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ABSTR ?T

FIRST ORDER LOGIC AS A FORMAL LANGUAGE: AN INVESTIGATION OF
CATEGORIAL GRAMMAR

Harold D. Levin

Submitted to the Department of Philosophy and Linguistics
August 1976 in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

This work is primarily a detailed investigation of cate-
gorial grammar--a particularly simple kind of context free
phrase structure grammar with a uniform connection between
the syntactic and semantic structures which it assigns. Ex-
plicitly, the work is concerned with an elaboration of the
standard notion of categorial grammar due to Ajdukiewicz, Monta-
gue, Lewis, and Geach, with exposure of the limitations of such
grammars, development of a more general, "extended" categorial
grammar, and application of the extended grammar to the language
of first order logic and to a closely related fragment of Eng-
lish. Implicitly, the work is concerned with clarifying the
notion of logical form.

Parts 1-3 introduce the basic notions of categorial gram-
mar, emphasizing the syntactic component. Part 4 develops a
categorial grammar for a special language tailor-made to fit
this kind of grammar. Parts 5 and 6 attempt to apply cate-
gorial grammar to the language of first order logic, thereby
revealing limitations of the categorial framework, while also
analyzing the role of variables in quantification. Since cate-
gorial grammar may be considered a formalization of Frege's
theory of grammar and the language of first order logic is a
close variant of Frege's Begriffsscheift, the limitations re-
vealed are also limitations of Fregean grammatical theory. In
part 7 the basic notion of categorial grammar is extended to
remove the limitations while preserving the desirable features
by generalizing the modes of syntactic and semantic combination
allowed in the grammars. In part 8 the extended categorial
framework is applied to analyze the quantificational structure
of English and to compare that structure with the structure ofquantification in the language of first order logic. In part
9 more complicated structures of English are dealt with and the
extended categorial approach is compared with Montague's gram-
mar for English. In part 10 attention is given to problems of
the semantic interpretation of English within the categorial
framework. The ideas of David Lewis are extended to provide
a treatment of fully intensional contexts such as propositional
attitudes. In so doing a technical problem arises in the con-
strual of meanings (the problem does not seem limited to the
specific approach to meaning of this work) the solution of which
involves representing meanings by self-applicative functions.



PREFACE

In the spring of 1962 while afreshman at M.I.T. I sub-

mitted a paper entitled "Finite Automata and Linguistic The-

ories" for the linguistics course 23.782. The instructor,

Professor Chomsky, (charitably) gave me a C+. Also attending

that course was a woman named Barbara Hall.

I am afraid that I comprehended very little of what

passed before my eyes and ears during that course. But the

subject of transformational grammar and the excitement gen-

erated by the linguists returned frequently to my attention

during the eight years I was a student at M.I.T. I remained

an interested and (I hope) to some degree informed onlooker of

the research in theoretical linguistics while concentrating my

own efforts in the area of formal logic and philosophy of

science.

Thus, I quite naturally chose the mind-body problem as

my dissertation topic. I struggled, quite unhappily, with my

chosen topic until fall 1974 at which time, while teaching a

course on the philosophy of language at North Carolina State

University, I began the research which culminated in this dis-

sertat ion.

One of the sources of inspiration for my research was a

talk, "Some Transformational Extensions of Montague Grammar",

by Barbara Hall Partee which I had attended in April 1972 and

which was my first introduction to the fascinating subject of

categorial grammar. Thus it is rather fitting that mine should

be the first dissertation accepted and the first degree granted
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by the philosophy portion of the newly-combined department

of Philosophy and Linguistics.

I have numerous debts of gratitude to my family, col-

leagues, and teachers acquired over the inordinately long

period of nine years during which I was in the state ("pro-

cess" would be misleading here) of writing my dissertation.

Worthy of particular mention are my parents, for their en-

couragement and generosity, my wife, Connie, for her patience

and encouragement, my colleagues at North Carolina State for

intellectual stimulation and encouragement, and the members

of my dissertation committee for making the revision and de-

fense of my work a pleasant and rewarding experience. Special

thanks are due to Julia Noell for a painstaking and expert job

of typing what must have been a particularly vexing manuscript.
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Part 1 -- Preliminaries

It is frequently regarded as uncontentious that satisfactory

grammars exist for the language of first order logic thanks to

Frege and Tarski--and for the languages of other logics thanks to

others. The problem now is to construct satisfactory grammars

for natural languages such as English. While this may be so, I

believe it worthwhile to reconsider the problem of constructing

an adequate grammar for the language of first order logic (FOL);

it is more complex and rewarding than usually thought.

In this paper I examine in detail a number of categorially

based grammars for FOL to three ends: first, to shed light on

FOL (in particular, the role of variables); second, to explore

the nature and adequacy of Fregean semantics; and third, to com-

pare several proposals for the form of grammars. In doing so

the notion of a categorial grammar is extended in such a way

that all semantically significant structure is categorial and

variables and variable-binding operators are not an essential

feature of the grammatical apparatus. This extended categorial

grammar appears to have promise as a means for describing the

structure of natural languages, both syntactic and semantic.

For the sake of later comparison let us specify FOL as is

usually done.I The vocabulary of FOL consists of the logical

symbols '%, &, 23 , (,)2 plus infinitely many variables x1 , x 2 ''''2

plus infinitely many names a1 , a 2 ''''2 plus infinitely many pre-

dicates Ft, F2, *... of degree i, for i = 1, 2, .... The well

formed expressions (WFE) of FOL can be specified by an inductive

definition as follows:
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(i) If P is a predicate of degree i and n1 ,...,ni are

names, then Pn ..,.n is a WFE.

(ii) If A and B are WFEs, then 'bA and (A&B) are WFEs.

(iii) If A is a WFE containing the name n, then 9 vAv/n

is a WFE, where v is any variable and Av/n is the

result of replacing each occurrence of n in A by v.

(iv) A finite sequence of symbols is a WFE only if it

can be shown to be a WFE by a finite number of

applications of (i) - (iii).

FOL is a notational variant of the first-level portion of Frege's

Begriffsschrift.3 Notice that the above characterization does

not permit WFEs with free variables. There are almost as many

variants of the above presentation as there are writers on the

subject. What is important about it for our purposes is that it

is the sort of specification of the syntax of FOL that is given

by logicians.

A domain is any non-empty set, D. An interpretation of

FOL on D is a map, I, such that I(a.)eD and I.(F.)eD for each
) J

i,j. The usual sort of semantics for FOL defines truth relative

to an interpretation as follows:

(i) A WFE Pn1 ...n. is true on I if (I(nI),...,I(n ))EI(P).

(ii) A WFE 'UA is true on I if A is not true on I; a WFE

(A&B) is true on I if A is true on I and B is true

on I.

(iii) A WFE JvA is true on I if for some n not in A and

some interpretation, I', which is like I, except

perhaps on n, An/v is true on I', where An/v is the

result of replacing each free occurrence of v in A by n.
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This grammar and its variants are sufficient for the usual

purposes of logicians such as defining logical truth and logi-

cal consequence. Those interested in writing grammars for nat-

ural languages make other demands upon a grammar. We shall see

that imposing these other demands on a grammar of FOL leads to

insight about FOL and natural languages as well.
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Part 2 -- Syntax

Logicians specify the syntax of languages they study by

inductive definitions of the WFEs of those languages such as

the one given above for FOL. While that definition does de-

termine the class of WFEs quite definitely, it does not assign

any structure to those WFEs--at least not explicitly. The

syntactic components that linguists produce are also inductive

definitions, but differ in important ways from logician's syn-

tax. First of all, the linguist's inductive definitions define

not (just) the class of WFEs, but the class of structural de-

scriptions of WFEs. Of course, a structural description can

be thought of as a WFE too, but on a different (larger) vocab-

ulary. Secondly, the linguists inductive definitions are given

in a very special form, usually a context-free phrase structure

grammar (with or without transformations). As we shall see,

FOL can provide a useful test case for general doctrines about

grammar. In order to apply views formulated to deal with nat-

ural languages to FOL it is helpful to reformulate the grammar

of FOL. In this section we reformulate the syntax of FOL.

Here is a context-free phrase structure grammar for FOL:5

(GRl) S+AS (CR2) S+LP+ S+CON + S+RP

(CR3) S+NEG + S (CR4) S+Q+ V+ S

(CR5) AS+P' + T +...+ T (i occurrences of 'T') for i=l,2,...

(CR6) T+N (GR7) T+V

(CR8) NEG+% (CR9) CON+*&

(CR10 ) Q+ 3 (CR11) LP+ ( (CR12) RP+)

(GR13j) Na. for j=1,2,... (GR14j) Vex. for j=1,2,...
J J

(GR15) P +F4 for i,j=1,2,...
J J
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This grammar yields structural descriptions such as the following:

S

NEG

Q V S

x AS

P T

F

lx

Indeed the grammar gives plausible structural descriptions to

all the WFEs of FOL. However, it also generates expressions

which our previous definition does not classify as WFEs. For

example,

S

AS

IIP 100T

FV

X1

In general, the phrase structure grammar generates all of the

usual open sentences of FOL while the inductive definition does

not. Can we generate just the WFEs of the inductive definition

by means of a context-free phrase structure grammar? I con-

jecture that the answer is no, because of the need for agree-

ment between variables in the quantifier prefix and the sentential
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matrix. Variables behave like discontinuous constituents in

the original definition.6 The (conjectural) non-context free

character of important, common sets of expressions has conse-

quences even if we are solely interested in syntax. And as

soon as we take into account the needs of a semantic analysis

of FOL we are faced with more choices and constraints.

Let us call a grammar (syntax plus semantics) categorematic

with respect to a particular category (non-terminal symbol) C

if the semantic component of the grammar assigns a meaning to

every terminal phrase dominated by C in the structural descrip-

tions generated by the syntactic component. A category which

is not categorematic we shall call syncategorematic. A grammar

is categorematic if all of its categories are categorematic.

One of the questions we will be exploring in later sections is

the extent to which categorematic grammars can be constructed

for FOL and other languages. Even if we could somehow generate

structural descriptions of just the WFEs of our original induc-

tive definition, we will face the problem of giving a semantics

that treats the category of open sentences as categorematic,

thus departing from (perhaps only by elaborating) the original

semantics that we gave. Furthermore, the occurrence of paren-

theses and the categories that dominate them stand in the way

of constructing a categorematic grammar for FOL, for parentheses

serve to indicate how semantic combination of meanings is to

take place rather than having meanings themselves. In order

to facilitate the investigation of categorematic grammars, we

shall liberalize our notions of syntax to include "transforma-

tional grammars" with a context free phrase structure component



Ii.

that generates structural descriptions of semantically signifi-

cant base structures (deep structure) plus transformations that

operate to yield the final syntactic form (surface structure).

This is certainly within the spirit of our attempt to treat the

construction of a grammar for FOL by the principles that lin-

guists recommend for natural languages. And, as will become

clearer later on, it is not a matter of using a cannon to kill

a mosquito. We can then modify our rules by deleting (GR2),

(GRll), and (GR12) and by adding (GR2') and appropriate "trans-

formations".

(GR2') S+CON + S + S

We may also, if we wish, add filtering "transformations" which

always produce surface structures that contain no free variables

and no vacuous quantifications. But this does not dispose of

any semantic problems for us; open sentences still occur in the

deep structure and must be semantically interpreted in a cate-

gorematic grammar.

Let's describe the grammar just proposed for FOL as having

a phrase structure component and a functional component.8 The

functional component has two important purposes. First, it per-

mits us to construct grammars for languages that cannot be gen-

erated by context free phrase structure grammars alone. Second,

it permits the representation of a level of semantically signifi-

cant structure so that we can exclude extraneous syntactic struc-

ture and construct a categorematic grammar (as we shall see later

on) . In fact, the only reason I can see for restricting the phrase

structure component to be context free is that it is to generate

the semantically significant structures together with the expecta-
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tion that semantically significant structure is particularly

simple. From the standpoint of the class of (surface) terminal

strings generated, the restriction to grammars with a context

free phrase structure component plus a functional component con-

sisting of arbitrary recursive functions is no different than

merely requiring the set of strings to be recursively enumerable

and thus is the same as allowing arbitrary inductive definitions

of order o.9
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Part 3 -- Categorial Grammars

In the rest of this paper we shall concern ourselves with

a particularly simple and elegant sort of categorematic grammar

based upon a context free phrase structure component, which is

called a categorial grammar. The name 'categorial grammar' and

the original formulation are due to Ajdukiewicz, with further

developments due to Geach, Lewis, and Montague among others.1 0

Though important in its own right, the notion of categorial gram-

mar gains further interest because it gives an almost perfect

reconstruction of Frege's grammatical theory. I consider cate-

gorial grammar to be a merging of modern generative grammar with

Fregean grammar.

A categorial grammar is based on a finite set of basic cate-

gories, b1 i,...bn. If c is a category and c,...,Icn are cate-

gories, then so is the complex category c/(c ,...,cn). When

n=l we write c/c1 . Once vocabulary items are assigned a cate-

gory, all syntactic facts (about the base structure) are deter-

mined. An assignment of a category to each of finitely many

simple vocabulary items determines a context free phrase struc-

ture grammar as follows: The nonterminal symbols of the gram-

mar are those categories which have been assigned to simple vo-

cabulary items. To each basic nonterminal symbol there corre-

spond phrase structure rules of the sort bg4v , where b. is the

nonterminal symbol and vi is the jth vocabulary item assigned
J

to b . To each complex nonterminal symbol, c/(c1 ,..., cn), there

corresponds the phrase structure rule c+c/(c...,icn) + c1 +

... + cn. The categorial grammar determined by the assignment
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of categories to the simple vocabulary is the phrase structure

grammar consisting of the rules corresponding to the assigned

categories. Compound phrases generated by the grammar are

assigned whatever category immediately dominates them. We shall

see examples shortly.

A domain assignment for a categorial grammar is an assign-

ment of a domain (non-empty set) to each of the basic nontermi-

nal symbols of the grammar. Let D. be the domain assigned to

b ; these are the basic domains. Complex categories then get

assigned domains as follows: If c/(c ,...,cn) is a category

such that the categories c and cl,...,cn are assigned domains

D(c) and D(c1 ),...,D(cn) respectively, then D(c/(c1 ,...,cn))

is

D(c)D(cl)x...xD(cn'

the set of functions from the set of n-tuples of elements of

D(c ),...,D(cn) to elements of D(c). An interpretation based

on a domain assignment is a mapping of simple vocabulary items

into elements of the domains assigned to the categories of the

vocabulary items. Syntactically complex phrases receive inter-

pretations according to the principle of applying functions to

an appropriate set of arguments. Categories have a dual role,

indicating both syntactic and semantic structure. Indeed, in

a sense, categorial grammars identify syntactic (deep) structure

with semantic structure. Thus if e + e1 + ... + en is a phrase

generated by the grammar consisting of expressions of category

c/(c ,...icn), cl,...,cn respectively with interpretation i,

il,..., 1 n respectively, then the phrase is of category c with

interpretation i(i,...,in)*
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As our first example of a categorial grammar let us see

how congenial categorial grammars are to Frege's theory of

reference.1 1  There is one basic category, n, the category of

names. The hierarchy of complex categories built from this

base includes n/n, the category of 1-place first level func-

tion names, n/(n,n), of 2-place first level function names,

n/(n/n), of 1-place second level function names and so on for

each of the kinds of function names recognized by Frege. To

be more concrete let us consider a simple "language" with vo-

cabulary a, f, G of category n, n/n, n/(n/n) respectively.

The categorial grammar will contain the phrase structure rules

nra, n/n-'f, n/(n/n)+G

n-n/n + n, n+n/(n/n) + n/n

and yields such structural descriptions as

n

n/n n n/n n

f n/n n f n/(n/n) n/n

f a G f

A domain assignment for the language just assigns a non-empty

set, D, of objects to the basic category n and the set, DD ,of

functions from D to D to the complex category n/n, and the set

D (DD) , of function from functions from D to D into D to the com-

plex category n/(n/n). An interpretation assigns an element of

D to a, an element of DD to f, and an element of D (DD to G.

And in accord with Fregean principles, f + a gets interpreted

as the value of the appropriate function applied to the appropriate

object.
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Part 4 -- UrBegriffsschrift

In this section we present a categorial grammar for a

a12language due to Quine which is both simple and closely re-

lated to FOL. The vocabulary of the language of predicate

functor logic (PFL) consists of a finite number of predicates

F ,...,Fn of category p one of which is the special identity

predicate, I, plus the predicate functors CONJ of category

p/(p,p) and NEG, EXQ, PAD, PERM all of category p/p. The lan-

guage PFL is generated by the rules which categorize the vocab-

ulary together with the phrase structure rules

p+p/p + p and p+p/(p,p) + p + p.

We shall be primarily interested in special interpretations of,

PFL called intended interpretations. An intended interpreta-

tion of PFL consists first of an assignment of an intended do-

main to category p, namely a set P of all sets of n-tuples (for

each integer n) of elements of an arbitrary non-empty set, S.

An element of P is homogeneous if it consists entirely of n-

tuples of some single length which is said to be the degree of

the element, or if it is the empty set $ which is of degrees

0,1,2,..., or it is the set S which is of degree 0. An intended

interpretation assigns to each predicate an homogeneous member

of P. The predicate functors each get assigned special inter-

pretations as follows: If an is an homogeneous element of P

of degree n, we write anxl...xn to indicate that the n-tuple

of x1 ,...,rxn taken in the order given is a member of an

There are exactly two elements of degree 0, $ and S. COMJ

is interpreted as that function CONJ from pairs of members of P

of degrees j, k respectively to members of P of degree maximum
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k iof j and k such that COIJJ (an, b )x1.e'Xmax(j,k) if and only

if a3x 1 ...x and bk l'''xk for j, k > 0. Also:

CONJ ($, a) = CONJ (at 4) = $;

CONJ (S, a ) = CONJ (at, S) = a

To make CONJ be defined on all of PxP we can assign any arbi-

trary value to the other argument pairs. We will do the same

in subsequent definitions without explicit mention.

NEG is interpreted as the function, NEG, from members of

P of degree j to members of P of degree j such that NEG (a)x1 ..

.x if and only if not (ai)x 1 ...x.forj > 1 andNEG S=$and

NEG = S.

EXQ is interpreted as the function, EXQ, from members of

P of degree j to members of P of degree maximum (0, j-l) such

that EXQ (a)x2''...jx if and only if aix 1 x2 ...x for some x in

S for j>l and EXQ (a )=S if a x for some x in S and EXQ (a )=4

if a x for no x1 in S and EXQ ($)= $0 and EXQ (S)=S.

PAD is interpreted as the function, PAD, from elements of

degree j to elements of degree j+1 such that PAD (a)x .01xl

if aix. .. xfor j>0 and PAD ($))x, PAD (S)x for all x in S.

PERM is interpreted as the function, PERM, from elements

of degree j to elements of degree j such that PERM (a)xx3 '''

j 2 ifax x2x3 '''.x. for j>2 and PERM (ax2  l if a x x2 and

PERM (a )= and PERM (a0 )=a

I is interpreted as the element I of degree 2 such that

I_ 1 2 1 2'

We call an expression of PFL true on an intended interpre-

tation over the set S if the expression receives the interpre-

tation S and false if it receives the interpretation $. What
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makes PFL so interesting is that it is possible to correlate

expressions and interpretations of FOL (PFL) with expressions

and intended interpretations of PFL (FOL) in such a way that

the expression of FOL (PFL) is true on the given interpreta-

tion if the correlated expression of PFL (FOL) is true on the

correlated intended interpretation. In some interesting sense

FOL and PFL are intertranslatable. We have just given a cate-

gorial grammar for PFL and thereby a "truth definition" for PFL,

and we have done so in a way that allows us to make use of the

syntactic correlation of PFL with FOL to give a truth definition

for FOL that agrees in extension with the usual one. But have

we thereby also given a categorial grammar for FOL?

There is no question that in the straightforward, literal

sense of the words we have not given a categorial grammar for

FOL. The possibility still remains that we have done so in

an implicit manner, that a categorial grammar for FOL can be

"read off" the grammar for PFL. For example, we might try to

get around the obvious differences in vocabulary and syntax by

claiming that the paraphrase in PFL of an expression of FOL

represents the "deep structure" of the expression of FOL, and

thus that the difference between PFL and FOL is merely one of

"surface syntax". There is an influential tradition that offers

paraphrases or contextual definitions as analyses of the syntax

and semantics of expressions and which is reinforced by the mod-

ern notions of deep and surface structure. The only way to deal

with such claims is by detailed case-by-case analyses. In the

present case the claim is dubious. Consider for example, the

fact that on the most straightforward sort of translation, both
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Fa and _5x(Ax&Fx) get translated as EXQ CONJ A F via the usual

sort of elimination of constants by predicates. If we have

learned FOL in the normal way we have strong feelings that two

syntactically and semantically very different expressions have

been conflated, and further that it is the second of the two

that has (most nearly) been analysed. We ought to try to give

a grammar for FOL that does not do such violence to our intui-

tions.13
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Part 5 -- Frege's general analysis and difficulties in its application

Let us now examine one attempt at a categorial grammar

for FOL due to Frege. We start first with Frege's analysis of

the sentential fragment, SL. The categories of SL are based on

the single category n, which is assigned to the infinite collec-

tion of sentential symbols sitsl2'. The other vocabulary items

are v of category n/n and & of category n/(n,n). An intended

interpretation of SL assigns a domain of objects to category n

which includes the objects the True and the False (called truth

values) and assigns a truth value to each sentential symbol.

In addition nv and & are assigned functions which behave like

negation and conjunction respectively on the truth values and

any way that is convenient on other arguments.

The quantifier free fragment of FOL, QFFOL, adds to SL

vocabulary items a1 ,a2 1 *.. of category n called names and sym-

bols F, for each integer i, j, of category n/(n...n) (a total
J

of i+1 occurrences of 'n') called predicates of degree i. The

general principles of categorial grammar automatically extend

an intended interpretation of SL to QFFOL. We may need to add

some functions to help place parentheses and put & between its

argument expressions, but basically this is an intuitively sat-

isfactory grammar of QFFOL both from the Fregean standpoint and

the rmodern logician's standpoint. Notice that predicates and

sentential connectives are treated alike as are sentential sym-

bols and names. If we prefer to rule out such expressions as

v a1 and F1s1 we may base our grammar on two categories, n and

s. We make ' and & of category s/s and s/(s,s) respectively,

s ,s21,.. of category s and F. of category s/(n,...n) (i occur-
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rences of n). We then assign the set consisting solely of the

True and the False as the domain of s. This latter grammar

gives us exactly the quantifier free portion of FOL as originally

presented in Part 1.

All we need now to get FOL is to add the appropriate syn-

tax and semantics for 3 . This is how it is supposed to be: 3
is of category s/(s/n) and is interpreted by a second level

function which yields the True as value for a given first level

function as argument if the given function yields the True as

value for at least one object as argument. Variables get intro-

duced in the "surface structure" to fill in the gap in the pre-

dicate to which 3 is applied. Alas, this won't do. But an

analysis of the difficulties with this account of the grammar

of the existential quantifier yields an understanding that is

deeper than usual of the role of variables and an important

extension of the notion of a categorial grammar.

Consider the quite normal and indispensible expression

3x 1 V F1x1. It is not generated by our categorial grammar!

The obvious way of analyzing it, indeed the way that Frege in-

tended that it should be analysed, involves treating 'V' as a

phrase of category s/n on a par with F 1 in 9x 1 F1x1 . This in

turn involves treating rt as of category (s/n)/(s/n). Either

we must give up the categorial treatment or recategorize the

vocabulary (perhaps as in Part 4) or we must assign some vocab-

ulary to more than one (infinitely many) categories. For Frege

the second of these three alternatives is really no different

than the first; for him categorization of vocabulary was not

just a formal matter to be chosen as most convenient, but a



matter of fundamental ontological significance. While not so

strictly ruled out for us, we saw in Part 4 that resort to al-

ternative 2 is prima facie undesirable. Depending on how strong

one's intuitions are, failure to find a categorial account of

FOL different than that given for PFL may undermine one's in-

terest in categorial grammar. We thus seem to have no other

alternative but to treat % as infinitely homonymous since it

must be of infinitely many categories and since the semantic

domains of different categories are disjoint. Similar facts

obtain for &.

In order to treat existential quantification as of category

s/(s/n) we see that in addition to the entities of category s/n

which get assigned to the simple vocabulary items of category

s/n, there must be other entities of category s/n which get

assigned to compound expressions of category s/n. Because we

have expressions such as 3x Jx2F 2 lx x in FOL, existential1 2 1 12

quantification must be homonymously represented too, being of

categories s/(s/n)-vand (s/n)/(s/(n,n)) in the present example.

Furthermore, we seem to need additional operators on

predicates of all categories, which are not explicitly repre-

sented by vocabulary items, but are instead coded in the pattern

of occurrences of variables and names. For example, consider

31F xia1 , ]9x1 F x x1 , and 3lx x(F xx2&F x). In each

2of these cases, given an interpretation of F1 , it is clear what

entity the leftmost quantification should be interpreted as act-

ing upon; the problem is to derive such an entity from the syn-

tactic structure of the expression within the categorial frame-

work. This is an additional problem, distinct from the category



matching problem that leads us to suggest that the logical

operators were (infinitely) homonymous.
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Part 6 -- Martin's analysis and its categorial reformulation

In commenting on Frege's analysis of Begriffsschrift,

14
Ed Martin says:"

" [there -is] an inconsistency in (a) the

doctrine that connectives and quantifiers

stand for concepts, and (b) recognizing

connectives and quantifiers as meaningful

parts uf function names. Frege clearly

holds (a) ... (b) it seems to me, is in-

despensible; thus either more liberal

level restrictions must be instituted,

connectives and quantifiers must be treated

as syncategorematic, or [%, &,J 9 must be

held to be homonymous."

Martin offers his own formulation of a grammar for Begriffsschrift

in which "(a) has been sacrificed in favor of (b)." In this sec-

tion I offer a categorial reformulation of Martin's account which

combines his treatment of open sentences as having referents

(being assigned an interpretation) with the treatment of the log-

ical operators nu, &, 3 as homonymous. What follows consists

of Martin's rules of interpretation, (0) - (v), (slightly altered)

together with my reformulation of them and various comments.

An interpretation assigns a non-empty domain, D, to the

category n, and the set of the True and the False to the cate-

gory s. Predicates of degree i are of category s/(n,...,n)

(i occurrences of n) and assigned functions of this category as

their interpretations. Names are of category n and assigned ele-
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that associates an expression with its interpretation by under-

lining. 'F' with optional subscripts will range over predicates,

'a' will range over names, WV' with subscripts will range over

variables. The logical operators will name themselves and con-

catenation will indicate concatenation.

(O)The interpretation of a predicate of degree i, F, fol-

lowed by i distinct variables is the interpretation of F. In

symbols, I(Fv1 ...v )=I(F) where v1 ...v are any i distinct vari-

ables. Notice that this rule assigns the same interpretation

to Fv1v2, Fv3v4, and Fv2v1 but assigns no interpretation to Fv V

Thus one kind of occurrence of variables following predicates is

semantically superfluous.

(i) If $vIa,...,XVm'''''p'''''n is an open sentence of

at least two variables whose interpretation has been assigned,

then the interpretation of $v1 ,..., ,V...,*v ,...,v is that func-

tion (of n-1 arguments) whose value for yl,. ,ym' '' 'n

(excluding ym a second time) as arguments is the True if the in-

terpretation of $v 1 ... ,VmF...vP ,...,v is the True and the False

in all other cases. There is a slight problem here with under-

standing the notation, but I believe that what Martin intended

is that vl..s.sIVm'F0' V '''p' ', ' . n., be a complete list without repe-

tition of those variables occurring free in the first open sen-

tence and that the second open sentence be obtained from the first

by replacing each free occurrence of vp by an occurrence ofvm

Here we see the first example of a nontrivial semantic role for

the variables occurring after predicates; they signal the appli-

cation of a certain operation upon the interpretation of the open

sentence which takes functions of degree i+l to functions of degree
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i. The exact nature of the operation depends upon the particular

pattern of occurrences of variables in the open sentence. By

treating variables as surface syntactic manifestations of certain

operations on functions we can capture this sort of grammar with-

in the categorial framework.

Let p abbreviate the category symbol s/(n,...,n) (with i

occurrences of n). We introduce a collection of "deep structure"

syntactic elements REFji and their corresponding interpretationsj k

j,kof category pi/P , for each integer i>2, <j<k<i. REF,k

affects the "surface structure" by means of its associated "trans-

formation" which fills in the jth and kth variable-taking positions

of the operand of REFj with the same variable. And REF. isj,k -j,k

the operation on functions of degree i which "identifies the jth

and kth argument places", yielding a function of degree i-l.

(ii) If $v1.. .,vm'''''vn is an open sentence of at least

two variables whose interpretation has been assigned, then the

interpretation of $vi, ...,a,...,vn is that function whose value

for y1,...,yn (excluding ym) as arguments is the True if the in-

terpretation of @vl,...,vm''''vn for the arguments y1 ,...,a,...,

yn is the True and is the False in all other cases. Again we

construe vJ,...,vm'''''vn as an exhaustive, non-repeating list

of the free variables of the first open sentence; and the second

open sentence is obtained for the first by replacing each free

occurrence of vm by an occurrence of a. We incorporate this in-

to our grammar by introducing the "deep structure" syntactic

i i i-l
operations SUB. and their interpretations SUB. of category p /

J -J

(n,p ), for each integer i > 2, lcj<i. SUB. affects the "sur-

face structure" by means of its associated "transformation" which



fills in the jth variable-taking place of the sentence operand

with the name operand. SUB is the operation on elements of D
)

and on functions of degree i which "plugs the element into the

jth argument place of the function" yielding a function of de-

gree i-l.

(iii) If $v ,...,vn is an open sentence whose interpreta-

tion has been assigned, then the interpretation of n$v ,...,vn

is to be that function whose value for yl,...,yn as arguments

is the True if the value of the interpretation of Pv1 ... vn for

the same arguments is the False, and whose value is the False in

all other cases. We introduce NEG and NEG of category p /p

for each i>l. An appropriate "transformation" takes NEG into

in the "surface structure". NEG is the operation on functions

of degree i that replaces the True by the False and everything

else by the True.

(iv) If $vl,...,vn and $vmr''v'p are open sentences whose

interpretations have been assigned, then the interpretation of

$v,...,vn & Ivmi'''v'p is to be that function whose value for

arguments yy,...,yn' m''''' P is the True if the value of the

interpretation of $v1 ,...,vn for the arguments yl,...,yn is the

True and if the value of the interpretation of vm..'.,v for

the arguments ym''''' yp is the True, and whose value is the False

in all other cases. It is crucial here that all the variables be

distinct, that is, that the two open sentences have no free vari-

able in common. Within Martin's framework this implicitly imposes

a certain derivational history on expressions.1 In our cate-

gorial approach these details are handled by having CONJ.+$ and
1,)

CONJ 9I1of category p+j3/(p pj), for i, j>l. "Transformations"
1,)OF.

27
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i+ji+j
take CONJ. into & plus parentheses. CONJ.+. operates on func-

,3 1,)

tions of degrees i and j yielding a function of degree i+j whose

value is the True just in case both arguments yield the True

(for the appropriate arguments) and which is the False otherwise.

Thus one "deep structure" for Fv1v 2 &Fv2v1 will be the following:

3REF 32,3
4REF 1 4

14

CONJ4

F

(v) If $Vl1,...vm''''IVn is an open sentence of at least

two free variables whose interpretation has been assigned, then

the interpretation of 9vm vlr..0 ''m''n is to be that func-

tion whose value for the arguments yl, . yn (excluding ym) is

the True if the value of the interpretation of $v 1 .. ,vm' ' ' 'n

for the arguments yl,...,ym''''' n is the True for some argument

ym and is the False in all other cases. We introduce EXQ1 and

EXQ. of category p /P for each i>2 and l<j<_i. EXQ gets trans-
) )

formed into an existential quantifier whose associated variable is

the jth free variable of its operand. EX is the existential-

quantifier-on-the-jth-argument-position operation, operating on

a function of degree i and yielding a function of degree i-l.

Thus we have the following "deep structures" for J v (Fvv 2&Fvv 1)'

3v 2 (Fviv 2&Fv2v 1)
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2 2
EXQ1  EXQ2

3 3
REF2,3 REF2,3

1,4 1,7 4
114 

l4

CONJ CONJ4,2

F F F F

Martin gives a parallel set of rules to cover the cases

where the operands or results are of category s. We need not

do this; we just modify our operations to apply to truth values

in the straightforward way. With this assumed done, we now have

a categorial grammar for FOL. This grammar is of interest be-

cause of the analysis it makes of the role of variables in FOL.

Variables make possible a syntactically compact coding of what

can be a complex series of operations. The usual explanation

of the use of variables in FOL is that variables are used to in-

dicate generality. Our analysis shows this to be a very incom-

plete explanation. In fact, on our analysis it is, taken literally,

false. Variables indicate the operation of certain functions on

other functions and they indicate which existential quantifier is

being applied. For all the complexity of our grammar, nonetheless,

I believe it reveals the essence of the structure of FOL. Quine

should have called his paper "VarIables Explained" rather than

"Variables Explained Away ."16

We must face the fact that our categorial analysis of FOL

relies on an infinite vocabulary, both terminal and nonterminal,

and (because of the infinite nonterminal vocabulary) on infinitely

many phrase structure rules. Infinities trouble some people. Some-
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one might object to our analysis of FOL on the grounds that it

makes the language unlearnable, since learning an infinite vocab-

ulary and infinitely many rules is beyond our power. A more

sophisticated objection might be that whatever other merits our

analysis has, it is unsatisfactory as a representation of our

knowledge of FOL; we may have presented a grammar for FOL, but

not a grammar that represents the linguistic competence of any

person. Further, if this is the best that the categorial approach

can do towards providing a grammar for FOL, then we now have a

demonstration of the inadequacy of the categorial approach. Both

of these objections are mistaken. Before answering these objec-

tions, notice what happens if we insist upon a finite (at least

as far as rules go) grammar. We can get a finite categorial gram-

mar for FOL if we recategorize in the manner of our treatment of

PFL, putting all predicates into a single category. Then various

finite collections of predicate functors - any of Quine's choices

will do - can give the effect of our infinitely many logical op-

erators. As long as we sort predicates into categories according

to their degree there seems to be no finite set of operators that

is adequate to the demands of FOL.

Why should we be embarrassed by our infinite grammar? The

crux of the matter is the question of effectiveness--in the sense

of the theory of effective computation. Almost everyone assumes

that the class of effectively computable functions is an upper

bound to human computational abilities. So if the class of ex-

pressions, or the class of structural descriptions, or the as-

sociation of structural descriptions with expressions determined

by a proposed grammar is not effective, and if people learn the
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language, we reject the grammar as a description of the linguis-

tic competence of human speakers. But our proposed grammar passes

this test. The class of terminal strings, the class of structural

descriptions, and the association of structural descriptions with

terminal strings are all effective in the appropriate sense.

A related problem concerns the semantic component of the

grammar, namely the specification of an interpretation for the

infinite number of simple vocabulary items. How can we give a

meaning to each of an infinite number of expressions? Here ques-

tions of effectiveness are out of place. Interpretations as we

have construed them are not, in general, the sort of entities

which effectively computable functions have as values. Even in

the case of a finite vocabulary it will not, in general, make

sense to talk of effectively assigning an interpretation, at least

not in the same technical sense of effectiveness that we have been

using. But surely there is a difference between the problem of

learning a finite number of new words and the problem of learning

an infinite number--the difference between what is humanly possi-

ble and what is not. In the case of a finite vocabulary, inter-

pretation item by item is always a (theoretical, at least) possi-

bility, in the infinite case it is not. But not all infinite

vocabulary interpretation problems are the same. In some there

is a definable correlation between the vocabulary items and their

interpretations--'definable' being the operative word here, since

there is always a correlation of some sort if each item has an

interpretation. Definability not being an absolute notion, the

question arises; Definable relative to what? For want of a better

answer, and because we have throughout this paper defined functions
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in this way, let us say: Definable relative to your favorite

set theory. There is no problem specifying in a reasonable set

theory the appropriate interpretation functions for our infinite

vocabulary. For example, the interpretation of NEG for vari-

able i is just the function that maps integers, i, into the com-

plementing operation on functions of degree i. Consequently,

there is no basis for a "learnability" objection to our proposed

grammar for FOL. If, as I suspect, the only case to be made

against such an infinite grammar has to do with "learnability",

we need not be embarrassed on that account.1 7

Not only do I claim that the infinite character of our

grammar is not a serious objection to it, I want to try to con-

vince you that it is a point in favor of the grammar. Since

the class of structural descriptions is effective, there are

systems of finitely many productions involving finitely many

terminal and nonterminal symbols that generate the set of strings

of FOL. There are "phrase structure" rules that generate the in-

finite vocabulary. The rules that generate our infinite vocab-

ulary are of no semantic significance from the standpoint of

categorial grammar. Certainly the vocabulary has structure,

syntactic and semantic. But that structure is not, I think,

best thought of as part of the grammar of FOL. Just consider

for a moment the infinitely many "deep structure" vocabulary

items. Our representation of them involves aspects which, I

believe, have no essential connection with the language of FOL.

Consequently, it seems incorrect to include those aspects in

our description of FOL. The vocabulary of FOL, as described by

our grammar, is infinite; our description of that vocabulary and
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its interpretation is not. Perhaps I have just tried to make

a virtue of a necessity, but discussion of certain developments

in later sections of this paper may add to the plausibility of

my defense of an infinite grammar.18



Part 7 -- Geach's extension of categorial grammar and its

semantic significance

In this section we examine a suggestion of Geach's 1 9 which

significantly extends the power of categorial grammars in a

natural way. We then consider the application of the extended

notion of categorial grammar to the description of quantifica-

tion in English and to the description of FOL.

Geach motivates his extension of the basic categorial

framework by considering a fragment of a categorial grammar

for a fragment of English. Consider the sentences 'Socrates

is flying', 'Socrates is not flying', 'Every man is flying',

and 'Not every man is flying'. Consider a grammar based on the

categories s and n, with vocabulary assigned categories as fol-

lows:

socrates -- n, is flying -- s/n

every man -- s/(s/n) not -- s/s

Geach calls a terminal string of a categorial grammar SC (syn-

tactically coherent) with respect to the grammar if the string

occurs in some structural description generated by the grammar

as the entire string of terminal symbols dominated by some non-

terminal symbol,which is the category of the string on that

derivation. (In other words, it is a constituent.) Geach points

out that the four sentences are SC with respect to the fragment

of a grammar given, but that the intuitively well formed and

meaningful phrases 'is not flying' and 'not every man' are not

SC. I take the point of this to be that an adequate grammar

must do more than just generate sentences; it must give them

correct structural descriptions and recognize the meaningful
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generate the sentences we want unless it also recognizes cor-

rectly other categories of phrases. Consider 'Every man is not

flying'. As in the previous case of FOL, we need negation to

operate on predicates--to act as an expression of category (s/n)/

(s/n)--as well as on sentences.

Geach proposes the "multiplying-out rule":2 0

c1 /c2 c2 /c3  c 3

to supplement the basic categorial rule:

C1 /c2 c2 1

where c1 , c2, c3 are any categories. This is just another way

of saying that in addition to phrase structure rules of the sort

C 1+ c1/c2 + C2'

a categorial grammar shall contain phrase structure rules of the

sort

c1/C 3+ c1 /c 2 + C2/c3'

for categories used in the grammar. For example, our fragment

of a grammar will contain not only

s + s/s + s, s + s/n + n, and s s/(s/n) + s/n

but also

s/n + s/s + s/n

The extended grammar will then generate the desired sentence:

s

s/(s/n) s/n

| / '
every man s/s s/n

not is flying

The new rules are definitely useful. They do not receive in
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Geach's discussion any further justification than that useful-

ness. Until they receive more justification than convenient

resolution of some problems they will appear ad hoc and be li-

able to suspicion because, unless we can find some semantic in-

terpretation of the new rules the whole strength of the cate-

gorial approach, the unity of syntactic and semantic structure,

will disappear. Rather than extending the categorial approach,

we shall have, in effect, rejected it. Fortunately, a very good

justification is close to hand.

Let us consider a simple categorial grammar with the expres-

sions f and g of category n/n, and the expression a of category

n. Let the category n be assigned a set D as its interpretation.

Then the interpretation of a, a, must be an element of D and the

interpretations of f and g, f and j, must be functions from D to

D. The composition of f and j (in the order given) is that func-

tion from the domain of j, D in this case, to the range of f,

also D in this case, such that its value for any argument is the

result of applying f to the result of applying g to that argu-

ment. Let us write '(f_ ) ' to denote the composition of f with

j. Using this notation, the basic fact about composition can

be expressed as follows:

(f j) (d) = f (j(d)) for all d in D.

Notice that (f_ j) is of category n/n; we have combined entities

according to the categorial rule, n/n n/n + n/n. The semantic

content of Geach's "multiplying-out" rule is that entities of

appropriately related categories can combine by composition.

Returning to the example above, we see that the interpretation

of 'not' (of category s/s) composed with the interpretation of
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'is flying' (of category s/n) yields an entity of category s/n

which is the identical entity obtained by applying the predi-

cate functor NEG to the interpretation of 'is flying'.

We generalize the new rules as follows: Let flgl, ... g

1 1
be e:.pressions of category c/(c,...gcl) c/(b,...,bm '''

c /(bt,...,b ) with interpretations f, 91l'.ii , respectively.
i it m.i2

The generalized multiplying-out rule

c/(c, ... ,c )C/(be...bms)e..c /(b .... ,b )mc/(bl,...,b

has as its syntactic interpretation the phrase structure rule

c/(bl,...,b )+c/(cf,...,cj)+c1/(b,*..,b )+...+c./(b 1,...,bm)

and as its semantic interpretation the operation of generalized

composition, COMP, which combines f, . to yield a func-

tion of category c/(bt,....14) and degree m1 +...+ me, COMP

(f 21,.,2), such that

COMP(f, j),...,o) 1, m 1 11 1 2ixjOqxm(x1jesxm1 X19I

for all arguments in the appropriate domains. In what follows,

',e shall mark nodes of phrase structure trees corresponding to

applications of these new rules with an asterisk. 2 1

One application of these ideas is to simplify our cate-

gorial grammar for FOL. We no longer need to treat % and &

as infinitely homonymous: they are simply items of category

s/s and s/(s,s) respectively. Further, since substitution can

be carried out at any time, we need only as many of the opera-

tors SUB as there are categories of simple predicates. Thus

the only infinite aspect of the grammar that remains is that

portion which deals with the effect of variables, of which we

have infinitely many even in our original naive description of

FOL. I find this revised categorial grammar for FOL extremely
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satisfying to my syntactic and semantic intuitions.

A more complex and rewarding application of extended cate-

gorial grammar concerns the treatment of quantification in a

small fragment of English. Let us consider a fragment of Eng-

lish with some names(of category n), some intransitive verb

phrases (of category s/n), and some quantifier phrases (of

category s/(s/n)). Transitive verbs seem to be of category

(s/n)/n. We get such reasonable structures as:

s s

ps s/n s/(s/n)

sara lee (s/n)/n s/(s/n) n (s/n)/n everyone

lie I I
1ives everyone sara lee loves

The semantic analysis of these two structures is also correct,

being of the forms (everyone loves) (sara) and everyone (loves

(sara)), which have the same values. 22 But problems arise again

with quantifier subjects. Consider the sentence

Everyone loves Sara Lee.

We seem to be in good shape as far as the syntax goes, getting

the two structures

s 5

s/(s/n) s/ s/n n

I* /
everyone (s/n)/n ns/(s/n) (s/n)/n Sara Lee

loves Sara Lee everyone loves

But if we follow our rules for semantic interpretation, we

shall get everyone (loves (Sara)) and (everyone loves) (Sara),
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which are not only identical in value (which is good), but

identical in value to the interpretations of the previous sen-

tence (which is very bad indeed). The problem is that we have

been relying solely on the categories of entities to determine

their semantic interpretation, while the syntax we are analys-

ing makes use of other information as well, in this case the

order of the expressions having the interpretations. In fact,

now that the problem has been revealed to us, we can see that

we have been too cavalier about the syntax as well. Our gram-

mar must generate the distinct expressions

sara lee loves and loves sara lee.

A simple rule for handling the syntax of the category (s/n)/n,

such as concatenate to the right or fill in blanks from left

to right, will serve as long as we are combining two expressions

of category n. But when we combine a single expression of cate-

gory n with an expression of category (s/n)/n to form an intran-

sitive verb phrase, we will, in general need to be able to free-

ly specify which of the two name-taking positions is to be filled.

Similar syntactic and related semantic problems face the analysis

of the phrases

everyone loves and loves everyone.

In the next section we shall consider further extensions of

categorial grammar which are adequate for an interesting frag-

ment of English. But before doing so, some comments on the

project are in order.

The attractiveness of categorial grammar depends on the

interaction of its simplicity with its power. A large part of

that simplicity depends upon the triviality of the phrase struc-
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ture rules which it determines and the single straightforward

mode of semantic composition which it requires. Our extended

categorial grammars will have more complicated phrase structure

components and various modes of semantic composition, not all

of which depend solely upon the categories of the entities to

be combined. Worse still, in recognizing a variety of modes

of semantic composition we have snuck in transcategorial ele-

ments--functions whose arguments are not restricted to fixed

categories. What remains of the original conception of a cate-

gorial grammar? As for the increase in complexity of our ex-

tended grammars, the justification is in an increase in power.

It is important that power is understood as including not only

the class of sentences generated, but also the details of con-

stituent structure and the consequent semantic analysis. We

shall see in later sections that a syntactic analysis can be

"saved" by fiddling with the semantics, so we must compare gram-

mars in both areas.

The criticism concerning the admission of transcategorial

elements is more serious. It should be pointed out that even

the theory of "pure" categorial grammar admits (one) transcate-

gorial elements, for the operation of applying an arbitrarily

categorized function to its arguments is without category. We

might be able to get away without reifying this operation if

we only considered cases of particular functions applied to par-

ticular arguments. But in specifying the semantics of "pure"

categorial grammar, we must talk of a variable function applied

to variable arguments and thus talk of the operation of applying

a function to its arguments. Thus the difference between "pure"



and extended categorial grammar is one of degree rather than

one of kind. What is common to both analyses is the classifi-

cation of syntactic and semantic properties of expressions by

a single category classification and the use of set-theoretically

definable, transcategorial modes of semantic composition which

are determined in a uniform way by the structural descriptions

which the grammar generates.

Another feature cited in favor of the "Pure" approach is

its apparent universality. The class of syntactic and semantic

rules was specified once and for all languages; whatever dif-

ferences exist between languages was a matter of "surface syn-

tax". Once we allow modes of semantic composition other than

functional application, where do we stop? There are (uncount-

ably) infinitely many distinct transcategorial operations. Do

we include all of them? If not, then which ones do we include?

Must we include different operations for different languages?

Certainly, it is a possibility that different languages make

use of different modes of semantic composition within the frame-

work of extended categorial grammar as I have expounded it so

far. But then the appealing universality is lost. Notice that

(under very liberal assumptions) given a collection of trans-

categorial modes of semantic composition, it is always possible

to recategorize in such a way that only functional application

is needed. We saw an example of this possibility when we con-

sidered applying the categorization of PFL to the analysis of

FOL. By putting all of the vocabulary of a given categorial

grammar into a single base category, previously transcategorial

elements become elements of one or another complex categories.

As long as the phrases of the language are of finite length (as
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in all our examples) we can capture all the semantic entities

involved in the original grammar in a single domain. Of course,

we get a quite different class of structural descriptions by

so doing. Recategorization, while always possible, does not

always produce a grammar "equivalent" to the original. Also,

it is sometimes possible to avoid new transcategorial modes by

taking expressions to be homonymous and by adding deep structure

operators (usually infinitely many). We saw an example of this

in our revision of Martin's treatment of FOL. Since I do not

know an adequate grammar for English and since I do not know

any arguments concerning the size of a universally adequate set

of transcategorial modes of semantic combination, I shall con-

tent myself with giving examples which show the utility of using

more than one such mode.2 3
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Part 8 -- A reasonably proper treatment of quantification in

ordinary English

The failure to see the way to extend pure categorial gram-

mar has led its advocates to various clever, but misguided,

attempts to handle the various well-formed combinations of

transitive verbs, names, and quantifiers. Two names and a

transitive verb fit happily together because the category as-

signed to transitive verbs was chosen precisely to allow it.

A transitive verb with a name as subject fit together to give

an intransitive verb phrase (of category s/n) which fits happily

together with a quantifier phrase, again, by choice of the cate-

gory of quantifiers. But, on the pure version, a transitive

verb can only take elements of category n for subjects.24 Vari-

ous remedies have been considered. Transitive verbs could be

considered homonymous, of categories (s/n)/n and (s/n)/(s/(s/n)),

taking name and quantifier subjects respectively. In addition to

being ad hoc, this move just deals with the most obvious of sev-

eral problems. We will not consider it any further. Another

attempt to deal with this situation is due to Montague;25 it

involves fiddling with the semantics of singular terms. The

problem of quantifier subjects arises because there are two cate-

gories which need to combine with transitive verbs. By reducing

the number of categories to one we eliminate this aspect of the

problem. With brilliant disregard for the advice of Lewis Carol

and others who have tried to convince us of the fundamental dif-

ference between quantifier phrases and singular terms, Montague

lumps together both sorts of noun phrases in the category, s/(s/n),

previously reserved for quantifiers alone. The category n survives,
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but turns out to be empty of members. In the absence of an

alternative account, we could learn to live with the unintui-

tive semantic account of singular terms,' especially since Mon-

tague's treatment has the additional benefit of providing a neat

solution to the vexing problem of non-referring singular terms.

In this section I offer an alternative treatment of singular

terms which I believe compares favorably to Montague's and others.

In a later section I shall consider one other alternative, due

to David Lewis.

Consider the problem of generating both of the phrases

(1) sara lee loves and (2) loves sara lee

together with their interpretations as distinct functions of

category s/n. Once we allow ourselves transcategorial modes

beyond application, the solution is straightforward. We intro-

duce the "phrase structure" rules

(3) s/n + (s/n)/n 1+n and (4) s/n + (s/n)/n 2+n

which indicate syntactic combination of a name and a transitive

verb as either subject and verb or direct object and verb. To

introduce the semantic interpretation of the rules, let us use

the symbol ' ' as follows: where f is a function of category

(s/n)/n, let f be the converse of f such that (f(y)) (x) =

(f(x))(y) for all x,y of category n. Let fl(x) = f(x) and

f2(x) = f(x). Then if v is a transitive verb and a is a name

with interpretations v and a respectively, the interpretations

of v l+a and v 2+a are vl(a) and v2(a) respectively. With 'loves'

interpreted by the function loves, such that (loves(x)) (y) is

the True if x loves y, the interpretations of (1) and (2) become

lovesl (sara) and loves2 (sara) respectively. It should be em-
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phasized that I consider '1' and '2' to indicate modes of com-

bination, in this case application to the first argument posi-

tion and application to the second argument position respectively.

They could also be construed as operations upon functions, but

I do not do so.

Before continuing, I will say something about the unusual-

looking rules (3) and (4). The usual sort of phrase structure

rules serve two logically distinct functions when used to pro-

duce a structural description of a sentence. They indicate the

grouping of expressions into phrases and they also indicate the

combination of expressions by means of concatenation. Normally

the distinctness of these functions is overlooked because of

the fact that any (finite) linear string of expressions can be

built up from its elements solely by means of concatenation to

the right.26 It is interesting to see the basic idea I have

proposed above in (3) and (4) reflected quite clearly in Frege.

Though Frege did not say much about syntax explicitly, it is

clear that for him the structure of function and argument was

both a semantic and syntactic structure. One job of a syntactic

component would be to indicate which function names took which

expressions as their argument names. Frege held that the way

in which argument names were combined with function names was

not simply concatenation to the right (or left) , but by placing

the argument names in gaps within the function names. This

together with the fact (which Frege was prevented by other views

from appreciating) that we cannot fix once and for all an order

in which to fill in the gaps (as our above example shows) helps

make clear the distinction between grouping and mode of syntactic
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combination. At this point we have sufficiently modified the

original notion of a categorial grammar that a statement of the

current content of 'extended categorial grammar' is needed. An

extended categorial grammar consists of a categorial grammar

together with 1) a system of "multiplying out rules" which

specify permissible combinations of categories 2) for each

permissible combination of categories, a set of pairs, called

permissible modes for the combination, consisting of a syntactic

mode of combination and a semantic mode of combination. The

phrase structure component of the grammar is determined as fol-

lows: If c1 ... cn + c is a permissible combination of categories

and m is a permissible mode for the combination, then c c1 +

.e .+ cn is a (extended) phrase structure rule of the extended

categorial grammar. Derivations and structural descriptions

are determined as usual except that nodes of a structure tree

are labelled not only by a category, but also by a permissible

mode. A simple example:

Basic categories: c

Vocabulary: a -- c, f -- c/c, g -- c/(c,c)

Permissible combinations: (i) c/c c g c

(ii) c/(c,c) c c c

(iii) c/c c/c t c/c

(iv) c/(c,c) c ; c/c

Permissible modes: (i) m=--msyn, m1 se)

where my s(F,A) = F ( A ) , m1 (F,A) = F(A).

(ii) mn2 =( 2syn, mn2 em

where m2 s (F,A A2 )F ('A , A ) , m2 smFA =,A-2,-,A

(iii) m3 =(m 3sn, i 5 em)
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syn = -O ' sem
where m3  (FG) = ( F G ), m3  (FG) = (FG).

(iv) Mg -M syn, M sem )
syn r 0 ye n sem

where mg (FA) =4F (A, ) ,n 4  (F,A) = SUB1 (F,A).

synm syn n sem

where im (F,A) = F'( ," A ), sem (F,A) = SUB2(FA).

Phrase structure rules: (0) c + a, c/c + f, c/(c,c) + g

(i) c c/c + c
in

1

(ii) c +2 c/(c,c) + c + c

(iii) c/c 3 c/c +.c/c

(iv) c/c + c/(cc) + c

c/c 5 c/(c,c) + c
in

5

For permissible combinations where there is only a single per-

missible mode, we will omit the mode label in phrase structure

rules and structural descriptions. We will also vary the loca-

tion and style of the mode label when it is supplied. For

example, instead of (iv) immediately above we could also write:

c/c + c/(c,c) 1+c

c/c + c/(c,c) 2+c

Here is a sample structural description generated by the grammar:

c/c2

c/ (c ,c) cc

g a a

The syntactic object associated with this structural description

is:

E = syn syn (ga a) f a )
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and theasemantic object associated is:

E=Easem(1 msem 27
E M~e 2 -e(,a, a)) =f( (a, a)). 2

There is nothing to prevent particular grammars of this

general sort from restricting the modes of syntactic combina-

tion to concatenation and restricting the semantic modes to

application of a function to arguments. But there is no need

to do so and there are at times reasons for not doing so. One

further generalization would allow the syntactic modes to be

only partially defined over the appropriate categories, effect-

ing syntactic subcategorization. In most of the subsequent ex-

amples, we will not bother to specify details of the syntactic

modes--leaving open the extent to which surface syntax is de-

termined by deep syntactic modes or by transformations of the

more usual sort, but will just write "nice" structural descrip-

tions. Much of what follows in this paper can be taken as data

to support the claim that extended grammars have promise for the

description of natural languages.

We represent the structure of 'Alice loves Bob' as follows:

(5) s (6) s

s n s/n 1n

alice (s/n)/n n n (s/n)/n

II I
loves bob alice loves

The numerals under the nodes labeled 's/n' indicate which of

the rules (3) and (4) was applied to generate the phrase domi-

nated by the node. As the pair'of diagrams indicates, because

of the two distinct ways of combining 'loves' with a name to get



49

an intransitive verb phrase, the sentence receives two structures.

If multiple structural descriptions predict that a sentence is

ambiguous, and if ambiguity must be reflected in multiple mean-

ings, then we must face the problem that the grammar predicts

ambiguity where none is perceived. In our version of categorial

grammar we will have to abandon the simple correspondence be-

tween the number of distinct structural descriptions and the

degree of syntactically determined ambiguity. Structural am-

biguity need not issue in semantic ambiguity.28

As an exercise we calculate the interpretations of the

sentence based upon the two structural descriptions. For (5)

we have, (loves2(b))(a) = (loves(b))(a) = (loves(a)) (b). For

(6) we have, (lovesl(a))(b) = (loves(a))(b). As desired, the

two structures receive the same interpretation. As an additional

exercise, check that both (5) and (6) are strongly convertible,

that is, if we keep the same structure of non-terminals, inter-

change the two names, and replace the verb by its passive ('is

loved by'), the resulting structural description receives the

same interpretation as the original.

A modification of the semantic treatment of categories will

greatly help us. We will identify the categories (...(c/c1 )/

.../cn) with the categories C/(Cl,...,Cn)F interpreting both

categories semantically as we previously interpreted just the

former. We could, with some reservations, eliminate the latter

category altogether. We shall pass freely back and forth be-

tween equivalent category notations; for example, treating

((s/(s/n))/n)/n, (s/(s/n))/(n,n), and s/((s/n),n,n)

as interchangeable according to the needs of perspicuity.29
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Introducing quantifiers calls for new notions. We saw

earlier that the operation of composition of functions could

solve some of the problems of adding quantifiers. But just as

a function of two arguments may be applied to a single argument

in two distinct ways, a function of two arguments may be com-

posed with another function in several ways. Let f be a func-

tion of category s/ (s/n) and g be a function of category

(s/n)/n (= s/(nn)). Then f*lg is (fg) and f*2g is (fg). The

two kinds of compositions can be generalized to other categories;

we shall discuss generalizations later. We add two new syntactic

rules

(7) s/n + (s/n)/n*ls/(s/n) and (8) s/n + (s/n)/n*2s/(s/n)

and semantic rules which interpret compounds formed by (7) using

*1 and compounds formed by (8) using *2.30

'Someone loves Bob' has the structures:

(9 ) s (10 ) s

s/(s/n) s n pn)

someone (s/n)/n n s/(s/n) (s/n)/n bob

I I I Iloves bob someone loves

We let some be the function of category s/(s/n) such that some

(f) = the True if f(x) = the True for some person x, of category

n. Then (9) gets the interpretation some(loves2(b)) = some (loves

(b)). (10) gets the interpretation (some*lloves) (b) = (some loves)

(b) = some(loves(b)). Both structures receive the same interpre-

tation, which is what is desired. Notice that (9) and (10) are

each strongly convertible.

'Alice loves someone' has the structures:
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(11) s

n snI * 2 4
alice (s/n) /n s/ (s/n)

I Iloes someone

(12) s

s/n s/ (s/n)

n (s/n) /n someone.

alice loves

The interpretations are the same, and both structures are strong-

ly convertible.

The first interesting test of this new machinery is a pair

of sentences for which the apparatus was not specially tailored,

'Someone loves everyone' and 'Everyone loves someone'.

'Someone loves everyone' is ambiguous and so has the (non-

equivalent) structures

(13) s (14) s

s/(s/n) s/n s/n s/(s/n)*2 *

someone (s/n)/n s/(s/n) s/(s/n) (s/n) /n everyone
I I

loves eve yone someone loves

Let every be the function of category s/(s/n) such that every(f)

= the True if f(x) = the True for every person, x, of category

n. Then (13) gets the interpretation some(every*2 loves) = some

(every loves). (14) gets the interpretation every(some*l loves)

= every(some loves). It is easy to verify that these are quite

distinct interpretations, (13) corresponding to 3xVyLxy and

(14) to Vy3xLxy. In this case, the mulitplicity of structural

descriptions does correspond to a genuine ambiguity in the sen-

tence. Neither (13) nor (14) are strongly convertible. But

they are weakly convertible: they are alternative structural

descriptions of the same sentence such that the result of "pas-
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siving"31 one has the same interpretation as the other. (13)

passivized has the interpretation every(some*2 loves) =

every(some loves), which is the same as the interpretation of

(14). (14) passivized has the interpretation some(every*l loves)

= some (every loves) = some (every loves), which is the same as

the interpretation of (13). The difference between strong and

weak convertibility provides a sense in which actives and their

corresponding passives are not equivalent and a sense in which

they are.

'Everyone loves someone' has the structures

(15) s (16) s

s/(s/n) s/n s/n s/(s/n)*2 *1

everyone (s/n)/n s/(s/n) s/(s/n) (s/n)/n someone

I I I I
loves someone everyone loves

with interpretations every(some*2 loves) = every(some loves)

and some(every*l loves = some(every loves) respectively, which

correspond to V x 3 yLxy and 3y\VxLxy .

We introduce the following abbreviations for various cate-

gories to help shorten what follows.

v for s/n, the category of intransitive verb phrases

tv for (s/n)/n, the category of transitive verb phrases

q for s/(s/n), the category of quantifier phrases

rel for (v/v)/v, the category of relative pronouns

sel for v/tv, the category of reflexive pronouns

Let us now consider more complicated sorts of quantified

sentences such as 'Everyone loves someone who loves himself'.

We add the vocabulary items 'who' of category rel and 'himself'
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of category sel. One of the structures for the sentence is

(17)

q *2

q/v v tv q

every one loves q/v

s Te v /v

one (v/v)/v v

who tv sel

loves himself

which does not involve any basically new ideas.33 A slight

variant, 'Everyone loves someone who loves him', does raise a

new matter. On one of the structures for this sentence, we shall

want 'loves' of category tv and 'someone who loves' of category

q/n to combine to form 'loves someone who loves' of category tv.

In order to get this structure we shall have to add new types of

phrase structure rules and corresponding category "multiplying-

out" rules as well as a semantic interpretation rule. Can we

give a justification for the new rules?

Let us reconsider the operation of composing two functions.

Consider, more particularly, a function f of category c/(c1 ,c2)

and functions g1 ,g2 of categories c1/d1 and c2/d2 respectively.

We previously de fined a notion of generalized composition which

applied to f,g1 ,g2 yielding COMP (f,g1 ,g2) of category c/(d1 ,d2).*

We now define two more "composition" operations. COMPl(f,g1 )

is of category c/(d1 ,c2) such that COMPl (f,g1 ) (xY) = f (g,(X)FY)

for all x,y of the appropriate categories. COMP2(f,g2) is of
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category c/(c1 ,d2) such that COMP2 (f,g92'(xy) = f(x92y)) for

all x,y of the appropriate categories. Just as filling in a

term position of a transitive verb phrase with an item of cate-

gory n signals the application of a function to an argument with

respect to one of two argument places, so the filling in of a

term position of a transitive verb with a term of category q/n

(= (s/(s/n))/n) signals the composition of two functions with

respect to one of two argument places--either by COMP1 or COMP2.

To simplify the notation a bit, we shall write fl*g1 for COMP1

(f,g1 ) and f2*g 2 for COMP2(f,g 2 ) . The numeral before the aster-

isk tells us which argument place of the first function is being

"plugged-into." Note the difference between 31*3 and 32*' which

were just introduced and 3*1' and '*23 which were introduced

earlier. '*1' indicates composition in which the second func-

tion operand is first made into its converse and 3*23 indicates

normal composition. We will have need of a combined notation

such as 31*23 which indicates a combination of the effects of

'1*' and 3*2'. An intuitively convenient way of interpreting

this notation (which makes easy further generalizations) involves

making use of the canonical identification of categories mentioned

earlier and treating the numerals flanking the asterisk as in-

dicating certain permutations of argument places of the function

on the same side of the asterisk as the numeral. Consider f of

category (s/(s/n))/n (= gin) and g of category (s/n)/n (= tv).

Then fl*2g can be thought of as obtained by treating f as of

category s/(s/n,n) , moving the argument numbered 1 (from the

left) to the rightmost argument position by a permutation opera-

tion, rewriting the resulting category as (s/n)/(s/n), permuting
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the function g so that the argument numbered 2 is in the right-

most position (which, in this case it is already), and then com-

posing (in the ordinary way) the two resulting functions. Thus

fl*2g is of category tv and fl*2g (x,y) = f(g(x),y) for all x,y

of category n. f2*2g(x,y) = f(x,g(y)). fl*lg(x,y) =f (g(x)y)

f2*lg(x,y) = f(x,g(y)).34

Now we can represent one structural description of 'Every-

one loves everyone who loves him':

(18)

v

everyone tv sel
2*2

tv q/n him
*2

loves q/v -/n
2

everyvv /n

one (v/v)/v tv

who lobes

We work out the interpretation in detail. Let f(x) (y) = (who

1*1 loves) 2 (one) (x) (y). f (x) (y) = T iff y is one who loves

x (by P8, note 34) .

So (ever *2 f) (x) (g) = T iff every (f (x) )(g) = T iff

g(z) = T for every z such that f (x) (z) = T iff g(z) = T for

every one z such that z loves x if f g(z) = T for everyone z

who loves x. Now let f '(x) (y) = ( (every *2 f) 2*2 loves) Cx)

(y) . f ' (x) (y) = T iff y loves everyone who loves x (by P6) .

So him(f')(x) = T iff x loves everyone who loves x. Finally,
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Two more examples:

(19) Everyone whom a person who loves himself loves loves him.

q s

q/v v

everyone v v/v

one (v/v)/v"v

who tv sel

loves himself

tv sel
2*1 SI

q/n tv him
*2

q/v v/n loves
2

every v (v/v) /n

1*2
one (v/v)/v tv

I I
whom loves

This example is interesting because it is our first case in which

the deep structure differs significantly from the surface struc-

ture, an indication of which is the fact that we have been un-

able to get the desired string of terminals in the correct order

by means of our practice of freely choosing which is the left

and which the right branch of a 2-branch node. The deep struc-

ture subject is the quantifier phrase 'everyone who loves him-

self' while in the surface structure, the subject is 'everyone

whom a person who loves himself loves'. The reason for this

discrepancy is that the surface verb phrase 'loves him' is not
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a real predicate in this sentence. In particular, it is not

the reflexive 'loves himself' nor can it be construed as 'loves

some contextually definite person'. The pronoun here is ana-

phoric and is used, together with the quantifier phrase 'a per-

son who loves himself' to make a (restricted) universal general-

ization. The difference in surface and deep structure empha-

sizes the need for precisely stated "transformations" to com-

plete our account. Two particular aspects which are involved

in our examples are the rules for selecting the form of reflex-

ive pronouns--when to use 'himself' and when 'him, and the rules

for selecting universal quantifier phrases--when to use 'every-

one', or 'a person', or 'anyone', or 'each person'. About the

second aspect I have nothing to say here. About the first, only

that in all the examples we consider the difference is simple--

'himself' reflexivizes a simple (non-compound) transitive verb

while 'him' is used both anaphorically and to reflexivize com-

pound verb phrases.

(20) Everyone who hurts everyone who hurts him hurts himself.

s

q/v tv sel

e ery v v/v hurts himself

one (v/v)/v v

who t el
2*2

t q/n him

hurts q/v v/n
2

every v v/
one (v/v)/v tv

who hurts
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The permissible modes of categorial combination determine

the phrase structure rules. But what are the limits of per-

missible modes of combination? In principle, there are no

limits. Consider any three categories, c1 ,c21c3. There will

always be set theoretically definable operations that combine

entities of categories c1 and c2 to yield entities of category

c3. So doesn't the extended categorial approach "blow up" by

allowing every conceivable sort of phrase structure rule, that

is all rules of the - -m c3 + c1 + c2 for arbitrary categories

cic2,c In principle yes, but not in application. The lim-

its of permissible combination are to be determined in the case

of a particular language by an analysis of that language. To

illustrate in detail how this might be done, let us switch from

the consideration of English to a better understood and more

manageable language, FOL.

We consider a fragment of FOL with just three predicates,

F', F2 , and F3 of degrees 1, 2, 3 respectively and just two

names, a and b and a single function symbol, f, of degree 1.

The extended categorial grammar, GFOL: The base categories are

s and n. We shall also mention the complex categories c1 = s/s,

C2 = s/(s,s), q = s/(s/n), and p = s/(n,...,n) with i occurrences

of 'n', for each positive integer i.

The vocabulary items are assigned categories as follows:

1 1 2 2 3 3
a -- n,b -- n, f-- n/n, F -- p ,F -- p, F -- p ,

Variables along with parentheses will be inserted by appropriate

syntactic modes of combination. The phrase btructure component

of the grammar consists of several types of rules.
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Type I -- vocabulary categorization

These rules just turn the categorization into the standard form

for phrase structure rules. For example, n + a and q + 9

Type II -- pure rules

n+n/n + n, s +pi + n, s+ p2 + n + n,

s+p3 + n + n + n, s+c + s, s+c 2 + s + 5,

s+ q + P1a.

These are the standard sort of rules, tL? limitations of which

caused us various difficulties in our earlier accounts of FOL.

Type III -- partial application rules

1 2 2 3 2 3
p + p 1+n, P + p 1+n, P + P 3+n,

1 2 2 3
p +p 2+n, P + p 2+n.

These rules make use of our canonical identification to permit

the plugging-in of an argument at any of the argument places

of the predicates. They could be extended to allow plugging-in

more than one argument at a time, if desired. Or we could

delete the Type II rules concerning p2 and p3, if desired. The

sign '1+' and its fellows indicate which argument place is to

be filled. We can easily generalize this sort of rule to the

infinite set of rules p + pi+1 j + n, for i > 1 and l<j<i.

Various of these will be needed to accomodate predicates of

various degrees, though only finitely many as long as only

finitely many predicates are in the vocabulary. Even though

predicates of arbitrary degree can be formed by using & repeat-

edly, we need only accomodate the finitely many basic predicates

with Type III rules because names can always be plugged-in at

the earliest level (at least in FOL).

Type IV -- simple composition rules
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i+-u-
n/n + n/n * n/n, p s/s * p , p 'J-r s/(sfs)*(p

for 1 < i,j

These rules allow us to operate on predicates as n3 must as

a prelude to quantification.

Type V -- partial composition rules

i i
p + p j* n/n, for i > 1 and N<j<i

These rules allow unevaluated functions to be plugged into argu-

ment places of predicates. For reasons similar to those given

concerning Type III rules, we could get by with just a finite

number of these. If we had function names of degree greater

than 1, we would need rules of this sort for them too.

Type VI -- permuted composition rules

i .i+l
p + q @j p , for i > 1

These rules allow applying a quantifier to the jth argument

place of a predicate of degree greater than 1. In conjunction

with the operators, REF, which effect the identification of

argument places, this treats the full range of variable and

quantifier phenomena.

These together with syntactic rules for inserting variables

and placing parentheses are all we need to generate the standard

notation for FOL. We look at an example or two, present the rules

of semantic interpretation, and discuss the significance of this

formulation of FOL.

(21) .Jx 9y (Fxy & Fya)

j )
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(21) s

@2 2

q p2

REF3 p3

23 c212 1

1 2
&F 2

p n

Fa

(22) x (Vy (Hyx 2 Hxy) :;Hxx)

s

q p

4 p4V RE 1 2 34  *120K

C p@1

4REF 1 4 p4

14 2 12 2
C p p

H1 H

(21) is just a straightforward application of GFOL. In (22)

I took the liberty of adding a new quantifier and connective

in order to get an interesting example. The modifications to

GFOL necessary to generate (22) are trivial. The interest of

(22) lies in the fact that it gives the structural description

of a plausible symbolization of the English sentence of (20).
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Having GFOL and even a fragmentary grammar for English along

the same general principles makes possible the beginning of a

comparison of the structure of the devices of quantification

in both languages. It also offers the hope that we can formu-

late effective rules for "translating" structures such as (20)

into structures such as (22), thus providing us with a means

for specifying precisely what it is (or at any rate, what one

of several quite different things is) that we are doing when

we "translate" English into the notation of quantification

theory.

We interpret GFOL semantically along conventional lines.

We assign a non-empty domain D to category n and the set of

the truth values to s; the complex categories receive the usual

interpretation relative to this base. The names, predicates,

and function names are interpreted in any way consistent with

their categories. q, and & map truth values to truth values in

the usual way. 3 maps elements of category s/n into truth

values such that 3(f) = the True if f (d) = the True for some

d in D. There are numerous modes of semantic composition.

Corresponding to the. Type II rules is the operation of applying

a function to degree i to i arguments, signaled by '+'. Cor-

responding to the Type III rules are the operations of partial

application, j+, such that if f is of category c/(c1 ,...,c.)

and x is of category c. for lcj<i, then fj (x) is of category

c/( , . .c )(with c. excluded) and fj (x) (y1, ...,y.) (with y.

excluded) = f (y1 , ...,x, ...,y.) (with x in the jth argument

place). In writing the operation, we omit the '+' where con-

venient. Corresponding to Type IV rules is the operation of



63

composition of a function of degree i with i functions of de-

grees j1y...,ji to yield a function of degree j1+...+j,

signaled by the symbol '*. Corresponding to the Type V rules

are the partial composition operations, j*, such that if f is

of category c/(c,1 ...,c ) and g is of category c /(b1 r ,..,bk

for any i and k and any l<j<i, then f j* g is of category c/

(ci, ...,b1 ,...rbk,...,c) (bl...bk inserted to replace c.) and

f j* g (xl,...,yl,...,yk''''' i )l'''''1l'''''oost k ''''' i '

Corresponding to Type VI rules are the permuted composition op-

erations, @j, such that if F is of category c/(b/(bl,...,bk)

and if f is of category b/(bl,...,bk) for k > 1, l<j<k, then

F@jf is of category c/(bl,...,kS1I...,bk) with b excluded).

Let fJ be the function such that fj(x ,...,4 ,...xk

f(xl,.exk). Then F @j f(x 1 1,..4, , ,OIXk) = F(ff(x ,...,

,...IXk)). Finally, we specify the interpretation of the

permutation and identification functions, r +..k.j .if f is
1 0 j

of category c/(cl,...,ci+j) and L<k1,...,k<i and c k=...=ck
i+'then REF1 .
t Ek1.k (f) is of category c/(c 1 ... ci+j) (with ck2l...

ck alldeleted) and REF ..k l'''''i(x...x = l' i+j'

where for i=k1 ,...,k.,y.=x. and for all other i, y.=the first
A 1 1i

x (starting at x2) not yet picked out.

It is easy to verify that this notion of an interpretation

of FOL based upon a domain, D, interpretations of the names,

function names and predicates, coincides precisely with the

standard sort of interpretation. In fact, we have just given

the standard interpretation, expressed as is appropriate to an

extended categorial grammar.

We can also see our way to a precise formulation of the
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difference between formulating the truth conditions of an English

sentence in FOL and representing the logical form of the English

sentence. On the analyses I have presented, there are several

obvious differences in the way in which quantification in FOL

and quantification in English differ. These include (i) the

way in which quantifiers are relativized to predicates, (ii)

the way in which argument positions are identified, (iii) the

possibility of non-trivial structural ambiguity, and (iv) the

means for controlling the scope of quantifiers. We cannot fair-

ly conclude that English and FOL have the same structures, even

if we limit our consideration to those parts of English which

are easily and uniformly translated into FOL. But we can iso-

late structures of each language which perform similar functions.

For example, these structures play similar roles in expressing

restricted universal quantification:

(23) s

qv

q/v v G

I Aevery a
(24) S

v 12 2

'2211 1REF c p p
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Relative to such identifications, which can be more or less

reasonable, we may establish a scheme of translation of English

into FOL. Many (infinitely) expressions of FOL express the

truth conditions of a sentence of English if any one does. But

not all of them stand in close structural relation to the Eng-

lish sentence. Only those expressions which stand in close

structural relation can plausibly be said to have the same

logical forms. Unfortunately, there is no reason in favor and

many reasons against the view that every English statement has

a logical form which is adequately mirrored in the structure of

some expression of FOL. We often find ourselves paraphrasing a

sentence into "canonical" English in order to symbolize it.3 5
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Part 9 -- Comparison with Montague grammars and further remarks

on quantifiers

Because of the similarity between the extended categorial

approach of the previous section and the approach of Montague

in "The Proper Treatment of Quantification in Ordinary English"

(sometimes called Montague grammar) it is worthwhile to note

some of the differences in the two cpproaches. First we con-

sider the syntactic component of a Montague grammar, (MG). MG

categorizes only some of its basic vocabulary and the classes

of well-formed expressions of various categories are defined

by a simultaneous inductive definition determined by a set of

syntactic rules. The syntactic rules consist of two parts, a

categorial part and a lexical part. The categorial part of a

syntactic rule specifies a collection of input categories and

an output category and the lexical part specifies a function

which combines any collection of well-formed expressions of the

input categories to yield an expression of the output category.

No general characterization of the lexical functions is given,

but it seems obvious that any effective operation on the input

expressions would be acceptable. The uncategorized vocabulary

items are incorporated into expressions by means of various of

the lexical rules. The definition of meaningful expression de-

termines a kind of structural description for the meaningful

expressions which Montague calls an analysis tree, which records

how the expression was built up from the basic vocabulary items

by the various lexical functions and also records the category

of each phrase constructed along the way. Aside from differences

in detail and emphasis, MG organizes the syntactic component of
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a grammar in essentially the same way as does the extended cate-

gorial approach; in particular, both types of grammar generate

a phrase structure for an expression which is not expected to

yield the expression simply by the operation of repeated con-

catenation of well-formed subcomponents. The major difference

in the two approaches to syntax is that MG allows uncategorized

basic vocabulary items, while the extended categorial approach

does not. These uncategorized elements of Montague's grammar,

such as 'every', 'the', and 'a', which function in just a single

rule, relating just a single collection of input categories, i1 ,

... ,in ,to a single output category, o, can be easily assigned a

category, namely o/(i1..in). The others, such as 'and', which

relate different sets of categories can also be categorized, but

only within the extended framework which allows operations other

than functional application in the semantic component.36

As for the semantic component of the two types of grammars,

there is general agreement. Categorized vocabulary elements

are assigned set theoretic interpretations of a sort determined

by the structure of the category and compound phrases are as-

signed interpretations by means of semantic compounding rules

which correspond to the lexical compounding rules. But MG is

more ambitious than the particular fragmentary grammar presented

piecemeal in the previous sections; interpretations of MG assign

more complexly structured entities to the various categories,

intensions instead of merely extensions. This allows treatment

of numerous semantic phenomena which do not have an analogue in

FOL, such as modal operators, intensional verbs, and tense oper-

ators. In the previous sections I was concerned primarily with
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analyzing and representing the structure of FOL and certain

aspects of English which are closely related to FOL. But the

structure of quantification in English is far more complex

and varied than the fragment that we have discussed so far,

and it has features which are not reflected in the structure

of FOL. My rejection of Montague's treatment of quantifica-

tion in English was aimed at David Lewis' syntactic arguments

in its favor and as a way of introducing the notion of extended

categorial grammar. In the rest of this section I will dis-

cuss some of the ways in which quantification in English is

much richer in structure than quantification in FOL, and re-

examine Montague's treatment of names, quantifiers, and tran-

sitive verbs.

English quantificational devices are much richer than the

devices of FOL, and strictly exceed them. The phrases 'every-

thing' and 'something' together with pronouns and such bound

variable substitutes as 'the first thing', 'the second thing',

etc. can be used to duplicate any quantificational structure

of FOL. Of course, the results are often barbarous and unintel-

ligible. Phrases such as 'any 5, not necessarily distinct,

things are such that' help with some of the problems of multi-

ple quantification in English. English also has a wide range

of semantically different quantifier-forming phrases, some of

which are not expressible at all in FOL: 'fewer than 3', 'no

more than 4', 'exactly 17', 'at least 7', 'more than 8', 'half

of the', 'many', 'most', 'few', etc. There are additional con-

structions which present serious problems for analysis. Consider

the sentences
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(25) All of the people in this room and some of the people in

the next love each other.

(26) All of the people in this room love each other and some

of the people in the next room love each other.

(25) has an interpretation which entails that there is a set

consisting of all the people in this room plus some of the

people in the next room such that any two people in the set

love each other. Since (26) has no such interpretation, we

cannot take (25) to be obtained from (26) in the way that it

is often claimed that (27) is obtained from (28).

(27) All of the people in this room and some of the people in

the next room are fat.

(28) All of the people in this room are fat and some of the

people in the next room are fat.

By considering

(29) Jack and Jill love each other.

and

(30) Jack loves Jill and Jill loves Jack.

we might be led to suspect that 'each other' is an element of

category tv/tv which, in effect, conjoins a transitive verb with

its converse while the compound subject provides the necessary

two argument expressions. But then what do we do with

(31) Some of the people in this room love each other.?

We might try to treat (31) as coming from

(32) Some pairs of the people in this room love each other,

analyzing the verb phrase as in (30). Notice that this involves

treating the quantifier 'some of the people' as homonymous or

else taking 'each other' to operate on quantifiers as well as
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verbs. But even this won't do, because

(33) All pairs of the people in this room and some pairs of

the people in the next room love each other.

does not have as an interpretation the desired interpretation

of (25). One possible way of dealing with such sentences in-

volves treating 'each other' as of category (s/tv)/q, operat-

ing on the complex quantifier phrase 'all of the people in

this room and some of the people in the next room'.37

Furthermore, not only are there cases in which 'and' oc-

curring between quantifier phrases seems not to be derived by

a reduction of a sentence conjunction, but there are cases in

which a sentence conjunction seems to be derived from a sentence

with a compound verb phrase. Consider

(34) All the girls, but none of the boys, love a saxophonist

in the band.

(35) All the girls love a saxophonist in the band, but none of

the boys love a saxophonist in the band.

(36) All the girls love a saxophonist in the band, but none of

the boys love one.

(37) All the girls love a saxophonist in the band, but none

of the boys love him.

Since there is an interpretation of (34) on which it does not

agree with any interpretation of (35), (34) cannot be derived

from (35) by a reduction. (35) and (36) have the same interpre-

tations. But (37), which superficially resembles (36), cannot

be derived from (35). Rather, we shall see that (37) can be

best thought of as being derived from

(38) All the girls love, but none of the boys love, a saxophonist
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in the band.

As a preliminary to an analysis of the sentences (34)-(38),

let us consider how 'and' combines with two items of category

v in English. The example, 'eats and wets' leads us to see that

'and' combines two intransitive verb phrases to form a new in-

transitive verb phrase. Is there a mode of semantic combination

that corresponds to this rule: s/(s,s) v v-v? There is indeed.

Remember v = s/n. Let '@' stand for an operation such that if

f is of category c/(c,c 2) and g1 is of category c1/b and g2

is of category c2/b then f@(g 1 ,g2) is of category c/b and f@

(g1 ,g2)(x) = f(g1 (x), 92 (x)) for all appropriate x. Notice that

this is quite a different mode of combination than we earlier

assigned to '&' in our analysis of FOL. The treatment of 'CONJ'

in the analysis of PFL was different yet, being a sort of hybrid

of the other two. There are 'and's and there are '&'s. 'or'

combines with verbs in a like manner. Without any additional

apparatus, we can compound quantifier phrases too, since if Q ,

Q2 are of category q, and is the interpretation of 'and', and

f is of category v, then and@(Q1 ,Q2 ) = and(Q1 (f),Q 2 (f)).

Here are some plausible structures.

(39a) (39b) s

q sxc qtvqI@*2
loebut all no love a sax.

2 7 9girls boys

all
girls

no boys
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We get two structures corresponding to the two scopes of the

direct object.

(40) r

c2 I
all the girls love a

saxophonist in the band
non

a saxop]
e of the boys love
honist in the band

Each of the two sentence components of (40) has 2 interpretations,

yielding a total of 4 interpretations for the whole sentence, (35).

(36) has the same structure as (35) except that a pronoun of lazi-

ness has replaced the second occurrence of the shared quantifier

phrase. Either (36) is 4 way ambiguous or there are some re-

strictions on the insertion of pronouns of laziness. The struc-

ture of (37) seems best represented by

(41) s

c v a saxo*1 *1

but q tv q tv

all the girls love none of love
the boys

phonist

which is also the structure for (38). The pronoun in (37) is

a "bound variable" pronoun, which can fill a position governed

by a preceding quantifier. This agrees nicely with the unam-

biguity of (37) and (38). In this case, at least, the wide

variety of modes of combination and the wide variety of struc-

tures thereby permitted is well suited to the differences in

the properties of the sentences considered.

but
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Having seen the utility of operations on quantifiers that

yield quantifiers, let us now consider operations on names which

yield quantifiers. First notice that there is no theoretical

problem with operators of category q/(n,n), for example. Wheth-

er or not there are any English expressions which ought to be

assigned to. this type is another matter entirely. But before

considering the propriety of doing so, let us see how much fun

it is to treat certain expressions as belonging to category q/

(n,n). We could, for example, generate directly sentences such

as 'Jack and Jill went up the hill' by introducing yet another

mode of combination, m, such that q + s/(s,s) n n. Where f ism

of category c/(c,c 1 ) and a,b are of category b let % be such

that for all x of category c 1 /b, f % (a, b) (x) = f (x (a) , x (b) ) .

Then we could take msem to be %. More interestingly, we could

conveniently represent the difference between 'Neither Jack nor

Jill went up the hill' and 'Either Jack or Jill did not go up

the hill'; in the first we have negation of a quantifier and

in the second we have negation of a verb. Similar considerations

might lead us to introduce operations of categories q/(n,q) and

q/(q,n) to handle 'Jack and a girl' and 'Every girl and Jack'.

In the absence of any need to do so multiplying the nodes of

combination in this way is not very appealing.3 Of course,

if names and quantifiers were assigned to the same category,

-treating names as quantifiers in the above cases would no longer

be something in need of special justification, but an automatic

consequence of the assignment of categories to vocabulary. Which

brings us to the consideration of Montague's proposal.

The above remarks together with earlier ones about the dif-

ficulties involved in dealing with quantifier phrases as subjects
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of transitive verbs, within the framework of standard treatments

of categorial grammar, provide some syntactic motivation for

Montague's treatment of names and quantifiers. However, the

persuasive motivation concerns what is needed for an adequate

semantic treatment of intensional contexts. Consider the sen-

tence

(42) John seeks a unicorn.

If we treat this sentence along the lines of all previous ex-

amples, we assign to it the two structural descriptions:

(43) s (44) s

John tv q n tv a unicorn

I I I Iseeks a unicorn John seeks

While these structures are distinct, we saw that under the prin-

ciples of semantic composition appropriate for them, both struc-

tures receive precisely the same interpretation. More import-

antly, this remains true regardless of whether we assign just

extensions to basic vocabulary items, or have a system of pos-

sible-world based intensions as interpretations. But the in-

teresting fact about the verb 'seek' that distinguishes it from

such extensional transitive verbs as 'love' is that sentences

such as (42) are ambiguous and may, on one interpretation, be

true even though there are no unicorns. We could incorporate

this within the present framework by taking 'seek' to be ambig-

uous, having an extensional sense and an intensiornal sense and

by admitting possible as well as actual objects into the domain

belonging to the actual world. But this approach is not wholly
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satisfactory as we shall see presently. First, a brief intro-

duction to the notion of an intensional interpretation of a-

categorial grammar.

Like the simpler, extensional interpretations we have so

far considered, an intensional interpretation of categorial

grammar assigns, via a domain function, D, certain base domains

to the basic categories of the grammar, and assigns to a complex

category, c/(cG,...icn), the set of functions

D(c)D(c,)x...xD(cn)

Vocabulary items are assigned elements of the domain belonging

to their category, and semantic composition is determined by

the syntactic structure exactly as before. The only difference

is in the assignments of base domains. Let I be any set of

extensional interpretations (sometimes called possible worlds,

sometimes called indices) for the grammar. If i is in I and

b is a basic category, let D. (b) be the domain assigned to b

by the interpretation i; we call it the set of extensions of

category b (b extensions) in i. Then DI (b), the set of b

intensions determined by I, is the set of functions (partial

functions allowed) which assign an element of D. (b) to each i

in I. The b intensions for each basic category b are the basic

domains of the intensional interpretations determined by I. In

most cases, a member of I, ig, is picked out as "the actual world".

Often there are restrictions or additional structure on the set

I. In the rest of this section, we will consider intensional

interpretations for categorial grammars based on the categories

s and n. We will require that D. (s) consist exactly of the True

and the False for each i in I. D. (n) can be any non-empty set.
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Thus, an s extension in a possible world is a truth value, an

s intension or proposition is a function from possible worlds

to truth values. An n extension or possible object in i is

just a member of D.L(n) and an n intension or individual con-

cept is a function from possible worlds to possible objects in

those worlds. In general, we do not talk of extensions for

complex categories. An s/n intension or property is a function

from n intensions (individual concepts) to s intensions (propo-

sitions). A property, p, is extensional if (p(x))(i) = (p(y))

(i) whenever x(i) = y(i), for all possible worlds i and indivi-

dual concepts x,y. Thus thare is a pi in each i of category

s/n such that p(x)(i) = pi(x(i)).

Montague assigns 'seek' to category (s/n)/q. In fact, he

treats all transitive verbs this way because it provides a solu-

tion to the problem of quantifier subjects as well as inten-

sional objects. Names are reassigned to category q, leaving

the category n empty of basic vocabulary items. The (inten-

sional) interpretation for 'a unicorn' being of category

s/(s/n) = q, can be thought of as a set (actually, the charac-

teristic function of a set) of properties in each possible world,

the set of properties possessed by at least one unicorn in that

world. Thus, 'a unicorn' and 'a centaur' are assigned differ-

ent interpretations, since, even though unicorns and centaur

don't exist, there are possible worlds in which at least one

of these types of entity exists and in such a world, a differ-

ent set of properties will be assigned to 'a unicorn' and a

'centaur'. Thus the interpretation of 'seeks' can discriminate

between 'seeks a unicorn' and 'seeks a centaur' where necessary.
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Accordingly, the structural description below represents the

opague, de dicto, or narrow scope interpretation of (42).

(45) s

S(v

John (s/n)/q q

seeks
Iaunrn

In representing the transparent, de re, or wide scope interpre-

tation of (42) Montague departs from the pure categorial frame-

work, giving the following structural description:

(46) s

s

q v a un

(s/n)/q q
John I

I -a I
seeks

icorn

he
0

The dummy variable 'he0 ' is necessary to form what is in effect

the predicate 'John seeks' because the pure categorial system

only admits one mode of semantic combination (application of

function to argument) and this in turn requires that argument

expressions be always added in the same order. To make the syn-

tax and interpretation work out correctly, 'John seeks he0'

must be assigned to category s. But then 'a unicorn' must be

combined with an entity of the wrong sort. Thus a special syn-

tactic and semantic rule, indicated by the symbol 'F' must be

invoked. The effect of this rule upon the interpretation of

the structure is to extensionalize the predicate 'John seeks
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he0' and then to apply the quantifier 'a unicorn' to it in the

usual way, yielding a falsehood in the case there are no uni-

corns. Let us call the operator that extensionalizes an in-

tensional verb 'EXT'. EXT is semantically of category (s/n)/

(s/q) and is such that if f is of category s/q and x of cate-

gory n, and x =, of category s/n, is the property of being

identical with x and i is any possible world index, EXT(f) (x)

(i) = the True if x is the unique thing such that for some Q

of category q, f(Q) (i) = the True and Q(x=) (i) = the True.

Intuitively, this is a way of saying that the thing x satis-

fies a certain condition (definite or indefinite description)

and that, whatever intentional feature corresponds to f, is

intended with respect to that condition. For example, 'John

seeks' when interpreted extensionally, holds of a thing, say

a man, x, if there is some condition Q, holding just of x, such

that 'John seeks Q' is true in the intensional sense.

Let us try to separate what is crucial to Montague's treat-

ment of intensional contexts from other features introduced due

to limitations in the grammatical framework. To maintain uni-

formity with the earlier examples, we shall take 'seeks' to be

of category (s/q)/n in what follows. (45) is satisfactory as

a structure within the extended categorial framework. But so

i-s

(47) s

John (s/q) /n q

IsI
seeks a unicorn
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We will face the question whether to treat 'John' as belonging

to category n or q later. The extensional reading can be re-

presented in two ways also:

(48) s (49) s

v/(s/q) si, a unicorn

EXT q (s/q) /n

John

v/ (s/q)

EXT

seeks

As a further example, consider

(50) Everyone seeks a unicorn.

-This has the two extensional structures

(51) s

vq

(s/n)/(s/q)

EXT

everyone

a unicorn

seeks

q

s/ a unicorn

n (s/q) /n

Jlhn seeks

(52) s

*2

everyone *2 .q

(s/n)/(s/q) (s/q)/n unicorn

EXT seeks

This is just the same kind of ambiguity that arises with 'Every-

one loves a unicorn.' In addition, there is the ordinary in-

tensional sense represented by

(53) s

everyone ts/q) /n

seeks

q

a unicorn
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But now consider this sentence

(54) John seeks a unicorn and Harry seeks it too.

It seems to me that (54) has both an extensional and an inten-

sional interpretation.39 If this is so, then there is yet

another intensional reading of (50). Montague denies this

and treats (54) as (48) only. There is room within the pre-

sent framework to handle such cases. Intuitively, what we

have in (54) is a higher order quantification over entities

of category q there is some Q of category q which is a partic-

ular-unicorn intension such that both John and Harry seek it.

We need the qualification that Q be a particular-unicorn inten-

sion, that is that it be an intension of something in particu-

lar that is a unicorn. For without this qualification, we have,

in effect just existentially generalized

(55) John seeks a unicorn and Harry seeks one too,

a much different statement. Of course, saying what condition

exactly is required for Q to be a particular-unicorn intension

is not an easy matter. We introduce the new vocabulary: 'someq'
q

of category (s/(s/q))/v, and 'particular' of category ((s/(s/q))

/v)/((s/(s/q))/v). Also, let 'q"' stand for (s/(s/q). We now

can represent two more senses of (50):

(56) s

ii

i q1/v /)q (s/q) /n

q /v (q'/v)/(q /)~everyone seeks

is a unicorn
someq particular
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(57) s

V

everyone q (s/q)/n

q /v v seeks

q v (q /v)/(q /v) is a unicorn

someq particular

There are two extensional senses of (50), (51), and (52), and

three intensional senses, two involving seeking a particular

unicorn, (56) and (57), and the other, (53) involving seeking

some-or-other unicorn. Regardless of whether or not entities

of category q are appropriate to represent intensional objects,

some such discriminations must be made. Within the framework

of Montague's treatment of quantification, the treatment above

makes the necessary discriminations in a straightforward way.0

We have seen no syntactic or semantic reason so far for

putting proper names into the same category as quantifier phrases,

nor have we seen any reason for putting definite descriptions in

that category either. Are there any? One reason for wanting to

treat proper names as expressing intensional objects is in order

to deal with non-referring names, as in

(58) John seeks Santa.

But when we remember that we are already working within an in-

tensional semantics in which names are assigned constant indi-

vidual concepts and predicates are assigned properties of indi-

vidual concepts, we see that we do not need to put 'Santa' in

category q; nor need we put 'Nixon' in q. In fact, all the cases
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so far considered can be treated uniformly on one of two pat-

terns:4

(59) Extensional treatment of John seeks NP

s

NP

(s/n)/(s/q) s/q

EXT n (s/q)/n

John seeks

(60) Intensional treatment of John seeks NP

i

q /v v n (s/q) /n

Q tv NP John seeks

S A

where NP is either a q-phrase or an n-phrase and Q is either

'someq' or 'some particular'. Both patterns do the correct

thing regardless of whether proper names and definite descrip-

tions are treated as Montague does or in the usual fashion.

Is there any reason at all left for keeping these inten-

sional objects of category q in the grammar; couldn' t we just

categorize 'seek' and 'love' both as (s/n)/n and attribute the

difference between them to the fact that the extension of 'love'

in a possible world is a function the value of which depends

only upon the extension of both its arguments in that world,

while the extension of 'seek' in a world is a function the value
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of which depends upon the extension of its first argument and

the intension of its second? If we did revert to the standard

treatment, we would lose one substantial advantage of Montague's

treatment, namely the ability to distinguish between existen-

tially indefinite and existentially particular intensional

4 42
objects such as in (53) and (57). But it is another matter

entirely whether or not Montague's treatment is adequate. We

shall return to this last question shortly, after considering

how to categorize definite descriptions.

The reasons for categorizing definite descriptions as

quantifiers concern the differences in the roles of definite

descriptions and proper names in modal contexts, and, in par-

ticular, the problem of accommodating both de dicto and de re

occurrences of definite descriptions. Entities of category

q have 'scopes' while entities of category n do not. Consider

the sentence

(61) The Emperor is necessarily naked.

and the structures

(62) s (63) s

. s/s sqv

necessarily v the Emperor s/s v

q/v v is naked necessarily is nakid

the Emperor

(62) gives the usual de dicto interpretation and (63) the de

re interpretation. If, however, 'the' is assigned to category

n/v instead of q/v, definite descriptions are of category n,

with the result that there is no scope difference, at least not
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of semantic significance. One way to restore the ambiguity that

depends upon the scope differences in (62) and (63) while cate-

gorizing 'the Emperor' as n, is to introduce a "rigid designa-

tion" operator, RIGID, of category n/n such that for any indi-

vidual concept, x, RIGID(x) is the individual concept whose

extension in each possible world is that individual (if it exists)

which is the extension of :: in the actual world. Then, (64)

and (65) correspond to the interpretations of (62) and (63)

respectively.

(64) s (65)

s/s s

necestarily n v

n/v v is naked

I I
the Emperor

s s s
necessarily n v

n/n n is nakec

RIGID n/v v

I I
the Emperor

But this is still not enough to support the n categorization

view against attack, as these remarks by Kripke show:4 3

"Some philosophers think that definite

descriptions, in English, are ambiguous,

that sometimes 'the inventor of bifocals'

rigidly designates the man who in fact

invented bifocals. I am tentatively in-

clined to reject this view, construed

as a thesis about English (as opposed to

a possible hypothetical language) but I

will not argue the question here.
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What I do wish to note is that, con-

trary to some opinions, this alleged am-

biguity cannot replace the Russellian no-

tion of the scope of a definite descrip-

tion. Consider the sentence, "The number

of planets might have been necessarily

even." This sentence plainly can be read

so as to express a truth; had there been

eight planets, the number of planets would

have been necessarily even. Yet without

scope distinctions, both a 'referential'

(rigid) and a non-rigid reading of the

description will make the statement

false. (Since the number of planets

is nine, the rigid reading amounts to

the falsity that nine might have been

necessarily even.) "

There is a three-way ambiguity revealed here that must be dealt

with, unless we wish to follow Kripke in doubting the ambiguity

of definite descriptions in English. If we uphold the three-

way ambiguity, we must either categorize definite descriptions

as quantifiers or find some other way to introduce scope dis-

tinctions. Here are the three structural descriptions for

Kripke's sentence with descriptions treated as quantifiers:

(66) The rigid reading
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the number of planets s/s

might have been s/s

necessarily is even

(67) The non-rigid reading

s/s s

might have been s/s s

necessarily q v

the number of planets is even

(68) The third reading

might h

s

s/s s

ave been q

the number of planets s/s T
necessarily is e'ven

It appears to be possible to obtain the effect of these

scope differences while categorizing definite descriptions in

category n by further complicating the notion of an interpreta-

tion and properly defining RIGID. The basic formal idea is that
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of "two-dimensional modal logic" and allows the value of RIGID

to be a constant individual concept, but to depend upon the

index to determine which constant individual concept. Then

the two readings corresponding to (67) and (68) are constructed

by making use of the difference between

for some index i, (is necessarily even) (RIGID(the

number of planets))

and

for the index of the actual world @, (is possibly

necessarily even) (RIGID(the number of planets)).

Not only does this treatment have the advantages of uniformity

and agreement with intuition, but the complicating apparatus

is useful for other quite distinct purposes as well.

The time has come to reexamine Montague's treatment of in-

tensional objects and intensional verbs. It is important to

realize that within the framework of intensional logic such as

Montague uses, while there are many different possible but non-

actual objects (of category n) and many different possibly but

not actually instantiated properties (of category s/n) and many

different possibly true but actually false propositions (of

category s), there is but one impossible object, one logically

uninstantiable property, and one impossible proposition. Even

introducing intensional objects of category q does not help in-

dividuate impossible objects. Consider 'the round square' and

'the greatest prime'. The interpretation of 'the round square'

is that property of properties whose extension at each possible

world is the set of properties instantiated by the one and only

thing, which, in that world, is both round and square. Since

nothing in any possible world is both round and square, the set
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of properties instantiated by such a thing is the empty set.

Thus, the interpretation of 'the round square' is that property

which is true of no properties in each possible world. By a

similar analysis, we determine that the interpretation of 'the

greatest prime' is also the property of properties true of no

properties in any possible world. Thus 'John seeks the round

square' and 'John seeks the greatest prime' will receive the

same truth value. Even with the introduction of intensional

objects of category q, logical equivalence determines the bound

on the fineness with which intensional objects can be individu-

ated. There is an improvement over the more straightforward

treatment of intensional objects as individual concepts (of

category n), but as we saw earlier, the improvement concerns

the ability to discriminate between definite and indefinite in-

tensional objects. These remarks may puzzle those familiar

with recent attempts to incorporate Meinongian intensional

objects into set theoretic semantical systems, because such

attempts claim to individuate impossible as well as possible

objects and offer as a reconstruction of Meinongian objects

entities of the same category as Montague's intensional objects.

But while the Meinongian reconstruction of the round square is

a set (or property) of properties, it is a different one than

is assigned to 'the round square' by Montague, for example the

set consisting solely of the two properties roundness and square-

ness. Two senses of predication are introduced, so that 'The

round square is round' can be true, 'The round square is2 red'

false, 'The president is1 bald' false, and 'The president is2

bald' true. Such theories are quite interesting and may be
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fruitful, but it is important to see that they are substantially

different from Montague's treatment of intensional objects. It

may be possible to graft a semantics for Meinongian objects on-

to the sort of semantics based upon extended categ7rial grammar

which is presented above. But even if this can be done, and

even if all the complicated details of ambiguous predication,

impossible, fictional, and indefinite objects can be worked

out, there will still remain problems of intensionality with

regard to expressions of category other than n. Can Meinongian

objects help us to interpret 'John believes that 2=1' and 'John

believes that the halting problem is solvable'? We will recon-

sider this question later on.
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Part 10 -- 'General Semantics'

David Lewis gives a pure categorial grammar for FOL (as

part of a more complex family of languages) which is different

from any we have so far discussed. The grammar Lewis presents

is interesting in its own right; and examining it yields further

insights about the workings of variables in FOL and the semantics

of categorial grammars.

Consider the quantifier free part of FOL with variables,

VQFFOL, with the variables x1 ,x2 ,... assigned to category n.

This is just the system QFFOL of part 5 with variables added.

For the time being, consider only the pure categorial grammars.

An interpretation of VQFFOL on the nonempty set D is a function,

I, from the vocabulary of VQFFOL to certain sets such that I(a.)
J

is in D, I(xk) is in D, and I(F ) is in D1 for each integer k and

eachi, j, t that index the appropriate symbols VQFFOL. Also,

I(%) and I(&) are the appropriate truth functions. Notice that

both Fx1 and Fa are phrases of category s in this grammar of

VQFFOL. Unlike the earlier grammars for FOL, variables occur as

vocabulary items of the base structure. What happens if we try

to extend an interpretation I to all of FOL rather than just

VQFFOL? First we must add the quantifiers 3x., of category
J

s/s now, or some way of generating the quantifiers. This gives

the proper class of expressions.4 But there is trouble extend-

ing the semantic portion of the grammar . In many interpretations,

1 1
I, we will have I (Fix1 ) = I (F2 xQ), so if we stay within the cate-

gorial framework, I(29x1 x I(3x)(I(FixI)) = I1x(I(F1x

= I (3 F x ). Thus, we cannot extend I directly to give an inter-1 21
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pretation of existential quantification given the grammatical

analysis of WFEs of FOL that we are considering.46 For simi-

lar reasons we must treat the quantifier expressions 3x. as

being basic expressions of category s/s. If we try to parse

them as (s/s)/n plus n, taking 9 to be of category (s/s)/n,

we find interpretations I such that I(13x 1 ) = I(3x 2) because

for those interpretations I(x1 ) = I(x2). And so we cannot ex-

tend such an interpretation to one in which 9 plays the role

of the existential quantifier. Facts such as these are what

encourage people to treat predicate letters together with

variables as of category s/n, s/(n,n), etc. or to banish

variables from the base structure all together as syncategore-

matic elements indicating operations on predicates. We have

seen above how this might be done in some detail and what com-

plications ensue.

Lewis' clever proposal is to form a product structure on

an index set of interpretations of the above sort rather than

to try (futilely) to extend the interpretations directly. Let

the index setst I be the set of all interpretations of VQFFOL,

I', such that the domain of V = the domain of I and I'(a.) -

J

I (a.), I' (F.) = I1(F ). Thus, &2 is the set of all interpreta-

tions just like I except, perhaps, in what they assign to the

variables x.. The intensional or product interpretation, J,

on the index set& has as its s intensions elements of2 ,

and as its n intensions elements of D with the interpreta-

tions for complex categories being determined in the usual

fashion. Now we must specify the value of J on the vocabulary

of FOL. For each constant, a., J(a.)(I') = I'(a.), for all I'
J J )
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in For each predicate, F' J(F)(I') = I'(F , for all

I' in 4 For each variable, x, J(x)(I' ) = I'(x.), for all

I' in . Also J(%) (I') = I' (t.) and J(&) (I') = I' (&) for all

I' in & . Thus we have an interpretation of VQFFOL on the

product structure indexed by % such that the value of any

expression of QFFOL at any index I', is determined solely by

the values of the simple phrases of the expression at the index

I'. All that is left to do is determine the value J( 3). Let

I' and I'' be inte9 and v be in D . Then I'%I'' if there

is a j such that v(I''') = I'''(x.) for all I''' in CQ and for

all k, k / j, I'(xk) = I(xk J(5 ) is a function from

2 to 2 such that for each p in 2 and for each I' in

9, J(3 x ) (p) (I') = the True if there is an I'' incS29 such

that I' I'' and p(I'') = the True. This interpretation ofJ3(x.)
J

2x., depending, as it does, on the "intension" of its argu-
J

ments, makes the product interpretation as a whole nontrivial.

It is easy to treat 3 as of category s/(n,s) as Lewis does,

by letting J(3)(v)(p)(I') = the True if for some I'', I
v

and p(I'') = the True. There will be (in most cases) v,v',p,

p',I' such that v(I') = v'(I') and p (I') = p'(I'), but J(3)

(v,p)(I') % J(J)1(v'-,p) (I') and J(J)(v,p)(I') $-J(_~ )(v-p ) I').

Variables are thus fully categorematic even when "bound" by

a quantifier. We can simplify the description of the class of

interpretations by taking the index set to be just the set of

assignments on the domain D, that is, the set of all functions

which map a variable into an element of D.

Lewis' interpretations of FOL are closely related to the

standard' sort of interpretations. Every standard interpretation,



93

I, of FOL determines a unique Lewis interpretation, L(I), as

follows: Let S I be the set of assignments to the variables

of FOL of elements of the domain of I. Then L(I) (x.) (i) =

i(x ) for each i in S 9. L(I) (a.) (i) = I(a.) for each i in

2. L(I)(F.)(i) = I(F.) for each i in .v and & are in-
J J

terpreted in L(I) just as in I. J is interpreted in L(I) as

in the example J above. For each expression, e, of FOL of

category s with no free variables, and any index i in S i,

I(e) = L(I)(e)(i). And if e has free variables, the value of

e in I with respect to the assignment i, I.(e) = L(I)(e)(i).

Each Lewis interpretation, J, also determines a unique standard

interpretation, S(J) as follows: For each WFE of FOL with

respect to the Lewis grammar (see below) we define the extension

of the expression under J, EXTJ, EXT,(a ) = the unique y such

that J(a.) = z, where for y in the domain of J, D, y is the

kconstant function from the index set of J to y. EXT (F.) =

th nqefntok kk
the unique function, f , from D to 2 such that fk(d,...,dk)

kJ(Fk) (d1,...,dk)(i) for any i in the index set of J. If

$x ... x . is any WFE of FOL of category s with respect to the

Lewis grammar, and x. ...x. is a complete list of the (dis-
j1 in

tinct) variables occurring free in the expression in some fixed

order, say that of their first (from left to right) occurrence

in the expression, then EXT ($x. ...x. ) = the unique function,
J i Sn

f, from Dn to 2 such that for each d1 ,...,dn in D, f(dy,...,dn)

= J($x. ...x. ) (i), for some i such that i(x. ) = d1 ,...,i(x. )

= dne That there is indeed always a unique such function can

be easily verified by proving the lemma that the value assigned
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by J to WFE of category s at an t A i depends upon the assign-

ment that i makes to the free variables of the expression only.

The domain of S (J) is just the domain of J. S (J) (a.) = EXTJ

(a.) = EXT (a.) and S(J)(F.) = EXT (F). S(J) treats the logi-
J J J J J J

cal constants in the usual fashion. For each expression, e,

of category s with respect to the Lewis grammar, J(e) (i) =

S(J) (e), for all assignments i. Since L(S(J)) = J and S(L(I))

= I, there is a 1-1 truth-preserving correlation between Lewis

interpretations of FOL under Lewis grammars for FOL and standard

interpretations under standard grammars.

Here are some further facts that bear on the way in which

the Lewis grammar analyzes the role of variables:

EXT (Fkx....x. ) = EXT (F) - fk
JJ I J k i.

EXT (#x x. ...x. ...x, ) = REF (EXT($x.e...x. ...x. ...x. ))
lii 3m 3m k -kmP J j, Jm p k

EXT ($x. ...a....x. ) = SUBk(J(a.), (EXT($x. ...x. ...x. ))

EXT (%$x. ...x. ) = NEGk(EXT($x. ...x. ))

EXT ($x....x. & ix. ...x. ) = CONJkl l(EXT (x. ...x. ),
J i I k+l j kilJ i l

kJi UkJ k+1jk+13 k
EXT 3x X- 00 Xa 0 xa XQ...(ET EX$. ... )

EXT ( $ 11. . m k) =$ . k

where the operators REF, SUM, etc. are the same operators we

introduced in part 6 to analyse the role of variables. Simi-

lar relations definable in terms of EXT~ exist for the other

predicate operators we introduced in later sections. Thus, at

some quite general level of description, Lewis analyses the role

of variables in FOL just as our earlier grammars do, though

without explicit appeal to predicate operators.

Lewis' treatment has a number of virtues. No "transforma-
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tions" are necessary in order to preserve the categorematic

character of the grammar;4 the variables are part of the

basic vocabulary and each occurrence of a variable is treated

in a uniform manner by the grammar. Only a single mode of

semantic and syntactic combination is needed; consequently,

as we shall shortly see, the grammar can be extremely simple.

The treatment of variables is quite general and extends in a

straightforward manner to the other well-known cases such as

iota notation for definite descriptions, lambda notation for

functional abstraction, bracket notation for set abstraction,

etc. The basic semantic idea of extending interpretations to

"nonextensional" cases by means of product structures extends

to other important operators on sentences which do not involve

variables, such as modal and tense operators. It is also pos-

sible to modify Lewis' grammar very slightly so as to have a

completely finite (finite vocabulary and finitely many rules)

categorial grammar for FOL. Before doing this, there is one

minor difficulty to consider. If we do not include any "trans-

formations" in the grammar, then we do not generate exactly the

class of WFEs previously called FOL. In particular, there are

problems with vacuous quantifiers and quantifiers with an asso-

ciated constant instead of an associated variable. Since vari-

ables are among the basic vocabulary and categorized n along

with constants, both variables and constants behave the same

from the standpoint of the syntax of a Lewis grammar.4 8

The fundamental idea involved in finitizing the Lewis

grammar for FOL is simply to take the subscripts of variables
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to be arguments of a function denoted by 'x'. To make the

presentation of a grammar that does this as simply as possible

let us rewrite our subscripts in "successor" notation as:

1,Sl,SS1,SSSI, etc. We also introduce a new basic category,o.

The simple vocabulary items and their classifications are as

follows:

a. -- nF-- x--n/o
J J
l--o S--o/o

A-- s/s & -- s/(s,s) .2-- s/(n,s)

where there are only finitely many a's and F's. 49 As phrase

structure rules, we take only those pure categorial rules de-

termined by the vocabulary--those rules corresponding to func-

tional application with all arguments supplied in some fixed

order. We interpret a., F., ', &, 3 as above. The category
J )

o is assigned as its domain the set, N, of positive integers

and '1' is interpreted as 1, 'S' is interpreted as the succes-

sor function. Reconstrue the elements of the index set as

functions from the ordinal number of the variables with respect

to some (the natural one, induced by the subscripts) ordering

to elements of DI4I. Then we interpret J(x) as that function

from N to D 21 such that for each n in N and each i in z y,

J(x) (n) (i) = i(n). The trick of construing subscripts (and

superscripts) as argument expressions is widely applicable as

a means of converting an infinite vocabulary to a finite vo-

cabulary within the framework of categorial grammar. This may

be slightly interesting and a little clever, but the really impor-

tant conceptual point about this finitizing trick is that it has no
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conceptual importance. There was nothing wrong or deficient

or "unlearnable" about the earlier grammars insofar as they

contained an infinite vocabulary or infinitely many rules. In

fact, I think that the analysis of GFOL is more "intuitive"

than the one presented above.

The Lewis grammars discussed above can be easily extended

to modal and tense logics. Consider, for example, adding a

new vocabulary item, N, to express 'it is necessary that'. The

syntax runs smoothly if we add N to category s/s. But in order

to have N take some true sentences to true sentences and others

to false sentences (as it must to represent necessity), we need

to form certain product structures over an index set of "possi-

ble worlds" as is standardly done. For tense logical operators

the index sets must be time-coordinate structures. As with the

case of FOL, there are two sorts of treatment that we can give

to modal and tense operators: the Lewis treatment just mentioned,

and an analogue to the standard Fregean treatment of quantifiers

in FOL. This second sort of treatment involves taking the

operators as operators on predicates as well as sentences by

means of extended categorial rules, and assigning "super exten-

sions" to predicates which code not just the distribution of

truth values with respect to different assignments to the

argument positions of the predicate, but also distributions of

truth values with respect to possible world and temporal coordi-

nates as well. There is no reason to prefer this latter sort

of treatment of modal and tense operators to the Lewis sort,

and, perhaps, some reason for the opposite preference. What is
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important is to appreciate the similarity of grammar for

quantifiers and grammar for some of the things that are

called "intensional operators". In the cases I have in mind,

the basic semantic entities are the extensional ones (refer-

ence and truth value), though these may vary with respect to

certain indexical factors and some operators may take the

manner of their arguments' variation with indexical factors

into account. There may also be different structures on the

index sets which represent the indexical factors. But the

essential character of such semantic features is the determina-

tion of reference and truth value of complex expressions by the

distribution of reference and truth values of their component

expressions. As we saw earlier, contexts such as 'seeks' and

'believes that' call for quite different approaches.

Lewis, unlike Montague, attempts to provide for semantic

relations which individuate (sentences, for example) more finely

than by logical equivalence:50

Intensions, our functions from indices to

extensions, are designed to do part of what

meanings do. Yet they are not meanings; for

there are differences in meaning unaccompanied

by our differences in intension. It would be

absurd to say that all tautologies have the

same meaning, but they have the same inten-

sion; the constant function having at every

index the value truth. Intensions are part

of the way to meanings, however, and they

are of interest in their own right.
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Intensions together with structure determine meaning according

.51
to Lewis:

Differences in intension, we may say, give

us coarse differences in meaning. For fine

differences in meaning we must look to the

analysis of a compound into constituents and

to the intensions of the several constituents.

For instance, 'Snow is white or it isn't'

differs finely in meaning from 'Grass is green

or it isn't' because of the difference in

intension between the embedded sentences 'Snow

is white' and 'Grass is green'. For still

finer differences in meaning we must look in

turn to the intensions of constituents of

constituents, and so on. Only when we come

to non-compound, lexical constituents can

we take sameness of intension as a sufficient

condition of synonymy.

An L-meaning is52

a tree such that, first, each node is occupied

by an ordered pair [c $] of a category and an

appropriate intension for that category; and

second, immediately beneath any non-terminal

node occupied by such a pair [c $] are two

or more nodes, and these are occupied by pairs

[ c0 0J ],(c 1 l],...,[cn n1] (in that order)

such that c0 is c/(c ,...,cn) and is $0 l'
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Generalizing Lewis' definition to accommodate extended categorial

grammars, we allow the categories of any node and the nodes im-

mediately dominated by it to be related by any extended categorial

relation and the corresponding intensions to be combined by the

corresponding mode of semantical composition. If we ignore the

possible effect of transformations for the sake of simplicity

here, we can define the meaning of an expression dominated by

a certain node of an interpreted structural description (one in

which intensions are associated with each node in the obvious

way) as the subtree dominated by the node minus the terminal

vocabulary items. Two questions arise about these constructs.

Do they suffice for the definition of the semantic relations

and properties such as synonymy, analyticity, ambiguity, anomaly,

etc.? Do they suffice to treat intensional verbs such as 'seeks'

and 'believes' or do we need additional intensional semantic en-

tities to do this? Lewis considers the first question, but says

nothing about the second. I shall try to deal with both, con-

centrating on the second question.

One problem we must face immediately is the specifica-

tion of a normal form for structural descriptions and L-mean-

ings. If L-meanings are to reconstruct meanings, they must, of

course, be individuated at least as sharply as meanings. But

they also must not be too much more finely individuated. Ex-

tended categorial grammar allows at least the following struc-

tures for 'John loves Mary':

(69) 2

n tv

John lojes Mary
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(70) s (71) s

V n nV

n tv Mary John tv n

John lois loves Mary

Since, considered as trees, these are three distinct, though

closely related structures, and since they represent exactly

the same unambiguous sentence, literal non-identity of L-mean-

ing is not the same as non-identity of meaning or non-synonymy.

This fact is not fatal to Lewis' approach to semantics combined

with extended categorial grammar, but it does cause complications.

We must find some other equivalence relation than identity on L-

meanings to reconstruct sameness of meaning. In addition, if

we want to reconstruct not just sameness of meaning, but meanings

themselves, we must associate with each sameness-of-meaning

equivalence class the meaning which is the same throughout the

class. One always available way of extracting an entity from

an equivalence relation is to take the equivalence classes them-

selves; another is to find some natural way of selecting a

representative of each class. A normal form for L-meanings is

a function which maps L-meanings to L-meanings such that its

value is the same on all L-meanings of synonymous structural

descriptions, and its value on an L-meaning is always synonymous

with that L-meaning. In effect, specifying a normal form for

L-meanings and specifying a definition of synonymy for L-meanings

are the same thing. The details would be messy, but a normal form

would discount differences in structure due to differences in the
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order of application of rules, where such differences were un-

important in a systematic way. One sort of reordering, for

example, would be to perform all possible partial applications

of a function at the same level of the tree and in some fixed

order; this would select (69) as the normal form for 'John

loves Mary'.53

A very important fact about L-meanings (and interpreted

structural descriptions) is that an L-meaning of category c1/c2

determines a function from L-meanings of category c2 to L-mean-

ings of category c1 ; that is, we can construe L-meanings of

function names to be functions from L-meanings to L-meanings,

in a manner similar to the construal of intensions of function

names as functions from intensions to intensions. Consider, for

example, an L-meaning of category s/n, m, with intension, f, of

arbitrary structure.

m . m
s/n n

For any L-meaning, mi, of category n with intension a, there is

determined an L-meaning m(m1 ) as follows:

m (m1 ) =

n
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which is the tree obtained by joining m and m1 dominated by

a new node labelled s and with f(a) as its associated inten-

sion. For each allowable combination of categories and each

mode of composition appropriate to such a combination, there

is a similarly determined L-meaning function. For convenience,

I shall sometimes consider complex L-meanings to be trees and

sometimes functions of the above sort determined by a tree.5 4

There are functions, I and M, which determine for each

interpreted structural description, X, of a WFE, e, and for

each WF part of e, e', an intension I(e',X) (the intension of

e' on X), and an L-meaning M(e',X) (the meaning of e' on X).

Since each WF part of an expression determines a unique node of

a structural description of the expression (the lowest node

dominating exactly that phrase), we can think of I and M as

functions taking nodes as their first argument. There is also

a very simple function, B, such that for all e', X I(e',X) =

B(M(e',X)); in other words, intension is a function of L-mean-

ing or the L-meaning of an expression determines the intension

of that same expression. Here is a simple illustration: If

e =FA X=

I(F,X) = f s/nsn

I(A,X) = a I
F A

then

M(FX) = . M(A,X)

s/n n
f a

M(e,X) = M(F,X)((M(A,X)) =

f(a)

s/n n
f a
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and

I(e,X) = B(M(e,X)) = f(a)

which is also

I(F,X) (I(AX)) = B(M(FX)) (B(M(A,X)))

in this case.

Accepting, for the moment, that L-meanings provide a

means of defining the semantic properties and relations, the

question still remains whether or not belief (and other "inten-

sional") contexts can be dealt with satisfactorily. The answer

must be, No, if the relationships that hold in the above example

between I, B, and M hold quite generally. But there is an

alteration of those relationships which preserves all the fea-

tures of the analysis so far and opens the way to a treatment

of belief contexts as well. The problem concerns the relation-

ship I(FA,X) = I(F,X)(I(A,X)), which, on our present understand-

ing of intensions, has as a consequence the complete inter-

changeability of cointensional expressions salve veritate.

This is just the feature that caused us to reject Montague's

analysis. We must define anew the class of intensions of cate-

gory c, INT(c), and the class of L-meanings of category c,

LM(c), for each category c. Let s,n be the basic categories,

SQ be an index set, and D be the domain assigned to n. As be-

fore, INT(s) = 2and INT(n) = D . And as before, LM(c) will

consist of all interpreted structure trees with initial modes

of category c and all nodes, N, interpreted so that if N is of

category c', the interpretation of N is in INT(c'). Further,

if in tree X mode N of category c dominates nodes N,...,N of
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COMB, then M(N,X) = COMB(M(NlX),...M(N ,X)). All of this

is essentially as before; the alteration involves INT for com-

plex categories. While before INT(c/(c1 ,...,c )) =

INT(c) INT(c 1)x...xINT(c 
)

we now let INT(c/(c1 ,...1c)) = INT(c)LM(c)x...xLM(cj).

Let us focus on INT(s/n) = LNT(s) LM(n)= (2 fi ) LM(n) as an example.

Our previous notion of an s/n intension is preserved in essence,

since a member of INT(s/n) can ignore almost all of its argument

in LM(n) and just attend to the interpretation associated with

the principal mode. Thus we can let F have as its new-style

intension (fB). But there are also members of INT(s/n) which

take into account the full L-meaning of their argument, and not

just its intension at the principal node. This means that the

rule of combination of L-meanings must be changed so that, for

example,

I(e,X) = I(F,X)(M(A,X)).

Expressed in a slightly different, but equivalent form,

I(e,X) = I(F,X) (I(AX),M(AX)).55

We call I(F,X) a pure intension if I(FX)(I(AX),M(AX)) =

I(F,Y) (I(B,Y),M(B,Y)) for all B,Y such that I(FX) = I(F,Y) and

I(A,X) = I(B,Y). Otherwise, I(F,X) is an impure intension.

These notions can be straightforwardly extended to intensions

of any complex category, and we consider this to be done. A

pure intension of category s/n may be considered to be just a

member of INT(s)INT(n). Pure intensions suffice for the seman-

tics of quantification, modal operators, and tense operators.

We need impure intensions or something like them to deal with

105
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belief contexts and other "intensional" verbs.

It may be helpful in understanding this treatment of

semantic notions to compare it to a version of Frege's seman-

tics. Let SENSE and REF be functions which associate with each

meaningful expression of English the Fregean sense and reference

(where the reference exists) of that expression. Let EXT be the

function which associates with each sense its reference when

that exists. Then the basic principles of Fregean semantics can

be formulated as:

there is a set D such that for any expressions F,A

of categories s/n and n respectively

(i) REF(F) is in 2D, REF (A) is in D, if it exists

(ii) SENSE(FA) = SENSE(F)(SENSE(A))

(iii) REF (FA) = REF (F) (REF (A))

(iv) EXT (SENSE (FA) ) = REF (FA) = EXT (SENSE (F) ) (EXT (SENSE (A)))

Of course, these principles can be easily generalized to cover

any complex category other than s/n. These relations are simi-

lar to those above when we let SENSE correspond to LM, REF to

INT, and EXT to B. With this correspondence in mind, we can

formulate our difference with the Fregean theory as the presence

of the principles

(iii' )REF (FA) = REF (F) (REF (A) ,SENSE (A) )

(iv') EXT(SENSE(FA)) = EXT(SENSE(F) (SENSE(A)))

instead of (iii) and (iv) .5 (iii) and (iv) hold for special

cases, but not for belief contexts. We further differ from

Frege in that we allow (iii) and (iv) to hold for modal contexts.

We have, in effect, given up the principle that the reference of
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a complex expression is a function of the reference of the com-

ponent expressions--at least as a general principle, while re-

taining the principle that the sense of a complex expression is

a function of the senses of the component expressions and also

retaining the principle that the sense of an expression deter-

mines the reference of that expression. It is clear how this

helps with the problem of semantics for belief contexts: the

truth value (at an index) of 'John believes that the earth is

flat' depends upon the L-meaning of 'the earth is flat' and

thus is not, in general, to be expected to remain the same if

some other sentence with the same truth value at all indices is

substituted for 'the earth is flat'. But this just clears the

ground; we must now see in more detail how such an account might

treat belief contexts.

It would be unreasonable to require more of a Lewis-style

semantic account of 'believes that' than of a more mundane verb

such as 'is fat'. The intension of 'is fat' is that function

from L-meanings of category n and indices whose value is the

True if the intension of the principal node of the L-meaning

evaluates to a fat thing at the index. The analogous treatment

of 'believes that' is that function from L-meanings of category

n, L-meanings of category s, and indices whose value is the True

if the value of the intension at the principal node of the n L-

meaning for the index is a thing which believes the object-of-

belief represented by the s L-meaning at the index. There are

(at least) two features of this specification of the intension

of 'believes that' that might lead us to worry, because they com-

plicate the traditional style of set-theoretic semantics.



108

First, there is the question whether or not L-meanings plus

indices adequately represent the objects-of-belief, whatever they

are. A minimal adequacy requirement on the representation of

objects-of-belief by L-meanings plus indices is that the corre-

spondence of L-meanings plus indices to objects-of-belief be a

functional or many-one correspondence. The reason for taking

the representatives to be L-meanings plus indices rather than

just L-meanings, is to stand some chance to meet the requirement.

The sentence 'He did it' has an L-meaning, but it is only when an

index has been supplied and the indexicals 'he' and 'it' speci-

fied that we can consider a definite object-of-belief to be

represented; what can be believed are the sort of things which

can be true or false, and the sort of things which can be true

or false are L-meanings plus indices. Is an adequate semantics

for 'believes that' also required to specify conditions on the

representatives of objects-of-belief under which substitution

preserves truth value? That is, must the correspondence be

shown to be one-one and not just many-one? Or, perhaps we need

only define a normal form on L-meanings plus indices which yields

a one-one correspondence. Perhaps. But if we are merely con-

cerned to give reason to believe that a particular semantic

framework permits an adequate treatment of belief and other in-

tensional contexts, rather than with working out all the details

of such a treatment, we need not meet this last requirement.

Later on, though, we shall touch on matters which do concern

the details of the relation between objects-of-belief and L-

meanings plus indices.

The second, more worrisome question, concerns the effect on
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the set-theoretic specification of intensions and L-meanings of

our revision of Lewis' original formulation. On the original

formulation, intensions are defined in a straightforward and

familiar way and the L-meanings are defined as certain trees

with nodes labelled by categories and intensions. All this is

done in a predicative or constructive fashion by means of sim-

ple indictive definitions on the structure of complex categories.

But our revised version does away with the relatively straight-

forward hierarchical structure of the class of intensions and

L-meanings, replacing it by a vague, mazelike self-applicative

characterization. We need some confidence that the characteri-

zation determines a class of sets at all, and that this class

contains the sort of members we would expect it to. To see the

threat more clearly, let us consider the more definite specifi-

cation of the class of intensions of category s/(n,s), of which

one member is supposed to be the intension for 'believes that'.

The intension of 'believes that' which we described above is a

function, one of the arguments of which is an L-meaning of cate-

gory s; further, the function is sensitive to the details of the

L-meaning of its argument of category s--in particular, it is

sensitive to the intensions present at various nodes other than

the principal node. But, among the L-meanings of category s there

are some with nodes labelled s/(n,s), and of these some have the

intension of 'believes that' associated with the node. That is,

we must allow for such sentences as 'John believes that Mary

believes that 2 + 2 = 5'. So the specification of the inten-

sion of 'believes that' seems to involve determining the value
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of a certain function on complex entities, one component of which

is that very function. And this causes trouble of a technical,

set-theoretic sort. All we have said so far has accepted the

standard account of functions as sets of ordered pairs. On

this account, within standard set theory (ZF, for example), no

function has itself as one of its arguments. Nor is any func-

tion defined on a domain which contains sets which are in any

way built up from the function itself. All this follows from

the Axiom of Foundation, which requires that no set is a mem-

ber of itself, or of any member of itself, or of any member of

a member of itself, etc. But the intension of 'believes that'

is supposed to be a function defined on objects built up from

that very function itself. How can this be? In general, isn't

our previous "definition" of the class of intensions and L-mean-

ings of this impredicative sort and thus one which determines

in each case the empty set of no set at all? Fortunately, the

circular characterization of INT and LM can be turned into a

legitimate inductive definition, but the structure of the induc-

tion is complex. Here is a sketch of some of the details: 5 7

Let INTO (c), for each category c, be the set of all old-style

intensions--the ones specified by Lewis. Let LM=T(c,S) be the

set of L-meanings of category c with nodes labelled by intensions

taken from S. Let LM0 (c) be T(c, INT0 ), where INTO =UINTO~)

For each integer k > 1, INTk(s) = INT0 (s) = 2 and INTk(n) =

INT0 (n) = DS. flNTk(c/(cll...Ic )) = the class of functions

from LMk,~c)x...xLMkqjcj) to INTk-l(c). LMk,(c) = T(c, INTk)'

where INTk = INTk(c). The sets INT(c) and LM(c) are the "limits"k c Nkc)
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of these sequences, or the "least fixed points" of the conditions:

INT(s) = 2 , INT(n) = D , INT(c/(c1 ,...,c )) = LM(c1)x...

xLM(c.) INT(c), and LM(c) = T(c, INT), where INT =LINT(c).
Jc
One final remark before leaving this matter: the problem

above is not unique to my extension of Lewis' semantics, but

would seem to arise on any reasonable account of meaning. For

example, on the modified Fregean theory above, in which we gave

up the principle that, in general, the reference of a compound

is a function of the reference of its parts, we will have to

consider cases such as SENSE(...'believes that'...'believes

that'...) = F(SENSE('believes that') ((...SENSE('believes that')

.. .) ) ) , in which the sense of a compound is determined by a

certain sense applied to a compound sense, one of the components

of which is that certain sense. Something like the solution

sketched above seems necessary to explain how this is possible,

how there can be entities like this, regardless of whether

meanings are L-meanings or quite different entities.

We continue with an examination of more traditional

matters such as the treatment of proper names, and of trans-

parent or referential occurrences of noun phrases within con-

texts governed by intensional verbs. An element of LM(c) is

a simple meanins if it consists of a single node labelled with

c and a member of INT (c) . Some (perhaps most) of the vocabuiary

items of English have meanings which are not simple. For example,

'bachelor' has a meaning of the sort
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V

v/v v

unmarried v/v

adult v/v

male person

which makes it synonymous with the compound phrase 'unmarried

adult male person',.58 Notice that, inevitably, on this treat-

ment of meaning in some cases (the simple meanings) the dis-

tinction we have worked so hard to establish between meaning

and intension effectively vanishes. There is only 1 basic

meaning with a particular intension. This is not the same

as saying that there is only 1 meaning with a particular in-

tension--which, of course, is just what we want to deny by

having meanings correspond in a many-one fashion to intensions.

Nor is it the same as saying that there is only 1 meaning with

an intension which belongs to a given basic meaning.

When we consider how to treat proper names,, we see that

there are several possibilities. Assuming that our treatment

is to be uniform throughout the class of proper names, 59 the

possibilities are four: proper names are assigned basic mean-

ings with an intensional component that is constant or "rigid"

with respect to possible world coordinates of indices, proper

names are assigned basic or complex meanings with non-rigid in-

tensional components (at least in some cases) . The basic/rigid

alternative can be taken as a (partial) reconstruction within

the categorial framework of the view of proper names associated
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with Kripke et. al. The complex/non-rigid alternative corresponds

well to the Frege-Russell theory of names which takes them as

synonymous with certain descriptions, or even with a "cluster

of properties" modification of that view. The basic/non-rigid

alternative might be palatable to someone who thought names be-

haved much like descriptions, but were not, strictly speaking,

synonymous with any description. The complex/rigid view might

seem to be nothing more than a combinatorial possibility. How

could names generally be semantically complex and yet always

have rigid intensions? Even if this was possible, what would

be the motive for analyzing names in this fashion? As for the

motive, we will consider that later; let us first demonstrate

the possibility of such a view. We add to our semantical appara-

tus an operator, RIGID, of category n/n, which has the effect of

making an n intension rigid by setting the value at all indices

identical with the value at some special index--perhaps, the

"actual world" index or the "present world" index. Names may

have any complex structure, including that of a description, as

long as RIGID is applied so that all of the structure lies in

its scope. Thus names are "rigid designators" but they retain

semantic structure. One result of this view is that names with

identical intensions need not be "synonymous", nor need names

be synonymous with any descriptions.

Consider the well-known example:

(72) Tully is Cicero.

(73) John believes that Tully is Tully.

(74) John believes that Tully is Cicero.
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We cannot consistently maintain all of the following:

(i) (72) and (73) might be true and (74) false (at the same

index)

(ii) replacing a phrase by a synonym always preserves meaning

(iii) synonymous sentences have the same truth value in a given

circumstance

(iv) proper names have basic/rigid meaning--(or, even basic/

non-rigid meaning, with both 'Tully' and 'Cicero' having

the same intension)

(v) L-meaning is an adequate reconstruction of meaning

Of course, this inconsistency does not determine a satisfactory

account of the meaning of proper names nor the correct treatment

of belief contexts. We might challenge (i), saying something

to the effect that although John does not know that 'Tully is

Tully' and 'Tully is Cicero' express the same proposition (or

object-of-belief), and thus will respond differently to the two

sentences, nonetheless, the two sentences express the same propo-

sition; and since it is propositions which are believed, (73)

and (74) must. have the same truth value if (72) is true. This

raises the question of the relation between expressing the same

proposition (object-of-belief) and being synonymous. A challenge

of (i) along these lines is not very satisfactory because the

only support for the challenge seems to be either (a) the claim

that 'Tully' and 'Cicero' are synonymous or (b) the claim that

the mere truth of (72) guarantees the equivalence in truth value

of (73) and (74) . As far as I can see, the only way to establish

(a), and hence disprove (i) is to argue convincingly for (ii) -
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(v), or some similar theses that exclude (i), and rely upon a

proof by contradiction, because (i) is quite plausible. So we

shall have to examine (ii) - (v) in detail anyway, regardless

of whether we support (i) or its denial. As for (b), it is false,

unless some doctrine about proper names is implicitly appealed

to, taking us back to alternative (a). (ii) and (iii) are con-

ditions on the concept we are reconstructing--i.e., what we are

calling 'meaning' is something like that. Until forced to do

otherwise, we shall take it for granted that there is something

which will make (ii) and (iii) true.

(iv) and (v) are the theses particular to our version of

Lewis grammar, and so deserve the most scrutiny. Let us first

consider (iv). Can't we solve the problem by giving up (iv)?

If we are not to land back in the fire with respect to modal

contexts, this means assigning proper names complex/rigid mean-

ing. The first hurdle, how this can be done at all, we leapt

over by introducing the operator, RIGID; with this device, names

can have constant intensions (with respect to possible world in-

dices) and still have features which distinguish L-meanings more

finely than the identity of the intension at the principle mode.

But, if we claim that names have complex/rigid meanings, we must

also answer questions about the nature of that complexity in gen-

eral, and also give some plausible examples. Notice that there

is a condition on the sort of complexity that can be assigned

to names, namely that the intension of the principal node of an

otherwise arbitrary L-meaning must evaluate to the referent of

the name at some particular possible world coordinate determined
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by RIGID (most likely, the actual world). We consider versions

of the two most popular theories of names. The Frege-Russell

theory takes the semantic complexity of a name to be that of some

description with the two features: (a) the description serves

to pick out the referent of the name by uniquely characterizing

it and (b) the description characterizes by attributing proper-

ties the user of the name believes (or even knows a priori) the

referent to have. A well-known criticism of this sort of view,

due to Kripke and others, points out that in some cases our be-

liefs about the referent of, for example, 'Tully', might not

uniquely characterize, or might not characterize anything, or

might uniquely characterize something other than Tully and yet,

so it is claimed, we might nonetheless use 'Tully' to refer to

Tully. On Kripke's view, the determinants of reference are not

in general (limited to) the beliefs of the user of a name about

the referent of the name, but include the history (or "causal

chain") of acquisition and transmission of the name. Within

the present framework, we can consider this as giving up (b)

while retaining (a) . Lewis offers a sort of hybrid of these

views (or, perhaps, just a reformulation of the Kripke view):60

...consider the suggestion... that the

extension of a personal name on a given

occasion depends partly on the causal

chain leading from the bestowal of that

name on some person to the later use of

that name by a speaker on the occasion in

question. We might wish to accept this
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theory, and yet to deny that the inten-

sion or meaning of the name depends, on

the occasion in question, upon the causal

history of the speaker's use of it; for

we might not wish to give up the common

presumption that the meaning of an expres-

sion for a speaker depends only on mental

factors within him. We might solve this

dilemma...by indluding a causal-history-of

acquisition-of--aames coordinate in our in-

dices and letting the intensions of names

for a speaker determine their extensions

only relative to that coordinate.

I will not criticize these views or even further elaborate them

here. Notice that they are primarily views about how the refer-

ent of a name is determined, and not (primarily) about the truth

conditions of sentences containing names. In fact, given a de-

vice such as the operator, RIGID, none of the views need attri-

bute a different truth value than any of the others to sentences

containing only extensional or modal contexts. All three views

seem compatible with a treatment of names as having complex/

rigid meaning in which RIGID is applied to the L-meaning of some

description or descriptive function. Thus there are alternatives

to treating names as basic/rigid. But will any of these alterna-

tives help with the problem of names in belief contexts?

By making something concerning the way in which the refer-

ent of a name is determined part of the meaning of the name, and
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hence part of the object-of-belief expressed by sentences con-

taining the name, the possibility is opened up for 'Tully is

Tully' and 'Tully is Cicero' to express different objects-of-

belief, and hence contribute differently to the truth conditions

of belief sentences. But even if we are willing to overlook the

lack of worked detail to this way of giving up (iv), there are

problems. Each of the above sort of treatment of proper names

as complex/rigid makes the L-meaning of a proper name a very

personal matter in that there is no reason to expect great

uniformity in the L-meanings for different speakers even when

the same name is used with the same intension. In fact, on

the Kripke or Lewis view, we would expect there to be as many

differences in L-meanings of 'Tully' as there are individual

histories of acquisition. When I say 'Tully is Cicero', the

proposition that I express will depend on the meanings I

associate with 'Tully' and 'Cicero'. Now, John might associate

a quite different meaning (though, we shall imagine, the same

intension) with these names and so express a quite different

proposition by 'Tully is Cicero'. This all remains true even

when the sentence is embedded in a larger sentence such as (74).

So, while (74) as asserted by me might be true, I would almost

never be in a position to know that it is true; and what is true

concerning John and the proposition expressed by his assertion

of 'Tully is Cicero', I would almost never be in a position to

express by asserting (74). The extent to which these consequences

count against the views of proper names mentioned above is not

clear. It might have been the case that when we imagined that
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(72) and (73) were true and (74) false, we were imagining them

interpreted as John would interpret them. But it might also

be that we would be willing to count '74) true, with the words

interpreted as we interpret them, on evidence just concerning

John's reaction to the sentence (72) (together with evidence

that John assigns the same intension to 'Tully' and 'Cicero'

as we do), or at any rate, without any evidence specifically

concerning the meaning of 'Tully' and 'Cicero' for John. One

thing does seem clear, when I seek evidence to verify (73) and

falsify (74), I do not concern myself with how John (or I) ac-

quired the names involved.61 Unfortunately, concentrating on

belief contexts obscures the point, which is really about the

proper semantic representation of indirect speech. Consider

the following:

(75) John said that Tully is Tully.

(76) John said that Tully is Cicero.

It seems that there are circumstances in which, not only is -

(75) true and (76) false (or vice versa); and further, that

the conditions affecting the truth value of (75) and (76) de-

pend upon what words John spoke and upon the referents of

'Tully' and 'Cicero' associated with John's speech, but not

upon the history of John's coming to associate those referents

with those words nor upon the descriptions that John believes

to be true of the things that he calls 'Tully' and 'Cicero'

Now all this might be wrong, it might be much harder to cor-

rectly attribute beliefs and statements to others than we nor-

mally think it is, but our everyday speech habits and the sort
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of evidence we require to make statements such as (73) - (76)

constitute a strong presumption against this view. Is there

a theory that will allow us to save the phenomena, to avoid

the need to deny the data?

Let us reexamine the much despised view that linguistic

(symbolic) objects are to be associated with sentences in in-

direct discourse. There are good reasons for denying that sen-

tences starting with 'John believes that' and even 'John says

that' are about sentences. We want to be able to report the

beliefs and sayings of people who speak no English and we may

want to attribute beliefs to beings that speak no language at

all. Besides, it is not a sentence, but the statement made by

a sentence in a particular circumstance which is believed or

not. But to say that we cannot always take indirect discourse

to be about linguistic objects is quite different from saying

that we can never do so; nor is it to say that if we do so

construe indirect discourse, it must be about sentences. One

attempt that will not work, is to merely mark nodes labelled

n in L-meanings with indices to mark sameness or difference of

the names to be placed under the node.62 That is, we' might

propose the two structures:

(77) .,~(78)

Tully is Tully

taking the L-meanings to be

p tvce
I i I

Tully is Cicero
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(79) (80) s

n tv n nv n2

t= t t =t

which are distinct trees (because 'n1 ' ' 'n2 ). If we con-

sider this sort of difference of trees to be a difference of

L-meaning, the possibility is open that sentences with (77)

embedded may differ in truth value from sentences with (78)

embedded. But indexing noun phrases in this way, aside from

the problems of syntactic motivation, is not a solution to our

problems. Consider the case where John knows a little Roman

history and a little logic, so that (73) and (74) are true,

but

(81) John believes that Tully is Marcus Tullius.

is false. Of course, Tully is Marcus Tullius. On the indexed

noun phrase view mentioned above, the structure

(82) 1j3

n1 tv n2

Tully is Marcus Tullius

has the L-meaning

(83)5

nytv n2

t = t

which is identical with (80). Hence (74) and

(84) John believes that Tully is Marcus Tullius.

would have the same truth value.

A technically satisfactory modification of this approach
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would be to take the L-meaning of a name to consist of the single-

noded tree of category n with the intension of the name together

with the name itself associated with the node. This has the

advantage of providing sufficient individuation to allow the

possibility of (73) and (74), (75) and (76) differing in truth

value without making the source of the difference a highly

idiosyncratic matter. But, there are also disadvantages to

modifying the L-meaning of a name in this way. First, it is

an ad hoc solution which does not seem to have independent

motivation. There is no intuitive interpretation of the in-

clusion of the name itself as part of its own L-meaning; any

distinguishing mark would do, including an arbitrarily assigned

integer. Second, we must face the embarrassing question: Are

names the only phrases which need this sort of treatment? It

would seem not. The sentences

(85) John believes that Oscar is a groundhog.

(86) John believes that Oscar is a woodchuck.

(87) John said that all groundhogs are groundhogs.

(88) John said that all groundhogs are woodchucks.

present problems similar to the problems about (73) - (76) in

light of the fact that 'groundhog' and 'woodchuck' name the

same species of mammal. We might try to deal with this prob-

lem by drawing a distinction between names and other sorts of

phrases, claiming that while it is possible to use two names

in such a way that the same referent is determined for both

names without knowing this fact, it is not possible to use two

phrases of another sort with the same meaning and not know that
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the meanings are the same.63 This might help with (85) and (86),

but I don't see how it can help with (87) and (88)--whatever

temptation there is to say that (75) and (76) could differ in

truth value seems equally strong in this case. Is there no

escape from, in effect, taking the full interpreted structural

description (including terminal nodes) as semantically relevant

(at least in indirect discourse)?

One alternative might be to claim that the supposed dif-

ference between the pairs (73)/(74), (75)/(76), etc. was not

one of truth versus falsehood, but some other feature such as

presupposition or implicature which is to be represented at a

different level of "meaning" than we are concerned with. For

example: When we use indirect speech to report another being's

beliefs or statements we presuppose (or is it implicate?) that

a certain "paraphrase" relation holds between our (indirect)

speech and the other's, statement or a statement he would accept

as formulating his belief. The relation can vary with the cir-

cumstances from very strong (stronger than synonymy) to very

weak. In the cases above, we were tacitly assuming a strong

paraphrase relation and so attribute different correct utter-

ence conditions to the paired sentences. Perhaps a case of

this sort can be made out for indirect speech governed by 'be-

lieves that' and 'says that', but it does not seem to work for

sentences such as

(90) It is trivially true that Tully is Tully.

(91) It is trivially true that Tully is Cicero.

of which (90) is true and (91) is false--no presuppositions or
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implicatures here. Notice that taking L-meanings to be full,

interpreted structural descriptions will, at least, allow the

possibility of correct truth values for these troublesome cases

without upsetting any of the cases we discussed earlier (though

complicating their treatment).64 Also, the troubles we have

had with analysing the meaning of names and indirect speech

are not peculiar to the framework of extended categorial gram-

mar, nor are they brought about by particular features of the

semantics we have been detailing. They are unresolved diffi-

culties, but not objections to the overall approach.

Let us continue now with some problems with which our

framework does help. It is well known that there are two

sorts of indirect speech contexts, often called referential

or transparent and non-referential or opaque. Of opaque

contexts we have the previous examples which do not allow

the truth-preserving substitution of co-referential names or

descriptions. Clear cases of referential contexts usually

involve paraphrase which brings the noun phrase outside the

indirect speech:

(92) John believes of Tully that he was bald.

(93) John believes of Alice and Gustav that they are siblings.

Sometimes it is claimed that in order to accomodate such uses

of 'believes' we shall have to take 'believes' to be not only

of category v/s, but also of categories v/(n,v), v/(n,n,tv),

etc. But this is not necessary; all the transparent belief

contexts can be analysed as coming from the single impure

operator of category v/s which also produces the opaque con-
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texts. The idea behind the treatment is similar to that used in

an earlier section to "extensionalize" the direct object position

of 'seeks'. We introduce an operator, denoted by 'EXT', which

operates on an L-meaning, m, of category v to give an L-meaning

of category v such that for any L-meaning m1 of category n,

B(EXT(m)(m )(i) = the True if there is some m2 of

category n such that B(m2) (i) = B(m 1) (i) and B(m(m2))i)

= the True.

In other words, EXT makes m look only at the intension of m

and ignores the rest of the L-meaning. So (92) has the

structure

(94) s

n v2

John n. *2
Tully v/v t

EXT v/s

believes was bald

while (93) has the structure

5

Jthn n

Alic

2v 3
n v/(n, n)1 *2

e Gus tav v/v (nn
1 *3

EXT v/v v/(n,n)

v/s

believes

tv

Ibis a sibling of

EXT

(95 ) )
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Quantifying in is also easy. The famous example

(96) There is someone who John believes is a spy.

has the structure

(97) s

someone *n

1*2

John v/V

EXT v/s v

1I.1
believes is a spy

Of course, in order for this to work, we must construe quanti-

fiers as having meanings which map v meanings into s meanings.

The intension of 'someone' is true of a v meaning (at an index)

if there is some n meaning whose intension at the index is a

person, such that the intension of the v meaning applied to

the intension of the n meaning yields the True at that index.

Note that there is an n meaning whose intension at i is x if

there is an n intension whose value at i is -x if there is an

n intension whose value at every index is x--though there may

be no such n meaning which is an n meaning of some name or

description of English.

There are other "intensional" contexts than those brought

about by indirect speech. Let us reconsider the verb 'seeks'

as an example. We might try to modify the treatment of part

9 based upon Montague's strategy of categorizing 'seeks' as

(s/n)/q. But with Lw-meanings and impure intensions available,

it becomes possible to handle actual, possible, impossible,
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definite and indefinite objects while categorizing 'seeks' as

an ordinary transitive verb, a (s/n)/n. Whether or not this

is the best approach is another -matter which will have to await

further research for resolution.

How can we manage with 'seeks' classified as (s/n)/n?

Remember, the problem was to distinguish 'John seeks a unicorn--

any old one' from 'John seeks a particular unicorn' in either

its extensional or intensional sense. The basic idea is to

take as our intensional objects the intensions (rather the L-

meanings) of the appropriate phrases. But, as the sentences

above show, even if we have classified definite descriptions

in category n there will be intensional objects specified by

phrases of category q. One way around this is to introduce an

operator I0 (intensional object) of category n/q whose inter-

pretation is the (properly restricted) identity function.

Notice that this is possible only if we have a notion of in-

terpretation such as that suggested above based on the A-
calculus which permits distinct categories to overlap. 10

effects a special kind of nominalization. We would represent

(98) John seeks a unicorn (extensional sense)

s

ntv a unicorn
*2

John v/v tv

EXT seeks
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(99) John seeks a unicorn (intensional "any-old" sense)

n tv n .

Join seeks n q q

I I
I0 a unicorn

To handle the third case, the "particular" sense, let us con-

sider a new entity of category q/v, EPI (exists a particular

intension).

(100) s

q

q/v v ntv

II I t
EPI unicorn John seeks

We can think of this as saying that there is an L-meaning, m,

of a special sort ("of a particular unicorn") such that

n tv.n

Join seeks M

is true.

There are a number of questions to be answered before

this sketch of an account can be taken seriously. First, what

is the nature of the relation between the referents of the

first and second noun phrases in true sentences with 'seeks'

as the verb? At first it appears strange to say that 'John

seeks a unicorn' attributes a relation to John and an L-meaning.

For one is tempted to say: What could that relation be but
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that of seeking? It is then but a short step to the strange

(and false) conclusion that when John seeks a unicorn he

(really--or is it in addition) seeks an L-meaning. But aside

from this fallacious reasoning, the analysis is not really so

strange when we realize that unlike loving or hitting, seeking

a unicorn is a matter of having certain intentions, desires

and beliefs--and has nothing to do with standing in a relation

to certain beasts (except in very special cases). While L-

meanings are far removed from beasts, they are closely related

to intentions and beliefs.

The second question has to do with the definition of EPI.

Specifically, when is an L-meaning a unicorn-L-meaning and

when is it a particular-unicorn-L-meaning? As for being a

unicorn-L-meaning, this is just a matter of the predication

of 'is a unicorn' being analytic. Particularity is a more

difficult matter; perhaps it is just a matter of ruling out

quantifier-originated L-meanings involving 10. Obviously,

this is at best a tentative beginning to a theory of inten-

sional objects.

Of course, in addition to these constructions, there are

also the constructions analogous to those for belief contexts

discussed above. One pleasant feature of this treatment of

'seeks' is that it unifies the treatment of intensional noun

phrases so that phenomena similar to those in (98) - (100)

can also take place for any verbs. The only difference be-

tween intensional verbs and ordinary verbs is in truth condi-

tions. It makes as much sense to say
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(101) The round square is in the next room.

in either of its several senses, as to say

(102) The round square is believed by John to be in the next

room.

or

(103) The round square is sought by John.

The difference is that while there is a sense of (102) and

(103) in which what is said might be true--depending on John--

there is no sense of (101) in which it is true.

I hope that I have at least made plausible the claim that

Lewis semantics together with extended categorial grammar pro-

vides a framework adequate for the treatment of some of the

more difficult "referential" parts of language--that is, ade-

quate if any set-theoretic reconstruction is adequate.
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Part 11 -- Summary and Conclusion.

In this paper I have done the following:

1) Elaborated the notion of categorial grammar in such a way

that the power and delicacy of the syntactic descriptions

given are increased without sacrificing the regular con-

nection between syntactic and semantic structure.

2) Provided an account of the semantic role of variables in

quantification theory and related notations and distin-

guished this from the structure of quantifier phrases in

English.

3) Criticized and extended the work of Frege, Geach, Montague

and Lewis on grammar.

4) Re-examined the relation of "intensions" as distributions

of extensions in possible worlds and as meanings, and pro-

posed a highly intensional formal surrogate for meanings.

5) Explored the treatment of some traditionally problematic

aspects of reference and meaning within the extended cate-

gorial framework.

Because this paper is primarily a report of research still

very much in progress, and because the originally quite limited

aims of the research have developed into a "program", I think

it is appropriate to end not with "conclusions" but with a

short list of important areas to pursue further.

1) One large task left undone here (after all, what are lin-

guists for?) is to work out detailed transformations and

syntactic modes of combination for the structures dealt

with, and to extend the analysis to as much of English as
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possible. An interesting question that must await this

work is to what extent rather specialized modes of com-

bination can replace the more general notion of trans-

formation as the means of relating deep to surface struc-

tures.

2) Only the most straightforward noun phrase constructions

have been examined here--those that have analogues in

FOL. Extending the analysis to cases such as mass nouns,

collective and compound noun phrases is an interesting

task.

3) The precise formal requirements for meanings must be de-

termined and the appropriate function-calculus interpre-

tations constructed in detail.

4) More detailed treatment of intensional and propositional

objects must be worked out.

5) Notions of semantic metatheory--synonymy, analyticity,

anomaly, semantic entailment--must be defined (where

possible).

6) The relation between an abstract linguistic theory such

as extended categorial grammar and a psycholinguistic

account of human language performance needs to be ex-

plored. In particular: How can the infinitary, abstract

entities that are L-meanings play a role in explaining or

representing what is understood (or decoded or encoded)

by a finite device such as the human brain?
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FOOTNOTES

1. There are numerous variants, each of which might plausibly

be called FOL. The particular version I choose counts as

WFE only expressions containing no free variables. It is

not important how common this version is, just that it has

a right to be called a version of the language of first

order logic. As a matter of fact, it is essentially the

version given by Leblanc and Wisdom (23); and it is also

a plausible candidate for a modern-notation version of

Frege's Begriffsschrift. See note 3.

2. Of course, the symbols used here mention the symbols of

FOL.

3. For a detailed account of Frege's system and citations for

the claim see Martin (26).

4. See, for example, Chomsky (4).

It is both interesting and worthwhile to compare

closely the logician's and the linguist's manner of de-

fining a class of expressions. The general form of a

(finitary) inductive definition of a set S consists of

3 parts: (i) specification of a set B of basic elements

(ii) specification of a class of operations (iii) the

induction or closure condition to the effect that S con-

sists of all and only those things obtainable from elements

of B by a finite sequence of (zero or more) applications

of the operations. While such a definition does not men-

tion or explicitly assign structures to elements of the
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class defined, it is common to define the notion of a con-

struction sequence or derivation of an element. We can

even introduce trees representing "structural descriptions."

Rather than do this abstractly in full generality, let us

consider a simple example. The base set B is {P,Q}. &

is the operation of writing '&' between its two arguments.

v and ' are defined in the obviously similar fashion. One

element of the set generated for this basis and set of op-

erations is '%P&QvP' and one of its structural descriptions

is the tree

v

Q

which indicates one way that the string in question can

be built up from the base elements by the operations.

Here is a phrase structure grammar for the same set

of expressions:

S {PQ} S-+ NS S+SCS S+SDS

N +^v C+ & D +v

One structural description for the expression above on

this grammar is

S D S

sc<Cs v P

N S & Q

i p
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What is the relation between these two sorts of gener-

ating systems and the associated structural descriptions?

First, as is well-known, the sets of expressions definable

by inductive definitions exceed those specifiable by con-

text free grammars. Second, even if we restrict attention

to sets which are generated by a context free grammar,

there is no unique context free grammar and hence no unique

"linguist's structural description" determined by an induc-

tive definition. Consider the alternative grammar:

S -+,{PQ} S + OP1S S S SOP 2S

op1 2+ %OP2+ {&,v}

On this grammar the above expression has the structural

description (among others):

S

S OP S v P'0 0 *III
OP S &

I I

Phrase structure grammars are, in general, simultaneous

inductive definitions of a class of sets of expressions

corresponding to the strings dominated by the various

nonterminal symbols of the grammar. A single inductive

definition of one (or a small number) of those sets (usu-

ally the one dominated by 'S') does not uniquely determine

all the others. In addition, taking the grammar as a

simultaneous inductive definition, we find a very simple



136

structure to the induction--the basic sets are the various

categories of terminal vocabulary and the operations which

generate the compound items are limited to concatenation

alone.

There are two morals to be learned from comparing the

logician's with the linguist's manner of specifying syntax.

One (which the linguists appreciate) is that while the

sentence may be primary in syntax, the data of syntax in-

clude many other kinds of phrases as well which must be

accounted for. The second is that it is unnecessary to

take concatenation as the sole phrase-forming operation.

Much of this paper is concerned with showing that it is

also undesirable to do so. Notice that as soon as we re-

move the restriction that concatenation is the only opera-

tion used in generation, the notion of context free grammar

becomes superfluous, since the structure of function applied

to arguments is "context free". That is, as soon as arbi-

trary operations are allowed, we have just another minor

variation on the notion of inductive definition.

5. Strictly speaking, this is not a phrase structure grammar

at all. As standardly defined, a phrase structure grammar

is a finite set of rules involving a finite vocabulary

(terminal and non-terminal). See for example, Chomsky (4).

The example given contains an inf inite terminal vocabulary.

To some extent, the non-standard character of the grammar

can be decreased by considering FOL to provide a source

from which particular languages are taken which contain
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i
only a finite number of the F. and, hence, just a finite

J

number of non-terminal symbols. But on any of the formu-

lations of FOL, there will be an infinite number of termi-

nal symbols--the variables--and on my formulation, both

the syntax and the semantics require an infinite nurber

of names as well. The grammar I present might be called

"a local, context-free phrase structure grammar" in that

any finite subset of the rules constitutes a context-free

phrase structure grammar. There is a context-free phrase

structure grammar which generates exactly the same set of

WFEs as does this grammar, when restricted to finitely

many different degrees of predicates. But the structural

descriptions of the WFEs of such a grammar will be dif-

ferent. See note 15.

6. I have not been able to prove (or disprove) this conjecture,

though I believe the proof to be fairly simple. But in

thinking a bit about this matter and in surveying the

literature for useful results I have had a few relevant

ideas. Consider a different, but related problem, that

of generating all the atomic formulae of FOL. As an ini-

tial simplification of the problem, take predicates to be

of the form--Fanbm, that is, 'F' followed by n 'a's followed

by m 'b's (which are subscript and superscript in unary

notation). Then an atomic formula is such a predicate fol-

lowed by m terms (either variables or constants in our case).

Here we have a simple sort of "agreement" condition between

the superscript and the number of terms following a predicate.
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At first I thought that the set of atomic formulae was not

context free, but this is wrong. Here is a simple grammar

for that set.

R+YAZ Y+F

A+a A+AA

Z+BT Z+BZT B+b

There are additional rules needed to generate terms from

'T'. While this grammar does generate all and only the

atomic formulae of FOL (under the above simplification in

notation), it does so in a strange way. Consider, for

example, the expression FaaabbTT which is given the

structural description (among others)

YR

F A B Z T

a A A b B T

a a b

This is quite different from the intuitive structure--'F'

followed by some 'a' s followed by some 'b's followed by

the same number of terms ('T's), for which we would want

a tree something like this:

atomic formula

predicate terms

'F' subscript superscript

So even though the set of atomic formulae is, on one repre-

sentation, context free there are two sorts of questions
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which arise. (i) Is the set context free on other repre-

sentations. For example, what happens if we interchange

the order of the sub and superscripts in the predicate?

Or if we use binary or decimal numerals instead of unary

ones? The trick used above to get agreement does not seem

to work in these other cases. (ii) Can the context free

version be generated with reasonable structural descrip-

tions? While there are some results in the literature

which seem to have bearing on questions of the first sort,

I did not discover any which dealt with the subtler matters

of the second sort. At any rate, I conjecture that the

answer to these questions is No.

Notice that if we are restrictive enough in formulating

the question, the negative result is easily proved. Lemma:

If G is a context free grammar in which the only rule with

'S' on the left is of the form S + AB, and if there are

strings o1 = a1al and 02 = ca20 2 generated by G such that

a1and a2 are dominated by A and 8 and $2 are dominated

by B, then a1 02 and a281 are also generated by G. Proof:

Because G is context free. In effect, this trivial lemma

says that agreement cannot be enforced in certain kinds of

context free grammars. As an application, we see that we

cannot expect to generate sentences of FOL with the intuitively

desirable structure S + Quantifier String + Matrix. Nor can

we get the example above with the intuitively desirable

structure.

7. One application of the inability to generate FOL by a context-

free phrase structure grammar is to make clear at least one
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sort of motivation for constructing grammars with a phrase

structure component and a "transformational" component--

namely simplicity and elegence in the resulting theory--

and to separate these from psychological questions con-

cerning the manner in which speakers produce sentences.

Consider, as an even clearer example, a version of FOL

in which both polish and standard infix notations for the

truth functions are allowed. We could write a grammar

which included two sets of rules, handling the two cases

separately, but we could also generate a "base structure"

(perhaps the polish version itself) which is transformed

in two different ways into "surface structures". Another

example; consider a variation of FOL in which there are

definite descriptions treated a la Russell as well as names.

We may find it desirable (and then again we may not) to give

quite different "deep structures" to similar "surface

structures" which differ only in the occurrence of names

and descriptions.

8. There is a good deal of looseness with the term 'trans-

formational grammar' to which I shall try not to contri-

bute. Thus the shudder quotes in the previous paragraph

and the designation 'functional component' in this one.

Logicians writing about grammar have called 'transforma-

tions' many different kinds of functions. All that matters

here is the recognition that it is convenient for represent-

ing both syntactic and semantic facts about FOL to divide

the syntactic component of a grammar into two parts, a phrase

structure part and a functional part. We shall say a bit
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more about this later on.

9. Let {s1Os2,...} be any set of strings and let h(s.,s.) =

si+j and g(a) = s . Consider the grammar: s + a, S + SS,

with g and h the operations which correspond to the pro-

ductions. That is, we have s + g(a), S + h(S,S). Ob-

viously, we can get any class of strings generated in this

manner. Further, if the sequence s. is recursively enum-

erable, g and h can be recursive.

If we just let the function apply after the completed

derivation as* a "transformation" it is even easier to see

that we can get any set of strings. Just let f map an into

the nth structural description. So either by generalizing

the phrase-forming operations or by allowing arbitrary

"transformations" we get essentially the generative power

of arbitrary inductive definitions.

10. See (1), (15), (24), (28).

11. See (26) for details on Frege's theory of grammar. In stud-

ies of Frege, attention focuses almost exclusively on his

theory of reference and meaning. One hears almost nothing

about Fregean syntax. Perhaps this is because the syntax

is so simple and appears to be derivative from the semantics.

But, of course, the two must go hand-in-hand. Analysis

into function and argument can only proceed linguistically

via analysis into function-name and argument-name. Geach

(15) quite correctly calls his remarks about categorial

based syntax 'Fregean'.
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12. The earliest version is in (33). Later versions appear

in (34) and (35). The version I present is that of (35).

13. Though the categorial grammar presented for PFL does not

solve the problem of providing a grammar for FOL, it is

of interest for two reasons. First, it is the simplest

example of a categorial grammar for an interesting lan-

guage. Second, it provides the key to an analysis of

the role of variables.

14. (26).

15. Martin's conditions (i) - (v) and (iv) - (ix) are meant

to be an inductive definition of the references of the

open sentences and sentences of FOL. But though the

intent is clear, the details are not worked out. The

main gap is the failure to present a syntax which gen-

erates structural descriptions upon which the semantics

can be based. The syntax Martin gives is the inductive

definition presented in part 1 which does not even define

the class of open sentences.

16. I allude to Quine here because, even though the predicate

functor logic he details is a different language from FOL,

and even though he uses a different set of operators to

generate the various operations on predicates, the basic

idea of this analysis of the role of variab'les is the same

as that given in "Variables Explained Away".

After writing this, the paper (34) came to my attention.

In this paper, Quine takes essentially the view I present,
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that the function of a (bindable, objectual) variable is

primarily to indicate various operations on predicates

rather than to quantify. He also points out the value

of such a notation for the analysis of relative clauses.

The basic idea of this analysis goes back to Schoen-

finkel (37) and has been elaborated by Henkin, Monk, and

Tarski (18), Halmos (17), Craig (5), and Curry (7) among

others.

17. Either FOL in its entirety is "unlearnable" and hence it

is no defect in our grammar for FOL that it be "unlearn-

able" or FOL is "learnable" in spite of its infinity, in

which case it seems our grammar would be "learnable" too.

In the absence of a clear account of learnability suffice

it to say that the vocabulary, terminal and non-terminal,

and the set of productions are recursive sets.

18. Why must grammars be finite? I think that the reason

such a view is widespread is historical, having to do

with the derivation of phrase structure grammars from Post

systems. Post systems are one of several formal recon-

structions of the notion of effective computation. They

have the virtue of easy application to domains other than

the integers. Any recursively enumerable set of expressions

can be obtained as the output of some Post system. There is

no question that in order for Post systems to be successful

reconstructions of the intuitive notion of effective compu-

tation, they must be restricted to finite sets of rules or

"productions". Certainly we cannot allow arbitrary infinite
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sets of rules, because every set of integers can be gen-

erated by some such system and because there is no con-

nection between such systems and the intuitive ideas of

effective computation. So if we allow infinite sets at

all, they must be of a restricted sort. But what sort?

If we say, only effectively enumerable infinite sets of

rules are allowed, then the definition of Post system is

not precise, relying as it does on the imprecise intuitive

notion of effectively enumerable set. But if we say instead

that only infinite sets of rules which can be obtained as

the output of a Post system are allowed in a Post system,

we have given a circular definition of the notion of a

Post system. So to get started, we must restrict Post

systems to a finite set of rules. Having introduced Post

systems in this way, we may then propose that all effectively

enumerable sets can be generated by some Post system. Part

of the verification of this thesis identifying a precise,

formal notion with an intuitive notion, is the proof that

the precise notion satisfies certain closure principles.

In particular, we can now prove that if we consider Post'

systems, which are like Post systems except that Post' sys-

tems may have an infinite set of rules as long as that in-

finite set is generated by some Post system, the class of

sets generated by Post' systems is the same as the class

of sets generated by the Post systems. But this fact about

Post systems does not mean that in all cases of effectively

generating a set, restriction to a finite basis is either
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desirable or possible. For example, not every axiomatizable

theory is finitely axiomatizable, though of course, the set

of theorems of any axiomatizable theory can be generated

by some Post system. Axiomatization of a theory is not

at all the same as generating a set of theorems by a Post

system. In axiomatizing a theory one is concerned not

merely to generate a set of sentences, but to generate a

set of sentences as the set of theorems of a set of axioms

with respect to sa.)me formulation of logic. Similarly, in

writing a grammar we are not just concerned to generate a

set of sentences, but to generate a set of sentences as

sentences with certain structural descriptions with respect

to some set of grammatical rules. An infinite grammar may

be necessary to do this. The case of FOL is perhaps a

marginal example, since FOL can be finitely generated at

the cost of including just a little unwanted structure.

19. (15).

20. I use double arrows, -+, for multiplying-out rules to

distinguish them from phrase structure rules for which I

use the conventional single arrow +.

21. The addition of composition of functions to application

of a function to its arguments as modes of semantic com-

position still preserves the property of categorial gram-

mar that the semantic value of a compound expression is

determined uniquely by the semantic value of the component

expressions together with the syntactic mode of combination.

In fact, all that is needed is the semantic value of the



146

components together with the category of components.

22. sara = Sara Lee.

(loves (x)) (y) = the True iff x loves y.

everyone(f) = the True iff f(x) = the True, for all people x.

The left-most tree has as its associated interpretation

(everyone loves) (sara), and the right-most has everyone(loves

(sara)). Let us first verify the correctness of these in-

terpretations--that is, the correctness of the resulting

truth value in all cases.

(everyone loves) (sara) = everyone(loves(sara)) = T iff

loves(sara)(x) = T for all people x.

loves (sara) (x) = T iff Sara Lee loves x.

So (everyone loves) (sara) = T iff Sara Lee loves everyone.

We have thus verified the correctness of the interpretations

I assign to the two trees.

But one small matter remains, namely the discrepancy

between the syntactic and semantic order represented by

the trees. It is, at best, confusing that (everyone loves)

(sara) should be the interpretation of 'Sara Lee loves

everyone'. A related matter is that the multiplying-out

rules

s/n n + s, s/(s/n) s/n + s

s/(s/n) (s/n)/n + s/n, (s/n)/n n + s/n

correspond to the phrase structure rules

s - s/n + n, s + s/(s/n) + s/n

s/n -+ s/(s/n) + (s/n)/n, s/n - (s/n)/n + n

respectively, and so would (if taken literally) yield the
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trees

s s

s/n n s/(s/n) s/n

s/(s/n) (s/n)/n sara everyone (s/n)/n n

I I I I
everyone loves loves sara

All these matters will be straightened out in the next sec-

tion (part 8). For now, I just remind you that we have

abandoned concatenation as the only syntactic generating

operation and mixed our tree notation a bit by incorporat-

ing various reordering operations without explicit mention.

The aim of this sloppiness in notation is perspicuity. Of

course, it is the purpose of the present section to reveal

the illegitemacy of ignoring these matters in our theory of

grammar. We shall, however, continue to ignore them to a

certain extent in our notation even after correcting the

theory. For this reason, I encourage the intrepid reader

to work out the examples in the text for himself, and I

apologize for the difficulty of the notation.

23. The general problem of specifying standards for the compara-

tive evaluation of grammars is a notoriously difficult one.

I do not have much to say about it; though I do compare

particular grammars or types of grammars with respect to

various imprecise standards.

One conjecture about the limits of the set of universally

adequate transcategorial modes of semantic combination is

that such modes are definable within the pure A-calculus.
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But this is not a very great restriction and is surely too

large an upper bound, Probably a very small set of modes

will do for any single language and even for all natural

languages. Of course, from the theory of combinators we

know that all /\-definable modes of combination can be

generated from a small finite base, but this roes not tell

us how many distinct modes are needed to give a satisfactory

account of the syntactic and semantic resources of natural

languages.

24. Of course, which of two phrases of category n is the subject

of a phrase of category (s/n)/n and which the direct object

depends upon the details of the syntactic rules. For con-

venience and definiteness in what follows we will assume

rules such as those in note 18.

25. (28). It does not seem that the sole or even chief moti-

vation for Montague's proposal was the treatment of quan-

tification within a pure categorial grammar, since the

grammar he gives is not a pure categorial grammar. I

discuss the success of his treatment with respect to

other standards in part 9.

26. This is another case of the sort of lack of generality

mentioned in note 15. Restriction to concatenation as

the basic mode of composition is appropriate to a Post-

style analysis of effective enumerability. But our goals

are different and we shall not hesitate to accept this

generalization of phrase structure rules.
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27. There is an obvious sense in which E, the syntactic object,

and E, the mode of presentation of the associated semantic

object have the same structure. In this sense our theory

identifies (deep) syntactic structure and semantic struc-

ture. However, before using this fact to place extended

categorial grammar with "generative semantics", it should

be observed that there is another sense in which (deep)

syntactic structure is (or at any rate, can be) distinct

from semantic structure. The structure of the syntactic

object with respect to concatenation may be quite different

from the categorial structure.

28. More on this in parts 10 and 11 where we face the problem

of reconstructing ambiguity within extended categorial

grammar.

29. This identification is made in order to make simpler the

presentation that follows. In particular, it facilitates

the "abstraction" of complex predicates of arbitrary de-

gree. In order to accomplish this without the canonical

identification, Geach must introduce a complex scheme of

multiplying-out rules and categorization principles.

30. As an aid in following the examples in the text, I give

here some simple paradigms involving a transitive verb,

R, and various combinations of name and quantifier sub-

jects and objects. R is of category (s/n)/n and takes

its first noun phrase (subject) to its left and its second

noun phrase (direct object) to its right. Examples: loves)
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hits. Let R be that function of category (s/n)/n such

that for all x,y of category n R(x) (y) = T iff x Ry.

(This is not a precise use of the variables, but you know

what I mean.) Let a,b be of category n with interpreta-

tionsJ. Examples: Alice, Bob. Let Q,Q' be of category

s/(s/n) with interpretations Q,Q'. Examples: everyone,

someone.

Pl Consider phrases of the form aR. Examples: Alice

loves, Bob hits. They are generated by rules of the form

S/n + (s/n)/n 1+n

and have structural descriptions of the sort

s/n

(s/n)/n na
s/n

(s/n)/n n

R a

or

n

a

or

1/)

(s/n) /n

R

s/n

n (S/n) /n

I I
a R

depending on taste. The interpretation is f = R 1(a) = R(a).

Hence, f (x) = R(a) (x) = T iff aRx.

P2 For Rb we have the structures

s /n -,or
-r 2

(s/n)/n n

R
n1

b4
(s/n)/n

R

with the interpretation f * R2(b) = R(b). So f(x) = R(b)(x)

= R(x)(b) = T iff xRb.

r
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P3 For aRb we have

or

(s/n)/n

k b

(s/n)/n

I

or

-n

n (s/n)/n n

b A a

all of which have as interpretation R(a)-(b).

P4 QR

s*

s/(s/n) (s/n)/n

I I
R

or

(s/n)/n

R

(Q *1 R) (x) = (Q R) (x) = Q(R(x)) = T iff QRx.

P5 RQ'

s/n
,,*2

s/(s/n)

I'
o'f

or

(t/n) /n

R

s

s/ (s/n)

Q

s/n
*2

(s/n)/n s/(s/n)

I I
R 0'

(Q'*2 R) (x) = (Q' R) (x) = Q' (R(x)) = T iff xRQ'.

QRQ' is worked out in (13) and (14).

31. Passivizing is the operation that goes from

to

n

b
n (s/n)/n n

or, more generally, replaces a transitive verb by its converse

a

Q
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while interchanging subject and direct object. Of course,

at the surface level, the operation is more complicated.

32. These are meant to be examples to illustrate various fea-

tures of extended categorial grammar. No claim is made

that the sample categorizations are either the best pos-

sible or the best conceivable for these vocabulary items.

33. We treat 'who' so that

who () 2 2(x) T iff xV who V1 .

For example, who (is tall) (is a person) (x) = T iff x is a

person who is tall. For convenience, we will often revert

to our previous practice of writing 'someone' and 'everyone'

as simple elements of category q.

34. Here are some more paradigms to aid with the complicated

examples which follow in the text.

Let Q(x) be of category q/n. Also Q'(x). Examples:

everyone who loves x, someone x loves.

P6 Q'(x)Ry

(s/n)/n or
2*1

(s/(s/n))/n (s/n)/n

Q(x) R

(s /n

(s/n)/n (s/(s/n) )/n

R Q(x)

( 2*1 R)(x)(y) = Q(x)(R(y)) = T iff Q(x) Ry.
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P7 yRQ' (x)

(s/n)/n or
2*0

(s/(s/n))/n (s/n)/n

Q'(x) R

(s/n)In
000002*2

(s/n)/n (s/(s/n))/n

I I
R Q(x)

Examples: P6--everyone who loves x loves y

P7--y loves someone who loves x

P8 x V who Ry

tv
.,O 2

(v/v)/nI 1*1
V (v/v)/v tv

who R

(who 1*1 R) 2 (V) (y) (x) = (who 1*1 R) (V) (y) (x) = (who 1*1 R)

(y) (V) (x) = who(R(y) ,V) (x) = T iff x V who R y.

P9 x V who y R

tv
2

(v/v /n

V (v/v) /v tv

who R

(who 1*2 R) 2 (V) (y) Cx) = (who 1*2 R) (y) (V) Cx) who

(R(y),V) (x) = T iff x V who yR.

Examples: P8--x is one who loves y

P9--x is one who y loves
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Let E be of category q/v. Example: every.

Pl0 E V who Ry

q/n
*2

g/v v

E
x V who Ry (=f(y)(x)

Example: everyone who loves y.

(If the '*2" seems wrong to you, pay attention to the

order of the arguments in P8.)

(E *2 f) (y) (V) = E(f (y)) (V') = T iff E V who Ry V'.

35. Many approaches to elementary logic introduce the usual

symbolic apparatus with talk of logical form and formally

valid arguments. The examples given to introduce the

symbolism often make it seem as if the notion of the form

being illustrated is grammatical form. Very quickly we

pass to examples which involve various equivalences and

paraphrases and our aims pass from representing the quan-

tificational form of a statement to expressing truth con-

ditions. Perhaps we make some remarks about the differ-

ence between grammatical and logical form and claim that

when it comes to symbolization we are only interested in

reflecting or preserving logical form. Or perhaps we say

that we have introduced a new language, L, alternative to

English, and call symbolization "translation of English

into L". With few exceptions, such explanations of our

symbolization practices are muddled and inconsistent with

the practice itself. What prevents the proper sort of
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explanation is the feeling that the structure of English is

too complex and too indefinite to enter into matters of

logic. It is a major virtue of extended categorial grammars

of the sort considered (fragmentarily) above that they can

aid in explaining what symbolization is, if not as a ped-

agogical device, then at least to ourselves. We do at

least two quite different things when symbolizing; para-

phrase and represent structure. Paraphrase is by its

nature unsystematic. It involves finding alternative ex-

pressions which, relative to context, "serve our purposes."

This sort of paraphrase will not, in general, preserve

meaning or form or produce logically equivalent statements.

Representing structure is a more systematic operation upon

the linguistic object. In the case of the elementary theory

of quantification, it is a partially defined operation on

English sentences, which, relative to certain structural

equivalences, identifies an English sentence with an ex-

pression of FOL having similar structure. Extended cate-

gorial grammar provides the means for making the notions

of structure involved here precise, and perhaps even mech-

anizing this part of the process. To the extent to which

it facilitates this, an extended categorial grammar for

English explains how we (might) understand English quan-

tificational devices.

36. One minor feature of Montague's presentation is the inclu-

sion of '//' as an additional complex category-forming ex-

pression. In general, c1/c2 and c1//c2 have the same
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semantic interpretations, but they may correspond to dif-

ferent syntactic modes. This sort of syntactic subcate-

gorization can be obtained within extended categorial

grammars by making the syntactic modes sensitive to the vo-

cabulary, or more uniformly, by operating on syntactic fea-

tures other than categories. There is certainly no reason

to restrict all syntactic information to be contained in

the categorial classification itself.

37. Very roughly, the idea is to consider a quantifier as de-

termining a class of sets--in this case, sets consisting

of all the people in this room and some of the people in

the next room--while 'each other' is true of a transitive

verb thought of as expressing a relation and a set de-

termined by a quantifier if and only if each thing in the

set stands in the relation to each other thing in the set.

Unfortunately, this rather straightforward approach is be-

set by serious technical difficulties concerning the prob-

lem of "extracting" a set from an arbitrary quantifier.

See also Massey (27) for a different treatment and refer-

ences.

38. Such phrases as 'each other' and 'together' provide some

motivation for such operators. Consider 'Jack and Jill

love each other' and 'Jack and Jill went up the hill

together'.

39. See Geach (16) for a defense of this claim and a valuable

discussion of some of the complexities of the data.

------- ----
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40. Rather than defend this tendentious proposal, we will wait

until we have presented the more adequate theory of part

10 to deal seriously with intensional objects.

41. This includes the case of 'John seeks a unicorn' in the

weak sense of being a unicorn-seeker, if we have an in-

definite "intensional" quantifier--some indefinite. In
q

this case, we need not categorize 'seeks' as (s/n)/q,

but may treat it uniformly with other transitive verbs.

42. The more adequate treatment of intensions in part 10 will

allow this final simplification and urification of the

treatment of transitive verbs.

43. (21), p. 149n.

44. I first became aware of this possibility in conversation

with Hans Kamp. See Kamp (20), Segerberg (44), and

Stalnaker (45).

45. Of course, the class of expressions is not that described

in part 1.

46. Suppose, for example, that D = {0,1}, I ) = $I(F) =

{l}, I(x1 ) I(x2) = 0.

47. Though they are still needed to introduce parentheses.

48. There are formulations of FOL which do not distinguish

variables from constants as vocabulary items, but treat

free variables semantically as constants. The grammar

described would be suitable for such a formulation of

FOL if the constants, a., were removed from the vocabulary.
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49. It is obvious how to extend the grammar to accomodate in-

finitely many constants. Infinitely many predicates can

also be accomodated in such a finite grammar as long as

only finitely many different degrees are required. But

if infinitely many predicates of infinitely many degrees

are called for, the grammar must be infinite. Notice

that it.is Lewis' method of taking each occurrence of a

variable as categorematic that makes this finitizing trick

possible.

50. (24), p. 176.

51. op. cit. p. 182.

52. op. cit. p. 184.

53. One promising line for the definition of normal forms for

L-meanings is via the established notion of normal form

for the terms of the /\-calculus. For the relevance of

the X-calculus to L-meanings see note 57, especially the

latter portions. For discussion of normal forms for the

X-calculus, see (19) and (46).

We will not explore further in this work the defini-

tion of metalinguistic semantic notions in terms of L-

meanings.

54. There is more than notational convenience to be obtained

from the fact that L-meanings as trees uniquely determine

L-meanings as functions. It is this fact which opens the

door to construing L-meanings not only as representations

of abstract, infinitary structures which behave like mean-

----------
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ings, but also as representations of human speakers'

linguistic knowledge. This will be elaborated later.

55. That is, the intension of a compound expression depends

upon not only the intension of its components, but also

upon the meaning of the components.

56. In order to avoid a questionable claim about the nature

of Frege's theory of sense and reference, I present the

standard formulation (i) - (iv). But it seems to me that

my revised theory, incorporating (iii') and (iv') is not

so much a revision of Frege as it is the isolation and

clarification of an aspect of Frege's own views. As is

well known, when discussing natural language (e.g.(14)),

Frege supplements the principles (i) - (iv) by introduc-

ing the notion of indirect reference and indirect sense.

For certain expressions, FA, the following principles hold

instead of (ii) and (iii):

(v) REF(FA)= REF(F)(INDREF(A))

(vi) SENSE(FA) = SENSE(F) (INDSENSE(A))

(vii) INDREF (A) = SENSE (A)

(viii) INDREF(A) = EXT(INDSENSE(A))

In other words, REF(FA) = REF(F) (SENSE(A)). Since, in all

cases, REF(A) = EXT(SENSE(A)), (iii') really is, for Frege,

the general form of the relation governing the reference

of a compound expression. (iii) is not a different princi-

ple from (iii'), but a special case of it. The notion of

indirect reference, and with it the notion of indirect

sense, play no role in the theory as thus formulated and
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can be dropped altogether. The effects of context then

become features of the function which is the reference

of the function name, F.

57. The mathematical basis for these claims is in (38), (39),

(40), (41), (42), and (43). See also (10). It is inter-

esting that the complexity of structure of "meaning alge-

bras" has gone unnoticed. The usual characterization

(when any is given) is that the class of sentence mean-

ings or propositions is a lattice with respect to various

operations. But that the class of meanings of all cate-

gories is best thought of (or even that it can be thought

of) as a type-free function algebra has not, to my know-

ledge, been previously noted. There are, however, two

recent developments in semantics which seem to involve

special cases of the full structure of meaning algebras.

The first is in Cresswell (6). If, as seems desirable,

we allow that any entity may be named by an expression of

category n, the base domain, D, must contain all the other

domains associated with complex categories. In particular,

the domain of s/n must be contained in D. But under the

standard categorial semantics, this would mean 2DC D,

which is impossible. Cresswell points out that if we take

the domain of s/n to consist only of partial functions

from D to 2, and similarly for other categories, it be-

comes possible to maintain such inclusions. This solution

to the problem is not ideal (even if it were worked out)

because it not only excludes total functions, but also
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excludes functions which are in their own domain. Thus,

while avoiding difficulties with 'the concept horse', we

still have problems with 'the concept concept', which

intuitively ought to be a term of category n which denotes

an entity of category s/n and which is true of itself. I

have recently heard of a second development along these

lines in which Kripke deals with a special case of this

sort of situation as part of a theory of truth. In a

later paper I will deal with the technical details of

the necessary constructions and the applications to se-

mantics.

Cresswell, (6) also, develops an elaboration of cate-

gorial grammar which deals with many of the problems of

part 8 by adding the 'N/' and bindable variables of Church's

lambda calculus. With respect to syntax, this is very much

like Lewis' grammar in (24) with the following exceptions:

1) Lewis treats his abstraction operator and variables

categorematically while Cresswell does not. 2) Lewis

assigns tree-structured syntactic analyses to sentences

while Cresswell assigns a linear parenthesized string.

In this comment I want to suggest that the lambda calculus

is indeed a useful tool in syntax though not in quite the

way that Cresswell (or Lewis, in effect) recommends, and

to show that a reformulation of the role of the lambda

calculus leads naturally to extended categorial grammar.

Consider the fatilar sentence

Everyone loves someone.
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Cresswell assigns it (with minor notational differences)

the two deep structures

everyone(Ax. someone(\Xy. x loves y))

someone(Ny- everyone(Xx. x loves y))

while I have assigned the two structural descriptions

s
M

q1
v
in2

everyone tv q

I I
loves someone

s

q tv someone

everyone loves

I have purposely left the modes of combination m1, m2

M3, M4 unspecified. Now we can use the lambda cAlculus

notation to specify the semantic modes as follows:

M1 = Xzw- z (w)

M 2 = >zw- Xx. w(Ny. z(x,y))

M 3 = Xzw. w(z)

mg4 = Xzw. Xy. z('Nx. w(x,y))

It is easy to verify that these are notational variants.

of the definitions given in part 8, and that they yield

the same semantic structure as Cresswell's analyses. The

differences are that the extended categorial grammar ap--

proach allows intuitively plausible syntactic descriptions
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and categorematic semantics by keeping the metalinguistic

notions and notations separated from the language being

described. Whether this difference is of any great con-

ceptual importance is another matter.

58. Not much weight should be put on the details of the ex-

ample. I neither claim that 'bachelor' is synonymous on

a reading with 'unmarried, adult, male person' nor that

v/v is the proper category for adjectival modifiers. There

are obviously both compound and simple L-meanings on Lewis-

account. What is not quite so obvious is that some syn-

tactically simple phrases, e.g., 'bachelor', have compound

L-meanings of particular sorts.

59. This assumption is questionable. Perhaps some "proper

names" are really disguised (abbreviated) definite de-

scriptions while others are not. Perhaps contextual

factors affect the interpretation of proper names. Per-

haps names are semantically ambiguous. The assumption

is made to simplify the discussion that follows and could

be removed at the cost of modest complications involving

considering cases.

60. (24) pp. 214-215.

61. Strictly speaking, this is not correct. For often the manner

of acquisition of names is the best data concerning sameness

of their referents.

62. There are reasons concerning both syntactic and semantic

representation which favor some sort of indexing or co-
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reference indication for noun phrases. But whatever the

virtues of so doing, it is not a solution to the present

difficulties. Of course, rather than the usual sort of

local indexing, we might suggest a global indexing. But

it is not clear how this is any different, let alone bet-

ter, than taking the syntactic form of a name together

with its intension as the "index".

63. Many of the views about proper names which Kripke offers

have been applied by others to common names and substance

as well.

64. I only suggest here what I defend elsewhere, that a certain

"confusion" of use with mention may probe semantically

fruitful. It is certainly intelligible (though perhaps

unnecessary) to take as L-meanings full structural de-

scriptions including lexical items. Once this is done,

there can be operators on such entities which notice the

lexical level as well as others which ignore it. Of course,

L-meanings so construed are not suitable reconstructions

for propositions in general--only for linguistically

embodied propositions. But one way to take the prob-

lems we have had with indirect speech is as a lesson that

we take seriously its claim to be indirect speech.
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