters of the model would be

S - present value of the cash flows using the present feedstock

E = present value of the cash flows with the alternative feedstock
(net of all cost of reconversion)

r - riskless interest rate

a2 = variance of the cash flows

T = useful life of the plant

In particular, the parameter a would depend on the variance of the

price of the feedstock, which can be easily approximated from a record

of past prices.

In this case, the valuation with the option model may be

straightforward provided data on costs and revenues can be found. The



value of the options may also be significant as the variance is high,

as well as easy to include in a project evaluation.

4.2.3 Case of Repeated Changes in Inputs or Outputs

In the last two sections, we have studied the value of

modifying a plant if economic conditions change. Such an option is

modelled as a put option, where the issue is to exchange the stream of

cash flows resulting from the present production into a higher stream

of cash flows under the new operations pattern. The basic model

assumes that no later change is possible, that is the only choice is

the abandonment value.

In practice, it is not unrealistic to allow for more than one

retrofit operation. In this case, the value of one use at each point

in time is the present value of the expected cash flows, plus any

option created by this use

T CF
S II + V

t=0 (1+r)t

where S = value of the use under consideration

CFt = expected net cash flow, year t

r = risk adjusted interest rate

V = value of another put option offered by this use

A more complicated pattern where a great number of nested options

take place, can even be studied. Let us suppose, for example, that a

process plant is able to operate with two different feedstocks. When

feedstock 1 is used, the value of this use is the present value of the

cash flows with this feedstock, plus the value of the option to switch



to feedstock 2. When feedstock 2 is used, the value of use 2 includes

the option to switch back to feedstock 1. Assume also that it does not

cost anything to change the feedstock. The parameters of the options

would then be:

use 1 use 2 use 1
---------- ----------

feedstock 1 feedstock 2 feedstock 1

T CF
it

value of use 1 S = C + V 1t=0 (1+r)

1 CF
S = + V

2 t 21
t=0 (1+r)

where V 12 is the option to convert the operations to feedstock 2

V2 1 is the option to convert the operations to feedstock 1

T is the physical life of the plant

With our model, V1 2 and V2 1 would be computed as

V12 = P(Sl,S 2,T,r,
0*) (put option S1 + S 2 )

V2 1 = P(S2,S1 ,T,r,c )

a = 02 + 02 - 20a
1 2 1 2

(al"1 and 02 variances of uses 1 and 2, P correlation between 1 and 2)

We have just described here a plant which would be able to operate

with two fuels with a total flexibility. The manager would only have

to select the cheapest fuel at any time, thus making more profit than

with any of the two fuels considered separately. The option

model seems to provide a satisfactory description of this

process, although the solution may not be easy to derive. It would be



interesting to study how this model selects the appropriate use: the

choice is not based on a long run evaluation of each use, but only on a

short run tradeoff between the next cash flow under each use, and the

option to switch uses each period.

Besides feedstocks, other examples of total flexibility can be

found in the industrial environment. The manufacture of steel products

may provide illustrations of such situations. In some cases,

equipments can be adapted to cast several shapes of parts, provided the

material is the same (the steel mill is actually the main part of the

plant). For example, a new process has recently been developed,

allowing to cast any kind of linear steel product from wire to

structural steel beams. Changing the product is said to require only a

change of the mold and takes half an hour.

Before leaving this topic, I would like to reconcile the effect of

input and output prices, treated separately in this section. It can be

noticed that the manufacturing process is actually a call option where

the value of the asset comes from the revenues from the product sale,

and the exercise price is the cost of the inputs. The option is

exercised only if the revenue is superior to the cost of the inputs, or

in other words if the unit price is larger than the variable cost.

Manufacturing can therefore be viewed as a succession of independent

options, for example, the options to decide to manufacture or not at

the beginning of each year. Such a decision process may be encountered

in the case of extractive industries, where the variable costs depend

on the physical characteristics of the mines while revenues are

governed by a world market.



4.3 Options in the Development Stage

4.3.1 Step-wise Development of a Project

Choosing the appropriate size for a project is a major task

addressed during the preliminary stage of planning. If the market is

uncertain, there is little chance that the chosen size matches exactly

the most economical point of production. If the demand is also likely

to grow during the project's life, there is no way to obtain a

production at minimum unit cost throughout the production phase: a

compromise has to be chosen between a large size plant operating at low

capacity during the first years, and a smaller plant which is likely to

be unsufficient if the demand actually increases.

In the case of industrial projects, flexible solutions can be

found. For example, a two step process can be studied, in which the

plant is initially dimensionned for a small, but sufficient capacity,

and later extended to full capacity. Such a case has been examined by

J.P. Asquith in "a Comparison of the Direct and Step-wise Completion of

a Process Plant and the Capital Cost Involved" (Institution of Chemical

Engineers, 1966) and I will try to interpret it here in terms of

options.

A brief summary of this article is needed at this point. The

issue is to dimension a process plant for full or two thirds of its

final capacity. The final product is not specified in this article,

and the size of the plant is expressed in terms of units (one unit

represents a certain output requiring in particular one specific type

of chemical reactor). The alternatives are therefore to build either a

6 unit plant, or a 4 unit plant which can be easily extended to 6

units.



This article deals with the technical issues involved in the

design of the two alternatives.

- some parts of the plant can be divided into several identical

units (2,3, or 6), thus making the step-wise completion alternative

possible at competitive cost

- other parts such as utilities have to be built immediately for

the full capacity due to scale economies and the difficulty to divide

them into sub-units.

After selection of the most economical configuration for each

alternative, cost data are given. The following table summarizes them:

4 units plant, designed
4 units plant to be extended to 6 units 6 units plant

this case is 4 units: $6,426,000 $7,000,000
not evaluated 2 additional units: $940,000

Figure 4.3: Cost Data for Development Alternatives of a Process Plant

Unfortunately, data on the value of these possible configurations

are not mentioned. The cash flows expected from this project are

essential elements in the evaluation of the alternatives. The writer

however assumes clearly that the demand is going to increase, making an

extension from 4 units to 6 probable within 2 or 3 years. The

forecasted output could therefore show a progressive increase, and its

curve over time might look like Figure 4.4.
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4

optimal capacity
to meet the demand

time

Figure 4.4: Assumed Economic Data for the Process Plant

In this figure are represented an increasing demand curve, and the

curve of the capacity if the company plans the extension at the best

moment. The shaded area represents the additional supply which will be

available with the additional 2 units. It can be directly related to

the additional cash flows produced by the extension of the plant.

The analysis may even be more complicated if the production costs

are different for the studied alternatives. For example, operating a 6

unit plant at less then two thirds of its capacity may be more

expensive than operating the 4 unit plant close to its optimal

capacity. In a first approximation however, it will be assumed that

the production unit costs are constant at any stage of the project.

The value of the project would then be found by discounting the cash

flows resulting from the sale of a certain output, produced at a

constant unit cost.

In comparing these alternatives, there may be two ways to

interpret the choices in terms of options.



Four Units and an Option for Two More Units Versus Four Units

The study by J.P. Asguith did not include the alternative to build

only a 4 unit plant without an extension option. The reason must have

been that, with a high probability of an extension after a few years,

the company did not want to limit its capacity to this plant's output.

However, the cost of this alternative would be useful to derive as it

would allow to calculate the actual cost of the option to build two

more units. If we suppose, for example, that a simple 4-unit plant

costs $5,000,000, the actual cost of the extension option is:

$6,426,000 - $5,000,000 = $1,426,000

The second cost figure necessary for this evaluation is the exercise

price. The article evaluates it as $940,000, representing the cost of

the equipment to be added (2 more reactors, and other equipment).

The option valuation model would be useful in this analysis as it

would derive the value of this option. This option can be modeled as a

call option whose parameters are:

S(t) - value of the additional 2 units (incremental cash flows allowed

by the extension decision: this can be calculated using the

shaded area on Figure 4.4)

E = exercise price = $940,000

S= physical life of the project = 10 to 20 years

=a variance of the rate of return on S(t)

r = risk free rate

The decision to buy or not this option (that is choosing to invest

in 4 units or 4 units with the extension possibility) would simply be

taken by comparing its value and cost:



if C(S(t),E,t,a,r) > $1,426,000 buy the option

if C(S(t),E,T,a,r) < $1,426,000 do not buy it

A few comments can be made about modelling this case with a call

option.

This is an option on an asset which pays dividends. As long as a

four unit plant supplies a sufficient volume to cover the demand, these

dividends are equal to zero. As soon as the four units plant cannot

meet this demand, the dividends become substantial as the 2-unit

extension would produce revenue. Figure 4.5 shows these "dividends",

that is the forgegone revenue lost by not exercising the 2-unit option.

dividend function

t=0 end of physical life

Figure 4.5: The Cash Flows Expected From the Additional 2 Units
Modelled as a Dividend Function

The optimal timing to exercise the option may not be easy to

identify. Two conditions are required:

(1) the value of the additional 2 units must be superior to the

exercise price: S(t) ? $940,000

(2) even if (1) is realized, it is better to wait as long as no

dividend is paid. It is not useful to build the additional two units

if they are not going to be operative immediately. The optimal

exercise decision should take place when the extension would begin to

produce revenue, or more precisely when the revenue for the next period



exceeds the savings due to delaying the expenditure of the extensive

operation from one period (evaluated at the risk free rate).

Finally, it is intuitive that the growth rate of the demand curve

has an important influence on the value of the option. The option is

more valuable if the demand is likely to grow rapidly, and we may

wonder how this factor is taken into account in the model. The answer

would be that this factor is implicitely included in the value of S(t).

If the growth rate is expected to be high, S(t) will be higher as

revenue will be produced early and each cash flow will be higher than

with a lower growth rate.

These remarks show that this option would be similar to the model

described in section 3.3 for the use option. This option offers the

opportunity to wait when no dividend is paid, and to make a decision

concerning the exercise when dividends are produced.

Four Units and an Option for Two More Units Versus Six Units
Immediately

In the case of the comparison between these alternatives, another

argument intervenes in the decision: building now a six unit plant

allows to save on the total cost of the project. The design is

simplified as it does not have to include an intermediary step for 4

units, and the construction of the whole plant at once may be cheaper

(in particular non-standard equipments are cheaper if they are ordered

in greater number at once). This issue illustrates the difference

between financial and real assets: while 6 shares of stock can be

purchased for 6 times the price of one share of stock, this rule does

not apply for real assets if economies of scale intervene in the

exercise price.



These two alternatives can be compared by using a put option

model. Considering the final goal of obtaining a 6 unit plant, these

two alternatives have different costs:

- the step-wise construction alternative costs $6,426,000 + $940,000 =

$7,366,000

- the direct full-size construction alternative costs $7,000,000.

The first alternative is more expensive by $366,000, but we can

consider that this additional cost is related to an additional feature

offered by its process: in case the extension to six-units is

cancelled, this alternative allows the company implicitely to recover

$940,000 which will not be spent immediately.

This is a put option (abandonment option) whose exact parameters

are the following:

- the initial project is a 6-unit plant costing $7,366,000.

- the put option offers the opportunity to convert this project into a

4-unit plant. In that case, $940,000 can be recovered from the initial

budget.

- the time to maturity is the duration until the full size plant is

expected to be completed. In the context of this particular project,

it seems that the company is considering to operate a 6-unit plant no

later than 3-4 years after the beginning of the operations. (This

maturity date is actually uncertain.)

The comparison between the direct and step-wise construction

alternatives will then have to evaluate these figures in the context of

the real environment. Both projects will produce anyway the same

revenue, therefore, the comparison is done in terms of costs, that is

the ability to delay in higher expenditures or to save them if the



demand does not grow. Figure 4.6 shows the curves of cost over time

for these two cases. The value of the put option comes from the fact

that the step-wise completion curve is constantly below the direct

completion curve, in particular after the beginning of the operations.

Cncz -

$7,000,00C

$6,496,00C

366,000

574,000

t (years)

Figure 4.6: Cumulative Construction Cost Curves for the Direct and
the Step-wise Completion Alternatives of a 6-unit Plant

In making a decision, the company has to judge whether it is worth

spending $366,000 on the step-wise project in order to save $940,000 if

the extension is not made at a later point in time. In other words,

the plant is more expensive by $366,000 if the extension is done, but

saves $574,000 if the extension is not done.

Note that no discount of the sums spent for the alternatives at

different times has been done in this analysis. This argument should

be taken into account in the evaluation of the extension operation

three years after the 4-unit plant construction. If the direct and

step-wise completion alternatives lead the same final cost, the

step-wise alternative would be preferred for this reason.



4.3.2 Other Options in the Development of a Project

Other potential applications of the option approach are

presented here. As no specific example was found during the

documentation phase of this study, they are not discussed in details.

Option-like investments occur when a new site is developed for a

plant, and when part of this investment can be used for other projects

on the same site. This is the case for all expenses for utilities,

infrastructure terminals such as roads, access to a river, or a linkage

to a railroad, which allow the location of similar projects at a lower

cost. In some cases, the expenses for utilities and infrastructure can

amount up to one third of the total cost of a project. Allocating

these expenses to different projects on the same site is possible, but

an option approach of this problem may be even more appropriate. The

present approach, would be rather to consider them as long run

investments, so that their strategic character is recognized.

Other options may take place during the design and construction

phases of a project. The completion of industrial projects is long:

some projects such as power plants can take ten years or more from the

beginning of the operations phase. These projects are sensitive to

changes in technology, new environmental regulations, and also the

prices of raw materials (see for example the evolution of copper prices

in Figure 4.7). In this environment, some options may be interesting

to develop in order to minimize the cost of the project in relation

with a certain set of possible scenarios during the construction phase.

The option to adopt a new technology, construct new treatment units, or

change some materials may be valuable at certain moments of the

construction phase if the environment changes.
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Figure 4.7: Evolution of Copper Prices from 1966 to 1982
(used in wires, beat exchangers, cooling systems)

SOURCE: Reference [21]
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CHAPTER V

APPLICATIONS TO INFRASTRUCTURE PROJECTS

5.1 Option Approach in the Planning of Infrastructure Projects

The option valuation model may be appropriate to describe issues

encountered in infrastructure development projects, related in

particular to dimensionment decisions. The choice of a size for roads,

pipes, and tracks is difficult and important since infrastructure

facilities have to be studied in a long-run perspective, although the

development of different areas may induce rapid changes in the needs.

Furthermore, infrastructure elements are not independent from one

another, and the insertion of a new project in an existing network,

including the effect on any other branch, has to be studied. These

decisions are crucial since errors may be very costly, or even

impossible to correct.

Options may be identified at two levels. One project, considered

independently may include options, for example to increase its

capacity. Or, at the level of a whole network, a particular

configuration on a part of the network may offer new development

alternatives on other parts of the network.

The example of a highway project in an urban area may illustrate

these points of view. The dimensioning choice is generally based on

two estimates: an expected volume of traffic upon completion of the

project, and a forecast of the traffic 20 years later. If the need is

for a two lane highway immediately and a four lane highway in 20 years,

two development alternatives can be considered:



- the agency may decide to build a 2-lane highway now and to allow an

extension to 4 lanes later. This can be done by planning the

project so that enough land will be purchased for the extension

alternative. This investment involves therefore a call option (the

extension possibility). This kind of investment scheme may be

appropriate if the traffic will not increase in the immediate future

or if funds are not available for a 4-lane highway.

- the decision may be to build immediately a 4-lane highway. This

project in itself does not include an option since no further

development will be made on the highway itself. But the full

utilization of its capacity may depend on other investments such as

debottlenecking an extremity of the highway, or developing other

roads so that the highway be included in a new route. In that case,

the value of the highway includes an option.

Both solutions lead to valuing the project as one asset plus one

or more options. The asset relates to the immediate benefits provided

by the project, while the option applies to potential benefits which

will occur if future developments are undertaken. This point of view

would account for the importance of intertemporal considerations in

these projects. They take place in a growth environment, and they are

very costly to duplicate, unlike most buildings or plants construction

projects. Long run forecasts are therefore more important than

elsewhere.



5.2 Infrastructure Facilities as Growth Opportunities

The point of view presented in section 1 can be related to the way

some assets held by a firm can be valued through the stock exchange.

In "determinants of corporate borrowing" (reference [6]), Stewart Myers

notes that two kinds of assets can be defined:

"assets in place" are "assets whose ultimate value does not depend

on further discretionary investments"

"growth opportunities" are "assets that can be regarded as call

options in the sense that their ultimate values depend, at least in

part, on further discretionary investments by the firm"

The development alternatives presented in section 5.1 can be

described as growth opportunities. Furthermore, it seems that most

bridges, tunnels, important crossroads or large facilities in an

infrastructure network can be classified in this category. This is

supported by the fact that they are often overdimensioned, even with

regard to the forecast for their use.

Such a facility would be valued at its immediate benefits to the

user plus an option to accomodate an additional volume.

Figure 5.1 shows the example of overdimensioned bridge: it is

designed for 6 lanes (maximum volume 150,000 vehicles per day), while

its access road is a 4-lane highway (maximum 100,000 vehicles per day).



bridge (6 lanes)
4 lanes 4 lanes

T7i

bridgeI $i l liS

widenedwidened bridge (6 lanes) 6 lanes
-highway

(6 lanes)

Figure 5.1: An Overdimensioned Bridge as a "Growth Opportunity"

In its initial configuration, the bridge cannot receive more than

100,000 vehicles as it is botlenecked on both extremities. Its value

is the same as a 4-lane bridge.

However, the value of the bridge is higher if we consider the two

options offered by this configuration: a new road can be connected to

the bridge (daily volume 50,000 vehicles), or the access highway can be

widened to 6 lanes. Both solutions provide the additional benefits of

a new or a wider road (value S) without having to build a new bridge.

The cost of the new road, or the widening of the old highway (exercise

price E) is therefore lower than in a normal project.



5.3 Examples

The John F. Fitzgerald Expressway in Boston: in this project, the

existing elevated highway is to be replaced by a 1-mile long tunnel.

Its dimensioning is crucial as this tunnel will be a major exit of

Boston for decades. The project is to be an 8-lane underground

highway, with the elevated highway still in use even after completion

(see reference [191).

Figure 5.2 shows a description of the project and the curve of its

cost versus capacity. The flat part of the curve around the 8 lanes

proposed capacity shows that the size of this tunnel could be increased

at a relatively low cost. According to an option approach, this

increase in the cost may be worthwhile if it provides a more valuable

option. The project's size would be actually determined by a tradeoff

between the cost of overdimensioning and the value of the call option

thus created.

High speed railway development projects

The construction of a new high speed track between two cities

(named A and B) may create opportunities for developing other routes.

In figure 5.3, it is assumed that a third city, named C is located

halfway between A and B, but off the high speed track.

high speed track

A , C B
C,

low
soeed
Itrack

Figure 5.3: Options in a High Speed Railway Project



cost

1.3 Billion

8 lanes capacity

Figure 5.2: Description and Assumed Cost Data for the J.F. Fitzgerald
Underground Highway Tunnel



This configuration gives opportunity for a better service to city

C. Two options are allowed:

(1) Use part of the high speed track and the existing low speed

track between C and C'. This investment requires only to buy high

speed cars and engines which can ride at low speed between C and C'.

(2)Build a high speed track between C and C' in order to set a

fully high speed service between A,B, and C. This investment is more

expensive due to the new track construction.

The value of the initial project is increased by these two call

options. It may be worthwhile undertaking this project even if line

A-B is not profitable enough to justify the high capital investment.

It can be noticed that in the case of the French TGV project, the first

category of options has been exercised: part or the whole new

Paris-Lyon track and existing low speed tracks are used by high speed

trains serving several southeastern French cities.

Water resources or sewer systems networks

The design of these networks is difficult in growing population

areas. The dimensioning of the piping systems and the treatment plants

has to be carefully studied in order to satisfy the needs of several

urban areas, each one having its own growth pattern. Several options

may be studied in order to satisfy different population patterns, in 10

or 20 years. Such options may be complex due to the great number of

parameters as well as their interdependancy.

5.4 Difficulties in the Valuation Process

The method described above may be useful in valuating facilities,

and in particular when a project has to be chosen according to



immediate as well as future potential benefits. When two alternatives

are possible, and if their benefits and costs are similar, this method

should allow us to identify the project presenting the best development

potential in relation with other facilities and needs.

These considerations however do not solve the general problem of

the valuation of the benefits provided by an infrastructure facility.

There is for example no satisfactory method for the valuation of

highway facilities. There is no market and these facilities do not

produce revenue. The only available method is based on runninq costs:

the evaluation of the benefits to the users is derived from such

parameters as average speed, value of travel time, volume of traffic,

maintenance and vehicle costs. (see reference [18]) This figure cannot

be compared to financial data, even to the cost of the project. As a

result, no positive NPV rule is used to evaluate a project. The rule

is to rank alternatives according to their benefit/cost ratio and to

choose the best projects within the available budget. This

nonfinancial method cannot be accomodated in the option valuation

model, where the value of the project (S) and its cost (E) cannot be

dissociated and are compared to stocks in their movements.

This problem is the main difficulty in testing the model and

interpreting its results. It may however be partly solved if the

privatisation of this sector goes on. For instance, the recent sales

of water treatment facilities to private companies may allow to get

objective data through sale prices as well as the study of stock

prices.



CHAPTER VI

NUMERICAL EXAMPLES

Even if the option pricing methodology seems to describe properly

certain types of construction investments, some basic questions still

have to be answered before any practical application can be considered.

What are the results of the model, in comparison with other valuation

methods? How can the input parameters be estimated? What is the

sensitivity of the valuation to their values? Are the calculations

reliable and can they be applied in the present form to real projects?

This last chapter of the thesis will try to answer some of these

questions by developing numerical examples and interpreting them.

For this purpose, an hypothetical building being able to

accomodate two uses will be described in section 1 and used all along

this chapter for different applications. The design, use, and

renovation options discussed in Chapters 2 and 3 will then be

illustrated. These calculations will involve the use of the models of

simple call option, option on the maximum of two assets, and infinite

put option introduced before.

6.1 Description of the Chosen Example

6.1.1 A Building for Office Space or Apartments

As noted in Chapter 3, applying the option methodology to

building projects presents some analytical advantages. The existence

of market mechanisms allows us to find more easily the data needed for

the tests in a financial context, while cost figures and development

schemes are relatively well known. Most of the data presented here can



be found in references 10 and 12 to 15. An exposure to real estate

practices also was very useful (in particular, to derive realistic

rental values), and was provided by private conversations with Philip

Trussel at the MIT Real Estate Office.

Most of the following applications will involve the valuation of a

building project when two uses are possible. It was necessary to

define a building type allowing to accomodate these uses within the

same overall design. A mid-rise building project (3-4 stories) with

roughly 50,000 square feet of gross area was chosen for uses as office

or residential space.

Monthly rents for new apartments are about $1 per square foot in

Boston, which gives $12 as annual rent. A gross income multiplier

method can be used to derive the total value (present value of the

income) from this use. This method is a convention used in the real

estate industry as an approximation of the net present value of a real

estate investment. We use it here due to the lack of more accurate

market value data. This multiplier parameter varies generally between

5 and 8, and was chosen here as 7. We obtain therefore:

value of the use as apartments = annual rent X gross income multiplier

= 12 x 7 = $85 p.s.f.

This result is consistent with general information available.

The market for office space is less homogeneous than the housing

market. In downtown Boston, annual rents amount up to $35 per square

foot for new space, while a significant lower amount can be observed in

Cambridge and other suburban areas. We have assumed here that the

annual rent for similar buildings in the same location is $18 p.s.f.,



so that the total value for this use is $90 p.s.f. (this figure can

best be derived using mortgage payments calculations. $18 generally

covers an annual mortgage payment plus profit. $90 can be derived by

comparison with the present value of the mortgage).

Figure 6.1 summarizes the assumed development budget. The Means

Square Foot Cost Guide (reference 15) provides a good basis for this

study. The cost of this type of building (including architect's fees)

is close to $50 per square foot. As sitework, landscaping, and a

possible basement are not included in this figure, the total

construction cost was estimated as $60 p.s.f. In this figure, $20 can

be considered as the cost of the finishes. Adding another $20 (30 to

35% of construction cost) for leasing, financing, contingency, taxes,

and start-up cost, the total cost of the development operation was

derived as $80 per square foot, while the remaining $5 to $10 account

for the land value and profit.

6.1.2 An Evaluation Method Using Market Prices

Several methods are available to calculate precisely the

value of the income produced by the building described above. A first

method would be to study the rents of similar buildings in the same

location (same range, same age) and to capitalize them at a required

rate of return which is presently close to 17%. This is actually the

basic method of evaluation of income producing buildings, but it

requires accurate data about the rents and to study their evolution

over the building's life. A second method would be to study the sale

prices of similar buildings and to convert these data into square foot

prices. This evaluation is easier, as it takes advantage of the

evaluation by the market of the expected rents, maintenance costs, and



Basic construction cost: shell construction 30
} 50

finishes 20

Plus: sitework, basement, landscaping... 10

Total construction cost

Other expenses (leasing, financing, contingency, etc...)

Development operation budget

Value as office building (rent = $18 p.s.f.)

Value as apartments (rent = $12 p.s.f.)

Figure 6.1: Development Cost and Expected Value of an
Offices/Apartments Building Project
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discount rates, into a single figure. It requires however to ascertain

and to study a record of past sales of market prices in order to find a

comparable building. These two methods are probably the most accurate

ones. They have not been used in this study since no accurate data

were accessible at this point.

A third method offers interesting insight on the value of these

assets in a financial context. This method is based on a study of the

stock prices of real estate investment trusts (REITs) and derives

square foot values by relating them to the exact composition of their

assets. These trusts appeared in great number in the '70s, and some

are traded today on the New York Stock Exchange. The research should

focus on finding a trust holding only the type of assets under

evaluation (e.g. office buildings only), but such trusts are rare since

many undiversified trusts disappeared during the particularly difficult

1976 year.

As an example, Figure 6.2 shows selected parts of the Standard and

Poor report on the Hubbard Real Estate Investment Trust. Its assets,

as given by the October 1983 company annual report, are the following:

distribution and service properties 1,503,000 sf

office space 745,000 sf

retail 981,000 sf

total 3,229,000 sf

On the other hand, calculating its value is straightforward since

the stock price and the value of the debt are known:



equity (5,945,681 shares at 22 3/4 $) 135,264,000

long term debt (mortgage, using book value) 16,501,000

total asset value $151,764,000

Dividing this value by the total number of square feet gives

$47.00 per square foot. In this calculation, we consider that all the

value of the trust is invested in operating real estate assets, and we

disregard in particular cash and other liquid assets. As a comparison,

the study of three other REITs shows figures ranging from $34 to $50

per square foot.

The difference between this result and the values assumed in

section 1.1 can be explained by the large discrepancy in this trust's

assets:

- different buildings are included in this valuation. For example,

shopping centers and warehouses are less valuable than office

buildings on a square foot basis.

- the age of the buildings is an important factor since it affects

rents and maintenance costs

- the valuation also depends on the location. Downtown and suburban

properties do not show the same values.

This method however shows that the difference between real assets

and financial security claims is not as large as one might expect at

first. It justifies to some extent the application of the option

valuation model to these assets. Another feature of this method is

that it allows to study the value of the variance a2 , which is an

important parameter of the option model. This parameter might be

calculated using a record of past stock prices (as for any evaluation

of the price of an option on a stock using the option model). However,
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subsidiary of Merrill Lynch, Hubbard Inc.

Important Developments
Div Oct. '83-HRE sold an office /research facility to
Div:ri a subsidiary of Ashland Oil Inc for $ 16 millionr
remvt.•illiam F Murdouch J.., president said the trans-

A 'iori tair•elr, rrioletetld HRLE strateuv of with-
Atilt. o!
Divd S ual. . t .ba

0.55 Mar. 8 Mar. 17 Mar 23 Apr. 20'83
0.55 Miy 24 Jun. 17 Ju; 23 Jut. 20'83
U ,5 Au•• 25 Sep i9 Sep 23 Oct. 20'83
0.55 Nov 29 Dec 19 Dec. 23 Jan. 20'84

Finances
In connection with the W.T. Grant bankruptcy, the
trust regained control and possession of the
properties which had been ieased to Grant.

hese properties were rerented to new tenants
on terms qgeierai;y mnice fi•vorab t tu the trust.
HRE, from time to time, has received partial set-
tlement towards its bankruptcy claim against
Grant While no assurance has been giver as to
the amourit or timing of any further payment, any
such recovery will be recognized as incomrte in the
period in which it becomes determinable.

Capitalization
LI MotgaPayable: $16,50 1,000.

Shares of Beneficial Interest: 5.9i0t5,t.;t snisl (no
par)
Institutions hold about 1 l'U.
Shareholders of record: 8,472.

Ofrce--125 •;n St Bos sli Mass C621Io0 eli-( 1 7)42r 6it8 Pies--W. F Ml0tocch Jr VP-Secy-lreas & Investor Contact-o- M HaC !

Trustees--M Cleary, C Conkln,. Jr . B M Hah. Gi M HuL)bard. Jr .W F Murdocrl, Jr , C. J Urstadl, J. O. 'm ork Transier Agent & Regis-

trar-First National Bank of Boston Organized in Massachusetts in 1969

information has been ooltained ironm sources behlieved to tie rehliable. but its accurda- and completeness are not guaranreed Coiln F. Rose

Figure 6.2: Standard and Poor Report on the Hubbard Real Estate
Investment Trust (February 3, 1984)
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differences may be observed between this value, calculated at an

aggregate level, and local or category specific variances (This study

has not been done here).

6.2 Design and Use Option: Case of One Use

We will discuss here the first two options of the proposed

construction process model, when only the use as office building is

considered. The results will also be useful as a reference for section

3, since this use is dominant in our example. Figure 6-3 shows the

numerical results for the design and use option.

The procedure for the evaluation is to work backwards, starting

from the value of the building in the operation phase. The value of

the use option is computed with the indicated parameters. This figure

(here $74.267 p.s.f.) is then plugged into the design option as value

of the project. Hence the value of the piece of land for the developer

is determined ($27.765 per square foot of gross area of the building).

Several approximations have been made in these calculations, and

they must be considered in analysing the results. First, reservations

can be expressed concerning modelling these two successive options as

independent simple call options. The design option is an option on an

option, and should be treated differently from a theoretical point of

view. The option theory however does not provide specific numerical

models for these types of options, although theoretical research has

been devoted to their study. We have also considered that both options

have the same standard deviation C=15%.

The use option has an overwhelming probability to be exercised,

since it offers the opportunity to pay only $20 and get $90. This



Parameters

Value of the use (office space) $90 p.s.f.

Construction cost: shell construction

finishes

$60 p.s.f.

$20 p.s.f.

Variance a = .15

Risk-free rate (real terms) r = .08

Time to maturity: piece of land hold for a maximum of 3 years

design and construction phases 3 years

Results

Value of the land
for this project

$27.765 •e- - -

design option 5use option

S = $74.267 V = $90

E = $60 F = $20

= .15 ` = .15

r = .08 r =.08

= 3 years T = 3 years

Figure 6.3: Numerical Application of the Design and Use Option
for a Single Use as Office Building



option is "way in the money," and its value is very close to the value

of the project ($90) less its exercise price ($20). The value is

actually $74.267 and not $70 since the exercise price is discounted at

the risk free rate, 8% for three years. The model accomodates this

particular situation by considering that all the terms due to the

normal distribution function in the call valuation formula are almost

equal to 1, so that the use option value is actually:

S = 90 - 20 exp(-rT) = 74.267

In the design option, the time to maturity has been chosen as 3

years. This departure from the theoretical infinite time to maturity

is intentional. Taking T=+w would provide $74.267 as the value of the

land, since an infinite call option has the same value as the project,

whatever the exercise price. This unreallistic result is difficult to

admit at this stage. At least, holding costs (e.g. taxes and interest)

would reduce this value. We may also consider that the relationship

between the project's value and the construction cost is not adequately

described by the model of simple call option in a long run perspective

(i.e. while E remains constant in real terms, S is expected to increase

at an implicit project's rate superior to the risk free rate, 8%).

6.3 The Use Option: Case of Two Uses

In the case when using the building for offices or apartments is

still possible until the end of the construction phase, the value of

the use option can be found by using the theoretical model of option on

the maximum of two assets, whose computer program was written for the

purpose of these tests.



Figure 6.4 shows sample calculations for a "base case" where the

project's values are, respectively 90 and 85 Sp.s.f., and the standard

deviations 15% and 10% for the office space or apartment uses

respectively, and when the correlation between these uses is assumed to

be .5. In this example, we do not mean that the developer will be

uncertain about the final use until the end of the construction phase.

This project would be probably viewed as an office building project

since this use appears as more profitable. However, switching to the

apartment use is still possible at no extra cost until the end of the

construction phase, if this use appears to be more profitable at that

time.

use as office space
V=$90, v-=. 15
F=$20

Value of the use option Icorrelation
S=79.994 / P=.5

use as apartments P
$=S85, a =.10

F=$20

other parameters: t = 3 years, = .08

call option on V: CV = 74.267 on H: CH = 69.267

additional value = 79.994 - 74.267 = $5.727 p.s.f.
(or 7.7% of the single use value)

Figure 6.4: The Use Option Valued by the "Maximum of Two Assets Model"
when the Hypothetical Building can be used for Offices or
Apartments

The value of this option is $79.994, and can be compared to the

$74,267 value obtained for the use for office space only. The

difference, $5.727 (or 7.7% of the initial value) can be interpreted as



the value of the ability to pick up the most profitably use between the

office space and apartment. This is an important result which will be

characteristic of real estate development compared to stock options

which have only "one use".

Figure 6.5 shows the sensitivity of this result to the parameters

aH (variance of the use for apartments) and P (correlation between V

and H).

P -1 1 .5 0 .5 .7 .9 1

.05 83.961 82.803 81.503 79.994 79.305 178.545 78.131

.10 86.894 85.015 82.803 79.994 78.545 76.684 75.42

.15 89.810 87.468 84.673 81.028 79.061 76.301 4.26

.20 92.699 90.050 86.894 82.803 180.629 177.688 75.424

.25 95.554 92.699 89.318 85.015 82.803 79.994 78.130

other parameters: V = 90 H = 85 F = 20

Ov = .15 r = .08

call option on V only: CV = $74.267

Figure 6.5: Sensitivity Analysis with Respect to a and P

Not surprisingly, the value of the option is minimal when P is

equal to 1 (totally perfectly positively correlated projects), and

increases significantly until P is equal to -1 (perfectly negatively

correlated projects: V increases when H decreases and visa versa).

The option value is also generally an increasing function of %H, except

for highly correlated projects. When ., = 0 = .15 and P = 1, we find

the lowest value, which is exactly equal to the value of the option for
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a single use as offices, or $74.267. In this situation, the values V

and H have exactly the same distribution. Given the initial estimates,

V will always exceed H, so that this last alternative is not meaningful

under this example assumptions. As a consequence, the option value for

P = 1 (last column) drops from aH = .05 until %Y = .15, and then

increases again. When aH is low, asset H is valuable in case the value

V drops in the future, and allows to "save" the project. When aI is

high, H may exceed V if both asset values increase. This effect is

also sensitive at a lower degree for other values of P, until P = .5 in

the table.

In this analysis, we have limited the range of the values of aH

between 5% and 25%. We assume therefore that the project's value H is

less variable than most stocks, for which a can easily be 40% or more.

This is also true for the variance of V, for which 15% seemed to be a

reasonable value although we have not done a specific study to support

this assumption.

The effect of variations of av has not been studied in details as

it probably gives the same results as the study of aH. It appeared

however interesting to study the effect of substituting yv for aH in

the base case. The interpretation is the following. When a, = .15 and

% = .10, the developer is undertaking a risky office project (asset V)

supported by a safer residential alternative (H). Thus, if the value

of the office project goes down (lower rents and higher vacancies rates

are expected at the moment of the choice), switching to the safer

alternative allows to save the project. On the other hand, if the

variances are reversed, that is if Cv = .10 and aH = .15, the project

will appear as a safe office project allowing to capture a riskier,
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but possibly more profitable residential opportunity. These two

situations are illustrated by Figure 6.6.

probability

(safer)

.15 (riskier)

=.10

;afer)

Si -0

85 90 value 85 90 value

Figure 6.6: Two Configurations for a Safe and a Risky Project

The calculations for these two configurations gave surprisingly

the same result (S = $79.994). This can probably be generalized to

other values of Uv, oH, and P. This identity may be attributable to

the fact that these options are "way in the money," so that the whole

distributions are evaluated (their symmetry may intervene). To

determine conclusively the reason for this result, more research is needed

on the problem, but is beyond the scope of this current thesis. This

question will be addressed again in section 4 for a higher exercise

price.

Finally, Figure 6.7 shows the results of a sensitivity analysis

with respect to the parameters H (value of apartment alternative) and '

(design and construction phases durations).
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Hcall option comparison
80 85 90 95 10 on V only (1) with H=85(2)

2 75.502 77.279 79.664! 82.635 86.126 72.957 5.92%

3 78.017 79.994 82.4761 85.437 88.828 74.267 7.71%

4 80.288 82.398 84.949 87.913 91.252 75.477 9.17%

5 82.363 84.572 87.178 90.150 93.459 76.594 10.42%

other parameters: V = 90 av = .15 F = 20

aH = .10 P = .5 r = .08

(1): this column shows the value of the call option on asset V only

(2): this column shows the percentage additional value attributable to

the choice between two uses for H = 85, V = 90, and different values

of T (expressed in % of the call option on V)

Figure 6.7: Sensitivity Analysis with Respect to H and T

A longer time to maturity clearly increases the value of the

option. As this effect is partly attributable to the increase in the

value of the dominant project V, we have indicated in column (1) the

value of this simple call option. A calculation of the percentage

increase attributable to the dual alternative when V = 90 and H = 85

shows however also an increase from 5.92% (2 years) to 10.42% (5

years). The choice between the two assets also becomes more valuable

as time increases.

The effect of changes in H can be best interpreted for H between

$80 and 90, when the dominant project is still the office alternative.

The option value always increases when H increases, showing that the

dual alternative becomes best valuable when H and V are equal.
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6.4 The Design Option When Two Development Schemes are Possible

Besides the valuation of the use option when a common design

allows two uses, the model of valuation of an option on the maximum of

two assets can also be applied to the design option, when two totally

different development schemes are possible. This case is different

from the study in section 3 since the construction cost (F) is here in

the same order of magnitude as the value of the two development

alternatives. It may even be higher than these values if no

development is profitable in the immediate future. As a consequence,

the exercise decision is not as immediate as in the preceding case. In

other words, a third alternative is possible, the alternative not to

exercise the option, whose value is generally known as the "right to

default."

In this study, we will use most of the data discussed in section

1. The two development alternatives are an office building (value V =

$90 p.s.f., variance av = .15) and a residential building (H = $85

p.s.f., %H = .10). Unlike the preceding case, these buildings are

assumed to be totally different. Their cost is assumed however to be

the same, or $80 p.s.f. in the base case. As we focus here on the

design option, the next steps of the construction process have been

disregarded. $85 and $90 can be considered as the values provided by

the use options for both developments, or simply the values of the

income produced by these projects.

The results in the base case are presented in Figure 6.8. The

value of the land is found to be $32.875 p.s.f., or 18% more than if

the dominant development scheme is considered alone.
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office building
V = $90, ov = .15
F = $80

land value ( = 3 years)
$32.875

apartment building /
H = $85, a = .10
F = $80

call option on V = $27.919

additional value for two development schemes: $5.056
(or 18.2% of the initial value)

Figure 6.8: The Design Option When Two Development Schemes are
Possible

)P= .5

70 1 80 90 100 110

.05 40.663 32.797 24.960 17.532 11.590

.10 40.670 32.875 25.363 18.557 12.892

.15 41.745 34.082 26.825 20.291 14.750

.20 43.565 35.994 28.883 22.499 17.044

.25 45.808 38.296 31.276 24.992 19.607
__________ _____________________________ ___________________

Figure 6.9: Sensitivity Analysis with Respect to F and OH
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The sensitivity analysis with respect to most parameters does not

differ significantly from the results presented in section 3. The same

tables as in Figures 6.5 and 6.7 could be drawn concerning the effect

of changes in P,c5H,T, and H.

The most interesting results are found when calculations are done

with different exercise prices. As stated in Appendix 1, the

construction cost, F, is equal for both projects since the study of

these types of options by R. Stulz (reference [91) does not provide a
two

valuation formula foridifferent exercise prices. In real cases, this

will generally not be true. Figure 6.9 shows option values obtained

when F varies from $70 to $110 p.s.f. A second dimension is provided

by variations of O(f from .05 to .25.

We can notice in this table that the option has value even if the

construction cost, F, is much higher than both project's values. In

that case, the variances of the two projects have an increasing effect

on the land's value. When F = $110, the option value almost doubles

when aH varies from .05 to .25. When CH = .25, project H provides even

more value to the option than project V, since the call option on H

alone is worth $13.95 while the option on V is only worth $10.96.

Finally, exchanging the variances in the base case (that is,

assuming Cv = .10 and C-i = .15) provides $32.846 as option value,

instead of $32.875. A dominant risky project supported by a safer

alternative is slightly more valuable than the contrary. This result

seems to be confirmed by calculations for other exercise prices and

correlations. The difference is not large, although other tradeoffs

between V and H and Jv and CH have not been studied.
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6.5 An Example of Renovation Option

Although no emphasis will be put on analysing the value of a

renovation operation, a numerical example is presented here in order to

show how the model of infinite put option can be used in this situation

(This model is described in section 2.3.3 and Appendix 2).

We assume here that the developer has finally chosen the office

space use in our basic example, for an expected value of $90 p.s.f.

This value is expected to decrease with time as rents will be

perceived, with a payoff ratio Yv = .06. Therefore, the value of this

use is V = 90e - . 0 6 t.

The developer still has the possibility to renovate his building

later, for a residential use. At the beginning of the operation phase,

the conversion cost can be evaluated at $25 per square foot (finishes

$20 + fees), so that the immediate value of this use is $60 p.s.f.

This value is expected to decrease with a .04 payoff ratio. Therefore,

H 60e - - 0 4 t.

The curves of V and H over time are represented in Figure 6.10.

They intersect when H = V, or 60e -' 04t = 90e -' 06t, that is t ~ 20

years. At that moment, the non renovated office building and the

renovation project have the same value, or $27.1 p.s.f. This is the

expected optimal date for the renovation operation.

Using the variances av = .15 and oH = .10, and the correlation

P = .5 as in the other examples, the value of this option can be

derived, using the expressions presented in Appendix 2.
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initial use (office space)

-- renovation project (apartments)

20 years

office use: V = 90e -Yvt, Yv = 6%, av = 15%

apartment use: H = 60e -YHt, YH = 4%, % = 10%

correlation between H and V: P - .5

value of the renovation option = $9.43 p.s.f.
(or 10.5% of the office project)

Figure 6.10: Model and Value of a Renovation Option
from Office Space to Residential Use
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V
X = = 1.5

H

a= 02 - 2 P U + a2  .1323
x v v H H

1 0 

22+
(Y Y -Y - 2/2)2 + 2  02S H V 2 x H V x H xa2

- 1.0535

x

H fl+a V1-2
value = L' = $9.43 p.s.f.

1+a a H

Thus, $9.43 (10.5% of V) is the value of the renovation option.

At this point, it is now possible to calculate the value of a

project in which a building can accomodate offices or apartments,

through a whole design-use-renovation valuation process. This design

offers the following opportunities:

- a choice between offices or apartments at the end of the

construction phase (see section 3)

- if the office use is selected, the later renovation of the building

for a residential use if the market is favorable

- if the residential use is selected, the later renovation of the

building for use as offices.

This process is described in Figure 6.11. These three options add

value to this project in comparison with a project with a single use.

The value of these opportunities may make this development scheme

attractive enough to justify a more elaborated design at a higher cost,

i.e., if the value of the option exceeds the additional cost.
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use for
offices

project design

begins
& construction

renovation
operations

\use for
apartments

Figure 6.11: Development Opportunities of an Office/Apartment
Building as Described by a Design-use-renovation
Model for the Construction Process
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CONCLUSION

When this study began, in early 1984, its subject was easy to

express: what can be done with the option valuation model in the area

of the construction industry? No former research or similar approach

had investigated this field of applications. This subject was

therefore new and open-ended.

The points discussed in this thesis provide a partial answer to

this question. It is possible to define a construction project by

means of a series of options. The decision on the design, use, or

renovation of a facility take a new significance when viewed as

options. Other more specific applications can be found for certain

types of projects. The option model may be applied to a variety of

purposes such as buildings, plants, or infrastructure projects.

The practical use of the option model however raises more

questions than it provides answers. For example, a piece of land is

not viewed realistically by an infinite call option model. One may

also question whether a developer taking advantage of the best oppor-

tunities offered to him would necessarily gain the 5 to 20% additional

value promised when options are identified. On the other hand, the

numerical results are sensitive to parameters such as variances and

correlation in accordance with intuitive judgement.

All these points would be interesting to investigate in more

detail. This study is surely far from exhausting all the resources of

this model in the construction environment. Finite judgements on its

applications are not appropriate. More investigations are needed

before any realistic application can be done, and it is hoped that this

study will be useful in this effort.
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APPENDIX 1: OPTION ON THE MAXIMUM OF TWO RISKY ASSETS

The option on the maximum of two risky assets was studied by Rene

Stulz. In his article in the Journal of Financial Economics (reference

9), a solution is derived as a function of the following parameters:

V = value of the first asset

H = value of the second asset

F = exercise price (identical for both assets)

T = time to maturity

r = risk-free interest rate

av = variance of the rate of return of V

aH = variance of the rate of return of H

P = correlation coefficient between V and H

The value of the option, noted M, is found to be:

M = C(v,F,t,r,av) + C(H,F,T,r,aH) - m

m = H N (Y + a Y` , (ln(V/H) - 1 a2 )//', (2pa a )/a)
2 1 H 2 v H

+ V N(Y + , (n(H/V) - (a - ) / a)
2 2 v 2 H V
-rt

- F e N2 (Y I ,Y 2 ,P)

in which:

C(S,E,t,r,a) is the value of a simple call option (see section 1.2)

m is the value of the option on the minimum of assets V and H

N2 (a,3,9 ) is the bivariate cumulative standard normal distribution

with upper limits of integration a and B, and coefficient of

correlation 0
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ln(H/F) + (r - . )
Y
1 -- i

H

In(V/F) + r -1 2 )
2 V

2
V

O2 = + 2 - 2Pa a
V H V H

A careful reader of R. Stulz may notice a difference with the

expression presented in his article. Two typing errors were found in

the second parameters of the first two biivariate function expressions

(a 2 T instead of a2/i, for reasons of homogeneity)

When F--, the expression is simpler:

M = H + VN(dl) - HN(d 2 )

In(V/H) + 1- 0'2
where d -

d2 - dl - a1T

2 a 2 - 2PC a + a2

V V H H

N(-) = normal distribution function

Both expressions have been used for the computer program in

FORTRAN presented at the end of this appendix. The calculation of

option values are possible for both F>0O and F=0O, although this last

case was not studied in the numerical applications. The program can

also provide as outputs the value of an option on the minimum of two

assets and, when F=0O, the value of an option to exchange asset H for

asset V.
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This program requires the use of an external function for

calculations of bivariate normal probabilities. This function may be

included in scientific subroutine packages accessible on the computer.

As this was not the case for this study, a program was written using

Roy C. Milton article in Technometrics (reference (251).

Finally, two properties of the option on the maximum of two assets

are demonstrated in Rene Stulz article:

- M>C(V,F,T,r,Cv) as well as M)C(H,F,T,r,cH). The option value is

always superior or equal to the values of the simple call options on

each of the assets.

- M is a decreasing function of the correlation coefficient P. M is

maximal when P=-1 and minimal when P=1.

The value of this option has not been derived when the exercise

price for asset V is different from the exercise price for H. There is

probably no theoretical difficulty in addressing this problem. The

expression of the option value may however be even larger than the

formulas presented here.
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Vm in=v-vexch
vim ex =h* vexch h

wr ite(1• 170)
wr te( l, 171i vexch

ao to 110

format (xq'option or the minimum v in=* ,f10.5)
format itxs "v= I #fl 0,95,5 , *h=*, f 0°5)

fornmat(5x,'ootion on tne maximumn vmaux=I t0,f.5
formiat(5x,*caLL option on v cv=*f,10.51
format(Sx,'call option on n cn0,0f10.5)
form at ( -*- ..... of --- - - - - -
format(ix~'simptified calculations for a zero exercise price-*
format(5x~'option to exchange v for h vexch=',flO.5)
end
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SimpLe caltL vluatiin

su ýroutine cop t ( s to
t sr= t W.15
S1=(aLog(s/e)*(rsi vws

d2=dl -si gt sr

caLL ndtr(dSpltdenl)
caLL natr(d2p2tdaen2)
v = spl-e~expt -r* t Iw2
if tv.Lt0. 00) v=0.00
return
ren

r si - v)

i S 5) t /si 6 tsr

Cumulativ, normal cistrioution function

su routlne ndtr(xo adl)
ex=: bs(x

ittax.t.7. )go to 4
t=1./(1.*.; 3161i9wx

o -1 °3Z, 027 4 t -1 ,E8 1 17- 6 t 4 7& 78 7E

ýotc 10
d= 0.
0 .-99 99
i f (x Lt D.0 p=.=1 )

if (pt pL..00 00 00 )p .000 0001
return -
en
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APPENDIX 2: PERPETUAL AMERICAN PUT OPTION

This appendix derives the value of a perpetual put option on a

dividend paying project for a deterministic or a stochastic salvage

value. For a more detailed discussion of this problem and more

sophisticated resolution methods, see Stewart Myers and Saman Majd

paper (reference [3]). The solution presented here was suggested by

Saman Majd as a satisfactory approximation to his calculations for a

finite time to maturity (error inferior to 10%). It can be traced back

to Robert Merton article in the Bell Journal of Economics (reference

(5]).

Case of a Deterministic Salvage Value

The problem can be defined with the following variables:

P: project's value at t=0 (the notation P(t) is used for t>O)

S: salvage value

a: standard deviation of the rate of return of P

Y: payout ratio of the project

r: risk-free interest rate

The project's value is assumed to follow stochastic movements.

Its value is forecasted to decrease over time as cash flows are

received. The constant payout ratio hypothesis means that at time t,

the project will produce a cash flow equal to Y times the project's

value: CF(t) = YP(t). As a consequence, project's value and cash

flows are expected to decline by Y percent per year (the expected

values are exponential function, e.g. P(t)=Pexp(-Yt)). In this

section, the salvage value is supposed to be constant with a value S

for any t.
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The stochastic process describing the project value is

-dP ( - Y) dt + a dz

where xP is the expected rate of change of P.

Let F(P) be the value of the put option. Since the time to

maturity is infinite, this function does not depend on the time

variable. If P is the chosen level to exercise the put option, the

differential equation satisfied by F(P) is:

1 2 2 F dF
- - +G (r-Y)P -- rF = 02 2dp dPdP

subject to F(+c) = 0 (1)

F(P) = K - P (2)

This homogeneous differential equation admits as solutions the
-c -a

functions F(P) = h1(P)P 1 + h2 (p)p 2, where (-J1) and (-a 2 ) are

solutions of the associated second degree equation. (1) implies that

C1 or a2 have to be positive. The solution can therefore be rewritten

as

F(P) = h(P)P-a

i=(r-Y- -a2) + X(r-Y- / + 2r(2

The second boundary condition allows to calculate h(P) since

h(P)P -  = S-P. Replacing h(P) by its value, we find the expression

F(P): F(P) = (Spa - pl+c) p-a

The best exercise level, P, can now be computed to optimize the

option value.
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3F- S
- = 0 leads to P = --S1+8

Replacing in the expression of F(P), we finally obtain

S rl+a] p -a
F(P) = --- 1 P+a a S

a defined as above

Case of a Stochastic Exercise Price

In the case where S follows the same type of movements as P

2
(variance ,s, payout ratio YS), and when S and P are correlated with

the coefficient P, a simple transformation allows to derive the value

of the put option. A new project X, and a constant salvage value K are

defined by the following relations:

X = P/S (new project's value)

02 = 2 - 2Pa a + 02
x P PS S

Yx = Yp

K = 1 (new salvage value)

r = YS (the riskless rate is substituted for YS)

The value of the put option on project X can be computed by using

the expression derived in section 1. This is the value of the put

option on P expressed in percentage of the salvage value S. The final

expression is therefore:

F(P) = +[,+ p"1+a a S

(Y --  . 1 02)+ 2Y 02
S P 2 x S p 2 x S x

a2
x
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