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Abstract 

The MIT Integrated Global System Model is used to make probabilistic projections of climate 
change from 1861 to 2100. Since the model’s first projections were published in 2003 substantial 
improvements have been made to the model and improved estimates of the probability 
distributions of uncertain input parameters have become available. The new projections are 
considerably warmer than the 2003 projections, e.g., the median surface warming in 2091 to 
2100 is 5.1oC compared to 2.4oC in the earlier study. Many changes contribute to the stronger 
warming; among the more important ones are taking into account the cooling in the second half 
of the 20th century due to volcanic eruptions for input parameter estimation and a more 
sophisticated method for projecting GDP growth which eliminated many low emission scenarios. 
However, if recently published data, suggesting stronger 20th century ocean warming, are used 
to determine the input climate parameters, the median projected warning at the end of the 21st 
century is only 4.1oC. Nevertheless all our simulations have a very small probability of warming 
less than 2.4oC, the lower bound of the IPCC AR4 projected likely range for the A1FI scenario, 
which has forcing very similar to our median projection. The probability distribution for the 
surface warming produced by our analysis is more symmetric than the distribution assumed by 
the IPCC due to a different feedback between the climate and the carbon cycle, resulting from a 
different treatment of the carbon-nitrogen interaction in the terrestrial ecosystem.  
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1. INTRODUCTION 
Projections of anthropogenic global warming have from the start been confounded by the 

many economic and scientific uncertainties that affect forecasts of anthropogenic emissions and 
the response of the climate system to these emissions (e.g., Houghton et al. 2001 and Solomon et 
al. 2007).  Up until 2001, the uncertainties in the projected climate changes were generally dealt 
with by giving ranges of projected changes, but without any likelihoods being associated with 
these ranges. Such projections leave it to the non-expert reader to assign probabilities to the 
possible outcomes; Moss and Schneider (2000) advocated that projections should be given in 
probabilistic terms to provide more complete information.  

Subsequently, considerable effort has been devoted to quantifying the scientific uncertainties 
associated with climate model projections for a given forcing scenario. Most notably the latest 
IPCC report (Meehl et al. 2007a) attempted to do this for the six SRES scenarios (Nakicenovic et 
al. 2000) using a variety of coupled atmosphere-ocean general circulation models (AOGCMs) 
and models of intermediate complexity. These projections and different sources of uncertainty 
have been reviewed by Knutti et al. (2008). 

While formal uncertainty analysis of emissions projections was investigated a couple of 
decades ago (e.g. Nordhaus and Yohe 1983; Edmonds and Reilly 1985; Reilly et al. 1987) it was 
largely ignored by the scientific community. The IPCC SRES process eschewed formal 
uncertainty analysis of emissions in favor of scenario analysis (Nakicenovic et al. 2000). Despite 
clear statements to the contrary (Nakicenovic et al. 2000) there have been attempts in the 
literature to interpret the SRES scenarios in a probabilistic or quasi-probabilistic sense to 
investigate the joint effects of uncertainty in emissions and climate outcomes (e.g. Wigley and 
Raper 2001). In the latest IPCC report uncertainty ranges for possible climate changes are given 
separately for different SRES scenarios and reflect only uncertainty in climate system response 
(Meehl et al. 2007a). 

The most comprehensive formal treatment of both emissions and scientific uncertainties to 
date is that of Webster et al. (2003). In that work, uncertainty in emissions projections was 
driven by uncertainty in future economic growth and technological change (Webster et al. 2002) 
as well as uncertainty in current levels of emissions (Olivier and Berdowski 2001).  The climate 
system uncertainties were quantified from an analysis of observed 20th century temperature 
changes (Forest et al. 2002). 

In this paper, we update the Webster et al. (2003) probabilistic projections of climate change 
from the present to 2100. The Webster et al. (2003) used the MIT Integrated Global System 
Model (IGSM, Prinn et al. 1999), which couples an economic component (the MIT Emissions 
Prediction and Policy Analysis model, EPPA (Babiker et al. 2001) to a climate model of 
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intermediate complexity (Sokolov and Stone 1998; Wang et al. 1998).  
The IGSM was designed to be flexible and numerically efficient and so is well-suited for use 

in making probabilistic projections. For example, its climate sensitivity can be varied by 
changing its cloud feedback and the rate of penetration of heat into the deep ocean can be varied 
by changing an appropriate mixing coefficient (Sokolov et al. 2005). This flexibility allows us to 
avoid, to a considerable extent, the structural rigidity that limits the ability of individual coupled 
AOGCMs to assess uncertainty in projections of global change. Also, the use of parameters’ 
distributions as constrained by 20th century temperature changes allows us to cover full 
uncertainty ranges for the climate system properties controlled by the model parameters.  The 
economic and emissions component of the IGSM is driven by growth in the general economy 
and includes representation of final consumption and trade in all goods services, including a 
relatively detailed treatment of factors driving emissions from energy, agriculture, waste and 
industrial sources as they depend on resource availabilities and technological alternatives 
(Paltsev et al. 2005).  The IGSM was used as part of the recent US CCSP scenarios exercise to 
generate a set of new global scenarios of emissions with and without policy intervention (CCSP 
2007) and so this work extends the scenario approach applied there to a probabilistic analysis. 

Since Webster et al. (2003) was published, the IGSM has been upgraded as described by 
Sokolov et al. (2005). These upgrades include an increase in resolution of the atmospheric 
model, replacement of a zonally-averaged mixed layer ocean model by a latitude-longitude 
resolving one, implementation of more sophisticated land system model, and a more detailed 
representation of the national and regional economies of the world.  In addition to the 
improvements made to the IGSM itself, the results presented here are based on a new analysis of 
factors contributing to uncertainty in emissions (Webster et al. 2008).  Simulations of 20th 
century climate used to derive distributions of earth system properties (Forest et al. 2008) were 
carried out with a more complete set of natural and anthropogenic forcings than simulations used 
by Forest et al. (2002). 

These changes led to relatively moderate changes in the distributions of both the projected 
emissions and the climate system’s response to a given forcing. However, due to nonlinear 
interactions between these factors, the net effect has been to shift the distributions of warming 
and sea level rise substantially upward when compared to Webster et al. (2003).  As discussed in 
detail in later sections, the overall shift in the distribution, which doubles the previous median 
estimate of warming, has no single major contributing factor but rather results from the 
combination of several changes. 

One critical factor to consider is the source of the input distributions and the sensitivity of 
any results to them. In particular, the distributions presented by Forest et al. (2008) were 
obtained using estimates of changes in deep ocean heat content for the 0-3000 m layer provided 
by Levitus et al. (2005). A recent update of the Levitus et al. (2005) analysis (given on the 
NOAA website) corrects for errors in the XBT data pointed out by Gouretski and Koltermann 
(2007), but nevertheless obtains virtually the same result as the original analysis. However 
Gouretski and Koltermann (2007) and Domingues et al. (2008), who also attempt to take into 
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account these errors, come up with different estimates of changes in the ocean heat content for 
the 0-3000 m layer. Sokolov et al. 2008b have shown that projections of future climate change 
are sensitive to the distributions of climate model parameters derived using these alternative 
estimates of the changes in deep-ocean heat content. For consistency with our earlier study 
(Webster et al. 2003) we carried out our simulations using the climate parameter distributions 
based on the analysis of Levitus et al. (2005). However, given the significant influence of the 
estimate of the ocean heat uptake on the projections, we also discuss the sensitivity of our results 
to other estimates of the changes in the heat content of the deep ocean.  

The outline of the paper is as follows. In section 2 the updated IGSM is described. Then in 
section 3 we present our methodology, enumerating the uncertainties taken into account, how 
they are characterized, and how the probabilistic projections are made. In section 4 we give our 
21st century projections for a variety of indicators of changes in the earth system including  
greenhouse gas (GHG) concentrations, surface air temperature (SAT) changes, and sea-level rise 
(SLR) and we compare our results with those of Webster et al. (2003) and the IPCC's AR4. 
Finally we give our conclusions in section 5. 

2. MODEL COMPONENTS  

The MIT Integrated Global System Model includes sub-models of the relevant parts of the 
natural earth system and a model of the human activity. A description of the IGSM Version 1, 
along with sensitivity tests of key aspects of its behavior, was reported in Prinn et al. (1999).  
Version 2 of the IGSM (IGSM2, Sokolov et al. 2005) includes the following components 
(Figure 1): 

A model of human activities and emissions (the Emissions Prediction and Policy Analysis 
Model), 

An atmospheric dynamics, physics and chemistry model, which includes a sub-model of 
urban chemistry,  

A mixed layer/ anomaly diffusing ocean model (ADOM) with carbon cycle and sea ice sub-
models, 

A land system model that combines the Terrestrial Ecosystem Model (TEM), a Natural 
Emissions Model (NEM), and the Community Land Model (CLM), that together describe 
the global, terrestrial water and energy budgets and terrestrial ecosystem processes. 

The Earth climate system component of the IGSM is a fully coupled model which allows 
simulation of critical feedbacks between components.  The time steps used in the various sub-
models range from 10 minutes for atmospheric dynamics to 1 month for TEM, reflecting 
differences in the characteristic timescales of the various processes simulated by the IGSM.  

The IGSM is distinguished from other similar models by its inclusion of significant chemical 
and biological detail. Our models of the terrestrial carbon, methane and nitrous oxide cycles are 
coupled to climate, terrestrial hydrology and land ecosystems models, which provide the needed 
explicit predictions of temperature, rainfall, and soil organic carbon concentrations. The 
prediction of global anthropogenic emissions of CO2, CO, NOx, black carbon, SOx and other key 
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species is based on a regionally disaggregated model of global economic growth. This procedure 
allows for treatment over time of a shifting geographical distribution of emissions, changing 
mixes of these emissions, and recognition of the fact that the emissions of chemicals important in 
air pollution and climate are highly correlated due to shared generating processes like 
combustion. 

 
                                  Figure 1. The MIT IGSM version 2.2 

The major model components of the IGSM2 and recent developments in their capabilities and 
linkages are summarized below. 

2.1 Human activity and emissions  

The Emissions Prediction and Policy Analysis (EPPA) Model is a general equilibrium model 
of the world economy developed by the MIT Joint Program on the Science and Policy of Global 
Change (Paltsev et al. 2005). For economic data, it relies on the GTAP dataset (Dimaranan and 
McDougall, 2002), which accommodates a consistent representation of regional macroeconomic 
consumption, production and bilateral trade flows. The energy data in physical units are based on 
energy balances from the International Energy Agency. EPPA model also uses additional data 
for past greenhouse gas emissions (carbon dioxide, CO2; methane, CH4; nitrous oxide, N2O; 
hydrofluorocarbons, HFCs; perfluorocarbons, PFCs; and sulphur hexafluoride, SF6) and past air 
pollutant emissions (sulphur dioxide, SO2; nitrogen oxides, NOx; black carbon, BC; organic 
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carbon, OC; ammonia, NH3; carbon monoxide, CO; and non-methane volatile organic 
compounds, VOC) based on United States Environmental Protection Agency inventory data 
supplemented by our own estimates. 

Much of the model’s sectoral detail is focused on energy production to represent 
technological alternatives in electric generation and transportation. From 2000 to 2100 the model 
is solved recursively at 5-year intervals. The EPPA model production and consumption sectors 
are represented by nested Constant Elasticity of Substitution (CES) production functions (or the 
Cobb-Douglas and Leontief special cases of the CES). The model is written in the GAMS 
software system and solved using MPSGE modeling language (Rutherford 1995). The EPPA 
model has been used in a wide variety of policy applications (e.g., Jacoby et al. 1997; Reilly et 
al. 1999; Babiker et al. 2003; Reilly and Paltsev 2006; US CCSP 2007; Paltsev et al. 2008). 

Because climate and energy policy are our main focus, the model further disaggregates the 
data for transportation and existing energy supply technologies and as well includes a number of 
alternative sources that are not in widespread use now, but could take market share in the future 
under changed energy prices or climate policy conditions. Bottom-up engineering details are 
incorporated in EPPA model in the representation of these alternative energy supply 
technologies. The competitiveness of different technologies depends on the endogenously 
determined prices for all inputs, and those prices depend in turn on depletion of resources, 
economic policy, and other forces driving economic growth such as savings, investment, energy-
efficiency improvements, and productivity of labor. Additional information on the model’s 
structure can be found in Paltsev et al. (2005). 

2.2 Atmospheric Dynamics and Physics  

The MIT two-dimensional (2D) atmospheric dynamics and physics model (Sokolov and 
Stone 1998) is a zonally averaged statistical-dynamical model that explicitly solves the primitive 
equations for the zonal mean state of the atmosphere and includes parameterizations of heat, 
moisture, and momentum transports by large scale eddies based on baroclinic wave theory 
(Stone and Yao 1987 and 1990). The model’s numerics and parameterizations of physical 
processes, including clouds, convection, precipitation, radiation, boundary layer processes, and 
surface fluxes, are built upon those of the Goddard Institute for Space Studies (GISS) GCM 
(Hansen et al. 1983). The radiation code includes all significant greenhouse gases (H2O, CO2, 
CH4, N2O, CFCs and O3) and eleven types of aerosols. The model’s horizontal and vertical 
resolutions are variable, but the standard version of IGSM2 has 4° resolution in latitude and 
eleven levels in the vertical.  

The MIT 2D atmospheric model allows up to four different types of underlying surface in 
each grid cell (ice free ocean, sea-ice, land, and land-ice). The surface characteristics (e.g., 
temperature, soil moisture, albedo) as well as turbulent and radiative fluxes are calculated 
separately for surface type. The atmosphere above is assumed to be well mixed zonally in each 
latitudinal band.  The area-weighted fluxes from the different surface types are used to calculate 
the change of temperature, humidity, and wind speed in the atmosphere.  Convection and large-
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scale condensation are simulated under the assumptions that a zonal band may be partially 
unstable or partially saturated, respectively. The moist convection parameterization, which was 
originally designed for the GISS Model I (Hansen et al. 1983), requires knowledge of sub-grid 
scale temperature variance. Zonal temperature variance associated with transient eddies is 
calculated using a parameterization proposed by Branscome (see Yao and Stone 1987). The 
variance associated with stationary eddies was represented in the IGSM1 by adding a fixed 
variance of 2 K at all latitudes. In the IGSM2 we introduce a latitudinal dependence of the latter 
variance that follows more closely the climatological pattern (see Figure. 7.8b of Peixoto and 
Oort 1992). In addition, the threshold values of relative humidity for the formation of large-scale 
cloud and precipitation have been modified such that a constant value for all latitudes (as used in 
the IGSM1) is replaced with latitudinally varying values. This modification is made to account 
for the dependence of the zonal variability of relative humidity on latitude. Zonal precipitations 
simulated by atmospheric model are partitioned into land and ocean components using present 
day climatology.  These changes led to an improvement in the zonal pattern of the annual cycle 
of land precipitation and evapotranspiraton (Schlosser at al. 2007). 

 The atmospheric model’s climate sensitivity can be changed by varying the cloud feedback. 
The method for changing this feedback in the model has been changed from the method used 
previously. In the IGSM1 the cloud cover at all levels was changed by a fixed fraction, which 
depended on the global mean surface temperature (Sokolov and Stone 1998). In the IGSM2 high 
cloud covers and low cloud covers are changed in opposite directions by a constant factor, which 
is again dependent on the global mean surface temperature. The new method, described by 
Sokolov (2006), shows better agreement with changes simulated by AOGCMs. 

2.3 Atmospheric Chemistry 

To calculate atmospheric composition, the model of atmospheric chemistry includes an 
analysis of the climate-relevant reactive gases and aerosols at urban scales, coupled to a model of 
the processing of exported pollutants from urban areas (plus the emissions from non-urban areas) 
at the regional to global scale. For calculation of the atmospheric composition in non-urban 
areas, the above atmospheric dynamics and physics model is linked to a detailed 2D zonal mean 
model of atmospheric chemistry. The atmospheric chemical reactions are thus simulated in two 
separate modules, one for the 2D model grids and one for the sub-grid-scale urban chemistry. 

2.3.1 Urban Air Chemistry 

The analysis of the atmospheric chemistry of key substances as they are emitted into polluted 
urban areas is an important addition to the integrated system since the version described in Prinn 
et al. (1999). Urban air pollution is explicitly treated in the IGSM for several reasons. It has a 
significant impact on global methane, ozone and aerosol chemistry, and thus on climate. 
However, the nonlinearities in the chemistry cause urban emissions to undergo different net 
transformations than rural emissions. Accuracy in describing these transformations is necessary 
because the atmospheric lifecycles of exported air pollutants such as CO, O3, NOx and VOCs, 
and the climatically important species CH4 and sulfate aerosols, are linked through the fast 
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photochemistry of the hydroxyl free radical (OH) as we will emphasize in the results discussed 
later in section 5. Urban air-shed conditions need to be resolved at varying levels of pollution. 
The urban air chemistry model must also provide detailed information about particulates and 
their precursors important to air chemistry and human health, and about the effects of local 
topography and structure of urban development on the level of containment and thus the intensity 
of air pollution events. This is an important consideration because air pollutant levels are 
dependent on projected emissions per unit area, not just total urban emissions.  

The urban atmospheric chemistry model has been introduced as an additional component to 
the original global model (Prinn et al. 1999) in IGSM1 (Calbo et al. 1998; Mayer et al. 2000; 
Prinn et al. 2007). It was derived by fitting multiple runs of the detailed 3D California Institute 
of Technology (CIT) Urban Airshed Model, adopting the probabilistic collocation method to 
express outputs from the CIT model in terms of model inputs using polynomial chaos expansions 
(Tatang et al. 1997). This procedure results in a reduced format model to represent about 200 
gaseous and aqueous pollutants and associated reactions over urban areas that is computationally 
efficient enough to be embedded in the global model. The urban module is formulated to take 
meteorological parameters including wind speed, temperature, cloud cover, and precipitation as 
well as urban emissions as inputs. Calculated with a daily time step, it exports fluxes along with 
concentrations (peak and mean) of selected pollutants to the global model.  

2.3.2 Global Atmospheric Chemistry 

The 2D zonal mean model that is used to calculate atmospheric composition is a finite 
difference model in latitude-pressure coordinates, and the continuity equations for trace 
constituents are solved in mass conservative or flux form (Wang et al. 1998). The model 
includes 33 chemical species. The continuity equations for CFCl3, CF2Cl2, N2O, O3, CO, CO2, 
NO, NO2, N2O5, HNO3, CH4, CH2O, SO2, H2SO4, HFC, PFC, SF6, black carbon aerosol, and 
organic carbon aerosol include convergences due to transport, parameterized north-south eddy 
transport, convective transports, local true production or loss due to surface emission or 
deposition, and atmospheric chemical reactions. In contrast to these gases and aerosols, the very 
reactive atoms (e.g., O), free radicals (e.g., OH), or molecules (e.g., H2O2) are assumed to be 
unaffected by transport because of their very short lifetimes; only chemical production and/or 
loss (in the gaseous or aqueous phase) is considered in the predictions of their atmospheric 
abundances.  

There are 41 gas-phase and twelve heterogeneous reactions in the background chemistry 
module applied to the 2D model grid. The scavenging of carbonaceous and sulfate aerosol 
species by precipitation is also included using a method based on a detailed 3D climate-aerosol-
chemistry model (Wang 2004). Water vapor and air (N2 and O2) mass densities are computed 
using full continuity equations as a part of the atmospheric dynamics and physics model to which 
the chemical model is coupled. The climate model also provides wind speeds, temperatures, solar 
radiation fluxes and precipitation, which are used in both the global and urban chemistry 
formulations.  
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2.3.3 Coupling of Global and Urban Chemistry Modules 

The urban chemistry module was derived based on an ensemble of 24-hour long CIT model 
runs and thus is processed in the IGSM with a daily time step, while the global chemistry module 
is run in a real time step with the dynamics and physics model, 20 minutes for advection and 
scavenging, 3 hours for tropospheric reactions. The two modules in the IGSM are processed 
separately at the beginning of each model day, supplied by emissions of non-urban and urban 
regions, respectively. At the end of each model day, the predicted concentrations of chemical 
species by the urban and global chemistry modules are then remapped based on the urban to non-
urban volume ratio at each model grid. Beyond this step, the resultant concentrations at each 
model grid will be used as the background concentration for the next urban module prediction 
and also as initial values for the global chemistry module (Mayer et al. 2000). 

2.4 Ocean Component 

In the older IGSM1 (Prinn et al. 1999) a zonally averaged mixed layer ocean model with 7.8° 
latitudinal resolution was used.  In the new IGSM2 the ocean component has been replaced by 
either a two-dimensional (latitude-longitude) mixed layer anomaly-diffusing ocean model 
(hereafter denoted as IGSM2.2) or a fully three-dimensional ocean GCM (denoted as IGSM2.3).  
Dalan et al. (2005b) showed that different versions of the 3-D ocean model with different rates 
of heat uptake can be produced by changing the vertical/diapycnal diffusion coefficients. 
However, changing the diapycnal coefficient also alters the ocean circulation, in particular the 
strength of North Atlantic overturning (Dalan et al. 2005a). Unfortunately it appears infeasible 
(certainly without changes to parameterizations in the 3-D models) to vary the heat uptake over 
the full range consistent with observations during the 20th century (Forest et al. 2008) and at the 
same time to maintain a reasonable circulation.   

The ocean component of the IGSM2.2 consists of a Q-flux mixed layer model with 
horizontal resolution of 4° in latitude and 5° in longitude, and a 3000m deep anomaly diffusing 
ocean model beneath. The mixed layer depth is prescribed based on observations as a function of 
time and location (Hansen et al. 1983).  In addition to the temperature of the mixed layer, the 
model also calculates the averaged temperature of the seasonal thermocline and the temperature 
at the annual maximum mixed layer depth (Russell et al. 1985). Diffusion in the deep ocean 
model is applied to the difference in the temperature at the bottom of the seasonal thermocline 
relative to its value in a present-day climate simulation (Hansen et al. 1984; Sokolov and Stone 
1998). Since this diffusion represents a cumulative effect of heat mixing by all physical 
processes, the values of the diffusion coefficients are significantly larger than those used in sub-
grid scale diffusion parameterizations in OGCMs. The spatial distribution of the diffusion 
coefficients used in the diffusive model is based on observations of tritium mixing into the deep 
ocean (Hansen et al. 1988). For simulations with different rates of oceanic heat uptake, the 
coefficients are scaled by the same factor in all locations.  

The coupling between the atmospheric and oceanic components takes place every hour and is 
described by Kamenkovich et al. (2002) and Sokolov et al. (2005).  

 9



The mixed layer model also includes a specified vertically-integrated horizontal heat 
transport by the deep oceans, a so-called “Q-flux”, allowing zonal as well as meridional 
transport. This flux is calculated from a simulation in which sea surface temperature (SST) and 
sea ice distribution are relaxed toward their present-day climatology with relaxation coefficient 
of 300 W/m2/K, which corresponds to an e-folding time scale of about 15 days for a 100 m deep 
mixed layer. Relaxing SST and sea ice on such a short time scale, while being virtually identical 
to specifying them, avoids problems with calculating the Q-flux near the sea ice edge. The use of 
a two-dimensional (longitude-latitude) mixed layer ocean model  instead of the zonally averaged 
one used in IGSM1 has allowed a better simulation of both the present day sea ice distribution 
and sea ice changes in response to increasing radiative forcing (Sokolov et al. 2005). 

A thermodynamic ice model is used for representing sea ice. This model has two ice layers 
and computes ice concentration (the percentage of area covered by ice) and ice thickness.  

The IGSM2.2 includes a significantly modified version of the ocean carbon model (Holian et 
al. 2001) used in the IGSM1. Formulation of carbonate chemistry (Follows et al. 2006) and 
parameterization of air-sea fluxes in this model are similar to the ones used in the IGSM2.3.  
Vertical and horizontal transports of the total dissolved inorganic carbon, though, are still 
parameterized by diffusive processes. The values of the horizontal diffusion coefficients are 
taken from Stocker et al. (1994), and the coefficient of vertical diffusion of carbon (Kvc) depends 
on the coefficient of vertical diffusion of heat anomalies (Kv). In IGSM1, Kvc was assumed to be 
proportional to Kv (Prinn et al. 1999; Sokolov et al. 1998). This assumption, however, does not 
take into account the vertical transport of carbon due to the biological pump. In the IGSM2.2 Kvc 
is, therefore, defined as: 

 Kvc = Kvco + rKv                                                                                                         (1) 
Since Kvco   is a constant, the vertical diffusion coefficients for carbon have the same 

latitudinal distribution as the coefficients for heat.  For simulations with different rates of oceanic 
uptake, the diffusion coefficients are scaled by the same factor in all locations. Therefore rates of 
both heat and carbon uptake by the ocean are defined by the global mean value of the diffusion 
coefficient for heat. In the rest of the paper the symbol Kv is used to designate the global mean 
value.  

Comparisons with 3D ocean simulations have shown that the assumption that changes in 
ocean carbon can be simulated by the diffusive model with fixed diffusion coefficient, as used in 
the IGSM1, works only for about 150 years. On longer timescales the simplified carbon model 
overestimates the ocean carbon uptake. However, if Kvc is assumed to be time dependent, the 
IGSM2.2 reproduces changes in ocean carbon as simulated by the IGSM2.3 on multi century 
scales (Sokolov et al. 2007). Thus, for the runs discussed here, the coefficient for vertical 
diffusion of carbon was calculated as: 

 Kvc(t) = (Kvco + rKv) . f(t)                                                                                             (2) 
Where f(t) is a time dependent function constructed based on the analyses of the depths of 

carbon mixing in simulations with the IGSM2.3.   
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To evaluate the performance of the anomaly diffusing ocean model (ADOM) on different 
time scales Sokolov et al. (2007) carried out a detailed comparison of the results of simulations 
with the two versions of the IGSM2.  Our results show that in spite of its inability to depict 
feedbacks associated with the changes in the ocean circulation and a very simple 
parameterization of the ocean carbon cycle, the version of the IGSM2 with the ADOM is able to 
reproduce the important aspects of the climate response simulated by the version with the 
OCGM through the 20th and 21st century and can be used to obtain probability distributions of 
changes in many of the important climate variables, such as surface air temperature and sea 
level, through the end of 21st century. 

2.5 Global Land System  

The Global Land System framework (GLS, Schlosser et al. 2007) integrates three existing 
models: the Community Land Model (CLM, e.g. Bonan et al. 2002), the Terrestrial Ecosystems 
Model (TEM, e.g. Melillo et al. 1993), and a Natural Emissions Model (NEM, Liu 1996). The 
GLS uses the CLM representation of the coupling of the biogeophysical characteristics and 
fluxes between the atmosphere and land (e.g., evapotranspiration, surface temperatures, albedo, 
surface roughness, and snow depth).  In addition, the CLM provides all of the hydrothermal 
states and fluxes (e.g., soil moisture, soil temperatures, evaporation, and precipitation events) at 
the appropriate spatial and temporal scales required by TEM and NEM. The TEM is then used to 
estimate changes in terrestrial carbon storage and the net flux of carbon dioxide between land 
and the atmosphere as a result of ecosystem metabolism.  The NEM estimates the net flux of 
methane from global wetlands and tundra ecosystems and the net flux of nitrous oxide from all 
natural terrestrial ecosystems to the atmosphere.  The sub-module in NEM describing processes 
leading to nitrous oxide emissions is primarily a globalization of the Denitrification 
Decomposition (DNDC) model of Li et al. (1992). Within the GLS, the algorithms of NEM that 
describe methane (CH4) and nitrous oxide (N2O) dynamics have been incorporated into TEM so 
that TEM now describes the hourly and daily dynamics of these trace gases in addition to the 
monthly dynamics of carbon dioxide and organic matter in terrestrial ecosystems. The direct 
coupling between these two models allows monthly TEM estimates of reactive soil organic 
carbon to determine nitrous oxide fluxes.  In addition, a new procedure has been developed that 
provides a statistical representation of the episodic nature and spatial distribution of land 
precipitation.  This is required for two reasons: 1) an “episodic” provision of zonal precipitation 
from the IGSM’s atmospheric sub-model represents more realistic hydrologic forcing to CLM 
than a constant precipitation rate applied at every time step for every zonal band, and 2) the N2O 
module of NEM requires precipitation events that vary in intensity and duration along with 
corresponding dry periods between storm events to employ its decomposition, nitrification, and 
denitrification parameterizations. 

All land areas across the globe are assumed by TEM and NEM to be covered by natural 
vegetation, which is held constant in time. To match and couple with the zonal configuration of 
the atmospheric dynamics and chemistry, the areas for each land cover type at the native 0.5o 
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latitude x 0.5o longitude grid cells (employed by both CLM and TEM) have been aggregated 
within each 4o latitudinal band used by the atmospheric dynamics and chemistry model 
(Schlosser et al. 2007).  Thus, each latitudinal band represents a 4o latitude x 360o longitude grid 
cell in the GLS framework.  The GLS is run for all land cover types found in these zonal cells 
and the area covered by each land cover type is used to determine the relative contribution of that 
land cover type to the zonally aggregated water, energy, carbon and nitrogen fluxes from the 
terrestrial systems.  As shown by Schlosser et al. (2007), the zonal fluxes from GLS are not 
substantially affected by the implementation the of zonal mosaic land cover data in the IGSM2 
as compared to their performance using explicit latitude/longitude grids. The timing and location 
of the carbon sink sand source regions is preserved, and the spatiotemporal patterns of 
evapotranspiration agree well with a consensus of state-of-the-art biogeophysical models as 
determined by the Global Soil Wetness Project Phase 2 (GSWP2, Dirmeyer et al. 2002). 
Moreover, one of the more desirable changes in the patterns of carbon flux by TEM in the zonal 
GLS configuration, as compared to a previous version of TEM employed in the IGSM, is the 
removal of an erroneous, mid-summer carbon emission at northern high latitudes, which is not 
seen in spatially explicit TEM simulations forced by observed atmospheric conditions (refer to 
Schlosser et al. 2007, for more details).  

In TEM, the potential uptake of atmospheric CO2 by plants is assumed to follow Michaelis-
Menten kinetics, according to which the effect of atmospheric CO2 at time t on the assimilation 
of CO2 by plants is parameterized as follows: 

f(CO2(t))  =  (Cmax CO2(t)) / (kc + CO2(t) )                                                                              (3) 
where Cmax is the maximum rate of C assimilation, and kc is the CO2 concentration at which C 
assimilation proceeds at one-half of its maximum rate (i.e. Cmax).  The sensitivity of plant uptake 
on kc is defined not by the absolute value of f(CO2(t)), which decreases with kc, but by the ratio 
of f(CO2(t)) to f(CO2(0)) which increases with kc.  This ratio can be approximated as 
1+αlog(CO2(t)/ CO2(0)).  In contrast to most of the terrestrial biosphere models currently used in 
climate change assessments (Plattner et al. 2008), TEM takes in to account nitrogen limitations 
on net carbon storage. This significantly decrease sensitivity of the terrestrial carbon uptake to 
the increase in the atmospheric CO2 concentration and affect sign of the feedback between 
terrestrial carbon cycle and climate (Sokolov et al. 2008a). 

3. METHODOLOGY 

3.1 General approach for making projections 

The basic method we employ for uncertainty analysis is Monte Carlo simulation, in which 
multiple input sets are sampled from probability distributions representing uncertainty in input 
parameters.   Pure random sampling typically requires many thousands of samples to converge to 
a stable distribution of the model output.  Therefore, a number of alternative more efficient 
sampling strategies have been developed.   In this study, we use Latin Hypercube Sampling 
(LHS) (Iman and Helton 1988).  LHS divides each parameter distribution into n segments of 
equal probability, where n is the number of samples to be generated.  Sampling without 
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replacement is performed so that with n samples every segment is used once. We use a sample 
size of 400 for each s simulation ensemble. 

3.2 Physical/scientific uncertainties 

3.2.1 Climate sensitivity, mixing of heat into the ocean, and aerosol forcing 

Three properties that are commonly recognized as being major contributors to the uncertainty 
in simulations of future climate change are the effective climate sensitivity of the system (S), the 
rate at which heat is mixed into the deep ocean (Kv), and the strength of the aerosol forcing 
associated with a given aerosol loading (Faer) (Meehl et al. 2007a).  These same properties and 
their uncertainties also affect 20th century simulations. Thus in principle estimates of these 
properties and their uncertainties can be derived from simulations in which these properties are 
varied to determine which give simulations consistent with observed 20th century changes.  
 

 
Figure 2.  The marginal posterior probability density function for S-Kv parameter space. 

The shading and thick contours denote rejection regions for significance levels of 10% and 
1% respectively. Green circle and triangle indicate mode and a median on the distribution 
respectively. Black diamonds indicate values of the parameters of the MIT climate model 
needed to represent behavior of different AR4 AOGCMs in the simulations with 1% per 
year increases in the CO2 concentration. Red dots show values for Kv and S from 400 
samples. 

In the present study, we use the probability distribution functions (pdfs) estimated in this way 
by Forest et al. (2008). The values of S, Kv, and Faer were varied systematically in the climate 
model component of the IGSM and a large ensemble (~600) of simulations of 20th century 
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climate was carried out. The simulations were compared against observations of surface, upper-
air, and deep-ocean temperature changes. For each diagnostic the likelihood that a given 
simulation is consistent with the observed changes, allowing for observational error and natural 
variability, was estimated using goodness of fit statistics from climate change detection methods 
(see Forest et al. 2002, 2006, 2008). By combining the likelihood distributions estimated from 
each diagnostic using Bayes’ Theorem, a posterior probability distribution was obtained.  As 
with other estimates of probability distributions using Bayesian methods, priors on the three 
parameters are required. For climate sensitivity, the prior distribution was calculated by Webster 
and Sokolov (2000) from an expert elicitation by Morgan and Keith (1995). This prior 
essentially limits the possible climate sensitivities to being less than 7 oC, consistent with expert 
opinion (Webster and Sokolov 2000; Hegerl et al. 2007). Uniform distributions were used as 
priors for the other two parameters.  

 
Figure 3. Frequency distributions for changes in surface air temperature and thermosteric 

sea level rise averaged over years 61-80 in simulations with 1% per year CO2 increase, 
obtained from the fits for the IGSM1 (blue) and IGSM2.2 (red) using climate parameter 
distributions from Forest et al., (2002) and Forest et al. (2008), respectively. 

The resulting two-dimensional marginal distribution for effective climate sensitivity and the 
rate of deep-ocean heat uptake is shown in Figure 2, along with the locations in this parameter 
space of 10 AOGCMs (estimated from data in the CMIP3 archive (Meehl et al. 2007b).    The 
joint distribution differs significantly from the earlier distribution, developed in Forest et al. 
(2002) and used in Webster et al. (2003), because the model simulations for the twentieth 
century used by Forest et. al. (2006 and 2008) include several additional forcings. Most 
importantly they include stratospheric aerosols from volcanic eruptions and, because these 
caused a cooling in the latter half of the 20th century, higher climate sensitivities and lower rates 
of ocean heat uptake are required to match the observed temperature changes.  The effect of 
these shifts in the probability distribution can be summarized in the likelihood distribution for 
changes in surface air temperature and thermosteric sea level rise due to CO2 increase at 1% per 
year rate (Figure 3).  The higher lower bound for TCR and lower upper bound for sea level rise 
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are a direct result of the shift in the distributions for climate sensitivity (S) and the effective 
thermal diffusivity (Kv).  

The LHS sampling method used in Webster et al. (2003) generated samples for Kv, S and 
Faer from their individual 1D marginal pdfs, and imposed the correlation structure of the joint 
3D pdf on the samples.  In contrast, now after picking a Kv sample from the 1D marginal pdf, we 
generate a 2D pdf for S and Faer conditional on the chosen Kv value, and then calculate a 1D 
marginal pdf for S from that 2D pdf, and sample the new pdf for S. Finally, we generate a 1D pdf 
for Faer conditional on the two chosen values of Kv and S , and sample that pdf for a value of 
Faer. This new sampling strategy preserves the uniqueness of the samples by not allowing one to 
choose from the same bin number in the conditional pdfs, though it theoretically may sample the 
same value of S or Faer few times in contrast to the earlier method. New method better preserves 
the full details of the original three dimensional pdf. Values for Kv and S from the 400 samples 
are shown on Figure 2 by red dots. 

3.2.2 Uncertainty in carbon cycle 

As described in section 2.4, the vertical diffusion coefficient for carbon depends on the 
effective vertical diffusivity for temperature anomalies, Thereby uncertainty in carbon uptake by 
the ocean is linked to the uncertainty in heat uptake. Values of the parameters in the equation for 
Kvc (Eq. 1) were estimated so that, for the range of Kv, deduced from observations, the oceanic 
carbon uptake for the 1980s spans the observed uncertainty range given in the IPCC TAR. The 
values of Kvco and r that satisfy this requirement are 1.0 cm2 s-1 and 3.0 respectively.  

In contrast to Webster et al. (2003), in the present study, we take into account uncertainty in 
the fertilization effect of atmospheric CO2. The results of CO2-enrichment studies suggest that 
plant growth could increase from 24% to 50% in response to doubled CO2 given adequate 
nutrients and water (Raich et al. 1991; McGuire et al. 1992; Gunderson and Wullschleger 1994; 
Curtis and Wang 1998; Norby et al. 2005).  In TEM, a value of 400 ppmv CO2 is normally 
chosen for the half-saturation constant kc (Eq. 3) so that f(CO2(t)) increases by 37% for a 
doubling of atmospheric CO2 from 340 ppmv to 680 ppmv CO2 (McGuire et al. 1992, 1993, 
1997; Pan et al. 1998).  A 24% response to doubled CO2 would correspond to a kc value of 215 
ppmv CO2 whereas a 50% ppmv CO2 response would correspond to a kc value of 680 ppmv 
CO2, for the same changes in atmospheric CO2. As these enrichment studies may not have 
covered the full range of uncertainty, we used 150 ppmv as a low bound for kc and 700 ppmv as 
the upper limit.    

3.2.3 Precipitation frequency 

Another physical uncertainty in the coupled earth system model is how the frequency of 
precipitation changes with increases in surface temperature. Changes in mean precipitation (over 
space and time) are fundamentally a result of shifts in the character of individual precipitation 
events, which are determined by the frequency at which they occur as well as their (expected) 
duration and intensity.  It is these quantities that, in large part, determine the hydrologic climate 
of any region (i.e. the partitioning of precipitation between evaporation and runoff) as well as the 
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ecology and biogeochemistry of the ecosystems. For example, more runoff results in greater 
flood potential, less water infiltration into the soils and less storage available to plants, as well as 
fewer saturating events that can impede nitrous oxide emissions (from soils) as well as methane-
emitting environments. Such responses to climate change can have substantial consequences on 
natural and managed terrestrial systems, as well as providing potentially strong feedback 
mechanisms to the rest of the climate system. We therefore introduce an approach that provides a 
probability-based extrapolation of precipitation frequency change associated with climate 
warming. 

Lacking observations adequate for estimating this trend, we use the results of the AOGCMs 
that participated in the IPCC AR4 to develop probability distributions of the trend. From the 
model archive, we consider the pre-industrial control runs and the transient CO2 doubling runs, 
in which the daily outputs of precipitation are archived for at least a 20-year period.  For every 
grid point of the GCMs’ time series, we determine for each day whether or not the model 
produced a sufficient amount of precipitation to be construed as a “wet” day. In doing so, our 
calculations require a threshold value for the daily precipitation rate of a grid cell above which 
we deem a precipitation “event” has occurred for that day. For this threshold we have chosen 2.5 
mm/day (see Schlosser and Webster, 2008 for details). From this, we determine for each month 
of the simulation period the total number of days that a precipitation event occurred, and 
subsequently the average number of days between “wet” days for the month. To obtain a 
representative monthly climatology of these precipitation intervals, we calculate these statistics 
for each month, for every grid cell, and average them over the 20-year period for the pre-
industrial runs as well as the transient run, the latter centered at the time of doubling of CO2. 
Then, by taking the difference in these monthly constructions of precipitation interval, we can 
make an inference as to any particular GCM’s propensity to change under forced climate change 
(i.e. to a doubling of CO2 concentrations). Then, to configure these results to the IGSM zonal 
atmospheric structure, these gridded results are averaged over each of the GCMs’ latitude bands, 
and then pooled into latitudinal regions with common statistical traits (i.e. sign, magnitude, etc.) 
that correlate well with the large-scale circulations and precipitation patterns. Once obtained, 
these (simulated) changes in this derived hydrologic diagnostic are associated with each 
AOGCM’s change in global temperature. Thus, the zonally-averaged changes in precipitation 
interval from each AOGCM are normalized according to their global temperature change. 

Once we have calculated these pooled, zonally-averaged normalized changes in precipitation 
interval, based on the AR4 AOGCMs, we fit probability density functions to the distributions 
from the models.  Each zonal band has a probability distribution of temperature-dependent 
trends, but additionally we impose correlation across zonal groups to reflect the observed 
correlations in the AOGCM results.  As with other uncertain parameters, we perform Latin 
Hypercube sampling from these distributions, while imposing the observed zonal correlation 
structure within samples.   
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3.3 Economic/emissions uncertainties  

The uncertainty in the emissions of all greenhouse gases and pollutants are taken from an 
uncertainty analysis of the Emissions Projection and Policy Analysis model (Paltsev et al. 2005).  
This analysis is summarized briefly here; see Webster et al (2008) for more detail. Compared 
with previous efforts (Webster et al. 2002 and 2003) several aspects of the EPPA model and of 
the uncertainty analysis have been improved.  The technological detail of the model has been 
deepened, with the explicit representation of private automobiles, commercial transportation, and 
the service sector and the addition of biofuels as a low carbon alternative in transportation.  

The characterization of emissions coefficients for pollutants was substantially changed. 
Whereas in previous versions of EPPA we relied on a Kuznets curve approach, the specification 
now used in the Monte Carlo analysis estimates an advancing technological frontier and catch-up 
to this frontier by lagging regions. Statistical work by Stern (2006 and 2005) has suggested this 
approach better represents the process. Also, the specification of uncertainty in economic growth 
has been substantially revised.  Rather than sampling high or low growth rates that applied to the 
100 year horizon as has been done previously in most Monte Carlo studies of emissions, we 
created stochastic growth paths characterized as a random walk where the uncertainty was 
estimated for each region/country for the period 1950-2000.  As a result, regions experience 
periods of boom and bust over the 100 year horizon like that which characterized growth in the 
latter half of the last century rather than smooth growth that was either fast or slow.  

These new approaches for representing uncertainty in productivity growth and in emissions 
coefficients allowed us to draw more directly from historical data to estimate uncertainty 
distributions rather than to rely on expert judgment, and to simulate growth patterns that varied 
across regions and over time that are more realistic.  The new approach to simulating uncertainty 
in growth of gross domestic product (GDP) has narrowed the distribution of outcomes because 
regional growth rates are uncorrelated with each other.  The result is that range of possible 
growth for individual regions is wide, but the global range is narrower as statistically rapid 
growth in some regions is likely to be offset by slow growth in other regions. The new approach 
on emissions coefficients for other pollutants results in lower median emissions of pollutants like 
SOx, NOx, and CO. 

Uncertainty in emissions were developed from the EPPA model using the same Latin 
Hypercube Sampling approach employed here, creating a 400 member ensemble to match to 
match the 400 sample sets for the earth system model components (Webster et al.2008).  Each of 
these 400 EPPA simulations provides a set of emissions for all pollutant species that are 
consistent:  to the extent that emissions of different species derive from the same combustion 
sources (e.g., oil, gas, coal) they are each consistent with the amount of fuel combusted given 
uncertainty in emissions per unit of fuel.  Each emission set is then considered to be one 
emissions sample that is paired randomly with one set of values for the climate parameters 
following the LHS protocol of sampling without replacement. 
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3.4 Design of the simulations 

The estimates of changes in climate variables presented below are obtained from the 400 
member ensemble of climate change simulations with different values of the uncertain input 
parameters. Because of the large inertia of the ocean and carbon reservoirs, each simulation starts 
in 1861 and is conducted in two stages: a simulation with historical forcings and a future climate 
projection. During the first stage, from 1861 to 1990, the model is forced by the observed 
changes in GHG concentrations (Hansen et al. 2002), tropospheric and stratospheric ozone 
(Wang and Jacob 1998), the solar constant (Lean 2000), sulfate aerosols (Smith et al. 2004), and 
volcanic aerosols (Sato et al. 1993).  For this stage, different sets of values of the climate 
sensitivity, the rates of oceanic heat and carbon uptakes, total aerosol forcing, the strength of 
CO2 fertilization and changes in precipitation frequency are used in each simulation.  

 
Figure 4. Frequency distributions for carbon uptake by ocean (blue), terrestrial ecosystem 

(green) and total (red) averaged over 1980s. Solid horizontal bars show 5-95% ranges 
from 400-member ensemble of simulations with the MIT IGSM, dashed horizontal bars 
show 5-95% ranges from the IPCC TAR. 

To simulate changes in oceanic and terrestrial carbon stocks, the ocean carbon model and 
TEM are forced by the observed changes in atmospheric CO2 concentration and simulated 
climate. While uncertainties in ocean carbon diffusion and strength of CO2 fertilization do not 
affect atmospheric CO2 concentrations and associated climate during this historical period, they 
do affect carbon uptakes by land and ocean and, therefore, changes in corresponding carbon 
stocks.  In the simulations described by Webster et al. (2003) carbon uptake by terrestrial 

 18



ecosystem was adjusted to balance carbon cycle for the 1980s.  No such adjustment is used in the 
present study. The resulting frequency distributions for the terrestrial, oceanic and total carbon 
uptake are shown Figure 4.  Our ranges of carbon uptake by the ocean and the terrestrial 
ecosystem are somewhat narrower than those given in the IPCC TAR. However the distribution 
for the total uptake is rather wide with a 90% range from 2.1 to 4.0 GtC/year.  

In the second-stage of the simulations, which begins in 1991, the full version of IGSM2 is 
forced by emissions of greenhouse gases and aerosol precursors. Historical emissions are used 
through 1996 and emissions projected by the EPPA model from 1997 to 2100. In this future 
climate stage of the simulations, concentrations of all gases and aerosols are calculated by the 
atmospheric chemistry sub-model based on anthropogenic and natural emissions and the 
terrestrial and oceanic carbon uptake provided by the corresponding sub-components. In these 
simulations changes in concentration of black carbon aerosol are explicitly calculated. Since they 
were not considered in the preceding stage, the total aerosol forcing assumed in the first stage 
was adjusted to take the black carbon contribution into account.  Uncertainties in the economic 
factors that affect anthropogenic emissions are taken into account in addition to climate related 
uncertainties.  

To evaluate the contributions to the total uncertainty in the projected climate changes due to 
the separate uncertainties in emissions and climate characteristics, we carried out two additional 
400 member ensembles of simulations that each includes the uncertainties from just one of these 
two sources. In the first set of simulations the median values of the climate parameters were used 
while the uncertainty in the emissions was included, and in the second the median values of the 
emissions were used while the uncertainty in the climate parameters was included. 

4. 21st CENTURY PROJECTIONS OF ANTHROPOGENIC CLIMATE CHANGE 
In section 4.1 we present and discuss the projections of the levels of all the important 

greenhouse gases and aerosols that contribute to radiative forcing of climate change. The forcing 
and related changes in climate are discussed in section 4.2, together with the contributions of 
economic and scientific uncertainties to the uncertainty in projected climate.  Changes in the 
biogeochemical cycles of carbon dioxide, nitrous oxide and methane that are influenced by the 
joint effects of chemistry, biology and climate change are discussed in section 4.3. In section 4.4 
our projections are compared with the results of the IPCC AR4. Sensitivity of our projections to 
the uncertainty in the estimates of the 20th century changes in deep ocean heat content are 
discussed in section 4.5. 

4.1 Greenhouse gas projections 

Figure 5a shows (in red) the projections of the median and 95% range for CO2 mole 
fractions. Compared to our earlier projections (shown in blue), the new projections are 
significantly higher due in part to higher projected CO2 emissions (see section 3.3) and in part to 
changes in the oceanic and land sinks (see section 4.3 for further discussion).  
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Figure 5. Projected decadal mean concentrations of CO2 (a), CH4 (b), and N2O (c). Red solid 

lines are median, 5% and 95% percentiles for present study: dashed blue line the same 
from Webster et al. (2003). 

For CH4, the current median projections are very similar to the previous ones but the 95% 
range has decreased by almost a factor of three (Figure 5b). This is due in part to a lowered 
range in CH4 emissions (section 3.3) but also to a decrease in the range of projected OH 
concentrations (Figure 6b). The projected median 24% decrease in OH by 2100 results from the 
effects of the projected increases then decreases of  NOx, which produces OH, being offset by 
the projected CH4, CO and VOC increases (all of which remove OH). The projections of NOx, 
CO and VOC concentrations are closely correlated with their emissions, which are shown in 
Webster et al. (2008). 

For the significant greenhouse gas ozone (O3), the projected mole fractions increase through 
2050 but then decrease after that (red curves in Figure 6a). This is driven significantly by the 
projected post-2050 decrease in NOx. Ozone mole fractions increase the most when CO, VOC 
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and NOx mole fractions all increase together, but not when CO and VOC increases accompany 
NOx decreases. 

 
Figure 6. Projected decadal mean concentrations of ozone (a), and OH radical (b).  The 

latter is shown as a ratio to its values averaged over years 1991-2000. Red solid lines are 
median, 5% and 95% percentiles for present study: dashed blue line the same from 
Webster et al. (2003). 

Median nitrous oxide (N2O) mole fractions are projected to increase by about 50% by 2100 
(Figure 5c) driven by increasing anthropogenic emissions (section 3.3) and increased natural 
emissions induced by projected increase in soil temperature, rainfall and soil labile carbon. 

Projected mole fractions of the “industrial” gases listed in the Kyoto Protocol are shown in 
Figure 7 (hydrofluorocarbons, HFCs, aggregated; perfluorocarbons, PFCs, aggregated; sulfur 
hexafluoride). The trends and uncertainties in these long-lived gases, which have very large 
GWPs, are dominated by the trends and uncertainties in their projected emissions, but augmented 
in the case of the HFCs by the negative trend and uncertainty in their major sink OH (Figure 6b). 
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Figure 7. Changes in concentration of some GHGs averaged over 2041-2050 (a) and 2091-

2100 (b) relative to 1991-2000 in present study (new) and in Webster et al., (2003) (old).   
HFCs and SFC are reduced by factors 100 and 10, respectively. Radiative effect of changes 
in the concentration of black carbon was not taken into account in Webster et al. (2003). 

Figure 7 also shows projections of mole fractions of SO2, which is the precursor for sulfate 
aerosols and has both anthropogenic and natural (dimethyl sulfide oxidation) sources. The 
median and range projections are driven primarily by the projected anthropogenic emissions, but 
augmented by the projected decrease and uncertainty in OH, which is the principal gas-phase 
sink for SO2 (converting it to sulfate aerosol). 
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Finally, black carbon projections are also shown in Figure 7. Like the SO2 projections, they 
are driven by the anthropogenic emissions but are not affected by OH. Their principal removal is 
instead through dry and wet deposition to the surface. 

4.2 Projected changes in climate 
As a result of the changes in concentrations of GHGs and sulfate and black carbon aerosols 

described in section 4.1, by the end of the 21st century radiative forcing will increase between 6.2 
W/m2 and 9.8 W/m2 (90% range) compared to the year 1990, with a median increase of 7.9 
W/m2 (Figure 8a). 

 
Figure 8. Projected changes in decadal mean radiative forcing (a), surface air temperature 

(b), sea level rise due to thermal expansion (c) and total sea level rise (d).  Red solid lines 
are median, 5% and 95% percentiles for present study: dashed blue line the same from 
Webster et al. (2003). 

Changes in GHG emissions and carbon uptake lead to a significant increase of both the lower 
bound of the 90% range and also the median forcing compared to the results of Webster et al. 
(2003). The probability of the radiative forcing being less than 5.0 W/m2 is about 45% according 
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to Webster at al. (2003) but less than 1% according to our new study.  At the same time the upper 
bounds of the 90% ranges differ by only 0.6 W/m2 between the two studies. In fact the new 
upper 90% bound on the forcing due to GHGs (Table 1) only is even lower than the one in 
Webster et al. (2003). The slightly higher value of the upper 90% bound for the total forcing is a 
result of different changes in sulfate aerosol loading and the fact that forcing associated with 
changes in black carbon aerosol was not taken into account by Webster et al. (2003). The total 
forcing includes contributions from changes in GHGs, sulfate aerosol, tropospheric ozone as well 
as, in present study, black carbon. As shown in section 3.2, use of the revised probability 
distributions for the climate parameters leads to larger surface warming and smaller thermal 
expansion of the ocean for a given forcing (Figure 3). This effect together with the differences in 
radiative forcing described above result in a significantly higher increase in SAT (Figure 8b and 
Table 1) than was projected by Webster et al. (2003). While the upper 90% bound for surface 
warming projected in this study is noticeably larger than in Webster et al. (2003), (7.4oC instead 
of 4.6oC), the changes in the lower part of the projected range are even more significant. 
According to Webster et al. (2003) there was a 40% probability of SAT increasing by less than 
2oC by the end of 21st century relative to 1990 for the “business-as-usual” emissions scenario, in 
the present study surface warming exceeds 2oC in all 400 simulations. We will compare our 
projections of possible climate change with projections given in the IPCC AR4 in section 4.4. 
Table 1. Distributions of CO2 concentration, radiative forcing, changes in surface air 
temperature, thermosteric sea level rise and sea level rise due to thermal expansion and 
glacial melt. 

Variable Ensemble Time 5% Median 95% 
 Present study 2045 495 533 574 

CO2 Webster et al. 2003  434 483 554 
(ppmv) Present study 2095 716 866 1095 

 Webster et al. 2003  502 670 1013 
Radiative  Present study 2045 2.73 3.27 3.86 
forcing Webster et al. 2003  1.36 2.51 4.23 

due to GHGs Present study 2095 5.98 7.54 9.40 
(W/m2) Webster et al. 2003  2.33 5.48 9.80 
Total  Present study 2045 2.71 3.53 4.28 

radiative  Webster et al. 2003  1.38 2.47 3.95 
forcing Present study 2095 6.21 7.89 9.77 
(W/m2) Webster et al. 2003  2.50 5.22 9.21 

 Present study 2045 1.37 1.85 2.37 
SAT Webster et al. 2003  0.57 1.34 1.80 
(oC) Present study 2095 3.50 5.12 7.37 

 Webster et al. 2003  1.03 2.37 4.61 
Thermosteric Present study 2045 6 9 14 

sea level Webster et al. 2003   3 6 12 
rise Present study 2095 16 30 47 
(cm) Webster et al. 2003   8 19 37 
Total Present study 2045 10 14 18 

sea level Webster et al. 2003  6 10 14 
rise Present study 2095 29 44 63 
(cm) Webster et al. 2003  15 29 50 
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From the above mentioned decrease in the thermal expansion of the ocean for a given forcing 
(Figure 3b) and the similarity of  the upper 90% bounds of forcing (Figure 8a), one might expect 
the upper limit of the thermosteric sea level rise to be smaller in the present study than in 
Webster et al. (2003). However, this is not the case1 (Figure 8c). This apparent contradiction is 
explained by the changes in the ocean carbon model. As shown by Sokolov et al. (1998), the 
assumed dependency between rates of heat and carbon uptake by the ocean imposes a negative 
correlation between the rate of heat mixing into the deep ocean and the atmospheric CO2 
concentration, which leads to a decrease in the uncertainty range for thermal expansion. Changes 
in the parameterization of oceanic carbon uptake in the current model (see section 2.3 and 
Sokolov et al. 2007) weakened this correlation, resulting in a wider range of the thermosteric sea 
level rise. The differences between the two studies in projected sea level rise, especially in the 
component related to the thermal expansion of the deep ocean, are, however, relatively smaller 
than the differences in projected surface temperature (Figure 8).  

 
Figure 9. Latitudinal distribution of changes in SAT in the last decade of 21st century 

relative to 1981-2000.  Red solid lines are median, 5% and 95% percentiles for present 
study: dashed blue line the same from Webster et al. (2003). 

The latitudinal pattern of increases in SAT (Figure 9) is similar to those simulated by 
coupled AOGCMs, with polar amplification being larger in the Northern Hemisphere. 
Asymmetry in surface warming between the two hemispheres increases in time (Figure 10). As 
can be expected changes in SAT in polar regions are highly correlated with changes in sea ice 
cover (not shown). According to our simulations there is a 5% probability of the Arctic Ocean 
becoming ice free during summer and 1% probability of its becoming ice free for the whole year 
by the end of the century. In 1% of the simulations summer sea ice disappears by the year 2085. 
In the Southern Hemisphere the sea ice, while significantly decreasing, remains present in all 
simulations during the whole year.  

                                                 
1 Due to an error in the postprocessor, values of thermosteric sea level rise shown in Webster et al. (2003) are about 
50% larger than they really were. 
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Figure 10. Transient change in surface air temperature in simulation with median values of 

parameters for both economics and climate models. 

As indicated in section 3.4, we carried out two additional ensembles of simulations aimed at 
estimating the relative contributions of economics and climate uncertainties to the uncertainties 
in the projected climate change. As could be expected, uncertainties in atmospheric CO2 
concentration and radiative forcing (Figures 11a and 11b) are primarily related to the 
uncertainties in emissions, with a small contribution from uncertainties in the carbon uptake by 
land and ocean. Ignoring uncertainties in the behavior of climate system leads to an 
overestimation of the lower 90% bound and the median, but does not affect the upper 90% bound 
of the range of projected surface warming (Figure 11c). Nevertheless, uncertainties in surface air 
temperature associated with the uncertainties of input parameters from the two different sources 
are rather similar (see Table 2). 
Table 2. Ratios of the percentiles to mean values for distributions of surface warming and 
sea level rise at the last decade of 21st century in ensembles with full, climate and emission 
uncertainties. 

SAT 5% 16.7% 50% 83.3% 95% 
Full uncertainty 0.66 0.78 0.97 1.22 1.40 

Climate uncertainty 0.74 0.82 0.99 1.17 1.35 
Emission uncertainty 0.75 0.85 0.99 1.16 1.25 

Sea level rise 5% 16.7% 50% 83.3% 95% 
Full uncertainty 0.64 0.76 0.98 1.24 1.43 

Climate uncertainty 0.67 0.80 0.98 1.20 1.36 
Emission uncertainty 0.82 0.88 1.00 1.12 1.19 
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In the case of sea level rise (Figure 11d), the situation is rather different. Namely, 
uncertainties in the sea level rise due to thermal expansion of the deep ocean are primarily 
associated with the uncertainties in the climate parameters. This is explained by the large thermal 
inertia of the ocean, which significantly delays its response to changes in radiative forcing. 
Sokolov et al. (2007) carried out climate change simulations for three different combinations of 
climate parameters and two very different emissions scenarios. Their simulations showed that 
thermal sea level rise has practically no dependence on forcing through the year 2050. Even at 
the end of the 21st century sea level rise is more sensitive to changes in characteristics of the 
climate system than in emissions. Such behavior was also observed in simulations with the 
version of the IGSM2 in which a 3D ocean GCM was used instead of a 2D anomaly diffusing 
ocean model. Of course the impact of uncertainties in anthropogenic emissions on uncertainties 
in projected sea level rise will be much larger on longer time scales. 

 
Figure 11. Frequency distributions for atmospheric CO2 concentrations (a), radiative forcing 

due to GHGs and sulfate aerosol (b), surface air temperature (c), and total sea level rise 
(d). In simulations with full uncertainty (blue), climate uncertainty (green) and emissions 
uncertainty (red) averaged over 2041-2050 (dashed lines) and 2091-2100 (solid lines). 
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4.3 Changes in carbon fluxes 
In addition to examining the statistical analysis of the model runs, it is instructive to examine 

a subset of runs in greater detail.  Changes in global surface average temperature result from a 
combination of emissions and climate parameters, and therefore two runs that look similar in 
terms of temperature may be very different in detail.  In this section four runs (Table 3) are 
examined in greater detail, especially in regards to fluxes of the major GHGs.  A pair of 
scenarios was chosen from the 95% upper bound of surface temperature change (scenarios C and 
D), and the other pair was chosen from the 5% lower bound of surface temperature change 
(scenarios A and B).  In each pair, one scenario had higher climate sensitivity but lower GHG 
concentrations than the other scenario with equivalent temperature (Table 3).  High 
concentrations of different gases tend to be correlated with each other, as anthropogenic 
emissions of all these gases are driven by many of the same underlying factors such as economic 
growth rates (Webster et al. 2008).   
Table 3. Values of climate parameters and values of some climate variables averaged over 
last decade of 21st century for the simulations discussed in section 5.3.  

Scenario CS Kv Faer Kc SAT CO2 CH4 N2O 
A 1.83 0.22 -0.46 350 3.68 885 4.15 440.16 
B 3.75 3.21 -0.65 384 3.70 622 3.30 413.38 
C 2.55 0.10 -0.59 468 7.49 1108 5.44 450.83 
D 4.10 0.96 -0.58 196 7.49 886 4.15 444.75 

Concentrations of GHGs in the atmosphere are a function of sources and sinks. 
Anthropogenic emissions are the primary driver of changing GHG concentrations, but there are 
also natural sources of N2O and CH4, mainly in terrestrial wetlands.  There are a number of sinks 
involved for the three major GHGs - ecosystems, oceans, atmospheric chemistry, and 
stratospheric disassociation.  Most of the non-anthropogenic sinks and sources are functions of 
temperature, precipitation, and chemical or radiative interactions with other emissions, and these 
interactions are examined in more detail in this section. 

As discussed by Sokolov et al. (2008a) the terrestrial ecosystem response to increased CO2 
concentrations is limited by nitrogen availability.  However, surface warming leads to an 
increase in carbon uptake as the resulting increased soil matter decomposition releases nitrogen 
thereby allowing the ecosystem to take advantage of the higher CO2 levels.  However, when 
surface air temperature exceeds a critical value increase in respiration may overcome increase in 
gross primary productivity resulting in the decrease of net terrestrial carbon uptake. The critical 
value of SAT depends on changes in atmospheric CO2 concentration and the value of the half-
saturation constant (kc).  For example, in case D terrestrial uptake peaks at 3 GtC/year near year 
2080 and starts to decrease after increases in SAT exceeds 5.5°C (Figure 12).  At the same time, 
in scenario C, despite similar surface warming, terrestrial carbon uptake increases through the 
whole simulation due to large values of kc used in this simulation and a larger increase in the 
atmospheric CO2 concentration.  In some of the hottest cases the terrestrial ecosystem becomes a 
net carbon source during the last decade of 21st Century.  In all four cases, carbon uptake by the 
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terrestrial ecosystem is rather significant, on the order of 15 to 20% of anthropogenic emissions - 
cumulative uptake ranges from 215 GtC in scenario B to 350 GtC in scenario C. 

 
Figure 12. Carbon fluxes in gigatons of carbon/year.  Black:  anthropogenic CO2 emissions.  

Green:  terrestrial sink.  Blue:  ocean sink.  Brown:  CO and CH4 emissions.  Red:  Change 
in atmospheric burden.  

Ocean uptake is the other major CO2 sink.  Section 2.4 discusses how the carbon sink in 
IGSM2.2 is calibrated to reproduce the behavior of the 3-dimensional ocean.  One of the 
important results of this calibration is that the end of century uptake is significantly lower than it 
would be in the version of the simplified carbon model used by Webster et al. (2003).  In all four 
runs ocean uptake peaks midcentury and begins to decrease despite the continuing increases in 
atmospheric CO2 concentration.  However, the ocean still takes up a cumulative total of 300 GtC 
(scenario C) to 470 GtC (scenario B).   

The Natural Ecosystems Model (NEM) controls the emissions of methane and N2O into the 
atmosphere.  As precipitation and temperature increase it is expected that natural emissions of 
both substances will also increase, but the exact nature of these increases depends on timing of 
precipitation events.  High latitude regions (north of 50°N) exhibit a somewhat larger flux 
increase than the remainder of the globe, especially in the hot scenarios (C and D) where 
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northern latitude emissions (green dashed line in Figure 13) increase by more than 70% while 
the flux from the remainder of the planet increases by only 33% and 24%, respectively.   

 
Figure 13.  N2O fluxes in Tg N/year.  Black:  anthropogenic emissions.  Green:  natural 

emissions.  Dashed green:  Northern latitude emissions.  Purple:  stratospheric sink.  Red:  
Change in atmospheric burden.   

Increased methane emissions are also expected to be prevalent in high latitude regions (north 
of 50°N) due to thawing of permafrost and increased CO2 fertilization of plants (Zhuang et al. 
2006).  In the two warm runs high latitude emissions of methane increase by more than 150% 
(Figure 14:  dotted green lines), compared to increases in the remainder of the planet of about 
35%.  Cumulatively, more than 3 gigatons of additional methane due to increased high latitude 
emissions are released into the atmosphere in both of the warm runs.  This release of methane 
only accounts for a small fraction of the carbon stored in the soils of these high latitude regions, 
and emissions can be expected to continue to increase significantly after 2100.   

Methane concentrations are also a function of the atmospheric sink, mainly the hydroxyl free 
radical.  As CO and CH4 emissions increase, the hydroxyl radical concentrations will drop as 
seen in section 4.1.  When OH levels drop, the CH4 sink will decrease and methane lifetime will 
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increase.  This impact on CH4 levels can be roughly estimated by plotting methane 
concentrations in the hypothetical case where lifetime does not decrease (Figure 14, dotted line).  
In both the hot scenarios (C and D) the cumulative sink decrease over the century is equivalent to 
about twelve gigatons of methane emissions.   

 
Figure 14.  Methane fluxes in Tg CH4/year.  Black:  anthropogenic emissions.  Green:  

natural emissions.  Dashed green:  northern latitude emissions.  Purple:  methane sink.  
Dashed purple:  Constant lifetime counterfactual sink. 

4.4 Comparison with the IPCC AR4 projections 

As discussed in the introduction, the treatment of uncertainty in anthropogenic emissions in 
this study is fundamentally different from that by the IPCC. The climate simulations described in 
the IPCC AR4 (Meehl et al. 2007a) were carried out for several distinctly different emission 
scenarios, either assuming ‘business-as-usual’ economic activities (A2, A1FI), or aimed at 
atmospheric CO2 stabilization at a particular level (A1B and B2). However no probabilities were 
associated with these different emissions scenarios. Uncertainties in the climate response for a 
given emission scenario were associated only with uncertainty in the characteristics of the 
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climate system (Meehl et al. 2007a, Knutti et al. 2008). Therefore the IPCC AR4 results should 
be compared with the results of our ensemble of simulations in which only climate uncertainty 
was included while GHG emissions were calculated using median values of the uncertain 
economic parameters (see section 3.4).  

 
Figure 15. Cumulative carbon emissions (a), atmospheric CO2 concentration (b) and 

radiative forcing due to greenhouse gases and aerosol (c) for SRES scenarios A1FI (red) 
and A2 (green) and for MIT simulation (blue) with median values for economic and climate 
input parameters. 
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The cumulative carbon emissions produced by the EPPA model with these parameter values 
are very similar to those for the A2 scenario and somewhat smaller than those in the A1FI 
scenario (see Figure 15a). However, the atmospheric CO2 concentration obtained in the 
simulation with the IGSM using the median values of both the emission and climate parameters 
is closer to the concentration in the A1FI scenario (Figure 15b). This is explained, at least partly, 
by the fact that the terrestrial ecosystem model used in the IGSM2, in contrast to the ISAM 
model used to calculate CO2 concentrations for the SRES scenarios, considers carbon/nitrogen 
interactions. As shown by Sokolov et al (2008a), taking into account the nitrogen limitation on 
terrestrial carbon uptake leads to a large increase in atmospheric CO2 for given carbon emissions. 
The forcings due to individual GHGs (CH4, N2O, etc.) are somewhat different for our median 
emission scenario and for A1FI, but the total forcings are quite similar (Figure 15c). Thus it is 
appropriate to compare our results for the ensemble of simulations including only the climate 
model uncertainties with the IPCC’s projections for the A1FI scenario. More detailed 
comparison between MIT and SRES scenarios is given by Prinn et al. (2008). 

Since the AR4 AOGCMs did not simulate the A1FI scenario, the IPCC calculated the mean 
value of SAT increase for the A1FI scenario from 19 simulations with the Simple Climate Model 
(SCM MAGGIC, Wigley and Raper, 2001). The 19 different versions of the SCM were each 
tuned to simulate the behavior of a different one of the 19 AOGCMs used in the IPCC AR4 
(Meehl et al. 2007a). The mean of the 19 SCM simulations was scaled to allow for a small bias 
in the SCM compared to the AOGCMs simulations for other scenarios (Meehl et al. 2007a, 
Knutti et al. 2008). Because, as noted by Meehl et al. (2007a), AOGCMs do not sample the full 
range of possible warming, the IPCC AR4’s projected likely range (Solomon et al. 2007) of 
warming is not based solely on the 19 simulations but was estimated with the help of results of 
additional studies (Knutti et al. 2008), including simulations with models of intermediate 
complexity. Some of the models of intermediate complexity in addition to uncertainties in 
climate sensitivity, rate of oceanic heat uptake, strength of aerosol forcing and carbon cycle 
consider uncertainty in the feedback between the carbon cycle and climate (e.g. Knutti et al. 
2003). Thus the likely range of warming was judged to extend from 40% less to 60% more than 
the mean SAT increase (Meehl et al. 2007a, Knutti et al. 2008).  We note that, according to the 
IPCC AR4 definition, the probability of SAT change falling into the likely range is more than 
66% but less than 90%. 
Table 4.  Change is SAT at the last decade of 21st century relative to 1981-2000, at year 
2100 for Meinshausen et al (2008) 

 5% 16.7% Mean 83.3% 95% 
MIT simulations with median 
anthropogenic emissions   3.81 4.22 5.17 6.04 6.98 
Meinshausen et al (2008) (with 
uncertainty in feedback between climate 
and carbon cycle) for SRES  A1FI 

2.85 3.26 4.09 4.79 5.88 

SCM MAGIC (with carbon uptake 
uncertainty) for SRES  A1FI 

 3.30 4.40 5.80  

IPCC AR4 for SRES  A1FI   2.40    4.00  6.40 
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Table 4 compares the IPCC's mean and likely range of SAT increase for the A1FI scenario 
with those based on the results of the simulations with the latest version of the SCM MAGIC 
(Meinshausen et al 2008), tuned to 19 AR4 AOGCMs, and with those from our simulations with 
median anthropogenic emissions. 

As discussed by Sokolov et al (2008b), the AR4 multi-model ensemble underestimate 
surface warming compared to MIT simulations with input parameters distributions obtained 
using Levitus et al. (2005) data on changes in deep ocean heat content. The same, of course, is 
true for the SCM MAGIC. In particular, our mean SAT increase is 30% greater than the IPCC's.  
The uncertainty range obtained in the MIT simulations is both narrower and more symmetric 
than the range given by the IPC. i.e., the lower bound of the 90% range is smaller than the mean 
by 26% while the upper bound is larger by 35% (Table 5).  The asymmetry in the IPCC range is, 
to a large extent, associated with the uncertainty in the carbon cycle/climate feedback. As 
indicated by Knutti et al. (2008), inclusion of the uncertainty in carbon cycle/climate feedback as 
simulated by the C4MIP models (Friedlingstein et al. 2006) extends the projected range of 
surface warming, with larger effect on the upper bound. In contrast with all models used by the 
IPCC the MIT IGSM takes into account the carbon/nitrogen interaction in the terrestrial 
ecosystem. As was shown by Sokolov et al. (2008a), considering this interaction significantly 
reduces the strength of the feedback between the carbon cycle and climate and the uncertainty in 
the projected CO2 concentration and surface warming associated with this feedback.  
Table 5. Ratios of the percentiles values to the means for probability distributions shown in 
Table 4. 

 5% 16.7% 83.3% 95% 
MIT simulations with median anthropogenic emissions 0.74 0.82 1.17 1.35 
Meinshausen et al (2008) (with uncertainty in feedback 
between climate and carbon cycle) for SRES  A1FI 

0.70 0.80 1.17 1.44 

SCM MAGIC (with carbon uptake uncertainty) 
for SRES  A1FI 

 0.77 1.35  

IPCC AR4 for SRES  A1FI 0.60 1.60 

4.5 Sensitivity of the projected surface warming to the deep-ocean data used to derive 
climate input parameters 

Sokolov et al. (2008b) compared results of ensembles of projections with the climate 
component of the MIT IGSM carried out using distributions of climate input parameters obtained 
with different data for changes in deep ocean heat content.  As noted in the introduction, for the 
comparison with our previous results (Webster et al. 2003), we decided to use climate parameter 
distributions based on the Levitus et al. (2005) data in our simulations. We refer to these 
distributions as the LEV05 distributions. However, results presented by Sokolov et al. (2008b) 
allow us to approximate the distribution of changes in SAT for different climate parameter 
distributions without running a full ensemble of simulations. In this section we show how our 
results would have changed if we have had used input distributions for climate parameters based 
either on Domingous et al. (2008) or on upper and surface air temperatures only, DOM08 and 
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NO, respectively. We note that the LEV05 and DOM08 analyses give, respectively, the smallest 
and largest published estimates of the heat uptake (Sokolov et al. 2008b). 

As can be seen from the Sokolov et al. (2008b), the shapes of the distributions for changes in 
SAT in the simulations with different distributions of climate input parameters are similar. In 
other words, ratios of the percentile values to the means do not differ significantly for ensembles 
with different input climate parameters (see Table 5 in Sokolov et al. (2008b)). This similarity 
between output distributions may be explained by the fact that projected surface warming is 
defined by joint input distributions, which are constrained by the same data on SAT changes over 
the 20th century. Based on that, the probability distribution for changes in SAT for a particular 
input distribution can be constructed by scaling the output distribution from the ensemble of 
simulations, carried out with different input distribution, by the ratio of the SAT changes in the 
simulations with the median values of input climate parameters from the two input distributions. 
Table 6 shows the alternative distributions for cases with climate only uncertainty and full 
uncertainty. 
Table 6. Distributions for changes in SAT at the last decade of 21st century for different 
choices of climate parameters distributions. 

  5% 16.7% Mean 83.3% 95% 
LEV05 3.50 4.12 5.28 6.42 7.37 

NO 3.30 3.88 4.96 6.04 6.93 Full uncertainties 

DOM08 2.70 3.17 4.06 4.94 5.67 
LEV05 3.81 4.22 5.17 6.04 6.98 

NO 3.58 3.97 4.87 5.68 6.57 
Climate only 
uncertainties 

DOM08 2.93 3.25 3.98 4.65 5.38 

For both uncertainty cases, the mean value of surface warming in the last decade of the 21st 
century decreases by about 0.3oC for the NO and 1.2oC for the DOM08 climate parameter 
distributions. Thus the DOM08 case has a mean warming very close to the IPCC’s projection. .In 
the simulations with full (climate only) uncertainties, the probability for  an SAT increase 
exceeding 6.4oC by the end of the century decreases from 17% (12%) for LEV05 to 2.7% (0.5%) 
for DOM08  input climate distributions. The probability of surface warming being less than 
2.4oC is about 2.8% and 1.2% for the DOM08 distribution for the full and climate only  
uncertainty cases, respectively. For the LEV05 distributions SAT increases by more than 2.4oC 
in all simulations for either uncertainty case. According to the IPCC AR4 projections the 
probability of SAT increase larger than 6.4oC or smaller than 2.4oC for theA1FI scenario is 
estimated as being between 5% and 16.7%. The much smaller likelihood we find for modest 
warming is likely due to our input pdfs having been explicitly constrained by 20th century 
temperature changes. 

Projections of sea-level rise due to thermosteric expansion are much more sensitive to the 
ocean data used than are the projections of SAT (Sokolov et al. 2008b). However, probability 
distributions for sea level rise cannot be constructed using the scaling approach described above. 

The comparisons just discussed do not per se tell us which of the three different projections 
compared in Table 6 is best. We note that the results based on LEV05 and DOM08 each used the 
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error estimates given by the respective analyses as being appropriate for their estimates of the 
trend in ocean warming. However these estimates are mutually incompatible. The DOM85 trend 
is more than double the LEV05 trend, but the difference between the two trends is five/seven 
times the standard deviation in the trend cited by the respective analyses. All this emphasizes an 
urgent necessity for obtaining more definite estimates for changes in deep-ocean heat content. 

5. CONCLUSIONS 

In this paper we have presented updated projections of climate changes for the 21st century in 
the absence of any climate policy. While the MIT IGSM has been significantly modified since 
publication of our previous projections (Webster et al. 2003), the primary reasons for the 
differences between our previous and present results are changes in the distributions of input 
parameters for both the earth system and economic components of the IGSM.  

The simulations of 20th century climate used to estimate uncertainties in the climate system 
parameters (Forest et al. 2006 and 2008) were carried out using both anthropogenic and natural 
forcings. As discussed by Forest et al. (2006), taking into account natural forcings, especially 
forcing due to volcanic eruptions, led to significantly different distributions of climate system 
parameters compared to the distributions based on 20th century simulations with just 
anthropogenic forcings (Forest et al. 2002), which was used by Webster et al. (2003).  The main 
consequence of the changes in the climate input distributions is an increase in the lower bound of 
the distribution of surface warming in response to an external forcing.  

Similarly, the distributions of global GHGs emissions used in this study (Webster et al. 2008) 
are higher, compared with previous results (Webster et al. 2002) due to the reduction of very low 
emissions growth cases. One of the key differences is that GDP growth, while still more 
important than many other parameters, is not the primary driver of uncertainty in emissions. This 
change is a result of the new approach of generating GDP growth paths using a random walk, 
and of the assumption that GDP growth shocks are not correlated across countries.  From this 
analysis, the primary drivers of uncertainty in no-policy carbon emissions are technological 
change, both price driven (e.g., elasticity of substitution) and non-price driven (e.g., autonomous 
energy efficiency improvement), and the total fossil resources available, particularly coal and 
shale (Webster et al. 2008). These changes in projected GHGs emissions noticeably decreased 
the probability of low radiative forcing.  

Due to the multiplicative nature of the interaction between the forcing and the climate system 
response, the probability distribution of the increase in surface air temperature at the end of the 
21st century is shifted upward significantly compared to the distribution obtained by Webster et 
al. (2003). As can be expected from the changes in the forcing and the response described above, 
the biggest difference is a sharp decrease in the probability of small or moderate warming. While 
the upper bound of the 90% range has increased by about 60%, the lower bound of the 90% 
range of the new distribution is more than 3 times larger than in the Webster et al. (2003). 

While our median anthropogenic emissions are similar to those for the SRES A2 scenario, 
the GHGs concentrations simulated by the MIT IGSM are somewhat higher than those used in 
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the simulations with the IPCC AR4 AOGCMs.  These differences in GHG concentrations arise 
from the different treatment of the terrestrial ecosystem and from the fact that we take into 
account an increase in the natural CH4 and N2O emissions caused by the surface warming, as 
well as from differences in chemistry models (Prinn et al. 2008). As a result, the total radiative 
forcing in our simulations with median anthropogenic emissions is quite close to the forcing for 
the IPCC A1FI scenario. However, the surface warming projected by the MIT IGSM 
significantly exceeds the estimates given by Meehl et al. (2007a). The shape of the probability 
distribution of changes in SAT simulated by the MIT IGSM is also different from that assumed 
by the IPCC AR4. The distribution obtained in our simulations is almost symmetric while the 
IPCC’s distribution implies a long upper tail. Asymmetry in the IPCC distribution is, in part, 
explained by the larger impact of the uncertainty in the feedback between the climate and the 
carbon cycle on the upper bound of the surface warming range. Taking into consideration the 
interaction between carbon and nitrogen in the terrestrial ecosystem model reduces the strength 
of this feedback and the uncertainty in surface warming associated with it (Sokolov et al. 2008a). 

All the ensembles of simulations presented in this paper were carried out with climate input 
parameter distributions based on the Levitus et al. (2005) estimate of changes in the deep ocean 
heat content.  We also derived approximate distributions of changes in SAT for climate 
parameter distributions based on alternate estimates of the ocean heat uptake. These estimates 
suggest somewhat smaller surface warming. However, the probability of the SAT increase at the 
end of the 21st century being near 2oC-2.5oC is significantly lower than that suggested by the 
IPCC AR4 for all the distributions tested.  
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