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Abstract

The fundamental question posed in this thesis is: how does a cell 'decide'
to behave in a particular way? The human body is comprised of -1014 cells that
interpret extracellular information and respond with such behavior as migration,
proliferation, apoptosis, or differentiation. Thirty years of research in the related
fields of biochemistry, molecular biology, and genetics have demonstrated that,
in most cases, the cellular decision-making process cannot be described or
predicted by regulation of only one gene or one protein alone. Instead, it has
become clear that cellular behavior is a function of information flow through
multiple intracellular molecules. Furthermore, the molecules responsible for the
control of cell behavior comprise a surprisingly short list, indicating that factors
such as signaling dynamics and intensity coupled with combinatorial control are
essential to produce the wide array of observed cell behavior. The identification
of protein kinases as transducers of large amounts of intracellular information led
us to pose the hypothesis that the quantitative regulation of key kinases governs
cellular behavior. The goal of this thesis was to identify rules governing multi-
kinase behavioral control and to then, on the basis of these rules, predict
changes in cell function in response to changes in receptor expression, ligand
treatment, and pharmacological intervention.

A human mammary epithelial cell (HMEC) system with varying levels of
the human epidermal growth factor receptor 2 (HER2) was chosen to explore cell
decision processes. HER2 overexpression is found in 30% of breast cancers and
correlates with poor prognosis and increased metastasis. In particular, we
investigated the effects of HER2 overexpression on signaling networks and
resultant cell proliferation and migration in the presence of epidermal growth
factor (EGF) or heregulin (HRG), two EGFR-family ligands that promote HER2
heterodimerization.

To investigate HER2-mediated signaling and cell behavior we developed
and applied high-throughput experimental techniques to measure kinase activity
and phosphorylation as well as cell proliferation and migration. Measurement of
-~100 different kinases downstream of HER2 resulted in the identification of
network signaling mechanisms. Application of a novel high-throughput migration



assay enabled the identification of HER2-mediated increases in cell migration
due to increases in the directional persistence of movement.

Linear mapping techniques related to partial least squares regression
(PLSR) defined and predicted cell behavior in response to HER2 overexpression.
Combining quantitative datasets of both biological signals and behavior using
PLSR, we identified subsets of kinase phosphorylation events that most critically
regulate HER2-mediated migration and proliferation. Importantly, we
demonstrated that our models provide predictive ability through a priori
predictions of cell behavior in HER2-overexpressing cells. Application of linear
models in response to pharmacological inhibition resulted in the a priori
prediction of cell migration, and identified an EGFR kinase inhibitor Gefitinib as a
potent inhibitor of HER2-mediated migration.

In conclusion, the application of computational linear modeling to
quantitative biological signaling and behavior datasets captured systems-level
regulation of cell behavior and, based on this, predicted cell migration and
proliferation in response to HER2 overexpression and pharmacological inhibition.
Further application of quantitative measurement together with linear modeling
should enable the identification of salient cell signal-cell response elements to
understand how cells make decisions and to predict how those decisions can be
therapeutically manipulated.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Professor of Chemical Engineering, Biological Engineering, and Biology
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Chapter 1 Introduction

1.1 Motivation and background for systems biology

1.1.1 Signaling networks and protein kinases

Essential to all metazoa is the ability to regulate fundamental cell processes such

as death, movement, and replication, thus allowing for the coordination of the vital

holistic events that characterize living species, such as development, metabolic

processes, and environmental response [1]. Intracellular signaling represents an

important mechanism through which individual and groups of cells can regulate these

fundamental cell processes. The molecular machinery involved in signaling represents

up to 20% of all genes identified by the Human Genome Project [2]. It follows that

functional perturbation of these signaling events can result in a host of disease states,

with cancer being perhaps the most studied of the resultant illnesses.

The identification of protein serine kinases in the 1960's and protein tyrosine

kinases in the early 1980's established these molecules as essential for signal

transduction and cell function [3]. In particular, protein tyrosine kinases (PTKs)

represent a large fraction of the more than 100 known tumor suppressor genes [2].

Salient PTKs can exist as mobile cytoplasmic or nuclear molecules, membrane bound

molecules, or as receptors (RPTKs) that enable communication with extracellular cues

such as cytokines and growth factors. In serving as a liaison between extracellular cues

and intracellular signaling pathway activation, receptors play a critical role in controlling

cell behavior, and as such have become the target of much attention from both the



academic and pharmaceutical groups. The importance of these receptors is clear given

the high number implicated in malignancy. Although comprised of a multitude of distinct

families, the basic mechanism through which RPTKs transmit signals across cell

membranes is quite similar. In general, signal transmission begins with ligand stabilized

receptor oligimerization. This then leads to auto and trans-phosphorylation on the

cytoplasmic domains of the receptors, which in turn serves to recruit and activate

cytoplasmic molecules, many of which are PTKs themselves, that propagate signals

throughout the cell. Thus, the final cellular response is a function of the specific

activating ligands and the makeup of the intracellular proteins that are phosphorylated

or regulated by the RPTK. The basic scheme is outlined below in Figure 1-1 [1].

This thesis explores the mechanisms PTK signaling systems utilize to control

normal and misguided cell behavior. We approach the problem from a systems level,

rather than a reductionist level, meaning that we hypothesize that cell behavior is

regulated through the quantitative manipulation of multiple kinases. Put simply, we have

adapted the commonly used DNA-->mRNA-protein--cell function paradigm to be

DNA-mRNA---protein--protein network-cell function.

That protein kinase networks, and not individual kinases, comprise the basic

regulatory unit of biological function is supported by findings from diverse biological

fields. These observations have, in many cases, been made with new technologies that

allow for network-level measurement. Examples of such technologies include gene

arrays, mass spectrometry, short hairpin or short interfering RNA (shRNA or siRNA),

and yeast two hybrid assays. For example, a recent shRNA screen performed on

human cancer cells identified over 100 candidate gene targets involved in the control of



mitosis and proliferation [4]. Another example is the finding, using a genome-wide

siRNA screen against the human kinome, that more than 200 of the approximately 600

kinases screened are involved in cellular endocytosis [5]. Finally, the insufficiency of

classical linear signaling pathway description is highlighted in the cell migration of

neuronal cells, where two classic but disparately identified pathways, the mitogen-

activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (P13K) pathways,

have been shown to both regulate cell migration [6]. High incidence of crosstalk

between various pathways, along with spatial and temporal variance, all together create

a very confusing view of cell signaling when viewed from a reductionist standpoint.

Indeed, in his seminal review of signaling in January of 2000, one of the field's pioneers,

Joseph Schlessinger, commented that, "...the modern biochemist and geneticists will

have to adopt approaches that have been developed by engineers to describe

complicated networks (e.g., systems analysis) in order to obtain a coherent and realistic

perspective on cell signaling." [7] Since this review was published, many types of

engineering and systems approaches have been applied to biological signaling

systems, and as the reader of this thesis will hopefully appreciate in conclusion, these

studies have helped to redefine our understanding of how intracellular signaling governs

cell function.



Figure 1-1: A generic signaling pathway. The grey boxes indicate general
components of signaling pathways; the white boxes show specific examples [1].

1.1.2 Evolutionary arguments

The application of the systems approach to biology has not only enabled a grater

understanding of present-day biology, but has also contributed to our understanding of

how cellular life arose. A tenet of systems biology is that a given protein can regulate

myriad different phenotypic responses based on variation in the overall signaling

network it resides within. This concept has particularly interesting consequences when



viewed in the context of metazoan evolution. Indeed, we learn about why changes in

network signaling, versus the creation of multiple separate individual proteins

corresponding to various phenotypes, evolved as a strategy for life. In a seminal series

of papers, Marc Kirschner and John Gerhardt explore this concept and I highlight some

of their findings below in an effort to further convince the reader of the plausibility of

systems-level biological regulation.

Darwin's theory of evolution is predicated upon two concepts: variation and

selection. As Kirschner and Gerhardt state in their book, The Plausibility of Life, much

more is known about selective pressure than is known about the nature of biological

variation [8]. In particular, advances in the fields of genetics and molecular biology have

identified the building blocks used to generate variation at the protein level (e.g. genes),

but the generation of variation at the phenotypic level seems to require the coordinated

and combinatorial use of these building blocks, as demonstrated by the low number of

genes identified in the human genome (-30,000) and the high degree of conservation

between genomes of various species. Rather than viewing the individual gene or gene

product as the fundamental block of variance, Kirschner and Gerhardt suggest that we

view a collection of core processes (e.g. signaling pathways) as fundamental biological

structures that give rise to phenotype. Phenotypic variation, then, can occur through the

combinatorial manipulation of these core processes, through the introduction of

crosstalk and feedback.

There may exist as few as 17 conserved signaling pathways that have been

conserved throughout most metazoa [9]. However, the ability to generate myriad

amounts of diversity from these pathways depends on factors such as regulating



temporal dynamics of the pathways, regulating concentrations of different proteins in the

pathways, regulating the spatial location of different components of the pathways, and

regulating the coordinated control of multiple pathways. In particular, the connection or

linkage (Gerhardt and Kirschner refer to this as weak linkage) between proteins in

different pathways can give rise to immense amounts of variation. The utilization of core

processes to generate variability leads to an increased ability to generate high amounts

of non-lethal mutations and phenotypic variation. Part of this ability is related to the

inherent robustness associated with regulatory change of conserved pathways, and this

is a subject that has been discussed at length elsewhere [8, 10]. In sum, the principle

that systems-level signaling controls biological function enables us to understand

evolution in the context of the now-detailed characterization of genomic and proteomic

elements in metazoa.

1.2 Our approach

To understand how protein networks regulate cellular behavior, we began by

abstracting the problem into three different (and obvious) parts, as shown in Figure 1-1.

The input space is descriptive of the set of interactions occurring on the extracellular

face of the cell. These interactions, such as ligand-receptor interactions, are the first

step in information transfer from the extracellular milieu to the internal space of the cell.

The signal transfer space is descriptive of information transfer inside of the cell. In

particular, we were broadly interested in information disseminated through the transfer

of phosphate groups from one molecule to another, a process governed by protein

kinases (as already noted). Finally, the response state is descriptive of the cellular



responses such as proliferation, migration, apoptosis, and differentiation. The changing

signal state, perturbed via the input state, is somehow responsible for governing cell

behavior in a quantitative manner. What does quantitative mean? In terms of cellular

response it means that parameters such as the rate of proliferation or the speed of

cellular movement are controlled by the signals, such that these responses can be

tuned on a continuous scale, and not just related via an on-off mechanism. The

proposition is that the quantitative control of cell response is controlled via quantitative

features of cellular proteins, meaning, in particular, that parameters pertaining to

kinases of interest, such as signal intensity, on-off rate, duration, and spatial

localization, govern eventual cell function. Our reasoning suggests that we must

interrogate the signal transfer space in a distributed and quantitative manner. Cell

response space must also be measured quantitatively and then mathematical methods

to bring the signal and response datasets together must be identified. Furthermore,

these measurements should be made under a particular (and hopefully biologically

interesting) input condition. Once this input condition is determined, application of

experimental and computational procedures, such as those outlined in this thesis, has

the potential to provide understanding and suggest therapeutic manipulations of

biological systems.
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Figure 1-2: Generalized approach to understanding systems control of biological
response in terms of intracellular signaling. Figure adapted from [11].

1.3 Human epidermal growth factor receptor (HER) background

1.3.1 HER-family receptors and ligands

The EGFR family of receptors and associated ligands has been widely studied. It

has served as a model system for the study of PTKs and their biology, as well as one of

the most important target systems for the wide variety of cancers associated with PTK

deregulation. Indeed, the EGFR or ErbB family of receptors and ligands, has been

implicated in 15 types of cancer [11]. In addition to cancer, members of the EGFR family

are essential for normal development and function; most ErbB knockouts are non-viable
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and ErbB deregulation results in varied pathologies from schizophrenia [12] to cardiac

disease [13].

There are four distinct members of the ErbB receptor family: ErbB1 (also known as

EGFR or HER1), ErbB2 (neu or HER2), ErbB3 (HER3), and ErbB4 (HER4). They are all

type I transmembrane receptors that share similar cysteine rich extracellular domains

and cytoplasmic domains that may be phosphorylated upon receptor activation [14].

The ErbB associated ligand family consists of more than ten known ligands, with the

salient ones being Epidermal Growth Factor (EGF), transforming growth factor (TGF-a),

heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), betacellulin

(BTC), epiregulin (EPR), epigen, neuregulin 1 (NRG1 or heregulin), and neuregulins 2-4

(NRG's). Thousands of papers implicate the above ligands in a full physiological

spectrum of disease and normal function. Rather than belabor the details of the four

different receptors or the many different ligands, we simply state the above to give the

reader the sense of the combinatorial complexity that is available for the cell to

communicate its various messages through the EGFR system. As shown in figure 1-3,

many ligands have the ability to activate unique receptor dimers. One might imagine at

its most simplistic level (i.e. not factoring in receptor oligimerization, ligand isoforms,

ligand free activation, or simultaneous ligand effects) a combinatorial landscape

available to the cell consisting of up to 120 nodes with varying degrees of binding and

activation possible at each node, thus allowing for a large number of distinct messages

to be transmitted via this specific PTK system (obviously each ligand cannot bind all



receptor pairs and there is downstream redundancy thus making the number of

functional nodes available to the system less than indicated but still high).

0
3ft=-I

VOP

ESnrg cr5WIER KILI

MaW OVL3l!A3UAL~fvop)j·cF

1-1 1-3 1-4 2

M r M

No actvlity
-~~I- .,- ..

High activity

Figure 1-3: Ligand activation profiles for different ErbB-receptor combinations.
Ten possible dimeric complexes of ErbB receptor proteins are represented (columns).
The degree of activation by a particular ligand to a receptor combination is indicated by
a shaded scale [15].

Signaling outcome is dictated not just by the combinatorial control available to

the cell in terms of ligands and receptor types, but also at the level of kinetic pathway

selection. As stated previously, a major goal of this project is to connect signal state

information to cellular output. To do this, we must choose a defined set of cellular

receptor states such that the problem is tractable and well defined. So, we must

increase our magnification of the problem once again. First we moved from the general
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framework of PTKs to the more specific system of EGFR. Now, within this EGFR

system, we chose to study the specific nature of ErbB2 interactions with EGFR and

ErbB3 receptors. In addition, the salient cytokines will be narrowed to EGF and HRG

(NRG1).

1.3.3 HER2 biology

ErbB2 overexpression was chosen as the specific perturbing element to look at

due to its relevance in breast cancer and other disease states as well as the fact that

quantitative studies of ErbB2 and its interactions with EGFR have been performed on

cell lines of interest within our lab in the recent past [16, 17]. ErbB2 is critically involved

in a number of developmental and normal physiological processes, including cardiac

and neural function. ErbB2 has attracted the majority of its attention, however, due to its

involvement in breast cancer. Almost 90% of all comedo ductal carcinoma (DCIS)

breast cancers feature ErbB2 over-expression which in turn correlates with increased

invasiveness, poor patient prognosis, and tumor chemo-resistance [15, 18]. Recent

work indicates that ErbB2 is a potent activator of many signaling pathways in over-

expressed cell lines. This activation is in part driven through decreased inactivation of

signaling complexes resulting from increased recycling and decreased degradation

rates. In addition, it has been shown that ErbB2 decreases ligand disassociation rates

from receptor complexes [19-21].

Since ErbB2 has no known ligand, heterodimerization is vital to its ability to

stimulate downstream signaling events. The most important or well known of ErbB2's



interactions are those with EGFR and ErbB3. In both cases, ErbB2 acts to potentiate

signaling complexes. Important also is the fact that ErbB3 lacks tyrosine kinase activity,

thus making its interaction with ErbB2 essential to its signaling ability. In the presence of

both EGFR and ErbB3, ErbB2 has the option to heterodimerize with either thus

stimulating unique signaling paths depending on the distribution of heterodimers

between its partners. [22, 23] It has also been shown that ErbB2 will homodimerize,

often under receptor over-expressed conditions, in a ligand free manner. Indeed, the

general theme of ligand free activation becomes very important when considering the

biology of ErbE32 [20]. For instance, although other ErbB receptors (such as EGFR

itself) are transforming only in the presence of ligand, ErbB2 is transforming in ligand

free environments.

Cell lines stably transfected with specific combinations of ErbB receptors have

enabled the study of the individual receptor interactions and their effects on downstream

signaling. Recent work has shown that EGFR-ErbB2 interactions in ErbB2 over-

expressed cells causes increased activation of the MAPK signaling pathway through

ERK [24]. A vast literature linking various heterodimers in the ErbB system to cellular

behaviors such as invasiveness, proliferation, and apoptosis exists, but for our purposes

here the literature will be used below to motivate the study of specific signaling

pathways.

Although HER2 is commonly studied in the context of cancer, it plays an

important role under normal physiological conditions. HER2 overexpression varies with

tissue type, but is found primarily within epithelial cell layers. The human fetus contains

HER2 in the skin, heart, intestine, lungs, and neural system, a finding which implicates



HER2 in embryonic development. Within each tissue, HER2 orchestrates

developmental and other such processes through interactions with EGFR family

receptors such as ErbB3 and ErbB1, which in turn respond to the specific nature of the

activating ligands found in the tissue (with neuregulins and EGF like ligands being

examples of such ligands)[25].

Perhaps the most revealing sign that HER2 is vital to embryonic development is

the fact that Her2 -/- mice are not viable due to failure in neural and cardiac

development.[13] Indeed, even partial rescue of HER2 function using transgenic mice

that express the receptor via a cardiac specific promoter (a-MHC promoter) resulted in

death at birth, indicating the importance of HER2 on a holistic scale during

development.[26] In the neural system, studies indicate that HER2 is involved in the

development of the peripheral nervous system (PNS) through the regulation and

promotion of Schwann cell migration, acetylcholine receptor clustering, and

neuromuscular junction development.[26],[27]. In addition, HER2 seems to play a

critical role in the formation of radial glial cells and astrocytes in the cerebral cortex

through interplay with the Notch-1 receptor [28]. At the cardiac level, ErbB2 is primarily

located in the myocardium, which is composed of muscle cells that regulate the atrium

and the ventricle [25]. ErbB2-null mice die due to lack of cardiac traberculae

development, pointing to one essential role of HER2 in cardiac development [13]. Other

important developmental roles include HER2 regulation of the endothelial-mesenchymal

transition, essential for heart valve formation, and transduction of signaling through

heparin binding EGF-like growth factors (HB-EGF), which is essential for valve and

chamber development [29],[30]. Apart from development, recent work indicates that



HER2 is needed for normal cardiac function, with reports demonstrating that

cardiomyopathy results from the directed knockout of HER2 [25]. Furthermore, existing

data raises the possibility of a link between known adult HB-EGF

deregulation/pathology and HER2.

Studies using Cre/Lox conditional mutant technologies have shown that HER2 is

also essential for the development of muscle spindles in skeletal muscle and is required

for myoblast cell survival [31],[32]. This data agrees with the previously mentioned

findings indicating that HER2 absence deregulates the PNS, since sensory neuron

signaling is required for muscle spindle development. HER2 also plays an important role

in the normal development of the mammary gland. Specifically, conditional mutation

experiments have shown that ErbB2 is required for the formation of lactationally active

distended lobuloalveoli [33]. The above results taken together highlight HER2's

important role in the development of many tissue types, the normal functioning of

developed tissue, and the potential for pathology due to HER2 deregulation.

1.3.4 HER-related signaling pathways

As shown in figure 1-4, there are many signaling pathways activated through the ErbB

system. Since the level of complexity is quite high, it is imperative for the

experimentalist to choose target signaling molecules and pathways with care so as to

maximize the amount of predictive information that can be gained. A wealth of literature

is available highlighting ErbB receptor roles in the downstream activation of multiple



signaling pathways. In as much as one can modularize signaling schemes, the ErbB

receptor system is implicated in the following pathways: the Shc,Grb2 Ras/MAPK

pathway, the MAP3K, MEKK4/7, JNK pathway, the Src kinase family pathway, the

JAK/STAT pathway, and the Phospholipid metabolism (P13-K, PLD, PLC-y) [34-38]. The

following is a brief treatment of some important signaling molecules downstream of the

HER-family receptors.
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Figure 1-4: A schematic of the ErbB signaling network [11].
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The general scheme leading to Akt activation after cytokine binding to a receptor is as

follows: the phosphorylated receptor recruits the p85 regulatory subunit of P13K to the

membrane which then recruits the catalytic p110 subunit of P13K. This activated P13K

complex then phosphorylates PI(4,5)P2 (phosphatidylinositol (4,5)-phosphate) into

P1(3,4,5)P3 (phosphatidylinositol (3,4,5)-phosphate). There is also negative regulation

at this level through the phosphatases SHIP 1/2 (Src homology 2 containing

phosphatases), and PTEN (phosphatase and tensin homologue deleted on

chromosome 10), both of which remove phosphate groups from PI(3,4,5)P3 groups.

The PIP3 molecules then serve to recruit PDK-1 (phosphotidylinositol-dependant

kinase-1) via its PH domain which similarly serves to recruit Akt via its PH domain.

PDK-1 phosphorylates Akt at the T308, but full Akt activation seems to require an

additional phosphorylation event at S473. The mechanism or kinase that enables this

last phosphorylation event has not yet been identified. Akt then goes on to

phosphorylate myriad downstream substrates, including Bad, procaspase-9, I-KB (IKK),

CREB, the forkhead family of transcription factors, glycogen synthase kinase-3 (GSK-3),

Raf, and p21C~p l . The Akt pathway has been implicated in many cell responses including

proliferation and motility [39]. Specifically within the ErbB family, it has been shown that

Akt is often upregulated in ErbB2 over-expressing breast cancers [40, 41] and that this

upregulation is linked to a host of cell responses such as increased motility, multidrug

resistance, enhanced cell survival, as well as enhanced malignant transformation [40,

42, 43].

JNK



The c-Jun N-terminal kinase (JNK) group of MAP kinases are generally activated by via

cellular exposure to stress or cytokine activation. JNK activation is mediated through

two MAP kinase kinase (MKK) molecules, MKK4 and MKK7. These are in turn

regulated by MAP kinase kinase kinases (MEKKs) such as MEKK1, MUK/DLK, and

others. JNK activation is a highly complex process that can be mediated by disparate

molecules such as P13K and Rho GTPases. JNK protein kinases have been shown to

regulate transcription through the phosphorylation of transcriptional activation domains

ATFa, c-Jun, JunD, Elk-1, and Sap-1. The resultant cell behavior due to JNK activity

has been far less well characterized. Indeed JNK's role in varied responses from

apoptosis to inflammation has been widely debated in the literature and may be

extremely cell type dependant. Furthermore, its role in tumor progression is very poorly

understood [44-46]. Much of the confusion may have to do with the fact that many

signaling pathways converge upon the MAPK pathway at the JNK level, leading to a

high degree of complexity and redundancy at the upstream level. JNK is an ideal

molecule for our study not only because it seems to be critically involved in many cell

processes, but also because its complex responses may prove to be ideal for model

analysis. Cell motility has recently been shown to be regulated by JNK in some

systems. JNK1 activity seems to be essential for rapid cell migration in rat bladder

epithelial cells (NBT-II) [47]. Previous work has heavily implicated MEK kinase 1

(MEKK1), an upstream regulator of the JNK pathway, in cell motility [48]. In sharp

contrast to the P13K and ERK pathways, very little has been published about JNK's

involvement in ErbB2 over-expressing systems, although there is a small body of

literature that suggests it may be important for malignant transformation [49].



ERK

The ERK MAPK pathway is one of the most studied cytokine activated pathways. The

general scheme of activation through ErbB family receptors is as follows: active

phosphorylated receptors bind Grb2 directly or indirectly through Shc, thus recruiting

Sos, a guanine nucleotide exchange factor for Ras. This then promotes Ras activation

which interacts with the serine-threonine kinase Raf-1. Raf-1, through a number of

intermediate molecules such as MEK, then activates ERK which goes on to

phosphorylate a number of cytoplasmic substrates as well as transcription factors in the

nucleus. There is crosstalk between this path and the P13K pathway at the level of Raf-

1, as well as considerable crosstalk between this and the JNK pathway at the level of

the AP-1 transcriptional unit. Thus, once again, ERK becomes an ideal molecule to

study and model due to its complex integration of signaling activation. ERK has been

heavily implicated in ErbB family signaling [25, 34]. It has been shown to regulate cell

motility and proliferation through a variety of different mechanisms [34, 50-53].

c-Src

Src kinases are essentially membrane bound molecular switches that serve to

coordinate receptor changes and intracellular pathways. Src has been implicated in a

wide variety of cell behaviors such as cell cycle control, proliferation, motility, and

differentiation [54, 55]. The Src kinases are activated by a variety of different surface

receptors that serve often to bind the SH2 domain of Src, thus releasing it from its

naturally auto-inhibited state. ErbB family interactions with Src have been well

documented in the case of EGFR. C-Src binds to EGFR and contributes to a number of



downstream signaling events. Substrates of c-Src include many proteins that are critical

in cytoskeletal reorganization events and motility, such as FAK, pl30Cas, cortactin,

EAST, and Eps-8 [56-58]. In addition, Src kinases have been shown to activate the

P13K pathway [59]. Thus, here again we have a molecule that is linked to multiple

pathways and cellular behaviors, thus making it an ideal target for study via the

modeling approach.

1.4 Human mammary epithelial cell (HMEC) system

1.4.1 Cell line background and considerations

Cell line models represent a critical parameter of choice. One of the best

characterized cell lines in relation to ErbB activity is the 184A1 cell human mammary

epithelial cell line. The 184A1 cell line was initially characterized by Band and Sanger

[60] and subsequently analyzed by numerous groups [17, 20]. The cell line has

subsequently been engineered to parse out the interactions between ErbB2 and EGFR.

Toward that goal, four clones of the 184A1 cell line have been produced using retroviral

introduction of the ErbB2 gene. These four clones represent a model system for

epithelial cells having varying levels of ErbB2 on the surface. Table 1 highlights the

receptor number information for this cell line. Work with these models clones has

yielded the most comprehensive quantitative set of data available with respect to

ErbB2-EGFR interactions. Quantitative models for both receptor dimerization and

trafficking phenomena have also been generated using data from this cell line [16, 17].



It has, however, been shown that the 184A1 cell line is generally non-tumorigenic in

nude mice, as noted further in the next section. A thorough analysis of current literature

and cell lines models of interest in pharmaceutical companies indicates that the below

cell lines, while not used in our study, also may serve as appropriate models for future

studies.

The H16N2 human mammary epithelial cell line has been manipulated using

retroviral techniques to yield over-expressing ErbB2 cells. Over-expression in this cell

line has been implicated in increased invasiveness and activation of the P13K pathway

[42]. Another cell line of choice is the MDA-MB family of cell lines. In particular, the

MDA-MB-435 and the MDA-MB-435/Her-2 (stable over-expression of HER2 from

transfection) offer an excellent model cell line in which to test effects of HER2 over-

expression. Studies on this cell line to date have shown that HER-2 over-expression

confers enhanced cell survival and increased Akt activity. The same qualities have been

shown to be true for the MCF7 and the MCF7/HER-2 over-expressing cell line [40]. A

recent paper by Knuefermann et. al. shows that P13K mediated activation of Akt is found

predominantly in cells over-expressing both ErbB2 and ErbB3, such as the MCF7, the

MDA453, and the MDA361. This is in direct contrast to those that have high levels of

only one receptor, such as MDA231 (EGFR), BT474 or SKBR3 (ErbB2), and MDA435

(ErbB3) [43]. This then allows for validation of observations made in the MDA435 case,

with increased ErbB2 levels, against some natural cell lines, such as the MDA453. In

sum, use of the MDA cell line family along with retroviral and knockdown techniques to

obtain a working model of ErbB2/ErbB3 interaction should permit observation of

behaviors relevant to breast cancer.



184A1 HMEC (Parental) -2x105 -2x10"
Al-1 clone 29L ~2x105 -1X105

A1-1 clone 12 ~2x105 ~2x105

A1-1 clone 24H ~2x105 ~6x105

Table 1-1: EGFR and HER2 receptor levels for the engineered 184A1 HMEC cell
line

1.4.2 Characteristics of HMEC cells

The human mammary epithelial cell line 184A1 was used throughout the course of this

thesis to study the effects of HER2 overexpression on cell signaling and behavior. A

knowledge of cell source and the method of immortalization is necessary when

considering how accurate the cell line is for predictions in vivo and how it compares to

results in other breast epithelial cell lines. In general, human mammary epithelial cells

are procured through reduction mammoplasties or mastectomies. In addition, these

cells can be obtained from lactational fluids and needle aspirations [61]. The HMEC

184A1 cells were derived from a reduction mammoplasty and then immortalized through

exposure to the chemical carcinogen benzo(a)pyrene [60-62]. These cells have

homozygous mutations of the cyclin dependent kinase inhibitor (CKI) p16 gene but

stable levels of p53 [61]. Importantly, HMEC 184A1 cells show low genomic instability,



allowing for longer-term passaging as compared to breast cancer epithelial cells. 184A1

express polymorphic epithelial mucins (PEM), keratins 5/14 and 8/18, but not express

estrogen receptor (ER) [61, 62]. The cells are non-tumorigenic in nude mice and are

growth factor and anchorage dependent [62]. 24H cells, or HMEC 184A1 cells stably

transfected with HER2, are also non-tumorigenic and anchorage and growth factor

dependent, although it is not known how expression of PEM or keratins change in these

cells. Finally, it is interesting to note that HMEC 184A1 cell lines undergo a slow

nonuniform growth phase for the first 20-30 passages, and the HMEC experiments

described throughout the course of the work were performed on 184A1 that had been

passaged past this point [62]. There is no known mechanistic reason for this early

nonuniform growth phase. Thus, the HMEC 184A1 system provides a well-

characterized system in which to study the effects of HER2 overexpression in normal

breast epithelia.

1.5 Computational Models

1.5.1 A brief introduction to computational modeling in biology

The coordinated regulation of biological signaling has many of the same

properties we observe in other engineering systems, e.g. feedback, amplification, and

crosstalk. As the number of molecules and interactions that govern one cellular function

becomes large, it becomes difficult to intuit the underlying rules or principles that govern



the system. Computational models help to codify potential intuition from highly complex

datasets, allowing for hypothesis generation and the identification of multi-dimensional

signaling control elements for cell behavior. Introduction to the many types of

computational models is beyond the scope of this thesis. However, I offer a broad

overview of three important classes of computational models in Chapter 8, with special

attention to their usefulness for prediction in the pharmaceutical field. In addition, I

would refer the interested reader to the following references for more general reviews of

cell signaling models [63-68].

In particular, this thesis is concerned with models that describe and predict

cellular output from network signals. Excellent reviews of this class of models are

available in [66, 69] as well as in Chapter 8. Briefly, these models use diverse

computational techniques, for example linear mapping and decision tree analysis, to

understand how measured intracellular signaling events (typically phosphorylation

changes) govern changes in cell behavior (such as cell migration or apoptosis).

Although many excellent reviews of various computational approaches exist as

mentioned above, the first step in approaching the problem of how signals govern

behavior is to understand the dimensionality or scope of the problem. As engineers, we

typically address this issue by taking stock of the orders of magnitude inherent in the

problem. Here, I briefly explore these orders of magnitude to highlight two important

points: 1) the complexity of the problem, which emphasizes the need form

computational aid in understanding and 2) the inability of any one model to capture all

processes, thus emphasizing the need for careful model assumptions and



simplifications. Many of the below estimates are taken from an excellent review by

Papin et al. [68].

There are -30,000 genes in the human genome encoding -500 protein kinases,

-150 protein phosphatases, and -1,500 receptors (Table 1). Furthermore, each gene

has a conservative average of -3 splice variants and further -3 post-translational

modifications (e.g. phosphorylation or methylation). Thus, the number of different states

achievable as defined by the collection of final protein products is in excess of 50,000.

As discussed in Chapter 1.1.2, further linkage or protein-protein interaction also occur,

with an average of -5 interactions per protein. Thus the number of possible states

achievable in a signaling network at a given period of time is immense. Clearly, if we

suggest that understanding network properties is essential to understanding the

governance of cell behavior, the problem is much more complicated than human

intuition can account for, but also more complicated than current computational models

can account for. Thus, the appropriate abstraction of complexity becomes necessary,

and, as noted elsewhere, depends on the questions being posed in the study and the

nature of the data available [65, 66].



Table 1 I The scope of the human cellular signalling network
Network component Number
Cells 10' 4

Cell types 200

Genes 25,000
Percentage of genes with splice variants 40-60
Average number of exons per alternatively spliced gene 8

Maximum number of exons per alternatively spliced gene (taken from JTDthat encodes titin) 234

Average number of splice variants per gene across the genome 2.5
Percentage of alternatively spliced genes with signalling function 75
Average number of post-translational modifications per protein
(current estimates) 2.5
Genes for transcription factors 1,850
Genes for protein kinases 518

Genes for protein phosphatases 150

Genes for receptors 1,543

Genes for GPCRs tfor endogenous ligands) 367
'Seethe Human Proteomics Initiative in the online links box.

Table 1-2: Orders of magnitude for parameters in cell signaling networks. Taken
from [68].

Our above discussion omitted added complexity arising from the dynamics of

signaling networks. Signaling dynamics play a key role in determining resultant cell

function as mentioned in Chapter 8. Although signaling and protein modification can

occur on the order of microseconds, transcription, later-phase signaling, and cell

function occur across diverse timescales (Table 2), indicating that careful thought as to

how to integrate models across timescales must be paid prior to analysis [70]. Thus,

taking stock of the parameter space involved in understanding biological signaling and

behavior reveals a highly complicated system that requires the carefully focused use of

computational models.



Cellular signalling process Time (in seconds)
Acdities
Kinase/phosphatase reactions 10-

Protein conformational changes 10- -

Cell-scale protein diffusion (passive) 100-10'
Cell-scale protein diffusion (active) <100
Responses
Cell migration 100-102

Receptor internalization 102
Transcriptional control 102
Cellular growth 104

Table 1-3: Relevant orders of magnitude for timescales in network-function
models. Taken from [68].

1.5.1 Partial Least Squares Regression (PLSR): An introduction

In Chapters 4 and 5, I introduce the specifics of the modeling approach used in this

thesis, namely, partial least squares regression (PLSR). PLSR is a method that enables

the linear mapping of one dataset onto another (i.e. signals onto cell function), and has

at its heart two important concepts: linear regression and single value decomposition

(SVD). In this section, I discuss the tenets of the linear approach we undertook, and

then introduce PLSR by way of SVD and linear regression. The details of our

methodology are further explained in later chapters as noted throughout the following

discussion.

When considering how a set of signals relates to cellular response or behavior, it

is difficult to intuit the form that the function would take. For instance, if one is looking at

cell migration, one might posit that migration = f(Erk, Akt). However, there is not enough

underlying data about the chain of chemical reactions that lead to Erk's or Akt's effects



on cell migration for us to explicitly enumerate such as function. Hence, approximating

functions must be used. As explained in Chapter 8, a high level of abstraction is

generally needed when considering cell signal-cell response type models. Linear

mapping is a highly abstracted computational tool ideal for signal-response analysis

since we can then take advantage of the tools linear algebra provides as well as the

rigorous statistical theory developed around linear regression. The general problem, as

portrayed below in Figure 1-5, is defining a set of parameters that project a matrix of

signals onto a matrix of cell behavior measured under the same cellular conditions. We

define the set of parameters that transform the signals to behavior (denoted b in later

equations) by performing a linear regression. The hypothesis behind the work presented

in this thesis is that the linear projection defined by b will reveal underlying principles

and rules governing the coordinated control of cell behavior by many kinases, as well as

having a sufficiently large range such that application to new signaling sets generated

after model completion (e.g. those corresponding to addition of new inhibitor, ligand, or

receptor expression) will accurately compute novel cell behavior a priori.

Signal/Sample Space Response Space



Figure 1-5: Mapping signals to cellular response using linear projection. The
vector b takes a matrix of signals (X) and projects it to a set of responses (Y). The row
and column spaces are shown as subspaces within the signal and response spaces,
respectively.

SVD, a critical component of the PLSR algorithm, is a mathematical technique

with a rich history in the field of linear algebra as well as usefulness in the field of

biological study [71, 72]. Indeed, the noted linear algebra professor Gilbert Strang called

SVD "a high point of linear algebra" in his book, Introduction to Linear Algebra [73]. SVD

is a powerful biological approach due to the high incidence of rank-deficient matrices in

biological modeling. The matrix of signaling values in the work presented herein, which I

shall call X, is an MxN matrix corresponding to M cellular conditions measured and N

protein measurements for each condition. A row in X might refer to a particular cell type

stimulated with EGF, whereas a column refers to the measurement of Akt

phosphorylation or activity at 5 minutes under various cell conditions. Typically, when

utilizing technologies that measure kinase properties from whole-cell lysates, we have

many more columns than we do rows (N>M), thus rendering our matrix rank deficient.

The number of columns can be quite large (see Chapters 4 and 5), often in excess of

1000, whereas the number of cell conditions is typically under 20. To reduce the

dimensionality of the signaling matrix and to identify an orthogonal basis set for both the

row and column spaces of X, we require SVD, which decomposes the matrix as follows:

X=UZVT (1)



where the first r columns of V are an orthogonal basis set for the row space and the first

r columns of U are an orthogonal basis set for the column space, with r being the rank

of matrix X. Columns after r in V and U correspond to orthogonal bases for the null

spaces of X and XT, respectively. With this decomposition, we can write expressions for

the covariance of both X and XT as follows:

xx' =u2 'u T  (2)

XTX = VET VT  (3)

Since these equations are in Jordan normal form, the columns of V are the eigenvectors

for XTX and the columns of U are the eigenvectors for XXT. Thus, to solve for U and V,

we need to calculate XTX and XXT and then solve for their eigenvectors.

Computationally, we use an efficient technique to calculate both U and V called

non-linear iterative partial least squares (NIPALS). Before discussing this algorithm, I

define the terms used in the algorithm. The need for further definition arises from the

fact that SVD is also known as principal components analysis (PCA), and although

these two names refer to the same technique, different terms (and typically different

derivation and explanation methods) are used in the PCA literature. Briefly, papers in

the PCA field typically decompose a matrix into a sum of outer products as follows [74]:

X = tp[ + t2p2 + .... tr~ (4)



The vector t is the scores vector and represents the columns in the U matrix defined

during our SVD discussion. The vector p is the loadings vector and corresponds to V

from our SVD discussion. These vectors are often represented graphically as shown

below in Figure 2.

PC

X

x O:

Figure 1-6: A graphical representation of PCA in two dimensions. Here the PC is
the line of best fit and the scores are the projection of individual data along the direction
of the PC (right figure) whereas the loadings are the cosine angles of the direction
vector with respect to the original axes.

The NIPALS algorithm, then, as stated in [74], for the calculation of PCh is:

1) take vector xj from X and define it as th

2) calculate PT by solving pT = tTX/t th

3) normalize p h to unit length

4) calculate new th by solving th = Xph p Ph

5) compare th used in step 2 to the one generated in step 4. If they are the same within

some predetermined level of accuracy, then stop. If not, then go back to step 2 for

another iteration.



The NIPALS algorithm is the same eigenvalue problem discussed when

introducing SVD, as can be seen by combining the equations in steps 2 and 4 to get the

following eigenvalue problems:

0 = t,(CI- XY') (5)

0 = p ((C,I- XTX) (6)

Where C, is (pphP Xtth,). Thus, the NIPALS algorithm can be used to generate the

single value decomposition or the principal components of a matrix.

We now return to our original task of defining the vector b for the projection of our

signaling matrix to our cellular response space. The reason for introducing SVD first is

because we need it to solve the linear regression problem stated in equation 7 when

dealing with an X that is rank-deficient.

b = (XTX) X T y (7)

We can use SVD to rewrite the problem using the psuedoinverse, defined as X-', by:

b = X-'y = VZ-' Uy (8)

We can also decompose Y to rewrite the above equation in terms of the two SVD's. The

decomposition of both the X and Y matrices to perform linear regression is called

principle component regression (PCR). It is important not only because it allows us to



solve the linear problem with rank-deficient matrices, but also because as the number of

variables rise in a linear model, the uncertainty in the estimated parameters rises in

parallel and becomes the dominating factor [75]. Thus, by performing SVD on both the

X and Y matrices, we reduce the dimensionality associated with each matrix, thereby

increasing the predictive power of the resulting model. The reduction in number of

variables is due to the fact that regression parameters are determined in PCR between

the scores vectors of the X and Y matrices. If we represent both X and Y by their

associated scores vectors, t and w, respectively, we obtain the following regression

equation:

. p Tbq (9)ty=w; ,= b (9)
qq

Where p and q are the loadings vectors associated with X and Y, respectively. It is

natural to represent X and Y by their scores vectors since these vectors represent an

appropriately 'blended' column space, or put more precisely, the basis set for the

covariance of each matrix. Thus, by decomposing our matrices using SVD and then

performing regression to obtain b, we have solved the linear projection problem we

posed at the outset of this chapter. One final problem remains, however. And that is the

fact that by decomposing the X and Y matrices separately, we did not define principal

components that necessarily best captured the covariance between the two matrices,

which is the covariance we wish to model. To do this, we define principal components

such that we account for the covariance between X and Y using a procedure called

PLSR. This procedure is implemented using a variation of the NIPALS algorithm, and

we describe it iin greater detail in the Methods sections of Chapter 5. Here, we present

the algorithm for the PLSR NIPALS approach, as documented in [75], and then define



the PLSR loadings and scores vectors in terms of an eigenvalue problem, highlighting

the additional accounting for covariance between the X and Y matrices. The PLSR

NIPALS algorithm is:

1) define w as the first column of Y

2) a = XTw/(wTw)

3) Scale a to unit length.

4) t =Xa

5) c= ymt/(tTt)

6) Scale c to be unit length.

7) w = Yc/(cTc)

8) check w in Step 7 against that of Step 2. If they are equal, the continue to the next

step, if not, return to Step 2.

9) p = XTt/(tTt)

10) q = yTw/(wTw)

11) perform regression: y = wTt/(tTt)

Note that here we have two vectors, a and c, that define the loadings associated with

variance-covariance matrices as defined below, whereas p and q continue to relate

directly to X and Y only. The variables t, w, a, and c correspond to the following

eigenvectors [75]:

w-+ yyTXX T

C-- TXXTy

t--xxTyyT



a-xTyyTx

Thus, using PLSR, we solve a linear regression problem and account for covariance

between our signals and cellular behavior to define a projection that linearly describes

and predicts cellular decision making processes.

1.6 Thesis Overview

The work described in this thesis is a small part of the movement toward a more

predictive form of biological science. The product of the work is not only the

development and application of models focused on understanding how protein networks

regulate cell function in important cancer systems, but also a description of how a

combination of experimental and computational approaches can lead an investigator

toward more focused biological problems. As such, although a majority of the work

described below deals with the data capture and model development toward the

understanding of signal-response behavior, Chapters 2 and 7 contain more detailed

studies into the biophysical and biochemical mechanisms behind cell migration and Akt

activation. Both topics arose naturally from the systematic evaluation of the signaling

networks in cancer cells. Chapters 2 and 3 together describe the measurement

techniques used to gather quantitative cell signal and cell behavior data. Chapters 4

and 5 describe the analysis of gathered quantitative data in HER2 overexpressing cells

using linear modeling. Chapter 6 explores the network signaling properties of small

molecule inhibitors, and combines both experimental and modeling approaches to

predict inhibitor efficacy against HER2-mediated migration. Chapter 7 contains the



above-described analysis of Akt signaling and Chapter 8 concludes the thesis by

presenting potential applications of computational models in the pharmaceutical

industry.
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Chapter 2 Development and application of a high-throughput

migration assay reveals HER2-mediated migration arising

from increased persistence

2.1 Introduction to migration

The observation of cell movement was first recorded in 1863 by Rudolf Virchow, a

scientist studying the leukocyte behavior [1]. Today we know that cell migration is

critical to diverse biological processes such as embryogenesis, wound healing,

inflammatory response, and angiogenesis [2-4]. In addition, migration plays a prominent

role in cancer metastasis [5, 6]. The study of cell migration has been greatly aided by

the recent development of novel experimental and computational tools. Nevertheless,

since the movement of a cell through space is dependent of properties not only intrinsic

to the cell but also those of the space it moves through, this complicated process is still

poorly understood. For reviews of the biophysical and biochemical regulation of cell

migration and the many factors regulating it, I refer the reader to [3, 4, 7, 8]. Here, I

restrict the discussion to a brief introduction of the types of cell migration and the ways

in which it is measured and analyzed. Although many recent advances in the field of cell

migration have come from the study of cells in three dimensions, I do not touch on these

studies, since the methods described herein are in 2D. However, mechanistic

understanding in 2D has been shown to be relevant and useful for 3D migration, and it

is hoped that the work presented here is no different [3]. Beyond the introduction,



Chapter 2.2 describes a novel high-throughput experimental approach to measuring

migration and Chapter 2.3 presents the application of the procedure to understanding

aspects of HER2-mediated migration.

The study of cell migration is typically divided into three categories defined by the

chemical makeup of the space the cell is migrating within [9]. Due to the interplay

between the extracellular space and the intracellular events governing migration, these

three categories often have distinct signaling mechanisms associated with cell

movement. The first of these categories is called chemokinesis, which describes the

movement of a cell in the absence of any external orienting cues. In contrast,

chemotaxis, a second category, describes directed cellular movement in the presence

of a soluble chemical gradient. Finally, haptotaxis is directed cell movement in the

presence of an anchored chemical gradient. The work described in this thesis and the

computational models introduced in the next section deal with chemokinetic movement

only. For further information about directed cell migration, the reader is referred to the

following reviews [10, 11].

Once the category of migration to be studied is determined, there are still many

factors that will affect movement within a particular cell type. Major factors include the

extracellular matrix present (ECM, e.g. tissue culture plastic, fibronectin, collagen,

laminin, or Matrigel) and the ligands present in solution [9]. Depending on the cell's own

expression of various receptors that interact with the extracellular environment (e.g.

integrins or growth factor receptors), cell migration will vary as ECM or ligand conditions

change. In addition, the density of deposited cells on any given surface affects cell

movement, with certain cell types preferring to move in collective groups and others



moving more effectively as single cells [1]. Many of these factors affecting cell migration

are determined by the measurement assay used. Below, I briefly introduce some

prominent assays used for the measurement of migration.

2.1.1 Measurement assays

The three most common ways to study migration in vitro are 2D cell tracking, scratch

assays (wound healing assays) and filter assays [12]. 2D cell tracking typically involves

the seeding of cells onto a surface such as tissue culture plastic, glass, or one modified

with ECM, and then tracking cells via phase contrast microscopy or fluorescent

microscopy (if the cells are appropriately labeled). Using this technique, one can

measure cell movement at many time periods over a long time course, thereby

generating data appropriate for the mathematical models discussed below. These

assays typically involve the sparse seeding of cells, which can be a problem for cells

that move as collective clusters or in sheets. Apart from the biological considerations,

the 2D assay is also low throughput, not allowing for the study of many cell conditions in

short periods of time.

The scratch assay begins with the growth of cells to confluence on a surface not

typically modified by ECM. A 'wound' is then created by dragging a plastic object across

a subsection of the cells to scrape them off. Cells migrate into the wound and wound

area is recorded. Cell movement is subjected to a different set of steric hindrances in

this assay as compared to the 2D assay, and single cell movement is not recorded. In



addition, wound area is typically not measured at comparable temporal resolution to 2D

assays, yielding less data for computational analysis.

Filter assays typically involve the seeding of cells and then the observation at

some later time of how many cells migrated through a filter membrane with pores of a

defined diameter. This assay yields the least temporal information of the assays

described in this section. The movement can be collective or single cell, but is a function

of the cell's ability to move and squeeze through a pore. Filter assays have been

developed for high-throughput analysis and are commonly used in the pharmaceutical

industry for the screening of drugs.

2.1.2 Mathematical models of cell migration

The characterization of temporally resolved cell movement has been greatly

aided by mathematical and computational analyses that have codified descriptions of

this complicated process as well as identified salient mechanisms of movement that

have been shown to be of biological importance. For chemokinetic movement, the most

commonly used model for cell movement is called the persistent random walk (PRW)

model [13]. The PRW model states that cell movement is a product of two processes,

cell speed and the directionality of motion (cell persistence). As discussed in Chapter

2.3, speed and persistence have been shown to be under distinct biochemical control,

and the parsing of these two behavior enhances our understanding of cell migration and

how to manipulate it via pharmacological intervention.



The PRW model was initially proposed based on the observation that cell velocity

(v) is correlated at short times but at long times becomes uncorrelated. This lead to the

description of the velocity autocorrelation function as [13]:

G,(T)- (v(t +1-r)*v(t))= S2e-  (1)

where S is root mean squared speed and P is the directional persistence time. The

mean squared displacement (d2(t) can then be obtained from integrating equation 1

[13]:

(d2 (t)) = ((t) (t)) = 2 dt' jdzG (r) (2)
0

Which, together with equation 1, yields:

(d2(t) = S2P(t - - ) (3)

The net effect of speed and persistence on the movement of a cell can now be

expressed in terms of diffusion. Setting the above equation equal to 4Dt we have:

D = S 2P/2 (4)

As an alternate to equations 2-4, we can also describe cell movement using a Markov

Model. Specifically, we use an O-U process, descriptive of an auto-correlated random

walk. The equation then is [14]:



dv(t) = -,/v(t)dt + dW(t) (5)

where the first term on the RHS refers to the resistance to motion and the second term

to random fluctuations. This description is often used when motivating the use of Monte

Carlo (MC) models to simulate cell migration under varying conditions.

Using the above equations, estimates for S, P, and D can be obtained from

experimental cell migration data via the fitting on equation 3 to displacement data [13].

We have included in Appendix 1 the MATLAB code used to do this. In addition,

Chapters 2.3 and Chapter 6 demonstrate how these equations can be used to describe

and characterize cell movement under varying biological conditions.

2.1.3 Connection to cancer and metastasis

As noted in Chapter 2.3, the migration work presented in this thesis was first motivated

by the observation that HER2 overexpression correlates with increased metastasis in

breast cancer patients. Metastasis, the process by which cells spread from a primary

tumor to secondary sites, is comprised of many steps including separation of cells from

the primary tumor, invasion of those cells through surrounding tissue and basement

membranes, entry in the circulation, peritoneal, or lymphatic space, deposition at

secondary site, and finally survival and proliferation after deposition [15]. Cell migration

plays a key role in a number of these steps, most critically in the movement of a cell

away from the primary tumor and toward the circulation as well as the relocation of the

cell to its eventual secondary site. Indeed, cell migration has been shown to be a



required element in the metastasis of many cancers [5]. It stands to reason, then, that

increased cell migration has been found to be a hallmark in highly invasive cancers,

such neuroepithelial tumors [16]. Increased migration has been identified in a variety of

cancers such as ovarian, breast, pancreatic, and prostate cancers [17, 18].

2.2 Development of a high-throughput assay

This section describes the development of a novel high-throughput assay to measure

migration [19]. The assay combines the advantages of the above described scratch

assays (e.g. high-throughput and allows cells to move collectively) with those from a 2D

assay (temporally resolved information for single cells ideal for computational analysis).

As described in Chapter 2.3 and Chapter 6, this assay can be used to quickly and

accurately measure the effects of differential receptor, ligand, or inhibitor treatment on

various cell lines. As compared with current technologies, it offers the unique

combination of high-quality (e.g. many individual measurements) migration-specific

information and assay speed.

2.2.1 Methods

Cell Culture

184A1 human mammary epithelial cells (HMEC's) were a kind gift from Martha

Stampfer (Lawrence Berkeley Laboratory, Berkeley CA). Cells were maintained in

DFCI-1 medium supplemented with 12.5 ng/ml EGF (Peprotech, Inc.). 184A1 HMEC

clone 24H were a kind gift from Steve Wiley (Pacific Northwest National Laboratories,



Richland WA) and were maintained in DFCI-1 medium supplemented with 12.5 ng/ml

EGF and 150 pLg/ml of Geneticin (Gibco, Invitrogen Inc.). Serum-free DFCI-1 media is

defined here as DFCI-1 without EGF, bovine pituitary extract, fetal bovine serum, and

insulin.

Statistics

A Lilifors-Test was used to test for normality for speed, persistence, and random motility

coefficient data. A Kolmogorov-Smirnov test was used to assess p-values at a 95%

confidence interval for non-normal speed, persistence, and random motility coefficient

data. P-values for wound healing comparisons were generated using two-sample t-test

and ANOVA. All statistics were generated in MATLAB (Mathworks, Inc.).

Migration Assay

HMECs were seeded in 96-well tissue culture plastic plates (Packard View Plate Black,

Ref. 6005225) at confluence (-500,000 cells/cm2) and allowed to adhere for 4-6 hours.

Media was then removed and cells were serum starved for 12-16 hours. Starved cells

were treated for 30 minutes with 9pM 5-chloromethylfluorescein diacetate (CMFDA,

Molecular Probes, Inc.) in serum-free media. CMFDA containing media was removed

and cells were then treated with new serum-free media, serum-free media containing

EGF (100 ng/ml), or serum-free media containing HRG-pl (80 ng/ml, Sigma). A wound

width -650 pm was scraped in each well and cell movement imaged every 15 minutes

for 12-15 hours using Cellomics KineticScan. For individual cell tracking in the

monolayer, CMFDA labeled cells were mixed 1:20 with unlabelled cells and the mixture



was then seeded at confluence, serum starved, scraped and imaged as described

above. Kinetics of wound closure were quantified using an in-house analysis software

that calculated the wound area at each time point normalized by the initial wound area.

The details of the computational code are given in Appendix 2. A 5-point time

averaging algorithm was used to average wound closure in individual wells of equal

treatment into a single trajectory at 30 minute intervals. Individual cell trajectories in

monolayer were produced using Imaris (Bitplane, Inc.). Only cells that remained in

frame throughout the entire experiment were considered. Each fluorescently labeled

object was recognized as a single cell in a monolayer using the built-in spots function.

Cell tracks of the fluorescent objects over time were generated with a built-in

autoregressive motion algorithm [20]. Cell trajectories were then fit to the persistent

random walk equation [13]. A schematic of this assay is shown below in Figure 2-1.
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and cell movement is then monitored using epi-fluorescent microscopy (Cellomics
Kineticscan). The 96-well plate is kept at 37 oC and 5% CO 2 throughout the experiment.
Movies are then exported and analyzed using MATLAB and Imaris-based software.
Monolayer movement is quantified in terms of wound area and individual cell
trajectories are defined in Imaris and then further analyzed for cell speed and
persistence.

2.3 Measurements of HER2-mediated migration

This section describes the utilization of the assay described above to explore the effect

of HER2 overexpression on cell speed and directional persistence. Observed consistent

increases in persistence associated with HER2 overexpression indicate a prospective

mechanism for invasiveness previously documented in HER2-overexpressing human

breast tumors [19].

2.3.1 Introduction

Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20% to

30% of breast cancers and correlates with poor prognosis and increased metastasis

[21]. HER2 belongs to the ErbB or HER family of receptors (comprised of HER1/EGFR,

HER2, HER3, and HER4) and can be activated through concentration-dependent

homodimerization or ligand-driven heterodimerization. Epidermal growth factor (EGF)

and heregulin (HRG), two ErbB family ligands implicated in cancer progression, bind

HER1 and HER3, respectively, to induce the activation of HER2 through

heterodimerization [22]. Because of HER2's role in breast cancer metastasis, a number



of groups have investigated the effect of HER2 expression on aspects of cell motility,

demonstrating that activation by EGF, HRG, or homodimerization leads to increased

invasion and motility in breast cancer cell lines [23-25]. In addition, these and other

studies have implicated various downstream signaling molecules as effectors of HER2-

increased motility. Primarily because many of these studies relied on invasion assays,

however, there is little known about how HER2 overexpression affects cell migration

parameters such as cell speed and persistence. Prior study of primary ductal breast

carcinoma cells revealed that groups of cells tend to detach from primary tumor lesions

and move away in a highly polarized and directionally persistent manner, indicating that

the control of directional persistence may be distinct in highly motile breast cancer cells,

such as those with HER2 overexpression [26]. In addition, increased directional

persistence has been identified as a hallmark of cell migration in highly invasive tumors,

such as neuroepithleal tumors [16]. Distinct signaling and biophysical mechanisms

controlling directional persistence versus random motility have also been identified in

recent studies [27-29]. Thus, a more in-depth study of HER2's effect on cell migration,

speed, and persistence could potentially serve two purposes: 1) to connect HER2

overexpression with persistent movement shown to be important in cancer systems;

and 2) to provide a context within which to understand previously identified HER2-

associated downstream signals by linking them to pathways that regulate directionally

persistent migration.

2.3.2 Wound healing results



We examined cell migration in a human mammary epithelial cell (HMEC) line.

Two clones of the cell line, Parental (with 200,000 EGFR, 20,000 HER2, and 20,000

HER3) and 24H (200,000 EGFR, 600,000 HER2, and 30,000 HER3), were studied in

the presence of EGF (100 ng/ml), HRG (80 ng/ml), or serum-free media. Cell migration

was tracked using a high-throughput 96-well migration assay that we developed for the

rapid screening of cell motility. The movement of epithelial monolayers and the motility

of hundreds of individual cells in monolayers were rapidly screened, generating time-

resolved population-level statistics for all treatment conditions during one 15-hour time

course (Figure 2-1). This presages future assay application to drug-based screens

designed to rapidly explore the biochemical basis of cell migration.

Increasing HER2 levels from 20,000 to 600,000 increased wound closure across

all treatment conditions (Figures 2-2A-D). Absolute levels of wound closure differed

depending on treatment condition, with EGF-treated cells being the most motile followed

by HRG-treated cells under both low and high HER2 expression (Figure 2-2A). EGF-

treated 24H cells exhibited the most rapid closure, completely sealing the wound in

approximately 6 hours, and EGF treatment showed the most responsiveness to HER2

overexpression as measured by the difference in closure between parental and 24H

cells at 15 hours. Interestingly, HER2 overexpression caused elevated closure even in

the absence of ligand, presumably due to low levels of autocrine production or

concentration-dependent homodimerization.



A.
a
2 1.0

o 0.8-
C

o 0.6-

" 0.4-
N

- 0.2-

E
Q 0.0-

CU
0) 1.0.

v 0.8-
C

S0.6
-0 0.4.
W
c 0.2
00.0-

Z Ia O.Oz

F W 1.0-
2-
<C 0.-
o 0.6-

v 0.4.

0.2.

o 0.0
16 Z

2 4 6 8 10 12 14
Time (hours)

[ Parental + HRG
1

0 2 4 6
Time

-~- 24H + HRG

% e) g~$% H + HRG e~ o%·

8 10 12
(hours)

Figure 2-2: HER2 overexpression increases cell migration. Normalized wound area
as a function of time for (A) parental and 24H cells under EGF (100 ng/ml), HRG (80
ng/ml), or serum-free treatment, (B) parental and 24H cells in serum-free conditions, (C)
EGF-treated parental and 24H cells, and (D) HRG-treated parental or 24H cells. All
time points shown ± SE after time averaging (see Supplementary Methods). For raw
data time courses see Appendix 3, Figure A3-1.
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control of migration differing across treatment conditions. For instance, in the presence
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and EGF-treated 24H cells close more wound than similarly-treated parentals at 3.5

hours (p < 0.01), demonstrating that HRG exerts temporally distinct control of migration.

Movement after 3.5 hours differentiates the HRG-treated cells, with 24H cells closing

approximately 25% more normalized wound area than parentals at 15 hours. Another

interesting kinetic trend is the cessation of wound closure that occurs at early times

under certain conditions. For instance, HRG treated 24H cells close the wound

throughout the duration of the experiment, but parental cells stop their movement after

approximately 5 hours (Figure 2-2D). Interestingly, even after wound closure has

stopped, HRG-treated cells continue to move in the monolayer, suggesting that cell

movement perpendicular to the wound front is controlled separately from cell movement

within the monolayer and parallel to the wound front (data not shown). EGF-treated

parental cells exhibit similar behavior as do both parental and 24H cells in serum-free

conditions. The time at which wound closure stops varies between approximately 2 to 6

hours depending on treatment conditions, but cell movement in the monolayer and

parallel to the wound continues in all cases. These data are consistent with wound

closure observations from other groups, and although the mechanistic basis of this

'stopping' behavior is not fully understood, it is clear that HER2 overexpression in the

context of HRG or EGF treatment provides necessary information to overcome the

signals governing the termination of wound closure before the wound is sealed [30].

Figure 2-2A also reveals that cells under all treatment conditions close similar wound

areas at early times (21-29% wound area closed under all conditions at 1.5 hours). This

suggests that early wound closure is primarily governed by mechanical induction and



associated start signals that operate independent of ligand/receptor conditions (Figure

2-3).

24H
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Figure 2-3: Early phase wound closure is similar for all cell treatments. Normalized
wound area after 1.5 hours for 24H and parental cells under EGF (100 ng/ml), HRG (80
ng/ml), or serum-free conditions. Average wound area is reported ± SE.

2.3.3 Individual cell movement in monolayers

We considered whether the demonstrated differences in migration might arise

from changes in cell speed, directional persistence, or both. We wondered further

whether cells use these two migration 'levers' in a similar or different manner to

increase migration under different ligand treatments. To explore these questions, we

tracked the wound closure response of fluorescent cells diluted in unlabelled cells.

Dilution allowed for more accurate cell tracking within the monolayer. We then

calculated the mean-squared displacement for each cell trajectory and fit it to the

following equation:

d 2(t)) = 2S2P[t-P -et/P) (1)

1



where S is cell speed and P is cell directional persistence [13]. Data demonstrated that

although HER2 overexpression increased wound closure for all ligand conditions

studied, it did not necessarily increase cell speed. Indeed, when HER2 was

overexpressed, serum-free cell speed did not differ and HRG treated cells exhibited

slightly decreased speed (Figure 2-4A). EGF-treated cells, however, increased cell

speed with HER2 overexpression (Figure 2-4A). The magnitude of cell speed was

similar between HRG treatment and serum-free conditions, but significantly higher for

EGF-treated cells. In contrast to cell speed data, HER2 overexpression increased

directional persistence across all treatments (Figure 2-4B). EGF treatment stimulated

the highest degree of persistence, whereas HRG treatment induced the largest change

between low and high HER2 conditions. Cell speed and persistence data together

demonstrate that HER2 overexpression causes more rapid wound closure under EGF

treatment due to increases in speed and persistence. However, in the absence of ligand

or under HRG treatment, changes in closure rates are due primarily to increased cell

persistence alone. HER2's influence on the effective diffusion of cells is found by

equating equation 1 to 4Dt when t >> P, where D is the diffusion constant or random

motility coefficient (as it is more often referred to in migration literature). Expressing D

as:

D = S 2P/2 (2)

we can evaluate the net effect of changes in speed and persistence on cell migration.

Figure 2-4C shows that the random motility coefficient describes differences in the



magnitude of migration between conditions that are consistent with those observed

using the wound closure assay (Figures 2-2A, 2-4C). Thus, depending on the ligand

treatment, the cell regulates speed and persistence in qualitatively different ways to

achieve HER2-mediated increases in migration as measured by wound closure or

diffusion.
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distributions. All data reported as mean ± SE. Number of cells per condition equals
153-196. (See Appendix 3, Figures A-2-A2-4 for raw data)

2.3.4 Conclusions

The biological regulators of directional movement are not fully understood, but

recent work has implicated Racl, microtubules, and myosin Ilb as possible candidates

[16, 27, 28]. Whatever the downstream regulators, our data indicate that HER2

overexpression affects cellular components involved with directional movement

independently from those responsible for increased cell speed. We speculate that

differential phosphorylation under the various ligand treatment and receptor levels

considered initiates downstream signaling differences that affect cell speed and

persistence differently. Our data show, however, that under a variety of activating

conditions, HER2 overexpression increases cell persistence, perhaps indicating the

existence of a redundant phospho-site or signaling mechanism responsible for

increasing persistence. This strong connection between HER2 and directionally-

persistent migration may, in turn, be an important facet to HER2's documented ability to

increase invasion and metastasis in human breast cancer cells.
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Chapter 3 Signal state measurement techniques as applied to

HMEC signaling

In this chapter, I discuss the various signal measurement technologies employed in this

thesis. Each method is introduced along with pertinent HMEC results, and assay-

specific issues are addressed. Finally, a comparison between the technologies is

presented to motivate the use of various assays in Chapters 4-7.

3.1 Kinase activity assay

3.1.1. Methods

The methodological details for the high-throughput microtiter kinase assay used to study

kinase activity in the HMEC cells has been described elsewhere [1]. Figure 3-1 shows a

generalized schematic of the process. Briefly, antibody raised against the kinase of

interest is incubated with Reacti-BindTM protein A or G coated microtiter wells overnight

at 40C. Following washing, wells are incubated with whole cell lysate overnight at 40C.

After washing, each well is suspended in kinase buffer containing cold ATP and [y-

32P]ATP, and the reaction is initiated with the appropriate substrate. After incubation at

370C, the reaction is terminated with 75 mM H3PO4 or 20 mM EDTA. The reaction

contents are filtered through a 96-well phosphocellulose filter plate using the

Multiscreen@ system (Millipore, Bedford, MA). After extensive washing, the 32P

incorporation is quantified by liquid scintillation. For each set of experiments, blank

wells containing only lysis buffer are included as negative controls. This procedure has



been validated for the following molecules of interest: Akt, JNK, ERK, and IKB in HT-29

cells [1].
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Figure 3-1: Schematic of kinase activity assay [1].

3.1.2 HMEC results

To assess the applicability of the kinase activity assay in the HMEC cell system, we

tested each assay for linearity. We found that, using the previously published

methodology, we could achieve linearity for both the Erk and Jnk assays (Figure 3-2).

We were not, however, able to obtain a linearity curve for Akt or IKB kinases (Figure 3-

2). Interestingly, IKB activity was very high as compared to HT-29 cells, indicating a

either a high concentration of IKB or an increase in the percent of IKB activity in HMEC

cells as compared to HT-29 cells. For both Akt and IKB, we tried to vary the following

parameters to establish linearity: incubation time of lysates with antibody, antibody



coating concentration, the ratio of radioactive ATP to non-radioactive ATP, and reaction

time.
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Figure 3-2: Linearity test for HMEC kinase assay. Serially diluted lysate was used to
test measurement linearity for Erk, Akt, Jnk, and IKK kinase activity assays.

3.1.3 Key issues

Kinase activity assays directly measure kinase activity. If it is the kinase's ability to

phosphorylate substrate that one is interested in, then activity measurements are a

more direct way to asses that. The other methods mentioned here rely on measurement

of phosphorylated kinase, which typically, but not always, predicts kinase activity (see
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Chapter 7). However, a disadvantage of the activity assay is the use of peptide

substrate which substitutes for the variety of natural substrates found in the cell.

Kinases may have differential abilities to phosphorylate naturally occurring substrates in

the cell, due to issues such as structure or concentration, therefore rendering the

activity assay results potentially misleading. In addition, the washes that occur prior to

the kinase activity reaction remove most proteins bound to the kinase. These proteins

may serve to regulate kinase activity in the cell, and their absence may be another

reason for misleading results.

3.2 Western blot

3.2.1. Methods

To quantify phosphorylation levels, lysate is resuspended in sample buffer [100

mM DTT, 2% SDS, 10% glycerol, 0.01% bromophenol blue, 62.5 mM Tris-HCI (pH

6.8)]. Gel electrophoreses (10% polyacrylamide gel) is followed by transfer to

polyvinylidene difluoride membranes (Biorad). Membranes are blocked with 5% nonfat

milk or 5% bovine serum albumin in 20 mM Tris-HCI (pH 7.5), 137 mM NaCI, and 0.1%

Tween-20. Membranes are then probed with an antibody specific to the kinase of

interest. The membranes are then probed with horseradish-peroxidase-conjugated anti-

rabbit secondary antibody (Amersham Pharmacia Biotech) and visualized by enhanced

chemiluminescence (Amersham Pharmacia Biotech) on a Kodak Image Station (Perkin

Elmer). Densitometry was performed using molecular imaging software (Kodak).

Linearity for each antibody can be established using serial dilutions of lysate.



3.2.2 Key issues

Perhaps the most critical issue for western blotting in quantitative work is the large error

associated with quantification of blots. Typical blot-to-blot heterogeneity, due to factors

such as transfer efficiency, tends to exaggerate measurement error and, compared to

the other technologies covered here, does not lend itself to quantitative work. Chapter 7,

entitled "Quantitative analysis of Akt phosphorylation and activity in response to EGF

and insulin treatment," deals with quantitative western blotting and highlights some of

the problems surrounding the approach. Although it may have some weaknesses for

quantitative studies, western blotting still remains an extremely useful technology for the

validation of quantitative trends obtained with other technologies. The ability to ascertain

the specificity of antibodies and the consistency of the western blot assay make it

essential for both preliminary studies and validation studies.

3.3 Antibody array

3.3.1 Methods

The methodology associated with the antibody array we used (BioSource

Mercator Array Assay, BioSource, Inc.) can be found elsewhere [2]. A schematic for the

procedure is shown below in Figure 3-3. Briefly, lysates were deposited on

nitrocellulose pads arrayed on a glass slide. Each nitrocellulose pad had spots

corresponding to monoclonal capture antibodies against kinases of interest. In



necessary for the antibody chip assay but not used in western blotting. Nevertheless,

given that the antibody array data did not agree with western blots or intuition about the

signaling system, we were not able to use the dataset for further studies. We do not,

however, discount the future possibility of the array's use for signaling studies and are

encouraged by its internal consistency.

3.4 Immunocytochemistry

3.4.1 Methods

We have published the methodology for the immunocytochemistry technique elsewhere

[3] and a full description is available in Chapter 6. A schematic of the assay is shown

below in Figure 3-6.
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Figure 3-6: Schematic of immunocytochemical assay [5].

3.4.2 HMEC results

Extensive characterization of HMEC cell signaling using the immunocytochemical assay

has been published [3] and is shown in Chapter 6.
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Mercator Antibody Chip (A) are compared with those from western blots on the same
lysates (B). Cells were stimulated with either HRG (80 ng/ml) or EGF (100 ng/ml). All
data shown ±SEM.

We found measured transient activation in both parental and 24H cells stimulated with

EGF or HRG. HRG-stimulated 24H cells seemed to be stimulated to a smaller degree

than the rest of the cells, but excepting the early time point (5 minutes), there were no

significant differences between cell types. Similar measurements of EGFR, Fak, Src,

and Paxillin are shown in Appendix 4. EGFR measurements revealed activation with

EGF stimulation, but not with HRG stimulation, which agrees with HRG's role as a

promoter of HER3-HER2 heterodimers and data we have acquired using



immunocytochemistry and mass spectrometry [3, 4]. In addition, Y1068 phosphorylation

is more sustained in 24H cells, agreeing with our previous data as well. Src

phosphorylation measurements, although very noisy, revealed a transient spike in

parental cell stimulated with EGF that was not observed in 24H cells. 24H cells

sustained with EGF, however, exhibited late-phase activation as compared to parental

cells. Fak phosphorylation revealed a transient but significant increase in HRG-

stimulated 24H cells, but no phosphorylation in under any other cell treatment. There

were not statistically significant differences among the cell data acquired for paxillin

phosphorylation.

3.3.3 Key issues and validation

Whenever a new technology such as the antibody array is used, appropriate

careful steps should be taken to ensure the accuracy of the measurements. These

steps should include validation within the assay and validation of the assay as

compared with other assays. In the case of the antibody array, validation within the

assay revealed a very consistent measurement technique. Calibration curves generated

from serially diluted recombinant amounts of phosphorylated kinases were extremely

consistent on different chips and on different days (see Figure 3-5 below). In addition,

the standard error of the mean from seven different measurements of lysis buffer on

seven different chips was less than 5% of the average measured value, indicating high

chip-to-chip reproducibility.
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The reproducibility of the assay, however, could not be verified for certain

kinases by other measurement techniques. For instance, the Akt data gathered did not

agree with measurements we made using immunocytochemistry (see Chapter 6) or

western blot data measuring phosphorylation on the exact same lysates used in the

antibody chip data (Figure 3-4A). A similar disagreement between western blot data

and Fak phosphorylation data was observed (Appendix 4, Figure 2). Thus, validation

attempts through a separate assay failed to corroborate all antibody chip data. One

reason for the noted discrepancies could be due to the immunoprecipitation step
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necessary for the antibody chip assay but not used in western blotting. Nevertheless,

given that the antibody array data did not agree with western blots or intuition about the

signaling system, we were not able to use the dataset for further studies. We do not,

however, discount the future possibility of the array's use for signaling studies and are

encouraged by its internal consistency.

3.4 Immunocytochemistry

3.4.1 Methods

We have published the methodology for the immunocytochemistry technique elsewhere

[3] and a full description is available in Chapter 6. A schematic of the assay is shown

below in Figure 3-6.
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Figure 3-6: Schematic of immunocytochemical assay [5].

3.4.2 HMEC results

Extensive characterization of HMEC cell signaling using the immunocytochemical assay

has been published [3] and is shown in Chapter 6.



3.4.3 Key issues and validation

The immunocytochemical assay was subjected to internal validation and

validated against other signaling assays. An obvious limitation of the technique is that

any antibody having non-specific binding properties will not be useful in such an assay.

All monoclonal antibodies used were validated using western blot analysis for

specificity using lysates from parental and 24H cell lines after stimulation with full serum

(see Chapter 6).

To measure plate-to-plate accuracy, we compared normalized serum-free values

for 24H cells run on different plates but on the same day. These values should be equal

assuming no plate-to-plate variation. We observed a very tight correlation between the

values for 24H, i.e. the +HRG 24H and the +EGF 24H conditions. The variation was

less than 10% of the total signal in 19 of 20 measured comparisons.

3.5 Mass spectrometry

3.5.1 Methods

The specifics of the mass spectrometry approach that used in this thesis can be

found in Chapters 4, 5 and in a paper by Zhang et al [6]. Here, I introduce the basic

setup and methodology employed. An approach utilizing a stable-isotope-tagged amine-

reactive reagent (iTRAQ) labeling system was employed to quantify levels of

phosphorylated tyrosine at four different time points (Figure 3-7). Cell lysates

corresponding to various time points were digested, fractionated, and each time point

was incubated with a unique iTRAQ label. These labels are isobaric but differ with

respect to the location of atomic isotopes, allowing for their separable resolution.



Peptide fragments were immunoprecipitated using anti-phosphotyrosine antibody,

further enriched, and then loaded onto a C18 column. Ions were generated using

electrospray ionization (ESI) and a quadrupole time-of-flight (Q-TOF) instrument

characterized the mass-to-charge (m/z) characteristics of the peptides. Further

fragmentation of high-intensity peptide ions generated MS/MS spectra that was then

sorted against a protein database for peptide identification. This LC-MS/MS approach

coupled with the use of iTRAQ enabled the measurement of hundreds of tyrosine

phosphorylation sites under various cellular conditions.
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Figure 3-7: Mass spectrometry methodology [6]. (A) Cells at four different time

points are lysed and eventually processed to produce iTRAQ-Iabeled phosphotyrosine

peptide ion fragments. (B) MS/MS spectra are analyzed and reveal the presence of

specific phosphotyrosine sites. (C) Analysis and appropriate normalization of the

iTRAQ-associated spectra enable the temporal quantification of phosphorylation on a

specific site.

3.5.2 HMEC results



The application of the above techniques to HMEC cell lines resulted in the

quantification of 62 phosphorylation sites in both parental and 24H cell stimulated with

EGF or HRG. Measurements were taken at 0, 5, 10, and 30 minutes. These data are

presented in Chapters 4 and 5, and in Wolf-Yadlin et al. and Kumar et al. [3, 4].

3.5.3 Key issues

Although the signal state coverage enabled by the mass spectrometry technique

is large compared with the other techniques described here, many measured peptides

were removed from our final dataset due to the fact that they were not observed in all of

the MS runs. This lack of identification cannot simply be explained by a lower quantity of

phosphorylated peptide; rather, there is also the possibility that the peptide was

accidentally 'skipped' by the MS instrumentation during one run. This problem can be

resolved by moving from information dependent acquisition (IDA, as used here in our

study) to multiple reaction monitoring (MRM), which allows for higher measurement

reproducibility across samples (personal communication, Alejandro Wolf-Yadlin).

Manual validation of individual peptide ion fragments is also necessary for the

validation of the final MS dataset. This validation procedure is time-consuming (taking

on the order of a month for our HMEC dataset), thus limiting the number of cellular

conditions that can be analyzed per unit time. Additional validation was performed on

the dataset by means of standard deviation analysis, with those samples exhibiting

more that 15% deviation being dropped from further analysis. These validation

procedures, while time consuming, ensure the accuracy of the final dataset and the

resultant quantitative models. The significant overlap between the phosphorylation



profiles measured by the other techniques mentioned and those measured in the mass

spectrometer suggest a high degree of accuracy in the MS datasets procured here.

3.6 Conclusions

This chapter provides an introduction to the signaling technologies we employed

to interrogate the signal state of HMEC cells. There are inherent trade-offs from moving

between these technologies, and specifically, we were concerned with performance in

the following areas: 1) time from lysis to analyzed data, 2) quantitative accuracy, 3)

signal state coverage. The first area of interest, time from lysis to analyzed data, is a

function of the speed of the assay and the length of the corresponding analysis. Here,

both the immunocytochemical and antibody array assays offer a significant advantage;

we were able to rapidly acquire and analyze data for many different cell conditions using

these assays. The mass spectrometry technique is the slowest of the technologies in

this respect. As mentioned earlier, the western blot technique is most likely the weakest

the of the performed assays in terms of quantitative accuracy. The other assays

typically yield 10-20% error as a percentage of the measurement when studied using

different biological replicates, which we feel is an accurate portrayal of the biological

noise in the system. An important note with regard to the quantitative accuracy of the

immunocytochemical assay is that linearity is difficult to explicitly establish. Serial

dilution of lysate is obviously not possible in this format, and a dilution of cell density

would most likely lead to signaling differences due to density changes, thus confounding

linearity experiments. The final category of interest is signal state coverage, and here

the mass spectrometry technique is clearly the superior technology. We were able to



measure 62 different phosphorylation sites using this technique, and recent advances

should increase that number to in excess of 150. The coverage available using the

immunocytochemical assay is limited due to the lack of specific monoclonal antibodies

for this purpose. The antibody array's coverage is most likely limited due to this factor

and the problem of cross-binding as you increase the number of targets on any one

spot on the slide. Finally, although western blotting can offer large signal coverage in

theory, in practice a single investigator would find it difficult to take advantage of the

many targetable sites, although services do now exist for multi-dimensional profiling via

western blot.
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Chapter 4 Defining signal-network control of HER2-mediated
cell behavior

In this Chapter, we demonstrate how to generate, combine, and interpret quantitative

cell signal and cell behavior data in a HER2 overexpressing HMEC system.

4.1 Introduction

HER2, also known as Erb-B2, belongs to the epidermal growth factor receptor

(EGFR) family of highly regulated receptor tyrosine kinases (RTKs) composed of human

epidermal growth factor receptor 1,2,3 and 4 (EGFR, HER2, HER3, HER4). These

receptors are differentially bound by 11 ligands, although so far no ligand has been

found to bind HER2. Mutation and dysregulation of EGFR family members has been

correlated with cancer development and progression [1, 2], and overexpression of

HER2 has been found in association with a variety of tumor types [3]. The connection

between HER2 and cancer appears to be especially important in breast cancer [4], with

current estimates of prevalence on the order of 25-30% of patients including metastases

as well as primary tumors [5] and notable correlation with poor prognosis [6]. For

instance, one recent review has concluded that HER2/neu gene amplification or HER2

protein overexpression can predict breast cancer outcome for 90% of the studies and

92% of the patients in 81 studies including 27,161 patients [7].

Although HER2 appears to have no intrinsic ligand-binding capability, it can interact

reversibly with ligand activated EGFR or HER3 to form active heterodimers that perturb

and often enhance the downstream signals that govern cell proliferation and migration



[3]. At high concentrations, HER2 is also thought to spontaneously form signaling-

competent homodimers [8]. In the case of HER2-EGFR heterodimers, signaling

proceeds through phosphorylation events initiated from either of the activated receptors.

In contrast, HER2-HER3 heterodimer signaling proceeds only through the activated

HER2 receptor, since HER3 does not exhibit kinase activity itself. HER2 is considered

responsible for at least the vast majority of downstream signals induced by HER3-ligand

binding [9], although there is some evidence of HER3-EGFR signaling heterodimers

[10]. Activation of HER2-HER3 heterodimers, generally considered to be the most

potent signaling pair of EGFR family dimers [11], is tightly regulated [6], and HER2

over-expression has been found to mediate enhanced signaling caused by heregulin

(HRG) stimulation [12]. Various studies have shown that HRG-stimulated HER3

activation in breast cancer can induce anti-estrogen resistance, tumor progression,

invasion and metastasis[13-15]. Taken in sum, the high correlation between EGFR

family member dysregulation and cancer progression highlights the need for

mechanistic understanding of the underlying cellular networks, both for improved basic

knowledge of cancer and to find new and more effective drug targets.

Signal generation and resultant cellular behavior in receptor tyrosine kinase-

(RTK-) initiated cascades is achieved through a highly coordinated series of events.

Receptors are first activated, typically through ligand binding, which results in receptor

auto-phosphorylation and leads to the dynamic phosphorylation/de-phosphorylation of a

variety of proteins. The dynamic state of protein phosphorylation ultimately controls

cellular response, and a given protein may influence more than one response as it

becomes phosphorylated at different sites or interacts with different proteins depending



on timing and placement within the cell. Thus, to understand cellular signaling in

context of cell regulation it is helpful to quantify phosphorylation dynamics of regulatory

sites and their consequent association with downstream cell functions. Our work

presented here offers, to our knowledge, the most detailed explanation of how signaling

network phosphorylation, in the context of HER2 overexpression, governs cellular

behavior such as, proliferation and migration across a diverse set of ligand stimulation

conditions.

To identify important EGF and HRG induced protein phosphorylation events that

control cell migration and proliferation in the context of HER2 overexpression, we

utilized a mass spectrometry approach that is capable of simultaneously quantifying the

temporal dynamics of a large number of specific tyrosine phosphorylation sites under a

given condition [16]. Here we extend this methodology to measure temporal dynamics

of protein tyrosine phosphorylation sites following EGFR or HER3 stimulation in the

presence and absence of HER2 overexpression. Protein phosphorylation sites are

clustered based on similarity of dynamic response to different stimulation conditions

across 4 time points for all 4 conditions (self-organizing map), revealing co-regulated

phosphorylation sites and providing potential functionality for several novel

phosphorylation sites. In addition to mass spectrometric analysis of protein

phosphorylation, biological response data (cell migration and proliferation) was

quantified for each of the four stimulation conditions. To identify signals that regulate

downstream biological response to a given stimulus, computational methods were used

to correlate biological responses to quantitative phosphoproteomics data.



Phosphorylation sites which correlate strongly with proliferation or migration were

identified and may be targeted in future studies to selectively inhibit a given response.

4.2 Methods and materials

4.2.1 Cell culture and stimulation

184A1 HMECs (human mammary epithelial cells [17]) (HMEC Parental) were a

kind gift from Martha Stampfer (Lawrence Berkeley Laboratory, Berkeley CA) via Steve

Wiley (Pacific Northwest National Laboratory, Richland WA and were maintained in

DFCI-1 medium supplemented with 12.5 ng/ml EGF, as in [18]. 184A1 HMECs clone

24H (human mammary epithelial cells over-expressing HER2 30 fold [18]) (HMEC 24H)

were a kind gift from Steve Wiley (Pacific Northwest National Laboratories, Richland

WA) and were maintained in DFCI-1 medium supplemented with 12.5 ng/ml EGF and

150 gg/ml of Geneticin. Cells were washed with PBS and incubated for 12 hours in

serum free media (DFCI-1 without EGF, bovine pituitary extract, or fetal bovine serum)

after 80% confluence was reached in 15 cm plates (- 2x10 7 cells). Synchronized cells

were washed with PBS after removal of media. Cells were then stimulated with 100

ng/ml EGF or 80 ng/ml HRG in serum free media for 5, 10 or 30 minutes, or left

untreated with serum free media for 5 min as control.

4.2.2 Mass spectrometry lysate preparation and analysis



Cell Lysis, Protein Digestion, Peptide Fractionation and iTRAQ Labeling

Cells were lysed with 8M urea / 1mM sodium orthovanadate after EGF or HRG

stimulation. Proteins were digested with trypsin after DTT reduction and iodoacetamide

alkylation. Tryptic peptides were desalted and fractionated on a C18 Sep-Pak Plus

cartridge (Waters), and the 25% MeCN fraction was divided into 10 equivalent aliquots

which were lyophilized to dryness. One aliquot of sample from each condition was

labeled with one tube of iTRAQ reagent (Applied Biosystems, CA) (following

manufacturer's directions). Samples labeled with four different isoforms of the iTRAQ

reagent were combined, dried completely, and saved at -800C. This process was

repeated to generate five duplicate sets of samples: four time-course samples (0, 5, 10,

30 min) with 100 ng/ml EGF or 80 ng/ml HRG stimulation in either HMEC or 24H cells,

and one 5 min mix sample that consisted of the samples stimulated for 5 min for each of

the stimulation conditions in the order of HMEC/HRG, HMEC/EGF, 24H/HRG,

24H/EGF.

Peptide IP.

10 pg of protein G Plus-agarose beads (Calbiochem) were incubated with 3.5 pg

of each anti-phosphotyrosine antibody (PY99(Santa Cruz), 4G10(Upstate) and pTyr100

(Cell Signaling Technology)) in 200 pl of IP buffer for 8 hr at 40C. The beads were

rinsed once with 400 pl of IP buffer at 4"C. iTRAQ labeled sample were dissolved in

150 pl of IP buffer (100 mM Tris, 100 mM NaCI, 1% NP-40, pH 7.4) and 300ul of water.

After pH was adjusted to 7.4 with 0.5 M Tris buffer pH 8.5, the sample was mixed with

protein G Plus-agarose beads, and was incubated overnight at 40C. The protein G Plus-

agarose beads were spun down for 5 minutes at 6000 rpm and the supernatant was



separated and saved. Antibody-bound beads were washed once with 400 pl IP buffer

for 10 minutes and twice with rinse buffer (100 mM Tris, 100 mM NaCI, pH 7.4) for 5

minutes at 40C. Phosphotyrosine containing peptides were eluted from antibody with 60

pl of 100 mM glycine pH 2.5 for 30 min at room temperature.

IMAC and Mass Spec.

Phosphopeptide enrichment on IMAC was performed as described [16].

Peptides retained on the IMAC column were eluted to a C18 capillary precolumn (100

pm ID, 360 pm OD) with 50 pl of 250 mM Na2HPO4, pH 8.0. After 10 min rinse (0.1%

HOAc), the precolumn was connected to an analytical capillary column with an

integrated electrospray tip (-1 pm orifice). Peptides were eluted using a 100 min

gradient with solvent A (H20/HOAc, 99/1 vol/vol) and B (H20/MeCN/HOAc, 29/70/1

vol/vol): 10 min from 0% to 15% B, 75 min from 15% to 40% B, 15 min from 40% to

70% B. Eluted peptides were directly electrosprayed into a quadrupole time-of-flight

mass spectrometer (QSTAR XL Pro, Applied Biosystems). MS/MS spectra of four or

five most intense peaks with 2 to 5 charges in the MS scan were automatically acquired

in information-dependent acquisition with previously selected peaks excluded for 25

seconds.

Phosphopeptide Sequencing, Data Clustering and Analysis.

MS/MS spectra were extracted and searched against human protein database

(NCBI) using ProQuant (Applied Biosystems) as described. An interrogator database

was generated by predigesting the human protein database with trypsin and allowing

one miscleavage and up to six modifications on a single peptide (phosphotyrosine 5 2,

phosphoserine 5 1, phosphothreonine 5 1, iTRAQ-lysine 5 4, and iTRAQ-tyrosine 5 4).
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Mass tolerance was set to 2.3 amu for precursor ions and 0.15 amu for fragment ions

and grouping of MS/MS spectra from different cycles was set to zero. Phosphotyrosine-

containing peptides identified by ProQuant were manually validated. ProQuant

quantification results were corrected by removing contaminant signals near iTRAQ tag

peaks. Data was further corrected with values generated from the peak areas of non-

phosphorylated peptides to account for possible variations in the starting amounts of

sample for each time point. All the data from each analysis was normalized by the 115

peak area values, which correspond to the 5 min sample in each time-course analysis

or HMEC-EGF sample in the four-condition 5 min mix analysis.

4.2.3 Hierarchical clustering

After normalization to the 5 minute HMEC-EGF sample, hierarchical clustering of

the four-condition 5min Mix analysis was done using Spot FireTM using the Euclidean

distance and unweighted average settings.

4.2.4 Self-Organizing Maps

The idea behind the SOM is to non-linearly transform high-dimensional input data

into a lower dimensional display that consists of several map units. Each map unit

consists of a reference vector whose dimension is the same as the dimension of an

input pattern [19]. The clustering is done into two steps. In the training phase the SOM

algorithm computes distance between an input pattern and all reference vectors. The
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map unit consisting of reference vector that correlates the best with the input pattern is

declared as the winner map unit and is updated with maximal strength, while

topologically close map units are updated with gradually decreasing strength. This

process is executed using all 62 peptide profiles and repeated a few times leading to

self-organization. After the training phase each peptide is assigned to the map unit

whose reference vector is the most similar to the input pattern.

The parameters for the SOM used in this study were as follows. Topology of the

map was chosen to be sheet, distance measure was correlation and the number of map

units was chosen to be 5. J, where p is the number of input vectors as suggested in

[20]. We used the batch learning algorithm and the neighborhood function was chosen

to be Gaussian with the parameters given in [20]. The SOM analysis was performed in

MATLAB with the publicly available SOM Toolbox [20].

We used the U-matrix (unified-distance matrix) method to identify a group of

map-units that comprehend a cluster [21]. The U-matrix illustrates Euclidean distances

between the map units with colors. Adjacent map units colored with blue shades

constitute a cluster (valleys) and the clusters are separated red and yellow colors that

represent high distance between two map units (mountains). For each cluster we

computed statistical significance with the permutation test based method given in [22]

as follows. First we computed correlation distances for all combinations of the peptide

profiles in a cluster. If the two profiles correlate perfectly, their distance is zero and

perfect negative correlation results in the distance value two. Then we computed the

mean of these pair-wise comparisons. This was followed by choosing randomly the

same number of profiles as there are in the original cluster and computing all
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combinations of the pair-wise correlation distances. For example, if a cluster consisted

of 18 peptides, we randomly chose 18 peptides from the set of 62 peptides and

computed the mean of 153 correlation distance values (18 choose 2), which was

compared to the mean of the peptide correlations in the original cluster. If the mean

distance of a randomly chosen set is less or equal than the original we added one to

counter. For each cluster we created 5,000 samples and the final p-value is computed

by dividing the counter by 5,000. Large values suggest the original cluster may be due

to chance.

4.2.5 Elisa for ErbB3 receptor quantification

Reagents for the ErbB3 ELISA were purchased from R&D Systems as a Duoset

DY348 (capture antibody, biotinylated detection antibody, recombinant human Erb3 and

streptavidin-HRP). A black 96-well Nunc MaxiSorp plate was coated with 50 EOL of

capture antibody (4 LOg/mL in PBS) overnight at room temperature and washed three

times with PBS, 0.05%Tween-20 on a Bio-Tek plate washer. The unreacted surface of

the plate was blocked with 300 OLL of 2% BSA in PBS for 1 hr at room temperature.

After washing, 50 L L of each sample or the recombinant standard were added to the

appropriate wells. Cell line lysates were mixed 1:1 with 2% BSA and added to the plate

for a 2 hr incubation at 40C. Both standards and samples were done in duplicate. After

washing, 60 OZL of detection antibody (2 LOg/mL diluted in 2 %BSA, PBS, 0.1% Tween-

20) was added to all the wells and incubated for 1 hr at room temperature. The plate

was washed and 60 OL of Streptavidin-HRP (diluted 1:200 in 2 %BSA, PBS, 0.1%
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Tween-20) was added for 30 min at room temperature. After a final wash, 60 oL of

chemiluminescent substrate (SuperSignal ELISA Pico from Pierce) was added to all

wells and the plate was read immediately on a Fusion plate reader (Perkin Elmer) with a

1 sec reading time per well. The data was exported to Excel, replicates were averaged

and the standard dilutions were fit to a linear curve.

4.2.6 Proliferation assay

Human mammary epithelial cells were plated on 24 well tissue culture plastic

plates (-1 X 104 cells/cm 2) and grown for 24 hours to -60-70% confluence. The medium

was then removed and cells were serum-starved as previously described for 12-16

hours. Starved cells were then treated with new serum-free media, serum-free media

containing EGF (100 ng/ml), or serum-free media containing HRG (80 ng/ml). The cells

were grown for 15 hours at which time [3H] thymidine (10 pCi/ml) was added. After 10

hours, the cells were washed with cold PBS and treated with trichloroacetic acid (5%

w/v) at 40C. The resulting precipitate was dissolved in NaOH (.5 N) and quantified using

liquid scintillation counting.

4.2.7 Migration assay

HMECs were seeded in 96-well tissue culture plastic plates (Packard View Plate

Black, Ref. 6005225) at confluence (-50,000 cells/cm2) and allowed to adhere for 4-6

hours. Media was then removed and cells were serum starved for 12-16 hours as
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previously described. Starved cells were treated with 5-chloromethylfluorescein

diacetate (CMFDA, 9 pM in serum-free media) for 30 minutes. CMFDA containing

media was removed and cells were then treated with new serum-free media, serum-free

media containing EGF (100 ng/ml), or serum-free media containing HRG (80 ng/ml). A

wound width -700 pm was scraped in each well and cell movement imaged every 15

minutes for 12 hours using Cellomics KineticScan. Kinetics of wound closure were

quantified using an in-house analysis software that calculated the wound area at each

time point normalized by the initial wound area. A time averaging algorithm was used to

average wound closure in four wells of equal treatment into a single trajectory at 30

minute intervals. The trajectories shown here have been additionally normalized to their

2 hour time points for the purpose of comparing treatments. The wound closure data

used in the described PLSR model is the linearly fitted slope (2 - 5.5 hours) of each

trajectory shown.

4.2.8 Partial least squares regression

Computational analysis was performed using the SIMCA-P 10.0 (Umetrics)

software suite as detailed elsewhere [23, 24] The software uses the non-linear iterative

partial least-squares algorithm to perform decompositions and regressions. The model

was evaluated for goodness of fit (R2Y), goodness of prediction (Q2), and was validated

against over-fitting via response permutation (response matrix was randomly permuted

50 times and Q2 values were obtained for each run). All matrices were mean centered

and unit variance scaled (z-score normalized) prior to partial least squares analysis.
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Goodness of prediction (Q2) was evaluated using a leave-one-out cross

validation approach [25]. Briefly, cross validation is performed by omitting an

observation from the model development and then using the model to predict the Y-

block values for the withheld observation. The procedure is repeated until every

observation has been kept out exactly once. The prediction error sum of squares

(PRESS) is then calculated as follows:

PRESS = measured - edicte (1)

Q2 is then calculated as:

A

Q2 = 1.0- H(PRESS / SS), (2)
a=]

Where a refers to each individual principal component in the model and SS is the sum

of squares explained by principal component a.

The variable importance for projection (VIP) value for each variable (k) was calculated

according to the following formula:

VIPk = (3)

Where KT is the total number of variables and the rest of the variables are as described above.

4.3 Results and discussion
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4.3.1 Phosphotyrosine mass spectrometry

We have undertaken a quantitative investigation of the effects of HER2-

overexpression in a human mammary epithelial cell (HMEC) line (184A1 [17]). We

compared the parental line (denoted "P"), which exhibits approximately 200,000 EGFR

per cell, 20,000 HER2 per cell, and 20,000 HER3 per cell, to a stable retrovirally-

transduced clone (denoted "24H") that expresses HER2 at 600,000 per cell while

maintaining constant EGFR levels and increased HER3 levels to about 30,000 per cell.

We have previously performed combined experimental and modeling studies on this cell

line enabling quantitative estimation of the various receptor dimer species under various

treatment conditions [18, 26]. From our previous work, we expect that 100 ng/ml EGF

treatment should result in high levels of EGFR homodimers in the P HMECs (-80,000),

but lower numbers of EGFR-HER2 heterodimers (-20,000). By comparison, treating

24H HMECs with this same concentration of EGF should drive a large increase in

heterodimers (to -150,000) and a significant decrease in EGFR homodimers (-10,000).

80 ng/ml HRG treatment should yield -15,000 HER2-HER3 heterodimers in the P

HMECs, and in the 24H HMECs this number should increase to -25,000. Interestingly,

under both ligand treatments, 24H HMECs are expected to have large numbers of

HER2 homodimers (>-200,000), some of which may be activated through basal auto-

phosphorylation. Here, we explore the consequences of these changing dimerization

states on intracellular signaling and the subsequent control of cell proliferation and

migration. We have acquired mass spectrometry data describing the temporal

dynamics (0, 5, 10, and 30 minute stimulation) of tyrosine phosphorylation in the 184A1

cell system under four conditions: P HMECs stimulated with EGF, P HMECs stimulated
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with HRG, 24H cells HMECs stimulated with EGF, and 24H HMECs stimulated with

HRG (see Figure 4-1).

As a result of these analyses, 332 phosphorylated peptides from 175 proteins

were identified, including 289 singly (tyrosine) phosphorylated peptides, 42 doubly

phosphorylated peptides (21 tyrosine/tyrosine, 18 serine/tyrosine, and 3

threonine/tyrosine), and one triply phosphorylated peptide (tyrosine/tyrosine/tyrosine)

(full dataset available in supplemental material). A total of 20 phosphorylation sites

were identified on EGFR, HER2 and HER3, including 9 tyrosine and 2 serine sites on

EGFR, 8 tyrosine phosphorylation sites on HER2, and 1 tyrosine phosphorylation site

on HER3 (Figure 1, B-D). Of the 20 phosphorylation sites on EGFR family members,

Y1114 on EGFR and Y1005 and Y1127 on HER2 represent novel sites which have not

been previously described in the literature, although synthetic phosphopeptides

containing EGFR Y1114 and HER2 Y1005 have been shown to bind SHC [27] and

mutation of EGFR Y1114 has been shown to block SOCS recruitment to the receptor,

regulating STAT activation [28]. Downstream of the receptors, quantitative data was

obtained for 36 phosphorylation sites on 15 different proteins in the EGFR canonical

signaling pathway (as defined by Yarden et al. [2]). Coverage of the cell

adhesion/migration pathway included quantitative information on 41 phosphorylation

sites distributed along 16 proteins, including 9 tyrosine phosphorylation sites on 6-

catenin.
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Figure 4-1: Data acquisition and quantification scheme with example data. (A)
184A1 parental HMEC cells and 24H HMEC cells were stimulated with either EGF or
HRG for 0, 5, 10 or 30 minutes. For each stimulation condition, following cell lysis and

tryptic digestion, peptides from each time point were labeled with iTRAQ, mixed, and
analyzed by anti-phosphotyrosine peptide immunoprecipitation and IMAC-LC-MS/MS,
producing temporal tyrosine phosphorylation profiles for hundreds of peptides. To
normalize temporal profiles from each condition, tryptic peptides from the 5 minute
stimulation time point for each condition were labeled with iTRAQ, mixed, and analyzed
by anti-phosphotyrosine peptide immunoprecipitation and IMAC-LC-MS/MS. (B) For
each peptide, y- and b-type ions in the MS/MS spectrum provided sequence
identification and site assignment, while the iTRAQ marker ion region (highlighted in the

red oval) provided quantification. (C) iTRAQ marker ion profiles representing temporal
phosphorylation profiles for EGFR pY1148 under all four conditions (top left) as well as

the relative amount of phosphorylation following a 5 minute stimulation for each
condition (top right). The final plot of temporal response under multiple stimulation
conditions (bottom) was generated by multiplying each temporal phosphorylation profile
by the value obtained from the 5 minute mix quantification data for the particular
stimulation condition. (D) Multiple tyrosine phosphorylation sites were identified and
quantified from EGFR family member proteins. 4 representative phosphorylation sites
are shown here, with response plots across temporal and conditional space. As can be
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seen by comparing HER2 pY877 and pY1248, different sites on a given protein are
often differentially regulated.

One of the goals in this study was to provide a more comprehensive definition of

EGFR family signaling networks, including novel proteins or phosphorylation sites which

may regulate differential cellular response to exogenous stimuli. To enable

identification of novel phosphorylation sites, mass spectrometry analyses were

performed in information dependent acquisition mode (automated selection of the most

abundant species in a given full scan mass spectrum for MS/MS analysis), rather than

targeting specific peptides and known phosphorylation sites for quantification. This

data-dependent mode of operation was successful at identifying novel proteins and

phosphorylation sites, as 122 of the 322 phosphorylation sites have not previously been

described in the literature. Unfortunately, the use of automated ion selection to discover

novel phosphorylation sites often precluded selection of low-abundance precursor ions

for MS/MS fragmentation, and therefore temporal phosphorylation profiles were not

obtained for all conditions for many peptides. In fact, 234 of the 322 sites in this work

were detected and quantified in multiple analyses, but only 68 were quantified for all 4

stimulation conditions and the 5 minute comparison. This core group of 68

phosphopeptides, which include many of the key signaling nodes in the network, was

then used for further computational analysis to obtain a mechanistic understanding of

the effects of HER-2 overexpression on cellular signaling networks and corresponding

biological response to growth factor stimulation.

4.3.2 Self-Organizing Maps define temporal and conditionally related
clusters of phosphorylation sites
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In order to identify clusters of tyrosine-phosphorylated peptides exhibiting similar

temporal dynamics, as well as to globally visualize the high-dimensional information we

have obtained, we used the self-organizing map (SOM) algorithm [19]. The SOM is a

versatile clustering algorithm that transforms high-dimensional data into lower

dimensional display, in a non-linear manner. Here we use the unified-distance matrix

(or, U-matrix) approach, which allows robust identification of clusters, and the

component plane representation which facilitates comparison of peptide

phosphorylation response to exogenous stimuli [19, 21]. Instead of taking a single map-

unit as one cluster, we use U-matrix to identify groups of map-units that together

comprehend a cluster. The U-matrix illustrates the mean distances between neighboring

map units after the SOM training phase. These distances are color-coded so that close

proximity of two map-units is colored with bluish colors, while shades of yellow and red

denote dissimilarity. Clusters can be identified as continuous bluish regions (valleys)

surrounded by yellow or red "mountains."

We applied this SOM algorithm to 62 "core" phosphorylated peptides for which temporal

profiles were generated under all conditions (six of the "core" phosphorylated peptides

had minimal response across all conditions and time points and were removed from this

analysis). Data were normalized with the z-score method across all time-points and

conditions. From the U-matrix in Figure 4-2 four clusters are readily identifiable.

Statistical significances for these clusters were computed with a permutation test based

method (Hautaniemi et al., 2003) and the clusters were found to be statistically

significant (p < 0.05). The entire SOM display including the component planes is given

in the supplementary material.
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Figure 4-2: Self-Organizing Map to cluster phosphorylation sites across 
conditional and temporal space. Phosphorylation levels for 62 core phosphorylated 
peptides, which were detected and quantified at 4 time points for each of the 4 
stimulation conditions and the 5 minute mix analysis, were normalized and placed into a 
self-organizing map (SOM). Four statistically significant clusters were identified in the 
SOM (circled bluish valleys surrounded by yellow "mountains"). The components for 
each of the four clusters are indicated in the figure along with the phosphorylation 
profiles (blue dashed lines) and an average profile for each cluster (red line) across 
conditions and time-points (1 6 dimensions). 

By comparing the individual phosphorylation profiles (blue dashed lines) or 

average phosphorylation profile (red line) within each cluster, it is clear that the 

algorithm has clustered peptides whose phosphorylation level is increased under 

selected conditions, information which can be used to link phosphorylation sites within a 

cluster to activated receptor homo- or heterodimers. For instance, the first cluster (c l  



in Figure 4-2) consists of 18 peptides whose phosphorylation levels, on average, are

highest following EGF stimulation of P or 24H HMECs, conditions which would lead to

activation of EGFR homodimers or EGFR-HER2 heterodimers, respectively.

Correspondingly, most of the proteins in this cluster have been previously associated

with proliferation and early response to EGF stimulation, including EGFR Y1068 and

Y1148, STAT-3 Y705 (STAT-3 isoform 1) and Y704 (STAT-3 isoform 2), SHIP-2 Y986,

SHC Y239, Y240 and Y317 and early effectors downstream of them, including MAP

kinases ERK2 (phosphorylated at Y187 and at T185 and Y187), Erk1 Y204, and p38 o

Y182.

In comparison to cl, the three other clusters in the U-matrix (c2-c4) contain

peptides whose phosphorylation appears to be regulated by HER2 activation, as

phosphorylation levels on these peptides are highest when HER2 is overexpressed.

More specifically, peptides in the second cluster (c2) are primarily phosphorylated

downstream of EGFR-HER2 heterodimers, since the highest levels of phosphorylation

occur in the 24H HMECs stimulated with EGF. This cluster consists of SHB Y355,

SHP-2 Y62, LDL receptor Y845, and three EphA2 tyrosine sites, including the activation

loop at Tyr 772 [29]. Of these proteins, only SHP-2 has been previously associated with

EGFR activation [30]. Interestingly, each of the other proteins has been associated with

the cell migration response to VEGF stimulation [31-33], a response which requires

EGF autocrine signaling following VEGF stimulation in endothelial cells [34]. Our data

links these phosphorylation sites to the EGFR family signaling network, and as

demonstrated below, shows strong correlation between these phosphorylation sites and

cell migration in response to EGF stimulation of 24H HMECs.
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The third cluster (c3), contains 3 peptides that are primarily phosphorylated

downstream of activated HER2-HER3 heterodimers, as implicated by maximal

phosphorylation levels following HRG stimulation of 24H HMECs. This cluster includes

phosphorylation of p130Cas at Y327 and Y387, and phosphorylation of BCAR3 at

Y267. Both of these proteins are part of the same family and have been shown to

regulate or be regulated by Src activity in the cell migration signaling network. Similar to

c2 and c3, peptides in the fourth cluster (c4) are predominantly phosphorylated

downstream of HER2, but are equally phosphorylated downstream of EGFR-HER2 or

HER2-HER3 heterodimers or possibly activated through active HER2 homodimers

(similar phosphorylation levels are seen in EGF or HRG stimulated 24H HMECs). This

cluster includes phosphorylation of retinoic acid induced protein 3 (RAI3) Y347, paxillin

Y118, GIT1 Y545, FAK Y397 and Y576, receptor protein tyrosine phosphatase alpha

(RPTPa) Y798, P13K Y464, and Insulin-like growth factor receptor (IGF-1 R) Y1161 and

Y1165. A complex containing GIT1 and paxillin has been shown to regulate cell

motility, possibly through recruitment of PAK or PIX to the leading edge [35]; the role of

tyrosine phosphorylation in this process has not been established. Other proteins in this

cluster have also been shown to be co-regulated, as RPTPalpha has recently been

shown to regulate integrin signaling through Src activation in a P13K-dependent manner

downstream of insulin activation [36], and Src activation is known to regulate tyrosine

phosphorylation of FAK. It is worth noting that the phosphorylation sites on IGF-1R

(Y1161 and Y1 165) occur within a peptide that is homologous with the Insulin receptor.

Although not conclusive, assignment to IGF-1R is based on the presence of a

phosphorylation site on a peptide specific for IGF-1R in the larger data set and greater
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levels of IGF-1R as compared to Insulin receptor on HMEC parental and 24H cells (H.S.

Wiley, personal communication). Activation of IGR-1R has been found to be correlated

with increased motility in a breast cancer cell line [37]; in our system, increased

phosphorylation is most likely associated with autocrine release and binding of IGF-1

following stimulation of EGFR family members.

From these clusters, it is clear that analyzing phosphorylation sites across 16

dimensions of temporal and conditional space can reveal co-regulated phosphorylation

sites, and that this information can be used to connect phosphorylation of specific sites

to activation of EGFR family member dimers. Although clusters 3 and 4 both contain

phosphorylation sites from proteins known to regulate migration, they are statistically

distinct clusters whose differential response to exogenous stimuli may be due to protein

sub-cellular localization, as proteins from cluster 4 are known to be associated with the

membrane, while proteins in cluster 3 are primarily cytosolic. SOM-based data analysis

can reveal interesting hypotheses and connectivity in the data, such as the potential role

of GIT1 Y545 affecting cell migration or the inclusion of PTPRalpha, P13K, and IGF-1 R

phosphorylation sites in a single cluster, but it is still necessary to relate phosphorylation

and phenotypic data to solidify these hypotheses.

4.3.3 Cell proliferation and migration are differentially stimulated via EGFR
and HER2

In order to correlate signaling data with cellular response, we quantified both cell

migration and cell proliferation in the HMEC parental and 24H cell lines. Measurements
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were obtained under serum-free, HRG (80 ng/ml), or EGF (100 ng/ml) stimulating

conditions.

Cell migration was measured using a wound-closure assay adapted for a 96-well

plate format and automated fluorescent imaging. Under all conditions investigated, the

24H cells moved more rapidly into the induced wound, thereby reducing the original

wound area at a greater rate than the parental cells (Figure 4-3A-C). The wound closure

trajectories were fit to a line, and the slopes were the input for partial least squares

modeling. Interestingly, the greatest difference between the two cell lines occurs during

EGF treatment. By comparison, HRG stimulation, while inducing a slightly higher rate

of wound closure for 24H HMEC relative to P HMEC, does not seem to drive

significantly enhanced migration relative to serum-free conditions.

Cell proliferation was measured by [3H] thymidine uptake 25 hours after ligand

stimulation. Figure 4-3D shows that EGF treatment increased thymidine uptake to a

greater extent than did HRG treatment, but both treatments induced higher amounts of

proliferation than seen in serum-free conditions. In direct contrast to the migration

phenotype, there was no significant difference (i.e., p >> 0.05 in all cases) between the

two cell types measured under any of the stimulation conditions. Thus, HER2

overexpression did not seem to facilitate enhanced proliferation in any of the conditions

probed.

The fact that HER2 over-expression mediated differences in migration,

particularly under EGF stimulating conditions, but did not do so for proliferation indicates

that some of the signaling molecules differentially regulated by HER2 expression levels

play a role in driving higher levels of migration while at the same time remaining
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agnostic to cell proliferation. The linear regression modeling discussed below integrates

our quantitative migration, proliferation, and signaling data to describe, among other

things, a set of signaling molecules that is most relevant for the changes in migration

induced by HER2 overexpression.
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Figure 4-3: EGF and HRG drive migration and proliferation to varying extents in
HMEC parental and HER2 over-expressing cells. Parental (black) and 24H (red)
wound healing data shown for: (A) serum-free conditions, (B) treatment with 100 ng/ml
EGF, and (C) treatment with 80 ng/ml HRG. (D) Proliferation, as measured by
[3H] thymidine incorporation, for both cell types under the treatment conditions shown in
(A)-(C).

4.3.4 Modulation of EGFR signaling by HER2

To assess the effect of increased HER2 expression levels in the canonical EGF

activated pathway, the phosphorylation level for sites observed in EGF-stimulated 24H
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cells was divided by the phosphorylation level for the same site and stimulation time in

EGF-stimulated parental cells, producing a fold change in phosphorylation level for a

given site and time. A subset of the proteins and phosphorylation sites within the

canonical EGFR signaling network are shown in Figure 4-4A. As is evident from this

figure, increased HER2 expression affects most phosphorylation sites on selected

proteins in the EGFR signaling network, but not all phosphorylation sites on a given

protein react equally to this perturbation. For instance, each of the multiple

phosphorylation sites on EGFR exhibit different regulation at low or high HER2

expression levels, including increased phosphorylation of Y974 and decreased

phosphorylation on Y1045 under HER2 overexpression as compared with basal HER2

expression. Both of these sites appear to regulate receptor internalization and

degradation: Y974A or Y974F mutations have been shown to decrease receptor

internalization rates [38], and Cbl (E3-ubiquitin ligase) binding to EGFR Y1045 is

required for lysosomal sorting and receptor degradation [39]. Decreased

phosphorylation at the Y1 045 site should lead to decreased ubiquitination of activated

EGFR, thereby providing a mechanism for observed increase in recycling of activated

EGFR in the 24H cell line relative to parental 184A1 HMECs [40].
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It is also interesting to note the higher basal phosphorylation level for selected sites in

the 24H cell lines relative to parental HMECs. Increased basal phosphorylation

associated with HER2 overexpression could be mediated by HER2

autophosphorylation, cross-phosphorylation of EGFR in the absence of ligands, or even

through increased autocrine stimulation of HER2 heterodimers. For most sites with high

levels of basal phosphorylation in the 24H cells, stimulation with saturating

concentrations of EGF typically resulted in a greater response in parental cells relative

to 24H cells, such that after EGF stimulation for 5 minutes many of the sites had similar

levels of phosphorylation in both cell lines. A specific example of this behavior is
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provided by phosphorylation of the ERK2 activation loop (Y185 and T185/Y187). Much

higher levels of basal phosphorylation were detected in the 24H cells relative to parental

cells, but only a slight difference in phosphorylation at these sites remained after 5

minutes of EGF stimulation. These results are consistent with our proliferation data, in

which no significant difference between 24H and parental cells under EGF stimulation

was observed, in contrast to serum-free 24H cells, which had greater proliferation than

parental HMECs (p < 0.1). These results are also consistent with previous literature

demonstrating ERK2's role as a potent activator of proliferation [41]. In fact, many

protein phosphorylation sites associated with proliferation behave similarly to ERK2 in

our system, including STAT-3 Y705 (and Y704 from STAT-3 isoform 2), EGFR Y1173,

and SHC Y239, Y240, and Y317.

Since HER2 over-expression has been found to affect cell motility in our study

here as well as in previous work [42], the effect on protein phosphorylation in a subset

of the pathways related to cell migration is shown in Figure 4-4B. From this figure, it is

clear that there is an overall increase in phosphorylation of many of these pathway

proteins in the presence of HER2 overexpression. Perhaps most striking is the increase

in phosphorylation for all of the phosphorylation sites detected on catenin-8 and catenin-

y. Catenins are known to interact with E-Cadherin, the main cell-cell adhesion protein in

epithelial cells [43]. Catenin-8, a member of the p120 catenin family, has been shown to

regulate E-Cadherin turnover by modulating its internalization and degradation rate [43],

stabilizing it on the cell surface when bound to it. HER2 overexpression in breast

carcinomas inhibits the transcription of E-Cadherin [44] and has also been found to

destabilize the catenin-cadherin complex, leading to decreased adhesion [45]. Also,
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EGFR has been found to directly phosphorylate p120 catenin at Y228 [46], and EGFR

inhibition was found to promote assembly of cell adhesions [47]. The accumulated

evidence of these reports is consistent with our data as it argues that Src- or RTK-

related phosphorylation of catenin-6 leads to separation of the catenin-cadherin

complex, resulting in destabilization of E-Cadherin and an increase in cell migration.

Tyrosine phosphorylation of catenin-y has also been related to loss of cell-cell

adhesions in EGF-stimulated, E-Cadherin positive, cervical cancer cells [48]. Our data

shows high levels of phosphorylation of catenin-8 and y in HER2 over-expressing cells

under EGF stimulation, directly contributing to loss of cell adhesion and an increase in

cell motility.

Although catenin phosphorylation and loss of E-cadherin-based cell-cell

adhesion may provide part of the migratory response following EGF stimulation in 24H

cells, increased phosphorylation of many additional components of the cell migration

pathways are also likely to be contributing to increased migration of these cells relative

to parental cells. For instance, FAK, Src, Paxillin and p130Cas have all been shown to

interact with each other, to localize at the focal adhesions, and to play a fundamental

role in the actin cytoskeleton reorganization and motility pathways [49].

Phosphorylation of paxillin (Y31) and (Y118) is known to regulate membrane spreading

and ruffling in cell migration and adhesion [50]. FAK and Src are two of the major

kinases involved in cell migration. FAK (Y397) is the major autophosphorylation site

and acts as a docking site for Src and P13K [51]; this site is also necessary for both

pl30cas and paxillin phosphorylation in response to FAK expression [51]. Src Y418 is a

major Src autophosphorylation site, whose phosphorylation results in self-activation
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[52]. Src can mediate FAK related migration by further phosphorylation of paxillin or

pl30Cas, which may result in focal adhesion turnover and/or lamellipodia and filipodia

formation via either the RAC, JNK pathway or the RhoGAP pathway [53]. We conclude

that the effect of increased HER-2 expression levels is partly increased interaction of

FAK, Src, P130Cas and paxillin, a small but noticeable increase in ERK2 activity and

the upregulation of catenin phosphorylation and thus E-cadherin turnover, all combining

to drive an increased migratory response in the 24H cell line (as in Figure 4-3).

4.3.5 HRG vs EGF stimulation in the presence of HER2

In addition to investigating the effects of HER2 on these pathways in Figure 4-5,

our data also enabled comparison of signaling downstream of activated HER2:HER3 vs.

EGFR:HER2 heterodimers, resulting from stimulation of the 24H cells with HRG and

EGF, respectively. For this analysis, the phosphorylation level resulting from HRG

stimulation of 24H cells was divided by the phosphorylation level resulting from EGF

stimulation of 24H cells to produce the fold change ratio for each phosphorylation site in

the canonical signaling pathways (Figure 4-5A). As expected, stimulation with HRG

instead of EGF caused a significant increase in HER3 phosphorylation and a large

decrease in EGFR phosphorylation. Perhaps not surprisingly given the relative receptor

expression levels (20,000-30,000 copies/cell for HER3 vs. 200,000 copies/cell for

EGFR) and the kinase-dead nature of HER3, stimulation with saturating concentrations

of HRG resulted in decreased phosphorylation of almost all downstream proteins as

compared to stimulation with saturating concentrations of EGF (Figure 4-5A).
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Specifically, most of the downstream effectors which lead to proliferation (STAT-3 Y705

(Y704), ERK T202/Y204, all three phosphorylation sites on SHC) were phosphorylated

to a lesser degree under HRG stimulation, correlating with decreased proliferation in

HRG stimulated 24H cells as compared to EGF stimulated 24H cells (as in Figure 4-3).

Other sites primarily associated with migration (Src, PKC-E, and P13K) do not show the

same decrease in phosphorylation when comparing HRG to EGF stimulation of these

cells. In fact, both Src and PKC-D show an increase in phosphorylation under HRG

activation at 5 and 10 minutes respectively. Together with our response data, these

results indicate that signaling distinct from Src, PKC-D, and P13K controlled pathways

may govern cell migration in our system.

To analyze the effect of HRG stimulation on the cell migration signaling network,

signaling downstream of activated HER2:HER3 vs. EGFR:HER2 heterodimers was also

compared for selected proteins within a subset of the pathways related to cell motility

(Figure 4-5B). Comparing phosphorylation levels for specific sites under different

stimulation conditions provides a potential hypothesis to explain the mechanism

underlying the quantitative phenotypic migration measurements, in which EGF

stimulation resulted in a dramatic increase in migration relative to HRG stimulation of

24H cells (see Figure 4-3). Given the difference in migration rates between these two

cell states, it is not surprising to note that protein phosphorylation sites on almost all

effectors of migration have decreased phosphorylation levels following HRG stimulation

as compared to EGF stimulation. However, in contrast to most proteins in the motility

network, tyrosine phosphorylation levels on FAK, pl30Cas, Src and paxillin were

increased following HRG stimulation compared to EGF stimulation, indicating that the
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slight migratory effect of HRG stimulation of 24H cells is directed primarily through

amplified phosphorylation of a very specific pathway driven through these four proteins.
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Figure 4-5: Effect of HRG stimulation versus EGF stimulation in high HER2
expressing cells. Visualization of the fold change in phosphorylation level between
HRG-stimulated and EGF-stimulated 24H cells provides a network view of the
mechanistic effects underlying differential response to distinct growth factor stimuli on
(A) the canonical EGFR signaling cascades and (B) the cell migration associated
signaling pathway.

Taken together, the data from Figures 4-4 and 4-5 demonstrate that 24H cell

migration can be induced by either broad upregulation of the migratory pathway,

including loss of cell adhesions (24H cells under EGF stimulation) or, to a much lesser

extent, by more intense upregulation of a restricted subset of the migratory pathway (as

in 24H cells stimulated with HRG). By comparison, 24H cell proliferation was induced to

a greater extent by EGF stimulation as determined by phenotypic assay;
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correspondingly, phosphorylation levels were higher on almost all proliferation-

associated proteins on 24H cells stimulated with EGF as compared to 24H cells

stimulated with HRG. Also consistent with the phenotypic data, the effect of increasing

HER2 expression levels was most dramatic for proteins in the cell migration signaling

network, as most proteins displayed a sustained increase in phosphorylation levels, but

was much less dramatic for proteins in the proliferation-associated network, as

increased basal phosphorylation levels in 24H cells were not sustained following EGF

stimulation.

4.3.6 Linear modeling correlates signals with cell function

We have constructed a model using partial least-squares regression (PLSR), a

method we have previously found to be effective in relating cell signaling data to cell

behavioral response data in a quantitative and integrative manner [54]. Information

obtained through our proteomic studies was represented in an M x N matrix (the X-

block), where M is the number of conditions investigated, and N is the number of

peptide metrics measured. An entry in the matrix with coordinates (i,j) represents the

column j metric (i.e. ERK Y187 phosphorylation at 5 minutes) measured under the row i

condition (i.e. parental cell line treated with EGF). For each condition, the metrics

included in the model were phosphorylation measurements at 5, 10, and 30 minutes in

addition to the integral of this time course (with integrals being used as a measurement

for the 'net' phosphorylation over the 30 minute time course). Cell behavior

measurements comprised an M x P matrix (the Y-block), where M is again the number
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of conditions and P is the number of behavior measurements obtained. Partial least-

squares regression analysis produced a vector of coefficients indicating the importance

of each signaling metric with respect to cellular behavior. In addition, PLSR provided a

reduced-dimension map, with axes defined as linear combinations of our original

signaling metrics (Figure 4-6A), on which both signals and cellular behavior can be

represented. Figure 4-6A shows that our original dataset, consisting of 248 dimensions

(i.e., 248 protein signal metrics), has been reduced to 3 dimensions using PLSR, each

of which incorporates a quantitative combination of multiple signals. The projection of an

individual signal in the direction of a given cellular behavior in the PLS space

determines how important the phosphorylation signal is to the behavior. In Figure 4-6B,

we list the top 20 signals that positively correlate most strongly with each cell behavior.

Importantly, even though we can identify small sets of variables that correlate strongly

with each cellular output, 148 out of the 248 protein metrics had a variable importance

for projection (VIP) value of greater than 1, indicating that these 148 protein metrics play

an important role in our model (see Methods for VIP calculation). This highlights the

great advantage of proteome measurements that quantitatively capture dynamic

information flow through a large number of nodes. Our model was validated through

cross-validation and had a goodness of prediction (Q2) of 0.89 (see Methods).
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A. B.A. B. Migration Proliferation
Phoorviation Site Measurement Phlosoorwlation Site Measurement

SHP-2 Y 62 30 mitutes Dsc3a Y 818 10 minutes
An A2 Y 237 10 mrtutes Dsc3a Y 818 30 rmnuteg

A A2 Y 237 305 minutmr EGFR Y 1173 10 minutes

HER2 Y 1248 S mxutes EGFR Y 1173 tegral
Erbn Y 1104 5 minutes EGFR Y 1173 30 minutes
HEA2 Y 1248 10 minutes Dsc3a Y 818 antgral
HER2 Y 1248 30 m~intes iFIR Y 1165 30 minutes
GRF1 Y I106 5 minutes EGFR Y 1173 5 minutes
LDLR Y 845 30 minutes pailli SN 84/88 30 minutes

HER2 Y 1248 artegra CrkL Y 132 10 minutes
SHP-2 Y 82 10 minutes GITI Y 646 minutes
An A2 Y 237 m tes SY 8488 5 inutes paxml S/8418 5 inutes
SHB Y 3556 5 minutes Catenin dil Y 228 30 minutes
LDLR Y 845 S miutes paedlt S/Y 84188 integral

EphA2 Y1Y 5M88594 Sminutes SVc Y 48 ingral
LDLRY845 10 minutes Catenindl Y228 integral
EphA2 Y 575 30 minutes EGFR Y 1148 10 minutes

KIAA1217 Y 393 5 minutes GF1R Y 1181 10 minutes
An A2 Y 23 5 minutes CrkL Y 132 integal
SHP-2 Y 62 5 mnutes paxin SY 84/88 10 minutes

Figure 4-6: Partial least squares regression correlates 248 protein metrics to cell
migration and proliferation. (A) Visual representation of a reduced (3) dimension
graph showing all 248 protein measurements and the cellular outputs with cell migration
(green), cell proliferation (blue), and protein signals (black). (B) List of the top 20 signal-
behavior covariates for both migration and proliferation.

From the top 20 signal behavior co-variates for proliferation and migration in our

model (Figure 4-6B), HER Y1248 appears to be the main upstream activator of

migration while proliferation seems to be activated by EGFR Y1173 and to a lesser

extent EGFR Y1148. This finding correlates with literature showing that the presence of

HER2 Y1248 is necessary to induce migration of breast cancer cell lines [55] whereas

both EGFR Y1148 and Y1173 are She binding sites and thus are able to activate the

ERK signaling pathway, thereby driving proliferation [56]. In this model, SHP-2 Y62 and

Annexin A2 Y237, among others, also appear to be highly correlated with migration.

Both of these proteins have previously been implicated in regulating migration, as SHP-

2 has been shown to promote migration in MCF-7 cells by inducing loss of E-Cadherin

expression and production of matrix metalloproteinase 9[57], while Annexin A2 has
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been shown to mediate mitogenesis, cell migration and loss of focal adhesions when

activated by tenascin-c [58, 59] and it has also been identified as a major substrate for

EGFR phosphorylation [60]. Interestingly, treating cells with withaferin, a novel inhibitor

of Annexin A2, has recently been shown to decrease migration, further validating the

correlation between Annexin A2 and cell migration [61].

In addition to EGFR Y1173 and Y1148, desmocollin (Dsc3a) Y818, IGF-1R

Y1165, and catenin-8 Y228 (among others) are most strongly correlated with

proliferation. IGF-1R is known to induce cell proliferation and survival through activation

of the MAPK and P13K pathways [62], and has also been associated with EGFR

signaling in Tamoxifen resistant breast cancer cell lines, potentiating their mitogenic

strength [10]. The correlation of Dsc3a and catenin-8 to cellular proliferation is initially

surprising, as both of these proteins are associated with cell adhesions, leading to the

expectation that they should correlate to migration instead of proliferation. However,

EGFR inhibition has been shown to increase the presence of desmocollin and

desmoglein at cell-cell borders [47], and EGFR has also been shown to signal to E-

cadherin complexes through phosphorylation of catenin-6 Y228 [46]. Since the

conditional and temporal profiles for both of these sites (Dsc3a Y818 and catenin-8

Y228) display strong similarity to that observed for EGFR Y1173, it can be argued that

they are either directly or closely downstream of EGFR and that phosphorylation of

these sites may destabilize cell-cell adhesions, a step needed for both proliferation and

migration. Further biological experiments are clearly needed to more firmly establish the

functional roles of these proteins in regulating cellular proliferation under these

stimulation conditions.
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It is worth noting that a large proportion of the phosphorylation events contained

in our regression model influence both migration and proliferation to some extent.

Importantly, the model provides a quantitative metric describing the strength of

correlation for each phosphorylation site relative to migration or proliferation; data which

can be used to design further experiments to specifically perturb selected biological

outcomes -- i.e., to inhibit migration one might want to target HER2, SHP-2 and EphA2.

This type of data-driven modeling can also provide insight to the functionality of

unknown proteins such as KIAA127; in our model, phosphorylation of this protein at

Y393 correlates strongly to migration. Interestingly, KIAA1217 is a novel protein highly

homologous to p140CAP (pl30Cas-associated protein), which has been shown to be

tyrosine phosphorylated in response to EGF stimulation and to participate in actin

cytoskeleton organization and cell spreading [63].

4.4 Conclusions

Combining large-scale quantitative analysis of tyrosine phosphorylation with

quantitative phenotypic measurements has provided the means with which to

understand the relationship between these phosphorylation events and their relation to

cellular responses. The findings we have discovered here illustrate how HER2 over-

expression influences signaling network activities important for governing cell

proliferation and migration behavior, common to and distinct between EGFR-binding

ligand and HER3-binding ligand conditions. This quantitative information offers unusual

opportunity for understanding prospective drug effects in a network-wide manner, and
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may offer novel targets for intervening in biological processes downstream of activated

receptor tyrosine kinases.

References

1. Mendelsohn, J. and J. Baselga, Status of epidermal growth factor receptor

antagonists in the biology and treatment of cancer. J Clin Oncol, 2003. 21(14): p.

2787-99.

2. Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat

Rev Mol Cell Biol, 2001. 2(2): p. 127-37.

3. Hynes, N.E. and H.A. Lane, ERBB receptors and cancer: the complexity of

targeted inhibitors. Nat Rev Cancer, 2005. 5(5): p. 341-54.

4. Lemmon, M.A., The EGF receptor family as therapeutic targets in breast cancer.

Breast Dis, 2003. 18: p. 33-43.

5. Carlsson, J., et al., HER2 expression in breast cancer primary tumours and

corresponding metastases. Original data and literature review. Br J Cancer,

2004. 90(12): p. 2344-8.

6. Citri, A., K.B. Skaria, and Y. Yarden, The deaf and the dumb: the biology of

ErbB-2 and ErbB-3. Exp Cell Res, 2003. 284(1): p. 54-65.

7. Ross, J.S., et al., The Her-2/neu gene and protein in breast cancer 2003:

biomarker and target of therapy. Oncologist, 2003. 8(4): p. 307-25.

8. Harari, D. and Y. Yarden, Molecular mechanisms underlying ErbB2/HER2 action

in breast cancer. Oncogene, 2000. 19(53): p. 6102-14.

132



9. Holbro, T., et al., The ErbB2/ErbB3 heterodimer functions as an oncogenic unit:

ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci

U S A, 2003. 100(15): p. 8933-8.

10. Knowlden, J.M., et al., Elevated levels of epidermal growth factor receptor/c-

erbB2 heterodimers mediate an autocrine growth regulatory pathway in

tamoxifen-resistant MCF-7 cells. Endocrinology, 2003. 144(3): p. 1032-44.

11. Pinkas-Kramarski, R., et al., Diversification of Neu differentiation factor and

epidermal growth factor signaling by combinatorial receptor interactions. Embo J,

1996. 15(10): p. 2452-67.

12. Aguilar, Z., et al., Biologic effects of heregulin/neu differentiation factor on normal

and malignant human breast and ovarian epithelial cells. Oncogene, 1999.

18(44): p. 6050-62.

13. Atlas, E., et al., Heregulin is sufficient for the promotion of tumorigenicity and

metastasis of breast cancer cells in vivo. Mol Cancer Res, 2003. 1(3): p. 165-75.

14. Tsai, M.S., et al., Blockage of heregulin expression inhibits tumorigenicity and

metastasis of breast cancer. Oncogene, 2003. 22(5): p. 761-8.

15. Yao, J., et al., Multiple signaling pathways involved in activation of matrix

metalloproteinase-9 (MMP-9) by heregulin-beta I in human breast cancer cells.

Oncogene, 2001. 20(56): p. 8066-74.

16. Zhang, Y., et al., Time-resolved Mass Spectrometry of Tyrosine Phosphorylation

Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals

Dynamic Modules. Mol Cell Proteomics, 2005. 4(9): p. 1240-1250.

133



17. Stampfer, M.R. and J.C. Bartley, Induction of transformation and continuous cell

lines from normal human mammary epithelial cells after exposure to

benzo[a]pyrene. Proc Natl Acad Sci U S A, 1985. 82(8): p. 2394-8.

18. Hendriks, B.S., et al., Coregulation of epidermal growth factor receptor/human

epidermal growth factor receptor 2 (HER2) levels and locations: quantitative

analysis of HER2 overexpression effects. Cancer Res, 2003. 63(5): p. 1130-7.

19. Kohonen, T., Self-Organizing Maps. 3 ed. Information Sciences. 2001, Berlin,

Germany: Springer. 521.

20. Vesanto, J., et al., SOM toolbox for Matlab 5, in Technical Report A57. 2000,

Helsinki University of Technology, Finland.

21. Ultsch, A. and H. Siemon, Exploratory data analysis: Using Kohonen networks on

transputers. 1989.

22. Hautaniemi, S., et al., Analysis and Visualization of Gene Expression Microarray

Data in Human Cancer Using Self-Organizing Maps. Machine Learning, 2003.

52(1-2): p. 45-66.

23. Gaudet, S., et al., A Compendium of Signals and Responses Triggered by

Prodeath and Prosurvival Cytokines. Mol Cell Proteomics, 2005. 4(10): p. 1569-

1590.

24. Janes, K.A., et al., Cue-signal-response analysis of TNF-induced apoptosis by

partial least squares regression of dynamic multivariate data. J Comput Biol,

2004. 11(4): p. 544-61.

25. Eriksson, L., et al., Multi- and Megavariate Data Analysis Principles and

Applications. 2001.

134



26. Hendriks, B.S., et al., Parsing ERK activation reveals quantitatively equivalent

contributions from epidermal growth factor receptor and HER2 in human

mammary epithelial cells. J Biol Chem, 2005. 280(7): p. 6157-69.

27. Schulze, W.X., L. Deng, and M. Mann, Phosphotyrosine interactome of the ErbB-

receptor kinase family. Mol Syst Biol, 2005. 1(1): p. msb4100012-E1.

28. Xia, L., et al., Identification of both positive and negative domains within the

epidermal growth factor receptor COOH-terminal region for signal transducer and

activator of transcription (STAT) activation. J Biol Chem, 2002. 277(34): p.

30716-23.

29. Kinch, M.S. and K. Carles-Kinch, Overexpression and functional alterations of

the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis, 2003. 20(1): p. 59-68.

30. Qu, C.K., et al., Genetic evidence that Shp-2 tyrosine phosphatase is a signal

enhancer of the epidermal growth factor receptor in mammals. Proc Natl Acad

Sci U S A, 1999. 96(15): p. 8528-33.

31. Cheng, N., et al., Blockade of EphA receptor tyrosine kinase activation inhibits

vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res,

2002. 1(1): p. 2-11.

32. Holmqvist, K., et al., The Shb adaptor protein causes Src-dependent cell

spreading and activation of focal adhesion kinase in murine brain endothelial

cells. Cell Signal, 2003. 15(2): p. 171-9.

33. Prager, G.W., et al., Vascular endothelial growth factor receptor-2-induced initial

endothelial cell migration depends on the presence of the urokinase receptor.

Circ Res, 2004: p. Epub 2004 May 6.

135



34. Semino, C.E., R.D. Kamm, and D.A. Lauffenburger, Autocrine EGF receptor

activation mediates endothelial cell migration and vascular morphogenesis

induced by VEGF under interstitial flow. Exp Cell Res, 2006: p. Epub 2005 Dec

7.

35. Manabe, R., et al., GITI functions in a motile, multi-molecular signaling complex

that regulates protrusive activity and cell migration. J Cell Sci, 2002. 115(Pt 7): p.

1497-510.

36. Vulin, A.I., K.K. Jacob, and F.M. Stanley, Integrin activates receptor-like protein

tyrosine phosphatase alpha, Src, and Rho to increase prolactin gene expression

through a final phosphatidylinositol 3-kinase/cytoskeletal pathway that is additive

with insulin. Endocrinology, 2005. 146(8): p. 3535-46.

37. Zhang, X., et al., Multiple Signaling Pathways are Activated During Insulin-like

Growth Factor-I (IGF-1) Stimulated Breast Cancer Cell Migration. Breast Cancer

Res Treat, 2005. 93(2): p. 159-68.

38. Sorkin, A., et al., Epidermal growth factor receptor interaction with clathrin

adaptors is mediated by the Tyr974-containing internalization motif. J Biol Chem,

1996. 271(23): p. 13377-84.

39. Grovdal, L.M., et al., Direct interaction of Cbl with pTyr 1045 of the EGF receptor

(EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res,

2004. 300(2): p. 388-95.

40. Hendriks, B.S., et al., Quantitative analysis of HER2-mediated effects on HER2

and epidermal growth factor receptor endocytosis: distribution of homo- and

136



heterodimers depends on relative HER2 levels. J Biol Chem, 2003. 278(26): p.

23343-51.

41. Cobb, M.H., et al., The mitogen-activated protein kinases, ERKI and ERK2.

Semin Cancer Biol, 1994. 5(4): p. 261-8.

42. Spencer, K.S., et al., ErbB2 is necessary for induction of carcinoma cell invasion

by ErbB family receptor tyrosine kinases. J Cell Biol, 2000. 148(2): p. 385-97.

43. Davis, M.A., R.C. Ireton, and A.B. Reynolds, A core function for p120-catenin in

cadherin turnover. J Cell Biol, 2003. 163(3): p. 525-34.

44. D'Souza, B. and J. Taylor-Papadimitriou, Overexpression of ERBB2 in human

mammary epithelial cells signals inhibition of transcription of the E-cadherin

gene. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7202-6.

45. Jawhari, A.U., M.J. Farthing, and M. Pignatelli, The E-cadherin/epidermal growth

factor receptor interaction: a hypothesis of reciprocal and reversible control of

intercellular adhesion and cell proliferation. J Pathol, 1999. 187(2): p. 155-7.

46. Mariner, D.J., M.A. Davis, and A.B. Reynolds, EGFR signaling to p120-catenin

through phosphorylation at Y228. J Cell Sci, 2004. 117(Pt 8): p. 1339-50.

47. Lorch, J.H., et al., Epidermal growth factor receptor inhibition promotes

desmosome assembly and strengthens intercellular adhesion in squamous cell

carcinoma cells. J Biol Chem, 2004. 279(35): p. 37191-200.

48. Moon, H.S., et al., Expression and tyrosine phosphorylation of E-cadherin, beta-

and gamma-catenin, and epidermal growth factor receptor in cervical cancer

cells. Gynecol Oncol, 2001. 81(3): p. 355-9.

137



49. Webb, D.J., et al., FAK-Src signalling through paxillin, ERK and MLCK regulates

adhesion disassembly. Nat Cell Biol, 2004. 6(2): p. 154-61.

50. Tsubouchi, A., et al., Localized suppression of RhoA activity by Tyr31/118-

phosphorylated paxillin in cell adhesion and migration. J Cell Biol, 2002. 159(4):

p. 673-83.

51. Cary, L.A. and J.L. Guan, Focal adhesion kinase in integrin-mediated signaling.

Front Biosci, 1999. 4: p. D102-13.

52. Roskoski, R., Jr., Src protein-tyrosine kinase structure and regulation. Biochem

Biophys Res Commun, 2004. 324(4): p. 1155-64.

53. Playford, M.P. and M.D. Schaller, The interplay between Src and integrins in

normal and tumor biology. Oncogene, 2004. 23(48): p. 7928-46.

54. Janes, K.A., et al., A systems model of signaling identifies a molecular basis set

for cytokine-induced apoptosis. Science, 2005. 310(5754): p. 1646-53.

55. Dittmar, T., et al., Induction of cancer cell migration by epidermal growth factor is

initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via

EGFR. Faseb J, 2002. 16(13): p. 1823-5.

56. Okabayashi, Y., et al., Tyrosines 1148 and 1173 of activated human epidermal

growth factor receptors are binding sites of Shc in intact cells. J Biol Chem, 1994.

269(28): p. 18674-8.

57. Wang, F.M., et al., SHP-2 promoting migration and metastasis of MCF-7 with

loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced

by IL-Ibeta in vivo and in vitro. Breast Cancer Res Treat, 2005. 89(1): p. 5-14.

138



58. Liu, J.W., et al., Annexin II expression is reduced or lost in prostate cancer cells

and its re-expression inhibits prostate cancer cell migration. Oncogene, 2003.

22(10): p. 1475-85.

59. Chung, C.Y., J.E. Murphy-Ullrich, and H.P. Erickson, Mitogenesis, cell migration,

and loss of focal adhesions induced by tenascin-C interacting with its cell surface

receptor, annexin II. Mol Biol Cell, 1996. 7(6): p. 883-92.

60. Rothhut, B., Participation of annexins in protein phosphorylation. Cell Mol Life

Sci, 1997. 53(6): p. 522-6.

61. Falsey, R.R., et al., Actin microfilament aggregation induced by withaferin A is

mediated by annexin II. Nat Chem Biol, 2006: p. Epub 2005 Dec 11.

62. Wang, Y., et al., Inhibition of insulin-like growth factor-I receptor (IGF-IR)

signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR

antibody. Mol Cancer Ther, 2005. 4(8): p. 1214-21.

63. Di Stefano, P., et al., P130Cas-associated protein (p 40Cap) as a new tyrosine-

phosphorylated protein involved in cell spreading. Mol Biol Cell, 2004. 15(2): p.

787-800.

139



Chapter 5 Modeling HER2 effects on cell behavior from mass

spectrometry phosphotyrosine data

This chapter builds from the dataset acquired in Chapter 4 to demonstrate the use of

PLSR-based models to systematically characterize the signaling events that regulate

cell migration and proliferation when HER2 is overexpressed under a variety of ligand

treatment conditions.

5.1 Introduction

Recent advances in mass spectrometry have enabled the extensive characterization of

intracellular signaling networks [1, 2]. Coupled with the increasing appreciation that cell

behavior is governed by a network of signaling events, these advances have been used

to identify novel elements of network activation giving rise to cell behavior. Identification

of such elements in the past has largely been accomplished in a non-structured way

through the manual parallel comparison of fold-change phosphorylation and cell

phenotype [3, 4]. We sought to use a mathematical formalism based on linear mapping

to draw predictive connections between cell behavior (migration and proliferation) and a

mass spectrometry dataset describing changes in intracellular tyrosine phosphorylation

as human epidermal growth factor receptor 2 (HER2) was overexpressed under a

variety of ligand treatment conditions.

HER2, a member of the ErbB family of receptors, is overexpressed in -30% of

breast cancer patients and correlates with poor prognosis and high invasiveness [5].

Other members of the ErbB receptor family include epidermal growth factor receptor
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(EGFR), human epidermal growth factor receptor 3 (HER3), and human epidermal

growth factor receptor 4 (HER4). These receptors give rise to one of the most

extensively studied signaling networks in biology through a variety of ligand binding and

dimerization schemes [6, 7]. Epidermal growth factor (EGF) and heregulin (HRG), two

ErbB family ligands, have been shown to induce both proliferation and migration to

varying extents in breast cancer cells, although the signaling mechanisms responsible

for this are not fully understood [8, 9]. EGF predominantly binds EGFR to induce both

EGFR homodimers and EGFR-HER2 heterodimers, whereas heregulin (HRG)

predominantly binds HER3 and HER4, inducing HER2-HER3 and HER2-HER4

heterodimers. To obtain a dynamic and quantitative description of intracellular signaling

in response to treatment with EGF or HRG and changing HER2 levels, we employed a

mass spectrometry approach that measured levels of tyrosine phosphorylation. Cell

migration and proliferation were also quantified under the same treatment conditions

[10]. Partial least squares regression (PLSR), a technique previously shown to be

useful for the creation of signal-response models based on highly dimensional datasets,

was used to correlate phosphorylation events to both migration and proliferation [10].

In this study, we demonstrate the use of PLSR-based models to systematically

characterize the signaling events that regulate cell migration and proliferation when

HER2 is overexpressed under a variety of ligand treatment conditions. Specifically, we

derive lists of the most important phenotypically-relevant proteins characterizing each of

30 possible transitions between our six cell conditions (EGF, HRG, and serum-free

treatments in both low and high HER2-expressing cells). Inspection of the lists reveals

both regulatory signaling cascades consistent with known HER2 biology and novel
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hypotheses. Using a conceptually similar procedure, we also derived lists of proteins

that uniquely correlated with either migration or proliferation, postulating that these

proteins serve as migration- or proliferation- specific signals in our system. Finally, we

analyzed the PLSR model to derive a subset of phosphorylation sites most informative

for the quantitative prediction of migration and proliferation. We identified nine

phosphosites (signals) on six proteins from the original 62 phosphosites (signals), and

showed that a model based on only those nine sites had a goodness of fit to

experimental data similar to the full model. We identify the nine signals as a 'network

gauge,' a subset of molecules in the vast network of signaling molecules that together

serve as a sensitive readout for cellular response. The non-obvious nature of the nine

selected signals highlights the complexity of the network and the usefulness of the

modeling approach. Analysis of the network gauge suggests that two elements of

network architecture, endocytosis and phosphoinositide 3-kinase (Pl3K)-related

signaling, are highly informative loci for the control of proliferation and migration.

Importantly, models constructed from both the full and network gauge signaling data

that were trained only on data from a low HER2-expressing cell line predicted levels of

migration and proliferation in a HER2-overexpressing cell line for both EGF and HRG

treatments. This suggests that both cell types process information in the signaling

network according to the same set of multi-linear rules.

5.2 Materials and Methods

5.2.1 Mass spectrometry
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Samples were analyzed using mass spectrometry as previously described in Chapter 4.

5.2.2 Cell proliferation

Proliferation was assayed as previously described in Chapter 4. Briefly, a thymidine

incorporation assay was used to measure proliferation 25 hours after ligand stimulus.

Error bars represent the standard deviation from 4 different biological replicates for each

condition.

5.2.3 Cell migration

Migration was assayed as previously described in Chapters 2 and 4. Briefly, a wound

healing analysis provided rates of wound closure. Error bars represent the 95%

confidence intervals for the fit of the slope using linear regression.

5.2.4 Partial least squares regression (PLSR)

The PLSR model was generated using a SIMCA-P (10.0) software package as

described elsewhere [10]. Briefly, a MxN data matrix (X) was generated from the mass

spectrometry signaling dataset. Each column corresponded to one of the following four

metrics: protein phosphorylation at 5 minutes, 10 minutes, 30 minutes, or the integral of

protein phosphorylation from 0-30 minutes, used as a proxy for the total amount of

protein phosphorylation during the 30 minute duration. There were 248 columns in
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total, corresponding to the 4 metrics x 62 phosphosites = 248 columns. Each row

represented a different cellular condition, with a total of six rows corresponding to

parental serum-free, parental plus EGF (100 ng/ml), parental plus HRG (80ng/ml), 24H

serum-free, 24H plus EGF (100 ng/ml), and 24H plus HRG (80 ng/ml). An MxP matrix

(Y) was generated from the cellular output data, with the rows corresponding to the

same cellular conditions listed above and the columns representing cell migration and

cell proliferation. All data were mean-centered and scaled to unit variance.

PLSR was used to solve the regression problem:

Y = Xb +e (1)

where b is the vector containing the regression coefficients and e is the residual. A non-

iterative partial least squares (NIPALS) algorithm was used [11, 12]. It is instructive to

note that the NIPALS algorithm applied to a single MxN matrix (X) is the representation

of the matrix as a sum of outer products such that:

X = tips' + t2p2' +...+e (2)

where ti is called the scores vector and represents one dimension in the orthogonal

basis set for the column space and pi is called the loadings vector and represents one

dimension in the orthogonal basis set for the row space. Application of NIPALS in this

way is analogous to the singular value decomposition (SVD) of the matrix such that:
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X=UV T

where each scores vector is equivalent to a column of the product U I, and each

loadings vector equivalent to a column of V.

The NIPALS algorithm was implemented as described elsewhere [12]. Briefly, an

iterative process is used to define two vectors, w and c, that maximize the following

term:

[Cov(t,u)] 2 = [Cov(Xw,Yc)] 2  (4)

where t and u are the scores vectors for the X and Y matrices respectively. Loadings

vectors for X and Y, called p and q respectively, are also defined as:

p = XTt/(tTt); q = yTuI(uTu) (5)

The PLS regression vector b' is defined as:

b'= uTt/(tTt) (6)

The set of vectors t,u,w, and c are associated with the maximum eigenvalues for

various covariance matrices, and once defined, their contribution is removed from the X

and Y matrices, leaving a residual matrix that can be further modeled with a new set of
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t,u,w,c,p, and q vectors. The matrices corresponding to each of these vectors are

defined as T,U,W,C,P and Q. The residual matrices are defined as:

Xi= Xi-1- tipiT, Yi = Yi.1-ticiT (7)

Where the maximum value of i (referred to as A later for clarity) depends on the results

of cross-validation. Weights were defined as w*, which are calculated from w to relate to

the original X-matrix (and not the residual as calculated above) as:

* = W(PTW) -'  (8)

Each model was tested for goodness of prediction (Q2) using a leave-one-out cross

validation approach [13]. Briefly, cross-validation is performed by omitting an

observation from the model development and then using the model to predict the Y-

matrix values for the withheld observation. This procedure is repeated until every

observation has been kept out exactly once. The prediction error sum of squares

(PRESS) is then calculated as:

PRESS = iC m Yi'Ymeasured - YPredic
t
ed (9)

Q2 is then calculated as:

A

Q2 1.0- - (PRESS / SS)a (10)
a=l
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where a refers to each individual principal component in the model and SS is the sum of

squares explained by principal component a. Standard errors and confidence intervals

(as evaluated for the models presented) can be derived from cross-validation as well

[13].

To evaluate the scores plot transitions (Tables 1-3), the vector Tj,1:A - Tk,1:A was

evaluated to represent the transition from the cellular condition described by row k of T

to the cellular condition represented in row j of T. The inner product of this vector and

the weight of variable m (W*m,1:A) was evaluated for all variables (m=1:248) and then

ranked by magnitude.

To identify the signaling metrics most important for the overall model, a weighted sum of

squares (also known as the variable importance for projection [VIP]) value for each

variable (k) was calculated according to the following formula [13]:

VIPk (11)

where KT is the total number of variables and the rest of the variables are as described

above. Signals having multiple metrics that ranked in the top 30 highest VIP scores

were chosen for the reduced model.
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To evaluate the importance of a given signal for an output, the inner product of each

metric with a given output was evaluated by:

W m,1:A Cn,1:A (12)

for all variables (m=1:248) for each of both outputs (n=1:2). To calculate the unique

contribution of the signaling metrics to a given output (say n = 1), we evaluated the

following expression:

W m,l:A C1,1:A - W*m,l:A C2,1:A (13)

for all m. Overall contributions to the model were calculated as:

W m,1:A CI,I:A + W*m,1:A C2,1:A (14)

5.3 Results

5.3.1 Mass spectrometry approach measures 62 intracellular signals in
human mammary epithelial cells

As previously described, we developed and employed a mass spectrometry

approach to measure the effect of HER2 overexpression in 184A1 human mammary

epithelial cells (HMEC) [10]. Two closely-related cell lines with known receptor

expression levels were used; a parental cell line (P) with 200,000 EGFR, 20,000 HER2,

and 20,000 HER3, and 24H cell line with 200,000 EGFR, 600,000 HER2, and 30,000
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HER3 per cell [10]. Both cell lines have very low levels of HER4. Thus, the 24H cell line

was used to assess effects of HER2 overexpression, with the parental cell line serving

as a baseline for these measurements. HMEC's were treated with either saturating

levels of EGF or HRG, and under each treatment the tyrosine phosphorylation of 62

phosphosites was quantified at 0, 5, 10, and 30 minutes. Figure 5-1 displays the 248

time courses collected. Our measurements revealed the dynamic activation of

molecules both commonly associated with ErbB signaling (e.g., extracellular regulated

kinase 1 [ERK1] and SH2-containing protein [Shc]), and those less commonly

associated with the ErbB network (e.g., human transferrin receptor [TfR], ephrin A2

receptor [EphA2], and the previously unidentified KIAA 1217). Comparison with

previously published maps of ErbB and migration-associated signaling networks reveals

broad network coverage with the 62 measured signals (Figure 5-2, [7, 14]).
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Figure 5-1: A mass spectrometry approach measured 248 phosphorylation
profiles. The title at the top of each entry indicates the phosphosite measured. Median
normalized phosphorylation (see Methods) is plotted at 0, 5, 10, and 30 minutes. For
each phospho-site, four conditions were measured: parental + HRG (80 ng/ml), 24H +
HRG (80 ng/ml), parental + EGF (100ng/mi), and 24H + EGF (100 ng/ml). Error bars
indicate ± standard deviation. The data were obtained in [10].

Figure 5-2 (below): Measured signals provide broad coverage in ErbB- and cell
migration-associated signaling networks. Multiple measured phosphotyrosine sites
have been previously reported to be critical for ErbB-associated signaling (A) as well as
for cell adhesion- and migration-associated signaling (B).
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5.3.2 Cell proliferation and migration are differentially affected by HER2

Cellular migration and proliferation were measured under the same conditions

described above [10]. HER2 overexpression correlates with increased cell migration

under all ligand stimulating conditions (Figure 5-3A). EGF treatment increased the rate

of migration for both cell lines by the highest absolute amount, whereas HRG treatment

did not increase migration as compared to the serum-free case in either cell line. In

contrast to migration, proliferation was not significantly altered by HER2 overexpression

(Figure 5-3B). Both HRG and EGF increased proliferation above serum-free levels, with

EGF stimulating the highest absolute amount of proliferation [10].

A. B,

I Parental I
I 24H I

4ý

·5 2-N

iL

0£.El0o

N

a Parental
- 24H

Serum Free + EGF + HRG Serum Free + EGF + HRG

Figure 5-3: HER2 overexpression affects migration but not proliferation. Parental
(black) and 24H (red) data shown for: (A) Migration, as measured by a wound healing
assay, and (B) Proliferation, as measured by [3H] thymidine incorporation. All error
bars denote + standard error (see methods). Migration error bars represent the 95%
confidence intervals for the fit of the slope using linear regression. Proliferation error
bars represent the standard deviation from 4 different biological replicates for each
condition. The data were obtained in [10].
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5.3.3 Model analysis reveals phenotype-relevant signaling sets that
characterize ligand and receptor expression transitions

A model based on partial least squares regression was created to linearly

regress signaling metrics onto cellular migration and proliferation metrics ([10] and

Materials and Methods). The model accurately recapitulated experimental data and had

a goodness of prediction (Q2) of 0.89 (Figure 5-4). Each signal comprised four metrics:

the 5, 10, and 30 minute phosphorylation levels and the integral of the time course from

0 to 30 minutes. The integral was used as a measure for total phosphorylation. The

zero minute time point was included in the row of serum-free observations (see

Materials and Methods).

A. B.

0 3 34

z2S0.98 2R 0.99

E a "L. 0

(model prediction) (model prediction)

Figure 5-4: A linear model accurately recapitulates experimental data. Results from
partial least squares regression (PLSR) modeling show that a computational model
based on experimental data generates predicted values of cellular migration and
proliferation that correlate strongly with experimentally measured values. Experimental
values of migration (A) or proliferation (B) are graphed along the ordinate, and model
predictions of migration (A) or proliferation (B) are given along the abscissa. R values
indicate the data's goodness of fit to the line y = x. Experimental error bars denote 95%
confidence intervals for migration (see methods) and ± standard deviation for
proliferation. All computational error bars are calculated from jack-knifing as a standard
error.
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Decomposition via PLSR of the signal and response datasets provided a

reduced-dimension map (called the scores vector t, see Materials and Methods) on

which network signaling changes in response to ligand or receptor perturbation could be

interpreted. The plot axes (referred to as principal components) are linear combinations

of the signaling metrics described above. Figure 5-5 plots the changes corresponding

to ligand or receptor perturbation on a two dimensional graph whose axes are the first

two principal components (the third component, which captures only 4% of the Y-block

variance described by the full model, is omitted here for ease of visualization). The plot

shows, as expected, that HRG treatment stimulates the signaling network distinctly from

the EGF treatment case. If we had imagined that HRG treatment activated the same

set of signals as EGF but at a different magnitude, then we would have expected to see

the +EGF and +HRG vectors overlapping, with one being longer than the other. In

reality we know that HRG activates different dimers than does EGF (i.e., HER3-HER2

versus EGFR-HER2 or EGFR-EGFR), which in turn drives the differential activation of

the signaling network. Interestingly, the difference between EGF and HRG signaling is

larger in 24H cells relative to parental cells (77 degrees versus 37 degrees), due in

large part to a drastic shift in EGF-induced signaling with HER2 overexpression (Figure

5-5B). If we take a linear superposition of changes in signaling due to HER2

overexpression in the absence of ligand (i.e., the signaling changes under serum-free

conditions between P and 24H cells) and the changes in signals we expect as we add a

ligand (i.e., signaling changes as either HRG or EGF are added to P cells), we can

approximate the signals generated by 24H cells under HRG treatment (Figure 5-5C).

We cannot do the same, however, for 24H cells under EGF treatment, emphasizing the
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non-additive interplay between changes in cellular ligand-receptor conditions and the

signals they generate (Figure 5-5C). In the case of our HMEC system, previous

quantitative measurement and modeling of dimer kinetics has shown that HER2

overexpression in the presence of HRG leads to a relatively small shift in the number of

HER2-HER3 dimers (-10,000). Alternatively, HER2 overexpression in the presence of

EGF leads to a large increase in EGFR-HER2 dimers (-150,000) and a decrease in

EGFR homodimers (-65,000) [10]. Changes in signaling with HER2 overexpression

under serum-free conditions could be due to either spontaneous homodimerization or

autocrine signaling. Thus, given our analysis of the scores plot, we hypothesize that

increases in HER2 under HRG treatment principally add to the signaling network

through the independent addition of signals generated through HER2 homodimerization

or autocrine signaling. HER2 overexpression under EGF treatment, however, results in

the addition of these signals plus a novel suite of signals generated primarily through an

increase in EGFR-HER2 dimers and loss of EGFR homodimers (see Appendix 5).

Although the scores plots allow us to visualize signaling changes, it is often of

interest to relate observed differences back to original measured signaling metrics. We

accomplish this by taking the inner product of any vector in the scores plot with the

principal component axes, and thereby derive lists of proteins that most strongly

correlate with the transition associated with the vector (see Materials and Methods).

Figure 5-6 outlines this approach and indicates the 30 cell state transitions analyzed.

We discuss here a subset of those transitions, but all results are available in

Supplementary Materials of [15].
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Figure 5-5: PLSR-generated scores plot reveals different signaling strategies for
EGF and HRG. A scores plot identifies separation in signaling strategies associated
with receptor overexpression or differential ligand treatment along two signaling axes
(A). HRG and EGF treatment give rise to different sets of signals, and the difference is

exaggerated in 24H cells (B). The linear superposition of the difference vector between
24H and parental serum-free conditions and each ligand's vector explains 24H+HRG
signaling but not 24H+EGF signaling (C).
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Figure 5-6: A strategy for the study of 30 possible cellular transitions. Each arrow
represents the difference vector between two cell states. The changes in the signaling
network associated with the transition between the two states are calculated by taking
the inner product of the difference vector with the weights vector (see Materials and
Methods).

HER2 overexpression in the presence of EGF, as discussed above, produced

interesting signal network changes and increased cell migration but did not affect cell

proliferation (see Figure 5-3). Using our approach, we derived proteins positively

correlating most strongly with HER2-associated increases in motility under EGF

treatment (Table 5-1A). HER2 phosphorylation at tyrosine 1248 and that of Crk-

associated substrate (p130Cas) at tyrosine 327 feature prominently in the list, agreeing

with previous reports linking the HER2-specific activation of p130Cas to increased

invasion in breast epithelial cells [9]. Another protein listed is annexin A2 (also known

as lipocortin 2), a molecule previously known to mediate cytoskeletal-membrane

interactions, therefore linking it to critical processes governing cell migration [16]. While
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expression of annexin A2 has been found to decrease or increase cell migration,

depending on the cell system, little is known about how its phosphorylation correlates

with cell migration [17, 18]. Here, we speculate that annexin A2 is part of the

mechanism that increases cell migration under HER2 overexpression in the presence of

EGF, and we identify a novel phoshorylation site, tyrosine 237, that may regulate its role

in the activation of migration. Phosphorylation of SH2 domain-containing phosphatase

SHP-2, another molecule that appears in Table 5-1A multiple times, has been shown to

increase cell migration in breast cancer cells, although connection to particular

phosphorylation events has been sparse [19]. Here we implicate the tyrosine 62 site in

SHP-2's activation and eventual effect on cell migration. Interestingly, SHP-2 and

annexin A2 have been found to complex in endothelial cells, suggesting the possible

presence of a co-regulatory scheme in our HMEC system [20].

A list of proteins most negatively correlated with phenotype includes all

measurements of EGFR phosphorylated at tyrosine 1173 as well as Src, which has

been shown to phosphorylate EGFR tyrosine 1173 (Table 5-1B, [21]. These molecules

exhibit decreased phosphorylation in response to increasing HER2 expression and

concomitant increases in migration under EGF treatment. The tyrosine 1173 site on

EGFR has been shown to recruit SH2 domain-containing phosphatase SHP-1, which

helps coordinate EGFR dephosphorylation and mitogen-activated protein kinase

(MAPK) deactivation [22]. We speculate that decreased tyrosine 1173 phosphorylation

is part of the mechanism through which HER2 increases the downstream signaling

governing increased migration.
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Next, we sought to understand the effect of changing ligand under given receptor

expression levels (Table 5-2). Substitution of EGF for HRG in 24H cells increases both

proliferation and migration, although the absolute increase in migration is greater

(Figure 5-3). Interestingly, many proteins that negatively correlate with this transition

are linked to migration-relevant p130Cas pathway (Table 5-2B). This pathway includes

Src and its substrates focal adhesion kinase (FAK) and p130 Cas (FAK also

phosphorylates pl30Cas) [23, 24]. Counterintuitively, then, EGF appears to negatively

regulate a classical migration pathway to increase cell migration. The new EGF-

stimulated signals not only increase migration but proliferation as well. In Table 5-2A,

we observed proteins previously linked in the literature to migration (e.g., annexin A2,

glucocorticoid receptor DNA binding factor 1[GRF1]), and others linked to proliferation

(EGFR, desmocollin-3 [Dsc3a) [7, 10, 16]. KIAA 1217 is a previously unidentified

protein that warrants further investigation for its potential role in EGF-mediated

proliferation and migration.

As mentioned above, the signaling changes associated with increased HER2

expression in the presence of HRG are very similar to the same change under serum-

free conditions. In both cases, HER2 overexpression leads to an increase in migration

but not proliferation. Signaling metrics that positively correlate with this transition

include p130Cas and FAK, indicating that increased migration may be mediated through

this migration-associated pathway (Table 5-3A and Supplementary Table 1 in [15]).

Serine/threonine protein kinase PRP4 homolog (PRP4K) and protein tyrosine

phosphatase receptor type A (PTPRA) are two additional molecules that correlate with

the increased migration suggesting a novel role for both in HER2-mediated migration.
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Activation of these molecules, as mentioned above, may be due to spontaneous HER2

homodimerization or autocrine signaling. Considering Table 5-3B, we note that EGFR

tyrosine 1173 negatively correlates with the increase in migration, just as we observed

for HER2 overexpression in the presence of EGF. HRG treatment, however, is

generally not thought to regulate EGFR phosphorylation, and the presence of tyrosine

1173 in Table 5-3B suggests that HER2 overexpression in the presence or absence of

HRG drives migration through autocrine signaling that activates EGFR-HER2

heterodimers. Indeed, we have shown that there is a measurable but low amount of

transforming growth factor alpha (TGF-a) produced by both the parental and 24H cells

(personal communication, Lisa Joslin and Douglas Lauffenburger), thus pointing to a

potential mechanism for autocrine-induced signaling changes.

5.3.4 A nine-signal reduced model recapitulates full model performance

A reduced model based on a fraction of the 62 originally measured phosphorylation

sites would be useful for the future study of HER2 effects when full network

measurement is not possible. We identified nine phosphorylation sites on six proteins

that recapitulated the performance of the full model. We refer to this subset of signals

as a 'network gauge': a small number of phosphorylation sites that together can be

interrogated to predict levels of proliferation and migration. To rank phosphorylation

events according to their importance in the full model, we used a weighted sum of

squares technique (see Materials and Methods). Phosphorylation sites whose metrics

appeared more than once in a list of the top 30 weighted sum of squares metrics were
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selected for the reduced model. Using this method, phosphorylation sites on the

following six proteins were identified as important: transferrin receptor (TfR), annexin

A2, activated cdc42-associated kinase (ACK), SH2-containing inositol polyphosphate 5-

phosphatase (SHIP-2), SH2-containing protein (Shc), and solute carrier protein 38

(SCF38, also known as SNAT2 or ATA2). All measured tyrosine phosphorylation sites

were included for these molecules except for the tyrosine 237 site on annexin A2, since

it was not represented at any time on the top 30 list. A model generated with this six

protein set had an excellent goodness of fit to experimental data compared to the full

model (Figure 5-7). In addition, the reduced model maintained a high goodness of

prediction (Q2 = 0.95). A model based on the bottom 30 ranked metrics had a

goodness of fit less than 0.30 to experimental data, suggesting that our ranking

appropriately isolated highly informative sets of phosphorylation metrics.
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Figure 5-7: A linear model based on nine of the original 62 signals recapitulates
experimental data and matches full model performance. Results from partial least
squares regression (PLSR) modeling show that a computational model based on six
signals generates predicted values of cellular migration and proliferation that correlate
strongly with those predicted by the full model and experimentally measured values.
Experimental values of migration (A) or proliferation (B) are graphed along the ordinate,
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and full-model predictions (black) and reduced-model predictions (red) of migration (A)
or proliferation (B) are given along the abscissa. R2 values indicate the data's
goodness of fit to the line y = x. Experimental error bars denote 95% confidence
intervals for migration (see methods) and ± standard deviation for proliferation. All
computational error bars are calculated from jack-knifing as a standard error.

The somewhat surprising makeup of the network gauge prompted further

investigation as to why these particular six proteins were so informative. Shc's tyrosine

site at 239/240 regulates c-myc activation, its tyrosine site at 317 regulates MAPK

activation, and its phosphotyrosine-binding domain (PTB) domain is known to associate

with phosphatidylinositol-3,4,5-trisphosphate (PIP3), although it is not known how Shc's

binding affinity for PIP3 changes with tyrosine phosphorylation [25]. Thus, tyrosine

phosphorylation of Shc affects multiple important signaling pathways leading us to

speculate that the dynamic and quantitative measurement of Shc at both tyrosine

phosphosites may serve as a sensitive indicator for the ultimate activation of pathways

important for proliferation and migration. The afore mentioned annexin A2, a target of

kinases such as Src and protein kinase C (PKC), has been found to mediate

membrane-cytoskeleton interactions and its knockdown has been linked to decreased

invasiveness in human glioma cell lines [26]. Annexin A2 clusters strongly with

migration in the reduced model, revealing its role as a relatively migration-specific

predictor. TfR endocytosis brings iron into the cell and is stimulated by tyrosine 20

phosphorylation [27]. Introduction of iron into the cell can be a major regulator of cell

proliferation and growth, and TfR has also been linked to migration in endothelial cells

[28, 29]. Moreover, TfR has been shown to partially traffic with EGFR, although it may

internalize via a different mechanism [30-32]. We report here, to our knowledge, the

first report of EGF-stimulated TfR phosphorylation and regulation via HER2 expression,
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and we hypothesize that tyrosine phosphorylation of TfR is a reliable indicator of

endocytic regulation in our system. ACK, downstream of cdc42, has been shown to

bind clathrin and to regulate TfR trafficking, implicating it also as a part of the

endocytosis readout [33]. ACK has additionally been shown to be an early transducer

of EGFR signaling and to negatively regulate cell adhesion through the Crkll-pl30Cas

pathway, a pathway shown above to be important in HER2-mediated migration [9, 34,

35]. SHIP-2 is a phosphatase that acts on PIP3, and has been found associated with

filamin and actin, implicating it directly in the regulation of both P13K signaling pathways

and cell migration [36]. Additionally, SHIP-2 regulates EGFR trafficking and associates

with Shc in response to EGF binding, further suggesting that SHIP-2 phosphorylation is

a sensitive readout for a wide variety of different signaling responses [37, 38]. SCF38 is

a System A amino acid transporter that responds to growth factor signaling [39]. Insulin

stimulation leads to the recruitment of SCF38 to the cell membrane through a P13K-

dependent signaling mechanism that coordinates its trafficking from the endosomal

compartments [40]. Little is known about potential roles for SCF38 in ErbB signaling, but

based on our model results, further biochemical studies are warranted.

Two interesting themes, then, emerge from the network gauge findings: (a) the

inclusion of a group of molecules linked to endocytosis, namely TfR, ACK, and SHIP-2;

and (b) the high proportion of molecules known to interact with P13K or PIP3, namely

Shc, SHIP-2, TfR, and SCF38. We will elaborate further on these themes in the

Discussion section.

5.3.5 Models based on parental cell data alone accurately predict the
effects of HER2 overexpression on proliferation and migration
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We investigated whether the full model and the network gauge trained only on parental

cell data could predict migration and proliferation levels in response to HER2

overexpression. We trained models on parental serum-free, EGF, and HRG data,

performed PLSR to calculate regression coefficients, and then used the measured 24H

signal values in the regression equation to predict proliferation and migration. We found

that both the full 62-signal model and the network gauge were able to predict

proliferation and migration in 24H cells (R _ 0.99, Figure 5-8, Figure 5-9).
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Figure 5-8: A reduced-signal PLSR model based only on parental cell data
predicts 24H proliferation and migration. A PLSR model of nine signals constructed
from parental cell data only was used to predict (A) proliferation and (B) migration levels
in 24H cells and then compared to measured experimental values. Experimental error
is denoted by 95% confidence intervals for cell migration (see methods) and ± standard
deviation for cell proliferation. Computational error bars were calculated as the 95%
confidence intervals based on jack-knifing.
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Figure 5-9: A linear model based only on parental cell data predicts 24H
proliferation and migration. A PLSR model constructed from parental cell data only
was used to predict (A) proliferation and (B) migration levels in 24H cells and then
compared to measured experimental values. Experimental error is denoted by 95%
confidence intervals for cell migration (see methods) and ± standard deviation for cell
proliferation. Computational error bars were calculated as the 95% confidence intervals
based on jack-knifing.

Although the model does not match the migration or proliferation results exactly

in terms of absolute quantities, it captures salient trends such as the sharp increase in

migration under EGF treatment for 24H cells and the trend of increasing proliferation

when HRG is substituted with EGF. Interestingly, the model also predicts a slightly

decreased amount of migration under HRG stimulation in comparison to the serum-free

condition, which corresponds to the lack of HRG-mediated migration observed

experimentally. The predictive capability of the model indicates that although HER2

overexpression changes intracellular signals drastically, the rules by which those

signals are brought together to affect proliferation and migration, as defined by PLSR,

remain the same as in the parental cells.
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5.3.6 PLSR analysis reveals signals that uniquely correlate with migration
and proliferation

Identification of molecules highly but uniquely associated with either proliferation or

migration are of value when considering strategies to knock-down one behavior without

affecting the other. We reported previously the top 20 signals associated with migration

and proliferation through an analysis of reduced-dimension PLSR plots [10].

Interestingly, however, we noted that most signals having a high projection for one

output have a non-zero projection for the second output. Thus, the importance of a

signal with respect to cellular phenotype is a quantitative assessment, and we can

derive behavior-specific protein metrics by ranking the inner product of the metric and

the relevant behavior after the inner product of that same metric with the second

behavior has been subtracted (Materials and Methods). Tables 4A and 4B list the

phosphorylation sites that most strongly and uniquely correlate with migration and

proliferation respectively. Table 5-4A indicates that attractive migration-specific targets

include annexin A2 237 and HER2 1248 tyrosine phosphorylation. Likewise, Table 5-

4B indicates that Dsc3a or catenin-61 are good targets for proliferation-specific

inhibition. If the goal is to perturb one behavior without perturbing the other at all, then

the corresponding protein targets could be calculated by making a list of proteins that

had close to zero projection along the output one desired not to affect. The problem

with this strategy is that the projection along the behavior one desires to affect may be

small as well.

Table 5-4C lists those proteins that positively correlate with both outputs to the

greatest degree (i.e., the sum of the inner products with both migration and
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proliferation). While there exists (as expected) some redundancy with the migration and

proliferation lists we published earlier ([10]), novel proteins such as pl30Cas, FAK and

PRP4K have an elevated importance when their effects on migration and proliferation

are summed. Although p130Cas is usually associated with control of invasion and cell

motility in HER2 overexpressing breast epithelial cells, recent reports link it to

proliferative control in HER2-dependent mammary epithelial tumorigenesis [41]. FAK

phosphorylated at the tyrosine 576 site also appears on the list while being absent from

the individual migration or proliferation lists. FAK regulates breast cancer cell migration

and invasion, and also plays a role in cell cycle and proliferative control, although

evidence for this latter role has been sparse in HER2 overexpressing systems [42-44].

Here, we hypothesize that FAK plays a critical role in the control of both proliferation

and migration in the HMEC cell line, and taken together with the appearance of

pl30Cas and Src, we hypothesize that the well-described Src-FAK-Cas pathways play

an essential role in the control of both proliferation and migration in HMEC cells. This

activity could be captured by our network gauge in numerous ways, for instance

information about Src activity may be included via annexin A2 phosphorylation levels.

Table 5-4D lists the 20 proteins that demonstrated weakest correlation with both

migration and proliferation (i.e., the sum of their projections along both behaviors were

small). The list is of some interest for two reasons: (a) some of the proteins are also

listed in Tables 4A-C, but at different times or at different phosphorylation sites (i.e.,

FAK or pl30Cas) indicating the need for phospho-specific, time-resolved data; and (b)

the presence of some proteins presumed to be of substantial relevance to HER2-

associated signaling, such as extracellular signal-regulated kinase (ERK). The reason

167



ERK is not important for the model here is that its variance upon receptor or ligand

perturbation does not consistently linearly correlate with consequent proliferation or

migration measures across all conditions. Nonetheless, we have observed that

treatment with mitogen-activated protein extracellular kinase (MEK) inhibitor has an

effect on the proliferation of HMEC cells (PD98059, unpublished observations). This

raises an important caveat concerning the model -- that there can be proteins important

for cell responses that do not consistently correlate across all or most treatment

conditions. We do not claim to be able to identify all of the false negatives (or

positives), but rather state that a model of this type remains predictive and enabling of

conceptual insights.

5.4 Discussion and conclusions

We have demonstrated the use of PLSR to characterize the relative importance of

tyrosine phosphoryation events to cell migration and proliferation in a human mammary

epithelial cell line with varying HER2 expression levels under both EGF and HRG

treatment. In addition, we have identified an important subset of molecules from our

original large signaling dataset to serve as a network gauge for the prediction of

migration and proliferation (Figure 5-10). Our results both highlight previously identified

elements in the HER2 signaling network, and suggest new pathways and targets

critically implicated in HER2-mediated signaling and its effect on migration and

proliferation.
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Scores plot analysis (Figure 5-5) helped generate global intuition as to how

different combinations of ligand and receptor expression activated the phosphotyrosine

signaling network. We related these changes back to original measurements through

the use of inner products, generating lists of proteins correlated with any given ligand or

receptor transition. Because the lists are derived after applying PLSR, the proteins

highlighted have already been identified as important for the description of changes in

cellular behavior. This procedure represents an improvement over traditional analysis

of large mass spectrometry datasets (usually fold-change analysis) and demonstrates,

to our knowledge, the first time an approach based on inner products has been used to

extract understanding from PLSR-based biological models. Our lists (Tables 1-3) show

that a particular behavior may be controlled through different network signaling

strategies depending on cellular input. For instance, when EGF replaces HRG in 24H

cells, migration is stimulated through a different set of molecules than are used to

elevate migration when HER2 levels are increased.
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Figure 5-10: A network gauge predicts cell behavior and suggests critical
elements of network architecture. A nine-signal PLSR model (A) that reliably predicts
proliferation and migration includes transferrin receptor (TfR), annexin A2, solute carrier
protein 38 (SCF38), SH2-containing protein (Shc), SH2-containing inositol
polyphosphate 5-phosphatase (SHIP-2), and activated cdc42-associated kinase (ACK).

The reduction of the mass spectrometry dataset to nine highly informative

phosphorylation sites on six proteins suggests elements of network architecture that

likely control migration and proliferation, namely endocytosis and signaling through

PIP3- and P13K-mediated pathways. Three of the six highly informative proteins, TfR,

SHIP-2, and ACK, are all linked to endocytosis [27, 33, 38]. The tight connection

170



between endocytic regulation and the signaling networks governing cell migration and

proliferation has been documented, most powerfully in a recent study using RNA

interference against the human kinome [45]. The results of this study indicate that more

kinases than previously appreciated are involved in endocytosis, and taken together

with other recent efforts, implicate endocytosis as a high-level regulator and sensor of

cell signaling networks [45, 46]. Endocytosis can occur via many different mechanisms,

principally clarthrin-mediated endocytosis (CME) and caveolar/raft-mediated

endocytosis (RCE), with each mechanism regulating different sets of kinases and cell

behaviors [45, 46]. The fact that TfR endocytosis was identified as highly informative

instead of EGFR endocytosis might be due to the fact that EGFR internalization is

mediated by both CME and RCE after treatment with high amounts of EGF, whereas

TfR is thought to internalize independent from RCE [31]. The dynamic and quantitative

resolution in our signaling assay was most likely critical for the capture of endocytic

events, as endocytosis strongly regulates both signal duration and intensity.

Furthermore, although our assay did not measure spatial distribution, endocytic

information may have served as a proxy for that, further explaining its presence in the

reduced model. Signaling through P13K and PIP3 affects both commonly recognized

downstream targets, such as protein kinase B (PKB or AKT), and important distinct

pathways such as those containing ERK and p53 [47]. A recent mapping of the

complete ErbB signaling network reveals PIP3 and its upstream kinase P13K as highly

informative nodes upon which a large fraction of signaling information converges [48].

Not surprisingly, then, we identify four proteins in our network gauge that interact with or

are downstream of PIP3 or P13K. These molecules are: Shc, SHIP-2, TfR, and SCF38
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[25, 40, 49]. Thus, model reduction not only identifies a network gauge, but also

suggests salient elements of the signaling network.

The PLSR model's ability to predict levels of proliferation and migration in 24H

cells given only data from parental cells indicates that although signals drastically

change as we move from parental to 24H cells, the cell decides upon levels of migration

and proliferation according to the same 'rules'. These rules are non-intuitive but amount

to the calculation of behavior according to the regression equation given by the PLSR

model. Identification of conserved algorithms used to control behavior across cell type

highlights the potential to predict a priori how changes in signaling will affect cell

behavior and gives insight into conserved themes for cellular decision making

processes. Thus, the linear mapping of phospho-proteomic data onto cellular

phenotype identified a key set of signals descriptive and predictive of phenotype in

breast epithelial cells. It also identified subsets of signals that govern phenotype under

either ligand or receptor perturbation, and in that process revealed new hypotheses

about HER2-mediated signaling events. Of course, these hypotheses need to be tested

through further focused molecular and biochemical work. Nevertheless, the modeling

approach we introduce here is a powerful first step toward understanding signaling

networks and the behaviors they control.

5.5 Tables

Table 5-1: Signaling metrics most important for changes in cellular response due
to changes in HER2 expression under EGF stimulation. Analyzed results from
PLSR generated scores plot reveals (A) the 20 signaling metrics most positively
correlated with changes in cell behavior as HER2 levels are increased, and (B) the 20
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signaling metrics most negatively correlated with changes in cell behavior as HER2
levels are increased.

Table 5-2: Signaling metrics most important for changes in cellular response due
to varying ligand exposure in cells with high HER2 expression. Analyzed results
from PLSR generated scores plot reveals (A) the 20 signaling metrics most positively
correlated with changes in 24H cell behavior when HRG stimulation (80 ng/ml) is
substituted with EGF stimulation (100 ng/ml), and (B) the 20 signaling metrics most
negatively correlated with changes in 24H cell behavior when HRG stimulation (80
ng/ml) is substituted with EGF stimulation (100 ng/ml).

Table 5-3: Signaling metrics most important for changes in cellular response due
to changes in HER2 expression under HRG stimulation. Analyzed results from
PLSR generated scores plot reveals (A) the 20 signaling metrics most positively
correlated with changes in cell behavior as HER2 levels are increased, and (B) the 20
signaling metrics most negatively correlated with changes in cell behavior as HER2
levels are increased

Table 5-4: Analysis of reduced dimension PLSR mapping produces signaling
metric hierarchies for cell behavior. Analyzed results from the X-Y loadings plot
produced through PLSR analysis reveal (A) the 20 signaling metrics uniquely correlated
with migration, (B) the 20 signaling metrics uniquely correlated with proliferation, (C) the
20 signaling metrics correlated most strongly with both migration and proliferation, and
(D) the 20 least correlated signaling metrics for both migration and proliferation.
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Table 5-1A

Phosphorylation Site
(P--24H, EGF)
pl30Cas Y 327
pl30Cas Y 327

SHP-2 Y 62

SHP-2 Y 62

PRP4K Y 849

EphA2 Y/Y 588/594

SHP-2 Y 62

HER2 Y 1248
An A2 Y 237

HER2 Y 1248

LDLR Y 845

HER2 Y 1248

EphA2 Y 575
LDLR Y 845

PTPRA Y 798

PTPRA Y 798
An A2 Y 237

PRP4K Y 849

HER2 Y 1248
An A2 Y 237

Measurement
Type

10 minutes
30 minutes
30 minutes
10 minutes
30 minutes
5 minutes
5 minutes

30 minutes
30 minutes
10 minutes
30 minutes
5 minutes
10 minutes
5 minutes

30 minutes
10 minutes
10 minutes
5 minutes
integral

5 minutes
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Table 5-1B

Phosphorylation Site
(24H--+P, EGF)

paxillin S/Y 84/88
IGF1R Y 1161
IGF1R Y 1165
EGFR Y 1173
Dsc3a Y 818

paxillin S/Y 84/88
FAK Y 576

EGFR Y 1173
EGFR Y 1173
EGFR Y 1173

FAK Y 576
Dsc3a Y 818

Src Y 418

Dsc3a Y 818
GIT1 Y 545

IGF1R Y 1161

FAK Y 576
IGF1R Y 1165

Src Y 418
Src Y 418

Measurement
Type

30 minutes
integral
integral

5 minutes
integral

5 minutes
integral

30 minutes
integral

10 minutes

30 minutes
30 minutes

integral
10 minutes

5 minutes
30 minutes
5 minutes

30 minutes
5 minutes

30 minutes
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Table 5-2A

Phosphorylation Site
(HRG-+EGF, 24H)

GRF1 Y 1105
KIAA1217 Y 393
KIAA1217 Y 393

ITGB4 Y 1207
Caveolin 1 Y 14

EGFR Y 1068
plakophilin 3 Y 176

Ack Y 857
Caveolin 1 Y 14

EGFR Y 1068
GRF1 Y 1105
An A2 Y 29

EGFR Y 1068
An A2 Y 29

SHIP-2 Y 986

EGFR Y 1148
SHIP-2 Y 986
Dsc3a Y 818

ephrin-B2 Y 304
Ack Y 857

Measurement
Type

10 minutes
5 minutes
10 minutes

30 minutes
5 minutes

30 minutes
5 minutes

30 minutes

30 minutes
10 minutes
5 minutes

30 minutes
5 minutes
5 minutes

5 minutes
5 minutes
10 minutes
5 minutes
5 minutes
5 minutes
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Table 5-2B

Phosphorylation Site
(EGF-+HRG, 24H)

FAK Y 576
P38 A Y 182

p130Cas Y 249
pl30Cas Y 234
IGF1R Y 1161
GRF1 Y 1105

p130Cas Y 249
paxillin Y 118
BCAR3 Y267

Src Y 418

pl 130Cas Y 387
pl30Cas Y 387

FAK Y 576
Src Y 418

FAK Y 576
p130Cas Y 234
p 130Cas Y 387
BCAR3 Y267

p130Cas Y 327
p1 30Cas Y 249

Measurement
Type

10 minutes
30 minutes
30 minutes
30 minutes
30 minutes
30 minutes
10 minutes
5 minutes

30 minutes
30 minutes
10 minutes
30 minutes
5 minutes
5 minutes

30 minutes
5 minutes
5 minutes
5 minutes
5 minutes
5 minutes
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Table 5-3A

Phosphorylation Site
(P-+24H, HRG)
pl30Cas Y 327
p130Cas Y 327
PRP4K Y 849

PTPRA Y 798
pl30Cas Y 387
PTPRA Y 798

p130Cas Y 234
PI3KR2 Y 464
PTPRA Y 798
SHP-2 Y 62

EphA2 Y/Y 588/594
SHP-2 Y 62

p130Cas Y 387
FAK Y 397

PRP4K Y 849
EphA2 Y 575
EphA2 Y 588
SHP-2 Y 62

RAIG1 Y 347
HER2 Y 1248

Measurement
Type

10 minutes
30 minutes
30 minutes
30 minutes
10 minutes
5 minutes
10 minutes
30 minutes
10 minutes
5 minutes
5 minutes
10 minutes
30 minutes
30 minutes

5 minutes
10 minutes
30 minutes
30 minutes
5 minutes

30 minutes
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Table 5-3B

Phosphorylation Site
(24H-P, HRG)
KIAA1217 Y 393

IGF1R Y 1161
paxillin S/Y 84/88

Dsc3a Y 818
Caveolin 1 Y 14

CrkL Y 132
EGFR Y 1148
GIT1 Y 545

STAT3-2 Y 704
GRF1 Y 1105

IGF1R Y 1165

EGFR Y 1173
Src Y 418

EGFR Y 1173

EGFR Y 1173
EGFR Y 1173

Src Y 418

Dsc3a Y 818
Dsc3a Y 818

Src Y 418

Measurement
Type

10 minutes
30 minutes
30 minutes

integral
10 minutes
10 minutes
10 minutes
5 minutes

30 minutes
10 minutes

30 minutes
30 minutes
10 minutes
5 minutes
integral

10 minutes
5 minutes

30 minutes
10 minutes

30 minutes
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Table 5-4A

Phosphorylation Site
(migration-specific)

GRF1 Y 1105
LDLR Y 845

EphA2 Y/Y 588/594
Erbin Y 1104
An A2 Y 23

Erbin Y 1104
An A2 Y 237
EphA2 Y 588
PZR Y 263

SHB Y 355
Src Y 418
TfR Y 20

An A2 Y 237
HER2 Y 1248
HER2 Y 1248
P13KR2 Y 464
ITGB4 Y 1207
An A2 Y 237

PTPRF Y 308
KIAA1217 Y 393

Measurement
Type

5 minutes
10 minutes
30 minutes

5 minutes
5 minutes

10 minutes
10 minutes
10 minutes
5 minutes
5 minutes
5 minutes

10 minutes
5 minutes
integral

5 minutes
5 minutes
10 minutes
30 minutes
5 minutes
5 minutes
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Table 5-4B

Phosphorylation Site
(proliferation-specific)

Dsc3a Y 818
Dsc3a Y 818
Dsc3a Y 818

EGFR Y 1173

EGFR Y 1173
paxillin S/Y 84/88

EGFR Y 1173

paxillin S/Y 84/88

Catenin dl Y 228

CrkL Y 132

Catenin dl Y 228

CrkL Y 132

paxillin S/Y 84/88
EGFR Y 1173

GRF1 Y 1105

p 130Cas Y 327
P38 A Y 182

EphB1 Y 600

p1 30Cas Y 387
P38 A Y 182

Measurement
Type

30 minutes

10 minutes

integral
integral

10 minutes
30 minutes
30 minutes

integral

integral

integral

30 minutes

10 minutes

5 minutes

5 minutes

integral

10 minutes

5 minutes

integral

10 minutes

integral
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Table 5-4C

Phosphorylation Site
(migration &
proliferation)
pl30Cas Y 327
IGF1R Y 1165

Src Y 418

GIT1 Y 545
IGF1R Y 1161

SHP-2 Y 62

FAK Y 576
EphA2 Y 575

EphA2 Y/Y 588/594
SHP-2 Y 62

pl30Cas Y 327
SHP-2 Y 62

PRP4K Y 849

Src Y 418
HER2 Y 1248
Dsc3a Y 818
An A2 Y 237
Dsc3a Y 818
EphA2 Y 575
EGFR Y 1173

Measurement
Type

10 minutes
30 minutes
30 minutes

5 minutes
30 minutes

30 minutes
5 minutes
5 minutes
5 minutes

10 minutes
30 minutes
5 minutes

30 minutes
integral

30 minutes
10 minutes
30 minutes

30 minutes
10 minutes
5 minutes
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Table 5-4D

Phosphorylation Site
(least important)

FAK Y 397
CDK2 Y 15

EphA2 Y 772
BCAR3 Y267
paxillin Y 118

pl30Cas Y 234
FAK Y 397

RAIG1 Y 347
ERK2 Y 187

IGF1R Y 1161

SH2D3A S/Y 218/231
BCAR3 Y267
ERK1 Y 204
GIT1 Y 545
paxillin Y 118
PTPRA Y 798

SH2D3A S/Y 218/231
RAIG1 Y 347
ERK1 Y 204

p130Cas Y 327

Measurement
Type

5 minutes
5 minutes

30 minutes
10 minutes
30 minutes
30 minutes

30 minutes
10 minutes
10 minutes
5 minutes

10 minutes
30 minutes
30 minutes
10 minutes
10 minutes

integral
5 minutes
5 minutes

10 minutes
integral
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Chapter 6 The importance of signal state off-target effects for

the pharmacological intervention of HER2-mediated

migration

In this chapter, we use systems principles (Chapters 4 and 5) to further our

understanding of drug efficacy in HER2 overexpressing cells.

6.1 Introduction

The effect of increased signal transduction through a particular intracellular kinase on

cell function is dependent on the network signal state within which the change occurs [1,

2]. By extension, the effect of attenuating kinase activity on cell function by treatment

with a small molecule kinase inhibitor is also dependent on the signal state. Further

complicating the matter is the fact that treatment with inhibitor or drug is likely to change

not only the kinase activity of the target but also many elements of the greater signal

state. This effect, often referred to as an 'off-target' drug effect, can be due to the

promiscuous binding of the drug or the interconnectedness of the signaling network. A

great deal of effort has been spent identifying these off-target effects, with major

advances coming in the identification of both off-target binding sites and changes in

signal state due to intracellular crosstalk [2, 3]. How these off-target events contribute to

a drug's control of cell function, however, is not well understood. In this study, we

explored the effects of changes in signal state due to treatment with three small

molecule inhibitors, LY294002, PD98059, and Gefitinib (Iressa), on human epidermal
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growth factor receptor 2 (HER2)-mediated cell migration in human mammary epithelial

cells (HMEC).

HER2 is overexpressed in 20% to 30% of breast cancers and correlates with

increased metastasis and poor prognosis [4]. It is a member of the ErbB or HER

receptor family (comprised of HERl/Epidermal Growth Factor Receptor (EGFR), HER2,

HER3, and HER4), and its activation is coordinated through concentration-dependent

homodimerization or ligand-driven heterodimerization with other HER family receptors.

Epidermal growth factor (EGF) and heregulin (HRG), two ErbB family ligands implicated

in cancer progression, bind HER1 and HER3, respectively, to induce the activation of

HER2 through heterodimerization [5].

Because of HER2's role in breast cancer metastasis, a number of groups have

investigated the effect of HER2 expression on cell motility, demonstrating increased

invasion and motility in HER2 overexpressing breast cancer cell lines [6, 7]. In

particular, we have shown that HER2 overexpression increases cell migration in human

mammary epithelial cells (HMEC) presented with no ligand, EGF, or HRG, by increasing

the directional persistence of cell movement, while only increasing speed under EGF

treatment [6]. Identification of persistence as the critical mechanism driving increased

migration is consistent with prior studies of primary ductal breast carcinoma cells and

neuroepithelial tumors revealing elevated directional persistence as a hallmark of

cancer cell movement [8, 9]. Despite its importance in cancer cell migration, the network

of signals that give rise to directional persistence and cell speed, especially in the

absence of extracellular gradients, are not well characterized. We sought to

characterize elements of this network by quantifying the phosphorylation of Akt (serine
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473), Erk (threonine 202/tyrosine 204), EGFR (tyrosine 1173 and tyrosine 1068), and

p38 (threonine 180/tyrosine 182) in parallel with measurements of cell speed and

persistence in HMEC cells under varying ligand and inhibitor treatments. The kinases

were chosen for three reasons: 1. they have all been shown to regulate cell migration in

breast cancer epithelial cells [7, 10-12], 2. they have all been implicated in the control of

directional migration [13-16], and 3. the downstream kinases are highly informative

integrators of intracellular signals as suggested by a recent mapping of the EGFR

signaling network [17]. We chose three small molecule inhibitors, each of which

targeted a measured kinase signal and had a well-defined binding profile [3, 18].

PD98059 is a MEK inhibitor that reduces ERK activity with high specificity, LY294002

inhibits phosphatidylinositol 3-kinase (P13K) which leads to decreases in Akt

phosphorylation, and Gefitinib is a clinically approved EGFR inhibitor known to suppress

EGFR phosphorylation.

In this paper, we show that the measurement of highly informative kinase

signaling nodes, representing both on- and off-target molecules for the inhibitors

studied, is critical for an understanding of drug efficacy against cell speed and

persistence as HER2 expression is varied. Migration measurements revealed a ligand-

dependent efficacy of inhibitors against directional persistence, and demonstrated that

Gefitinib is a potent inhibitor of cell migration and directional persistence in HER2

overexpressing systems. Signal profiling in response to drug treatment revealed off-

target effects such as the inhibition of Erk phosphorylation in response to P13K inhibition

and the decrease of Y1 173 EGFR phosphorylation in response to MEK inhibition. A

computational linear model helped codify the relationship between signal state and cell

192



migration and revealed the importance of multiple kinase measurements for the

accurate prediction of the effect of drugs on migration.

6.2 Materials and Methods

6.2.1 Cell culture and stimulation

184A1 human mammary epithelial cells were used as described previously [6, 19]. The

HMEC parental cells were a kind gift from Martha Stampfer (Lawrence Berkeley

Laboratory, Berkeley, CA) and were cultured in DFCI-1 media supplemented with 12.5

ng/ml EGF (Peprotech, Inc.) [20]. The 184A1 HMEC clone 24H cells were a kind gift

from Steve Wiley, (Pacific Northwest National Laboratories, Richland WA) and were

maintained in IDFCI-1 media supplemented with 12.5 ng/ml EGF and 150 Vg/ml

Geneticin (Gibco, Invitrogen Inc.). We defined our serum free DFCI-1 media as stated in

[6], without EGF, bovine pituitary extract, fetal bovine serum, and insulin. Note that this

serum-free formulation is different than that in [19] due to addition of insulin in serum-

free media in [19]. Receptor numbers and dimer populations in response to EGF and

HRG stimulation are given in [19]. For signaling and migration assays, cells were

stimulated with either 100 ng/ml EGF or 80 ng/ml HRG-31 (Sigma, Inc.). For inhibitor

experiments, cells were pre-treated with either 20 pM LY294002 (Calbiochem, Inc.) for

one hour, 25pM PD98059 (Calbiochem, Inc.) for one hour, 20 pM Gefitinib (WuXi

Pharmatech Co., Ltd) for 30 minutes, or 200 nM Wortmannin (Calbiochem, Inc.) for 20

minutes.
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6.2.2 Immunocytochemistry

Cells were seeded at -50,000 cells/well in a 96-well plate (NUNC 165305) in full DFCI-1

media. After 4-6 hours full media was replaced with serum-free media. After 12-16

hours of serum starvation, cells were pre-incubated with inhibitor or treated with EGF,

HRG, or fresh serum free media. A wound of width -650 pm was then scraped in each

well. Cells were stimulated for 0 (serum free), 5, 15, 30, 60, and 90 minutes, with three

or four wells used as biological replicates for each condition. After desired time had

elapsed, cells were fixed using 3.7% formaldehyde diluted in phosphate buffered saline

solution (PBS) for 20 minutes at room temperature. The fix solution was then removed

and cells were permeabilized with 0.1% Triton. Cells were then blocked using Odyssey

Blocking Buffer (LI-COR Biosciences, Inc.) for 1 hour. Primary anitibody diluted 1:100 in

blocking buffer was added to each well and the plate was then place at 40C overnight.

The phospho-p44/42 MAPK (Erk, Thr202/Tyr204, #4377) and phospho-Akt (Ser473,

#4058) rabbit monoclonal antibodies were purchased from Cell Signaling, Inc. The

phospho-p38 MAPK (pT180/pY182, #1229), phospho-EGFR (pY1068, #1138), and

EGFR (pY1173, #1124) rabbit monoclonal antibodies were purchased from Epitomics,

Inc. After overnight incubation, the plate was washed with 0.1% Tween-20 in PBS, and

then incubated at room temperature for one hour with secondary antibody solution [goat

anti-rabbit IRDye 800 (LI-COR Biosciences, Inc.) diluted 1:800 in blocking buffer] along

with the DNA stain TO-PRO-3 (diluted 1:2500 in blocking buffer, Invitrogen, Inc.). Plates

were then washed again with 0.1% Tween-20 in PBS and immediately imaged at

700nm and 800nm using an Odyssey instrument. The integrated intensity of the IRDye

bound to primary antibody (800 nm channel) was normalized to the total DNA integrated
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intensity (700 nm channel) for each well. After averaging biological replicate data, 24H

and parental data were normalized to the parental serum free value run on the same

plate. Typically, only one ligand was used per plate, thus giving rise to two separate

normalizations for 24H data, one for the +EGF data and another for the +HRG data. All

signaling data are plotted ±SEM, with N = 3 or 4.

All five monoclonal antibodies were validated using western blot analysis for

specificity using lysates from parental and 24H cell lines after stimulation with full serum

(Figure 6-1). The western blot was performed as described in [21]. Electrophoresis was

performed in a 7% polyacrylamide gel and the above indicated primary and secondary

antibodies were used for the membrane probe and visualization steps.

Parental 24H

Figure 6-1: Western blotting reveals specificity for monoclonal antibodies against
Erk, Akt, p38, EGFR Y1068, and EGFR Y1173. Western blots were performed as
described in Materials and Methods to show antibody specificity.

Since this was new signaling platform, we desired to ascertain the consistency of

measurement from plate to plate. To do this, we compared normalized serum free
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values for 24H cells run on different plates but on the same day. As can be seen in

Figure 6-7, we observed a very tight correlation between the 'two' serum free conditions

for 24H, i.e. the +HRG 24H and the +EGF 24H conditions. Ideally, the two

measurements would be the same after normalization to total DNA and then to parental

serum free levels. In practice, the variation was quite low, typically less than 10% of the

reported serum free value, except in the case of EGFR Y1173 under no inhibitor.

6.2.3 Migration assay

The migration assay was performed as previously described [6]. Briefly, cells labeled

with 5-chloromethylfluorescein diacetate (CMFDA, Molecular Probes, Inc.) were diluted

1:20 with unlabelled cells and plated as described above, treated with ligand and

inhibitor as described above, wounded, and cell movement was tracked for 12 hours at

37TC and 5% CO2 using an automated epiflourescent microscope. Individual cell

trajectories in a monolayer were analyzed using Imaris (Bitplane, Inc.) and cell

trajectories were then fit to the persistent random walk equation to derive cell speed and

persistence. For each condition measured, four separate wells were run and served as

four biological replicates. Individual cell data from these four wells were pooled to

calculate an average speed and persistence for each condition. All averages were

normalized by the speed or persistence of 24H cells stimulated with 100 ng/ml EGF on

the plate, to account for plate to plate variability. For each condition, N > 300 and all

data are reported as ± SEM.
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6.2.4 Linear modeling using partial least squares regression (PLSR)

To solve the equation below, where X is rank deficient, we implemented partial least

squares regression (PLSR) using SIMCA-P 11.0 (Umetrics) as previously described

[19].

P = Xc

As described in the Results section, P is a column vector (Mxl) of persistence values

corresponding to M cellular conditions, X is the signaling matrix (MxN) comprised of M

row vectors, for which each column represents a signaling metric (i.e. Akt

phosphorylation at 5 minutes), and c is a vector of constants (Nxl) that maps X onto P.

The metrics included for each phosphorylation site were the normalized levels of

phosphorylation at each time point as well as the integral of phosphorylation to serve as

a metric for 'net' phosphorylation over 90 minutes. Coefficients for each metric were

extracted from SIMCA-P and correspond to the coefficients in the model when X is

scaled and centered and P is scaled. They are calculated as described elsewhere [22].

All data was mean-centered and scaled to unit variance prior to analysis.

6.3 Results

6.3.1 Investigations into the role of Akt phosphorylation on cell persistence

reveal the need for signal state measurements
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Akt and its upstream kinase P13K have been identified as critical for directionally

persistent motion in chemotaxing cells [16]. We hypothesized that directional movement

in the absence of chemical gradients might be coordinated by signaling features

common to chemotaxing cells. Thus, we studied the role of Akt signaling and inhibition

in HER2-mediated increases in directional movement.

As previously demonstrated, HMEC cells overexpressing HER2 (24H) had higher

levels of directional persistence than those with low HER2 expression (Parental cells) in

the presence or absence of EGF or HRG (Figure 6-2A). Investigation of Akt

phosphorylation under these same conditions revealed increased phosphorylation in

response to HER2 overexpression, suggesting a potential role for Akt in persistent

movement (Figure 6-2B). Inhibition of Akt by treatment with LY294002 decreased

persistence in 24H cells treated with HRG, further corroborating the role of the PI3K/Akt

pathway in directional persistence (Figure 6-2C). Inhibition with LY294002 in 24H cells

treated with EGF, however, had no effect on directional persistence (Figure 6-2D).

Quantification of Akt phosphorylation in response to inhibition revealed consistent

knockdown for both HRG and EGF treatments (Figure 6-2E). Thus, inhibition of

persistence was ligand-dependent, suggesting that the effect of Akt inhibition on

persistence depends on the signaling context within which the inhibition takes place.
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Figure 6-2: Akt inhibition by LY294002 decreases persistence in HRG stimulated
24H cells but not in EGF stimulated 24H cells. (A) Directional persistence was
previously determined and replotted here normalized to the 24H+EGF value (ref) for
parental cells (gray) and 24H cells (black) in the presence of EGF (100 ng/ml), HRG (80
ng/ml), or serum-free conditions. (B) A immunocytochemical technique quantified pAkt
(S473) phosphorylation in parental and 24H cells stimulated with EGF (100 ng/ml) or
HRG (80 ng/ml). (C) Directional persistence of 24H cells stimulated with HRG (80
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ng/ml) in the presence or absence of pretreatment with LY294002 (20pM). (D)
Directional persistence of 24H cells stimulated with EGF (100 ng/ml) in the presence or
absence of pretreatment with LY294002 (20pM). (E) Phosphorylation of Akt (S473)
quantified in 24H cells stimulated with EGF (100 ng/ml) or HRG (80 ng/ml) in the
presence or absence of pretreatment with LY294002 (20pM). All data shown ±SEM and
normalized as indicated in Materials and Methods.

6.3.2 A high-throughput immunocytochemical technique quantifies Erk,

Akt, EGFR, and p38 phosphorylation in a scratch assay format

To quantify cell signaling under the same conditions studied in the migration

assay, we employed a previously published high-throughput immunocytochemical

assay to quantify phosphorylation in wounded monolayers of HMEC cells (Figure 6-3A

and Materials and Methods). We selected three kinases, Erk (T202/Y204), Akt (S473),

and p38 (T180/YN182), that have a demonstrated ability to control cell migration and also

serve as integrators of signaling information in EGFR signaling networks [17]. In

addition, we profiled phosphorylation at two EGFR sites, Y1068 and Y1173, both known

to stimulate multiple downstream signaling pathways, but whose individual function,

especially in the control of cell migration, is not well understood [23]. HMEC cells were

seeded in a 96-well plate, wounded in the presence or absence of HRG (80 ng/ml) or

EGF (100 ng/ml), and then assayed for kinase phosphorylation at 0, 5, 15, 30, 60, and

90 minutes (Figure 6-3).

EGF treatment resulted in the phosphorylation of Erk in both Parental and 24H

cells, with higher initial and sustained activation occurring in the 24H cells. In contrast,

HRG treatment did not stimulate Erk phosphorylation in either cell line, indicating that
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the low levels of HER2-HER3 heterodimers formed were not effective in promoting

signaling through this pathway (Figure 6-3B, see ref for explanation and calculation of

numbers of dimers formed in response to ligand treatment). As mentioned above,

treatment with HRG did stimulate Akt, and HER2 overexpression lead to a more

sustained response in 24H cells as compared to parental cells (Figure 6-3C). EGF

treatment also promoted Akt phosphorylation that increased with HER2 expression,

although in the case of EGF treatment, the dynamics of phosphorylation were similar,

with both parental and 24H cells exhibiting similar amounts of dephosphorylation over

the 90 minute time course (Figure 6-3C). Phosphorylation at EGFR Y1068 and Y1173

rose in response to EGF but not to HRG, as expected. In the case of the Y1068 site, we

observed elevated levels of phosphorylation in 24H cells at the zero minute time point

(serum-free condition), suggesting the existence of an autocrine loop. 24H cells

exhibited increased absolute levels of Y1068 phosphorylation in response to EGF

treatment as compared with the parental cells. Both 24H and parental cells, however,

had similar phosphorylated levels of Y1 173. Finally, p38 phosphorylation was higher in

24H cells but remained relatively constant in response to HRG and EGF, although we

observed a slight peak at 15 minutes under all conditions (only the 15 minute HRG-

stimulated peaks are significantly greater than the zero minute phosphorylation levels at

p< 0.05, Figure 6-3F).
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Figure 6-3: Quantified phosphorylation for Erk, Akt, p38, and EGFR. (A) An
example image of the 96-well immunocytochemical assay performed to quantify
phosphorylation. Note the wounded monolayer of cells. Shown here is the 800 nm
channel (see Materials and Methods). Quantified phosphorylated Erk (B), Akt (C),
EGFR Y1068 (D), EGFR Y1173 (E), and p38 (F) for parental and 24H cells stimulated
with EGF (100 ng/ml) or HRG (80 ng/ml). All data is shown ±SEM.

Thus, the quantification of five phosphorylation sites revealed a broad state of

kinase activation stimulated by EGF and differentiated by HER2 expression levels.

HRG, in contrast, stimulated very little phosphorylation in kinases other than Akt.

Consistent increasing levels of serum-free kinase phosphorylation with HER2

expression, particularly apparent in the case of p38, suggest a role for autocrine

signaling or HER2 homodimerization in the regulation of cell function.

6.3.3 Migration inhibition by LY294002, PD98059, and Gefitinib exhibit

ligand and HER2 dependence

Signaling differences between 24H and parental cells suggested that inhibition of

Erk, Akt, and EGFR should differentially inhibit HER2-mediated increases in speed and

persistence depending on ligand treatment. We measured cell speed and persistence

for each cell line treated with either EGF (100 ng/ml), HRG (80 ng/ml), or no ligand in

the presence of either LY294002 (20pM), PD98059 (25 pM), or Gefitinib (20 pM).

Treatment of parental and 24H cells with LY294002 reduced cell speed and

persistence under HRG treatment in both cell lines as compared to cells migrating in the

absence of inhibitor (Figure 6-4A,B,G). In particular, inhibition decreased persistence

levels almost 50% in 24H cells to levels observed in parental cells without inhibitor
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(Figure 6-2A, 3G). LY294002 also decreased cell speed in both parental and 24H cells,

but with greater efficacy in parental cells, such that 24H cells had higher observed

speeds after inhibition, reversing the trend observed in the absence of inhibitor.

LY294002 treatment decreased levels of cell speed in EGF-stimulated parental and 24H

cells by approximately one-third, but interestingly, did not affect persistence in either cell

line (Figure 6-4A,B,G). Inhibition decreased serum-free levels of speed and migration

similarly across cell type, reducing both values by approximately one-half.

Inhibition with PD98059, which from signaling assays we expected to affect

migration in response to EGF but not HRG, decreased levels of cell speed and

persistence in parental cell treated with EGF and HRG. PD98059 reduced persistence

in EGF-treated 24H cells with greater efficacy than in parental cells [- 50% versus

-25% inhibition for Parental and 24H cells, respectively (Figure 6-4D,G)], suggesting

that HER2 overexpressing cells are less reliant on ERK for directional persistence.

PD98059 treatment of HRG-stimulated 24H cells weakly inhibited speed (Figure 6-

4C,G), and did not inhibit persistence (Figure 6-4D,G), further corroborating the finding

that directional persistence is more robust to Erk inhibition.

Treatment with Gefitinib lead to the most significant decrease of cell speed and

persistence across cell type and ligand treatment (Figure 6-4E,F,G). Inhibition under

EGF stimulating conditions lead to -70-90% reductions in both cell speed and

persistence. Interestingly, Gefitinib decreased persistence significantly more in 24H

cells (Figure 6-4G). Thus, increasing HER2 expression in the presence of EGF and

Gefitinib actually lowered persistence, and 24H cells treated with HRG and Gefitinib had

persistence values less than those observed in parental cells absent inhibitor.
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Figure 6-4: Effects of LY294002, PD98059, and Gefitinib on cell speed and
persistence. Cell speed and directional persistence of parental and 24H cells in the
presence of EGF (100 ng/ml), HRG (80 ng/ml), or serum-free media were quantified
after pretreatment with one of three inhibitors: LY294002 (20 pM, A, B), PD98059 (25
pM, C, D), and Gefitinib (20pM, E, F). (G) Percent inhibition as compared to the cell
speed or persistence value measured without inhibitor for all inhibitor conditions. Speed
and persistence data were normalized as described in Materials and Methods and all
data is shown +SEM.

In sum, a study of inhibitor effects on HMEC cell migration revealed that certain

inhibitors are effective in the context of only one activating ligand (e.g. LY294002

against persistence), and that certain inhibitors are more effective in the context of low

HER2 expression (e.g. PD98059 against persistence) whereas some are more effective

in the context of high HER2 expression (e.g. Gefitinib against persistence). Overall, we
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identify Gefitinib as a potent inhibitor of persistence across both HRG and EGF

stimulation in low and high HER2 expressing conditions.

6.3.4 Quantification of phosphorylation in response to treatment with

LY294002, PD98059, and Gefitinib reveals network-wide inhibitor effects

To better understand the above patterns of inhibitor efficacy, we quantified

phosphorylation of the four previously measured kinases (Erk, Akt, EGFR, and p38)

under the inhibitor conditions explored above. Our results revealed a highly

interconnected signaling network, where the action of any given inhibitor had

consequences on multiple phosphorylation sites.

Treatment with LY294002 greatly reduced AKT phosphorylation, although small

differences between 24H and parental levels remained (Figure 6-7B). Interestingly,

inhibitor treatment also eliminated Erk phosphorylation in response to EGF treatment,

an unexpected result (Figure 6-7B). To determine whether this effect was due to an off-

target binding event specific to LY294002 as opposed to P13K regulation of Erk

phosphorylation, we replicated the experiment using Wortmannin, a different P13K

inhibitor, and observed that it coordinated a similar complete knockdown of Erk

phosphorylation (Figure 6-5). Treatment with LY294002 also increased EGF-stimulated

phosphorylation at both EGFR Y1068 and Y1173 (Figure 6-7B). This effect was not due

to decreased serum-free phosphorylation levels, since serum free levels of

phosphorylated EGFR were the same in the presence or absence of inhibitor (Figure 6-

6).
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Figure 6-5: Treatment with Wortmannin leads to ablation of Erk signaling. Parental
and 24H cells pretreated for 20 minutes with Wortmannin (200 nM) were stimulated with
EGF or HRG and the resulting phosphorylation of Erk and Akt was quantified.
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Figure 6-6: Pretreatment with inhibitors does not lead to significant lowering of
baseline levels of phosphorylation in Erk, Akt, EGFR, or p38. Cells pretreated with
PD98059, LY429002, Gefitinib, or serum-free media, as described in Materials and
Methods, were assayed for phosphorylation levels of Erk, Akt, EGFR Y1068, EGFR
Y1173, and p38.

Treatment with PD98059 eliminated Erk phosphorylation in response to EGF

treatment as expected, and Akt signaling remained relatively consistent with observed

phosphorylation in the absence of inhibitor (Figure 6-7C). The difference between 24H

and parental p38 phosphorylation levels was decreased over the 90 minute time course

due to decreasing 24H phosphorylation concomitant with increasing parental

phosphorylation (Figure 6-7C). At 90 minutes p38 phosphorylation in parental cells was

higher than that in 24H cells. Phosphorylation at EGFR Y1068 was relatively similar to

that observed in cells not treated with inhibitor, although phosphorylation levels in 24H
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cells stimulated with EGF were transiently activated, in contrast to the slight but

sustained activity observed under normal circumstances (Figure 6-7C). Interestingly,

treatment with PD98059 dramatically decreased phosphorylation at EGFR Y1173 in

response to EGF. Parental cells exhibited a slight transient spike in response to EGF,

but the increase was markedly less than that observed in the absence of inhibitor. 24H

cells treated with EGF did not exhibit any measured change in phosphorylation at

Y1173, indicating the existence of a potential feedback mechanism between ERK and

the Y1173 site.

As expected, Gefitinib treatment eliminated most EGFR phosphorylation in

response to EGF (Figure 6-7D). 24H cells treated with EGF, however, did exhibit

increased phosphorylation at Y1068 in a manner similar to cells without inhibitor (a

small but statistically significant increase in phosphorylation, Figure 6-7D). Parental

cells, however, did not respond to EGF stimulation. Erk and Akt phosphorylation were

eliminated by Gefitinib treatment, including HRG-stimulated Akt phosphorylation in both

parental and 24H cells (Figure 6-7D). In addition, a gradual decrease of p38

phosphorylation levels in 24H cells coupled with a gradual increase in parental cells

eliminated the difference observed in p38 phosphorylation levels between the two cell

lines in the absence of inhibitor, as observed under PD98059 treatment as well.
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Figure 6-7: Effects of LY294002, PD98059, and Gefitinib on the phosphorylation of
Erk, Akt, p38, and EGFR. Quantified Erk, Akt, p38, EGFR Y1 068 and EGFR Y1173
phosphorylation for parental and 24H cells stimulated with EGF (100 ng/ml) or HRG (80
ng/ml) in the absence of inhibitor (A, as shown in Figure 6-3), pretreated with LY294002
(20 pM, B), pretreated with PD98059 (25pM, C), or pretreated with Gefitinib (20 pM, D).
All data is shown +SEM.

In sum, signal profiling in response to inhibition revealed novel connections

between the signaling nodes measured and offered a new lens through which to

understand the effects of individual inhibitors on cell migration.
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6.3.5 A computational linear model creates intuition about how the network

integrates the signals to regulate cell migration

To codify our intuition about how signals integrate to govern cell migration, we

surmised that cell speed and persistence were functions of all five phosphorylation sites

measured [i.e. persistence = f(pEGFR, pAkt, pp38, pErk)]. Although the exact nature of

this function is probably very complicated, we approximated it as linear to arrive at the

following general equation for persistence (we use persistence in the example here, but

the same approach is applicable for speed):

persistence = cix, (1)

where xi refers to signaling metric i (e.g. normalized level of phosphorylated Akt at 5

minutes or p38 at 90 minutes) and ci is a constant multiplier of the signal determining its

weight in the final calculation of persistence. The vector c maps our signals (x) onto

persistence, and we would obviously like to define a c such that we obtain an accurate

prediction of persistence across a wide range of x values. Mathematically speaking, we

define the vector c such that the range of the following linear transformation is large:

P = Xc (2)

where P is now a column vector (Mxl) of persistence values corresponding to N cellular

conditions, X is the signaling matrix (MxN) comprised of M row vectors x, and c is a

vector of constants (Nxl) that maps X onto P. The definition of c such that the range of
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the linear transformation is large indicates that given diverse sets of signaling profiles,

we can accurately predict cell persistence a priori. Of course, if there are conditions in

which the vector c fails to map X accurately onto P, we know that we need to refine c,

by either adding more signaling metrics to our original problem (i.e. profiling other

signals that may be predictive of persistence) or adding more cellular conditions before

we define the vector c.

So the exercise of solving for c is basically the codification of intuition about how

each of our signals affects cell migration, as long as we limit our intuition to linear rules.

For example, the model does not account for any intuition that we might gain from

exploring how the product of pEGFR1173 and pAKT predict persistence. We can,

however, include those terms explicitly in our model, but have not done so as

exploration of these terms in the model revealed that they do not add to goodness of fit

or prediction (data not shown).

Solving equation 2 using all cellular conditions available (e.g. parental and 24H

data in the presence and absence of inhibitors), we defined the limit of how well linear

reasoning can fit and predict cell persistence on the basis of our measured signals. We

found that a linear model (the full model, see Materials and Methods for computational

details) based on this data did strongly correlate with measured persistence values (R2

= 0.89, R = 0.94, Figure 6-9B). The high goodness of fit and correlation values indicated

the applicability of a linear approach to our dataset. Next, we sought to define a set of

rules using only signaling and migration data in the absence of inhibitors and then

explore whether these rules could be used to predict changes in persistence under

various inhibitor treatments.
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Using data obtained without inhibitors, we constructed a linear model for

persistence (the reduced model). Using this equation and the experimentally measured

inhibitor signaling sets, we predicted values of persistence in the presence of

LY294002, PD98059, and Gefitinib. We found that a priori model predictions positively

correlated with measured values of persistence (R = 0.80, Figure 6-9B). By contrast,

prediction of persistence based on the measurement of any one kinase yielded an

average correlation of 0.04 with a high of 0.35, indicating that signal state

measurements are required for the accurate prediction of persistence in response to

inhibition. In particular, the previously counter-intuitive effects of LY294002 on

persistence (Figure 6-2), are a priori predicted by the reduced model (Figure 6-8).
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Figure 6-8: A reduced model predicts a priori the ligand-dependent effects of
LY294002 inhibition on cell persistence in 24H cells. Experimental measurements of
persistence of 24H cells treated with either EGF (100 ng/ml) or HRG (80 ng/ml) in the
presence or absence of pretreatment with LY294002 (20 pM) are compared here to
reduced model predictions of persistence values. Experimental data is shown ±SEM.
Computational model data is shown ±SEM, where the error bars were obtained from
jack-knifing.

Further inspection of the signaling sets obtained under inhibitor treatment

revealed that phosphorylated levels of p38 did not vary significantly in the absence of

inhibitors, but in the presence of PD98059 and Gefitinib, serum free levels of 24H p38

phosphorylation were significantly raised and phosphorylation dynamics were very

different with 24H phosphorylation levels dropping and parental levels rising throughout

the time course. We hypothesized that due to the lack of variance in p38
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phosphorylation in the reduced model's input dataset, the model was overestimating

levels of persistence for 24H serum-free cells and parental cells under PD98059 and

Gefitinib treatment due to the higher 24H serum-free p38 phosphorylation levels and the

rising parental levels. Thus, inclusion of additional p38 data to our reduced model was

necessary to accurately capture the effects of p38 on persistence. Since the PD98059

signaling dataset had varied p38 regulation, we asked whether inclusion of this data

would lead to a model that could predict persistence after treatment with Gefitinib and

LY294002. We found that a new model based on singling data from cells exposed to no

inhibitor and PD98059 accurately predicted persistence data (R = 0.93) almost as well

as the full model. This increased accuracy was due to a revision of p38's role in

persistence, with the reduced model assigning a positive role for p38 whereas the

reduced model plus PD98058 data assigned it a negative role. Thus, the failings of our

reduced model prompted the further inspection of p38 signaling which lead to a revised

hypothesis of how p38 affects persistence.

The efficacy of inhibitors against the increased persistence measured in HER2

overexpressing cells was accurately captured by the full linear model under both EGF

and HRG stimulation (Figure 6-9C,D). In the case of HRG stimulation, the model

accurately captured the ineffectiveness of treatment with PD98059, and the increased

efficacy of Gefitinib over LY294002 (Figure 6-9C). Notably, the model not only captured

trends, but also accurately recapitulated absolute levels of persistence. In the case of

EGF stimulation, the model captures the trend of increasing efficacy from LY294002 to

PD98059 to Gefitinib (Figure 6-9D). In the case of Gefitinib, however, the model failed

to capture the absolute amount of persistence. Nevertheless, the model, by accurately
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recapitulating measured persistence levels, defined a set of rules based on signaling

data that are predictive of persistence. The coefficients associated with each

phosphorylation metric in the model reveal the metric's importance to persistence.

Coefficient values, plotted in Figure 6-9E, indicated that Akt most positively correlates

with persistence of the signals measured. However, EGFR Y1173 and early-phase

Y1068 data also strongly correlate with persistence, indicating that an increase in

phosphorylation at those sites is sufficient to keep persistence high even in the absence

of Akt. Erk plays a positive but limited role in stimulating persistence, and p38 negatively

correlates with persistence, indicating that decreasing p38 phosphorylation leads to

increased directional persistence in the absence of any other change. Thus, the

construction of a linear model for persistence defined a set of rules that integrate signal

state information to describe changes in persistence in response to varying HER2

expression, ligand stimulation, and inhibitor treatment.
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persistence in the presence and absence of pretreatment with LY294002, PD98059,
and Gefitinib. (B) Correlation between predictions from a linear model constructed from
all inhibitor data and experimentally measured values of persistence. (C) Persistence
predictions of the model generated from all available data as compared to experimental
measurements for 24H cells stimulated with HRG (80 ng/ml) and (D) 24H cells
stimulated with EGF (100 ng/ml). (E) Coefficient values for all phosphorylation metrics
included in the full model. For each kinase, phosphorylation at 5, 15, 30, 60, 90, and the
integral of phosphorylation are represented. Data in C and D are shown ±SEM.

A model constructed to predict changes in cell speed on the basis of only data

without inhibitors predicted values for speed under inhibition that correlated positively

with measured values (R = 0.77, Figure 6-10A). A model constructed from all available

data correlated strongly with measured data (R = 0.87) and captured observed trends

(Figure 6-10B). The model captured the significant decrease of speed in 24H cells

treated with inhibitor and explained LY294002's decreased ability to inhibit speed as

compared to PD98059 and Gefitinib (Figure 6-10C,D). Analysis of the coefficients from

the full model reveal that Erk, early-phase Akt, and late-phase EGFR Y1 173

phosphorylation correlate positively and strongly with speed, whereas EGFR Y1068

plays a diminished role in the governance of speed and p38 inversely correlates with

increases in cell speed (Figure 6-10E).
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inhibitor and experimentally measured values of speed in the presence and absence of
pretreatment with LY294002, PD98059, and Gefitinib. (B) Correlation between
predictions from a linear model constructed from all inhibitor data and experimentally
measured values of speed. (C) Speed predictions of the model generated from all
available data as compared to experimental measurements for 24H cells stimulated with
HRG (80 ng/ml) and 24H cells stimulated with EGF (100 ng/ml, D). (E) Coefficient
values for all phosphorylation metrics included in the full model. For each kinase,
phosphorylation at 5, 15, 30, 60, 90, and the integral of phosphorylation are
represented. Data in C and D are shown ±SEM.

6.4 Discussion and conclusions

In this study, we sought to understand the effects of treatment with small

molecule inhibitors targeting EGFR, MEK, and P13K on HER2-mediated cell migration.

We surmised that although the inhibitors used had well-defined off-target binding

properties [3, 18], the quantification of off-target effects due crosstalk in the signal state

after inhibitor treatment would be critical to gain a consistent understanding of how drug

treatment inhibits HER2-mediated directional persistence and speed.

We quantified the phosphorylation of four kinases and five phosphorylation sites in

response to EGF and HRG under low or high HER2 conditions and in the presence or

absence of Gefitinib (Iressa), PD98059, and LY294002. We also quantified cell

migration, and in particular directional persistence, for cells under these same

conditions. Analysis of the signaling dataset alone revealed significant off-target effects

for each inhibitor, suggesting elements of crosstalk and feedback. Analysis of the

migration dataset revealed ligand-dependent inhibition of persistence by some inhibitors

and the generally high efficacy of Gefitinib as an inhibitor against HER2-mediated

increases in directional persistence under both EGF and HRG stimulation conditions.
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When viewed together, the migration and signaling datasets revealed the role of

multiple upstream kinase phosphorylation events in the governance of persistent

movement and the use of linear modeling codified these roles by ascribing a numerical

importance to each signaling event. Using the model, the inhibition of persistence can

be understood through an inhibitor's efficacy against its target and its effect on the

greater signal state.

6.4.1 Signal measurements reveal crosstalk

Treatment of HMEC cells with LY294002 decreased Akt phosphorylation, notably

in 24H cells stimulated with HRG, but also stimulated a greater amount of

phosphorylation at EGFR Y1068 and Y1173 in EGF-treated cells as compared to cells

not treated with inhibitor (Figure 6-7 A,B). Since trends in the differences (or lack

thereof) of EGFR phosphorylation between parental and 24H cells were conserved

when cells were treated with either no inhibitor or LY294002, these data indicate the

possibility of negative feedback between P13K and EGFR phosphorylation that is

unaffected by HER2 expression levels in HMEC cells.

Treatment with LY294002 also interestingly prevented the phosphorylation of

Erk, suggesting that P13K acts upstream of Erk phosphorylation (Figure 6-7B). Similar

results were obtained with Wortmannin, further suggesting that P13K inhibition, and not

off-target binding effects from LY294002, are responsible for the decreased Erk

phosphorylation (Figure 6-5). Although the documented inhibition of Raf signaling by Akt

[24] lead us to hypothesize that LY294002 would increase Erk phosphorylation, P13K

has been shown to regulate Erk phosphorylation in some cell lines, typically, however,
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at low but not high EGF concentrations [25]. Nevertheless, our data show that even in

the presence of saturating levels of EGF, treatment with LY294002 can result in the

complete ablation of Erk phosphorylation. Furthermore, in the MCF10A breast epithelial

cell line transfected with mutant H-Ras, inhibition of P13K with LY294002 has been

shown to inhibit Erk activation but not that of MEK, suggesting that P13K regulates Erk

activity through a MEK-independent pathway [12]. We observed, however, a complete

absence of Erk signaling after treatment with LY294002 or PD98059, suggesting that

both inhibitors target a single pathway responsible for Erk phosphorylation. Thus, our

data indicate that P13K interferes with the MEK-dependent phosphorylation of Erk. An

interesting potential facilitator for PI3K's regulation of MEK may be Raf-1, which has

been shown to dependent on P13K activity in L6 cells, but has also been shown to be

activated by P13K inhibitors in other cell lines due to the afore mentioned negative

regulation of Raf by Akt [24, 26].

Treatment with PD98059 and Gefitinib had very similar effects on p38 activity,

with both inhibitors eventually decreasing the initially high serum-free phosphorylation

levels in 24H cells to approximately the level observed without inhibitor after 90 minutes

(Figure 6-7C,D). Concomitant increase in p38 phosphorylation was observed in parental

cells, suggesting HER2-dependent differences in the signaling mechanisms governing

the phosphorylation of p38. Treatment with PD98059 also dramatically decreased

phosphorylation at EGFR Y1173 (Figure 6-7C). Previous studies have shown that

phosphorylation at Y1173 recruits SHP-1, a phosphatase, that leads to

dephosphorylation of EGFR and the attenuation of Erk phosphorylation [27]. Our data
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suggest that there exists a feedback loop such that attenuation of Erk signaling serves

to decrease phosphorylation at Y1173.

Treatment with Gefitinib removed phosphorylation of Akt in response to HRG, a

result consistent with its documented ability to trap HER2 and HER3 receptors in an

inactive state even though it is specific for the EGFR ATP domain [[28], Figure 6-7D].

Interestingly, we found that Gefitinib differentially knocks down EGFR Y1068

phosphorylation depending on HER2 expression levels, with EGF-stimulated 24H

phosphorylation similar in the presence or absence of Gefitinib, while parental

phosphorylation is significantly decreased in response to Gefitinib treatment (Figure 6-

7D).

In sum, our signaling data indicate that given our current state of knowledge and

a high degree of connectivity in signaling networks, it is very difficult to a priori predict

the effect of inhibitors on a signal state, thus requiring signal profiling across key

kinases to gain an accurate understating of inhibitor action at the signal and cell

behavior levels.

6.4.2 Migration studies reveal ligand and HER2 dependent inhibition

Migration studies identified Gefitinib as a potent inhibitor of persistence and

speed for both HRG and EGF stimulated 24H cells, suggesting the potential for

Gefitinib's use as an anti-metastatic treatment in HER2 overexpressing tumors (Figure

6-4E,F,G). Interestingly, our data also revealed that PD98059 treatment was more

effective in decreasing persistence in parental cells as compared to 24H cells, indicating
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that HER2 overexpressing cells are less dependent on Erk for directionally persistent

motion (Figure 6-4G). On the other hand, Gefitinib was more effective against

persistence in 24H cells and nearly equalized values of persistence across cell type

indicating that inhibition had resulted in the lowering of persistence to a baseline level

independent of HER-signaling (Figure 6-4F,G). Finally, differences in the inhibitory

efficacy of treatment with PD98059 and LY492004 depending on whether EGF or HRG

was present revealed the importance of signal state context for understanding the role

of one kinase target on cell migration (Figure 6-4G).

6.4.3 Linear modeling defines a logical framework within which kinase

contribution to cell speed and persistence is understood

A reduced linear model, based only on signal state data obtained without inhibitor,

proved that incorporation of network data is essential for explaining seemingly counter-

intuitive effects of inhibition. In particular, although the finding that Akt inhibition did not

have a consistent effect of persistence (Figure 6-2) initially surprised us, we were able

to predict the ligand-dependent efficacy of inhibition a priori when we constructed a

linear model for persistence based on signaling data from all five phosphorylation sites

measured (Figure 6-8). Importantly, a priori predictions of persistence based on any one

kinase fail to capture changes under inhibition, indicating the need for signal state

measurement.

Our full linear model revealed self-consistent rules for the effect of each kinase

studied on cell speed and persistence. Our results indicate that Akt phosphorylation
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correlates positively with persistence (Figure 6-9). Akt's role in breast cancer migration

is not clear, with recent reports indicating that Akt may act an inhibitor of metastasis in

breast cancer tumors [29], while others reveal that Akt increases invasion and

metastasis [10]. Our results indicate that Akt inhibition via LY294002 treatment can lead

to an effective decrease of HER2-mediated cell migration in the absence of off-target

effects such as increased EGFR phosphorylation. Thus, our data highlight the

importance of cellular context for efficacy of inhibition. Since both HRG and EGF-family

ligands have been found to circulate in breast cancer tumors [30], we speculate that

inhibition of Akt with a P13K inhibitor similar to LY294002 would be effective against cell

migration in tumors with high levels of HRG but not necessarily in those with high EGF-

family ligand expression, due to LY294002's role in increasing EGFR phosphorylation.

In addition, our data contrast an earlier report suggesting that P13K does not play a role

in directed migration in the absence of chemical gradients [31]. Our data also suggest a

positive role for EGFR phosphorylation in the governance of persistence, and in

particular, Y1 173 phosphorylation. Furthermore, EGFR is able to regulate persistence

through a pathway that is not dependent on P13K, as suggested by EGFR's role in

maintaining high persistence in cells treated with LY294002 and EGF.

We have previously observed, under slightly different conditions, that Y1173

negatively correlated with cell migration (see previous chapter on PLSR models for

mass spectrometry analysis). The difference between our results is due to the following

factors: 1. the addition of time points past 30 minutes in the present study showed that

24H phosphorylation is generally slightly more sustained than parental phosphorylation,

2. the trend of higher parental phosphorylation in response to EGF is much more
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prominent in the mass spectrometry dataset, where pretreatment with high amounts of

insulin occurred, 3. the testing of the current dataset via inhibition added more cellular

conditions for regression, thus changing the parameter vector and indicating that the

coefficients derived for Y1173 from the mass spectrometry dataset might not be

applicable for prediction across a large range of inhibitor data. The construction of a

model on the basis of no inhibitor data and only time points equaling 30 minutes or less

yields a negative coefficient for Y1173 at five minutes (although the value is very close

to zero), indicating a consistency of measurement between the two studies for early

time data.

Erk plays a positive but diminished role in directional persistence across the

many conditions we sampled. This is due to the fact that Erk phosphorylation was

ablated under all inhibitor treatments, while persistence values varied and sometimes

remained high. This conclusion corroborates the fact that Erk, while linked to

chemotaxis in a small number of cell systems, is generally considered less important

than Akt for directional migration.

Our finding that p38 negatively correlates with directional persistence results

from the effects of Gefitinib and PD98059 on p38 phosphorylation levels and the fact

that neither ligand treatment stimulated a great deal of p38 phosphorylation. The

reduced model predicted a positive role for p38 in the governance of cell persistence,

but this is one of the reasons for its poor correlation to experimental data as compared

to the full model. Our data contrasts literature indicating that p38 plays a positive role in

the migration in breast epithelial MCF10A cells [12], indicating that p38 may play a

different role in HMEC cells under HER2 overexpression. In addition, a recent study
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shows that Rac mediates increases in p38 phosphorylation that in turn linked increase

in cell migration [12]. On the other hand, decreased Rac phosphorylation has been

shown to increase directional persistence in the absence of chemical gradients,

suggesting that p38 phosphorylation may be a proxy for decreased Rac activity

responsible for increased cell persistence [31].

Inspection of the full models for speed and persistence indicate that similar

upstream kinases both positively regulate speed and persistence, but with different

importance. For instance, Erk plays a more prominent role in the governance of cell

speed as compared to persistence. In contrast late-phase Akt signaling plays a more

prominent role in the governance of cell persistence as compared to speed, as

evidenced by the high sustained Akt levels in 24H cells stimulated with HRG.

6.4.4 Conclusions

We have shown that the efficacy of any inhibitor on HER2-mediated changes in

directional persistence is a function of its effect on the network signal state and not

simply its target. By compiling signal state and cell migration data in response to three

separate inhibitors we showed how initially surprising results based on an

understanding of directional persistence in the context of one kinase (Figure 6-2), can

be explained through the incorporation of signal state measurements and linear

modeling (Figure 6-9). In the case presented in Figure 6-2, we found that LY294002

does not inhibit migration in EGF-stimulated 24H cells due to an off-target increase in

EGFR phosphorylation. With the already heavy focus on the identification of off-target
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binding effects through biochemical assays [3], and the advent of new high-throughput

technologies that allow for rapid and more exhaustive characterization of signal state in

response to many inhibitors [2], we anticipate that the approach highlighted here will be

further applied in new biological systems to achieve a better understanding of how to

control cell behavior by drugging with small molecule inhibitors.
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Chapter 7 Quantitative analysis of Akt phosphorylation and
activity in response to EGF and insulin treatment

Previous signaling work (Chapter 3) revealed potential differences between Akt

phosphorylation levels and activity levels. In this chapter, we apply the measurement

techniques introduced in Chapter 3 to understand how Akt activity is regulated through

phosphorylation.

7.1 Introduction

The protein kinase Akt/PKB is a critical regulator of cellular functions such as

apoptosis, proliferation, and migration [1, 2]. Its well-established role in the governance

of cell survival implicates it as a critical signaling node in cancer, and its overexpression

and increased activation has been found in a variety of cancers such as those occurring

in the breast, neck, and lungs [3]. Prior studies into the mechanism of Akt's kinase

activity have revealed that growth factor or insulin induced activation of

phosphoinositide 3-kinase (P13K) leads to the generation of 3,4,5 phosphatidylinositol

(PIP3) and subsequent recruitment of Akt to the plasma membrane via its pleckstin

homology (PH) domain. Once at the membrane, Akt is phosphorylated by

phospoinositide-dependent kinase 1 (PDK1) on the threonine 308 residue (T308) that

resides in its activation loop. In addition, phosphorylation on the serine 473 residue

(S473) residing in its carboxy-terminal hydrophobic domain occurs via a kinase whose

identity has been debated [4-6], although recent evidence identifies a Rictor-mTOR

complex as the responsible kinase [7]. The T308 and S473 phosphorylation sites have

been the primary focus of a large number of biochemical studies into Akt's mechanism
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of activation. Salient results include the finding that phosphorylation on both the S473

and T308 sites is necessary for full kinase activation in response to insulin [with S473

phosphorylation alone inducing no activity and T308 phosphorylation alone inducing

approximately one-third maximum activity [8]], that S473 phosphorylation precedes and

promotes T308 phosphorylation [9], and that the dephosphorylation of the two sites

often occurs differentially and through separate phosphatases [10, 11].

Although the majority of work regarding Akt activation has focused on

phosphorylation at T308 and S473, recent evidence suggests the existence of other

phosphorylation sites that regulate kinase activity. In particular, tyrosine phosphorylation

has been identified as a key regulatory mechanism in Src-transformed cells, cells

stimulated with epidermal growth factor (EGF), and cells treated with the tyrosine

phosphatase inhibitor pervanadate [12, 13]. Threonine 72 and serine 246 have also

recently been identified as autophosphorylated sites that regulate kinase activity [14].

Furthermore, uncoupling of T308 phosphorylation and kinase activity after initial kinase

activation has been reported in response to insulin [11].

Given evidence that phosphorylation at multiple sites other than T308 and S473

are important for kinase activity, especially in systems highly relevant to cancer such as

Src-transformed cell lines or those exposed to elevated levels of EGF ligands, we

wondered how accurately inferences about kinase activity and its role in signaling could

be made from interrogation of phosphorylation at S473 or T308 alone. The reason that

these two sites, and in particular S473, have been profiled extensively in cell line and

higher level tissue systems is the existence of phospho-specific antibodies against T308

and S473, making western blotting and immunostaining possible.
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To answer this question, we quantified kinase activity in addition to T308 and

S473 phosphorylation in two different cell lines, a Chinese hamster ovary cell line

transfected with EGFR (CHO-EGFR) and a colon carcinoma cell line (HT-29), treated

individually with EGF or insulin. We measured kinase activity over two hours to capture

the initial kinase activation profile (with a time scale typically under 5 minutes) as well as

deactivation or sustained activity at longer times, since both acute and longer term

responses may be important for Akt's governance of cellular phenotype. Our results

show that phosphorylation at T308 and S473 provides an accurate representation of

kinase activity in the case of EGF stimulation in both cell lines. T308 and S473

phosphorylation, however, fail to capture elements of kinase activity in response to

insulin treatment, most notably in the case of HT-29 cells where early phase oscillations

in activity are not reflected by T308 or S473 phosphorylation levels. Additionally, our

data suggest that both phosphorylation and dephosphorylation at T308 and S473 are

tightly coupled under most conditions studied, in contrast to previous studies, and thus

in these cases each site serves equally well as a proxy for kinase activity.

7.2 Materials and Methods

7.2.1 Cell culture and treatment

HT-29 cells (ATCC) were grown in McCoy's 5A medium supplemented with 10%

fetal bovine serum, 2 mM glutamine, 100 units/ml penicillin, and 100 pg/ml streptomycin

(Invitrogen). CHO K1 cells, transfected with EGFR-GFP as described previously [15],

were grown in high-glucose Dulbecco's modified Eagle's medium containing 10% fetal
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bovine serum, 2 mM glutamine, 1 mM sodium pyruvate, 1mM non-essential amino

acids, 100 units/ml penicillin and 100 pg/ml streptomycin. The growth medium was

supplemented with 500 pg/ml of G418 for plasmid expression maintenance and

selectivity.

For lysis, cells were seeded at 50,000 cells/cm2, grown for 48 hrs, and then

stimulated with 100 ng/ml EGF (Peprotech) or 500 ng/ml insulin (Sigma) for the

indicated times. Cells were lysed in 1% Triton X-100, 50 mM Tris-HCI (pH 7.5), 150 mM

NaCI, 50 mM P-glycerophosphate, 20 mM sodium pyrophosphate, 30 mM NaF, 1 mM

benzamidine, 2 mM EGTA, 200pM NaVO4, 1 mM dithiothreitol (DTT), 1 mM

phenylmethylsulfonyl fluoride, 10 pg/ml aprotinin, 10 pg/ml leupeptin, 10 pg/ml

pepstatin, and 1 pg/ml microcystin-LR. Protein concentrations were determined with a

micro bicinchoninic acid assay (Pierce).

7.2.2 Western blotting

To quantify phosphorylation levels, 80 pg of lysate were resuspended in 40 pl of

sample buffer [100 mM DTT, 2% SDS, 10% glycerol, 0.01% bromophenol blue, 62.5

mM Tris-HCI (pH 6.8)]. Gel electrophoreses (10% polyacrylamide gel) was followed by

transfer to polyvinylidene difluoride membranes (Biorad). Membranes were blocked with

5% nonfat milk or 5% bovine serum albumin in 20 mM Tris-HCI (pH 7.5), 137 mM NaCI,

and 0.1% Tween-20. Membranes were then probed with anti-phospho-Akt (Ser473,

#9271, Cell Signaling) or anti-phospho-Akt (Thr308, #4056, Cell Signaling). The

membranes were then probed with horseradish-peroxidase-conjugated anti-rabbit

secondary antibody (Amersham Pharmacia Biotech) and visualized by enhanced
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chemiluminescence (Amersham Pharmacia Biotech) on a Kodak Image Station (Perkin

Elmer). Densitometry was performed using molecular imaging software (Kodak). Band

area net intensities were normalized to the 5 minute (for HT-29 cells) or 10 minute (for

CHO-EGFR cells) value to produce the time series presented in Figures 7-5-7-8.

Linearity for each antibody was established using serial dilutions of an insulin-stimulated

5 min. lysate from HT-29 cells (see Figures 7-1 and 7-2).
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Figure 7-1:
the linearity

Linearity for T308 western blot. Using serially diluted lysates, we probed
of densitometry as described in Materials and Methods.
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Figure 7-2: Linearity for S473 western blot. Using serially diluted lysates, we probed
the linearity of densitometry as described in Materials and Methods.

7.2.3 Kinase activity assay

Kinase activity assays were performed as previously described [16]. Briefly, anti-

Akt antibody (Upstate Biotech) was incubated in 96-well protein G-coated plates

(Pierce) overnight. Lysates were then added and incubated overnight as well.

Subsequent exposure to [y32-P]ATP and Aktide substrate initiated an in vitro reaction

that was subsequently terminated after 30 minutes by addition of phosphoric acid.

Reaction mixtures were then transferred to a phosphocellulose filter plate and filter

bound [y32 -P]-substrate was quantified using a scintillation counter. Linearity of the
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assay in each cell type has been established in [16] and Figure 7-3. Count per minute

readings were normalized to lysate concentrations and then to the 5 minute (for HT-29

cells) or 10 minute (for CHO-EGFR cells) value to produce the time series presented in

Figures 7-5-8.
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Figure 7-3: Linearity for Akt kinase activity assay in CHO-EGFR cells. Using
serially diluted lysates, we probed the linearity of the Akt kinase activity assay as
described in Materials and Methods.

7.2.4 Statistical analysis

Pearson correlation (R) values and p-values using student's t-test (95%

confidence intervals) were obtained in Microsoft Excel.
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7.3 Results

7.3.1 An experimental strategy for the quantitative comparison of Akt

phosphorylation and activity

To directly compare phosphorylation and kinase activity, we conducted

quantitative western blots (T308 and S473) and a kinase activity assay from individual

lysates corresponding to one of three biological replicates for a particular cellular

treatment (Figure 7-4). Each measurement technique was validated for linearity as

described in the Methods section (Figures 7-1 and 7-2).
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Figure 7-4: An experimental strategy to quantify and correlate Akt
phosphorylation and kinase activity. Two cell types, CHO-EGFR and HT-29, were
individually stimulated with EGF (100 ng/ml) or insulin (INS, 500 ng/ml). At each of
seven time points distributed throughout two hours, three lysates (biological replicates)
per treatment condition were generated. From each lysate, a kinase activity assay and
two quantitative western blot against T308 and S473 were performed. Quantification
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and normalization then allowed comparison between activity and phosphorylation time
courses.

7.3.2 EGF treatment stimulates a transient Akt response in HT-29 cells and

a sustained Akt response in CHO-EGFR cells

When HT-29 cells were treated with EGF (100 ng/ml), a transient -3-fold

activation was observed (Figure 7-5A). Quantification of T308 and S473

phosphorylation revealed a similar trend, with phosphorylation and subsequent

dephosphorylation occurring rapidly within 15 minutes of ligand treatment (Figures 7-5B,

C). The correlation between kinase activity and phosphorylation over the 2 hour time

course was high, with R > 0.95 in both cases (Figure 7-5D). The phosphorylation and

dephosphorylation trends for T308 and S473 correlated strongly with each other,

yielding an R = 0.96 (Figure 7-5D). In contrast to HT-29 cells, CHO-EGFR cells treated

with EGF exhibited sustained kinase activity that peaked after approximately 30 minutes

(Figure 7-6A). Concomitant phosphorylation at the T308 and S473 was also observed

(Figure 7-6B), as captured by the strong correlation between each site and kinase

activity (Figure 7-6C, D). As was the case in the HT-29 cells, correlation between the

two phosphorylation sites was high (R = 0.94, Figure 7-6D). Thus, the phosphorylation

levels of T308 and S473 each accurately reflect kinase activity in two cell lines

exhibiting unique temporal responses to EGF stimulation.
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Figure 7-5: HT-29 cells treated with EGF exhibit transient Akt activation and
phosphorylation. An in vitro kinase activity assay was used to measure Akt activity in
HT-29 cells treated with EGF (100 ng/ml) at 0, 5, 15, 30, 60, 90, and 120 minutes (A).
Phosphorylation at T308 and S473 was also measured under these conditions using
western blot analysis. Shown in (B) are representative blots for T308 and S473 from the
three biological replicates measured. Densitometry was used to quantify the net band
intensity for all western blots (C). Calculation of the Pearson's correlation between
phosphorylation of T308, S473, and kinase activity is shown in (D). All points in the time
courses are the average of three biological replicates ± SEM. Time points were
normalized to 5 minute kinase activity or phosphorylation levels.
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Figure 7-6: CHO-EGFR cells treated with EGF exhibit sustained Akt activation and
phosphorylation. An in vitro kinase activity assay was used to measure Akt activity in
CHO-EGFR cells treated with EGF (100 ng/ml) at 0, 10, 15, 30, 60, 90, and 120 minutes
(A). Phosphorylation at T308 and S473 was also measured under these conditions
using western blot analysis. Shown in (B) are representative blots for T308 and S473
from the three biological replicates measured. Densitometry was used to quantify the
net band intensity for all western blots (C). Calculation of the Pearson's correlation
between phosphorylation of T308, S473, and kinase activity is shown in (D). All points in

242

1A 4

1.6a

1.4

1.21

1.0
0,84

0.6i

0.41

0.24
1

--- n

a _ _ _...._... ._.......____ _.___

AI



the time courses are the average of three biological replicates ± SEM. Time points were
normalized to 10 minute kinase activity or phosphorylation levels.

7.3.3 Insulin treatment induces sustained AKT kinase activity in both HT-29

and CHO-EGFR cell lines that is not fully captured by T308 and S473

phosphorylation

HT-29 cells treated with insulin exhibited sustained Akt activity throughout the

two hour time course. Interestingly, a statistically significant oscillatory behavior was

observed, with the differences between subsequent time points from 5 to 60 minutes

significant at p < 0.05 (Figure 7-7A). These oscillations were not reflected in the

phosphorylation patterns of either S473 or T308 (Figure 7-7B, C), as captured by the

low correlation between phosphorylation and activity [R = 0.62 and 0.57 for S473 and

T308, respectively (Figure 7-7D)]. Despite low correlation with activity, the

phosphorylation levels at T308 and S473 correlated strongly with each other, as

reflected by the high correlation coefficient (R = 0.91, Figure 7-7D).

CHO-EGFR cells stimulated with insulin exhibited sustained Akt activity, but do

not show any of the oscillatory behavior identified in the HT-29 cells (Figure 7-8A).

Phosphorylation levels of both T308 and S473 reflect sustained kinase activity, although

T308 phospho-levels in particular decline on average, a trend not seen in kinase

activity. The correlation between the average phosphorylation measurements for T308

and S473 as shown in Figure 7-8C is relatively high (R = 0.79), but still significantly

lower than seen in any of the other cellular conditions (all R's > 0.90), due to the

previously mentioned T308 dephosphorylation trend that is not present for S473
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phosphorylation. The S473 phosphorylation levels correlate strongly with activity (R =

0.93), whereas phosphorylation levels of T308 correlate weakly with kinase activity (R =

0.59). Thus, the measurement of S473 or T308 phosphorylation in response to insulin

may not be enough to infer quantitative changes in kinase activity for HT-29 cells and

only S473 phosphorylation correlates strongly with kinase activity in the CHO-EGFR

cells.
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Figure 7-7: HT-29 cells treated with insulin exhibit oscillatory Akt activation and
sustained phosphorylation. An in vitro kinase activity assay was used to measure
Akt activity in HT-29 cells treated with insulin (500 ng/ml) at 0, 10, 15, 30, 60, 90, and
120 minutes (A). Phosphorylation at T308 and S473 was also measured under these
conditions using western blot analysis. Shown in (B) are representative blots for T308
and S473 from the three biological replicates measured. Densitometry was used to
quantify the net band intensity for all western blots (C). Calculation of the Pearson's
correlation between phosphorylation of T308, S473, and kinase activity is shown in (D).
All points in the time courses are the average of three biological replicates ± SEM. Time
points were normalized to 5 minute kinase activity or phosphorylation levels. * indicates
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that the difference between the time point and the one previous to it is significant (P <
0.05) at a 95% confidence interval.
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Figure 7-8: CHO-EGFR cells treated with insulin exhibit sustained Akt activation
mirrored by S473 but not T308 phosphorylation. An in vitro kinase activity assay
was used to measure Akt activity in CHO-EGFR cells treated with insulin (500 ng/ml) at
0, 10, 15, 30, 60, 90, and 120 minutes (A). Phosphorylation at T308 and S473 was also
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measured under these conditions using western blot analysis. Shown in (B) are
representative blots for T308 and S473 from the three biological replicate measured.
Densitometry was used to quantify the net band intensity for all western blots (C).
Calculation of the Pearson's correlation between phosphorylation of T308, S473, and
kinase activity is shown in (D). All points in the time courses are the average of three
biological replicates + SEM. Time points were normalized to 10 minute kinase activity or
phosphorylation levels.

7.4 Discussion and conclusions

The relationship between the phosphorylation state of Akt and its catalytic activity

is not precisely understood. In this work, we endeavored to understand the accuracy

associated with the most common tools used to interrogate Akt function, namely the

phospho-specific antibodies against S473 and T308. To do this, we compiled

quantitative phosphorylation and kinase activity data spanning two cell lines and as

many ligand treatments for seven time points over the course of two hours. As far as we

know, this constitutes a uniquely information-rich set of data in which multiple facets of

Akt's activation mechanism can be explored in the context of biologically relevant cell

lines and ligand treatments.

Since, as mentioned in the introductory section, novel activity-regulating tyrosine

phosphorylation sites have been identified in cells stimulated with EGF, we

hypothesized that quantitative correlation between T308 or S473 phosphorylation and

kinase activity may not be accurate. For cells stimulated with insulin, however, we

expected that the correlation would be more accurate, given the fact that much of the

seminal work linking phosphorylation and kinase activity was done in the presence of

insulin or IGF-1. Counterintuitively, we observed a tight correlation between T308 and
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S473 phosphorylation and kinase activity in response to EGF, but under insulin

treatment the correlation was weaker, with phosphorylation trends generally failing to

match long term kinase activity profiles, particularly in the case of the HT-29 cells where

oscillations were observed throughout much of the two hour time course. These data

suggest that Akt activity in response to insulin treatment may be regulated through other

phosphorylation sites or perhaps through protein-protein interactions that were not

disrupted by the wash steps in the in vitro kinase assays. Candidate phosphorylation

sites might include the afore mentioned tyrosine phosphorylation sites or the

autophosphorylated residues T72 and S246, which have been shown to regulate kinase

activity in response to insulin stimulation [14]. The data under EGF treatment suggests

that although tyrosine phosphorylation is necessary for kinase activity, it may be tightly

coupled to S473 and T308 phosphorylation, at least at the level of temporal resolution

presented in this study. It is worth noting that under all treatment conditions

measurements of either S473 or T308 captured the qualitative activation of Akt kinase

such that S473 or T308 phosphorylation measurement may be sufficient depending on

the quantitative accuracy one needs for biological interpretation. Finally, in three of the

four cellular conditions studied, both T308 and S473 phosphorylation levels correlated

strongly, suggesting that measurement of only one of the sites is necessary.

We noted a strong correlation between T308 and S473 phosphorylation during

the initial onset of kinase activity. This result was expected, as it is generally accepted

that the initial phosphorylation of these two sites is strongly coupled. Nevertheless,

studies have also indicated that S473 phosphorylation precedes and promotes T308

phosphorylation to achieve kinase activation [9]. We do not see any evidence of
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differential S473 versus T308 early phase phosphorylation, but this may be due to a

lack in temporal resolution at early times in our experiment. Although the

phosphorylation of T308 and S473 is expected to be tightly coupled, several studies

have shown that the dephosphorylation of these two sites is uncoupled [10, 11]. In

particular, prior studies using the shellfish toxin okadaic acid suggest that phosphatase

activity at the T308 site is not connected to dephosphorylation at the S473 site, with

further work suggesting that the phosphatase PP2A is responsible for T308

dephosphorylation [10, 11, 17]. Gao et al. recently showed that a novel phosphatase,

PHLPP, is responsible for dephosphorylating the S473 site [10]. Interestingly, the gene

for PHLPP is found near a commonly mutated chromosomal region in colon cancers,

and Gao et al. showed that the HT-29 colon carcinoma cell line had decreased

expression of PHLPP. Thus, we hypothesized that the dephosphorylation of T308 and

S473 might be decoupled in HT-29 cells. However, under EGF stimulation, where we

observed a transient spike of Akt activity and phosphorylation levels, the rapid

dephosphorylation of both S473 and T308 is tightly coupled (Figure 7-5). In the case of

insulin treatment, where we observed sustained kinase activity with only partial

dephosphorylation over two hours, we again observed a high correlation between T308

and S473 phosphorylation levels (R = 0.91), although on average T308 was

dephosphorylated more from 15 to 30 minutes (Figure 7-7). Our results in EGF treated

HT-29 cells, where dephosphorylation was significant, indicate that the coordinated

dephosphorylation of both T308 and S473 can occur in cell systems where individual

phosphatase levels are abnormal. Interestingly, CHO-EGFR cells stimulated with insulin

do show evidence of decoupled dephosphorylation, where T308 levels decline more
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rapidly than both S473 or activity levels (Figure 7-8). This finding is consistent with

Yamada et al.'s observations in insulin treated CHO cells, where they observed rapid

T308 dephosphorylation not reflected in either activity or S473 levels.

In sum, our data help to delineate the confidence with which researchers can use

commercially available phospho-specific antibodies to understand signaling

downstream of the Akt kinase. In addition, the quantitative approach taken allows for a

greater understanding of the coordinate regulation of S473 and T308 phosphorylation

levels. Future work focused on the measurement of more phosphorylation sites in the

case of insulin treatment and with more accurate measurement technologies should

enable further insights from this type of experimental approach.
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Chapter 8 Applications and concluding remarks

8.1 Applying computational modeling to drug discovery and

development

8.1.1 Introduction and Motivation for Use of Models

Prediction is the attempt to use existing knowledge to foretell an event before it

happens. Whether it is the biologist trying to predict how target inhibition will affect cell

behavior, the p:hysician trying to predict how a drug will affect a patient, or the manager

trying to predict future return on investment, prediction plays a vital role in the

pharmaceutical industry. Breakthroughs in the fields of genetics, biochemistry and

molecular biology have increased our ability to understand and predict behavior in

biological systems. Here we argue that computational modeling based on biological

information can be used to extend the limits of our understanding toward predictive

accuracy. Models used to simulate cellular or human biology produce reliable data, new

hypotheses and can translate information between in vitro screens, cell-based assays

and ultimately patients. This extension of knowledge is valuable to the pharmaceutical

industry for novel product generation. Even in the absence of novel products,

incorporation of computational modeling in the ways outlined below could save millions

of dollars based on increased efficiency.[1, 2]
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A coarse-grained schematic of the pharmaceutical research and development (R&D)

pipeline is shown in Figure 8-1. We have identified three areas where computational

modeling has potential to substantially impact efficiency and development. The first area

is cell-signal behavior, where the application of models characterizes how lead

compounds affect intracellular signaling. The second area is signal-response behavior,

where models predict cellular phenotype from signaling information. The third area is

physiology, in which models are used to simulate clinical outcomes. Additionally, each

class of model can help identify new drug targets. We address each application area

separately, highlighting important work relevant to the pharmaceutical industry.
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Figure 8-1: Areas of impact for computational modeling in the pharmaceutical
R&D process. A course-grained diagram of the R&D process illustrates three potential
areas for model application. Cell signaling models simulate intracellular signaling
dynamics and predict drug effects on signaling. Cell signal-cell response models
correlate intracellular signals to cell behaviors such as migration and apoptosis. These
models predict drug effects on cell behavior.
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In addition to specific applications, there is also a natural role for modeling to link

traditional biology and high-throughput informatics analysis (Figure 8-2). For instance,

the construction of a signaling model begins with an assembly of molecular interactions,

rate parameters and spatial restrictions. Informatics groups analyze high-throughput

datasets (i.e. gene-chip arrays, gene sequencing results, mass spectrometry results,

yeast two-hybrid results), using methods such as clustering or spacing alignments, and

integrate results with data from other in-house biological experiments and from literature

(obtained via text mining). The data are then further organized into ontologies [3]. A

model is constructed from a subset of these data and is then validated using traditional

biology experiments. If the model captures experimental trends, it is used to generate

predictions or hypotheses that suggest new biological experiments. The results of these

experiments either further validate the model or identify novel biology that is then

incorporated into the model. This interplay between informatics, modeling and traditional

biology enables the focused use of large datasets to solve biologically relevant

problems.
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Figure 8-2: Computational modeling in the R&D workflow. Computer models rely on
data from both informatics and traditional biology applications. As such, they help
coordinate the use of informatics to answer biological questions. Informatics groups
analyze large biological datasets, mine scientific literature for data, integrate disparate
forms of data, and organize databases for further use. Computational models are
developed using subsets of stored data. Models are validated against results from
genetic, biochemical, or molecular biology experiments. After validation, models are
used to predict and interpret novel biology. Resulting hypotheses are tested using
traditional biology techniques. If predicted data do not correspond to experimental
measurements, the model is altered to incorporate the new biological information.

We have restricted the scope of our discussion to selected modeling efforts with

emerging relevance to the pharmaceutical industry. We do not, however, address many

models employed successfully by the pharmaceutical industry today. For instance,
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pharmacokinetic (PK) models, which we do not cover here, are perhaps the most

significant class of models being used today. In addition, we do not discuss myriad

other metabolic models that have been successfully employed at cellular and animal

levels. Nevertheless, we hope to demonstrate how new advances in computational

modeling can integrate into the R&D workflow, and in so doing we attempt to establish a

framework for thinking about the application of diverse types of models to the

pharmaceutical industry.

8.1.2 Cell Signaling Models

Defects in signal transduction underlie many diseases of interest to

pharmaceutical companies. For instance, dysregulation of conserved protein tyrosine

kinase pathways leads to a variety of cancers [4]. Individual signaling proteins inside the

cell are often the target of small-molecule drugs, whereas many antibody drugs target

the receptors controlling signaling cascades. Here, we highlight a group of models that

have been used to describe, computationally, signaling pathways relevant to disease.

These models, in comparison to the signal-response models discussed in the next

section, are more highly specified in their molecular details.[5] Typically, ordinary

differential equations (ODEs) are used to describe mass-action kinetics and system

behavior. Experimental measurement of reaction rates, concentrations, molecular

interactions, and trafficking parameters are essential for the construction of such

models. The level of detail necessary varies from system to system, but many signal-
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transduction pathways can be modeled using a combination of measured values, fitted

parameters, and coarse-grained descriptions of interactions.[6]

Models that describe signaling pathways are important in pharmaceutical

research for three main reasons: i) they often capture non-intuitive signal behavior and

identify novel molecular function; ii) they allow researchers to experiment in silico across

a wide range of conditions (i.e. receptor numbers, ligand concentrations,

phosphorylation rates), thus saving experimental resources and identifying important

further experiments and iii) they serve as a database for much of the known information

about a particular pathway.

Lee et al. used ODE-based models together with experiment to analyze the Wnt

signaling pathway, a pathway critical in disease physiology such as cancer[7]. Model

construction from published data revealed that further experiments to measure total

concentrations and rates of dissociation were necessary. Successful implementation of

the model showed that adenomatous polyposis coli (APC) and axin, both of which

coordinate the degradation of the Wnt pathway effector P-catenin, bind proteins in

different ways, with axin binding randomly and APC binding in an ordered manner to

promote degradation. The model also highlighted APC-dependant axin degradation, a

mechanism potentially important in explaining 1-catenin levels in response to APC

mutation. Using the model, the effects of perturbing seven different Wnt pathway

molecules were explained, exemplifying the potential target selection and drug testing

applications of such an approach. In addition, the relevant investment compared with

exclusive experimental testing is considerably smaller. Model predictions also indicate

that slight changes in APC function lead to significant buildup of 3-catenin levels. In
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colorectal cancer, APC mutations give rise to elevated 3-catenin levels, resulting in a

cancerous phenotype. Potential therapies based upon these model predictions might

include drugs that inhibit protein phosphatase 2A (PP2A) or breakdown T-cell factor.

The model indicates that PP2A inhibition would be more effective in terms of 1-catenin

degradation, but this would also affect axin levels to a greater extent, which might in

turn perturb other signaling pathways reliant on axin.[7, 8]

Hendriks et al. developed a detailed model of ErbB receptor signaling dynamics

coupled to a receptor trafficking model [9]. ErbB receptors and their signaling pathways

are implicated in a variety of cancers and are the target of many therapeutic

compounds. [4] The model was developed using binding, dimerization and trafficking

rate constants from literature. Hendriks et al. simulated time-resolved phosphorylation

profiles for 3 types of ErbB receptors under more than 10 ligand stimulating conditions.

These simulations required less than 24 hours on a desktop computer; by comparison,

the equivalent experimental data would have required weeks of effort and resources at

the bench. Further simulation produced phosphorylation profiles under varying

assumptions, including dephosphorylation of receptors at the surface versus exclusive

dephosphorylation of receptors internalized in the endosome. Comparison with

experimental data revealed that ErbB receptor dephosphorylation occurred primarily in

the endosomal compartment. While many drugs target the extracellular domain of ErbB

receptors to prevent ligand binding and subsequent phosphorylation, the model predicts

that shunting more receptors per unit time to the endosome will attenuate

phophorylation. Inhibition of Sprouty, a class of molecules that are known to inhibit

receptor internalization through interaction with Casitas B-lineage (Cbl), could increase
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trafficking to the endosome, and thus provides a molecular target for testing this model-

derived hypothesis.[10] In addition, scientists could use the model to predict the degree

of elevated trafficking needed to achieve a given reduction in ErbB phosphorylation

levels. But how much reduction in phosphorylation is enough to affect downstream

signaling? Again, computational modeling can help. Well known downstream effectors

of the ErbB pathways include extracellular-regulated kinase (ERK) and protein kinase B

(PKB or AKT). Hatakeyama et al. and Schoeberl et al. have constructed models that

simulate the effect of receptor phosphorylation on these important signaling

intermediates. The models identify how variation in total amounts of phosphorylation

and rates of phosphorylation affect downstream signaling. Importantly, they also reveal

how signaling molecules in distinct-but-connected pathways are regulated after ligand

activation or signal inhibition.[11, 12]

All of the above efforts were effective because they were validated using

experimental methods, they explored many more hypotheses than would be

experimentally feasible and they highlighted non-intuitive, but important, regulatory

schemes for signaling. Recent documented efforts indicate that cell signaling models

are being successfully employed by pharmaceutical companies. For instance,

AstraZeneca recently used a computational approach to link the efficacy of the cancer

drug Iressa to impaired receptor internalization and reliance on downstream AKT

signaling.[13] The further application of these types of models relies on clear

relationships between intracellular signaling proteins and cell behavior or higher-level

processes. The general approach suffers when these relationships are poorly defined.

The next class of models surmounts this difficulty to predict complex cellular behavior.
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8.1.3 Signal-Response Models

The cells that make up the human body engage in a large variety of behaviors:

cell migration, differentiation, proliferation, and programmed death are just a few of the

many functions cells carry out. Interestingly, it has been hypothesized that no more than

20 signal transduction cascades control the seemingly endless list of cell behaviors

observed in humans[7]. How does the cell, then, use these 20 or so cascades to

coordinate cell behavior? Part of the answer is that each pathway can be activated in

quantitatively different ways. For instance, in PC12 neuronal cells, transient activation of

the mitogen-activated protein kinase (MAPK) pathway leads to proliferation whereas

sustained activation of this exact same pathway leads to differentiation.[14] Another part

of the answer lies in the fact that multiple pathways can be used to control one

behavior. For iinstance, hepatocyte growth factor (HGF)-stimulated neuronal migration is

regulated by both the MAPK and phosphatidylinositol 3-kinase (P13K) signaling

pathways [15]. Both of these facts suggest that to correct aberrant cellular behavior with

drugs requires quantitative knowledge about multiple signaling proteins (that is,

multivariate datasets). Multivariate datasets can then be used to understand cellular

decision-making processes in the context of computational models.

The signaling pathway models discussed earlier give us insight into how the

MAPK pathway might be manipulated to yield either transient or sustained ERK

activation. Mapping of this activation, however, onto cellular behavior is an arguably

more difficult task. Whereas ODE level models are becoming more prevalent for
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describing signaling pathways, there are very few models that can accurately connect

signaling pathways to cellular behavior at this level of mathematical description. The

problem, therefore, requires the use of more abstracted signaling models[5]. Abstracted

models identify statistical relationships between signals and behavior, which suggest

causal signal-behavior relationships that can be further probed using molecular biology

or genetic approaches. Here, we address a few recent models that have used

multivariate cell signaling data to reveal governing principles of cellular behavior.

Predictions made on the basis of these models can reveal how a drug, or class of

drugs, will affect a given cellular behavior.

Many recent efforts have focused on using modeling to identify genomic and

proteomic groups of molecules responsible for disease-relevant cellular behaviors. For

instance, Zheng et al. used cDNA microarrays together with 2D gel electrophoresis and

mass spectrometry to study the molecular effects of an acute promyelocytic leukemia

(APL) cell line treated with retinoic acid (RA) and arsenic trioxide (ATO) [16]. The

question being asked was: how do downstream signaling events coordinate a known

program of differentiation and apoptosis? The answer to this question may shed some

light on the signaling events responsible for clinical efficacy in APL patients co-treated

with RA/ATO in conjunction with chemotherapy. Zheng et al. used a computational

technique called self organizing maps (SOMs) to cluster signaling data and then

characterized sets of signals important for the differentiation-vs-apoptotic cell program.

They found that, among other things, activation of the interferon (IFN) and calcium

signaling pathways coordinated differentiation and apoptosis. They also identified a

number of transcription factors important for coordinated cell behavior. By isolating sets
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of genomic and proteomic changes associated with a specific therapeutic result, the

authors have identified drug mechanism and revealed important sets of pathways for

future drug development. Conceptually similar studies have measured quantitative

proteomic and genomic data, and then used computationally-aided organization of this

data to interpret the role of signaling groups on cellular response [17, 18]. Recent efforts

establishing novel ways to integrate multiple types of measurement datasets should

enable future successes for the application of this approach [19, 20].

Although the previously-mentioned signal-response studies rely on computation

to identify co-regulation of signals, their goal is generally one of classification (also

referred to as profiling or signature analysis) rather than prediction. To do this,

quantitative measurement of the signal/transcription state and cellular response is

required. We now discuss recent efforts that have established computational models to

understand cellular behavior in the context of cell signaling. Models of this type are very

useful for the pharmaceutical industry, as they allow scientists to alter signals and then

predict how cellular behavior changes in silico. Janes et al. describe a procedure based

on linear modeling (partial least squares regression), whereby approximately 8000

intracellular signals were correlated with more than 1000 apoptosis-related cellular

responses [21]. The model computationally organizes the vast amount of signaling data

measured, just as in previously mentioned studies, but takes the analysis a step further

by deriving a set of parameters that map the signaling values onto the apoptosis

measurements. Importantly, Janes et al. [21] tested their model by perturbing the

cellular signal state and then comparing experimentally-measured apoptotic values with

those predicted from the model. For instance, C225, an antibody raised against
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epidermal growth factor receptor (EGFR), was used to treat a human colon carcinoma

cell line. Excellent agreement between predicted and measured levels of apoptosis

validated the model and suggests that it can be used to understand apoptotic response

under a wide range of signal perturbations (induced by drugs or cytokines). Indeed, the

humanized form of C225, known as Cetuximab, was approved by the FDA for treatment

of advanced colorectal cancer, demonstrating that these approaches have direct

pharmaceutical relevance. Furthermore, a recent published effort between Pfizer and

academic researchers shows that signal-response modeling is already being applied

successfully within the context of the pharmaceutical industry [22]. In this study, Clayton

et al. created a linear model, using NMR-measured pre-dose metabolite profiles, to

predict the effect of paracetamol (acetaminophen) on rat excretion profiles and liver

damage [22]. In addition, we recently applied this modeling technique to understand the

effects of ErbB2 receptor over-expression (implicated in a large number of breast

cancers) on cell proliferation and migration in human breast epithelial cells (unpublished

data), suggesting that this technique is broadly applicable to disease-relevant cell

systems.

Sometimes, for systems that have been studied in great detail, it becomes

possible to create a more mechanistic model of cell behavior based on intracellular

signals. Gene Network Sciences (GNS, Ithaca, NY, USA) has developed models for

human cell proliferation and apoptosis to study potential anti-cancer strategies. Using a

combination of known protein interactions and network inference, Christopher et al.

describe a model based largely on differential equations that predicts cell proliferation

[23]. While highly promising, it is worth noting that deterministic modeling in the area of
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cell behavior has proven very difficult, in part because of the level of detail required.

This fact prompted GNS to develop abstracted inference models to connect their

deterministic models to cell behavior in the absence of detailed signal-pathway

information [24].

8.1.4 Physiological Models

The previous section dealt with models that reveal relationships between cell

signaling and function. Given the current state of knowledge, these approaches face

great challenges in translating their predictions to clinically measurable outcomes.

Although breakthroughs in the fields of tissue engineering and the use of more

physiologically relevant cell systems have aided in addressing this issue, the problem of

understanding physiology through the use of cell-based computational models remains

a difficult one. For models predictive of physiology to be feasible, a system has to have

been extensively studied or describable at a high level of abstraction. Given the small

number of systems that presently fit these criteria, efforts in this field have produced

considerably fewer results than the approaches mentioned earlier in this review. There

are, however, a handful of encouraging results that have been published and an

increasing number of labs and companies are becoming involved in such efforts.

Noble describes a remarkable computational model of the heart that provides a

unified description of organ level physiology in terms of protein level biology. The model

provides non-intuitive explanations for how anti-arrhythmia drugs might work. Extensive

knowledge of signaling pathways, cell-cell organization, and the tissue geometry of the
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heart made this project possible [25]. Related efforts, such as the Physiome Project,

attempt to use computation to describe many more systems from the protein level

through to the organ level [26]. Other groups have tried to model pathophysiology

starting with an organ level (or sometimes even more abstracted) model and then

adding layers of information as necessary [27]. For instance, mathematical models of

Type 2 Diabetes have been used for over a decade to understand key parameters

pertaining to pathology in patients, such as insulin sensitivity and beta-cell function [28].

Entelos (Foster City, CA, USA) has utilized a 'top-down' modeling approach to generate

ODE-based models at the organ level. Lewis et al. used this framework to explore the

pathophysiology of asthma and found that the resulting model could capture the acute

and chronic characteristics of asthma. Importantly, their model also correctly predicted a

lack of clinical inefficacy for humanized anti-interleukin-5 (IL-5) antibodies[27, 29].

Although the number of models that allow for this type of powerful prediction are

few, it is clear from studies such as Stokes et al. that the potential benefits for a

pharmaceutical company are extremely high. These studies can be used to not only to

predict the clinical outcome of a particular drug, but also to identify novel interventions

that can 'front load' the R&D pipeline with physiologically relevant targets.

8.1.5 Conclusions and Future Directions in Industry

Computational models address a key issue in the pharmaceutical industry:

prediction. Whereas many traditional biological studies present insightful descriptions,

the application of the hypotheses to new parameter space such as different ligand
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concentrations or receptor numbers is often difficult. Computational modeling solves this

problem by bringing existing knowledge together in a quantitative framework that allows

scientists to predict the effects of system perturbations. Of course, models do not

always predict correctly. When models fail, the underlying assumptions are flawed and

fixing this depends upon identifying areas that require further experimentation.

Companies best able to execute tight integration between modeling and experiment

together with repeated iteration of the modeling/experiment cycle will reap the greatest

benefit from the described computational approaches.

Computational models fit within the workflow of the pharmaceutical R&D pipeline,

serving to coordinate and explain information being generated in both biological and

informatics groups. How well these models serve their function will depend on the

effective training of scientists that possess both biological intuition and computational

skills. The in silico component in research must still be coupled with hypothesis-driven

experimental design and is not a substitute for the more important in cerebro

component. The interrogation of models by those who have biological understanding

will be vital for the development of successful models. Most large pharmaceutical firms

currently have computational modeling groups, including Johnson & Johnson, Eli Lilly,

AstraZeneca, Pfizer, Novartis, GlaxoSmithKline, and Merck. In addition, a number of

small model-focused companies such as Gene Network Sciences, Entelos, BG

Medicine, BioSeek, and Merrimack Pharmaceutical are developing state-of-the-art

computational models for the pharmaceutical industry [30]. We believe that the most

successful models will not only provide predictive power but will also be scalable,

meaning that models currently appropriate for different phases in the R&D pipeline
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should be mutually compatible in anticipation of information that will connect disparate

R&D stages. Specifically, since PK models have already proven essential for the drug

development process, new models capable of integrating with PK models will be most

useful for pharmaceutical companies. As new computational tools become available,

companies successful in applying modeling will have a competitive advantage derived

from increases in predictive power along the R&D pipeline.

8.2 Concluding remarks

It is my hope that the work presented in this thesis will serve as a template for future

investigators interested in exploring cell signaling and cell behavior. In Chapters 2 and

3, I introduced new technologies for the measurement of kinase phosphorylation and

cell migration. It is hoped that these technologies will be further applied to systems of

interest, and in particular, that the migration assay will be used for high-throughput

applications such as drug or siRNA screens. In addition, it is hoped that the work in

Chapter 2 prompts future computational and experimental studies into the importance of

directionally persistent migration. In Chapters 4 and 5, I presented the application of

PLSR models to understand the effects of HER2 overexpression on cell signaling and

cell behavior. It is hoped that the many hypotheses generated by the models will be

further tested using the tools of molecular biology. It is further hoped that investigators

interested in constructing signal-response models will take advantage of the PLSR-

based advances documented in Chapter 5. Chapter 6 explored the role of signal state

context and off-target effects due to network crosstalk in the efficacy of drugs. It is

hoped that this work increases the attention paid to the network-signaling properties of
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drugs and that the modeling approaches used to understand these properties will be

applied to understand the efficacy of future drugs. Finally, a quantitative approach to

understanding Akt phosphorylation and activity was presented in Chapter 7. It is hoped

that this work will not only prompt future inquiry into the regulatory mechanisms of Akt,

but also serve as a blueprint for further work targeting other important kinases. In sum, I

hope that this work plays a small part in helping to develop a more predictive theory of

biological signaling and the behavior it governs.
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Chapter 9 Appendices

Appendix 1
% 2D migration analysis by Hyung-Do Kim
% Purpose: Quantitation of cell migration trajectories from coordinate
data

clear;
addpath(pwd,'-begin');
datadir = uigetdir;
cd(datadir);

% Enter experiment name
expname = input('\nEnter the experiment name: \n','s');
mkdir('Figures');
mkdir('Tiffs');

% Input file format: .txt
% Input text file:
filename = input('\nEnter the text file: \n','s');
data = load(filename);

% Enter time interval
interval_i = input('\nEnter the time interval in minutes: \n');
interval = interval i./60;

% Enter image conversion factor and convert
global conversion
conversion=input('\nEnter the um/pixel conversion factor: \n');
data = data.*conversion;

% Calculate mean square displacement using non-overlapping intervals
msdnonoverlap;
fprintf('\nMSD calculation completed\n');
wait = input('Press Enter to continue','s');

% Fit speed and persistence using generalized nonlinear least-squares
% regression
prwfit;

% Make arrays of data and Save data into csv file.
% First save .mat file with variables
save([expname '.mat'],'n_cells','cell','xx','yy','distance','msd',...

'sigma msd_cell', 'int_counter', 'avg totalmsd', 'maxmsd', 'interval',...

'Scalc','Sfit','Pcalc','Pfit', 'Calcresnorm', 'Fitresnorm', 'Pmisfit',...
'speedmean','speed_median','speed_sem','speedmax','speedmin',...
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'persistence_mean','persistence_median','persistence_sem', 'persistence_
max',...

'persistence_min','CImean','CI median','CI sem','CI max','CI min',...
'mu',

'mu_mean','meanpathlength','meanpathlength mean','total int');

% CSV file of individual cell data
% Row of parameters
csvname = [expname I ind.csv'];
parind = ['Cell #,' 'Number of Intervals,' 'Calc. Speed Mean [um/hr],'
'Calc. Speed SEM [um/hr],' 'Fit Persistence [min],'...

'Fitting Residuals,' 'Chemotactic Index,' 'Total Path Length [um],'
'Total Displacement [um],'

'Random Motility C. [um^2/hr],' 'Mean Path Length [um]'];
fid = fopen(csvname, 'wt');
fprintf(fid, '%s', parind);
fclose('all');
% Data
indM = [[l:n_cells]' total_int' Scalc(:,l) Scalc(:,2) Pcalc(:,l).*60
Calcresnorm(:,l) CI(:,l) . -

totalcellpath_length' totalcell displacement' mu(:,l)
meanpathlength(:,1)];
dlmwrite(csvname, indM, '-append','roffset',l);
clear indM;

% CSV file of pooled data set
% Column of parameters
csvname = [expname '_pool.csv'];
parpool = ['Number of cells,','Speed Mean [um/hr],','Speed SEM
[um/hr], ',...

'Speed Median [um/hr],','Speed Max [um/hr],','Speed Min
[um/hr],',.

'Persistence Mean [min],','Persistence SEM [min, ','Persistence
Median [min],',...

'Persistence Max [min],','Persistence Min [min],','Persistence
Misfit,','CI Mean,','CI SEM,',...

'CI Median,','CI Max,','CI Min,','Random Motility C
[um^2/hr],','Mean Path Length [um],'];
fid = fopen(csvname, 'wt');
fprintf(fid, '%s', parpool);
fclose('all');
% Data
poolM = [n_cells speed mean speed_sem speed_median speedmax speed min
persistence_mean.*60 .

persistence_sem.*60 persistencemedian.*60 persistence max.*60
persistencemin.*60 Pmisfit(l) CI mean CI sem ...

CI median CI_max CI_min mu_mean meanpathlength_mean];
dlmwrite(csvname, poolM, '-append','roffset',1);
clear poolM

% msdnonoverlap.m - Hyung-Do Kim 3.1.2006
% modified from Brian Harms 6.4.2002
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% Calculates time interval-dependent mean-squared-displacements from
cell
% trajectory coordinates by the method of non-overlapping intervals
(see
% Dickinson and Tranquillo, AIChE J, 1993)

% Code provides the mean-squared displacement data for individual cells
and
% population of cells in the experiment, including the SEM for each
cell's
% MSD to track error propagation through a total experiment cell mean.
It
% also calculates other cell path parameters and plots MSD vs Time
interval

% Store number of time points and number of cells tracked.
nt = size(data, );
n cells = size(data,2)./2;

% Counter for total number of displacements per interval length
int counter = zeros(nt - 1,1);

% Counter for total time points of a track
tp_counter = zeros(l,nt);

% loop to separate the raw data into individual cells
for i = l:n cells

% reads the X and Y coordinates of a single cell
cell{i} = data(:,2*i-l:2*i);

% Find all non-zero entries and truncates all zeros off the input
data

I = find(cell{i}(:,1));
cell{i} = cell{i}(I,1:2);

% Add the number of time points of this track to the time-point-
counter

tp_counter(size(cell{i},l)) = tp_counter(size(cell{i},l)) + 1;

% x- and y- coordinates cells
x{i} = cell{i}(:,l);
y{i} = cell{i}(:,2);
% Calculate displacements in x and y direction in r.t. first time

point.
xx{i}= x{i}-x{i} (1);
yy{i}= y{i}-y{i} (1);

% Number of possible intervals in current track.
total_int(i) = length(x{i}) - 1;

% Vector of number of nonoverlapping intervals for each interval
length (t).

v_nonoverlapint = floor(total int(i)./(1:total int(i))');
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% Loop for all possible time points for displacement measurements
for j = l:total int(i)

% Loop all possible starting points for a given time period
% columns are time values; rows are distances traveled in that

time
for k = l:vnonoverlapint(j)

distance{i}(k,j) = (x{i}(l + j*k) - x{i}(l + j*(k-1)))^2 +

(y{i}(l+j*k) - y{i}(1 + j*(k-1)))^2;
end

% Mean squared displacement data for cell{i}
msd{i}(j,l) = sum(distance{i}(:,j))/v_nonoverlapint(j);
% Number of intervals for time period i for cell{b}
msd{i}(j,2) = v_nonoverlapint(j);
% Same in vector format for later calculations
msd_v(j,2*i-l) = sum(distance{i}(:,j))/v_nonoverlapint(j);
msd_v(j,2*i) = v_nonoverlapint(j);

% Finds non-zero distance measurements for a given cell and
time

% interval length
J = find(distance{i}(:,j));

% Puts these distances in a vector for determination of
variance

cov_distance{j} = distance{i}(J,j);

% individual cell SEM for the MSD
sigma_msd_cell{i} (j) =

cov(cov_distance{j})/sqrt(length(cov_distance{j}));

% count the total number of intervals for time period j summed
for

% all cells
int_counter(j) = int_counter(j) + v_nonoverlapint(j);

end

% Calculate path information for this cell
% Total path length
total_cell_path length(i) = (sum((distance{i}(:,l)).^0.5))';
% Total cell displacement
total_celldisplacement(i) = (distance{i}(l,totalint(i)))^0.5;
% Chemotactic Index
CI(i,l) = totalcell_displacement(i)./total_cell_pathlength(i);

end

% Plot MSD vs time interval in a subplot
if n cells > 25

columns = 10;
else
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columns = 5;
end

scrsz = get(0,'ScreenSize');
figure('Position', [scrsz(3)/6 scrsz(4)/6 scrsz(3)/1.4 scrsz(4)/1.4],...

'Name','MSD vs. Time Plot Window','NumberTitle', 'off')
rows = ceil(ncells./columns);
if n cells < columns

for i = l:n cells
subplot(l,n cells,i);
plot(l:total_int(i),msd{i}(:,1),'xk');
title(['Cell #',num2str(i)]);

end
else

for i = l:rows
for j = l:columns

if (i - 1).*columns + j > n cells
break

end
subplot(rows,columns,(i - 1).*columns + j);
plot(l:totalint((i - 1).*columns + j),msd{(i - 1).*columns

+ j}(:,l),'xk');
title(['Cell #',num2str((i - l).*columns + j)]);

end
end

end

saveas(gcf,[pwd '\Figures\' expname '_MSDplot.fig']);
saveas(gcf, [pwd '\Tiffs\' expname '_MSDplot'],'tif');

% Calculate mean-square displacements averaged across all cells (weigh
% individual cell by time periods contributed to total)
for i = l:n cells

avg_total_msd(:,i) = msd_v(:,2*i-1) .*msd_v(:,2*i)./intcounter;
end
% Average total MSD for each time interval
avg_totalmsd = sum(avg_total_msd,2);
% Maximum averaged total MSD
max_msd = max(avg_total_msd);
% prwfit.m - Hyung-Do Kim 3.2.2006
% modified from Lisa Joslin 4.23.2004, originally adapted from Gargi
% Maheshwari

% Fits the mean squared displacement data obtained from msdnonoverlap.m
to
% the persistent random walk model to obtain S and P. Two methods are
% used: calculate S from MSD then fit P; fit both S and P. The first
% method usually fares better.
% Plots trajectory, speed at each time point, theoretical curves given
S
% and P, and the MSD scatter
% For pooled data set, the program plots the Wind-Rose plot,
Persistence
% vs. CI plot, S/P plot of each cell, and the histogram of S and P
% distribution.
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global Scalc z
Scalc = [];
Sfit = [];
Pcalc = [1;
Pfit = [];

% Fitted P over maximum P counter
Pmisfit = zeros(l,2);

for z = l:n cells
% Convert intervals to hours
time = interval.*[l:total_int(z)] ';

% Method 1 - Calculate speed and fit persistence

% Calculate speed from distance values
Scalc(z,l) = sqrt(msd{z}(l,l))/interval; % Mean

% Find non-zero values for distances for covariance calculations
J = find(distance{z}(:,l));
cov_speed = sqrt(distance{z}(J,l))./interval;

Scalc(z,2) = std(cov_speed)/sqrt(length(cov_speed));

% One-parameter least-squares fit for P
% guess P to be the time interval
P 0 = interval;
% Upper and lower bound for P: total duration of exp, 0,

respectively
[Pcalc(z,l),Calcresnorm(z,l)] = lsqcurvefit(@prwfuncalc, P_0, time,

msd{z}(:,l), 0, nt.*interval,optimset('Display','off'));

% If P is larger than experiment duration, fitting may be faulty.
if Pcalc(z) > nt.*interval

Pcalc(z) = nt.*interval
Pmisfit(l) = Pmisfit(l) + 1;

end

% Method 2 - Fit both speed and persistence
Par _0 = [5 interval];
[Par,Fitresnorm(z,l)] = isqcurvefit(@prwfunfit, Par_0, time,

msd{z}(:,l), [0 0], [1000 nt.*interval],optimset('Display','off'));
Sfit(z,l) = Par(l);
Pfit(z,l) = Par(2);

% If P is larger than experiment duration, fitting may be faulty.
if Pfit(z) > nt.*interval

Pfit(z) = nt.*interval
Pmisfit(2) = Pmisfit(2) + 1;

end
end

% Plot the fitting of data for checking and trajectory paths and speed
at
% each time point
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% One does not have to see all individual plots:
seeplot = input(['Would you like to look at ' num2str(n cells)
individual cell plots? '], 's');
if (seeplot == 'y') 1 (seeplot == 'Y')

plotthem = 1;
else

plotthem = 0;
end

temp_counter = 0;
for i = l:n cells

time = interval.*[l:total int(i)] ';
% Calculate fitted curves
model calc = 2.*Scalc(i,l).^2.*Pcalc(i).*(time - Pcalc(i).*(l -

exp(-time./Pcalc(i))));
model_fit = 2.*Sfit(i,1) .A2.*Pfit(i).*(time - Pfit(i).*(l - exp(-

time./Pfit(i))));

% Plot calculated Speed/fitted Persistence Curve
figure('Position', [scrsz(3)/6 scrsz(4)/6 scrsz(3)/1.4

scrsz(4)/1.4] ...
'Name',['Model fitting to MSD data - Cell #'

num2str(i)],'NumberTitle','off')
subplot(2,2,3);
plot(time,msd{i}(:,l),'xk',time,model calc,'-r');
title(['Calc. S = ' num2str(Scalc(i,l)) ' um/h - Fit P

num2str(Pcalc(i,l).*60) ' min']);
xlabel('Time interval [h]');
ylabel('Mean Squared Displacement [um] ');

% Plot fitted speed/fitted persistence curve
subplot(2,2,4);
plot(time,msd{i}(:,1),'xk',time,model fit,'-r');
title(['Fit S = ' num2str(Sfit(i,l)) ' um/h - Fit P

num2str(Pfit(i,l) .*60) ' min']);
xlabel('Time interval (hr)');
ylabel('Mean Squared Displacement (um)');

% Plot cell trajectory
subplot(2,2,1);
plot(xx{i}, yy{i},'k.-');
title('Cell trajectory');
xlabel('x [um] ');
ylabel('y [um]');

% Plot speed at each time interval curve
subplot(2,2,2);
Splot = sqrt(distance{i}(:,l))./interval;
plot(time,Splot,'xb');
title('Speed at each time interval');
xlabel('Time [h]');
ylabel('Speed [um/h] ');

saveas(gcf, [pwd '\Figures\' expname '_celln_' num2str(i) '.fig']);
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saveas(gcf,[pwd '\Tiffs\' expname '_celln_' num2str(i)],'tif');

if plotthem == 0
close (gcf)

else
% Wait after 10 plots.

if round(i./10) == i./10
fprintf(['Cells # ' num2str(temp_counter.*10 + 1) '

num2str(i) ] ) ;
temp_counter = temp_counter + 1;
wait = input('\nPress Enter to continue','s');

end
end

end

% Wait for plots to be looked at
if plotthem == 1

if round(i./10) == i./10
else

fprintf([,Cells # ' num2str(tempcounter.*10 + 1) -
num2str (i)]);

wait = input('\nPress Enter to continue','s');
end

end

% Calculate basic statistics of speed and persistence across all cells
speed_mean = mean(Scalc(:,l));
speed_median = median(Scalc(: , ));
speed_sem = std(Scalc(:,l))./sqrt(length(Scalc(:,l)));
speed_max = max(Scalc(:,l));
speedmin = min(Scalc(:,l));
persistence_mean = mean(Pcalc(:,l));
persistence_median = median(Pcalc(:,l));
persistence_sem = std(Pcalc(:,l))./sqrt(length(Pcalc(:,l)));
persistence_max = max(Pcalc(:,l));
persistence _min = min(Pcalc(:,l));
CI_mean = mean(CI(:,l));
CI_median = median(CI(:,l));
CI_sem = std(CI(:,l))./sqrt(length(CI(:,l)));
CI max = max(CI(:,l));
CImin = min(CI(:,l));

% Plot Wind-Rose plot of all trajectories
figure;
for i = l:n cells

plot(xx{i},yy{i}, -k');
hold on;

end
hold off;
title(['Wind-Rose plot: S = ' num2str(speed_mean) +-
num2str (speed sem) ...

' um/hr - P = ' num2str(persistence_mean.*60) +-
num2str(persistence_sem.*60) ' min']);
axis([-500 500 -500 500]);
xlabel('x [um]');
ylabel('y [um]');
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saveas(gcf,[pwd '\Figures\' expname '_windrose.fig']);
saveas(gcf, [pwd '\Tiffs\' expname ' windrose'],'tif');

% Visualize Speed and Persistence distribution of all cells
% First, produce lines that show mean speed and persistence
S_Line = zeros(2,1) + speed_mean;
P_Line = zeros(2,1) + persistence mean.*60;

figure;
% x axis: Speed, y axis: Persistence
plot(Scalc(:,l), Pcalc(:,l).*60, 'ok', SLine,
linspace(0,persistencemax.*60,2),...

'-r', linspace(0,speed_max,2), P Line, '-b');
legend('Single Cells', 'Mean Persistence', 'Mean Speed',2);
xlabel('Speed [um/hr] ');
ylabel('Persistence (min]');
axis([0 speed_max 0 persistence_max.*60]);
title('Scatter Plot: Speed and Persistence per cell');

saveas(gcf,[pwd '\Figures\' expname '_SPscatter.fig']);
saveas(gcf, [pwd '\Tiffs\' expname '_SPscatter'], 'tif');

% A good way to check persistence values is to compare Chemotactic
Index
% and Persistence Times
figure;
plot(CI,Pcalc(:,l).*60, 'ko');
xlabel('Chemotactic Index');
ylabel('Persistence [min]');
title('Persistence vs. Chemotactic Index Plot');

saveas(gcf,[pwd '\Figures\' expname ' _PvsCI.fig']);
saveas(gcf,[pwd '\Tiffs\' expname '_PvsCI'],'tif');

% Generate histograms of speed and persistence
% Parameters for maximum bin edge and bin numbers
pretty
if speed_max > 100

Smax_h = ceil(speed max./10).*10;
Sbins = 21;

elseif speed_max > 50
Smax_h = round(speed_max./10).*10 + 5;
Sbins = Smax h./5 + 1;

elseif speedmax > 20
Smax_h = ceil(ceil(speedmax)./2).*2;
Sbins = Smax h./2 + 1;

else
Smax_h = ceil(speedmax);
Sbins = Smaxh + 1;

end
if persistence max.*60 > 100

Pmax_h = ceil(persistence_max.*60./10).*10;
Pbins = 20 + 1;

elseif persistence max.*60 > 50

to make histogram
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Pmax_h = round(persistence_max.*60./10).*10 + 5;
Pbins = Pmaxh./5 + 1;

elseif persistence max.*60 > 20
Pmax_h = ceil(ceil(persistence_max.*60./2)).*2
Pbins = Pmax h./2 + 1;

else
Pmax_h = ceil(persistencemax.*60);
Pbins = Pmax h + 1;

end
if CI max > 0.5

CImax_h = ceil(CI_max.*10)./10;
CIbins = CImaxh./0.05 + 1;

else
CImax_h = ceil(ceil(CImax.*100)./2).*2./100;
CIbins = CImaxh./0.02 + 1;

end
% Create bin vectors
Sbinv = linspace(0,Smax h,Sbins);
Sgenbinv = linspace(0,150,31);
Pbinv = linspace(0,Pmax h,Pbins);
Pgenbinv = linspace(0,360,19);
CIbinv = linspace(0,CImax h,CIbins);
CIgenbinv = linspace(0,1,21);

% Count according to bins
Hist_S = histc(Scalc(:,l),Sbinv)./n_cells;
Histgen_S = histc(Scalc(:,l),Sgenbinv)./n_cells;
Hist P = histc(Pcalc(:,l).*60,Pbinv)./n cells;
Histgen_P = histc(Pcalc(:,l).*60,Pgenbinv)./n_cells;
Hist_CI = histc(CI(:,l),CIbinv)./n_cells;
Histgen_CI = histc(CI(:,l),CIgenbinv)./n_cells;

% Plot histogram
figure('Position ',[scrsz(3)/6 scrsz(4)/6 scrsz(3)

'Name','Histogram Plot','NumberTitle','off')
subplot (2,3,1);
bar(Sbinv,Hist_S,'histc');
title('Speed Distribution');
xlabel (Speed [um/h] ');
ylabel('Fraction of Total Cells');
axis([0 Smax h 0 1]);
subplot(2,3,4);
bar(Sgenbinv,Histgen S,'histc');
xlabel('Speed [um/h] ');
ylabel('Fraction of Total Cells');
axis([0 155 0 1]);
subplot(2,3,2);
bar(Pbinv,Hist P,'histc');
title('Persistence Distribution');
xlabel('Persistence [min]');
ylabel('Fraction of Total Cells');
axis([0 Pmax h 0 1]);
subplot (2,3,5);
bar(Pgenbinv,HistgenP,'histc');
xlabel('Persistence [min] ');

/1.2 scrsz(4)/1.8],...
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ylabel('Fraction of Total Cells');
axis([0 380 0 1]);
subplot(2,3,3);
bar(CIbinv,Hist CI,'histc');
title('Chemotactic Index Distribution');
xlabel('Chemotactic Index');
ylabel('Fraction of Total Cells');
axis([0 CImax h 0 11);
subplot(2,3,6);
bar(CIgenbinv,Histgen CI,'histc');
xlabel('Chemotactic Index');
ylabel('Fraction of Total Cells');
axis([0 1.05 0 13);

saveas(gcf, [pwd '\Figures\' expname '_SPCIhist.fig']);
saveas(gcf,[pwd '\Tiffs\' expname '_SPCIhist'],'tif');

% Calculate few more parameters
mu(:,l) = 0.5.*Scalc(:,1).^2.*Pcalc(:,l);
meanpathlength = Scalc(:,l).*Pcalc(:,l);
mu_mean = 0.5.*speedmean. ̂2.*persistence_mean;
meanpathlengthmean = speed_mean.*persistence mean;

%function prwfun %%

function f = prwfun(time, S)

f = 2*S^2*P*[time - P*(l-exp(-time/P))];

%% function prwfuncalc %%
function f = prwfuncalc(P, time)

global Scalc z

f = 2*(Scalc(z,l))^2*P*[time - P*(l-exp(-time/P))];

%% function prwunfit %%

function f = prwfunfit(Par, time)

f = 2*Par(1)^2*Par(2)*[time - Par(2)*(l-exp(-time/Par(2)))];

283



Appendix 2

%% Written by Hyung-Do Kim, Lauffenburger Lab %%

function varargout = woundgui(varargin)
% WOUNDGUI M-file for woundgui.fig
% WOUNDGUI, by itself, creates a new WOUNDGUI or raises the
existing
% singleton*.

% H = WOUNDGUI returns the handle to a new WOUNDGUI or the handle
to
% the existing singleton*.

% WOUNDGUI('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in WOUNDGUI.M with the given input
arguments.

% WOUNDGUI('Property','Value',...) creates a new WOUNDGUI or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before woundgui_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to woundgui_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)"

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help woundgui

% Last Modified by GUIDE v2.5 21-Sep-2005 18:11:03

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui Name', mfilename,

'guiSingleton', gui_Singleton,
'guiOpeningFcn', @woundgui_OpeningFcn,
'gui_OutputFcn', @woundguiOutputFcn, .
'gui_LayoutFcn', []
'gui Callback', [);

if nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});

end

if nargout
[varargout{ :nargout}] = gui_mainfcn(gui_State, varargin{: });

else
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gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before woundgui is made visible.
function woundgui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to woundgui (see VARARGIN)

% Choose default command line output for woundgui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes woundgui wait for user response (see UIRESUME)
% uiwait(handles.figurel);

handles.load final = 0;
handles.filetype = '.bmp';
set(handles.workdir,'String',pwd);
set(handles.savedir,'String',pwd);

axes(handles.fig_beg); % Select the proper axes
imshow(ones(512,512));
axes(handles.fig_mid);
imshow(ones(512,512));
axes(handles.fig_end);
imshow(ones(512,512));

addpath(pwd, '-begin');

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout = woundgui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

function workdir_Callback(hObject, eventdata, handles)
% hObject handle to workdir (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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% Hints: get(hObject,'String') returns contents of workdir as text
% str2double(get(hObject,'String')) returns contents of workdir
as a double

% --- Executes during object creation, after setting all properties.
function workdir CreateFcn(hObject, eventdata, handles)
% hObject handle to workdir (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in workdirbrowse.
function workdirbrowse_Callback(hObject, eventdata, handles)
% hObject handle to workdirbrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
workdir_text = uigetdir;
if isstr(workdir text) == 1

set(handles.workdir,'String',workdirtext);
end

function frames_Callback(hObject, eventdata, handles)
% hObject handle to frames (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of frames as text
% str2double(get(hObject,'String')) returns contents of frames
as a double

% --- Executes during object creation, after setting all properties.
function frames_CreateFcn(hObject, eventdata, handles)
% hObject handle to frames (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end
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function interval_Callback(hObject, eventdata, handles)
% hObject handle to interval (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of interval as text
% str2double(get(hObject,'String')) returns contents of interval
as a double

% --- Executes during object creation, after setting all properties.
function interval_CreateFcn(hObject, eventdata, handles)
% hObject handle to interval (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in imageenc_popup.
function imageenc_popup_Callback(hObject, eventdata, handles)
% hObject handle to imageenc_popup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns imageenc_popup
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
imageencpopup
val = get(hObject,'Value');
switch val

case 1
handles.filetype = '.bmp';

case 2
handles.filetype = '.tif';

case 3
handles.filetype = '.jpg';

end
guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.
function imageenc popup_CreateFcn(hObject, eventdata, handles)
% hObject handle to imageenc_popup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
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% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get (0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in loadbutton.
function loadbutton_Callback(hObject, eventdata, handles)
% hObject handle to loadbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

cd(get(handles.workdir,'String'));
filename = dir(num2str(['*, handles.filetype]));
handles.nframes = length(filename);

if handles.nframes > 0
for z = l:handles.nframes

[handles.I_orig(:,:,:,z), handles.map] =
imread(filename(z).name);

handles.Ifill(:,:,:,z) = imfill(handles.I orig(:,:,:,z));
end

set(handles.frames,'String' ,num2str(handles.nframes));
pixels = size(handles.Iorig);
set(handles.pixel_row,'String',num2str(pixels(1)));
set(handles.pixel_column,'String',num2str(pixels(2)));

handles.load final = 1;
set(handles.message,'String','');

axes(handles.fig beg); % Select the proper axes
imshow(handles.Ifill(:,:,:,1));
set (handles.frame beg_n,'String', '1');
axes(handles.fig mid);
imshow(handles.I_fill(:,:,:,ceil(handles.nframes./2)));

set(handles.frame mid n,'String',num2str(ceil(handles.nframes./2)));
axes(handles.figend);
imshow(handles.I_fill(:,:,:,handles.nframes));
set(handles.frame_end_n,'String' ,num2str(handles.nframes));

set (handles.frame beg_n,'String',l);

set(handles.frame mid n,'String',num2str(ceil(handles.nframes./2)));
set(handles.frameendn,'String',num2str(handles.nframes));

set(handles.message,'String','Images Loaded');
set(handles.savedir,'String',get(handles.workdir,'String'));

handles.full_update = 0;
handles.approx update = 0;
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handles.linear final = 0;
handles.crop_final = 0;
handles.binary_final = 0;
handles.linearrestore = 0;
handles.binary_restore = 0;

else
set(handles.message,'String',['No ' handles.filetype ' Image Files

Detected']);
end

guidata(hObject,handles);

% --- Executes on button press in restore.
function restore_Callback(hObject, eventdata, handles)
% hObject handle to restore (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on slider movement.
function thresh_slider_Callback(hObject, eventdata, handles)
% hObject handle to thresh slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of
% slider

set(handles.thresh,'String',num2str(get(handles.thresh_slider,'Value'))

S--- Executes during object creation, after setting all properties.
function thresh_slider CreateFcn(hObject, eventdata, handles)
% hObject handle to thresh slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', [.9 .9 .9]);
end
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function thresh Callback(hObject, eventdata, handles)
% hObject handle to thresh (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of thresh as text
% str2double(get(hObject,'String')) returns contents of thresh
as a double

val = str2double(get(handles.thresh,'String'));
min = get(handles.thresh,'Min');
max = get(handles.thresh,'Max');
default = 0.15;

if isnumeric(val) & length(val)==l & val >= min & val <= max
set(handles.thresh slider,'Value',val);

elseif isnumeric(val) & length(val)==l & val <= min
set(handles.thresh slider,'Value',min);
set(handles.thresh,'String',min);

elseif isnumeric(val) & length(val)==l & val >= max
set(handles.thresh slider,'Value',max);
set(handles.thresh,'String',max);

else
set(handles.thresh slider,'Value',default);
set(handles.thresh,'String',default);

end

% --- Executes during object creation, after setting all properties.
function thresh CreateFcn(hObject, eventdata, handles)
% hObject handle to thresh (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in begin_crop.
function begin_crop_Callback(hObject, eventdata, handles)
% hObject handle to begincrop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in final_crop.
function finalcrop_Callback(hObject, eventdata, handles)
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% hObject handle to final_crop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in skip_crop.
function skip_crop Callback(hObject, eventdata, handles)
% hObject handle to skip_crop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.binary final == 1;
handles.I_crop = handles.I_final;
handles.crop_final = 1;

else
set(handles.message, 'String', 'Binarization Missing');

end

guidata(hObject,handles);

function savedirCallback(hObject, eventdata, handles)
% hObject handle to savedir (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of savedir as text
% str2double(get(hObject,'String')) returns contents of savedir
as a double

% --- Executes during object creation, after setting all properties.
function savedirCreateFcn(hObject, eventdata, handles)
% hObject handle to savedir (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get (0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');
end

% --- Executes on button press in savedir_browse.
function savedir browse Callback(hObject, eventdata, handles)
% hObject handle to savedir browse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
savedirtext = uigetdir;
if isstr(savedir text) == 1

set(handles.savedir, 'String',savedirtext);
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end

function pixel_row_Callback(hObject, eventdata, handles)
% hObject handle to pixel_row (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, 'String') returns contents of pixel row as text
% str2double (get(hObject, 'String')) returns contents of
pixel_row as a double

% --- Executes during object creation, after setting all properties.
function pixel_row_CreateFcn(hObject, eventdata, handles)
% hObject handle to pixel_row (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(O, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

function pixel_column_Callback(hObject, eventdata, handles)
% hObject handle to pixel_column (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of pixel_column as text
% str2double(get(hObject, 'String')) returns contents of
pixel_column as a double

% --- Executes during object creation, after setting all properties.
function pixel_column_CreateFcn(hObject, eventdata, handles)
% hObject handle to pixel_column (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(O, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

function csvname_Callback(hObject, eventdata, handles)
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% hObject
% eventdata
% handles

handle to csvname (see GCBO)
reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of csvname as text
% str2double(get(hObject, 'String')) returns contents of csvname
as a double

% --- Executes during object creation, after setting all properties.
function csvname_CreateFcn(hObject, eventdata, handles)
% hObject handle to csvname (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, 'BackgroundColor'),
get(O, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

% --- Executes on button press in savebutton.
function savebutton_Callback(hObject, eventdata, handles)
% hObject handle to savebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set (handles.message, 'String',' ');
time_format = 0;
if handles.crop_final == 1

pixels = size (handles.I_crop) ;
totalarea = pixels(l) .*pixels(2);

for z = l:handles.nframes
handles.area(z) = totalarea - bwarea(handles.I_crop(:,:, :,z));

end

if isempty(get(handles.csvname, 'String')) 1
set (handles.csvname, 'String', 'data');

end

figure(l);
orig_movie = immovie (handles.I_orig,handles.map) ;
figure (1);
bw_movie = immovie (handles.I_final,handles.map) ;
movie2avi(orig_movie, [get(handles.savedir, 'String') '\'

get (handles.csvname, 'String') '_orig' '.avi'], 'compression', 'none');
movie2avi(bw_movie, [get(handles.savedir, 'String') '\'

get (handles.csvname, 'String') , bw' '.avi'], 'compression', 'none');
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x = linspace(0,handles.nframes - 1,handles.nframes);

val = str2double(get(handles.interval,'String'));
if isnumeric(val) & length(val)==l

if val > 0
time format = 1;
time = x.*val;

end
else

set(handles.interval,'String',");
end

figure (1);
if time format == 1

plot (time,handles.area./handles.area(l));
title('Normalized Wound Area vs. Time');
xlabel('Time [min]');
ylabel('Normalized Wound Area');

else
plot(x,handles.area./handles.area(l));
title('Normalized Wound Area vs. Frame');
xlabel('Frame #');
ylabel('Normalized Wound Area');

end

% Export data in a csv-file.

if time format == 1
export(:,l) = x';
export(:,2) = time';
export(:,3) = handles.area'./handles.area(l);

else
export(:,l) = x';
export(:,2) = handles.area'./handles.area(l);

end

expfile = [get(handles.savedir,'String') '\'
get(handles.csvname,'String') '.csv'];

dlmwrite(expfile,export,',');
set(handles.message,'String','Data Successfully Saved');

else
set(handles.message,'String','Image Cropping Missing');

end

% --- Executes on button press in approx.
function approx_Callback(hObject, eventdata, handles)
% hObject handle to approx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of approx
if get(hObject, 'Value') == 1;

set(handles.full,'value',0);
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end
if get(hObject,'Value') == 0 && get(handles.full,'Value') == 0

set(handles.approx,'Value',l);
end

% --- Executes on button press in full.
function full_Callback(hObject, eventdata, handles)
% hObject handle to full (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of full
if get(hObject,'Value') == 1;

set(handles.approx,'Value',0);
end
if get(hObject,'Value') == 0 && get(handles.approx,'Value') == 0

set(handles.full,'Value',l);
end

% --- Executes on button press in update 2.
function update 2 Callback(hObject, eventdata, handles)
% hObject handle to update_2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.full_update == 0 && get(handles.full,'Value') == 1 &&
get(handles.approx,'Value') == 0 && handles.load final == 1

% Background subraction full
for z = l:handles.nframes

background(:,:,:,z) =
imopen(handles.I_fill(:,:,:,z),strel('disk',100,4));

background2(:,:,:,z) = imadjust(background(:,:,:,z), [], [0
0.7]);

I back(:,:,:,z) =
imsubtract(handles.I_fill(:,:,:,z),background2(:,:,:,z));

handles.Icontrast(:,:,:,z) = imadjust(I back(:,:,:,z));
n = ceil(100.*z./handles.nframes);

end
% set(handles.progress,'String',' ');
% set(handles.percent,'String',' ');
handles.full update = 1;
set(handles.message, 'String','Background Subtraction Complete');

elseif handles.approx update == 0 && get(handles.full, 'Value') == 0 &&
get(handles.approx,'Value') == 1 && handles.load final == 1

background =
imopen(handles.I fill(:,:,:,handles.nframes),strel('disk',100,4));

background2 = imadjust (background, [], [0 0.7]);
for z = l:handles.nframes

I back(:,:,:,z) =
imsubtract(handles.I_fill(:,:,:,z),background2);

handles.Icontrast(:,:,:,z) = imadjust(I back(:,:,:,z));
n = ceil(100.*z./handles.nframes);

end
% set(handles.progress,'String',' ');
% set(handles.percent,'String',' ');
handles.approx_update = 1;
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set(handles.message,'String','Background Subtraction Complete');
else

set(handles.message,'String','Load Image Files First');
end

if handles.load final == 1
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_contrast(:,:,:,str2num(get(handles.frame_beg_n,'String
i))));

axes(handles.fig_mid);

imshow(handles.I_contrast (:,:,:,str2num(get(handles.framemid n,'String

axes(handles.fig_end);

imshow(handles.I_contrast (:,:,:,str2num(get(handles.frameend_n,'String
i))));

end

guidata(hObject,handles);

% --- Executes on button press in update 3.
function update 3 Callback(hObject, eventdata, handles)
% hObject handle to update_3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.full_update == 1 handles.approx_update == 1
for z = l:handles.nframes

I filter(:,:,:,z) = imadjust(handles.I contrast(:,:,:,z),[0
get(handles.index slider,'Value')],[0
1],get(handles.gamma_slider,'Value'));

handles.Inoise(:,:,:,z) = medfilt2(Ifilter(:,:,:,z),[5 51);
end
set(handles.message,'String','');

axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_noise(:,:,:,str2num(get(handles.frame_beg_n,'String'))

axes(handles.fig_mid);

imshow(handles.I_noise(:, :,:,str2num(get(handles.frame mid n,'String'))

axes (handles.fig_end);

imshow(handles.I_noise(:,:,:,str2num(get(handles.frameendn,'String'))

handles.linear final = 1;
handles.linear restore = 0;
set(handles.message,'String','Linear Scaling Complete');

else
set(handles.message,'String','Background Subtraction Missing');

end
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guidata(hObject,handles);

% --- Executes on button press in restore 3.
function restore 3 Callback(hObject, eventdata, handles)
% hObject handle to restore 3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.full_update == 1 handles.approx update == 1
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_contrast(:,:,:,str2num(get(handles.frame_beg_n,'String
'))));

axes(handles.fig_mid);

imshow(handles.I_contrast(:,:,:,str2num(get(handles.framemidn,,String
i))));

axes(handles.fig_end);

imshow(handles.I_contrast(:,:,:,str2num(get(handles.frameendn,,String

set(handles.message,'String','');
handles.linearrestore = 1;

else
set(handles.message,'String','Background Subtraction Missing');

end
guidata(hObject,handles);

% --- Executes on slider movement.
function index_sliderCallback(hObject, eventdata, handles)
% hObject handle to index slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of slider

set(handles.index,'String',num2str(get(handles.index_slider,'Value')));

% --- Executes during object creation, after setting all properties.
function index_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to index slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', [.9 .9 .9]);
end
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function indexCallback(hObject, eventdata, handles)
% hObject handle to index (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of index as text
% str2double(get(hObject,'String')) returns contents of index as
a double

val = str2double(get(handles.index,'String'));
min = get(handles.index,'Min');
max = get(handles.index,'Max');
default = 0.5;

if isnumeric(val) & length(val)==l & val >= min & val <= max
set(handles.index slider,'Value',val);
set(handles.index,'String',num2str(val));

elseif isnumeric(val) & length(val)==l & val <= min
set(handles.index slider,'Value',min);
set(handles.index,'String','0.0');

elseif isnumeric(val) & length(val)==l & val >= max
set(handles.index slider,'Value',max);
set(handles.index,'String','1.0');

else
set(handles.index slider,'Value',default);
set(handles.index,'String',default);

end

% --- Executes during object creation, after setting all properties.
function index CreateFcn(hObject, eventdata, handles)
% hObject handle to index (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function gamma slider_Callback(hObject, eventdata, handles)
% hObject handle to gamma_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of slider

set(handles.gamma,'String',num2str(get(handles.gamma slider,'Value')));
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% --- Executes during object creation, after setting all properties.
function gamma slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to gamma_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),
get (0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', [.9 .9 .9]);
end

function gamma Callback(hObject, eventdata, handles)
% hObject handle to gamma (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of gamma as text
% str2double(get(hObject,'String')) returns contents of gamma as
a double

val = str2double(get(handles.gamma,'String'));
min = get(handles.gamma,'Min');
max = get(handles.gamma,'Max');
default = 0.7;

if isnumeric(val) & length(val)==l & val >= min & val <= max
set(handles.gammaslider,'Value',val);
set(handles.gamma,'String',num2str(val));

elseif isnumeric(val) & length(val)==l & val <= min
set(handles.gamma_slider,'Value',min);
set(handles.gamma,'String','0.0');

elseif isnumeric(val) & length(val)==l & val >= max
set(handles.gammaslider,'Value',max);
set(handles.gamma,'String','1.0');

else
set(handles.gammaslider,'Value',default);
set(handles.gamma,'String',default);

end

% --- Executes during object creation, after setting all properties.
function gamma CreateFcn(hObject, eventdata, handles)
% hObject handle to gamma (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
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if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in update_5.
function update 5_Callback(hObject, eventdata, handles)
% hObject handle to update_5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Specify Image Region of Interest
set(handles.message,'String','');

if handles.binary_final == 1
rect = getrect(handles.fig_beg);
axes(handles.fig_beg);

rectangle('Position', [rect (1)
dgeColor',[1 0 01);

axes(handles.fig_mid);

rectangle('Position',[rect (1)
dgeColor',[1 0 01);

axes(handles.figend);

rectangle('Position', [rect (1)
dgeColor',[l 0 0]);

,rect(2),rect(3),rect(4)],'LineWidth',2,'E

,rect(2),rect(3),rect(4)], 'LineWidth',2,'E

,rect(2),rect(3),rect(4)],'LineWidth',2,'E

handles.coord = rect;
else

set(handles.message,'String','Binarization Missing');
end

guidata(hObject,handles);

% --- Executes on button press in restore_5.
function restore 5 Callback(hObject, eventdata, handles)
% hObject handle to restore 5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.binary_final == 1
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_final(:,:,:,str2num(get(handles.framebeg_n,,String'))

axes(handles.fig_mid);

imshow(handles.I_final(:,:,:,str2num(get(handles.frame mid n,,String'))

axes(handles.fig_end);

300



imshow(handles.I_final(:,:,:,str2num(get(handles.frame endn, 'String'))

else
set(handles.message, 'String','Binarization Missing');

end

% --- Executes on button press in final 5.
function final 5 Callback(hObject, eventdata, handles)
% hObject handle to final 5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.I_crop = [];

if handles.binary_final == 1
for z = l:handles.nframes

handles.I_crop(:,:,:,z) =
imcrop(handles.I final(:,:,:,z),handles.coord);

end
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_crop (:,:,:,str2num(get (handles.framebegn, 'String')))

axes (handles.fig_mid);

imshow(handles.Icrop(:,:,: ,str2num(get(handles.frame_mid_n, 'String')))

axes(handles.fig_end);

imshow(handles.I_crop(:,:,: ,str2num(get(handles.frame_endn,'String')))

handles.crop_final = 1;
else

set(handles.message,'String','Binarization Missing');
end

guidata(hObject,handles);

% --- Executes on button press in update 4.
function update_ 4Callback(hObject, eventdata, handles)
% hObject handle to update 4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Binarization
if handles.linear final == 1;

for z = 1:handles.nframes
level = graythresh(handles.I_noise(:,:,:,z)) -

get(handles.thresh slider, 'Value');
I bw(:,:,:,z) = im2bw(handles.I noise(:,:,:,z),level);
Ierode(:,:,:,z) = bwmorph(Ibw(:,:,:,z), 'erode');
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handles.I final(:,:,:,z) =
bwmorph(I_erode(:,:,:,z),'dilate',2);

end
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_final(:,:,:,str2num(get(handles.frame_beg_n,'String'))

axes(handles.fig mid);

imshow(handles.I_final (:,:,:,str2num(get(handles.frame_mid_n,'String'))

axes(handles.fig_end);

imshow(handles.I_final(:,:,:,str2num(get(handles.frameend n,'String'))

handles.binary_final = 1;
handles.binary_restore = 0;
set(handles.message,'String','Binarization Complete');

else
set(handles.message,'String','Linear Scaling Missing');

end

guidata(hObject,handles);

% --- Executes on button press in restore_4.
function restore 4 Callback(hObject, eventdata, handles)
% hObject handle to restore_4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if handles.linear final == 1;
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_noise(:,:,:,str2num(get(handles.frame_begn,'String'))

axes(handles.fig_mid);

imshow(handles.I_noise(:,:,:,str2num(get(handles.frame_mid n,'String'))

axes(handles.fig_end);

imshow(handles.I_noise(:,:,:,str2num(get(handles.frameend n,'String'))

set(handles.message,'String','');
handles.binary_restore = 1;

else
set(handles.message,'String','Linear Scaling Missing');

end

guidata(hObject,handles);

% --- Executes on button press in automate.
function automateCallback(hObject, eventdata, handles)
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% hObject handle to automate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of automate

% No Background subtraction done yet.

if handles.load final == 1
if handles.full_update == 0 && handles.approx_update == 0

if get(handles.full,'Value') == 1 &&
get(handles.approx,'Value') == 0

% Background subraction full
for z = l:handles.nframes

background(:,:,:,z) =
imopen(handles.I_fill(:,:,:,z),strel('disk',100,4));

background2(:,:,:,z) =
imadjust(background(:, :,:,z),[] , [0 0.7]);

I back(:,:,:,z) =
imsubtract(handles.I_fill(:,:,:,z),background2(:,:,:,z));

handles.I contrast(:,:,:,z) =
imadjust(Iback(:,:,:,z));

n = ceil(100.*z./handles.nframes);
end
% set(handles.progress, 'String',' ');
% set(handles.percent,'String',' ');
handles.full update = 1;
set(handles.message,'String','Background Subtraction

Complete');
elseif handles.approx update == 0 && get(handles.full,'Value')

0 && get(handles.approx,'Value') == 1
background =

imopen(handles.I_fill(:,:,:,handles.nframes),strel('disk',100,4));
background2 = imadjust(background, [],[0 0.7]);
for z = l:handles.nframes

I back(:,:,:,z) =
imsubtract(handles.I_fill(:,:,:,z),background2);

handles.I contrast(:,:,:,z) =
imadjust(Iback(:,:,:,z));

n = ceil(100.*z./handles.nframes);
end
% set(handles.progress,'String',' ');
% set(handles.percent,'String',' ');
handles.approxupdate = 1;
set(handles.message,'String','Background Subtraction

Complete');
end

end
if handles.linear final == 0

for z = 1:handles.nframes
I filter(:,:,:,z) = imadjust(handles.Icontrast(:,:,:,z),[0

get(handles.index_slider,'Value')],[0
] ,get(handles.gamma_slider,'Value'));

handles.I noise(:,:,:,z) = medfilt2(I filter(:,:,:,z),[55]);
end
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handles.linear final = 1;
set(handles.message,'String','Linear Scaling Complete');

end
if handles.binary_final == 0

for z = l:handles.nframes
level = graythresh(handles.Inoise(:,:,:,z)) -

get(handles.thresh slider,'Value');
I bw(:,:,:,z) = im2bw(handles.I noise(:,:,:,z),level);
Ierode(:,:,:,z) = bwmorph(I bw(:,:,:,z),'erode');
handles.I final(:,:,:,z)

bwmorph(I_erode(:,:,:,z),'dilate',2);
end
handles.binaryfinal = 1;
set(handles.message,'String','Binarization Complete');

end
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_final (:,:,:,str2num(get(handles.framebeg_n,'String'))

axes(handles.fig_mid);

imshow(handles.I_final (:,:,:,str2num(get(handles.framemidn,'String'))

axes (handles.fig_end);

imshow(handles.I_final (:, :,:,str2num(get(handles.frame_endn,'String'))

else
set(handles.message,'String','Load Image Files First');

end

guidata(hObject,handles);

function frame_beg n Callback(hObject, eventdata, handles)
% hObject handle to framebeg n (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of frame_beg n as text
% str2double(get(hObject,'String')) returns contents of
frame_beg n as a double

if handles.full_update == 0 && handles.approxupdate == 0
axes(handles.fig_beg); % Select the proper axes

imshow(handles.I_fill (:,:,:,str2num(get(handles.framebeg_n, String')))

elseif handles.linear final == 0 1 handles.linear restore == 1
axes(handles.figbeg); % Select the proper axes

imshow(handles.I_contrast(:,:,:,str2num(get(handles.frame_begn,'String

elseif handles.binary_final == 0 1 handles.binary_restore == 1
axes(handles.fig_beg); % Select the proper axes
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imshow(handles.I_noise(:,:,:,str2num(get(handles.framebeg_n,'String'))

elseif handles.binary_final == 1

axes(handles.fig_beg);

imshow(handles.I_final (:,:,:,str2num(get(handles.frame_beg_n,'String'))

end

% --- Executes during object creation, after setting all properties.
function frame_beg n CreateFcn(hObject, eventdata, handles)
% hObject handle to frame beg_n (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function frame mid n Callback(hObject, eventdata, handles)
% hObject handle to framemidn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of framemid_n as text
% str2double(get(hObject,'String')) returns contents of
frame mid n as a double

if handles.full_update == 0 && handles.approx_update == 0
axes(handles.fig_mid); % Select the proper axes

imshow(handles. Ifill(:,:,:,str2num(get(handles.frame mid n,'String')))

elseif handles.linear_final == 0 II handles.linear_restore == 1
axes(handles.fig_mid); % Select the proper axes

imshow(handles.I contrast(:,:,:,str2num(get(handles.frame mid n, 'String

elseif handles.binary_final == 0 1 handles.binary_restore == 1
axes(handles.fig_mid); % Select the proper axes

imshow(handles.Inoise(:,:, :,str2num(get(handles.frame midn,'String'))

elseif handles.binary_final == 1
axes(handles.figmid);

imshow(handles.I final(:,:, : ,str2num(get(handles.framemidn,'String'))
H);
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end

% --- Executes during object creation, after setting all properties.
function frame_mid n CreateFcn(hObject, eventdata, handles)
% hobject handle to frame mid n (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function frame_end n Callback(hObject, eventdata, handles)
% hObject handle to frame end n (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of frame end n as text
% str2double(get(hObject,'String')) returns contents of
frameendn as a double

if handles.full_update == 0 && handles.approx_update == 0
axes(handles.fig_end); % Select the proper axes

imshow(handles.I_fill(:,:,:,str2num(get(handles.frame_end_n,,String')))

elseif handles.linear_final == 0 I handles.linear restore == 1
axes(handles.fig_end); % Select the proper axes

imshow(handles.I_contrast(:,:,:,str2num(get(handles.frame_end_n,'String

elseif handles.binary_final == 0 1 handles.binary_restore == 1
axes(handles.fig_end); % Select the proper axes

imshow(handles.I_noise(:,:,:,str2num(get(handles.frame_endn,'String'))

elseif handles.binary_final == 1
axes(handles.fig_end);

imshow(handles.I_final (:,:,:,str2num(get(handles.frameendn,String'))

end

% --- Executes during object creation, after setting all properties.
function frame_end n CreateFcn(hObject, eventdata, handles)
% hObject handle to frame end n (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
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% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end
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Appendix 3

Parental Serum Free 24H Serum Free
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Figure A3-1: Wound closure curves for all wells. Normalized wound area
measured every 15 minutes is reported for all wells observed under each
condition.
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Figure A3-2: Histogram of raw data: cell speed (pm/hr). Cell speed
distributions for 24H and parental cells treated with EGF (100 ng.ml), HRG (80
ng/ml), or under serum-free conditions. Total cell number vary from 153-196.
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Supplemental Figure 5
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Figure A3-3: Histogram of raw data: cell directional persistence (min). Cell
persistence distributions for 24H and parental cells treated with EGF (100 ng.ml),
HRG (80 ng/ml), or under serum-free conditions. Total cell number vary from
153-196.
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Figure A3-4: Histogram of raw data: cell random motility coefficient
(pm2/hr). Cell random motility coefficient distributions for 24H and parental cells
treated with EGF (100 ng/ml), HRG (80 ng/ml), or under serum-free conditions.
Total cell number vary from 153-196.
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Appendix 4

EGFR pY1068
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Figure A4-1 : EGFR Y1068 phosphorylation in parental and 24H cells. Cells

were simulated with both HRG (80 ng/ml) and EGF (100 ng/ml). All data shown +

SEM.
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FAK pY397
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Figure A4-2 : Fak phosphorylation in parental and 24H cells. Cells were

simulated with both HRG (80 ng/ml) and EGF (100 ng/ml). All data shown +

SEM.
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PAXILLIN pY118
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Figure A4-3 : Paxillin phosphorylation in parental and 24H cells. Cells were

simulated with both HRG (80 ng/ml) and EGF (100 ng/ml). All data shown +

SEM.
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SRC pY418
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Figure A4-4: Src phosphorylation in parental and 24H cells. Cells were

simulated with both HRG (80 ng/ml) and EGF (100 ng/ml). All data shown +

SEM.
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